WO2015052274A1 - Verfahren zur abschätzung der schädigung zumindest eines technischen bauteiles einer brennkraftmaschine - Google Patents

Verfahren zur abschätzung der schädigung zumindest eines technischen bauteiles einer brennkraftmaschine Download PDF

Info

Publication number
WO2015052274A1
WO2015052274A1 PCT/EP2014/071622 EP2014071622W WO2015052274A1 WO 2015052274 A1 WO2015052274 A1 WO 2015052274A1 EP 2014071622 W EP2014071622 W EP 2014071622W WO 2015052274 A1 WO2015052274 A1 WO 2015052274A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
virtual
temperature
internal combustion
combustion engine
Prior art date
Application number
PCT/EP2014/071622
Other languages
English (en)
French (fr)
Inventor
Bernhard Kaltenegger
Franz ZIEHER
Karl Wieser
Original Assignee
Avl List Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Avl List Gmbh filed Critical Avl List Gmbh
Priority to DE112014004653.1T priority Critical patent/DE112014004653A5/de
Publication of WO2015052274A1 publication Critical patent/WO2015052274A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • G01M15/05Testing internal-combustion engines by combined monitoring of two or more different engine parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B77/00Component parts, details or accessories, not otherwise provided for
    • F02B77/08Safety, indicating, or supervising devices
    • F02B77/083Safety, indicating, or supervising devices relating to maintenance, e.g. diagnostic device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines

Definitions

  • the invention relates to a method for estimating the damage of at least one technical component of an internal combustion engine. Furthermore, the invention relates to a device for carrying out the method.
  • DE 102 57 793 A1 shows a model-based life observer, wherein system loads from the existing vehicle sensor system are determined and stored, local component stresses are determined from the system model and the load time courses and the remaining service life of the components contained in the system model is calculated from the accumulated component damage by a fatigue analysis ,
  • a method for wear diagnosis is proposed in DE 10 2008 049 754 AI, wherein during driving operation occurring driving events and driving conditions in each case a wear index is assigned.
  • the individual wear index values are added to a wear index sum value and compared to a reference wear index sum value.
  • DE 10 2010 012 564 A1 describes a method for determining a material response in a component, wherein a mechanical load of the component is simulated by a calculation unit by means of repetitive loading cycles.
  • US Pat. No. 4,336,595 A1 discloses a structure life time calculator which determines the fatigue and crack propagation on the basis of the signals determined by a strain gauge and stores and displays the accumulated damage.
  • DE 10 2005 023 252 A1 describes a method for determining the degree of damage and the remaining service life of safety-relevant system components in large systems, wherein the mechanical stresses of safety-relevant system components are not measured directly, but estimated using measurement results device standard and standard existing sensors.
  • voltage support tables are generated, the represent the mechanical stresses at critical points of the system parts.
  • the actual stresses are determined on the basis of these support tables as well as the measured positions, weights and loads and taking into account accelerations and braking of individual drives.
  • the mechanical stresses are analyzed according to the "rainflow method" and lead to a usable result in the form of a degree of damage and / or a determined residual life.
  • the object of the invention is to minimize the sensory outlay for damage monitoring and residual life prediction.
  • this is done by performing the following steps: a) providing at least one virtual temperature sensor for the component; b) providing at least one virtual voltage sensor for the component; c) determining a transient temperature of the component of the internal combustion engine by means of the virtual temperature sensor on the basis of at least one engine or operating or distance parameter from the group of engine torque, engine speed, engine power, coolant mass flow, coolant temperature, ambient temperature and route profile, preferably at least one parameter in one electronic control unit is stored; d) determining the voltages of the component of the internal combustion engine by means of the virtual voltage sensor on the basis of the total strain tensor and the temperature of the component determined by means of the virtual temperature sensor; e) determining the visco-plastic strains of the component on the basis of a material model; f) adding up the visco-plastic strains of the component; g) Determining the damage of the component due to the cumulative plastic strains.
  • the virtual temperature sensor for the component is formed on the basis of a first mathematical model and a calibration for the stationary case involving at least one component parameter from the group geometry, heat transfer conditions and model reference temperature for the component performed.
  • a calibration of the virtual temperature sensor for the transient case preferably involving at least one engine or operating parameter from the group torque, engine speed, coolant temperature, coolant flow, coolant pressure, performed.
  • the virtual voltage sensor for the component can, with the formation of at least one non-linear stress tensor of the component on the basis of a second mathematical model or FE methods (FE-finite elements) of known type, for example, including at least one operating parameter, in particular a reference temperature of the component a thermal shock analysis and a material model of the component to be represented. Thereafter, a calibration of the virtual voltage sensor is performed for the steady state and the transient case.
  • FE methods FE-finite elements
  • thermo-shock analysis can be used as a basis.
  • the method according to the invention makes it possible, for example, to analyze critical cylinder head temperatures under field operating conditions; an analysis of stress / strain changes and cylinder head life estimates under field operating conditions; a comparison of the influence of different vehicle applications on the cylinder head lifetime;
  • 3 shows the formation and calibration of the virtual voltage sensor
  • 4 shows the practical application of the method according to the invention on the basis of the time profile of the component temperature T CH and the cumulative visco-plastic strain £ vcum ;
  • Virtual temperature sensors 1 and virtual voltage sensors 2 are used.
  • Virtual temperature and voltage sensors 1, 2 are based on mathematical simulation models which can predict temperatures and voltages of the components considered depending on other operating parameters and input quantities such as engine torque M, engine speed n, mass coolant flow m c , coolant temperature T c, etc.
  • the virtual temperature sensor 1 allows the prediction of the temperature T CH of the component - for example a cylinder head of an internal combustion engine - at specific points of the flame front under field operating conditions, depending on, for example, the engine torque M, the engine speed n, the coolant mass flow m c , the engine power P, the ambient temperature Tu and the coolant temperature T c . Furthermore, possibly also the height profile H of the test track can be included as an input in the virtual sensor 1.
  • KT1, KT2 are calibration parameters for the virtual temperature sensor for stationary and transient calibration.
  • the virtual stress sensor 2 allows the prediction of the visco-plastic stress / strain behavior on the basis of the temperature result T CH of the virtual temperature sensor 1, as preliminary work for a damage prediction 3, for example in the case of a cylinder head, by comparison with hot and cold tests (thermal and cold tests). shock analysis).
  • T CH temperature result
  • T re f (t) reference temperature
  • TMA thermomechanical analysis
  • the deformation sensor takes into account material parameters such as the time- and temperature-dependent stress-strain characteristics ⁇ ( ⁇ , T) , the elastic modulus E (T ), and the thermal expansion a (T ).
  • a stress-strain analysis of the component can be performed.
  • the result of the stress-strain analysis provides for the component a visco-elastic strain tensor ⁇ ⁇ ' (() , a total strain tensor tot tot (t ), the cumulative visco-plastic strain v vcum (t ), and the stress tensor " (t) - 2 schematically shows the formation and calibration of the virtual temperature sensor 1.
  • Reference numeral 1a indicates the creation and calibration for the stationary case, which is based on the geometry G of the component, the heat transfer conditions HTC and a reference temperature T ref ( t ) a 3D simulation model takes place.
  • first calibration parameters KT1 are defined, which define the relationship between the flame front temperature and the coolant temperature and the metallic coolant wall.
  • a calibration of the virtual temperature sensor 1 for the transient (transient) case is performed based on the engine torque M, the engine speed n, the coolant mass flow c , the coolant temperature T c and the coolant pressure p c in step lb the second calibration parameters KT2 generated.
  • Fig. 3 the formation and calibration 2a of the virtual voltage sensor 2 is shown schematically.
  • At least one characteristic temperature J JS of the component from a thermal shock analysis on the engine test stand for example the valve bridge temperature between exhaust valves in the cylinder head
  • restrictions CON TS from the thermal shock analysis serve as input variables for the creation and calibration SD simulation model
  • the calibration serves to stabilize the virtual stress sensor 2 in order to enable a calculation of the increase in strain.
  • damage to engine-relevant parts such as cylinder head, exhaust manifold, etc.
  • ECU electronice control unit
  • the method essentially has the following steps:
  • TMF calculation thermo-mechanical fatigue - thermo-mechanical component fatigue
  • T ref (t) a reference temperature
  • material parameters of the component using a material model MM for the component are taken into account (the material model MM can, for example, on the stress-strain curve or the stress-strain characteristic ⁇ ( ⁇ , - ⁇ and the modulus E (T ) for the Component based).
  • the method according to the invention can be implemented in the electronic control unit ECU of the internal combustion engine, so that damage to engine components can be calculated based on existing engine measured values by means of the virtual temperature and voltage sensor and corresponding parts can be exchanged or serviced in a timely manner.
  • the electronic control unit ECU reduces the torque and / or the fuel supply and / or the power when a certain, predefinable damage occurs. Thus, a more serious damage can be prevented or at least delayed.
  • the following input data is required for the virtual temperature sensor 1: engine torque M, engine speed n, cooling water temperature inlet T c , cooling water mass flow m c , cooling water pressure (can be estimated ) p c, component temperature (eg outlet bridge) T TS , height profile of the segment (optional) H, engine brake characteristic.
  • the virtual temperature sensor 1 is based, for example, on the known heat conduction equation, taking into account thermal boundary conditions, which are calculated or scaled in accordance with fluidic laws of similarsicity.
  • the virtual stress sensor 2 is based on an elasto-viscoplastic Chaboche model or an adapted elasto-viscoplastic Chaboche model (Chaboche models are described, for example, in "Mechanics of Solid Materials", Jean Lamitre, Jean-Louis Chaboche, Cambridge University Press, 1990).
  • As mechanical boundary conditions temperature-dependent clamping conditions are applied in the model; the temperature is calculated by the virtual temperature sensor 1.
  • the temperature boundary conditions are also calculated by the virtual temperature sensor 1.
  • the clamping conditions of the sensor area are taken from previous Thermoshock FE simulations and stored as a temperature-dependent characteristic map or as a replacement function based thereon.
  • the total strain E to t is used as the mechanical boundary condition.
  • the temperatures calculated with the virtual temperature sensor 1 are used as input for the map / the replacement function to specify the boundary conditions according to the temperature development.
  • FIG. 4 shows a practical application of the method according to the invention in a field test during a test drive on a test track, which may have a defined height profile H.
  • the total cumulative visco-plastic strain ⁇ ⁇ was, for example, 0.033%.
  • the test drive was interrupted by individual breaks R, in which a cooling of the component under consideration (cylinder head) occurred.
  • Fig. 5 and FIG. 6 show sections of FIG. 4 dar.
  • FIG. 5 shows that the cumulative visco-plastic strain E vcum progresses even after the component has cooled down during a load break .
  • FIG. 6 shows that creep effects CE are also reproduced in the visco-plastic behavior during hot phases HP.
  • the method according to the invention can be used particularly advantageously for example in cylinder heads, pistons and outlet collectors. In addition, however, other uses are conceivable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Testing Of Engines (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Abschätzung der Schädigung zumindest eines technischen Bauteils einer Brennkraftmaschine mit folgenden Schritten : Bereitstellen zumindest eines virtuellen Temperatursensors (1) für den Bauteil; Bereitstellen zumindest eines virtuellen Spannungssensors (2) für den Bauteil; Ermitteln einer transienten Temperatur (TCH) des Bauteiles der Brennkraftmaschine mittels des virtuellen Temperatursensors (2) auf der Basis zumindest eines Motor- oder Betriebs- oder Streckenparameters aus der Gruppe Motordrehmoment (M), Motordrehzahl (n), Motorleistung (P), Kühlmittelmassestrom, (mc), Kühlmitteltemperatur (Tc), Umgebungstemperatur (Tu) und Streckenprofil (H), wobei vorzugsweise zumindest ein Parameter in einer elektronischen Steuereinheit (ECU) abgelegt ist; Ermitteln der Spannungen des Bauteils der Brennkraftmaschine mittels des virtuellen Spannungssensors (2) auf der Basis eines vorgegebenen Gesamtdehnungstensor (εtot (Tref)) und der mittels des virtuellen Temperatursensors (1) ermittelten Temperatur (TCH) des Bauteils; Ermitteln der plastischen Dehnungen ε des Bauteiles auf der Basis des Werkstoffmodells; Aufsummieren der visko-plastischen Dehnung (εvcum (t)) des Bauteils. Ermitteln der Schädigung des Bauteils auf Grund der kumulierten plastischen Dehnungen (εvcum (t)).

Description

Verfahren zur Abschätzung der Schädigung zumindest eines technischen Bauteiles einer Brennkraftmaschine
Die Erfindung betrifft ein Verfahren zur Abschätzung der Schädigung zumindest eines technischen Bauteiles einer Brennkraftmaschine. Weiters betrifft die Erfindung eine Vorrichtung zur Durchführung des Verfahrens.
Die DE 102 57 793 AI zeigt einen modellbasierten Lebensdauerbeobachter, wobei Systembelastungen aus der vorhandenen Fahrzeugsensorik ermittelt und gespeichert werden, lokale Bauteil-Beanspruchungen aus dem Systemmodell und den Belastungszeitverläufen ermittelt und die Restlebensdauer der im Systemmodell enthaltenen Bauteile aus den akkumulierten Bauteilschädigungen durch eine Betriebsfestigkeitsanalyse berechnet werden.
Aus der DE 101 61 998 AI ist ein Verfahren zur Betriebsüberwachung von sicherheitskritischen Modulen in Kraftfahrzeugen bekannt, wobei ein Alterungsfaktor durch Kumulation von Alterungsgraden einzelner Bauteile bestimmt wird . Die Alterungsgrade einzelner Bauteile werden durch Auswertung von für eine Alterung repräsentativen Parameterwerten ermittelt.
Ein Verfahren zur Verschleißdiagnose wird in der DE 10 2008 049 754 AI vorgeschlagen, wobei während des Fahrbetriebes auftretenden Fahrereignissen und Fahrbedingungen jeweils ein Verschleißindex zugeordnet wird. Die einzelnen Verschleißindexwerte werden zu einem Verschleißindexsummenwert aufaddiert, und mit einem Referenzverschleißindexsummenwert verglichen.
Die DE 10 2010 012 564 AI beschreibt ein Verfahren zur Ermittlung einer Materialantwort bei einem Bauteil, wobei eine mechanische Belastung des Bauteils durch eine Berechnungseinheit mittels sich wiederholender Belastungszyklen simuliert wird .
Aus der US 4,336,595 AI ist ein Strukturlebenszeitrechner bekannt, welcher auf Grund der durch einen Dehnmessstreifen ermittelten Signale die Ermüdung und Rissausbreitung ermittelt und die kumulierten Schäden abspeichert und anzeigt.
Die DE 10 2005 023 252 AI beschreibt ein Verfahren zur Bestimmung des Schädigungsgrades und der Restlebensdauer von sicherheitsrelevanten Anlagenteilen bei Großanlagen, wobei die mechanischen Spannungen von sicherheitsrelevanten Anlagenteilen nicht direkt gemessen, sondern über Messergebnisse geräteüblicher und standardmäßig vorhandener Sensoren abgeschätzt. Mittels mechanischer Statikberechnungsprogramme werden Spannungsstütztabellen erzeugt, die die mechanischen Spannungen an kritischen Stellen der Anlagenteilen darstellen. Die tatsächlichen Spannungen werden auf Basis dieser Stütztabellen sowie der gemessenen Positionen, Gewichte und Lasten und unter Berücksichtigung von Beschleunigungen und Bremsungen einzelner Antriebe ermittelt. Die mechanischen Spannungen werden nach der "Rainflow-Methode" analysiert und führen zu einem verwertbaren Ergebnis in Form eines Schädigungsgrades und/oder einer ermittelten Restlebensdauer.
Bekannte Verfahren benötigen eine mehr oder weniger große Anzahl an Sensoren, um die Schädigung und Restlebensdauer von Bauteilen zu ermitteln.
Aufgabe der Erfindung ist es, den sensorischen Aufwand für die Schädigungsüberwachung und Restlebensdauervorhersage auf ein Mindestmaß zu verringern.
Erfindungsgemäß erfolgt dies dadurch , dass folgende Schritte durchgeführt werden : a) Bereitstellen zumindest eines virtuellen Temperatursensors für den Bauteil; b) Bereitstellen zumindest eines virtuellen Spannungssensors für den Bauteil; c) Ermitteln einer transienten Temperatur des Bauteiles der Brennkraftmaschine mittels des virtuellen Temperatursensors auf der Basis zumindest eines Motor- oder Betriebs- oder Streckenparameters aus der Gruppe Motordrehmoment, Motordrehzahl, Motorleistung, Kühlmittelmassestrom, Kühlmitteltemperatur, Umgebungstemperatur und Streckenprofil, wobei vorzugsweise zumindest ein Parameter in einer elektronischen Steuereinheit abgelegt ist; d) Ermitteln der Spannungen des Bauteils der Brennkraftmaschine mittels des virtuellen Spannungssensors auf der Basis des Gesamtdeh- nungstensors und der mittels des virtuellen Temperatursensors ermittelten Temperatur des Bauteils; e) Ermitteln der visko-plastischen Dehnungen des Bauteiles auf der Basis eines Werkstoffmodells; f) Aufsummieren der visko-plastischen Dehnungen des Bauteils; g) Ermitteln der Schädigung des Bauteils auf Grund der kumulierten plastischen Dehnungen. Die Erfindung erlaubt damit die Ermittlung von Temperatur, Spannungen und resultierenden Schädigungen ohne Vorsehen zusätzlicher realer Sensoren alleine aus während des Betriebs vorhandenen Parametern. Vorzugsweise wird der virtuelle Temperatursensor für den Bauteil auf der Basis eines ersten mathematischen Modells gebildet und eine Kalibrierung für den stationären Fall unter Einbeziehung zumindest eines Bauteilparameters aus der Gruppe Geometrie, Wärmeübergangsbedingungen und Modell-Referenztemperatur für den Bauteil, durchgeführt. Weiters wird eine Kalibrierung des virtuellen Temperatursensors für den transienten Fall, vorzugsweise unter Einbeziehung zumindest eines Motor- oder Betriebsparameters aus der Gruppe Drehmoment, Motordrehzahl, Kühlmitteltemperatur, Kühlmitteldurchfluss, Kühlmitteldruck, durchgeführt.
Der virtuelle Spannungssensor für den Bauteil kann unter Bildung zumindest eines nichtlinearen Spannungstensors des Bauteils auf der Basis eines zweiten mathematischen Modells oder von FE-Methoden (FE-Finite Elemente) bekannter Art, zum Beispiel unter Einbeziehung zumindest eines Betriebsparameters, insbesondere einer Referenztemperatur des Bauteils aus einer Thermoschockanalyse und eines Werkstoffmodells des Bauteils, dargestellt werden. Danach wird für den stationären und den transienten Fall eine Kalibrierung des virtuellen Spannungssensors durchgeführt.
Zumindest einem der Schritte al), a2), bl) oder b2) kann eine Thermo-Schock- Analyse zu Grunde gelegt werden.
Das erfindungsgemäße Verfahren ermöglicht beispielsweise eine Analyse von kritischen Zylinderkopftemperaturen unter Feld-Betriebsbedingungen; eine Analyse von Spannungs-/Dehnungswechseln und eine Lebensdauerabschätzungen für den Zylinderkopf unter Feld-Betriebsbedingungen; einen Vergleich des Einflusses von unterschiedlichen Fahrzeuganwendungen auf die Zylinderkopf-Lebenszeit;
Die Erfindung wird im Folgenden anhand der Fig. näher erläutert. Es zeigen schematisch :
Fig. 1 den Ablauf des erfindungsgemäßen Verfahrens; die Bildung und Kalibrierung des virtuellen Temperatursensors;
Fig. 3 die Bildung und Kalibrierung des virtuellen Spannungssensors; Fig. 4 die praktische Anwendung des erfindungsgemäßen Verfahrens an Hand des zeitlichen Verlaufes der Bauteiltemperatur TCH und der kumulierten visko-plastischen Dehnung £vcum;
Fig. 5 und Fig . 6 Details der Verläufe aus Fig. 4.
Um mit minimalen sensorischen Aufwand das Schadenpotential einer bestimmten Teststrecke abschätzen und Risse vorhersagen zu können, die im Feldbetrieb entstehen, werden beim erfindungsgemäßen Verfahren "virtuelle" Temperatursensoren 1 und virtuelle Spannungssensoren 2, eingesetzt. Virtuelle Temperatur- und Spannungssensoren 1, 2 beruhen auf mathematischen Simulationsmodellen, welche Temperaturen und Spannungen der in Betracht gezogenen Bauteile in Abhängigkeit von anderen Betriebsparametern und Eingabegrößen wie Motordrehmoment M, Motordrehzahl n, Kühlmittelmassestrom mc, Kühlmitteltemperatur Tc, etc. vorhersagen können.
Der virtuelle Temperatursensor 1 ermöglicht die Vorhersage der Temperatur TCH des Bauteils - beispielsweise eines Zylinderkopfes einer Brennkraftmaschine - an spezifischen Punkten der Flammfront unter Feld-Betriebsbedingungen, in Abhängigkeit beispielsweise des Motordrehmomentes M, der Motordrehzahl n, des Kühlmittelmassestroms mc, der Motorleistung P, der Umgebungstemperatur Tu und der Kühlmitteltemperatur Tc. Weiters kann eventuell auch das Höhenprofil H der Teststrecke als Eingangsgröße in den virtuellen Sensor 1 einfließen. Mit KT1, KT2 sind Kalibrierungsparameter für den virtuellen Temperatursensor für die stationäre und die transiente Kalibrierung bezeichnet.
Der virtuelle Spannungssensor 2 erlaubt die Vorhersage des visko-plastischen Spannungs-/Dehnungsverhaltens auf der Basis des Temperaturergebnisses TCH des virtuellen Temperatursensors 1, als Vorarbeit für eine Schadensvorhersage 3, zum Beispiel bei einem Zylinderkopf, durch Vergleich mit Heiß- und Kaltversuchen (Thermo-Schock-Analyse). Neben der Temperatur TCH des betrachteten Bauteils werden eine Referenztemperatur Tref(t) und ein Gesamtdehnungstensor 101Γεί) aus einer TMA-Analyse (TMF=Thermo-Mechanical-Fatigue, TMA=thermo- mechanische Analyse) als Eingangsgrößen für den virtuellen Spannungssensor 2 verwendet. Weiters berücksichtigt der Verformungssensor Materialparameter wie die zeit- und temperaturabhängige Spannungs-Dehnungscharakteristik σε(ι, T), den Elastizitätsmodul E(T), und die thermische Expansion a(T). Mittels des virtuellen Sensors 2 kann eine Spannungs-Dehnungsanalyse des Bauteils durchgeführt werden. Das Ergebnis der Spannungs-Dehnungsanalyse liefert für den Bauteil einen visko-plastischen Dehnungstensor εν'((), einen gesamten Dehnungstensor £tot (t), die kumulierte visko-plastische Dehnung £vcum (t) und den Spannungstensor °"(t) - Fig. 2 zeigt schematisch die Bildung und Kalibrierung des virtuellen Temperatursensor 1. Mit Bezugszeichen la ist die Kreierung und Kalibrierung für den stationären Fall angedeutet, welche auf der Basis der Geometrie G des Bauteils, der Wärmeübergangsbedingungen HTC und einer Referenztemperatur Tref(t) aus einem 3D-Simulationsmodell erfolgt. Dabei werden erste Kalibrierungsparameter KT1 festgelegt, welche die Beziehung zwischen der Flammfronttemperatur und der Kühlmitteltemperatur und der metallischen Kühlmittelwand definieren. Unter Verwendung der ersten Kalibrierungsparameter KT1 wird auf Grund des Motordrehmomentes M, der Motordrehzahl n, des Kühlmittelmassestroms mc, der Kühlmitteltemperatur Tc und des Kühlmittedruckes pc in Schritt lb eine Kalibrierung des virtuellen Temperatursensors 1 für den transienten (instationären) Fall durchgeführt und dabei die zweiten Kalibrierparameter KT2 erzeugt.
In Fig. 3 ist die Bildung und Kalibrierung 2a des virtuellen Spannungssensors 2 schematisch dargestellt. Als Eingangsgrößen für die Erstellung und Kalibrierung dienen dabei zumindest eine charakteristische Temperatur JJS des Bauteils aus einer Thermo-Schock-Analyse am Motorprüf stand (beispielsweise der Ventilbrückentemperatur zwischen Auslassventilen beim Zylinderkopf), Beschränkungen CONTS aus der Thermo-Schock-Analyse (eventuell mittels SD-Simulationsmodell), sowie ein Werkstoffmodell MM (beispielsweise für GJV=Gusseisen mit Vermikulargraphit). Die Kalibrierung dient unter Anderem zur Stabilisierung des virtuellen Spannungssensors 2, um eine Berechnung der Dehnungszunahme zu ermöglichen.
Mit dem erfindungsgemäßen Verfahren können anhand von Motorparametern bzw. Messdaten, die der elektronischen Steuereinheit ECU vorliegen, Schädigungen motorrelevanter Teile wie Zylinderkopf, Abgaskrümmer etc., ermittelt werden.
Das Verfahren weist im Wesentlichen folgende Schritte auf:
• Ermittlung der transienten Temperaturen TCH eines Bauteils der Brennkraftmaschine auf Basis von gemessenen Eingabegrößen aus dem Motorbetrieb - entweder in Echtzeit oder aus der elektronischen Steuereinheit ECU oder aus Tabellen denen zumindest ein vorangegangener Prüflauf der Brennkraftmaschine zu Grunde liegt;
• Ermittlung von temperaturabhängigen mechanischen Randbedingungen CONTS aus einer Tabelle, die wie folgt generiert wird : TMF-Berechnung (Thermo-Mechanical-Fatigue - thermo-mechanische Bauteilermüdung) liefert temperaturabhängig die Einspannungssituation/das Einspan- nungsverhältnis für jede Position des betrachteten Bauteils, insbeson- dere hinsichtlich einer Referenztemperatur Tref(t). Zusätzlich werden Materialparameter des Bauteils unter Verwendung eines Werkstoffmodells MM für den Bauteil berücksichtigt (das Werkstoffmodell MM kann beispielsweise auf der Spannungs-Dehnungskurve bzw. der Span- nungs-Dehnungscharakteristik σε, -η und dem E-Modul E(T) für den Bauteil basieren).
Berechnung der plastischen Dehnungen auf Basis der thermischen und mechanischen Randbedingungen;
Aufsummieren der plastischen Dehnungen zur Bewertung der Schädigungssituation bei realen Testfahrten.
Das erfindungsgemäße Verfahren kann in der elektronischen Steuereinheit ECU der Brennkraftmaschine implementiert werden, sodass anhand dort vorhandener Motormesswerte mittels des virtuellen Temperatur- und Spannungssensors eine Schädigung von Motorbauteilen berechnet werden kann und entsprechend derartige Teile rechtzeitig ausgetauscht bzw. gewartet werden können. In einer Variante der Erfindung kann auch vorgesehen sein, dass die elektronische Steuereinheit ECU bei Auftreten einer gewissen, vordefinierbaren Schädigung das Drehmoment und/oder die Kraftstoffzuführung und/oder die Leistung reduziert. So kann eine gravierendere Schädigung verhindert oder zumindest hinausgezögert werden.
Unter der Vorraussetzung, dass eine TMF-Rechnung bereits vorhanden ist, sind folgende Input Daten für den virtuellen Temperatursensor 1 erforderlich : Motor Moment M, Motor Drehzahl n, Kühlwasser Temperatur Einlass Tc, Kühlwasser Massenstrom mc, Kühlwasser Druck (kann eventuell abgeschätzt werden) pc, Bauteiltemperatur (z. B. Auslassbrücke) TTS, Höhenprofil der Strecke (optional) H, Motorbremse Charakteristik.
Der virtuelle Temperatursensor 1 beruht beispielsweise auf der bekannten Wärmeleitungsgleichung unter Berücksichtigung thermischer Randbedingungen, die entsprechend strömungsmechanischen Ähnlichkeitsgesetzen berechnet bzw. skaliert werden.
Der virtuelle Spannungssensor 2 basiert auf einem elasto-viscoplastischen Cha- boche Modell oder einem adaptierten elasto-viscoplastischen Chaboche Modell (Chaboche Modelle sind zum Beispiel in "Mechanics of Solid Materials", Jean Le- maitre, Jean-Louis Chaboche, Cambridge University Press, 1990, beschrieben). Als mechanische Randbedingungen werden temperaturabhängige Einspannungs- bedingungen im Modell angewandt, die Temperatur wird vom virtuellen Temperatursensor 1 berechnet. Auch die Temperaturrandbedingungen werden vom virtuellen Temperatursensor 1 berechnet.
Mechanische Randbedingungen des Gesamtdehnungstensors:
Die Einspannungsbedingungen des Sensorbereichs werden aus vorangegangen Thermoshock - FE-Simulationen entnommen und als temperaturabhängiges Kennfeld oder als eine darauf basierende Ersatzfunktion hinterlegt. Hierfür wird die totale Dehnung Etot als mechanische Randbedingung verwendet.
£tot = £el + £pl + £vi + £th mit
- Eei ... elastische Dehnung
- Epi ... plastische Dehnung
- Evi ... visco plastische Dehnung
- Eth ... thermische Dehnung
Die mit dem virtuellen Temperatursensor 1 errechneten Temperaturen werden als Eingangsgröße für das Kennfeld/die Ersatzfunktion verwendet, um die Randbedingungen entsprechend der Temperaturentwicklung vorzugeben.
Die Fig. 4 zeigt eine praktische Anwendung des erfindungsgemäßen Verfahrens in einem Feldversuch während einer Testfahrt auf einer Teststrecke, welche ein definiertes Höhenprofil H aufweisen kann. Die gesamte kumulierte visco-plasti- sche Dehnung Δενευπη betrug beispielsweise 0,033% Die Testfahrt wurde durch einzelne Pausen R unterbrochen, in denen eine Abkühlung des betrachteten Bauteiles (Zylinderkopf) eintrat. Fig . 5 und Fig. 6 stellen Ausschnitte aus Fig . 4 dar.
Wie aus Fig . 5 erkennbar ist, kommt es auch nach Abkühlung des Bauteils während einer Belastungspause zu einem Fortschreiten der kumulierten visco-plasti- schen Dehnung Evcum . Fig. 6 zeigt, dass auch Kriecheffekte CE im visko-plasti- schen Verhalten während Heißphasen HP wiedergegeben werden.
Das erfindungsgemäße Verfahren kann besonders vorteilhaft beispielsweise bei Zylinderköpfen, Kolben und Auslasssammler angewendet werden. Daneben sind aber auch andere Einsatzmöglichkeiten denkbar.

Claims

P A T E N T A N S P R Ü C H E
1. Verfahren zur Abschätzung der Schädigung zumindest eines technischen Bauteils einer Brennkraftmaschine, dadurch gekennzeichnet, dass folgende Schritte durchgeführt werden : a) Bereitstellen zumindest eines virtuellen Temperatursensors (1) für den Bauteil; b) Bereitstellen zumindest eines virtuellen Spannungssensors (2) für den Bauteil; c) Ermitteln einer transienten Temperatur (TCH) des Bauteiles der Brennkraftmaschine mittels des virtuellen Temperatursensors (2) auf der Basis zumindest eines Motor- oder Betriebs- oder Streckenparameters aus der Gruppe Motordrehmoment (M), Motordrehzahl (n), Motorleistung (P), Kühlmittelmassestrom, (mc), Kühlmitteltemperatur (Tc), Umgebungstemperatur (Tu) und Streckenprofil (H), wobei vorzugsweise zumindest ein Parameter in einer elektronischen Steuereinheit (ECU) abgelegt ist; d) Ermitteln der Spannungen des Bauteils der Brennkraftmaschine mittels des virtuellen Spannungssensors (2) auf der Basis eines vorgegebenen Gesamtdehnungstensor (£tot (Tref)) und der mittels des virtuellen Tem¬ peratursensors (1) ermittelten Temperatur (TCH) des Bauteils; e) Ermitteln der visko-plastischen Dehnungen (εν) des Bauteiles auf der Basis eines Werkstoffmodells (MM); f) Aufsummieren der visko-plastischen Dehnung (£vcum (t)) des Bauteils. g) Ermitteln der Schädigung des Bauteils auf Grund der kumulierten plastischen Dehnungen (£vcum (t)).
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Schritt a) folgende Schritte beinhaltet: al) Erzeugen zumindest eines virtuellen Temperatursensors (1) für den Bauteil auf der Basis eines ersten mathematischen Modells und Durchführen einer Kalibrierung für den stationären Fall, vorzugsweise unter Einbeziehung zumindest eines Bauteilparameters aus der Gruppe Geometrie (G), Wärmeübergangsbedingungen (HTC) und Modell-Referenztemperatur (Tref(t)) ; a2) Durchführen einer Kalibrierung des virtuellen Temperatursensors (1) für den transienten Fall - vorzugsweise unter Einbeziehung zumindest eines Motor- oder Betriebsparameters aus der Gruppe Drehmoment (M), Motordrehzahl (n), Kühlmitteltemperatur (Tc), Kühlmittelmassestrom (mc), Kühlmitteldruck (pc);
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Schritt b) folgende Schritte beinhaltet: bl) Erzeugen zumindest eines virtuellen Spannungssensors (2) für den Bauteil unter Bildung zumindest eines nichtlinearen Spannungstensor (0(t)) auf der Basis eines zweiten mathematischen Modells unter Einbeziehung zumindest eines Betriebsparameters, insbesondere einer Referenztemperatur Tref(t) des Bauteils aus einer Thermoschockanalyse und eines Werkstoffmodells (MM) des Bauteils; b2) Durchführen einer Kalibrierung des virtuellen Spannungssensors (2) für den stationären Fall und für den transienten Fall;
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass zumindest einem der Schritte al), a2), bl) oder b2) eine Thermoschockanalyse an einem Motorprüf stand zu Grunde gelegt wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der virtuelle Temperatursensor (1) und/oder der virtuelle Spannungssensor (2) in die elektronische Steuereinheit (ECU) der Brennkraftmaschine implementiert wird.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass ein Algorithmus zur Schädigungsermittlung zumindest eines Bauteils in die elektronische Steuereinheit (ECU) der Brennkraftmaschine implementiert wird .
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Gesamtdehnungstensor (£tot (Tref)) des Bauteils vor Schritt d) in einer thermomechanischen Analyse (TMA) ermittelt wird.
8. Vorrichtung zur Durchführung des Verfahren zur Abschätzung der Schädigung zumindest eines technischen Bauteils einer Brennkraftmaschine nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass in der elektronischen Steuereinheit (ECU) der Brennkraftmaschine ein virtueller Temperatursensor (1) und/oder ein virtueller Spannungssensor (2) implementiert ist.
9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass in der elektronischen Steuereinheit (ECU) der Brennkraftmaschine ein Algorithmus zur Schädigungsermittlung zumindest eines Bauteils implementiert ist.
PCT/EP2014/071622 2013-10-11 2014-10-09 Verfahren zur abschätzung der schädigung zumindest eines technischen bauteiles einer brennkraftmaschine WO2015052274A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112014004653.1T DE112014004653A5 (de) 2013-10-11 2014-10-09 Verfahren zur Abschätzung der Schädigung zumindest eines technischen Bauteiles einer Brennkraftmaschine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA50656/2013A AT514683B1 (de) 2013-10-11 2013-10-11 Verfahren zur Abschätzung der Schädigung zumindest eines technischen Bauteiles einer Brennkraftmaschine
ATA50656/2013 2013-10-11

Publications (1)

Publication Number Publication Date
WO2015052274A1 true WO2015052274A1 (de) 2015-04-16

Family

ID=51691019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/071622 WO2015052274A1 (de) 2013-10-11 2014-10-09 Verfahren zur abschätzung der schädigung zumindest eines technischen bauteiles einer brennkraftmaschine

Country Status (3)

Country Link
AT (1) AT514683B1 (de)
DE (1) DE112014004653A5 (de)
WO (1) WO2015052274A1 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107328582A (zh) * 2017-08-25 2017-11-07 中国人民解放军镇江船艇学院 柴油机故障检测装置
CN107849998A (zh) * 2015-04-21 2018-03-27 Avl 里斯脱有限公司 用于基于模型地优化工程装置的方法和设备
CN107965412A (zh) * 2017-11-22 2018-04-27 潍柴动力股份有限公司 发动机虚拟环境温度传感器的控制方法和装置、以及系统
DE102018104665A1 (de) * 2018-03-01 2019-09-05 Mtu Friedrichshafen Gmbh Verfahren zum Betrieb einer Brennkraftmaschine, Steuereinrichtung und Brennkraftmaschine
DE102018104667A1 (de) * 2018-03-01 2019-09-05 Mtu Friedrichshafen Gmbh Verfahren zum Betrieb einer Brennkraftmaschine, Steuereinrichtung und Brennkraftmaschine
CN114459941A (zh) * 2021-12-29 2022-05-10 宁波职业技术学院 一种排气系统中静子件开裂风险的预测方法与系统
AT524471A1 (de) * 2020-11-18 2022-06-15 Uptime Holding Gmbh Verfahren zur Bestimmung eines Schädigungsausmaßes
CN117330319A (zh) * 2023-08-31 2024-01-02 南京航空航天大学 一种小型涡轴发动机整机寿命试车结构损伤监测方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3749864B1 (de) 2018-02-05 2023-04-26 Ziehl-Abegg Se Verfahren zur ermittlung von betriebszuständen eines ventilators

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4336595A (en) 1977-08-22 1982-06-22 Lockheed Corporation Structural life computer
DE4107207A1 (de) * 1991-03-04 1992-09-10 Elektro App Werke Veb Verfahren und einrichtung zum schutz und fuehren von elektromotoren, anderen elektrischen betriebsmitteln oder elektroanlagen nach kriterien der lebensdauer
DE10161998A1 (de) 2001-12-18 2003-07-17 Daimler Chrysler Ag Verfahren und Vorrichtung zur Betriebsüberwachung
DE10257793A1 (de) 2002-12-11 2004-07-22 Daimlerchrysler Ag Modellbasierter Lebensdauerbeobachter
WO2004078543A2 (de) * 2003-03-06 2004-09-16 Voith Turbo Gmbh & Co. Kg Risikominimierung und wartungsoptimierung durch ermittlung von schädigungsanteilen aus betriebsdaten
DE102005023252A1 (de) 2005-05-20 2006-11-23 Magdeburger Förderanlagen und Baumaschinen GmbH Verfahren zur Bestimmung des Schädigungsgrades und der Restlebensdauer von sicherheitsrelevanten Anlagenteilen an Großanlagen
CA2604118A1 (en) * 2007-11-01 2008-04-23 Ashok Ak Koul A system and method for real-time prognostics analysis and residual life assessment of machine components
DE102008049754A1 (de) 2008-09-30 2010-04-08 Continental Automotive Gmbh Verfahren und Vorrichtung zur Verschleißdiagnose eines Kraftfahrzeugs
DE102010012564A1 (de) 2010-03-23 2010-11-11 Mtu Aero Engines Gmbh Verfahren und Vorrichtung zur Ermittlung einer Materialantwort bei einem Bauteil

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3681033B2 (ja) * 1997-11-17 2005-08-10 株式会社小松製作所 エンジン並びに熱源を有する機械の寿命予測装置
FR2931245B1 (fr) * 2008-05-16 2012-06-01 Peugeot Citroen Automobiles Sa Procede de construction d'un indicateur de fatigue, procedes de prevention et de maintenance utilisant cet indicateur, et dispositif pour la mise en oeuvre de ces procedes
US20130024179A1 (en) * 2011-07-22 2013-01-24 General Electric Company Model-based approach for personalized equipment degradation forecasting

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4336595A (en) 1977-08-22 1982-06-22 Lockheed Corporation Structural life computer
DE4107207A1 (de) * 1991-03-04 1992-09-10 Elektro App Werke Veb Verfahren und einrichtung zum schutz und fuehren von elektromotoren, anderen elektrischen betriebsmitteln oder elektroanlagen nach kriterien der lebensdauer
DE10161998A1 (de) 2001-12-18 2003-07-17 Daimler Chrysler Ag Verfahren und Vorrichtung zur Betriebsüberwachung
DE10257793A1 (de) 2002-12-11 2004-07-22 Daimlerchrysler Ag Modellbasierter Lebensdauerbeobachter
WO2004078543A2 (de) * 2003-03-06 2004-09-16 Voith Turbo Gmbh & Co. Kg Risikominimierung und wartungsoptimierung durch ermittlung von schädigungsanteilen aus betriebsdaten
DE102005023252A1 (de) 2005-05-20 2006-11-23 Magdeburger Förderanlagen und Baumaschinen GmbH Verfahren zur Bestimmung des Schädigungsgrades und der Restlebensdauer von sicherheitsrelevanten Anlagenteilen an Großanlagen
CA2604118A1 (en) * 2007-11-01 2008-04-23 Ashok Ak Koul A system and method for real-time prognostics analysis and residual life assessment of machine components
DE102008049754A1 (de) 2008-09-30 2010-04-08 Continental Automotive Gmbh Verfahren und Vorrichtung zur Verschleißdiagnose eines Kraftfahrzeugs
DE102010012564A1 (de) 2010-03-23 2010-11-11 Mtu Aero Engines Gmbh Verfahren und Vorrichtung zur Ermittlung einer Materialantwort bei einem Bauteil

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JEAN LEMAITRE; JEAN-LOUIS CHABOCHE: "Mechanics of Solid Materials", 1990, CAMBRIDGE UNIVERSITY PRESS

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11017132B2 (en) 2015-04-21 2021-05-25 Avl List Gmbh Method and device for model-based optimization of a technical device
CN107849998A (zh) * 2015-04-21 2018-03-27 Avl 里斯脱有限公司 用于基于模型地优化工程装置的方法和设备
CN107849998B (zh) * 2015-04-21 2022-01-11 Avl 里斯脱有限公司 用于基于模型地优化工程装置的方法和设备
CN107328582A (zh) * 2017-08-25 2017-11-07 中国人民解放军镇江船艇学院 柴油机故障检测装置
CN107965412A (zh) * 2017-11-22 2018-04-27 潍柴动力股份有限公司 发动机虚拟环境温度传感器的控制方法和装置、以及系统
DE102018104665A1 (de) * 2018-03-01 2019-09-05 Mtu Friedrichshafen Gmbh Verfahren zum Betrieb einer Brennkraftmaschine, Steuereinrichtung und Brennkraftmaschine
DE102018104667A1 (de) * 2018-03-01 2019-09-05 Mtu Friedrichshafen Gmbh Verfahren zum Betrieb einer Brennkraftmaschine, Steuereinrichtung und Brennkraftmaschine
DE102018104665B4 (de) 2018-03-01 2022-12-01 Rolls-Royce Solutions GmbH Verfahren zum Betrieb einer Brennkraftmaschine, Steuereinrichtung und Brennkraftmaschine
AT524471A1 (de) * 2020-11-18 2022-06-15 Uptime Holding Gmbh Verfahren zur Bestimmung eines Schädigungsausmaßes
AT524471B1 (de) * 2020-11-18 2022-09-15 Uptime Holding Gmbh Verfahren zur Bestimmung eines Schädigungsausmaßes
CN114459941A (zh) * 2021-12-29 2022-05-10 宁波职业技术学院 一种排气系统中静子件开裂风险的预测方法与系统
CN114459941B (zh) * 2021-12-29 2023-11-21 宁波职业技术学院 一种排气系统中静子件开裂风险的预测方法与系统
CN117330319A (zh) * 2023-08-31 2024-01-02 南京航空航天大学 一种小型涡轴发动机整机寿命试车结构损伤监测方法
CN117330319B (zh) * 2023-08-31 2024-04-02 南京航空航天大学 一种小型涡轴发动机整机寿命试车结构损伤监测方法

Also Published As

Publication number Publication date
DE112014004653A5 (de) 2016-06-30
AT514683A4 (de) 2015-03-15
AT514683B1 (de) 2015-03-15

Similar Documents

Publication Publication Date Title
AT514683B1 (de) Verfahren zur Abschätzung der Schädigung zumindest eines technischen Bauteiles einer Brennkraftmaschine
Yu Modeling high-temperature tensile deformation behavior of AZ31B magnesium alloy considering strain effects
Naeem et al. Implications of engine deterioration for a high-pressure turbine-blade's low-cycle fatigue (LCF) life-consumption
DE112014005404T5 (de) Zustandsüberwachungssystem einer Bewegungsvorrichtung
Lonkwic et al. Theoretical and experimental analysis of loading impact from the progressive gear on the lift braking distance with the use of the free fall method
CN108254250B (zh) 一种考虑动态应变时效的热机多轴应力应变关系确定方法
EP1644640B1 (de) Verfahren zur steuerung des betriebs eines kompressors
EP2853970B1 (de) Verfahren zum Durchführen einer Wartung eines Triebwerks
EP3779234A1 (de) Verfahren zur überwachung eines drehschwingungsdämpfers
DE102006045785A1 (de) Verfahren zur Selbstdiagnose von Versuchsanordnungen sowie Versuchsanordnung, insbesondere Prüfstand
Voothaluru et al. Determination of lattice level energy efficiency for fatigue crack initiation
Métais Development of a viscoplastic-damage model for creep-fatigue FE-calculations of the lead-free SnAgCu solder alloy for automotive applications
Wu et al. Wind-induced performance of long-span bridge with modified cross-section profiles by stochastic traffic
Levinski et al. An Innovative High-Fidelity Approach to Individual Aircraft Tracking
CN106383967A (zh) 运行数据更新驱动下滚动轴承性能参数可靠度的预测方法
Sever et al. Cylinder Head Thermo-Mechanical Fatigue Risk Assessment under Customer Usage
Ashouri Thermo-mechanical analysis of diesel engines cylinder heads using a two-layer viscoelasticity model with considering viscosity effects
Pina Elevated temperature thermo-mechanical behaviour of cast irons: a numerical-experimental investigation
DE102018104665B4 (de) Verfahren zum Betrieb einer Brennkraftmaschine, Steuereinrichtung und Brennkraftmaschine
Groh et al. The effect of prior TMP on annealed grain size in Haynes 282 alloy
Gyllenskog et al. Fatigue crack initiation and propagation in aileron lever using successive-initiation modeling approach
SE535595C2 (sv) Metod för att bestämma utmattningshållfasthet hos motorkomponenter
CN114324030B (zh) 一种基于模拟实车线路摆动的疲劳试验装置及方法
Chan A maximum entropy fracture model for low and high strain-rate fracture in TinSilverCopper alloys
Santos Experimental characterization and constitutive modeling of viscoplastic effects in high strain-rate deformation of polycrystalline FCC metals

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14783803

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112014004653

Country of ref document: DE

Ref document number: 1120140046531

Country of ref document: DE

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112014004653

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14783803

Country of ref document: EP

Kind code of ref document: A1