WO2016140255A1 - Motor control device and reaction-force output device - Google Patents

Motor control device and reaction-force output device Download PDF

Info

Publication number
WO2016140255A1
WO2016140255A1 PCT/JP2016/056392 JP2016056392W WO2016140255A1 WO 2016140255 A1 WO2016140255 A1 WO 2016140255A1 JP 2016056392 W JP2016056392 W JP 2016056392W WO 2016140255 A1 WO2016140255 A1 WO 2016140255A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
current
reaction force
delay counter
microcomputer
Prior art date
Application number
PCT/JP2016/056392
Other languages
French (fr)
Japanese (ja)
Inventor
隆志 大場
Original Assignee
株式会社ホンダロック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ホンダロック filed Critical 株式会社ホンダロック
Publication of WO2016140255A1 publication Critical patent/WO2016140255A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G5/00Means for preventing, limiting or returning the movements of parts of a control mechanism, e.g. locking controlling member
    • G05G5/03Means for enhancing the operator's awareness of arrival of the controlling member at a command or datum position; Providing feel, e.g. means for creating a counterforce
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G1/00Controlling members, e.g. knobs or handles; Assemblies or arrangements thereof; Indicating position of controlling members
    • G05G1/30Controlling members actuated by foot
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G1/00Controlling members, e.g. knobs or handles; Assemblies or arrangements thereof; Indicating position of controlling members
    • G05G1/30Controlling members actuated by foot
    • G05G1/38Controlling members actuated by foot comprising means to continuously detect pedal position

Definitions

  • the present invention relates to a motor control device and a reaction force output device.
  • This application claims priority based on Japanese Patent Application No. 2015-042293 for which it applied on March 4, 2015, and uses the content here.
  • an accelerator pedal device that outputs a force (reaction force) in the opposite direction to the force (depression force) to depress the accelerator pedal is output to the accelerator pedal.
  • the accelerator pedal device described in Patent Literatures 1 and 2 includes a housing for pivotally supporting the base end of the pedal arm, a return spring for returning the pedal arm to an initial position, and a motor for generating a reaction force. And a lever for transmitting the rotation of the motor to the pedal arm.
  • the control device compares the target current value with the current value consumed by the motor detected by the current detection circuit, performs feedback control, and controls the driving of the motor to a desired state.
  • the accelerator pedal device is controlled to an output corresponding to the depressed state of the accelerator pedal, and the output is applied to the pedal arm through the transmission lever.
  • Such a reaction force output device not only suppresses sudden acceleration, but also adopts a structure in which the connection between the accelerator pedal and the throttle valve is omitted (so-called drive-by-wire), the natural pedaling comfort of the accelerator pedal ( It is also used to give the driver an accelerator feeling).
  • the sampling point of the current value detected by the current detection circuit may not be appropriate.
  • the motor drive is brought to a desired state. In some cases, the motor cannot be controlled and the motor drive member cannot sufficiently follow the pedal arm.
  • the aspect which concerns on this invention was made
  • a motor control device includes a current detection unit that detects a current flowing into a motor, a first reference value and a first reference value in a pulse signal input to a motor driver IC that drives the motor. And a control unit that causes the current detection unit to detect the current at a time point intermediate to the reference value of 2.
  • control unit counts the intermediate time point between the first reference value and the second reference value in the pulse signal and a preset time width.
  • a target number of times for executing the delay counter may be calculated based on a counter, and the current detection unit may detect the current when the delay counter is executed for the target number of times.
  • control unit may calculate the target number of times by performing a shift operation.
  • control unit waits for another interrupt process until the delay counter is executed for the target number of times, and the delay counter is executed for the target number of times. After that, the other interrupt processing that has been in the standby state may be executed.
  • the reaction force output device is an operation that is operated by a person by driving any one of the motor control devices (1) to (4) and the driving member.
  • a driving unit that outputs a force in a direction opposite to the operation direction to the child and the motor that outputs a driving force for driving the driving unit are provided.
  • the followability of the driving member driven by the motor with respect to the pedal arm can be improved by detecting the current supplied to the motor at a desired sampling point.
  • a reaction force output device outputs, for example, a force (reaction force) opposite to a stepping force (stepping force) to an operator such as an accelerator pedal provided for instructing acceleration of the vehicle.
  • a reaction force output device By using the reaction force output device, it is possible to improve the accelerator feeling, to transmit the accelerator work that saves fuel consumption, and to perform various safety controls.
  • Safety control includes control that outputs a relatively large reaction force in order to suppress excessive acceleration before a curve, in an urban area, a school zone, or the like.
  • the operation element that is the reaction force output target in the present embodiment is not limited to the accelerator pedal, and may be a brake pedal, a steering wheel, an operation device of a game machine, or the like.
  • Drawing 1 is a figure showing an example of the appearance composition of accelerator pedal device 1 provided with reaction force output device 10 concerning one embodiment.
  • the accelerator pedal device 1 includes a pedal body unit 2 installed in front of the driver's seat and a reaction force output device 10 installed above the pedal body unit 2.
  • the pedal body unit 2 includes a holding base 2a attached to the vehicle body, a pedal arm 4 (operator) whose base end is rotatably supported by a support shaft 2b provided on the holding base 2a, and a distal end of the pedal arm 4.
  • a pedal body 6 to which the driver applies pedaling force
  • the holding base 2a is provided with a return spring (not shown) that constantly urges the pedal arm 4 to the initial position. It has been.
  • a cable for operating the opening of a throttle valve (not shown) of the internal combustion engine (engine) in accordance with the operation amount (rotation angle) of the pedal arm 4.
  • a rotation sensor for detecting the rotation angle of the pedal arm 4 is provided in the pedal body unit 2, and the throttle valve is detected based on the detection signal of the rotation sensor.
  • the opening degree may be controlled.
  • a reaction force transmission lever 8 (operator) extending in a direction substantially opposite to the extending direction of the pedal arm 4 is integrally connected to the vicinity of the base end of the pedal arm 4.
  • the tip of the output lever 12 that is a driving member of the reaction force output device 10 and the tip of the reaction force transmission lever 8 can be brought into contact with each other.
  • the turning force of the output lever 12 that is a drive member of the reaction force output device 10 is output to the pedal arm 4 via the reaction force transmission lever 8.
  • the reaction force output device 10 outputs a reaction force in a direction opposite to the direction of the pedal force to the operation element (for example, the reaction force transmission lever 8).
  • FIG. 2 is a diagram illustrating an example of the internal structure of the reaction force output device 10 according to an embodiment.
  • the reaction force output device 10 includes a motor 20 that is a drive source for creating a reaction force, a reaction force output shaft 16 (drive unit) that is pivotally supported by the housing member 14, and a gear reduction.
  • a mechanism 30 (drive unit) and a circuit board 50 are provided.
  • the gear reduction mechanism 30 decelerates the rotation of the rotor of the motor 20 and increases the torque T output from the motor 20 side, and increases the torque T by deflecting from the motor rotation shaft 22 direction to the reaction force output shaft 16 direction. T is transmitted to the output lever 12.
  • One end portion in the reaction force output shaft direction protrudes outward from the side surface of the housing member 14, and the output lever 12 is integrally connected to the protruding end portion.
  • the rotation of the rotor of the motor 20 is controlled by a control circuit mounted on the circuit board 50.
  • a control circuit mounted on the circuit board 50.
  • a CAN Controller Area Network
  • the circuit board 50 and the motor 20 are connected via a cable (not shown), and the rotation of the rotor of the motor 20 is controlled based on a control signal sent from the circuit board 50.
  • a small hole, a slit, or the like is provided in the casing that covers the rotor of the motor 20, and a Hall IC (Integrated Circuit) is fitted and installed in the small hole, the slit, or the like.
  • the Hall IC detects the magnetic flux intensity that passes through a small hole, a slit, or the like, and outputs a pulsed voltage corresponding to the detected magnetic flux intensity.
  • the magnetic flux intensity detected by the Hall IC changes according to the rotation of the rotor in the motor 20. For this reason, the reaction force output device 10 can detect the rotation amount of the rotor (for example, the rotation speed n [rpm]) based on the output voltage of the Hall IC.
  • FIG. 3 is a diagram illustrating an example of a functional configuration centering on a control circuit of the reaction force output device 10 according to an embodiment.
  • the reaction force output device 10 includes a CAN control circuit 54 that performs CAN communication between the motor 20 and the host ECU 70, a microcontroller (microcomputer) 56 (control unit), a motor driver IC 58, and a power FET. (Field Effect Transistor) 60, Hall ICs 64U, 64V, 64W, and a current detection sensor 66 (current detection unit).
  • the current detection sensor 66 and the microcomputer 56 are motor control devices that determine a current command value that is a control amount to be given to the motor driver IC 58.
  • Hall ICs 64U, 64V, and 64W are collectively referred to as Hall IC 64 unless otherwise distinguished.
  • the host ECU 70 controls the driving of the engine 72 by controlling, for example, the opening degree of the throttle valve according to the operation amount of the pedal arm 4.
  • a crankshaft as an output shaft is connected to an axle, and outputs a driving force for driving the vehicle.
  • the travel drive unit may have a configuration in which a travel motor is added to the engine 72, or may have a configuration in which the travel drive force is output only by the travel motor without the engine 72.
  • the microcomputer 56 performs CAN communication with the host ECU 70 via the CAN control circuit 54.
  • the microcomputer 56 receives a reaction force set value P, which is a reference for the magnitude of the reaction force generated by the reaction force output device 10, from the host ECU 70.
  • the reaction force set value P is an example of “input value”.
  • the reaction force set value P may be determined so as to increase according to the vehicle speed of the vehicle on which the reaction force output device 10 is mounted, or in order to suppress a sudden accelerator operation in order to improve fuel efficiency. It may be determined.
  • the reaction force setting value P may be determined so as to increase as the distance between the vehicle on which the reaction force output device 10 is mounted and the preceding vehicle becomes shorter.
  • the inter-vehicle distance is acquired by, for example, a millimeter wave radar or a sound wave sensor installed at the front portion of the vehicle, a stereo camera device installed at the top of the windshield, or the like.
  • a millimeter wave radar or a sound wave sensor installed at the front portion of the vehicle
  • a stereo camera device installed at the top of the windshield, or the like.
  • the method for determining the reaction force set value P there is no particular limitation on the method for determining the reaction force set value P.
  • the microcomputer 56 determines a current command value as a control amount to be given to the motor driver IC 58 based on the reaction force set value P. At this time, the microcomputer 56 determines the current command value based on a relational expression indicating the relationship between the current command value and the reaction force set value P, for example.
  • the motor driver IC 58 determines a pulse width, a duty ratio, and the like at the time of PWM control based on the current command value, controls a current to be supplied to the power FET 60, and rotates the motor 20.
  • the microcomputer 56 is connected to a current detection sensor 66 for detecting a current supplied to the motor 20 and a motor driver IC 58.
  • the microcomputer 56 receives a signal indicating the detection value detected by the current detection sensor 66.
  • the microcomputer 56 determines a current command value to be given to the motor driver IC 58 based on the signal indicating the detection value detected by the current detection sensor 66 and the rotation speed n of the motor 20 calculated from the signal output from the motor driver IC 58. Details of processing executed by the microcomputer 56 will be described later.
  • the power FET 60 includes U-phase, V-phase, and W-phase power FETs 60U, 60V, and 60W, and each power FET is connected to a corresponding phase coil of the motor 20, respectively.
  • the motor driver IC 58 cyclically turns on / off each phase power FET to generate a magnetic field in each phase coil, and rotates the rotor of the motor 20.
  • three Hall ICs 64U, 64V, 64W are connected to the input terminal of the motor driver IC 58, and the motor driver IC 58 accepts a change in voltage output from each of the Hall ICs 64U, 64V, 64W.
  • the motor driver IC 58 outputs a signal indicating the rotational speed n of the motor 20 to the microcomputer 56 based on the input from the Hall ICs 64U, 64V, 64W. Thereby, the microcomputer 56 detects the rotation speed n of the motor 20.
  • the microcomputer 56 acquires the detection value output from the current detection sensor 66 as an analog quantity, and derives the current value supplied to the motor 20 by quantizing the acquired analog quantity.
  • the current detection sensor 66 detects a current flowing out from the power FET unit 60. This current is equivalent to the current flowing into the motor 20.
  • the current detection sensor 66 detects a current flowing out from the power FET unit 60 by measuring a potential difference between the AD terminal side and the ground line side and converting the measured voltage into a current value by adding an internal resistance.
  • the microcomputer 56 uses a relational expression or a data table showing a relation between a preset detection value of the current detection sensor 66 and a current value consumed by the motor 20 with respect to the detection value output by the current detection sensor 66. Apply to derive the current value consumed by the motor 20.
  • FIG. 4 is a flowchart showing a flow of processing executed by the microcomputer 56.
  • the microcomputer 56 acquires the High setting time in the PWM signal for controlling the current command value given to the motor driver IC 58 (step S100).
  • the microcomputer 56 calculates an intermediate time point of the High set time in the PWM signal (step S102). The intermediate time point is calculated by dividing the High set time in the PWM signal by 2, for example.
  • the microcomputer 56 calculates the number n of increments of the delay counter between the start time of the high setting and the intermediate point (step S104).
  • the delay counter is a counter for counting a preset time width (delay time). When the delay counter is executed once, a preset time width is counted.
  • the delay time of the delay counter is, for example, 510 ns.
  • the number of increments is calculated by the time from the high setting start time to the intermediate time / the time width of the delay counter. That is, in step S106, the number of times (target number of times) that the delay counter necessary to reach the intermediate time point is executed is calculated.
  • the microcomputer 56 performs a process of executing the delay counter once (step S106). When one delay counter is executed by the microcomputer 56, the delay time is counted. Next, the microcomputer 56 determines whether or not the increment number n calculated in step S104 and the delay counter (i) have been executed (step S108). If the delay counter has not been executed for the increment number n calculated in step S104, the microcomputer 56 returns to the process of step S106 and performs the process of executing the delay counter. When the delay counter is executed for the increment number n calculated in step S104, the microcomputer 56 causes the current detection sensor 66 to detect the current supplied to the motor 20 (step S110). Thereby, the processing of this flowchart is completed.
  • the microcomputer 56 repeatedly executes the delay counter up to the intermediate point, and then detects the current that is supplied to the motor 20 through the current detection sensor 66. Therefore, even if the High time of the PWM signal is variable, As will be described later (FIGS. 6 and 7), the current value at the intermediate point of the High time of the PWM signal can be detected.
  • the processing of the flowchart described above may be executed using a shift operation.
  • the microcomputer 56 acquires the High setting time in the PWM signal indicated by a binary number, a quaternary number, a hexadecimal number, or the like (step S102), and calculates the increment number of the delay counter corresponding to the intermediate point of the acquired High setting time.
  • a shift calculation is performed (step S104).
  • the intermediate time point of the High set time is calculated from the High set time (hexadecimal number) / 2 in the PWM signal.
  • the number of executions of the delay counter is calculated based on the calculated intermediate time / 16.
  • the processing load of the microcomputer 56 can be reduced by calculating the number of executions of the delay counter by the shift operation and executing the delay counter process based on the calculated result.
  • the microcomputer 56 puts other interrupt processing into a standby state while the processing for detecting the current value using the delay counter is being executed.
  • the microcomputer 56 sequentially executes the interrupt process in the standby state based on the priority order associated with the process after the process of executing the delay counter n times is performed. Thereby, the microcomputer 56 can acquire the electric current value in the intermediate
  • the microcomputer 56 temporarily stops the execution of the other interrupt process and executes the process of detecting the current value using the delay counter in preference to the other interrupt process. May be. In this case, similarly, the microcomputer 56 executes another interrupt process that has been stopped after executing the process of detecting the current value using the delay counter.
  • FIG. 5 is a conceptual diagram for explaining processing executed by the microcomputer 56.
  • the microcomputer 56 performs the processing executed in the above-described flowchart in the state of the PWM signal shown in FIG. 5 and the voltage waveform of the AD terminal input.
  • the microcomputer 56 acquires the High set time T in the PWM signal, and calculates an intermediate time point P of the High set time T.
  • the rising edge of the High set time T is the first reference value, and the falling edge is the second reference value.
  • the microcomputer 56 calculates the number n of times that the delay counter is incremented between the start time of High setting and the intermediate point P.
  • the microcomputer 56 reaches the intermediate time point P by performing a process of executing from the delay counter 1 to the delay counter n.
  • the microcomputer 56 causes the current detection sensor 66 to detect the voltage value applied to the motor 20 when the intermediate point P is reached. Thereby, the current detection sensor 66 detects the voltage value P * at the intermediate time point P in the High set time.
  • the microcomputer 56 can acquire a voltage value near an intermediate point in the waveform of the voltage applied to the motor 20.
  • the microcomputer 56 can determine the current command value as a control amount to be given to the motor driver IC 58 by acquiring the voltage value P * at the intermediate time point P and converting the acquired voltage value into a current value. Therefore, the motor 20 can be controlled with higher accuracy.
  • FIG. 6 is a diagram illustrating an example of a general technique in detecting a current value.
  • the waveforms in the figure are a motor current waveform energized by the motor 20, an AD terminal input waveform, an AD conversion processing waveform, and a PWM signal waveform input to the motor driver IC.
  • the rising edge of the pulse in the AD conversion processing waveform indicates the timing at which the current detection sensor 66 detects the current value.
  • the measurement conditions are a peak current value of 3 [A], a power supply voltage of 13.5 [V], and the motor mode is a state where the output shaft is fixed.
  • the point for detecting the current value is after the processing time has elapsed from the rising edge of the PWM signal.
  • the time for detecting the current value can be fixed after the delay time has elapsed.
  • the point at which the current value is detected can be fixed at a predetermined time after the rise of the PWM signal (P1 in the figure).
  • the sampling point for detecting a fixed current value in the PWM signal may be the beginning or end of the section where the PWM signal is High due to the duty ratio. There is.
  • FIG. 7 is a diagram for explaining sampling points for detecting a current value when the duty ratio of the PWM signal is changed in a general method.
  • FIG. 7 shows a PWM signal, an AD terminal input voltage waveform, and a fixed sampling point for sampling a current value.
  • the sampling points in the left figure ex1 and the right figure ex2 are the same.
  • the left diagram ex1 shows a case where the High interval of the PWM signal is longer than the High interval of the PWM signal of the right diagram ex2.
  • the desired sampling point is the initial of the High period of the PWM signal regardless of the intermediate point P2 of the High period of the PWM signal, and the motor 20 is energized.
  • the current value tends to be detected lower than the average current.
  • the sampling point is High of the PWM signal regardless of the current sampling point P3 near the intermediate point in the High period of the PWM signal.
  • the current value tends to be detected higher than the average current supplied to the motor 20.
  • the point at which the current value is sampled is fixed, the current value cannot be detected at a desired sampling point due to the change in the duty ratio of the PWM signal, and an inappropriate current value may be detected. As a result, the drive of the motor 20 may change suddenly.
  • the microcomputer 56 executes the current when the delay counter is executed a predetermined number of times according to the set time of the High section of the PWM signal. Sample the value. Thereby, the microcomputer 56 can detect the current value at the intermediate point in the High period of the PWM signal. Thereby, it is possible to set a more appropriate sampling point and detect the current value in the transition of the current value accompanying the change of the PWM signal. As a result, the current command value can be determined with higher accuracy, and the drive of the motor 20 can be smoothly changed. Moreover, the accelerator feeling given to the driver
  • the PWM signal may fall when the PWM signal becomes High, and the PWM signal may rise when the PWM signal becomes Low.
  • the processing by the microcomputer 56 of this embodiment can be applied assuming that the PWM signal is High when the PWM signal is falling.
  • the desired sampling point is set to the intermediate point of the High set time, but the desired sampling point may be changed as appropriate.
  • the microcomputer 56 executes the delay counter until the time corresponding to the desired sampling point, and after executing the delay counter, causes the current detection unit 66 to detect the current value.
  • the current detection unit 66 detects the current flowing into the motor 20
  • the motor driver IC 58
  • the current supplied to the motor 20 is detected at a desired sampling point. be able to.
  • the microcomputer 56 performs feedback control based on the detected current value and determines a new current command value, it is possible to provide a motor control device that can improve followability.
  • SYMBOLS 1 Accelerator pedal apparatus, 2 ... Pedal main body unit, 6 ... Pedal main body part, 10 ... Reaction force output device, 12 ... Output lever, 20 ... Motor, 56 ... Microcomputer (control part), 66 ... Current detection sensor

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Mechanical Control Devices (AREA)

Abstract

A motor control device equipped with a current detection unit for detecting a current that flows into a motor, and a control unit for causing the current detection unit to detect the current at an intermediate point in time between first and second reference values in a pulse signal inputted into a motor driver IC for driving the motor.

Description

モータ制御装置および反力出力装置Motor control device and reaction force output device
 本発明は、モータ制御装置および反力出力装置に関する。
 本願は、2015年3月4日に出願された日本国特願2015-042293号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a motor control device and a reaction force output device.
This application claims priority based on Japanese Patent Application No. 2015-042293 for which it applied on March 4, 2015, and uses the content here.
 車両の発進時や走行時の意図しない急激な加速などを抑制するために、例えば、アクセルペダルを踏み込む力(踏力)とは逆方向の力(反力)をアクセルペダルに出力するアクセルペダル装置が知られている(例えば、特許文献1、2参照)。 In order to suppress unintentional sudden acceleration when the vehicle starts or travels, for example, an accelerator pedal device that outputs a force (reaction force) in the opposite direction to the force (depression force) to depress the accelerator pedal is output to the accelerator pedal. Known (see, for example, Patent Documents 1 and 2).
 特許文献1、2に記載のアクセルペダル装置は、ペダルアームの基端を回動可能に軸支するハウジングに、ペダルアームを初期位置に戻すためのリターンスプリングと、反力を作り出すためのモータと、そのモータの回転をペダルアームに伝達するためのレバーとが内蔵されている。このアクセルペダル装置では、制御装置が、目標電流値と電流検出回路によって検出されたモータが消費する電流値とを比較して、フィードバック制御を行い、モータの駆動を所望の状態に制御する。これによりアクセルペダル装置は、アクセルペダルの踏込状態に応じた出力に制御され、その出力が伝達レバーを通してペダルアームに付与されるようになっている。 The accelerator pedal device described in Patent Literatures 1 and 2 includes a housing for pivotally supporting the base end of the pedal arm, a return spring for returning the pedal arm to an initial position, and a motor for generating a reaction force. And a lever for transmitting the rotation of the motor to the pedal arm. In this accelerator pedal device, the control device compares the target current value with the current value consumed by the motor detected by the current detection circuit, performs feedback control, and controls the driving of the motor to a desired state. Thus, the accelerator pedal device is controlled to an output corresponding to the depressed state of the accelerator pedal, and the output is applied to the pedal arm through the transmission lever.
 このような反力出力装置は、急加速を抑制するためだけでなく、アクセルペダルとスロットルバルブとの連結を省略した構成(いわゆるドライブバイワイヤ)を採用した場合に、アクセルペダルの自然な踏み心地(アクセルフィーリング)を運転者に与えるためにも使用される。 Such a reaction force output device not only suppresses sudden acceleration, but also adopts a structure in which the connection between the accelerator pedal and the throttle valve is omitted (so-called drive-by-wire), the natural pedaling comfort of the accelerator pedal ( It is also used to give the driver an accelerator feeling).
日本国特開2012-116355号Japanese Unexamined Patent Publication No. 2012-116355 日本国特開2012-171475号Japanese Unexamined Patent Publication No. 2012-171475
 しかしながら、従来のモータ制御装置では、電流検出回路により検出される電流値のサンプリングポイントが適切でない場合があった。この結果、反力出力装置に適用され、サンプリングポイントにおいて検出された電流値と目標電流値とに基づいて、フィードバック制御を行い、モータの駆動が制御された場合、モータの駆動を所望の状態に制御することができず、モータの駆動部材がペダルアームに十分に追従できない場合があった。 However, in the conventional motor control device, the sampling point of the current value detected by the current detection circuit may not be appropriate. As a result, when feedback control is performed based on the current value detected at the sampling point and the target current value applied to the reaction force output device, and the motor drive is controlled, the motor drive is brought to a desired state. In some cases, the motor cannot be controlled and the motor drive member cannot sufficiently follow the pedal arm.
 本発明に係る態様は、このような事情を考慮してなされたものであり、所望のサンプリングポイントで電流値を検出することができるモータ制御装置および反力出力装置を提供することを目的とする。 The aspect which concerns on this invention was made | formed in view of such a situation, and it aims at providing the motor control apparatus and reaction force output apparatus which can detect an electric current value at a desired sampling point. .
 上記技術課題を解決して係る目的を達成するために、本発明は以下の態様を採用した。
 (1)本発明に係る一態様のモータ制御装置は、モータに流入する電流を検出する電流検出部と、前記モータを駆動するモータドライバICに入力されるパルス信号における第1の基準値と第2の基準値との中間時点で前記電流検出部に前記電流を検出させる制御部とを備える。
In order to solve the above technical problems and achieve the object, the present invention adopts the following aspects.
(1) A motor control device according to an aspect of the present invention includes a current detection unit that detects a current flowing into a motor, a first reference value and a first reference value in a pulse signal input to a motor driver IC that drives the motor. And a control unit that causes the current detection unit to detect the current at a time point intermediate to the reference value of 2.
 (2)上記(1)の態様において、前記制御部は、前記パルス信号における前記第1の基準値と前記第2の基準値との前記中間時点、および予め設定された時間幅をカウントする遅延カウンタに基づいて、前記遅延カウンタを実行する目標回数を算出し、前記遅延カウンタを前記目標回数実行したときに、前記電流検出部に前記電流を検出させてもよい。 (2) In the aspect of (1), the control unit counts the intermediate time point between the first reference value and the second reference value in the pulse signal and a preset time width. A target number of times for executing the delay counter may be calculated based on a counter, and the current detection unit may detect the current when the delay counter is executed for the target number of times.
 (3)上記(2)の態様において、前記制御部は、シフト演算を行うことで、前記目標回数を算出してもよい。 (3) In the above aspect (2), the control unit may calculate the target number of times by performing a shift operation.
 (4)上記(2)または(3)の態様において、前記制御部は、前記遅延カウンタを前記目標回数実行するまでの間、他の割り込み処理を待機状態とし、前記遅延カウンタを前記目標回数実行した後に、前記待機状態としていた前記他の割り込み処理を実行させてもよい。 (4) In the aspect of (2) or (3), the control unit waits for another interrupt process until the delay counter is executed for the target number of times, and the delay counter is executed for the target number of times. After that, the other interrupt processing that has been in the standby state may be executed.
 (5)本発明に係る一態様の反力出力装置は、上述した(1)から(4)のうちいずれか1つのモータ制御装置と、駆動部材を駆動することで、人により操作される操作子に対し、操作方向とは逆方向の力を出力する駆動部と、前記駆動部を駆動させる駆動力を出力する前記モータとを備える。 (5) The reaction force output device according to one aspect of the present invention is an operation that is operated by a person by driving any one of the motor control devices (1) to (4) and the driving member. A driving unit that outputs a force in a direction opposite to the operation direction to the child and the motor that outputs a driving force for driving the driving unit are provided.
 本発明に係る態様によれば、所望のサンプリングポイントにおいて、モータに通電される電流を検出させることにより、モータにより駆動する駆動部材のペダルアームに対する追従性を向上させることができる。 According to the aspect of the present invention, the followability of the driving member driven by the motor with respect to the pedal arm can be improved by detecting the current supplied to the motor at a desired sampling point.
一実施形態に係る反力出力装置を備えるアクセルペダル装置の外観構成の一例を示す図。The figure which shows an example of the external appearance structure of an accelerator pedal apparatus provided with the reaction force output device which concerns on one Embodiment. 一実施形態に係る反力出力装置の内部構造の一例を示す図。The figure which shows an example of the internal structure of the reaction force output device which concerns on one Embodiment. 一実施形態に係る反力出力装置の制御回路を中心とした機能構成の一例を示す図。The figure which shows an example of the function structure centering on the control circuit of the reaction force output device which concerns on one Embodiment. マイコンが実行する処理の流れを示すフローチャート。The flowchart which shows the flow of the process which a microcomputer performs. マイコンが実行する処理について説明するための概念図。The conceptual diagram for demonstrating the process which a microcomputer performs. 電流値を検出する場合における一般的な手法の一例を示す図。The figure which shows an example of the general method in the case of detecting an electric current value. 一般的な手法におけるPWM信号のディーティ比が変更された場合の電流値を検出するサンプリングポイントについて説明するための図。The figure for demonstrating the sampling point which detects the electric current value when the duty ratio of the PWM signal in a general method is changed.
 以下、図面を参照し、本発明のモータ制御装置および反力出力装置の実施形態について説明する。一実施形態における反力出力装置は、例えば、車両の加速を指示するために設けられたアクセルペダル等の操作子に対し、踏み込む力(踏力)とは逆向きの力(反力)を出力する装置である。反力出力装置を使用することにより、アクセルフィーリングを向上させたり、燃費を節約したアクセルワークを促すよう伝達したり、種々の安全制御を行ったりすることができる。安全制御としては、カーブの手前や市街地、スクールゾーン等において、過剰な加速を抑制するために、比較的大きい反力を出力する制御が挙げられる。また、単に基準を超えた急なアクセルペダルの操作がなされた場合には、誤操作と判断して大きい反力を出力する制御が行われてもよい。また、本実施形態における反力の出力対象である操作子は、アクセルペダルに限定されず、ブレーキペダル、ステアリングホイール、或いはゲーム機の操作デバイス等であってもよい。 Hereinafter, embodiments of the motor control device and the reaction force output device of the present invention will be described with reference to the drawings. A reaction force output device according to an embodiment outputs, for example, a force (reaction force) opposite to a stepping force (stepping force) to an operator such as an accelerator pedal provided for instructing acceleration of the vehicle. Device. By using the reaction force output device, it is possible to improve the accelerator feeling, to transmit the accelerator work that saves fuel consumption, and to perform various safety controls. Safety control includes control that outputs a relatively large reaction force in order to suppress excessive acceleration before a curve, in an urban area, a school zone, or the like. In addition, when the accelerator pedal is simply operated exceeding the reference, it may be determined that the operation is erroneous and control to output a large reaction force may be performed. In addition, the operation element that is the reaction force output target in the present embodiment is not limited to the accelerator pedal, and may be a brake pedal, a steering wheel, an operation device of a game machine, or the like.
 図1は、一実施形態に係る反力出力装置10を備えるアクセルペダル装置1の外観構成の一例を示す図である。
 アクセルペダル装置1は、運転席の足元前方に設置されるペダル本体ユニット2と、ペダル本体ユニット2の上方に設置される反力出力装置10と、を備えている。
Drawing 1 is a figure showing an example of the appearance composition of accelerator pedal device 1 provided with reaction force output device 10 concerning one embodiment.
The accelerator pedal device 1 includes a pedal body unit 2 installed in front of the driver's seat and a reaction force output device 10 installed above the pedal body unit 2.
 ペダル本体ユニット2は、車体に取り付けられる保持ベース2aと、保持ベース2aに設けられた支軸2bに基端が回動可能に支持されるペダルアーム4(操作子)と、ペダルアーム4の先端部に設けられ、運転者によって踏力を付与されるペダル本体部6(操作子)とを備え、保持ベース2aには、ペダルアーム4を初期位置に常時付勢するリターンスプリング(不図示)が設けられている。 The pedal body unit 2 includes a holding base 2a attached to the vehicle body, a pedal arm 4 (operator) whose base end is rotatably supported by a support shaft 2b provided on the holding base 2a, and a distal end of the pedal arm 4. Provided with a pedal body 6 (operator) to which the driver applies pedaling force, and the holding base 2a is provided with a return spring (not shown) that constantly urges the pedal arm 4 to the initial position. It has been.
 ペダルアーム4には、ペダルアーム4の操作量(回動角度)に応じて内燃機関(エンジン)のスロットルバルブ(不図示)の開度を操作するためのケーブル(不図示)が接続されている。ただし、内燃機関が電子制御スロットルを採用する場合には、ペダル本体ユニット2にペダルアーム4の回動角度を検出するための回転センサを設け、その回転センサの検出信号を基にしてスロットルバルブの開度を制御するようにしてもよい。また、ペダルアーム4の基端の近傍部には、ペダルアーム4の延出方向とほぼ相反する方向に延出する反力伝達レバー8(操作子)が一体に連結されている。 Connected to the pedal arm 4 is a cable (not shown) for operating the opening of a throttle valve (not shown) of the internal combustion engine (engine) in accordance with the operation amount (rotation angle) of the pedal arm 4. . However, when the internal combustion engine employs an electronically controlled throttle, a rotation sensor for detecting the rotation angle of the pedal arm 4 is provided in the pedal body unit 2, and the throttle valve is detected based on the detection signal of the rotation sensor. The opening degree may be controlled. Further, a reaction force transmission lever 8 (operator) extending in a direction substantially opposite to the extending direction of the pedal arm 4 is integrally connected to the vicinity of the base end of the pedal arm 4.
 また、反力出力装置10の駆動部材である出力レバー12の先端部と反力伝達レバー8の先端部とは、当接可能となっている。反力出力装置10の駆動部材である出力レバー12の回動力は、反力伝達レバー8を介してペダルアーム4に出力される。このように反力出力装置10は、踏力の方向とは逆方向の反力を操作子(例えば、反力伝達レバー8)に出力する。 Further, the tip of the output lever 12 that is a driving member of the reaction force output device 10 and the tip of the reaction force transmission lever 8 can be brought into contact with each other. The turning force of the output lever 12 that is a drive member of the reaction force output device 10 is output to the pedal arm 4 via the reaction force transmission lever 8. In this way, the reaction force output device 10 outputs a reaction force in a direction opposite to the direction of the pedal force to the operation element (for example, the reaction force transmission lever 8).
 図2は、一実施形態に係る反力出力装置10の内部構造の一例を示す図である。図2では、ハウジング部材14の上面のカバーを取り去り、ハウジング部材14(反力出力装置10)の内部状態を示している。本実施形態における反力出力装置10は、反力を作り出すための駆動源であるモータ20と、ハウジング部材14に回動可能に軸支される反力出力軸16(駆動部)と、ギア減速機構30(駆動部)と、回路基板50とを備えている。ギア減速機構30は、モータ20の回転子の回転を減速しモータ20側から出力するトルクTを増大させ、モータの回転軸22方向から反力出力軸16方向へと偏向して増大させたトルクTを出力レバー12に伝達する。反力出力軸方向の一端部は、ハウジング部材14の側面から外側に突出し、その突出した端部に出力レバー12が一体に連結されている。 FIG. 2 is a diagram illustrating an example of the internal structure of the reaction force output device 10 according to an embodiment. In FIG. 2, the cover of the upper surface of the housing member 14 is removed, and the internal state of the housing member 14 (reaction force output device 10) is shown. The reaction force output device 10 according to the present embodiment includes a motor 20 that is a drive source for creating a reaction force, a reaction force output shaft 16 (drive unit) that is pivotally supported by the housing member 14, and a gear reduction. A mechanism 30 (drive unit) and a circuit board 50 are provided. The gear reduction mechanism 30 decelerates the rotation of the rotor of the motor 20 and increases the torque T output from the motor 20 side, and increases the torque T by deflecting from the motor rotation shaft 22 direction to the reaction force output shaft 16 direction. T is transmitted to the output lever 12. One end portion in the reaction force output shaft direction protrudes outward from the side surface of the housing member 14, and the output lever 12 is integrally connected to the protruding end portion.
 モータ20の回転子の回転は、回路基板50に実装された制御回路によって制御される。回路基板50には、後述する上位ECU(Electronic Control Unit)と制御回路とで信号を送受信するためのCAN(Controller Area Network)ケーブル(不図示)が接続されている。また、回路基板50とモータ20とはケーブル(不図示)を介して接続されており、回路基板50から送られる制御信号に基づいて、モータ20の回転子の回転が制御される。また、モータ20の回転子を覆う筐体には小孔やスリット等が設けられ、小孔やスリット等にはホールIC(Integrated Circuit)が嵌込設置されている。ホールICは、小孔やスリット等を透過する磁束強度を検出し、検出した磁束強度に応じたパルス状の電圧を出力する。ホールICによって検出される磁束強度は、モータ20内の回転子の回転に応じて変化する。このため、反力出力装置10は、ホールICの出力電圧に基づいて回転子の回転量(例えば回転数n[rpm])を検出することができる。 The rotation of the rotor of the motor 20 is controlled by a control circuit mounted on the circuit board 50. Connected to the circuit board 50 is a CAN (Controller Area Network) cable (not shown) for transmitting and receiving signals between a host ECU (Electronic Control Unit) described later and a control circuit. The circuit board 50 and the motor 20 are connected via a cable (not shown), and the rotation of the rotor of the motor 20 is controlled based on a control signal sent from the circuit board 50. Further, a small hole, a slit, or the like is provided in the casing that covers the rotor of the motor 20, and a Hall IC (Integrated Circuit) is fitted and installed in the small hole, the slit, or the like. The Hall IC detects the magnetic flux intensity that passes through a small hole, a slit, or the like, and outputs a pulsed voltage corresponding to the detected magnetic flux intensity. The magnetic flux intensity detected by the Hall IC changes according to the rotation of the rotor in the motor 20. For this reason, the reaction force output device 10 can detect the rotation amount of the rotor (for example, the rotation speed n [rpm]) based on the output voltage of the Hall IC.
 図3は、一実施形態に係る反力出力装置10の制御回路を中心とした機能構成の一例を示す図である。図3において、反力出力装置10は、モータ20と、上位ECU70との間でCAN通信を行うCAN制御回路54と、マイクロコントローラ(マイコン)56(制御部)と、モータドライバIC58と、パワーFET(Field Effect Transistor)60と、ホールIC64U、64V、64Wと、電流検出センサ66(電流検出部)とを備える。 FIG. 3 is a diagram illustrating an example of a functional configuration centering on a control circuit of the reaction force output device 10 according to an embodiment. In FIG. 3, the reaction force output device 10 includes a CAN control circuit 54 that performs CAN communication between the motor 20 and the host ECU 70, a microcontroller (microcomputer) 56 (control unit), a motor driver IC 58, and a power FET. (Field Effect Transistor) 60, Hall ICs 64U, 64V, 64W, and a current detection sensor 66 (current detection unit).
 なお、電流検出センサ66と、マイコン56とは、モータドライバIC58に与える制御量である電流指令値を決定するモータ制御装置である。また、以下において、ホールIC64U、64V、64Wを特に区別しない場合、総称してホールIC64と記載する。 The current detection sensor 66 and the microcomputer 56 are motor control devices that determine a current command value that is a control amount to be given to the motor driver IC 58. In the following description, Hall ICs 64U, 64V, and 64W are collectively referred to as Hall IC 64 unless otherwise distinguished.
 上位ECU70は、例えば、ペダルアーム4の操作量に応じてスロットルバルブの開度等を制御することで、エンジン72の駆動制御を行う。エンジン72は、出力軸であるクランクシャフトが車軸に連結され、車両の走行駆動力を出力する。なお、走行駆動部としては、エンジン72に走行用モータを加えた構成であってもよいし、エンジン72を備えず走行用モータのみにより走行駆動力を出力する構成であってもよい。 The host ECU 70 controls the driving of the engine 72 by controlling, for example, the opening degree of the throttle valve according to the operation amount of the pedal arm 4. In the engine 72, a crankshaft as an output shaft is connected to an axle, and outputs a driving force for driving the vehicle. The travel drive unit may have a configuration in which a travel motor is added to the engine 72, or may have a configuration in which the travel drive force is output only by the travel motor without the engine 72.
 マイコン56は、CAN制御回路54を介して上位ECU70とCAN通信を行う。マイコン56は、反力出力装置10が作り出す反力の大きさの基準となる反力設定値Pを、上位ECU70から受信する。反力設定値Pとは、「入力値」の一例である。反力設定値Pは、例えば、反力出力装置10が搭載される車両の車速に応じて大きくなるように決定されてもよいし、燃費を向上させるために急なアクセル操作を抑制するために決定されてもよい。また、反力設定値Pは、反力出力装置10が搭載される車両と先行車両との車間距離が短くなる程大きくなるように決定されてもよい。車間距離は、例えば、車両のフロント部に設置されたミリ波レーダや音波センサ、フロントガラス上部等に設置されたステレオカメラ装置等によって取得される。本発明の適用上、反力設定値Pの決定手法について特段の制限は存在しない。 The microcomputer 56 performs CAN communication with the host ECU 70 via the CAN control circuit 54. The microcomputer 56 receives a reaction force set value P, which is a reference for the magnitude of the reaction force generated by the reaction force output device 10, from the host ECU 70. The reaction force set value P is an example of “input value”. For example, the reaction force set value P may be determined so as to increase according to the vehicle speed of the vehicle on which the reaction force output device 10 is mounted, or in order to suppress a sudden accelerator operation in order to improve fuel efficiency. It may be determined. Further, the reaction force setting value P may be determined so as to increase as the distance between the vehicle on which the reaction force output device 10 is mounted and the preceding vehicle becomes shorter. The inter-vehicle distance is acquired by, for example, a millimeter wave radar or a sound wave sensor installed at the front portion of the vehicle, a stereo camera device installed at the top of the windshield, or the like. For the application of the present invention, there is no particular limitation on the method for determining the reaction force set value P.
 マイコン56は、反力設定値Pに基づいて、モータドライバIC58に与える制御量として電流指令値を決定する。この際、マイコン56は、例えば、電流指令値と反力設定値Pとの関係を示した関係式に基づき、電流指令値を決定する。モータドライバIC58は、電流指令値に基づいてPWM制御時のパルス幅やデューティ比等を決定し、パワーFET60へ通電させる電流を制御し、モータ20を回転させる。 The microcomputer 56 determines a current command value as a control amount to be given to the motor driver IC 58 based on the reaction force set value P. At this time, the microcomputer 56 determines the current command value based on a relational expression indicating the relationship between the current command value and the reaction force set value P, for example. The motor driver IC 58 determines a pulse width, a duty ratio, and the like at the time of PWM control based on the current command value, controls a current to be supplied to the power FET 60, and rotates the motor 20.
 マイコン56には、モータ20へ通電される電流を検出するための電流検出センサ66と、モータドライバIC58とが接続されている。マイコン56は、電流検出センサ66により検出された検出値を示す信号を受信する。マイコン56は、電流検出センサ66により検出された検出値を示す信号およびモータドライバIC58から出力された信号から算出したモータ20の回転数nに基づき、モータドライバIC58に与える電流指令値を決定する。また、マイコン56が実行する処理の詳細については後述する。 The microcomputer 56 is connected to a current detection sensor 66 for detecting a current supplied to the motor 20 and a motor driver IC 58. The microcomputer 56 receives a signal indicating the detection value detected by the current detection sensor 66. The microcomputer 56 determines a current command value to be given to the motor driver IC 58 based on the signal indicating the detection value detected by the current detection sensor 66 and the rotation speed n of the motor 20 calculated from the signal output from the motor driver IC 58. Details of processing executed by the microcomputer 56 will be described later.
 パワーFET60は、U相、V相、W相のそれぞれのパワーFET60U、60V、60Wを備え、各パワーFETは、モータ20の対応する相のコイルにそれぞれ接続されている。モータドライバIC58は、各相のパワーFETを循環的にオン/オフすることで各相のコイルに磁界を発生させ、モータ20の回転子を回転させる。 The power FET 60 includes U-phase, V-phase, and W- phase power FETs 60U, 60V, and 60W, and each power FET is connected to a corresponding phase coil of the motor 20, respectively. The motor driver IC 58 cyclically turns on / off each phase power FET to generate a magnetic field in each phase coil, and rotates the rotor of the motor 20.
 モータドライバIC58の入力端には、マイコン56に加え、3つのホールIC64U、64V、64Wが接続されており、モータドライバIC58は、ホールIC64U、64V、64W各々が出力する電圧の変化を受け付ける。モータドライバIC58は、ホールIC64U、64V、64Wからの入力に基づいて、モータ20の回転数nを示す信号をマイコン56に出力する。これによって、マイコン56は、モータ20の回転数nを検出する。 In addition to the microcomputer 56, three Hall ICs 64U, 64V, 64W are connected to the input terminal of the motor driver IC 58, and the motor driver IC 58 accepts a change in voltage output from each of the Hall ICs 64U, 64V, 64W. The motor driver IC 58 outputs a signal indicating the rotational speed n of the motor 20 to the microcomputer 56 based on the input from the Hall ICs 64U, 64V, 64W. Thereby, the microcomputer 56 detects the rotation speed n of the motor 20.
 マイコン56は、電流検出センサ66により出力された検出値をアナログ量として取得し、取得したアナログ量を量子化することでモータ20に通電された電流値を導出する。
 電流検出センサ66は、パワーFETユニット60から流出する電流を検出する。この電流は、モータ20に流入する電流と同等である。電流検出センサ66は、AD端子側とグランド線側との電位差を測定し、測定した電圧に内部抵抗を加味して電流値に変換することで、パワーFETユニット60から流出する電流を検出する。マイコン56は、電流検出センサ66により出力された検出値に対して、予め設定された電流検出センサ66の検出値とモータ20が消費する電流値との関係を示した関係式またはデータテーブルとを適用して、モータ20により消費された電流値を導出する。
The microcomputer 56 acquires the detection value output from the current detection sensor 66 as an analog quantity, and derives the current value supplied to the motor 20 by quantizing the acquired analog quantity.
The current detection sensor 66 detects a current flowing out from the power FET unit 60. This current is equivalent to the current flowing into the motor 20. The current detection sensor 66 detects a current flowing out from the power FET unit 60 by measuring a potential difference between the AD terminal side and the ground line side and converting the measured voltage into a current value by adding an internal resistance. The microcomputer 56 uses a relational expression or a data table showing a relation between a preset detection value of the current detection sensor 66 and a current value consumed by the motor 20 with respect to the detection value output by the current detection sensor 66. Apply to derive the current value consumed by the motor 20.
 図4は、マイコン56が実行する処理の流れを示すフローチャートである。まず、マイコン56は、モータドライバIC58に与える電流指令値を制御するためのPWM信号におけるHigh設定時間を取得する(ステップS100)。次に、マイコン56は、PWM信号におけるHigh設定時間の中間時点を算出する(ステップS102)。中間時点は、例えばPWM信号におけるHigh設定時間を2で除算することで算出する。 FIG. 4 is a flowchart showing a flow of processing executed by the microcomputer 56. First, the microcomputer 56 acquires the High setting time in the PWM signal for controlling the current command value given to the motor driver IC 58 (step S100). Next, the microcomputer 56 calculates an intermediate time point of the High set time in the PWM signal (step S102). The intermediate time point is calculated by dividing the High set time in the PWM signal by 2, for example.
 次に、マイコン56は、High設定の開始時間から中間時点までの間で遅延カウンタをインクリメントする回数nを算出する(ステップS104)。遅延カウンタとは、予め設定された時間幅(遅延時間)をカウントするためのカウンタである。遅延カウンタが、1回実行されると予め設定された時間幅をカウントする。遅延カウンタの遅延時間は、例えば510nsである。インクリメントする回数は、High設定の開始時間から中間時点までの時間/遅延カウンタの時間幅で算出する。すなわち、ステップS106では、中間時点に到達するまでに必要な遅延カウンタが実行される回数(目標回数)が算出される。 Next, the microcomputer 56 calculates the number n of increments of the delay counter between the start time of the high setting and the intermediate point (step S104). The delay counter is a counter for counting a preset time width (delay time). When the delay counter is executed once, a preset time width is counted. The delay time of the delay counter is, for example, 510 ns. The number of increments is calculated by the time from the high setting start time to the intermediate time / the time width of the delay counter. That is, in step S106, the number of times (target number of times) that the delay counter necessary to reach the intermediate time point is executed is calculated.
 次に、マイコン56は、遅延カウンタを1回実行する処理を行う(ステップS106)。マイコン56により、1回の遅延カウンタが実行されると遅延時間をカウントする。次に、マイコン56は、ステップS104で算出されたインクリメント回数n、遅延カウンタ(i)が実行されたか否かを判定する(ステップS108)。遅延カウンタがステップS104で算出されたインクリメント回数n、実行されていない場合、マイコン56は、ステップS106の処理に戻り、遅延カウンタを実行する処理を行う。遅延カウンタがステップS104で算出されたインクリメント回数n、実行されている場合、マイコン56は、電流検出センサ66にモータ20へ通電される電流を検出させる(ステップS110)。これにより本フローチャートの処理は終了する。このように、マイコン56が、遅延カウンタを中間時点まで繰り返し実行した後に、電流検出センサ66にモータ20へ通電される電流を検出するため、PWM信号のHigh時間が可変した場合であっても、後述(図6および図7)するようにPWM信号のHigh時間の中間時点における電流値を検出することができる。 Next, the microcomputer 56 performs a process of executing the delay counter once (step S106). When one delay counter is executed by the microcomputer 56, the delay time is counted. Next, the microcomputer 56 determines whether or not the increment number n calculated in step S104 and the delay counter (i) have been executed (step S108). If the delay counter has not been executed for the increment number n calculated in step S104, the microcomputer 56 returns to the process of step S106 and performs the process of executing the delay counter. When the delay counter is executed for the increment number n calculated in step S104, the microcomputer 56 causes the current detection sensor 66 to detect the current supplied to the motor 20 (step S110). Thereby, the processing of this flowchart is completed. As described above, the microcomputer 56 repeatedly executes the delay counter up to the intermediate point, and then detects the current that is supplied to the motor 20 through the current detection sensor 66. Therefore, even if the High time of the PWM signal is variable, As will be described later (FIGS. 6 and 7), the current value at the intermediate point of the High time of the PWM signal can be detected.
 なお、上述したフローチャートの処理は、シフト演算を用いて実行してもよい。マイコン56は、例えば2進数や、4進数、16進数などで示されたPWM信号におけるHigh設定時間を取得し(ステップS102)、取得したHigh設定時間の中間時点に対応する遅延カウンタのインクリメント回数をシフト演算して算出する(ステップS104)。例えば、PWM信号におけるHigh設定時間(16進数)/2により、High設定時間の中間時点を算出する。更に算出した中間時点/16により、遅延カウンタを実行する回数を算出する。このように、シフト演算により遅延カウンタの実行回数を算出し、算出した結果に基づいて遅延カウンタ処理を実行することにより、マイコン56の処理負荷を軽減することができる。 Note that the processing of the flowchart described above may be executed using a shift operation. For example, the microcomputer 56 acquires the High setting time in the PWM signal indicated by a binary number, a quaternary number, a hexadecimal number, or the like (step S102), and calculates the increment number of the delay counter corresponding to the intermediate point of the acquired High setting time. A shift calculation is performed (step S104). For example, the intermediate time point of the High set time is calculated from the High set time (hexadecimal number) / 2 in the PWM signal. Further, the number of executions of the delay counter is calculated based on the calculated intermediate time / 16. Thus, the processing load of the microcomputer 56 can be reduced by calculating the number of executions of the delay counter by the shift operation and executing the delay counter process based on the calculated result.
 また、マイコン56は、遅延カウンタを用いて電流値を検出する処理が実行されている間は、他の割り込み処理を待機状態とする。マイコン56は、遅延カウンタがn回実行される処理が行われた後、待機状態としていた割り込み処理を、処理に対応付けられた優先順位に基づいて逐次実行させる。これにより、マイコン56は、PWM信号のHigh設定時間における中間時点Pにおける電流値を取得することができる。また、他の割り込み処理が実行されている場合、マイコン56は、他の割り込み処理の実行を一時的に停止させ、遅延カウンタを用いて電流値を検出する処理を他の割り込み処理に優先し実行してもよい。この場合も、同様にマイコン56は、遅延カウンタを用いて電流値を検出する処理の実行後、停止させた他の割り込み処理を実行させる。 Further, the microcomputer 56 puts other interrupt processing into a standby state while the processing for detecting the current value using the delay counter is being executed. The microcomputer 56 sequentially executes the interrupt process in the standby state based on the priority order associated with the process after the process of executing the delay counter n times is performed. Thereby, the microcomputer 56 can acquire the electric current value in the intermediate | middle time P in the High setting time of a PWM signal. If another interrupt process is being executed, the microcomputer 56 temporarily stops the execution of the other interrupt process and executes the process of detecting the current value using the delay counter in preference to the other interrupt process. May be. In this case, similarly, the microcomputer 56 executes another interrupt process that has been stopped after executing the process of detecting the current value using the delay counter.
 図5は、マイコン56が実行する処理について説明するための概念図である。一例として、図5に示すPWM信号、およびAD端子入力の電圧波形の状態において、マイコン56が、上述したフローチャートで実行する処理をした場合について説明する。まず、マイコン56は、PWM信号におけるHigh設定時間Tを取得し、High設定時間Tの中間時点Pを算出する。なお、High設定時間Tの立ち上がりが第1の基準値であり、立ち下りが第2の基準値である。マイコン56は、High設定の開始時間から中間時点Pまでの間に遅延カウンタをインクリメントする回数nを算出する。マイコン56は、遅延カウンタ1からを遅延カウンタnまで実行する処理を行うことで、中間時点Pに到達する。マイコン56は、中間時点Pに到達したときに電流検出センサ66にモータ20に印加された電圧値を検出させる。これにより、電流検出センサ66は、High設定時間における中間時点Pにおける電圧値P*を検出する。この結果、マイコン56は、モータ20に印加された電圧の波形における中間時点付近の電圧値を取得することができる。また、マイコン56は、中間時点Pにおける電圧値P*を取得し、取得した電圧値を電流値に変換して用いることで、モータドライバIC58に与える制御量として電流指令値を決定することができるため、モータ20をより精度よく制御することができる。 FIG. 5 is a conceptual diagram for explaining processing executed by the microcomputer 56. As an example, a case will be described in which the microcomputer 56 performs the processing executed in the above-described flowchart in the state of the PWM signal shown in FIG. 5 and the voltage waveform of the AD terminal input. First, the microcomputer 56 acquires the High set time T in the PWM signal, and calculates an intermediate time point P of the High set time T. The rising edge of the High set time T is the first reference value, and the falling edge is the second reference value. The microcomputer 56 calculates the number n of times that the delay counter is incremented between the start time of High setting and the intermediate point P. The microcomputer 56 reaches the intermediate time point P by performing a process of executing from the delay counter 1 to the delay counter n. The microcomputer 56 causes the current detection sensor 66 to detect the voltage value applied to the motor 20 when the intermediate point P is reached. Thereby, the current detection sensor 66 detects the voltage value P * at the intermediate time point P in the High set time. As a result, the microcomputer 56 can acquire a voltage value near an intermediate point in the waveform of the voltage applied to the motor 20. Further, the microcomputer 56 can determine the current command value as a control amount to be given to the motor driver IC 58 by acquiring the voltage value P * at the intermediate time point P and converting the acquired voltage value into a current value. Therefore, the motor 20 can be controlled with higher accuracy.
 これまでHigh設定時間における中間時点(所望のサンプリングポイント)における電流値を検出することは困難である場合があった。図6は、電流値を検出する場合における一般的な手法の一例を示す図である。図中の波形は、モータ20に通電されたモータ電流波形、AD端子入力波形、AD変換処理波形、およびモータドライバICに入力されたPWM信号波形である。なお、AD変換処理波形におけるパルスの立ち上がりは、電流検出センサ66に電流値を検出させるタイミングを示す。また、測定条件は、ピーク電流値3[A]、電源電圧13.5[V]、およびモータモードは出力軸固定の状態である。PWN信号がHighである区間(図中、H)でモータ20に通電が起こる場合、パワーFETのオフによる電流の立下りはローパスフィルタを通さない場合は、非常に急峻となる。このため、立下り時における電流を検出することは困難である。また、立下り時を経過したときに、モータ20に通電された電流を検出すると、ハードウェアまたはソフトウェアに起因する伝達の遅れにより、モータ20に電流を通電しているにも関わらず、電流値はゼロとして検出される場合がある。 Until now, it has been difficult to detect the current value at the intermediate point (desired sampling point) in the High setting time. FIG. 6 is a diagram illustrating an example of a general technique in detecting a current value. The waveforms in the figure are a motor current waveform energized by the motor 20, an AD terminal input waveform, an AD conversion processing waveform, and a PWM signal waveform input to the motor driver IC. The rising edge of the pulse in the AD conversion processing waveform indicates the timing at which the current detection sensor 66 detects the current value. The measurement conditions are a peak current value of 3 [A], a power supply voltage of 13.5 [V], and the motor mode is a state where the output shaft is fixed. When the motor 20 is energized in the section where the PWN signal is High (H in the figure), the current fall due to the power FET being turned off becomes very steep when not passing through the low-pass filter. For this reason, it is difficult to detect the current at the time of falling. Further, when the current supplied to the motor 20 is detected when the falling time has elapsed, the current value is supplied to the motor 20 despite the current being supplied to the motor 20 due to a delay in transmission caused by hardware or software. May be detected as zero.
 また、PWM信号の立ち上がり時における電流値を検出する場合、図示するように処理時間により遅延が発生するため、電流値を検出するポイントはPWM信号の立ち上がりから処理時間経過後となる。この場合、電流値を検出する時間を遅延時間経過後と固定することができる。例えば電流値を検出するポイントを、PWM信号の立ち上がりから所定時間後のときに固定することができる(図中、P1)。この場合、PWM信号のディーティ比が変更されると、PWM信号における固定した電流値を検出するサンプリングポイントは、ディーティ比によりPWM信号がHighである区間の初期となったり、終期となったりする場合がある。 In addition, when detecting the current value at the rising edge of the PWM signal, a delay occurs depending on the processing time as shown in the figure. Therefore, the point for detecting the current value is after the processing time has elapsed from the rising edge of the PWM signal. In this case, the time for detecting the current value can be fixed after the delay time has elapsed. For example, the point at which the current value is detected can be fixed at a predetermined time after the rise of the PWM signal (P1 in the figure). In this case, when the duty ratio of the PWM signal is changed, the sampling point for detecting a fixed current value in the PWM signal may be the beginning or end of the section where the PWM signal is High due to the duty ratio. There is.
 図7は、一般的な手法におけるPWM信号のディーティ比が変更された場合の電流値を検出するサンプリングポイントについて説明するための図である。図7ではPWM信号、AD端子入力電圧の波形、および電流値をサンプリングする固定されたサンプリングポイントを示している。左図ex1および右図ex2のサンプリングポイントは同様である。
 左図ex1は、右図ex2のPWM信号のHigh区間に比して、PWM信号のHigh区間が長い場合を示している。左図ex1に示すPWM信号のHigh区間が長い場合では、所望のサンプリングポイントはPWM信号のHigh区間の中間時点付近P2にも関わらず、PWM信号のHigh区間の初期となり、モータ20に通電される平均電流よりも電流値を低く検出する傾向となる。一方、右図ex2に示すようにPWM信号のHigh区間が短い場合では、所望のサンプリングポイントはPWM信号のHigh区間の中間時点付近P3における電流値にも関わらず、サンプリングポイントは、PWM信号のHigh区間の後期となり、モータ20に通電される平均電流よりも電流値を高く検出する傾向となる。このように、電流値をサンプリングするポイントを固定すると、PWM信号のディーティ比の可変により、所望のサンプリングポイントで電流値を検出できず、不適切な電流値の検出となる場合があった。この結果、モータ20の駆動も急な変化が生じることとなる場合があった。
FIG. 7 is a diagram for explaining sampling points for detecting a current value when the duty ratio of the PWM signal is changed in a general method. FIG. 7 shows a PWM signal, an AD terminal input voltage waveform, and a fixed sampling point for sampling a current value. The sampling points in the left figure ex1 and the right figure ex2 are the same.
The left diagram ex1 shows a case where the High interval of the PWM signal is longer than the High interval of the PWM signal of the right diagram ex2. When the High period of the PWM signal shown in the left diagram ex1 is long, the desired sampling point is the initial of the High period of the PWM signal regardless of the intermediate point P2 of the High period of the PWM signal, and the motor 20 is energized. The current value tends to be detected lower than the average current. On the other hand, as shown in the right diagram ex2, when the High period of the PWM signal is short, the sampling point is High of the PWM signal regardless of the current sampling point P3 near the intermediate point in the High period of the PWM signal. In the latter half of the section, the current value tends to be detected higher than the average current supplied to the motor 20. As described above, when the point at which the current value is sampled is fixed, the current value cannot be detected at a desired sampling point due to the change in the duty ratio of the PWM signal, and an inappropriate current value may be detected. As a result, the drive of the motor 20 may change suddenly.
 これに対して、本実施形態ではマイコン56は、前述した図5を用いて説明したように、PWM信号のHigh区間の設定時間に応じて、所定回数、遅延カウンタを実行させたときに、電流値をサンプリングする。これにより、マイコン56は、PWM信号のHigh区間の中間時点における電流値を検出することができる。これにより、PWM信号の変化に伴う電流値の遷移において、より適切なサンプリングポイントを設定し、電流値を検出することができる。この結果、より精度よく電流指令値の決定をすることができ、モータ20の駆動を滑らか変化させることができる。また、反力出力装置10が適用されたアクセルペダル装置1の運転者へ与えるアクセルフィーリングを向上させることができる。 On the other hand, in the present embodiment, as described with reference to FIG. 5 described above, the microcomputer 56 executes the current when the delay counter is executed a predetermined number of times according to the set time of the High section of the PWM signal. Sample the value. Thereby, the microcomputer 56 can detect the current value at the intermediate point in the High period of the PWM signal. Thereby, it is possible to set a more appropriate sampling point and detect the current value in the transition of the current value accompanying the change of the PWM signal. As a result, the current command value can be determined with higher accuracy, and the drive of the motor 20 can be smoothly changed. Moreover, the accelerator feeling given to the driver | operator of the accelerator pedal apparatus 1 to which the reaction force output device 10 was applied can be improved.
 なお、例えばマイコン56、またはパワーFETユニット60の仕様により、PWM信号がHighになる場合は、PWM信号が立ち下がり、PWM信号がLowになる場合は、PWM信号が立ち上がる場合がある。この場合においては、PWM信号が立ち下がっている状態をPWM信号がHighになっているとして、本実施形態のマイコン56による処理を適用することができる。また、本実施形態では、所望のサンプリングポイントを、High設定時間の中間時点としたが、所望のサンプリングポイントは適宜変更してもよい。この場合、マイコン56は、所望のサンプリングポイントに対応する時点まで、遅延カウンタを実行し、遅延カウンタを実行した後に、電流検出部66に電流値を検出させる。 For example, depending on the specifications of the microcomputer 56 or the power FET unit 60, the PWM signal may fall when the PWM signal becomes High, and the PWM signal may rise when the PWM signal becomes Low. In this case, the processing by the microcomputer 56 of this embodiment can be applied assuming that the PWM signal is High when the PWM signal is falling. In the present embodiment, the desired sampling point is set to the intermediate point of the High set time, but the desired sampling point may be changed as appropriate. In this case, the microcomputer 56 executes the delay counter until the time corresponding to the desired sampling point, and after executing the delay counter, causes the current detection unit 66 to detect the current value.
 以上のように、本実施形態に係るモータ制御装置によれば、モータ20に流入する電流を検出する電流検出部66(56)と、モータを駆動するモータドライバIC(58)に入力されるパルス信号における第1の基準値と第2の基準値との中間時点で電流検出部に電流を検出させる制御部56とを備えることにより、モータ20に通電される電流を所望のサンプリングポイントで検出することができる。この結果、マイコン56は、検出した電流値に基づいて、フィードバック制御を行い新たな電流指令値を決定するため、追従性を向上させることが可能なモータ制御装置を提供することができる。 As described above, according to the motor control device of the present embodiment, the pulses input to the current detection unit 66 (56) that detects the current flowing into the motor 20 and the motor driver IC (58) that drives the motor. By including a control unit 56 that causes the current detection unit to detect a current at an intermediate time between the first reference value and the second reference value in the signal, the current supplied to the motor 20 is detected at a desired sampling point. be able to. As a result, since the microcomputer 56 performs feedback control based on the detected current value and determines a new current command value, it is possible to provide a motor control device that can improve followability.
 以上、本発明を実施するための形態について実施形態を用いて説明したが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変形及び置換を加えることができる。 As mentioned above, although the form for implementing this invention was demonstrated using embodiment, this invention is not limited to such embodiment at all, In the range which does not deviate from the summary of this invention, various deformation | transformation and substitution Can be added.
 1…アクセルペダル装置、2…ペダル本体ユニット、6…ペダル本体部、10…反力出力装置、12…出力レバー、20…モータ、56…マイコン(制御部)、66…電流検出センサ DESCRIPTION OF SYMBOLS 1 ... Accelerator pedal apparatus, 2 ... Pedal main body unit, 6 ... Pedal main body part, 10 ... Reaction force output device, 12 ... Output lever, 20 ... Motor, 56 ... Microcomputer (control part), 66 ... Current detection sensor

Claims (5)

  1.  モータに流入する電流を検出する電流検出部と、
     前記モータを駆動するモータドライバICに入力されるパルス信号における第1の基準値と第2の基準値との中間時点で前記電流検出部に前記電流を検出させる制御部と、
     を備えるモータ制御装置。
    A current detector for detecting the current flowing into the motor;
    A control unit that causes the current detection unit to detect the current at an intermediate time point between a first reference value and a second reference value in a pulse signal input to a motor driver IC that drives the motor;
    A motor control device comprising:
  2.  前記制御部は、前記パルス信号における前記第1の基準値と前記第2の基準値との前記中間時点、および予め設定された時間幅をカウントする遅延カウンタに基づいて、前記遅延カウンタを実行する目標回数を算出し、前記遅延カウンタを前記目標回数実行したときに、前記電流検出部に前記電流を検出させる、
     請求項1記載のモータ制御装置。
    The control unit executes the delay counter based on the intermediate time point between the first reference value and the second reference value in the pulse signal and a delay counter that counts a preset time width. Calculating the target number of times, and causing the current detection unit to detect the current when the delay counter is executed the target number of times;
    The motor control device according to claim 1.
  3.  前記制御部は、シフト演算を行うことで、前記目標回数を算出する、
     請求項2記載のモータ制御装置。
    The control unit calculates the target number of times by performing a shift operation.
    The motor control device according to claim 2.
  4.  前記制御部は、前記遅延カウンタを前記目標回数実行するまでの間、他の割り込み処理を待機状態とし、前記遅延カウンタを前記目標回数実行した後に、前記待機状態としていた前記他の割り込み処理を実行させる、
     請求項2または請求項3記載のモータ制御装置。
    The control unit sets another interrupt process in a standby state until the delay counter is executed for the target number of times, and executes the other interrupt process in the standby state after the delay counter is executed for the target number of times. Let
    The motor control device according to claim 2 or claim 3.
  5.  請求項1から4記載のうちいずれか1項記載のモータ制御装置と、
     駆動部材を駆動することで、人により操作される操作子に対し、操作方向とは逆方向の力を出力する駆動部と、
     前記駆動部を駆動させる駆動力を出力する前記モータと、
     を備える反力出力装置。
    The motor control device according to any one of claims 1 to 4,
    A driving unit that outputs a force in a direction opposite to the operation direction with respect to an operator operated by a person by driving the driving member;
    The motor for outputting a driving force for driving the driving unit;
    Reaction force output device comprising.
PCT/JP2016/056392 2015-03-04 2016-03-02 Motor control device and reaction-force output device WO2016140255A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015042293A JP2016163483A (en) 2015-03-04 2015-03-04 Motor controller and reaction force output apparatus
JP2015-042293 2015-03-04

Publications (1)

Publication Number Publication Date
WO2016140255A1 true WO2016140255A1 (en) 2016-09-09

Family

ID=56847507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056392 WO2016140255A1 (en) 2015-03-04 2016-03-02 Motor control device and reaction-force output device

Country Status (2)

Country Link
JP (1) JP2016163483A (en)
WO (1) WO2016140255A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7537413B2 (en) 2021-11-25 2024-08-21 株式会社デンソー Pedal device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003093783A (en) * 2001-09-21 2003-04-02 Matsushita Electric Ind Co Ltd Washing machine
JP2009100597A (en) * 2007-10-18 2009-05-07 Sanyo Electric Co Ltd Motor speed control circuit
JP2012116355A (en) * 2010-12-01 2012-06-21 Mikuni Corp Accelerator pedal apparatus
JP2014158402A (en) * 2013-02-18 2014-08-28 Toyota Motor Corp Power conversion device
JP2014204629A (en) * 2013-04-09 2014-10-27 株式会社デンソー Current detection circuit of power element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003093783A (en) * 2001-09-21 2003-04-02 Matsushita Electric Ind Co Ltd Washing machine
JP2009100597A (en) * 2007-10-18 2009-05-07 Sanyo Electric Co Ltd Motor speed control circuit
JP2012116355A (en) * 2010-12-01 2012-06-21 Mikuni Corp Accelerator pedal apparatus
JP2014158402A (en) * 2013-02-18 2014-08-28 Toyota Motor Corp Power conversion device
JP2014204629A (en) * 2013-04-09 2014-10-27 株式会社デンソー Current detection circuit of power element

Also Published As

Publication number Publication date
JP2016163483A (en) 2016-09-05

Similar Documents

Publication Publication Date Title
JP6033197B2 (en) Reaction force output device
JP5675016B2 (en) Accelerator pedal device
EP2490093B1 (en) Accelerator pedal apparatus
JP7258919B2 (en) accelerator pedal device
US20160311321A1 (en) Pedal reaction force applying device
JP2651922B2 (en) Control method of electric power steering device
WO2016140255A1 (en) Motor control device and reaction-force output device
JP6413166B2 (en) Reaction force output device
EP3266637B1 (en) Reaction force output device
JP6405581B2 (en) Reaction force output device
JP6421386B2 (en) Reaction force output device
JP2016159837A (en) Reaction force output device
KR20080042566A (en) The driving speed control system of motor by the change of input voltage and control method thereof
JP2016159835A (en) Reaction force output device
EP1462339A3 (en) Variable gear ratio system
Kader Steer-by-wire control system
JP3872740B2 (en) Motor control method for electric vehicle
KR100505886B1 (en) Method for Control Steering Opposite Power in SBW System
JP2004000525A (en) Automatic opening/closing device of toilet seat/toilet cover
KR970036359A (en) How to add creep to an electric vehicle
JP2002029486A (en) Power-assisted bicycle
KR19990020564A (en) Steering device without steering shaft

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16758948

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16758948

Country of ref document: EP

Kind code of ref document: A1