WO2015053046A1 - Resistance-force output device - Google Patents

Resistance-force output device Download PDF

Info

Publication number
WO2015053046A1
WO2015053046A1 PCT/JP2014/074389 JP2014074389W WO2015053046A1 WO 2015053046 A1 WO2015053046 A1 WO 2015053046A1 JP 2014074389 W JP2014074389 W JP 2014074389W WO 2015053046 A1 WO2015053046 A1 WO 2015053046A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction force
motor
separation
output device
output
Prior art date
Application number
PCT/JP2014/074389
Other languages
French (fr)
Japanese (ja)
Inventor
隆志 大場
宏行 高妻
Original Assignee
株式会社ホンダロック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ホンダロック filed Critical 株式会社ホンダロック
Priority to US15/027,378 priority Critical patent/US10146247B2/en
Priority to CN201480054955.3A priority patent/CN105723292B/en
Priority to BR112016007561A priority patent/BR112016007561A2/en
Priority to EP14852076.0A priority patent/EP3056962B1/en
Publication of WO2015053046A1 publication Critical patent/WO2015053046A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G5/00Means for preventing, limiting or returning the movements of parts of a control mechanism, e.g. locking controlling member
    • G05G5/03Means for enhancing the operator's awareness of arrival of the controlling member at a command or datum position; Providing feel, e.g. means for creating a counterforce
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K26/00Arrangements or mounting of propulsion unit control devices in vehicles
    • B60K26/02Arrangements or mounting of propulsion unit control devices in vehicles of initiating means or elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K26/00Arrangements or mounting of propulsion unit control devices in vehicles
    • B60K26/02Arrangements or mounting of propulsion unit control devices in vehicles of initiating means or elements
    • B60K26/021Arrangements or mounting of propulsion unit control devices in vehicles of initiating means or elements with means for providing feel, e.g. by changing pedal force characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H19/00Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion
    • F16H19/08Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion for interconverting rotary motion and oscillating motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K26/00Arrangements or mounting of propulsion unit control devices in vehicles
    • B60K26/02Arrangements or mounting of propulsion unit control devices in vehicles of initiating means or elements
    • B60K26/021Arrangements or mounting of propulsion unit control devices in vehicles of initiating means or elements with means for providing feel, e.g. by changing pedal force characteristics
    • B60K2026/022Arrangements or mounting of propulsion unit control devices in vehicles of initiating means or elements with means for providing feel, e.g. by changing pedal force characteristics with tactile feedback from a controller, e.g. vibrations
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G1/00Controlling members, e.g. knobs or handles; Assemblies or arrangements thereof; Indicating position of controlling members
    • G05G1/30Controlling members actuated by foot
    • G05G1/44Controlling members actuated by foot pivoting

Definitions

  • the present invention relates to a reaction force output device.
  • This application claims priority based on Japanese Patent Application No. 2013-21111 filed on Oct. 8, 2013, the contents of which are incorporated herein by reference.
  • an accelerator pedal that outputs to the accelerator pedal a force (reaction force) opposite to the force (depression force) that depresses the accelerator pedal, in order to suppress unintentional sudden acceleration when the vehicle starts or travels.
  • An apparatus has been developed (see, for example, Patent Document 1).
  • the accelerator pedal device described in Patent Document 1 includes a housing that pivotally supports the base end of a pedal arm, a return spring for returning the pedal arm to an initial position, a motor for creating a reaction force, A lever for transmitting the rotation of the motor to the pedal arm is incorporated.
  • the motor is controlled by the control device to an output corresponding to the depression state of the accelerator pedal, and the output is applied to the pedal arm through the transmission lever.
  • the motor creates a reaction force, but the reaction force during the stepping operation may become larger than necessary due to an increase in friction torque generated in the closed circuit of the motor. It was. In order to avoid this, for example, if energization of the motor is suppressed, the output of the motor may be insufficient, and the drive member of the motor may not sufficiently follow the pedal arm.
  • An object according to the present invention is to provide a reaction force output device capable of improving followability.
  • the reaction force output device of the present invention employs the following configuration.
  • a reaction force output device drives a driving member to output a force in a direction opposite to an operation direction to an operator operated by an operator, When it is determined whether or not there is a separation between the operation element and the driving member, and it is determined that the separation has occurred, the driving force is greater than when it is determined that no separation has occurred.
  • a control unit that controls the drive unit so as to output the signal.
  • the reaction force output device when the operation member and the driving member are separated, the reaction force output device outputs a larger driving force, so that the driving member follows the operation member. To do. Therefore, it is difficult for the drive member and the operation element to be separated from each other. Therefore, the reaction force output by the reaction force output device can be accurately transmitted to the operation element, and for example, the accelerator feeling can be improved.
  • the control unit when the control unit determines that the separation has not occurred, the control unit intermittently energizes the drive unit based on a control target value input from the outside. If it is determined that the separation has occurred, the energization period to the drive unit can be made longer than when it is determined that the separation has not occurred. Good.
  • the reaction force output device for example, when there is no separation between the driving member and the operation element, is based on a control target value according to external information such as travel speed, for example. Can be transmitted to the controller. Further, when the separation occurs, the separation is eliminated by energization for a long time. Therefore, the reaction force output device can transmit information to the user via the operation element.
  • a period during which the drive unit is driven by PWM control and a period during which energization to the drive unit is stopped And may be provided alternately.
  • PWM Pulse Width Modulation
  • the driving unit is a rotary electric motor
  • the control unit is configured based on a degree of rotation delay of the driving unit, It may be determined whether or not there is a separation from the driving member.
  • the reaction force output device detects the actual rotation delay of the motor with respect to the rotation of the motor expected by energization.
  • the rotation of the electric motor and the movement of the driving member are linked, and when the movement of the driving member is restricted, the rotation of the electric motor is hindered. Further, the movement of the driving member is hindered by the operation of the operation element. For this reason, while the operation element is being operated, the rotation of the electric motor is hindered and delayed. Therefore, by detecting the degree of delay of the electric motor, it is possible to easily determine whether or not there is a separation between the operating element and the driving member without measuring the actual distance between the operating element and the driving member.
  • the driving force output by the unit can be controlled.
  • the control unit is separated between the operation element and the driving member based on a change in current consumption consumed by the driving unit. It may be determined whether or not the above has occurred.
  • the reaction force output device detects the value of current consumption consumed by the drive unit by energization. For example, when the rotary electric motor of the drive unit is rotating, the current consumption is reduced because the energization path of the circuit is switched with the rotation inside the drive unit. When the electric motor is not rotating, the current continues to flow through the same path, so the current consumption increases. As described above, the rotation of the electric motor is hindered by the limitation of the movement of the driving member by the operator. Therefore, by detecting the current consumption of the electric motor, it is possible to easily determine whether or not there is a separation between the operating element and the driving member without measuring the actual distance between the operating element and the driving member. it can.
  • control unit is configured to input the operation amount of the operating element and the displacement of the driving member by the driving unit. It may be determined whether or not there is a separation between the operating element and the driving member. In the case of (6), it is determined whether or not there is a separation between the driving member and the operating element based on the operation amount indicating the position of the operating element and the displacement of the driving member indicating the position of the driving member. Therefore, it can be accurately determined whether or not the driving member should be driven with a large output.
  • the reaction force output device in each embodiment outputs, for example, an accelerator fee by outputting a force (reaction force) opposite to the pedaling force to an operator such as an accelerator pedal provided for instructing acceleration of the vehicle. It is a device for improving the ring, transmitting to encourage accelerator work that saves fuel consumption, and performing various safety controls.
  • Safety control includes control that outputs a relatively large reaction force in order to suppress excessive acceleration before a curve, in an urban area, a school zone, or the like.
  • the operation element include an accelerator pedal, a brake pedal, a steering wheel, or an operation device for a game machine.
  • FIG. 1 is a diagram illustrating an example of an external configuration of an accelerator pedal device 1 including a reaction force output device 10 according to the first embodiment.
  • the accelerator pedal device 1 includes a pedal body unit 2 installed in front of the driver's seat and a reaction force output device 10 (drive unit) installed above the pedal body unit 2 in front of the driver's seat. ing.
  • the pedal body unit 2 is provided on a holding base 2a attached to the vehicle body, a pedal arm 4 whose base end is rotatably supported by a support shaft 2b provided on the holding base 2a, and a distal end portion of the pedal arm 4.
  • the holding base 2a is provided with a return spring (not shown) that constantly urges the pedal arm 4 to the initial position.
  • a cable (not shown) for operating the opening of a throttle valve (not shown) of the internal combustion engine (engine) in accordance with the operation amount (rotation angle) of the pedal arm 4. .
  • a rotation sensor for detecting the rotation angle of the pedal arm 4 is provided in the pedal body unit 2, and the throttle valve is detected based on the detection signal of the rotation sensor.
  • the opening degree may be controlled.
  • a reaction force transmission lever 8 extending in a direction substantially opposite to the extending direction of the pedal arm 4 is integrally connected to the vicinity of the base end of the pedal arm 4.
  • the distal end portion of the output lever 12 that is a driving member of the reaction force output device 10 and the distal end portion of the reaction force transmission lever 8 can be brought into contact with each other.
  • the turning force of the output lever 12 that is a drive member of the reaction force output device 10 is output to the pedal arm 4 via the reaction force transmission lever 8.
  • the reaction force output device 10 outputs a reaction force in a direction opposite to the direction of the pedal force to the operation element (for example, the reaction force transmission lever 8).
  • FIG. 2 is a diagram illustrating an example of the internal structure of the reaction force output device 10.
  • FIG. 2 shows a state in which the housing cover of the resin housing 14 is removed.
  • the reaction force output device 10 includes a motor (electric motor) 20 (drive unit) that is a drive source for generating reaction force, a reaction force output shaft 16 that is pivotally supported by the housing 14, and a gear reduction mechanism 30. And.
  • the gear reduction mechanism 30 decelerates the rotation of the rotor of the motor 20 to increase the torque, deflects it from the direction of the motor rotation shaft 22 toward the reaction force output shaft 16, and transmits it to the output lever 12.
  • One end portion in the reaction force output shaft direction protrudes outward from the side surface of the housing 14, and the output lever 12 is integrally connected to the protruding end portion.
  • the rotation of the rotor of the motor 20 is controlled by a control circuit mounted on the circuit board 50.
  • a control circuit mounted on the circuit board 50.
  • Connected to the circuit board 50 is a CAN (Controller Area Network) cable (not shown) for transmitting and receiving signals between a host ECU (Electronic Control Unit) described later and a control circuit.
  • the circuit board 50 and the motor 20 are connected via a cable, and the rotation of the rotor of the motor 20 is controlled based on a control signal sent from the circuit board 50.
  • a small hole is provided in the casing that covers the rotor of the motor 20, and a Hall IC (Integrated Circuit) is fitted into the small hole. The Hall IC detects the magnetic flux intensity that passes through the small hole and outputs a voltage corresponding to the detected magnetic flux intensity.
  • the amount of rotation of the rotor can be detected based on the output voltage of the Hall IC.
  • the Hall IC As an example, a case where three Hall ICs are installed will be described. However, two or more Hall ICs may be used.
  • FIG. 3 is a diagram illustrating an example of a functional configuration centering on a control circuit of the reaction force output device 10.
  • the reaction force output device 10 includes a CAN control circuit 54 that performs CAN communication between the motor 20 and the host ECU 70, a microcontroller (microcomputer) 56 (control unit), and a motor driver IC 58 (control unit).
  • the three Hall ICs may be collectively referred to as the Hall IC 64.
  • the host ECU 70 controls the driving of the engine 72 by controlling, for example, the opening degree of the throttle valve according to the operation amount of the pedal arm 4.
  • a crankshaft as an output shaft is connected to an axle, and outputs a driving force for driving the vehicle.
  • the travel drive unit may have a configuration in which a travel motor is added to the engine 72, or may have a configuration in which the travel drive force is output only by the travel motor without the engine 72.
  • the microcomputer 56 performs CAN communication with the host ECU 70 via the CAN control circuit 54.
  • the microcomputer 56 receives from the host ECU 70 a reaction force setting value that serves as a reference for the magnitude of the reaction force created by the reaction force output device 10.
  • the microcomputer 56 controls the motor driver IC 58 based on the reaction force setting value received from the host ECU 70 and controls the energization to the power FET 60.
  • the microcomputer 56 causes the motor driver IC 58 to perform PWM control of the power FET 60 with a duty ratio corresponding to the reaction force set value.
  • the power FET 60 includes U-phase, V-phase, and W-phase power FETs 60U, 60V, and 60W, and each power FET is connected to a coil of a corresponding phase of the motor 20, respectively.
  • the motor driver IC 58 cyclically turns on / off each phase power FET to generate a magnetic field in each phase coil, and rotates the rotor of the motor 20.
  • the microcomputer 56 performs control by periodically switching a period during which PWM control is performed and a period during which all of the power FET 60U, the power FET 60V, and the power FET 60W are simultaneously turned off.
  • the motor driver IC 58 includes an input terminal 58a for receiving an input of a signal for turning off all of the power FET 60U, the power FET 60V, and the power FET 60W (hereinafter, all off signal).
  • FIG. 4 is a diagram schematically showing basic control executed by the microcomputer 56.
  • the microcomputer 56 intermittently outputs all OFF signals to the input terminal 58a of the motor driver IC 58.
  • the all-off signal is input by, for example, LOW assertion.
  • the motor driver IC 58 energizes the power FET 60 to perform PWM control (PWM control on).
  • PWM control PWM control on
  • the motor driver IC 58 does not energize any of the power FET 60U, the power FET 60V, and the power FET 60W (PWM control off). While the power FET 60 is energized, the motor 20 is driven and current is consumed.
  • intermittent control of energization to the motor 20 as described above may be referred to as intermittent control.
  • the three power FETs may be collectively referred to as a power FET 60.
  • the control as shown in FIG. 4 is performed under the following circumstances.
  • the reaction force output device 10 is configured by the motor 20 driven by the coil and the power FET
  • the torque when the pedal arm 4 is depressed increases due to the increase of the friction torque generated in the closed circuit of the motor 20, and the reaction force May become excessive.
  • PWM control with a duty ratio not 100% is performed, the motor 20 should be an open circuit in the pulse OFF section, but the current is not fully lost due to regeneration by the diode of the power FET 60 or additional components.
  • the circuit may be maintained. Therefore, it is necessary to turn off all of the power FET 60U, the power FET 60V, and the power FET 60W at the same time and provide a period in which PWM control is not performed.
  • the reaction force output device 10 of the present embodiment has a connecting structure between the output lever 12 and the pedal body 6 (in this embodiment, particularly, between the output lever 12 and the reaction force transmission lever 8). It is determined whether or not there is any separation, and the output of the motor 20 is controlled according to the determination result, thereby suppressing the above-described deterioration in follow-up performance. This will be described below.
  • the microcomputer 56 is connected with a current detection sensor 66 and a motor driver IC 58.
  • the microcomputer 56 receives information about the current consumption of the motor 20 from the current detection sensor 66.
  • three Hall ICs 64U, 64V, 64W are connected to the input terminal of the motor driver IC 58, and the motor driver IC 58 accepts a change in voltage output from each of the Hall ICs 64U, 64V, 64W.
  • the motor driver IC 58 outputs information related to the rotation amount of the rotor of the motor 20 to the microcomputer 56 based on input from the Hall ICs 64U, 64V, 64W.
  • the microcomputer 56 receives information on the rotation amount of the rotor of the motor 20 based on the detection result of the Hall IC 64 via the motor driver IC 58 (or directly from the Hall IC 64). In the present embodiment, based on the detection results of the Hall ICs 64U, 64V, 64W (control unit), the output lever 12 (drive member) of the reaction force output device 10 (drive unit) and the pedal main body unit 6 (operator). In the present embodiment, whether or not there is a separation between the output lever 12 (drive member) and the reaction force transmission lever 8 (operator). The microcomputer 56 (control unit) determines.
  • the motor driver IC 58 (control unit) energizes the power FET 60 for a longer time than when it is determined that the separation has not occurred. As a result, a larger driving force is output to the output lever 12 than when it is determined that no separation has occurred, and the output lever 12 approaches and contacts the reaction force transmission lever 8 more quickly. As a result, the followability of the reaction force output device 10 to the pedal body 6 is improved. If it is determined that no separation has occurred, the motor driver IC 58 performs PWM control of energization of the power FET 60 at a duty ratio corresponding to the reaction force setting value. Thereby, the reaction force output device 10 outputs an appropriate reaction force to the pedal device.
  • the rotational force of the output lever 12 that is a drive member of the reaction force output device 10 is output to the pedal arm 4 via the reaction force transmission lever 8, and the reaction force is applied to the pedal body 6. Is done.
  • the pedaling force applied to the pedal body 6 gives a force in the direction opposite to the rotation direction to the output lever 12 via the pedal arm 4 and the reaction force transmission lever 8.
  • the rotational force of the output lever 12 is obtained by the rotation of the rotor of the motor 20 in the forward direction, the pedaling force applied to the pedal body 6 prevents the rotation of the rotor of the motor 20 in the forward direction.
  • FIG. 5 is a diagram illustrating an example of a detection signal from the Hall IC 64 in a scene where there is no (or small) external load on the motor 20.
  • time has elapsed from time t20 to time t26.
  • Time t22 indicates the time when the microcomputer 56 starts detecting the external load.
  • Time t24 indicates the time when the microcomputer 56 starts control according to the presence or absence of an external load.
  • the predetermined time may be a constant value or may be variable according to the number of rotations of the rotor of the motor 20. Therefore, the microcomputer 56 determines that there is no external load, and continues the energization control for a long time even after the detection period ends (time t24 to time t26). As a result, a greater driving force is output to the output lever 12 than when it is determined that no separation has occurred, and the output lever 12 approaches and contacts the reaction force transmission lever 8 more quickly.
  • FIG. 5 shows an example in which the motor 20 is always energized during the detection period (time t22 to time t24) and after the detection period ends (time t24 to time t26).
  • the ratio of time to the total off period may be made longer than that during intermittent control, or the duty ratio in PWM control may be made larger than during intermittent control.
  • FIG. 6 is a diagram illustrating an example of a detection signal from the Hall IC 64 in a scene where an external load is applied to the motor 20.
  • time has elapsed from time t30 to time t36.
  • Time t32 indicates the time when the microcomputer 56 starts detecting the external load.
  • Time t34 indicates the time when the microcomputer 56 starts control according to the presence or absence of an external load.
  • the external load detection period time t32 to time t34
  • long-time energization control is performed as in the example of FIG.
  • the rotational speed of the rotor of the motor 20 is only slightly increased.
  • the time difference (delay T2) between the phases in the detection period is greater than the predetermined time (in other words, the rotation speed is slower than the planned rotation speed). Therefore, after the detection period ends (time t34 to time t36), the microcomputer 56 resumes the intermittent control. Thereby, rotation of the rotor of the motor 20 is suppressed, and the reaction force output device 10 does not output a reaction force larger than necessary.
  • FIG. 7 is a diagram illustrating another example of the detection signal from the Hall IC 64 in a scene where there is an external load on the motor 20.
  • time has elapsed from time t40 to time t46.
  • Time t42 indicates the time when the detection of the external load is started.
  • Time t44 indicates the time at which control according to the presence or absence of an external load is started.
  • the example of FIG. 7 shows a scene with a larger external load than the scene described using FIG.
  • the output signal from the Hall IC 64 is detected only from a specific phase (U phase in this example). This indicates that the rotor of the motor 20 is not rotating at all.
  • the state shown in FIG. 7 is, for example, when the rotation of the rotor of the motor 20 is completely hindered by a strong external load, or when the accelerator pedal is in the fully closed position and the output lever 12 cannot be moved further. To occur. Therefore, the microcomputer 56 determines that there is an external load when the time difference between the phases cannot be measured. Therefore, the microcomputer 56 resumes the intermittent control after the detection period ends.
  • the rotor of the motor 20 may reversely rotate. In this case, the output order from each phase of the Hall IC 64 is reversed. The microcomputer 56 may determine that an external load has been applied by detecting this.
  • FIG. 8 is a flowchart showing an example of energization control processing based on the output voltage of the Hall IC 64.
  • the microcomputer 56 determines whether or not an external load detection timing (for example, an interval of 100 milliseconds) has arrived (step S100). When the detection timing has not arrived (step S100; NO), the process returns to step S100. When the detection timing has arrived (step S100; YES), the microcomputer 56 controls the motor driver IC 58 so that the power FET 60 is energized for a long time and tries to drive the motor 20 (step S102). Next, the motor driver IC 58 receives the output voltage from each of the Hall ICs 64U, 64V, and 64W (Step S104).
  • an external load detection timing for example, an interval of 100 milliseconds
  • the motor driver IC 58 determines whether or not the time difference between phases based on the output voltage output from each phase of the Hall IC 64 is greater than a predetermined time (for example, 20 milliseconds) (step S106).
  • a predetermined time for example, 20 milliseconds
  • the motor driver IC 58 determines that there is an external load, that is, the connection structure between the output lever 12 and the pedal body 6 is not separated.
  • the intermittent control is resumed (Step S110). If the delay between the phases is not greater than the predetermined time (step S106; NO), the motor driver IC 58 has no external load, that is, the connection structure between the output lever 12 and the pedal body 6 is separated.
  • the microcomputer 56 determines whether or not the connection structure between the output lever 12 and the pedal body 6 is separated, and the separation is performed.
  • the motor 20 is controlled so as to output a larger driving force than when it is determined that no separation has occurred.
  • microcomputer 56 controls the motor 20 by intermittently energizing the motor 20, it is possible to suppress an excessive reaction force.
  • the microcomputer 56 determines whether or not there is a separation in the connection structure between the output lever 12 and the pedal body 6 based on the degree of rotation delay of the rotor of the motor 20 detected by the Hall IC 64. It is possible to control energization without adding a new configuration.
  • the reaction force output device in the second embodiment determines whether or not there is a separation between the drive member and the operation element based on the current consumption of the motor 20 instead of the output voltage of the Hall IC 64.
  • the same reference numerals as those in the first embodiment are used for the respective components, and descriptions of the same functions are omitted.
  • FIGS. 9A and 9B are diagrams for explaining an example of the influence of the external load on the current consumption of the motor 20 in the external load detection period.
  • FIG. 9A shows an example of a detection signal from the current detection sensor 66 in a scene where there is no external load on the motor 20. The time has elapsed from time t50a to time t52a.
  • FIG. 9B shows an example of a detection signal of the current detection sensor 66 in a scene where there is an external load on the motor 20. The time has elapsed from time t50b to time t52b.
  • the graphs shown in FIGS. 9A and 9B are based on the assumption that the conditions are the same except for the presence or absence of an external load.
  • the pedaling force applied to the pedal body 6 reduces the rotational speed of the rotor of the motor 20.
  • the change in the rotation speed can be detected as, for example, an increase in current consumption of the motor 20 in addition to the time difference between the output times of the output voltages of the respective phases of the Hall IC 64.
  • the motor 20 is energized for a long time and there is no external load (FIG. 9A)
  • the rotor of the motor 20 rotates, and the power FET 60 causes the U-phase, V-phase, and W-phase in the order of three phases.
  • Energization is switched quickly. Since each energized phase includes a coil, the current consumption of the motor 20 increases with time when energization is performed via a specific energized phase.
  • the increase in current consumption is reset.
  • the switching speed of the energized phase and the rotation speed of the rotor of the motor 20 are linked.
  • the rotational speed of the rotor of the motor 20 increases with time (time t50a to time t52a), and the energized phase is quickly switched.
  • the current consumption gradually decreases.
  • FIG. 10 is a flowchart showing an example of the energization control process based on the current consumption of the motor 20. This flowchart corresponds to the operation described with reference to FIG. 8 of the first embodiment, and steps S200, S202, S208, S210, S212, and S214 in FIG. 10 are respectively performed in steps S100, S102, S108, and S110 in FIG. , S112 and S114 are the same processes, and the description is omitted.
  • step S ⁇ b> 204 the current detection sensor 66 detects the current consumption of the motor 20 and outputs the detected information to the microcomputer 56.
  • step S206 determines whether or not the current consumption of the motor 20 detected by the current detection sensor 66 is greater than or equal to a predetermined threshold. If the current consumption is greater than or equal to the threshold (step S206; YES), the process proceeds to step S208. When the current consumption is less than the threshold (step S206; NO), the process proceeds to step S212.
  • the microcomputer 56 has a new configuration in order to determine whether or not there is a separation in the connection structure between the output lever 12 and the pedal body 6 based on the fluctuation of the current consumption consumed by the motor 20. It is possible to control energization without adding.
  • the reaction force output device 10 includes an output lever based on the rotation amount of the rotor of the motor 20 and, for example, the rotation angle of the pedal arm 4 input from the vehicle side, that is, the pedal operation amount. Whether or not there is a separation in the connecting structure between the pedal 12 and the pedal body 6 is determined.
  • the same reference numerals as those in the first and second embodiments are used for the respective components, and description of the same functions is omitted.
  • the motor driver IC 58 in this embodiment detects the rotation amount of the rotor of the motor 20 based on the output voltages from the three Hall ICs 64.
  • the number of outputs of the output voltage of the Hall IC 64 reflects the amount of rotation of the rotor of the motor 20.
  • the output order of the output voltage from each phase of the Hall IC 64 reflects the rotation direction of the rotor of the motor 20. For example, when the output voltage from the Hall IC 64 is detected in the order of the U phase, the V phase, the W phase, and the U phase, the rotor of the motor 20 rotates in the forward direction, and the output lever 12 rotates the reaction force transmission lever 8.
  • the motor driver IC 58 can accurately detect the rotation amount of the rotor of the motor 20 based on the number of times the output voltage is output from the Hall IC 64 and the order in which the output voltage is detected from each phase. Therefore, the displacement, that is, the position of the output lever 12 can be calculated.
  • the motor driver IC 58 outputs information indicating the calculated position of the output lever 12 to the microcomputer 56.
  • the rotation angle of the pedal arm 4 is detected by, for example, a rotation sensor installed on the pedal arm 4 and output to the host ECU 70. Further, the host ECU 70 outputs information indicating the rotation angle of the pedal arm 4 to the microcomputer 56.
  • the rotation of the pedal arm 4 changes the position of the reaction force transmission lever 8 connected to the pedal arm 4. Therefore, the change in the position of the reaction force transmission lever 8 is determined by the rotation angle of the pedal arm 4, and the microcomputer 56 can calculate the position of the reaction force transmission lever 8.
  • the microcomputer 56 determines whether the output lever 12 and the reaction force transmission lever 8 are based on the rotation amount of the rotor of the motor 20 input from the motor driver IC 58 and the rotation angle of the pedal arm 4 input from the host ECU 70. It is determined whether or not they come into contact.
  • FIG. 11 is a flowchart illustrating an example of the energization control process based on the rotation amount of the rotor of the motor 20 and the rotation angle of the pedal arm 4. This flowchart corresponds to the operation described with reference to FIG. 8 of the first embodiment, and steps S300, S308, and S310 in FIG. 11 are the same as steps S100, S110, and S114 in FIG. To do.
  • the motor driver IC 58 detects the amount of rotation of the rotor of the motor 20 based on the number of times that the output voltage is output from the three Hall ICs 64 and the detection order in each phase of the output voltage, and outputs it to the microcomputer 56. (Step S302).
  • step S304 the microcomputer 56 calculates the position of the output lever 12 from the rotation amount of the rotor of the motor 20, and calculates the position of the reaction force transmission lever 8 from the rotation angle of the pedal arm 4. Then, the microcomputer 56 determines whether or not the output lever 12 and the reaction force transmission lever 8 are in contact with each other (step S306). When it contacts (Step S306; YES), it changes to Step S308. When not contacting (separating) (step S306; NO), the process proceeds to step S310.
  • the microcomputer 56 is arranged between the output lever 12 and the pedal body 6 based on the rotation angle of the pedal arm 4 indicating the input operation amount of the pedal arm 4 and the displacement of the output lever 12 of the motor 20. In order to determine whether or not the connection structure is separated, it is possible to control energization without adding a new configuration.
  • the microcomputer 56 varies the period during which the all-off signal is output based on the control target value input from the host ECU 70, and intermittently energizes the motor 20 to perform motor motoring.
  • the microcomputer 56 may perform control to change the duty ratio of PWM control based on the control target value.
  • the determination of the delay of the output voltage between the phases of the Hall IC 64 in the first embodiment, the determination of the fluctuation (increase) in the consumption current of the motor 20 in the second embodiment, and the output lever 12 in the third embodiment may be performed by the motor driver IC 58 instead of the microcomputer 56.
  • whether or not the connection structure between the output lever 12 and the pedal body 6 is separated is determined based on the duration of the voltage signal of each phase of the Hall IC 64. May be based on. In this case, since the duration of the voltage signal becomes longer as the rotational speed of the rotor of the motor 20 decreases, there is an external load when the duration is long, and the output lever 12 and the reaction force transmission lever 8 come into contact with each other. Can be determined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Control Devices (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Direct Current Motors (AREA)
  • Auxiliary Drives, Propulsion Controls, And Safety Devices (AREA)

Abstract

This resistance-force output device (10) is provided with the following: a drive unit (20) that drives a drive member (12) so as to output, to an operated element (8) that is operated by an operator, a force in the opposite direction from the direction in which the operated element (8) is operated; and a control unit (56) that determines whether or not there is a gap between the operated element (8) and the drive member (12), and if it is determined that there is a gap, controls the drive unit (20) so as to output a drive force that is larger than the drive force that is outputted if it is determined that there is no gap.

Description

反力出力装置Reaction force output device
 本発明は、反力出力装置に関する。
 本願は、2013年10月8日に出願された日本国特願2013-211137号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a reaction force output device.
This application claims priority based on Japanese Patent Application No. 2013-21111 filed on Oct. 8, 2013, the contents of which are incorporated herein by reference.
 近年、車両の発進時や走行時の意図しない急激な加速などを抑制するために、例えば、アクセルペダルを踏み込む力(踏力)とは逆方向の力(反力)をアクセルペダルに出力するアクセルペダル装置が開発されている(例えば、特許文献1参照)。
 特許文献1に記載のアクセルペダル装置は、ペダルアームの基端を回動可能に軸支するハウジングに、ペダルアームを初期位置に戻すためのリターンスプリングと、反力を作り出すためのモータと、そのモータの回転をペダルアームに伝達するためのレバーとが内蔵されている。このアクセルペダル装置では、モータが制御装置によってアクセルペダルの踏込状態に応じた出力に制御され、その出力が伝達レバーを通してペダルアームに付与されるようになっている。
In recent years, for example, an accelerator pedal that outputs to the accelerator pedal a force (reaction force) opposite to the force (depression force) that depresses the accelerator pedal, in order to suppress unintentional sudden acceleration when the vehicle starts or travels. An apparatus has been developed (see, for example, Patent Document 1).
The accelerator pedal device described in Patent Document 1 includes a housing that pivotally supports the base end of a pedal arm, a return spring for returning the pedal arm to an initial position, a motor for creating a reaction force, A lever for transmitting the rotation of the motor to the pedal arm is incorporated. In this accelerator pedal device, the motor is controlled by the control device to an output corresponding to the depression state of the accelerator pedal, and the output is applied to the pedal arm through the transmission lever.
日本国特開2010-111379号公報Japanese Unexamined Patent Publication No. 2010-111379
 しかしながら、特許文献1に記載のアクセルペダル装置では、モータが反力を作り出すが、モータの閉回路で生じるフリクショントルクの増加により、踏み込み動作時の反力が必要以上に大きくなってしまうことがあった。これを避けるために、例えばモータへの通電を抑制すると、モータの出力が不足し、モータの駆動部材がペダルアームに十分に追従できない場合がある。 However, in the accelerator pedal device described in Patent Document 1, the motor creates a reaction force, but the reaction force during the stepping operation may become larger than necessary due to an increase in friction torque generated in the closed circuit of the motor. It was. In order to avoid this, for example, if energization of the motor is suppressed, the output of the motor may be insufficient, and the drive member of the motor may not sufficiently follow the pedal arm.
 本発明に係る態様は、追従性を向上させることが可能な反力出力装置を提供することを目的とする。 An object according to the present invention is to provide a reaction force output device capable of improving followability.
 本発明の反力出力装置は以下の構成を採用した。
(1)本発明に係る一態様の反力出力装置は、駆動部材を駆動することで、操作者により操作される操作子に対し、操作方向とは逆方向の力を出力する駆動部と、前記操作子と前記駆動部材との間に離間が生じているか否かを判定し、離間が生じていると判定した場合には、離間が生じていないと判定した場合に比して大きい駆動力を出力するように前記駆動部を制御する制御部と、を備えるようにした。
 上記(1)の態様によれば、操作子と駆動部材との間に離間が生じている場合には、反力出力装置は、より大きな駆動力を出力するため、駆動部材は操作子を追従する。そのため、駆動部材と操作子との間に離間が生じにくい。従って、反力出力装置が出力する反力を操作子に正確に伝達することができ、例えば、アクセルフィーリングを向上させることができる。
The reaction force output device of the present invention employs the following configuration.
(1) A reaction force output device according to one aspect of the present invention drives a driving member to output a force in a direction opposite to an operation direction to an operator operated by an operator, When it is determined whether or not there is a separation between the operation element and the driving member, and it is determined that the separation has occurred, the driving force is greater than when it is determined that no separation has occurred. And a control unit that controls the drive unit so as to output the signal.
According to the aspect of (1), when the operation member and the driving member are separated, the reaction force output device outputs a larger driving force, so that the driving member follows the operation member. To do. Therefore, it is difficult for the drive member and the operation element to be separated from each other. Therefore, the reaction force output by the reaction force output device can be accurately transmitted to the operation element, and for example, the accelerator feeling can be improved.
(2)上記(1)の態様において、前記制御部は、前記離間が生じていないと判定した場合には、外部から入力された制御目標値に基づいて、前記駆動部への通電を間欠的に行うことにより前記駆動部を制御し、前記離間が生じていると判定した場合には、前記離間が生じていないと判定した場合に比して前記駆動部への通電期間を長くしてもよい。
 上記(2)の場合、反力出力装置は、駆動部材と操作子との間に離間が生じていないときは、例えば、走行速度などの外部の情報に応じた制御目標値に基づいて反力を操作子に伝達することができる。また、離間が生じているときは、長時間の通電により離間を解消する。従って、反力出力装置は、操作子を介して、利用者に情報を伝達することができる。
(2) In the aspect of the above (1), when the control unit determines that the separation has not occurred, the control unit intermittently energizes the drive unit based on a control target value input from the outside. If it is determined that the separation has occurred, the energization period to the drive unit can be made longer than when it is determined that the separation has not occurred. Good.
In the case of the above (2), the reaction force output device, for example, when there is no separation between the driving member and the operation element, is based on a control target value according to external information such as travel speed, for example. Can be transmitted to the controller. Further, when the separation occurs, the separation is eliminated by energization for a long time. Therefore, the reaction force output device can transmit information to the user via the operation element.
(3)上記(2)の態様において、前記制御部は、前記離間が生じていないと判定した場合において、PWM制御によって前記駆動部を駆動する期間と、前記駆動部への通電を停止する期間とを交互に設けてもよい。
 ここで、例えば、操作子と駆動部材との間に離間が生じていない場合に、PWM(Pulse Width Modulation)制御により駆動部の駆動力を制御したときは、パルスの開放区間であっても、回路内に存在するダイオードによる回生などの回路特性のために、クローズ回路が維持されて適切な駆動力を出力できないことがある。
 上記(3)の場合、PWM制御によって駆動部を駆動する期間の他に、駆動部への通電を停止する期間を設けるため、上述のクローズ回路が維持されるという現象を回避することができる。従って、駆動部は適切な駆動力を出力することができる。
(3) In the aspect of (2), when the control unit determines that the separation does not occur, a period during which the drive unit is driven by PWM control and a period during which energization to the drive unit is stopped And may be provided alternately.
Here, for example, when the driving force of the driving unit is controlled by PWM (Pulse Width Modulation) control when there is no separation between the operating element and the driving member, Due to circuit characteristics such as regeneration due to a diode present in the circuit, a closed circuit may be maintained and an appropriate driving force may not be output.
In the case of (3), since the period for stopping energization to the drive unit is provided in addition to the period for driving the drive unit by PWM control, the phenomenon that the above-described closed circuit is maintained can be avoided. Therefore, the driving unit can output an appropriate driving force.
(4)上記(1)から(3)のいずれか1つの態様において、前記駆動部は、回転電動機であり、前記制御部は、前記駆動部の回転の遅延程度に基づいて、前記操作子と前記駆動部材との間に離間が生じているか否かを判定してもよい。
 上記(4)の場合、反力出力装置は、通電によって期待される電動機の回転に対して、実際の電動機の回転の遅延を検出する。電動機の回転と駆動部材の動きとは連関しており、駆動部材の動きが制限されると、電動機の回転が妨げられる。また、駆動部材の動きは操作子の操作によって妨げられる。このため、操作子が操作されている間、電動機の回転は妨げられ、遅延する。従って、電動機の遅延程度を検出することで、操作子と駆動部材との実際の距離を測ることなく、操作子と駆動部材との間に離間が生じているか否かを簡便に判定し、駆動部の出力する駆動力を制御することができる。
(4) In any one of the above aspects (1) to (3), the driving unit is a rotary electric motor, and the control unit is configured based on a degree of rotation delay of the driving unit, It may be determined whether or not there is a separation from the driving member.
In the case of (4) above, the reaction force output device detects the actual rotation delay of the motor with respect to the rotation of the motor expected by energization. The rotation of the electric motor and the movement of the driving member are linked, and when the movement of the driving member is restricted, the rotation of the electric motor is hindered. Further, the movement of the driving member is hindered by the operation of the operation element. For this reason, while the operation element is being operated, the rotation of the electric motor is hindered and delayed. Therefore, by detecting the degree of delay of the electric motor, it is possible to easily determine whether or not there is a separation between the operating element and the driving member without measuring the actual distance between the operating element and the driving member. The driving force output by the unit can be controlled.
(5)上記(1)から(3)のいずれか1つの態様において、前記制御部は、前記駆動部が消費する消費電流の変動に基づいて、前記操作子と前記駆動部材との間に離間が生じているか否かを判定してもよい。
 上記(5)の場合、反力出力装置は、通電によって駆動部が消費する消費電流の値を検出する。例えば、駆動部の回転電動機が回転している場合、駆動部内部では、回転に伴って回路の通電経路が切り替わるため消費電流は小さくなる。電動機が回転していない場合、同じ経路を電流が流れ続けるため、消費電流が大きくなる。上述の通り、操作子による駆動部材の動きの制限によって電動機の回転は妨げられる。従って、電動機の消費電流を検出することで、操作子と駆動部材との実際の距離を測ることなく、操作子と駆動部材との間に離間が生じているか否かを簡便に判定することができる。
(5) In any one of the above aspects (1) to (3), the control unit is separated between the operation element and the driving member based on a change in current consumption consumed by the driving unit. It may be determined whether or not the above has occurred.
In the case of (5) above, the reaction force output device detects the value of current consumption consumed by the drive unit by energization. For example, when the rotary electric motor of the drive unit is rotating, the current consumption is reduced because the energization path of the circuit is switched with the rotation inside the drive unit. When the electric motor is not rotating, the current continues to flow through the same path, so the current consumption increases. As described above, the rotation of the electric motor is hindered by the limitation of the movement of the driving member by the operator. Therefore, by detecting the current consumption of the electric motor, it is possible to easily determine whether or not there is a separation between the operating element and the driving member without measuring the actual distance between the operating element and the driving member. it can.
(6)上記(1)から(3)のいずれか1つの態様において、前記制御部は、入力される前記操作子の操作量と、前記駆動部による前記駆動部材の変位とに基づいて、前記操作子と前記駆動部材との間に離間が生じているか否かを判定してもよい。
 上記(6)の場合、操作子の位置を示す操作量と駆動部材の位置を示す駆動部材の変位とに基づいて、駆動部材と操作子との間に離間が生じているか否かを判定するため、駆動部材を大きな出力で駆動させるべきか否かを正確に判定することができる。
(6) In any one of the above aspects (1) to (3), the control unit is configured to input the operation amount of the operating element and the displacement of the driving member by the driving unit. It may be determined whether or not there is a separation between the operating element and the driving member.
In the case of (6), it is determined whether or not there is a separation between the driving member and the operating element based on the operation amount indicating the position of the operating element and the displacement of the driving member indicating the position of the driving member. Therefore, it can be accurately determined whether or not the driving member should be driven with a large output.
 本発明に係る態様によれば、追従性を向上させることが可能な反力出力装置を提供することができる。 According to the aspect of the present invention, it is possible to provide a reaction force output device that can improve followability.
本発明の第1の実施形態に係る反力出力装置を備えたアクセルペダル装置の外観構成の一例を示す図である。It is a figure which shows an example of the external appearance structure of the accelerator pedal apparatus provided with the reaction force output device which concerns on the 1st Embodiment of this invention. 本実施形態に係る反力出力装置の内部構成の一例を示す図である。It is a figure which shows an example of an internal structure of the reaction force output device which concerns on this embodiment. 本実施形態に係る反力出力装置の制御回路を中心とした機能構成の一例を示す図である。It is a figure which shows an example of a function structure centering on the control circuit of the reaction force output device which concerns on this embodiment. 本実施形態に係る反力出力装置のマイコンにより実行される基本的な制御を模式的に示す図である。It is a figure which shows typically the basic control performed by the microcomputer of the reaction force output device which concerns on this embodiment. モータへの外部負荷の無い場面における、本実施形態に係る反力出力装置のホールICからの検出信号の一例を示す図である。It is a figure which shows an example of the detection signal from Hall IC of the reaction force output device which concerns on this embodiment in the scene where there is no external load to a motor. モータへの外部負荷の有る場面における、本実施形態に係る反力出力装置のホールICからの検出信号の一例を示す図である。It is a figure which shows an example of the detection signal from Hall IC of the reaction force output device which concerns on this embodiment in the scene with the external load to a motor. モータへの外部負荷の有る場面における、本実施形態に係る反力出力装置のホールICからの検出信号の他の例を示す図である。It is a figure which shows the other example of the detection signal from Hall IC of the reaction force output device which concerns on this embodiment in the scene with the external load to a motor. 本実施形態に係る反力出力装置の通電制御処理の一例を示すフローチャートである。It is a flowchart which shows an example of the electricity supply control process of the reaction force output device which concerns on this embodiment. 本発明の第2の実施形態に係る反力出力装置のモータの消費電流への外部負荷の影響の一例を説明するための図である。It is a figure for demonstrating an example of the influence of the external load to the consumption current of the motor of the reaction force output device which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る反力出力装置のモータの消費電流への外部負荷の影響の一例を説明するための図である。It is a figure for demonstrating an example of the influence of the external load to the consumption current of the motor of the reaction force output device which concerns on the 2nd Embodiment of this invention. 本実施形態に係る反力出力装置の通電制御処理の一例を示すフローチャートである。It is a flowchart which shows an example of the electricity supply control process of the reaction force output device which concerns on this embodiment. 本発明の第3の実施形態に係る車両の備える反力出力装置の通電制御処理の一例を示すフローチャートである。It is a flowchart which shows an example of the electricity supply control process of the reaction force output apparatus with which the vehicle which concerns on the 3rd Embodiment of this invention is provided.
 以下、図面を参照しながら本発明の実施形態について説明する。各実施形態における反力出力装置は、例えば、車両の加速を指示するために設けられたアクセルペダルなどの操作子に、踏力とは逆向きの力(反力)を出力することにより、アクセルフィーリングを向上させたり、燃費を節約したアクセルワークを促すよう伝達したり、種々の安全制御を行ったりするための装置である。安全制御としては、カーブの手前や市街地、スクールゾーン等において、過剰な加速を抑制するために、比較的大きい反力を出力する制御が挙げられる。また、単に基準を超えた急なアクセルペダル操作がなされた場合には、誤操作と判断して大きい反力を出力する制御が行われてもよい。操作子としてはアクセルペダルの他、ブレーキペダル、ステアリングホイール、或いはゲーム機の操作デバイス等が挙げられる。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The reaction force output device in each embodiment outputs, for example, an accelerator fee by outputting a force (reaction force) opposite to the pedaling force to an operator such as an accelerator pedal provided for instructing acceleration of the vehicle. It is a device for improving the ring, transmitting to encourage accelerator work that saves fuel consumption, and performing various safety controls. Safety control includes control that outputs a relatively large reaction force in order to suppress excessive acceleration before a curve, in an urban area, a school zone, or the like. In addition, when a sudden accelerator pedal operation exceeding the reference is performed, it may be determined that the operation is erroneous and control to output a large reaction force may be performed. Examples of the operation element include an accelerator pedal, a brake pedal, a steering wheel, or an operation device for a game machine.
<第1の実施形態>
 図1は、第1の実施形態に係る反力出力装置10を備えたアクセルペダル装置1の外観構成の一例を示す図である。アクセルペダル装置1は、運転席の足元前方に設置されるペダル本体ユニット2と、運転席の足元前方のペダル本体ユニット2の上方に設置される反力出力装置10(駆動部)と、を備えている。
<First Embodiment>
FIG. 1 is a diagram illustrating an example of an external configuration of an accelerator pedal device 1 including a reaction force output device 10 according to the first embodiment. The accelerator pedal device 1 includes a pedal body unit 2 installed in front of the driver's seat and a reaction force output device 10 (drive unit) installed above the pedal body unit 2 in front of the driver's seat. ing.
 ペダル本体ユニット2は、車体に取り付けられる保持ベース2aと、保持ベース2aに設けられた支軸2bに基端が回動可能に支持されるペダルアーム4と、ペダルアーム4の先端部に設けられ、運転者によって踏力を付与されるペダル本体部6とを備え、保持ベース2aには、ペダルアーム4を初期位置に常時付勢するリターンスプリング(不図示)が設けられている。ペダルアーム4には、ペダルアーム4の操作量(回動角度)に応じて内燃機関(エンジン)のスロットルバルブ(不図示)の開度を操作するためのケーブル(不図示)が接続されている。ただし、内燃機関が電子制御スロットルを採用する場合には、ペダル本体ユニット2にペダルアーム4の回動角度を検出するための回転センサを設け、その回転センサの検出信号を基にしてスロットルバルブの開度を制御するようにしてもよい。また、ペダルアーム4の基端の近傍部には、ペダルアーム4の延出方向とほぼ相反する方向に延出する反力伝達レバー8が一体に連結されている。また、反力出力装置10の駆動部材である出力レバー12の先端部と反力伝達レバー8の先端部とは、当接可能となっている。反力出力装置10の駆動部材である出力レバー12の回動力は、反力伝達レバー8を介してペダルアーム4に出力される。このように反力出力装置10は、踏力の方向とは逆方向の反力を操作子(例えば、反力伝達レバー8)に出力する。 The pedal body unit 2 is provided on a holding base 2a attached to the vehicle body, a pedal arm 4 whose base end is rotatably supported by a support shaft 2b provided on the holding base 2a, and a distal end portion of the pedal arm 4. The holding base 2a is provided with a return spring (not shown) that constantly urges the pedal arm 4 to the initial position. Connected to the pedal arm 4 is a cable (not shown) for operating the opening of a throttle valve (not shown) of the internal combustion engine (engine) in accordance with the operation amount (rotation angle) of the pedal arm 4. . However, when the internal combustion engine employs an electronically controlled throttle, a rotation sensor for detecting the rotation angle of the pedal arm 4 is provided in the pedal body unit 2, and the throttle valve is detected based on the detection signal of the rotation sensor. The opening degree may be controlled. Further, a reaction force transmission lever 8 extending in a direction substantially opposite to the extending direction of the pedal arm 4 is integrally connected to the vicinity of the base end of the pedal arm 4. Further, the distal end portion of the output lever 12 that is a driving member of the reaction force output device 10 and the distal end portion of the reaction force transmission lever 8 can be brought into contact with each other. The turning force of the output lever 12 that is a drive member of the reaction force output device 10 is output to the pedal arm 4 via the reaction force transmission lever 8. In this way, the reaction force output device 10 outputs a reaction force in a direction opposite to the direction of the pedal force to the operation element (for example, the reaction force transmission lever 8).
 図2は、反力出力装置10の内部構造の一例を示す図である。図2では樹脂製のハウジング14のハウジングカバーを取り去った状態を示している。反力出力装置10は、反力を作り出すための駆動源であるモータ(電動機)20(駆動部)と、ハウジング14に回動可能に軸支される反力出力軸16と、ギア減速機構30とを備えている。ギア減速機構30は、モータ20の回転子の回転を減速しトルクを増大させ、モータの回転軸22方向から反力出力軸16方向へと偏向して出力レバー12に伝達する。反力出力軸方向の一端部は、ハウジング14の側面から外側に突出し、その突出した端部に出力レバー12が一体に連結されている。 FIG. 2 is a diagram illustrating an example of the internal structure of the reaction force output device 10. FIG. 2 shows a state in which the housing cover of the resin housing 14 is removed. The reaction force output device 10 includes a motor (electric motor) 20 (drive unit) that is a drive source for generating reaction force, a reaction force output shaft 16 that is pivotally supported by the housing 14, and a gear reduction mechanism 30. And. The gear reduction mechanism 30 decelerates the rotation of the rotor of the motor 20 to increase the torque, deflects it from the direction of the motor rotation shaft 22 toward the reaction force output shaft 16, and transmits it to the output lever 12. One end portion in the reaction force output shaft direction protrudes outward from the side surface of the housing 14, and the output lever 12 is integrally connected to the protruding end portion.
 モータ20の回転子の回転は、回路基板50に実装された制御回路によって制御される。回路基板50には、後述する上位ECU(Electronic Control Unit)と制御回路とで信号を送受信するためのCAN(Controller Area Network)ケーブル(不図示)が接続されている。また、回路基板50とモータ20とはケーブルを介して接続されており、回路基板50から送られる制御信号に基づいて、モータ20の回転子の回転が制御される。また、モータ20の回転子を覆う筐体には小孔が設けられ、小孔にはホールIC(Integrated Circuit)が嵌込設置されている。ホールICは、小孔を透過する磁束強度を検出し、検出した磁束強度に応じた電圧を出力する。ホールICによって検出される磁束強度は、モータ20内の回転子の回転に応じて変化するため、ホールICの出力電圧に基づいて回転子の回転量を検出することができる。以下では、一例として、ホールICが3つ設置されている状態として説明するが、ホールICは、2つや4つ以上の複数であってもよい。 The rotation of the rotor of the motor 20 is controlled by a control circuit mounted on the circuit board 50. Connected to the circuit board 50 is a CAN (Controller Area Network) cable (not shown) for transmitting and receiving signals between a host ECU (Electronic Control Unit) described later and a control circuit. The circuit board 50 and the motor 20 are connected via a cable, and the rotation of the rotor of the motor 20 is controlled based on a control signal sent from the circuit board 50. A small hole is provided in the casing that covers the rotor of the motor 20, and a Hall IC (Integrated Circuit) is fitted into the small hole. The Hall IC detects the magnetic flux intensity that passes through the small hole and outputs a voltage corresponding to the detected magnetic flux intensity. Since the magnetic flux intensity detected by the Hall IC changes according to the rotation of the rotor in the motor 20, the amount of rotation of the rotor can be detected based on the output voltage of the Hall IC. In the following description, as an example, a case where three Hall ICs are installed will be described. However, two or more Hall ICs may be used.
 図3は、反力出力装置10の制御回路を中心とした機能構成の一例を示す図である。図3において、反力出力装置10は、モータ20と、上位ECU70との間でCAN通信を行うCAN制御回路54と、マイクロコントローラ(マイコン)56(制御部)と、モータドライバIC58(制御部)と、パワーFET(Field Effect Transistor)60と、ホールIC64U、64V、64W(制御部)と、電流検出センサ66とを備える。なお、以下では3つのホールICを総称してホールIC64として説明する場合がある。 FIG. 3 is a diagram illustrating an example of a functional configuration centering on a control circuit of the reaction force output device 10. In FIG. 3, the reaction force output device 10 includes a CAN control circuit 54 that performs CAN communication between the motor 20 and the host ECU 70, a microcontroller (microcomputer) 56 (control unit), and a motor driver IC 58 (control unit). A power FET (Field Effect Transistor) 60, Hall ICs 64U, 64V, 64W (control unit), and a current detection sensor 66. In the following description, the three Hall ICs may be collectively referred to as the Hall IC 64.
 上位ECU70は、例えば、ペダルアーム4の操作量に応じてスロットルバルブの開度等を制御することで、エンジン72の駆動制御を行う。エンジン72は、出力軸であるクランクシャフトが車軸に連結され、車両の走行駆動力を出力する。なお、走行駆動部としては、エンジン72に走行用モータを加えた構成であってもよいし、エンジン72を備えず走行用モータのみにより走行駆動力を出力する構成であってもよい。 The host ECU 70 controls the driving of the engine 72 by controlling, for example, the opening degree of the throttle valve according to the operation amount of the pedal arm 4. In the engine 72, a crankshaft as an output shaft is connected to an axle, and outputs a driving force for driving the vehicle. The travel drive unit may have a configuration in which a travel motor is added to the engine 72, or may have a configuration in which the travel drive force is output only by the travel motor without the engine 72.
 マイコン56は、CAN制御回路54を介して上位ECU70とCAN通信を行う。マイコン56は、反力出力装置10が作り出す反力の大きさの基準となる反力設定値を、上位ECU70から受信する。マイコン56は、上位ECU70から受信した反力設定値に基づいてモータドライバIC58を制御し、パワーFET60への通電を制御させる。 The microcomputer 56 performs CAN communication with the host ECU 70 via the CAN control circuit 54. The microcomputer 56 receives from the host ECU 70 a reaction force setting value that serves as a reference for the magnitude of the reaction force created by the reaction force output device 10. The microcomputer 56 controls the motor driver IC 58 based on the reaction force setting value received from the host ECU 70 and controls the energization to the power FET 60.
 基本的には、マイコン56は、モータドライバIC58に対し、パワーFET60を、反力設定値に応じたデューティ比でPWM制御させる。パワーFET60は、U相、V相、W相のそれぞれのパワーFET60U、60V、60Wを備え、各パワーFETは、モータ20の対応する相のコイルにそれぞれ接続されている。モータドライバIC58は、各相のパワーFETを循環的にオン/オフすることで各相のコイルに磁界を発生させ、モータ20の回転子を回転させる。 Basically, the microcomputer 56 causes the motor driver IC 58 to perform PWM control of the power FET 60 with a duty ratio corresponding to the reaction force set value. The power FET 60 includes U-phase, V-phase, and W- phase power FETs 60U, 60V, and 60W, and each power FET is connected to a coil of a corresponding phase of the motor 20, respectively. The motor driver IC 58 cyclically turns on / off each phase power FET to generate a magnetic field in each phase coil, and rotates the rotor of the motor 20.
 また、マイコン56は、PWM制御を行う期間と、パワーFET60U、パワーFET60V、パワーFET60Wの全てを同時にオフする期間とを周期的に切り替えて制御を行う。モータドライバIC58には、パワーFET60U、パワーFET60V、パワーFET60Wの全てを同時にオフする信号(以下、全オフ信号)の入力を受け付けるための入力端子58aを備えている。 Further, the microcomputer 56 performs control by periodically switching a period during which PWM control is performed and a period during which all of the power FET 60U, the power FET 60V, and the power FET 60W are simultaneously turned off. The motor driver IC 58 includes an input terminal 58a for receiving an input of a signal for turning off all of the power FET 60U, the power FET 60V, and the power FET 60W (hereinafter, all off signal).
 図4は、マイコン56により実行される基本的な制御を模式的に示す図である。この図において時間はt10からt12へと経過している。マイコン56は、モータドライバIC58の入力端子58aに、間欠的に全オフ信号を出力する。全オフ信号は、例えばLOWアサートで入力され、全オフ信号がHIGHのとき、モータドライバIC58は、パワーFET60に通電し、PWM制御を行う(PWM制御オン)。また、全オフ信号がLOWのとき、モータドライバIC58は、パワーFET60U、パワーFET60V、パワーFET60Wのいずれに対しても通電を行わない(PWM制御オフ)。パワーFET60への通電が行われている間は、モータ20が駆動し、電流が消費される。なお、以下では、以上のようにモータ20への通電を間欠的に制御することを間欠制御と称することがある。また、以下では3つのパワーFETを総称してパワーFET60として説明する場合がある。 FIG. 4 is a diagram schematically showing basic control executed by the microcomputer 56. In this figure, the time has elapsed from t10 to t12. The microcomputer 56 intermittently outputs all OFF signals to the input terminal 58a of the motor driver IC 58. The all-off signal is input by, for example, LOW assertion. When the all-off signal is HIGH, the motor driver IC 58 energizes the power FET 60 to perform PWM control (PWM control on). When the all-off signal is LOW, the motor driver IC 58 does not energize any of the power FET 60U, the power FET 60V, and the power FET 60W (PWM control off). While the power FET 60 is energized, the motor 20 is driven and current is consumed. In the following, intermittent control of energization to the motor 20 as described above may be referred to as intermittent control. In the following description, the three power FETs may be collectively referred to as a power FET 60.
 図4に示すような制御は、以下のような事情により行われる。コイルとパワーFET等によって駆動されるモータ20によって反力出力装置10を構成すると、モータ20の閉回路で生じるフリクショントルクの増加により、ペダルアーム4が踏み込まれたときのトルクが上昇し、反力が過剰になる場合がある。これに対し、デューティ比が100%でないPWM制御を行うと、パルスのオフ区間においてモータ20はオープン回路となる筈であるが、パワーFET60のダイオードによる回生や付加部品により、電流が抜けきらずにクローズ回路を維持してしまう場合がある。このため、パワーFET60U、パワーFET60V、パワーFET60Wの全てを同時にオフし、PWM制御を行わない期間を設ける必要がある。 The control as shown in FIG. 4 is performed under the following circumstances. When the reaction force output device 10 is configured by the motor 20 driven by the coil and the power FET, the torque when the pedal arm 4 is depressed increases due to the increase of the friction torque generated in the closed circuit of the motor 20, and the reaction force May become excessive. On the other hand, if PWM control with a duty ratio not 100% is performed, the motor 20 should be an open circuit in the pulse OFF section, but the current is not fully lost due to regeneration by the diode of the power FET 60 or additional components. The circuit may be maintained. Therefore, it is necessary to turn off all of the power FET 60U, the power FET 60V, and the power FET 60W at the same time and provide a period in which PWM control is not performed.
 ところが、図4に示すような制御を行った場合、PWM制御を行わない期間が存在することに起因して、反力出力装置10の出力不足を招く場合がある。この結果、例えば運転者がペダル本体部6を踏み込んだ状態から、ペダル本体部6から足を離した直後等において、モータ20の回転がペダルアーム4の戻りに追従できず、例えば、出力レバー12の先端部と反力伝達レバー8の先端部とが離間する場合がある。このようにモータ20が駆動する出力レバー12と、反力伝達レバー8との間に上記のような離間が生じると、モータ20がペダルアーム4に対して直ちに反力を出力することができなくなる(追従性が悪化する)。この結果、次に運転者がペダルアーム4を踏み込んだときに反力が感じられず、アクセルフィーリングが変動してしまう場合がある。 However, when the control as shown in FIG. 4 is performed, there is a case where the output of the reaction force output device 10 is insufficient due to the existence of a period during which the PWM control is not performed. As a result, the rotation of the motor 20 cannot follow the return of the pedal arm 4 immediately after the driver depresses the pedal main body 6 and immediately after releasing the foot from the pedal main body 6, for example, the output lever 12 In some cases, the front end of the reaction force and the front end of the reaction force transmission lever 8 are separated from each other. As described above, when the output lever 12 driven by the motor 20 and the reaction force transmission lever 8 are separated as described above, the motor 20 cannot immediately output the reaction force to the pedal arm 4. (Followability deteriorates). As a result, when the driver next steps on the pedal arm 4, no reaction force is felt and the accelerator feeling may fluctuate.
 これに対し、本実施形態の反力出力装置10は、出力レバー12とペダル本体部6との間の連結構造(本実施形態では、特に、出力レバー12と反力伝達レバー8との間)に離間が生じているか否かを判定し、判定結果に応じてモータ20の出力を制御することで、上記のような追従性の悪化を抑制する。以下、これについて説明する。 On the other hand, the reaction force output device 10 of the present embodiment has a connecting structure between the output lever 12 and the pedal body 6 (in this embodiment, particularly, between the output lever 12 and the reaction force transmission lever 8). It is determined whether or not there is any separation, and the output of the motor 20 is controlled according to the determination result, thereby suppressing the above-described deterioration in follow-up performance. This will be described below.
 マイコン56には、電流検出センサ66とモータドライバIC58とが接続されている。マイコン56は、モータ20の消費電流についての情報を電流検出センサ66から受信する。モータドライバIC58の入力端には、マイコン56に加え、3つのホールIC64U、64V、64Wが接続されており、モータドライバIC58は、ホールIC64U、64V、64W各々が出力する電圧の変化を受け付ける。モータドライバIC58は、ホールIC64U、64V、64Wからの入力に基づいて、モータ20の回転子の回転量に関する情報をマイコン56に出力する。 The microcomputer 56 is connected with a current detection sensor 66 and a motor driver IC 58. The microcomputer 56 receives information about the current consumption of the motor 20 from the current detection sensor 66. In addition to the microcomputer 56, three Hall ICs 64U, 64V, 64W are connected to the input terminal of the motor driver IC 58, and the motor driver IC 58 accepts a change in voltage output from each of the Hall ICs 64U, 64V, 64W. The motor driver IC 58 outputs information related to the rotation amount of the rotor of the motor 20 to the microcomputer 56 based on input from the Hall ICs 64U, 64V, 64W.
 マイコン56は、ホールIC64の検出結果に基づくモータ20の回転子の回転量に関する情報を、モータドライバIC58を介して(或いは直接的にホールIC64から)受信する。本実施形態では、ホールIC64U、64V、64W(制御部)の検出結果に基づいて、反力出力装置10(駆動部)の出力レバー12(駆動部材)とペダル本体部6(操作子)との間の連結構造に離間が生じているか否か、すなわち本実施形態の場合は、出力レバー12(駆動部材)と反力伝達レバー8(操作子)との間に離間が生じているか否かを、マイコン56(制御部)が判定する。離間が生じていると判定した場合、モータドライバIC58(制御部)は、パワーFET60への通電を、離間が生じていないと判定した場合よりも長時間にわたり行う。これにより、出力レバー12には、離間が生じていないと判定した場合よりも大きい駆動力が出力され、より迅速に反力伝達レバー8に接近して当接する。その結果、反力出力装置10のペダル本体部6への追従性が向上することになる。また、離間が生じていないと判定した場合、モータドライバIC58は、パワーFET60への通電を、反力設定値に応じたデューティ比でPWM制御する。これにより、反力出力装置10は、適切な反力をペダル装置に出力する。 The microcomputer 56 receives information on the rotation amount of the rotor of the motor 20 based on the detection result of the Hall IC 64 via the motor driver IC 58 (or directly from the Hall IC 64). In the present embodiment, based on the detection results of the Hall ICs 64U, 64V, 64W (control unit), the output lever 12 (drive member) of the reaction force output device 10 (drive unit) and the pedal main body unit 6 (operator). In the present embodiment, whether or not there is a separation between the output lever 12 (drive member) and the reaction force transmission lever 8 (operator). The microcomputer 56 (control unit) determines. When it is determined that the separation has occurred, the motor driver IC 58 (control unit) energizes the power FET 60 for a longer time than when it is determined that the separation has not occurred. As a result, a larger driving force is output to the output lever 12 than when it is determined that no separation has occurred, and the output lever 12 approaches and contacts the reaction force transmission lever 8 more quickly. As a result, the followability of the reaction force output device 10 to the pedal body 6 is improved. If it is determined that no separation has occurred, the motor driver IC 58 performs PWM control of energization of the power FET 60 at a duty ratio corresponding to the reaction force setting value. Thereby, the reaction force output device 10 outputs an appropriate reaction force to the pedal device.
 以下、ホールIC64の検出結果に基づいた離間の判定方法について説明する。図1にて説明したように反力出力装置10の駆動部材である出力レバー12の回動力は、反力伝達レバー8を介してペダルアーム4に出力され、反力がペダル本体部6に付与される。その逆に、ペダル本体部6に加えられた踏力は、ペダルアーム4と反力伝達レバー8を介して、出力レバー12に対して、その回動方向とは逆向きの力を与える。そして、出力レバー12の回動力は、モータ20の回転子の順方向への回転によって得られるため、ペダル本体部6に加えられた踏力は、モータ20の回転子の順方向への回転を妨げる外部負荷として作用する。すなわち、反力伝達レバー8と出力レバー12とが当接している(離間が生じていない)ときは、モータ20の回転子の回転は踏力に応じて妨げられ、当接していない(離間が生じている)ときは、モータ20の回転子の回転は妨げられない。従って、モータ20に与えられた駆動信号による予定回転速度よりも回転速度が遅いときは、出力レバー12とペダル本体部6との間の連結構造に離間が生じていない(出力レバー12とペダルアーム4とが当接している)と判定することができ、遅延が無い、或いは遅延の程度が小さいときは出力レバー12とペダル本体部6との間の連結構造に離間が生じていると判定することができる。マイコン56は、所定のサイクルで後述する長時間通電を行い、離間の有無を検知する。 Hereinafter, a method for determining separation based on the detection result of the Hall IC 64 will be described. As described with reference to FIG. 1, the rotational force of the output lever 12 that is a drive member of the reaction force output device 10 is output to the pedal arm 4 via the reaction force transmission lever 8, and the reaction force is applied to the pedal body 6. Is done. On the other hand, the pedaling force applied to the pedal body 6 gives a force in the direction opposite to the rotation direction to the output lever 12 via the pedal arm 4 and the reaction force transmission lever 8. And since the rotational force of the output lever 12 is obtained by the rotation of the rotor of the motor 20 in the forward direction, the pedaling force applied to the pedal body 6 prevents the rotation of the rotor of the motor 20 in the forward direction. Acts as an external load. That is, when the reaction force transmission lever 8 and the output lever 12 are in contact with each other (no separation occurs), the rotation of the rotor of the motor 20 is hindered according to the treading force and is not in contact (separation occurs). The rotation of the rotor of the motor 20 is not hindered. Therefore, when the rotational speed is slower than the planned rotational speed based on the drive signal given to the motor 20, the connection structure between the output lever 12 and the pedal body 6 is not separated (the output lever 12 and the pedal arm). 4 is in contact, and when there is no delay or the delay is small, it is determined that the connection structure between the output lever 12 and the pedal body 6 is separated. be able to. The microcomputer 56 performs energization for a long time, which will be described later, in a predetermined cycle, and detects the presence or absence of separation.
 ここで、外部負荷(踏力)のホールIC64の検出結果への影響について、図5~図7を用いて説明する。なお、図5~図7が示すグラフは、外部負荷の有無以外は、同一の条件下であることを前提としている。図5は、モータ20への外部負荷が無い(或いは小さい)場面におけるホールIC64からの検出信号の一例を示す図である。図5の例では、時刻t20から時刻t26へと時間が経過している。時刻t22は、マイコン56が外部負荷の検知を開始した時刻を示す。また、時刻t24は、マイコン56が外部負荷の有無に応じた制御を開始した時刻を示す。検知開始までの期間(時刻t20~時刻t22)、パワーFET60を制御するモータドライバIC58には、例えば、反力設定値に基づく全オフ信号が間欠的に入力されるため、モータ20の回転子の回転は抑制されている。外部負荷の検知期間(時刻t22~時刻t24)に入ると、パワーFET60には、間欠制御時よりも長時間の通電が行われる(以下、長時間通電制御と称する)。図5の例では、外部負荷が無いため、モータ20の回転子の回転速度が上昇し、相間の時間差T1は、所定時間よりも小さくなる(換言すると、回転速度が予定回転速度よりも早くなる)。この所定時間は、一定値としてもよいが、モータ20の回転子の回転数に応じて可変にしてもよい。従って、マイコン56は、外部負荷が無いと判定し、検知期間終了後(時刻t24~時刻t26)も、長時間通電制御を継続する。この結果、出力レバー12には、離間が生じていないと判定した場合よりも大きい駆動力が出力され、より迅速に反力伝達レバー8に接近して当接することになる。なお、図5では、検知期間中(時刻t22~時刻t24)及び検知期間終了後(時刻t24~時刻t26)に、モータ20に常時通電する例を示したが、これに限らず、例えば、通電時間の全オフ期間に対する比率を、間欠制御時よりも長くするようにしてもよいし、PWM制御におけるデューティ比を間欠制御時よりも大きくしてもよい。 Here, the influence of the external load (stepping force) on the detection result of the Hall IC 64 will be described with reference to FIGS. Note that the graphs shown in FIGS. 5 to 7 are based on the same conditions except for the presence or absence of an external load. FIG. 5 is a diagram illustrating an example of a detection signal from the Hall IC 64 in a scene where there is no (or small) external load on the motor 20. In the example of FIG. 5, time has elapsed from time t20 to time t26. Time t22 indicates the time when the microcomputer 56 starts detecting the external load. Time t24 indicates the time when the microcomputer 56 starts control according to the presence or absence of an external load. During the period up to the start of detection (time t20 to time t22), for example, all OFF signals based on the reaction force set value are intermittently input to the motor driver IC 58 that controls the power FET 60. The rotation is suppressed. When the external load detection period (from time t22 to time t24) is entered, the power FET 60 is energized for a longer time than during intermittent control (hereinafter referred to as long-time energization control). In the example of FIG. 5, since there is no external load, the rotational speed of the rotor of the motor 20 increases, and the time difference T1 between phases is smaller than a predetermined time (in other words, the rotational speed is faster than the planned rotational speed). ). The predetermined time may be a constant value or may be variable according to the number of rotations of the rotor of the motor 20. Therefore, the microcomputer 56 determines that there is no external load, and continues the energization control for a long time even after the detection period ends (time t24 to time t26). As a result, a greater driving force is output to the output lever 12 than when it is determined that no separation has occurred, and the output lever 12 approaches and contacts the reaction force transmission lever 8 more quickly. Note that FIG. 5 shows an example in which the motor 20 is always energized during the detection period (time t22 to time t24) and after the detection period ends (time t24 to time t26). The ratio of time to the total off period may be made longer than that during intermittent control, or the duty ratio in PWM control may be made larger than during intermittent control.
 図6は、モータ20への外部負荷が有る場面におけるホールIC64からの検出信号の一例を示す図である。図6の例では、時刻t30から時刻t36へと時間が経過している。時刻t32は、マイコン56が外部負荷の検知を開始した時刻を示す。また、時刻t34は、マイコン56が外部負荷の有無に応じた制御を開始した時刻を示す。外部負荷の検知期間(時刻t32~時刻t34)では、図5の例と同様に、長時間通電制御が行われる。しかし、図6の例では、外部負荷が有るため、モータ20の回転子の回転速度は小幅な上昇に留まる。 FIG. 6 is a diagram illustrating an example of a detection signal from the Hall IC 64 in a scene where an external load is applied to the motor 20. In the example of FIG. 6, time has elapsed from time t30 to time t36. Time t32 indicates the time when the microcomputer 56 starts detecting the external load. Time t34 indicates the time when the microcomputer 56 starts control according to the presence or absence of an external load. In the external load detection period (time t32 to time t34), long-time energization control is performed as in the example of FIG. However, in the example of FIG. 6, since there is an external load, the rotational speed of the rotor of the motor 20 is only slightly increased.
 モータ20への外部負荷が有る場合、検知期間における相間の時間差(遅延T2)は、所定時間よりも大きくなる(換言すると、回転速度が予定回転速度よりも遅くなる)。そのため、検知期間終了後(時刻t34~時刻t36)、マイコン56は、間欠制御を再開する。これにより、モータ20の回転子の回転は抑制され、反力出力装置10は必要以上に大きな反力を出力しない。 When there is an external load on the motor 20, the time difference (delay T2) between the phases in the detection period is greater than the predetermined time (in other words, the rotation speed is slower than the planned rotation speed). Therefore, after the detection period ends (time t34 to time t36), the microcomputer 56 resumes the intermittent control. Thereby, rotation of the rotor of the motor 20 is suppressed, and the reaction force output device 10 does not output a reaction force larger than necessary.
 図7は、モータ20への外部負荷が有る場面におけるホールIC64からの検出信号の他の例を示す図である。図7の例では、時刻t40から時刻t46へと時間が経過している。時刻t42は外部負荷の検知を開始した時刻を示す。また、時刻t44は外部負荷の有無に応じた制御を開始した時刻を示す。図7の例では、図6を用いて説明した場面に比して、より大きな外部負荷が有る場面を示している。そして、図7の例では、マイコン56が外部負荷の検知を開始した後であっても、ホールIC64からの出力信号は、特定の相(本例ではU相)のみからしか検出されていない。これは、モータ20の回転子が全く回転していないことを示している。 FIG. 7 is a diagram illustrating another example of the detection signal from the Hall IC 64 in a scene where there is an external load on the motor 20. In the example of FIG. 7, time has elapsed from time t40 to time t46. Time t42 indicates the time when the detection of the external load is started. Time t44 indicates the time at which control according to the presence or absence of an external load is started. The example of FIG. 7 shows a scene with a larger external load than the scene described using FIG. In the example of FIG. 7, even after the microcomputer 56 starts detecting the external load, the output signal from the Hall IC 64 is detected only from a specific phase (U phase in this example). This indicates that the rotor of the motor 20 is not rotating at all.
 図7に示す状態は、例えば、強い外部負荷によってモータ20の回転子の回転が完全に妨げられていたり、或いは、アクセルペダルが全閉位置にあり、それ以上出力レバー12が動かせなかったりするときに生じる。従って、マイコン56は、相間の時間差が計測できない場合には、外部負荷が有ると判定する。従って、マイコン56は、検知期間の終了後、間欠制御を再開する。なお、ここでは説明を省略するが、さらに大きな外部負荷が反力出力装置10に与えられたときには、モータ20の回転子が逆回転することもある。この場合、ホールIC64の各相からの出力の順序が逆転する。マイコン56は、これを検出することにより、外部負荷が加わったことを判定してもよい。 The state shown in FIG. 7 is, for example, when the rotation of the rotor of the motor 20 is completely hindered by a strong external load, or when the accelerator pedal is in the fully closed position and the output lever 12 cannot be moved further. To occur. Therefore, the microcomputer 56 determines that there is an external load when the time difference between the phases cannot be measured. Therefore, the microcomputer 56 resumes the intermittent control after the detection period ends. In addition, although description is abbreviate | omitted here, when the bigger external load is given to the reaction force output device 10, the rotor of the motor 20 may reversely rotate. In this case, the output order from each phase of the Hall IC 64 is reversed. The microcomputer 56 may determine that an external load has been applied by detecting this.
 図8は、ホールIC64の出力電圧に基づいた通電制御処理の一例を示すフローチャートである。まず、マイコン56は、外部負荷の検知タイミング(例えば、100ミリ秒間隔)が到来したか否かを判定する(ステップS100)。検知タイミングが到来していない場合(ステップS100;NO)、ステップS100に戻る。検知タイミングが到来した場合(ステップS100;YES)、マイコン56は、パワーFET60が長時間通電されるようにモータドライバIC58を制御し、モータ20の駆動を試みる(ステップS102)。次に、モータドライバIC58は、ホールIC64U、64V及び64W各々から出力電圧を受信する(ステップS104)。次に、モータドライバIC58は、ホールIC64の各相から出力された出力電圧に基づく相間の時間差が、所定時間(例えば、20ミリ秒)より大きいか否かを判定する(ステップS106)。相間の時間差が所定時間より大きい場合(ステップS106;YES)、モータドライバIC58は、外部負荷が有る、すなわち出力レバー12とペダル本体部6との間の連結構造に離間が生じていないと判定し(ステップS108)、間欠制御を再開する(ステップS110)。各相間の遅延が所定時間より大きくない場合(ステップS106;NO)、モータドライバIC58は、外部負荷が無い、すなわち出力レバー12とペダル本体部6との間の連結構造に離間が生じていると判定し(ステップS112)、長時間通電制御を維持することにより、モータ20をより大きな駆動力で駆動させ、出力レバー12を反力伝達レバー8に追従させる(ステップS114)。 FIG. 8 is a flowchart showing an example of energization control processing based on the output voltage of the Hall IC 64. First, the microcomputer 56 determines whether or not an external load detection timing (for example, an interval of 100 milliseconds) has arrived (step S100). When the detection timing has not arrived (step S100; NO), the process returns to step S100. When the detection timing has arrived (step S100; YES), the microcomputer 56 controls the motor driver IC 58 so that the power FET 60 is energized for a long time and tries to drive the motor 20 (step S102). Next, the motor driver IC 58 receives the output voltage from each of the Hall ICs 64U, 64V, and 64W (Step S104). Next, the motor driver IC 58 determines whether or not the time difference between phases based on the output voltage output from each phase of the Hall IC 64 is greater than a predetermined time (for example, 20 milliseconds) (step S106). When the time difference between the phases is larger than the predetermined time (step S106; YES), the motor driver IC 58 determines that there is an external load, that is, the connection structure between the output lever 12 and the pedal body 6 is not separated. (Step S108), the intermittent control is resumed (Step S110). If the delay between the phases is not greater than the predetermined time (step S106; NO), the motor driver IC 58 has no external load, that is, the connection structure between the output lever 12 and the pedal body 6 is separated. By determining (step S112) and maintaining the energization control for a long time, the motor 20 is driven with a larger driving force, and the output lever 12 is made to follow the reaction force transmission lever 8 (step S114).
 以上のように、本実施形態に係る反力出力装置10によれば、マイコン56は、出力レバー12とペダル本体部6との間の連結構造に離間が生じているか否かを判定し、離間が生じていると判定した場合には、離間が生じていないと判定した場合に比して大きい駆動力を出力するようにモータ20を制御するため、反力伝達レバー8への出力レバー12の追従性を高めることができる。 As described above, according to the reaction force output device 10 according to the present embodiment, the microcomputer 56 determines whether or not the connection structure between the output lever 12 and the pedal body 6 is separated, and the separation is performed. When it is determined that the output lever 12 has been generated, the motor 20 is controlled so as to output a larger driving force than when it is determined that no separation has occurred. Followability can be improved.
 また、マイコン56は、モータ20への通電を間欠的に行うことによりモータ20を制御するため、反力が過大になることを抑制することができる。 Further, since the microcomputer 56 controls the motor 20 by intermittently energizing the motor 20, it is possible to suppress an excessive reaction force.
 また、マイコン56は、ホールIC64が検出するモータ20の回転子の回転の遅延程度に基づいて、出力レバー12とペダル本体部6との間の連結構造に離間が生じているかを判定するため、新たな構成を追加することなく、通電の制御を行うことができる。 Further, the microcomputer 56 determines whether or not there is a separation in the connection structure between the output lever 12 and the pedal body 6 based on the degree of rotation delay of the rotor of the motor 20 detected by the Hall IC 64. It is possible to control energization without adding a new configuration.
<第2の実施形態>
 以下、図面を参照しながら本発明の第2の実施形態について説明する。第2の実施形態における反力出力装置は、ホールIC64の出力電圧に代えて、モータ20の消費電流に基づいて、駆動部材と操作子との間に離間が生じているか否かを判定する。本実施形態では、各構成に対して第1の実施形態と同じ符号を使用し、同一の機能については説明を省略する。
<Second Embodiment>
The second embodiment of the present invention will be described below with reference to the drawings. The reaction force output device in the second embodiment determines whether or not there is a separation between the drive member and the operation element based on the current consumption of the motor 20 instead of the output voltage of the Hall IC 64. In the present embodiment, the same reference numerals as those in the first embodiment are used for the respective components, and descriptions of the same functions are omitted.
 図9Aおよび9Bは、外部負荷の検知期間におけるモータ20の消費電流への外部負荷の影響の一例を説明するための図である。図9Aは、モータ20への外部負荷が無い場面における電流検出センサ66からの検出信号の例を示す。時間は時刻t50aから時刻t52aへと経過している。また、図9Bは、モータ20への外部負荷が有る場面における電流検出センサ66の検出信号の例を示す。時間は時刻t50bから時刻t52bへと経過している。また、図9Aと図9Bとで示されるグラフは、外部負荷の有無以外は、同一の条件下であることを前提としている。 9A and 9B are diagrams for explaining an example of the influence of the external load on the current consumption of the motor 20 in the external load detection period. FIG. 9A shows an example of a detection signal from the current detection sensor 66 in a scene where there is no external load on the motor 20. The time has elapsed from time t50a to time t52a. FIG. 9B shows an example of a detection signal of the current detection sensor 66 in a scene where there is an external load on the motor 20. The time has elapsed from time t50b to time t52b. The graphs shown in FIGS. 9A and 9B are based on the assumption that the conditions are the same except for the presence or absence of an external load.
 上述の通り、ペダル本体部6に付与された踏力は、モータ20の回転子の回転速度を低下させる。回転速度の変化は、ホールIC64の各相の出力電圧の出力時刻の時間差の他に、例えば、モータ20の消費電流の増加として検出することができる。例えば、モータ20に長時間通電が行われた場合、外部負荷が無いとき(図9A)は、モータ20の回転子が回転し、パワーFET60によってU相、V相及びW相の3相の順に通電が速やかに切り替えられる。各通電相はコイルを備えるため、通電が特定の通電相を介して行われるとき、モータ20の消費電流は時間の経過に伴って増加する。また、通電相が切り替わると、消費電流の増加はリセットされる。通電相の切り替わり速度とモータ20の回転子の回転速度とは連動する。外部負荷が無い場合、モータ20の回転子の回転速度は時間経過(時刻t50a~時刻t52a)に伴って速まり、通電相は速やかに切り替わっていく。そして、消費電流は徐々に低下する。 As described above, the pedaling force applied to the pedal body 6 reduces the rotational speed of the rotor of the motor 20. The change in the rotation speed can be detected as, for example, an increase in current consumption of the motor 20 in addition to the time difference between the output times of the output voltages of the respective phases of the Hall IC 64. For example, when the motor 20 is energized for a long time and there is no external load (FIG. 9A), the rotor of the motor 20 rotates, and the power FET 60 causes the U-phase, V-phase, and W-phase in the order of three phases. Energization is switched quickly. Since each energized phase includes a coil, the current consumption of the motor 20 increases with time when energization is performed via a specific energized phase. Further, when the energized phase is switched, the increase in current consumption is reset. The switching speed of the energized phase and the rotation speed of the rotor of the motor 20 are linked. When there is no external load, the rotational speed of the rotor of the motor 20 increases with time (time t50a to time t52a), and the energized phase is quickly switched. The current consumption gradually decreases.
 その一方、外部負荷が有るとき(図9B)は、モータ20の回転子の回転が妨げられる。例えば、モータ20の回転子は、通電初期ではゆっくりと回転し、或る時刻(時刻t51b)を境に回転が停止する。この場合、モータ20の回転子がゆっくりと回転している期間(時刻t50b~時刻t51b)は、ゆっくりと通電相が切り替わるため、消費電流はほとんど変化しない。そして、回転が停止してからの期間(時刻t51b~時刻t52b)は、通電相の切り替えが起こらないため、消費電流が増加していく。このように、例えば、モータ20の消費電流を検出し、当該消費電流が閾値以上か否かを判定することで、出力レバー12が反力伝達レバー8に押圧されているか否か、すなわち、出力レバー12とペダル本体部6との間の連結構造に離間が生じているか否かを簡便に判定することができる。 On the other hand, when there is an external load (FIG. 9B), the rotation of the rotor of the motor 20 is hindered. For example, the rotor of the motor 20 rotates slowly at the beginning of energization, and stops rotating at a certain time (time t51b). In this case, during the period during which the rotor of the motor 20 is rotating slowly (from time t50b to time t51b), the energized phase is switched slowly, so that the current consumption hardly changes. In the period after the rotation stops (time t51b to time t52b), the current consumption increases because the energized phase does not switch. Thus, for example, by detecting the current consumption of the motor 20 and determining whether or not the current consumption is greater than or equal to a threshold value, whether or not the output lever 12 is pressed by the reaction force transmission lever 8, that is, output It can be easily determined whether or not there is a separation in the connection structure between the lever 12 and the pedal body 6.
 図10は、モータ20の消費電流に基づいた通電制御処理の一例を示すフローチャートである。このフローチャートは、第1の実施形態の図8を用いて説明した動作に相当し、図10のステップS200、S202、S208、S210、S212及びS214はそれぞれ図8のステップS100、S102、S108、S110、S112及びS114と同様の処理であるため、説明を省略する。ステップS204において、電流検出センサ66はモータ20の消費電流を検出し、検出した情報をマイコン56に出力する。次に、マイコン56は、電流検出センサ66が検出したモータ20の消費電流が所定の閾値以上であるか否かを判定する(ステップS206)。消費電流が閾値以上である場合(ステップS206;YES)、ステップS208に遷移する。消費電流が閾値未満である場合(ステップS206;NO)、ステップS212に遷移する。 FIG. 10 is a flowchart showing an example of the energization control process based on the current consumption of the motor 20. This flowchart corresponds to the operation described with reference to FIG. 8 of the first embodiment, and steps S200, S202, S208, S210, S212, and S214 in FIG. 10 are respectively performed in steps S100, S102, S108, and S110 in FIG. , S112 and S114 are the same processes, and the description is omitted. In step S <b> 204, the current detection sensor 66 detects the current consumption of the motor 20 and outputs the detected information to the microcomputer 56. Next, the microcomputer 56 determines whether or not the current consumption of the motor 20 detected by the current detection sensor 66 is greater than or equal to a predetermined threshold (step S206). If the current consumption is greater than or equal to the threshold (step S206; YES), the process proceeds to step S208. When the current consumption is less than the threshold (step S206; NO), the process proceeds to step S212.
 以上のように、本実施形態に係る反力出力装置10によれば、第1の実施形態で説明した効果と同様の効果を得ることができる。また、マイコン56は、モータ20が消費する消費電流の変動に基づいて、出力レバー12とペダル本体部6との間の連結構造に離間が生じているか否かを判定するため、新たな構成を追加することなく、通電の制御を行うことができる。 As described above, according to the reaction force output device 10 according to the present embodiment, it is possible to obtain the same effects as those described in the first embodiment. In addition, the microcomputer 56 has a new configuration in order to determine whether or not there is a separation in the connection structure between the output lever 12 and the pedal body 6 based on the fluctuation of the current consumption consumed by the motor 20. It is possible to control energization without adding.
<第3の実施形態>
 以下、図面を参照しながら本発明の第3の実施形態について説明する。本実施形態に係る反力出力装置10は、モータ20の回転子の回転量と、例えば、車両側から入力されるペダルアーム4の回動角度、すなわちペダルの操作量とに基づいて、出力レバー12とペダル本体部6との間の連結構造に離間が生じているか否かを判定する。本実施形態では、各構成に対して第1及び第2の実施形態と同じ符号を使用し、同一の機能については説明を省略する。
<Third Embodiment>
The third embodiment of the present invention will be described below with reference to the drawings. The reaction force output device 10 according to this embodiment includes an output lever based on the rotation amount of the rotor of the motor 20 and, for example, the rotation angle of the pedal arm 4 input from the vehicle side, that is, the pedal operation amount. Whether or not there is a separation in the connecting structure between the pedal 12 and the pedal body 6 is determined. In the present embodiment, the same reference numerals as those in the first and second embodiments are used for the respective components, and description of the same functions is omitted.
 本実施形態におけるモータドライバIC58は3つのホールIC64からの出力電圧に基づいてモータ20の回転子の回転量を検出する。ホールIC64の出力電圧の出力回数は、モータ20の回転子の回転量を反映する。また、ホールIC64の各相からの出力電圧の出力順序は、モータ20の回転子の回転方向を反映する。例えば、ホールIC64からの出力電圧がU相、V相、W相、U相の順に検出された場合、モータ20の回転子は順方向に回転しており、出力レバー12が反力伝達レバー8の方向に駆動される。また、例えば、ホールIC64からの出力電圧がU相、W相、V相、U相の順に検出された場合、モータ20の回転子は逆方向に回転しており、出力レバー12が反力伝達レバー8の逆方向に駆動される。このように、モータドライバIC58は、ホールIC64からの出力電圧の出力回数と当該出力電圧が各相から検出された順序とに基づいて、モータ20の回転子の回転量を正確に検出することができるため、出力レバー12の変位、すなわち位置を算出することができる。モータドライバIC58は、算出した出力レバー12の位置を示す情報をマイコン56に出力する。 The motor driver IC 58 in this embodiment detects the rotation amount of the rotor of the motor 20 based on the output voltages from the three Hall ICs 64. The number of outputs of the output voltage of the Hall IC 64 reflects the amount of rotation of the rotor of the motor 20. Further, the output order of the output voltage from each phase of the Hall IC 64 reflects the rotation direction of the rotor of the motor 20. For example, when the output voltage from the Hall IC 64 is detected in the order of the U phase, the V phase, the W phase, and the U phase, the rotor of the motor 20 rotates in the forward direction, and the output lever 12 rotates the reaction force transmission lever 8. It is driven in the direction of For example, when the output voltage from the Hall IC 64 is detected in the order of U phase, W phase, V phase, and U phase, the rotor of the motor 20 rotates in the reverse direction, and the output lever 12 transmits the reaction force. It is driven in the reverse direction of the lever 8. As described above, the motor driver IC 58 can accurately detect the rotation amount of the rotor of the motor 20 based on the number of times the output voltage is output from the Hall IC 64 and the order in which the output voltage is detected from each phase. Therefore, the displacement, that is, the position of the output lever 12 can be calculated. The motor driver IC 58 outputs information indicating the calculated position of the output lever 12 to the microcomputer 56.
 ペダルアーム4の回動角度は、例えば、ペダルアーム4に設置された回転センサにより検出され、上位ECU70に出力される。また、上位ECU70は、当該ペダルアーム4の回動角度を示す情報をマイコン56に出力する。ペダルアーム4の回動は、ペダルアーム4に連結された反力伝達レバー8の位置を変化させる。従って、反力伝達レバー8の位置の変化は、ペダルアーム4の回動角度によって決定され、マイコン56は反力伝達レバー8の位置を算出することができる。マイコン56は、モータドライバIC58から入力されたモータ20の回転子の回転量と、上位ECU70から入力されたペダルアーム4の回動角度とに基づいて、出力レバー12と反力伝達レバー8とが当接するか否かを判定する。 The rotation angle of the pedal arm 4 is detected by, for example, a rotation sensor installed on the pedal arm 4 and output to the host ECU 70. Further, the host ECU 70 outputs information indicating the rotation angle of the pedal arm 4 to the microcomputer 56. The rotation of the pedal arm 4 changes the position of the reaction force transmission lever 8 connected to the pedal arm 4. Therefore, the change in the position of the reaction force transmission lever 8 is determined by the rotation angle of the pedal arm 4, and the microcomputer 56 can calculate the position of the reaction force transmission lever 8. The microcomputer 56 determines whether the output lever 12 and the reaction force transmission lever 8 are based on the rotation amount of the rotor of the motor 20 input from the motor driver IC 58 and the rotation angle of the pedal arm 4 input from the host ECU 70. It is determined whether or not they come into contact.
 図11は、モータ20の回転子の回転量とペダルアーム4の回動角度とに基づいた通電制御処理の一例を示すフローチャートである。このフローチャートは、第1の実施形態の図8を用いて説明した動作に相当し、図11のステップS300、S308及びS310はそれぞれ図8のステップS100、S110及びS114と同様のため、説明を省略する。まず、モータドライバIC58は、3つのホールIC64から出力電圧が出力された回数と出力電圧の各相における検出順序とに基づいて、モータ20の回転子の回転量を検出し、マイコン56に出力する(ステップS302)。次に、ペダルアーム4の回転センサはペダルアーム4の回動角度を検出し、上位ECU70に出力する。上位ECU70は、当該回動角度をマイコン56に出力する(ステップS304)。次に、マイコン56は、モータ20の回転子の回転量から出力レバー12の位置を算出し、ペダルアーム4の回動角度から反力伝達レバー8の位置を算出する。そしてマイコン56は、出力レバー12と反力伝達レバー8とが当接するか否かを判定する(ステップS306)。当接する場合(ステップS306;YES)、ステップS308に遷移する。当接しない(離間する)場合(ステップS306;NO)、ステップS310に遷移する。 FIG. 11 is a flowchart illustrating an example of the energization control process based on the rotation amount of the rotor of the motor 20 and the rotation angle of the pedal arm 4. This flowchart corresponds to the operation described with reference to FIG. 8 of the first embodiment, and steps S300, S308, and S310 in FIG. 11 are the same as steps S100, S110, and S114 in FIG. To do. First, the motor driver IC 58 detects the amount of rotation of the rotor of the motor 20 based on the number of times that the output voltage is output from the three Hall ICs 64 and the detection order in each phase of the output voltage, and outputs it to the microcomputer 56. (Step S302). Next, the rotation sensor of the pedal arm 4 detects the rotation angle of the pedal arm 4 and outputs it to the host ECU 70. The host ECU 70 outputs the rotation angle to the microcomputer 56 (step S304). Next, the microcomputer 56 calculates the position of the output lever 12 from the rotation amount of the rotor of the motor 20, and calculates the position of the reaction force transmission lever 8 from the rotation angle of the pedal arm 4. Then, the microcomputer 56 determines whether or not the output lever 12 and the reaction force transmission lever 8 are in contact with each other (step S306). When it contacts (Step S306; YES), it changes to Step S308. When not contacting (separating) (step S306; NO), the process proceeds to step S310.
 以上のように、本実施形態に係る反力出力装置10によれば、第1の実施形態で説明した効果と同様の効果を得ることができる。また、マイコン56は、入力されるペダルアーム4の操作量を示すペダルアーム4の回動角度と、モータ20の出力レバー12の変位とに基づいて、出力レバー12とペダル本体部6との間の連結構造に離間が生じているか否かを判定するため、新たな構成を追加することなく、通電の制御を行うことができる。 As described above, according to the reaction force output device 10 according to the present embodiment, it is possible to obtain the same effects as those described in the first embodiment. Further, the microcomputer 56 is arranged between the output lever 12 and the pedal body 6 based on the rotation angle of the pedal arm 4 indicating the input operation amount of the pedal arm 4 and the displacement of the output lever 12 of the motor 20. In order to determine whether or not the connection structure is separated, it is possible to control energization without adding a new configuration.
 以上、図面を参照してこの発明の一実施形態について説明したが、具体的な構成は上述のものに限られることはなく、この発明の要旨を逸脱しない範囲内において様々な設計変更等をすることが可能である。 Although one embodiment of the present invention has been described above with reference to the drawings, the specific configuration is not limited to the above, and various design changes and the like are made without departing from the scope of the present invention. It is possible.
 例えば、上述の各実施形態において、マイコン56は、上位ECU70から入力された制御目標値に基づいて、全オフ信号を出力する期間を変動させ、モータ20への通電を間欠的に行うことによりモータ20を制御するものとしたが、マイコン56は、制御目標値に基づいてPWM制御のデューティ比を変更する制御を行ってもよい。 For example, in each of the above-described embodiments, the microcomputer 56 varies the period during which the all-off signal is output based on the control target value input from the host ECU 70, and intermittently energizes the motor 20 to perform motor motoring. However, the microcomputer 56 may perform control to change the duty ratio of PWM control based on the control target value.
 また、第1の実施形態におけるホールIC64の各相間の出力電圧の遅延の判定、第2の実施形態におけるモータ20の消費電流の変動(増加)の判定及び第3の実施形態における出力レバー12と反力伝達レバー8の当接の判定などは、マイコン56ではなくモータドライバIC58が行ってもよい。 Further, the determination of the delay of the output voltage between the phases of the Hall IC 64 in the first embodiment, the determination of the fluctuation (increase) in the consumption current of the motor 20 in the second embodiment, and the output lever 12 in the third embodiment The determination of the contact of the reaction force transmission lever 8 may be performed by the motor driver IC 58 instead of the microcomputer 56.
 また、第1の実施形態における、出力レバー12とペダル本体部6との間の連結構造に離間が生じているか否かの判定は、ホールIC64の各相の電圧信号の持続時間の長さに基づいて行ってもよい。この場合、モータ20の回転子の回転速度の低下に伴って電圧信号の持続時間は長くなるため、当該持続時間が長いときには外部負荷が有り、出力レバー12と反力伝達レバー8とが当接していると判定することができる。 Further, in the first embodiment, whether or not the connection structure between the output lever 12 and the pedal body 6 is separated is determined based on the duration of the voltage signal of each phase of the Hall IC 64. May be based on. In this case, since the duration of the voltage signal becomes longer as the rotational speed of the rotor of the motor 20 decreases, there is an external load when the duration is long, and the output lever 12 and the reaction force transmission lever 8 come into contact with each other. Can be determined.
 1…アクセルペダル装置、2…ペダル本体ユニット、2a…保持ベース、2b…支軸、4…ペダルアーム(操作子)、6…ペダル本体部(操作子)、8…反力伝達レバー(操作子)、10…反力出力装置(駆動部)、12…出力レバー(駆動部材)、14…ハウジング、16…反力出力軸、20…モータ(駆動部)、22…回転軸、30…ギア減速機構、40…CANケーブル、50…回路基板、54…CAN制御回路、56…マイコン(制御部)、58…モータドライバIC(制御部)、60…パワーFET、64、64U、64V、64W…ホールIC(制御部)、70…上位ECU、72…エンジン DESCRIPTION OF SYMBOLS 1 ... Accelerator pedal apparatus, 2 ... Pedal main unit, 2a ... Holding base, 2b ... Support shaft, 4 ... Pedal arm (operator), 6 ... Pedal main part (operator), 8 ... Reaction force transmission lever (operator) ), 10 ... reaction force output device (drive unit), 12 ... output lever (drive member), 14 ... housing, 16 ... reaction force output shaft, 20 ... motor (drive unit), 22 ... rotating shaft, 30 ... gear reduction Mechanism: 40 ... CAN cable, 50 ... Circuit board, 54 ... CAN control circuit, 56 ... Microcomputer (control unit), 58 ... Motor driver IC (control unit), 60 ... Power FET, 64, 64U, 64V, 64W ... Hall IC (control unit), 70 ... host ECU, 72 ... engine

Claims (6)

  1.  駆動部材を駆動することで、操作者により操作される操作子に対し、操作方向とは逆方向の力を出力する駆動部と、
     前記操作子と前記駆動部材との間に離間が生じているか否かを判定し、離間が生じていると判定した場合には、離間が生じていないと判定した場合に比して大きい駆動力を出力するように前記駆動部を制御する制御部と、
     を備える反力出力装置。
    A drive unit that outputs a force in a direction opposite to the operation direction with respect to an operator operated by an operator by driving the drive member;
    When it is determined whether or not there is a separation between the operation element and the driving member, and it is determined that the separation has occurred, the driving force is greater than when it is determined that no separation has occurred. A control unit for controlling the drive unit to output
    Reaction force output device comprising.
  2.  前記制御部は、
     前記離間が生じていないと判定した場合には、外部から入力された制御目標値に基づいて、前記駆動部への通電を間欠的に行うことにより前記駆動部を制御し、
     前記離間が生じていると判定した場合には、前記離間が生じていないと判定した場合に比して前記駆動部への通電期間を長くする、
     請求項1に記載の反力出力装置。
    The controller is
    If it is determined that the separation has not occurred, the drive unit is controlled by intermittently energizing the drive unit based on a control target value input from the outside,
    When it is determined that the separation has occurred, the energization period to the drive unit is lengthened compared to the case where it is determined that the separation has not occurred.
    The reaction force output device according to claim 1.
  3.  前記制御部は、前記離間が生じていないと判定した場合において、PWM制御によって前記駆動部を駆動する期間と、前記駆動部への通電を停止する期間とを交互に設ける、
     請求項2に記載の反力出力装置。
    The control unit alternately provides a period for driving the driving unit by PWM control and a period for stopping energization to the driving unit when it is determined that the separation does not occur.
    The reaction force output device according to claim 2.
  4.  前記駆動部は、回転電動機であり、
     前記制御部は、前記駆動部の回転の遅延程度に基づいて、前記操作子と前記駆動部材との間に離間が生じているか否かを判定する、
     請求項1から3のうちいずれか1項に記載の反力出力装置。
    The drive unit is a rotary motor,
    The control unit determines whether or not there is a separation between the operation element and the driving member based on a degree of delay in rotation of the driving unit.
    The reaction force output device according to any one of claims 1 to 3.
  5.  前記制御部は、前記駆動部が消費する消費電流の変動に基づいて、前記操作子と前記駆動部材との間に離間が生じているか否かを判定する、
     請求項1から3のうちいずれか1項に記載の反力出力装置。
    The control unit determines whether or not there is a separation between the operation element and the driving member based on a change in current consumption consumed by the driving unit.
    The reaction force output device according to any one of claims 1 to 3.
  6.  前記制御部は、入力される前記操作子の操作量と、前記駆動部による前記駆動部材の変位とに基づいて、前記操作子と前記駆動部材との間に離間が生じているか否かを判定する、
     請求項1から3のうちいずれか1項に記載の反力出力装置。
    The control unit determines whether or not there is a separation between the operating element and the driving member based on the input operation amount of the operating element and the displacement of the driving member by the driving unit. To
    The reaction force output device according to any one of claims 1 to 3.
PCT/JP2014/074389 2013-10-08 2014-09-16 Resistance-force output device WO2015053046A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/027,378 US10146247B2 (en) 2013-10-08 2014-09-16 Reaction force output device
CN201480054955.3A CN105723292B (en) 2013-10-08 2014-09-16 Counter-force output device
BR112016007561A BR112016007561A2 (en) 2013-10-08 2014-09-16 reaction force output device
EP14852076.0A EP3056962B1 (en) 2013-10-08 2014-09-16 Resistance-force output device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-211137 2013-10-08
JP2013211137A JP6033197B2 (en) 2013-10-08 2013-10-08 Reaction force output device

Publications (1)

Publication Number Publication Date
WO2015053046A1 true WO2015053046A1 (en) 2015-04-16

Family

ID=52812866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074389 WO2015053046A1 (en) 2013-10-08 2014-09-16 Resistance-force output device

Country Status (6)

Country Link
US (1) US10146247B2 (en)
EP (1) EP3056962B1 (en)
JP (1) JP6033197B2 (en)
CN (1) CN105723292B (en)
BR (1) BR112016007561A2 (en)
WO (1) WO2015053046A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6304559B2 (en) * 2015-03-04 2018-04-04 株式会社ホンダロック Reaction force output device
JP6481699B2 (en) * 2017-02-21 2019-03-13 マツダ株式会社 Vehicle control device
EP3656596A4 (en) * 2017-07-20 2021-03-24 Mitsuba Corporation Sudden start prevention device
JP7081263B2 (en) * 2018-03-29 2022-06-07 マツダ株式会社 Vehicle control device
JP2024052394A (en) * 2022-09-30 2024-04-11 株式会社デンソー Accelerator device
JP2024052338A (en) * 2022-09-30 2024-04-11 株式会社デンソー Accelerator device
JP2024122184A (en) * 2023-02-28 2024-09-09 株式会社デンソー Accelerator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007026218A (en) * 2005-07-19 2007-02-01 Toyota Motor Corp Pedal reaction force controller
JP2010111379A (en) 2008-10-06 2010-05-20 Mikuni Corp Acceleration pedal device
JP2011005929A (en) * 2009-06-25 2011-01-13 Nissan Motor Co Ltd Reaction force control device of accelerator pedal for vehicle and method of controlling reaction force of accelerator pedal for vehicle
JP2012069043A (en) * 2010-09-27 2012-04-05 Kayaba Ind Co Ltd Pedal device
JP2012116355A (en) * 2010-12-01 2012-06-21 Mikuni Corp Accelerator pedal apparatus

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19633736A1 (en) * 1996-08-21 1998-02-26 Teves Gmbh Alfred Automatically activated brake system
DE10348642B4 (en) 2003-10-15 2010-05-20 Aat Alber Antriebstechnik Gmbh Handle for actuating a motor auxiliary drive
US7656385B2 (en) * 2006-04-28 2010-02-02 Microsoft Corporation Slip resistant and/or non-linear force response pedal peripheral device
EP2052936B1 (en) * 2007-10-23 2012-02-29 Nissan Motor Co., Ltd. Headway distance maintenance assisting system and method
US8864244B2 (en) * 2007-12-21 2014-10-21 Ipgate Ag Brake system with adaptively controllable brake lining clearance
DE102010010400A1 (en) * 2010-03-05 2011-09-08 GM Global Technology Operations LLC , (n. d. Ges. d. Staates Delaware) Accelerator pedal for a motor vehicle and method for operating the accelerator pedal
EP2613217B1 (en) 2010-08-31 2017-10-11 Honda Motor Co., Ltd. Reaction force pedal device
CN103260981B (en) * 2011-02-28 2015-07-29 日立汽车系统株式会社 Braking force control system
WO2013005374A1 (en) 2011-07-05 2013-01-10 本田技研工業株式会社 Accelerator pedal reaction force control device
CN102642466B (en) 2012-05-12 2016-08-31 中国兵器工业集团第七0研究所 A kind of efp

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007026218A (en) * 2005-07-19 2007-02-01 Toyota Motor Corp Pedal reaction force controller
JP2010111379A (en) 2008-10-06 2010-05-20 Mikuni Corp Acceleration pedal device
JP2011005929A (en) * 2009-06-25 2011-01-13 Nissan Motor Co Ltd Reaction force control device of accelerator pedal for vehicle and method of controlling reaction force of accelerator pedal for vehicle
JP2012069043A (en) * 2010-09-27 2012-04-05 Kayaba Ind Co Ltd Pedal device
JP2012116355A (en) * 2010-12-01 2012-06-21 Mikuni Corp Accelerator pedal apparatus

Also Published As

Publication number Publication date
JP6033197B2 (en) 2016-11-30
BR112016007561A2 (en) 2017-08-01
EP3056962B1 (en) 2019-09-11
US10146247B2 (en) 2018-12-04
CN105723292A (en) 2016-06-29
CN105723292B (en) 2017-09-05
EP3056962A1 (en) 2016-08-17
EP3056962A4 (en) 2017-09-06
JP2015075878A (en) 2015-04-20
US20160246321A1 (en) 2016-08-25

Similar Documents

Publication Publication Date Title
JP6033197B2 (en) Reaction force output device
JP5986617B2 (en) Transmission system
EP2492130B1 (en) Accelerator pedal apparatus
JP4685491B2 (en) Pedal device
CN113165507B (en) Accelerator pedal device
KR102008929B1 (en) Motor control method for an electric shift-by-wire system
EP2490093B1 (en) Accelerator pedal apparatus
ATE539945T1 (en) ELECTRIC POWER STEERING SYSTEM
JP2009227178A (en) Operation control device for electric vehicle
JP6413166B2 (en) Reaction force output device
EP2706005A1 (en) Motor drive controller and power-assisted vehicle
EP3266637B1 (en) Reaction force output device
WO2016140255A1 (en) Motor control device and reaction-force output device
JP6421386B2 (en) Reaction force output device
JP2016159837A (en) Reaction force output device
JP6405582B2 (en) Motor control device and reaction force output device
JP2016159835A (en) Reaction force output device
JP6405581B2 (en) Reaction force output device
JP2008236849A (en) Motor controller
JP2004161079A (en) Motor-driven power steering device
JP2004306861A (en) Select assist device of automatic transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14852076

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014852076

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014852076

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15027378

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201602428

Country of ref document: ID

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016007561

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112016007561

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160406