WO2015051744A1 - 一种功率参数的测量方法以及测量电路 - Google Patents

一种功率参数的测量方法以及测量电路 Download PDF

Info

Publication number
WO2015051744A1
WO2015051744A1 PCT/CN2014/088190 CN2014088190W WO2015051744A1 WO 2015051744 A1 WO2015051744 A1 WO 2015051744A1 CN 2014088190 W CN2014088190 W CN 2014088190W WO 2015051744 A1 WO2015051744 A1 WO 2015051744A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
different conduction
conduction angles
value
waveform
Prior art date
Application number
PCT/CN2014/088190
Other languages
English (en)
French (fr)
Inventor
谭越
钟晓龙
Original Assignee
施耐德电气(澳大利亚)有限公司
谭越
钟晓龙
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 施耐德电气(澳大利亚)有限公司, 谭越, 钟晓龙 filed Critical 施耐德电气(澳大利亚)有限公司
Priority to NZ718882A priority Critical patent/NZ718882A/en
Priority to MYPI2016701227A priority patent/MY186129A/en
Priority to AU2014334295A priority patent/AU2014334295B2/en
Publication of WO2015051744A1 publication Critical patent/WO2015051744A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R11/00Electromechanical arrangements for measuring time integral of electric power or current, e.g. of consumption
    • G01R11/48Meters specially adapted for measuring real or reactive components; Meters specially adapted for measuring apparent energy
    • G01R11/54Meters specially adapted for measuring real or reactive components; Meters specially adapted for measuring apparent energy for measuring simultaneously at least two of the following three variables: real component, reactive component, apparent energy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • G01R21/001Measuring real or reactive component; Measuring apparent energy
    • G01R21/002Measuring real component
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • G01R21/06Arrangements for measuring electric power or power factor by measuring current and voltage

Definitions

  • the present invention relates to the field of communications, and in particular, to a method for measuring power parameters and a measuring circuit.
  • Power meter is an important part of today's smart grid. He is not only an important reference for grid companies' power dispatching, but also intuitively provides users with electricity consumption and helps users develop energy-saving electricity habits, which is of great significance.
  • Such a power meter is generally installed at the total incoming end of each home user, and measures the power consumption of all power-consuming devices in the home, and serves as a proof of charging the electricity fee. For the power loss of each household appliance, it is necessary to set a device with a metering function to display the power loss of each household appliance in real time.
  • the measurement of power parameters is mostly based on three-wire system, that is, there are three terminals on the meter, which are fire line, load line and neutral line.
  • accurate current and voltage sampling values must be obtained. This requires accurate voltage and current waveform measurements to accurately calculate the power parameters.
  • the two-wire dimmer or switch In the control device of the wiring system of the home lighting, the two-wire dimmer or switch is generally placed at the end of the live line, and there are only the live line and the load line in the cavity, and there is no zero line. For this two-wire system, there is no neutral terminal.
  • the three-wire based acquisition method can not collect the voltage difference between the two ends of the live line and the zero line. In practical applications, accurate voltage waveforms cannot be obtained. It is impossible to obtain accurate power parameters.
  • the embodiment of the invention provides a method for measuring power parameters and a measuring circuit, which can accurately obtain power parameters and is convenient for users to use.
  • An aspect of the present invention provides a method for measuring a power parameter, including:
  • the current rms value, voltage rms value, active power, and apparent power display are controlled.
  • obtaining current RMS values at different conduction angles includes: obtaining a current effective value by using a sampling resistor.
  • the method further comprises: obtaining a standard maximum waveform value at different conduction angles.
  • measuring the standard maximum waveform value under different conduction angles specifically: adjusting the conduction angle from large to small under standard voltage, and respectively obtaining the maximum of the live line or the load end at different conduction angles Voltage value; the voltage maximum curve is obtained according to the maximum voltage value obtained under different conduction angles, the abscissa of the voltage maximum curve is the conduction angle, and the ordinate is the maximum voltage value corresponding to the conduction angle; according to the voltage maximum curve Get the standard maximum waveform value at different conduction angles.
  • the voltage effective values at different conduction angles are obtained according to the voltage ratio, and specifically: multiplying the voltage ratios at different conduction angles by a standard voltage to obtain voltage effective values at different conduction angles.
  • the voltage effective values at different conduction angles are obtained according to the voltage ratio, and specifically, the squares of the instantaneous voltages in one cycle under the standard voltage are integrated and averaged at different conduction angles, and then the square root is opened. And calibrate with the voltage ratio under the conduction angle to obtain the effective value of the voltage under different conduction angles.
  • the active power at different conduction angles is obtained according to the voltage ratio, and specifically includes: instantaneously, within a period of the standard voltage under different conduction angles
  • the power is integrated and averaged and calibrated with the voltage ratio at the conduction angle to obtain the active power at different conduction angles.
  • the active power at different conduction angles is obtained according to the voltage ratio, and specifically includes:
  • phase offset Ps is:
  • the current waveform is multiplied and integrated, and calibrated by the voltage ratio under the conduction angle to obtain the active power at different conduction angles.
  • the phase P corresponding to the target voltage frequency F can be obtained by using the Goertzel algorithm according to the voltage frequency F.
  • a second aspect of the present invention provides a measurement circuit for a power parameter, including:
  • One end of the micro control unit is connected to the live end, and the other end is connected to the load end;
  • a micro control unit for adjusting the conduction angle, respectively obtaining the maximum voltage waveform value of the load end or the live end at different conduction angles, and for obtaining the standard maximum waveform value of different conduction angles under the standard voltage, and for Obtain the current waveform under different conduction angles to obtain the current effective value, obtain the voltage effective value and active power under different conduction angles according to the voltage ratio, and obtain different voltage effective values and current effective values according to different conduction angles.
  • the apparent power under the conduction angle controls the display module to display the current effective value, the voltage effective value, the active power and the apparent power;
  • a display module for displaying current rms, voltage rms, active power, and apparent power.
  • the measuring circuit of the power parameter may further include: a first FET and a second FET for controlling a current magnitude in the measuring circuit, and a sampling resistor for acquiring a current waveform;
  • the micro control unit includes a processing unit, a first collection port, and a second collection port;
  • the first field effect transistor is located between the live line end and the sampling resistor, and the second field effect tube is located between the sampling resistor and the load;
  • the first acquisition port of the micro control unit is connected to the live line end, the second acquisition port is connected to one end of the sampling resistor, and the other end of the sampling resistor is connected to the load and grounded; or the first acquisition port of the micro control unit is connected with the load end, The second collection port is connected to one end of the sampling resistor, and the other end of the sampling resistor is connected to the load and grounded;
  • the first acquisition port of the micro control unit is used for adjusting the conduction angle, respectively obtaining the maximum voltage waveform value of the load end or the live end at different conduction angles, and is used for obtaining the standard maximum waveform of different conduction angles under the standard voltage. value;
  • a second collecting port of the micro control unit configured to acquire a current waveform at different conduction angles according to the current waveform acquired on the sampling resistor, thereby obtaining a current effective value
  • a processing unit configured to divide a maximum voltage waveform value at different conduction angles from a standard maximum waveform value at a corresponding conduction angle to obtain a voltage ratio at different conduction angles; and obtain different conduction angles according to the voltage ratio
  • the voltage rms value and the active power obtain the apparent power according to the current rms value and the voltage rms value.
  • the measuring circuit of the power parameter may further include: a voltage dividing resistor; when the first collecting port of the micro control unit is connected to the live line end, a voltage dividing resistor is disposed between the first collecting port and the live line end; When the first collection port of the control unit is connected to the load end, a voltage dividing resistor is disposed between the first collection port and the load end.
  • the micro control unit includes: a first micro control unit and a second micro control unit; the first micro control unit is configured to acquire a power parameter and transmit the power parameter to the second micro control unit by using analog I2C communication, by The second micro control unit controls the display module to display the power parameters.
  • the invention adopts the first adjustment of the conduction angle size to obtain the maximum voltage waveform value of the hot wire end or the load end under different conduction angles, and then the maximum voltage waveform value under different conduction angles and the standard voltage under the corresponding conduction angle.
  • the obtained standard maximum waveform value is divided, the voltage ratios under different conduction angles are obtained, and then the voltage effective value and the active power at different conduction angles are obtained according to the voltage ratio, according to the voltage effective value and current under different conduction angles.
  • the effective value obtains the apparent power under different conduction angles, and finally controls the current effective value, the voltage effective value, the active power and the apparent power display for the user's reference.
  • the invention can calibrate the power parameters according to the voltage ratios obtained under different conduction angles, can accurately obtain the power parameters of the two-wire circuit, and the user can intuitively observe the real-time power parameters, which is convenient for the user to use.
  • FIG. 1 is a flow chart of a method for measuring a power parameter in an embodiment of the present invention
  • 2a is a voltage waveform diagram of a live line end when the conduction angle is 0 in the embodiment of the present invention
  • 2b is a voltage waveform diagram of the load terminal when the conduction angle is 0 in the embodiment of the present invention
  • 3a is a voltage waveform diagram of a live line end when the conduction angle is 3 ms in the embodiment of the present invention
  • 3b is a voltage waveform diagram of a load terminal when the conduction angle is 3 ms in the embodiment of the present invention
  • 4a is a voltage waveform diagram of a live line end when the conduction angle is 7 ms in the embodiment of the present invention
  • 4b is a voltage waveform diagram of a load terminal when the conduction angle is 7 ms in the embodiment of the present invention
  • FIG. 5 is a flow chart of a method for obtaining a maximum voltage waveform value in an embodiment of the present invention
  • FIG. 6 is a flow chart of a method for acquiring a voltage waveform in an embodiment of the present invention.
  • FIG. 7 is a circuit diagram of a measurement circuit of a power parameter in an embodiment of the present invention.
  • Figure 9 is a normalized curve of the voltage scan curve of Figure 8 divided by the 220V scan curve
  • Figure 10 is a graph characterizing the dispersion of voltage values at each conduction angle in Figure 9;
  • Figure 11 is a waveform diagram of the zero-crossing point of the energy-saving lamp
  • Figure 12 is a waveform diagram of a zero-crossing point of a halogen lamp
  • FIG. 13 is a schematic diagram of obtaining a zero-crossing phase offset by using a G algorithm in the embodiment
  • FIG. 14 is a schematic diagram of a voltage value range after acquiring a phase offset in the embodiment.
  • 15 is a schematic structural diagram of a measurement circuit of a power parameter in the embodiment.
  • 16 is another schematic structural diagram of a power parameter measuring circuit in this embodiment.
  • Fig. 17 is another schematic structural view of the measuring circuit of the power parameter in the embodiment.
  • Embodiments of the present invention provide a method for measuring a power parameter. Embodiments of the present invention also provide a measurement circuit for related power parameters. The details are described in detail below. For details, please refer to FIGS. 1 to 17.
  • the embodiment of the invention provides a method for measuring a power parameter, wherein, for convenience of description, a description will be made on the angle of the measurement circuit of the power parameter.
  • a method for measuring a power parameter includes: adjusting a conduction angle to obtain a maximum voltage waveform value at a different conduction angle of a live line or a load end; and a maximum voltage waveform value at a different conduction angle and a corresponding conduction angle
  • the standard maximum waveform value is divided to obtain the voltage ratio at different conduction angles, wherein the standard maximum waveform value is the peak value of the voltage waveform measured under the standard voltage; and the voltages at different conduction angles are obtained according to the voltage ratio.
  • Value and active power obtain the effective value of the current under different conduction angles, and obtain the apparent power at different conduction angles according to the voltage effective value and the current effective value under different conduction angles; control current effective value, voltage effective value , active power and apparent power display.
  • the maximum voltage waveform value of the hot line end or the load end can be directly obtained by adjusting the conduction angle, and the standard maximum waveform value obtained under the standard voltage can be obtained under different conduction angles.
  • the voltage ratio, and using the voltage ratio to calibrate the power parameter can accurately obtain the power parameter, solves the technical problem that the prior art cannot collect the accurate voltage to obtain the power parameter, and the user can intuitively obtain the power parameter at any time, which is convenient for the user to use. .
  • the current effective value can also be obtained directly through the sampling resistor, and the current effective value is displayed.
  • the obtained current effective value is multiplied by the voltage effective value to obtain apparent power.
  • the obtained voltage ratio can be multiplied by the standard voltage to obtain a voltage effective value.
  • the embodiment can be under a different conduction angle, within a period of the standard voltage
  • the square of the instantaneous voltage is integrated and averaged to open the square root, and calibrated with the voltage ratio under the conduction angle to obtain the voltage effective value.
  • the instantaneous power in one cycle under the standard voltage can be integrated and averaged under different conduction angles, and the conduction angle is used
  • the lower voltage ratio is calibrated to obtain the active power at the conduction angle.
  • the voltage waveform of the live end or the load end in one cycle can be collected at different conduction angles, and the phase P corresponding to the target voltage frequency F at different conduction angles is obtained. And obtain the zero-crossing phase offset Ps under different conduction angles, and finally obtain the active power under different conduction angles, and the active power is to multiply and integrate the current waveform point point after the voltage waveform is delayed by Ps, and use the conduction angle
  • the voltage ratio is calibrated.
  • the standard maximum waveform value under different conduction angles can be measured in advance, and the standard maximum waveform value of the live line end or the load end at different conduction angles under the standard voltage can be obtained by the following method:
  • the present invention firstly adjusts the conduction angle to obtain the maximum voltage waveform value of the hot wire end or the load end at different conduction angles, and then the maximum voltage waveform value under different conduction angles and the corresponding conduction angle.
  • the effective value and the current effective value obtain the apparent power at different conduction angles, and finally control the current effective value, the voltage effective value, the active power and the apparent power display for the user's reference.
  • the invention can calibrate the power parameters according to the voltage ratios obtained under different conduction angles, can accurately obtain the power parameters of the two-wire circuit, and the user can intuitively observe the real-time power parameters, which is convenient for the user to use.
  • the standard maximum waveform value is the peak value of the voltage waveform acquired at the standard voltage, which can be the peak value of the waveform in one cycle.
  • the standard maximum waveform value Vref of the hot line end or the neutral line end under different conduction angles can be separately obtained. This embodiment is described in detail by taking the standard maximum waveform value of the hot line end as an example.
  • the standard voltage value may be a voltage value of 220 V or 110 V.
  • the mains standard voltage in the case of a household is generally 220 V, which is not limited in this embodiment.
  • the conduction angle is adjusted to obtain the waveform peak value Vref of the live line at different conduction angles, wherein the conduction angle can be adjusted from large to small, as follows:
  • the conduction angle of the half waveform is in the range of 0 to 10 ms.
  • a range in which the conduction angle is 1.5 ms to 8.5 ms can be selected.
  • the conduction angle can be gradually reduced from 8.5ms to 1.5ms, and then the maximum voltage value of the Live terminal is separately scanned to obtain the maximum voltage value under different conduction angles.
  • step 1011 different maximum voltage values can be obtained under different conduction angles, and the maximum voltage values are sequentially stored in the array, and a voltage maximum curve can be obtained, and the abscissa of the voltage maximum curve can be guided.
  • the through angle, the ordinate is the maximum voltage value corresponding to the conduction angle.
  • the ordinate of the voltage maximum curve may be the conduction angle, and the abscissa is the maximum voltage value corresponding to the conduction angle, which is not specifically limited in this embodiment.
  • FIG. 5 is a flowchart of a method for acquiring a standard maximum waveform value Vref when scanning the live line end. First open the load and Adjust the conduction angle from large to small under standard voltage, and then judge whether the current conduction angle is greater than the minimum conduction angle. If yes, obtain the standard maximum voltage waveform value under the current conduction angle and store it. If not, slide The window is filtered and stored.
  • the stability of grid frequency and voltage is the two main indicators to measure the quality of power supply system.
  • the frequency stability of China's power grid is within ⁇ 0.2HZ, and the accumulated error of grid frequency fluctuation is small, which is relatively stable.
  • the target voltage frequency is fixed at 50 Hz and is a standard sine wave to detect a change in voltage amplitude in the power grid.
  • FIG. 2a shows the voltage waveform of the Live end when the conduction angle is 0.
  • 2b is a voltage waveform diagram of the Load terminal when the conduction angle is 0.
  • FIG. 3a is a voltage waveform diagram of the Live terminal when the conduction angle is 3 ms
  • FIG. 3b is a voltage waveform diagram of the Load terminal when the conduction angle is 3 ms
  • FIG. 4a is a conduction angle.
  • FIG. 4b is the voltage waveform of the Load terminal when the conduction angle is 7ms. It can be seen from FIG. 2a to FIG. 4b that the voltage waveforms of the Live end and the Load end are equal, and only have a phase difference of 180 degrees. Therefore, the Live end or the Load end can be selected as the reference signal for detecting the voltage amplitude.
  • the Live terminal is taken as an example for detailed description in this embodiment.
  • the size of the conduction angle can be adjusted, and the voltage waveform in one cycle can be selected to obtain the V max of the hot wire end at different conduction angles.
  • the user can adjust the dimmer switch to control the brightness of the load to obtain Vmax at the live end of the brightness.
  • step 101 and step 102 The order of execution of step 101 and step 102 is not specifically limited.
  • the voltage ratio is divided by the maximum voltage waveform value V max obtained in step 102 and the standard maximum waveform value Vref measured in step 101;
  • Ratio is the voltage ratio
  • FIG. 6 is a flowchart of a method for acquiring a voltage ratio. First, determine whether the FET is turned off. If it is off, obtain the maximum voltage waveform value Vmax under different conduction angles, and divide Vmax by the standard maximum voltage waveform value Vref obtained under the standard voltage to obtain the value of Ratio.
  • the voltage waveform values may be collected N times (for example, separately 5 voltage waveform values), and store the maximum voltage waveform value obtained each time into an array, and find the average value Vavg of the five voltage waveform values in the array, and then calculate the standard maximum voltage waveform value obtained by Vavg and the standard voltage.
  • the Vref is divided to obtain the value of Ratio, and finally the value of Ratio is recorded.
  • the current rms value I rms is obtained by the sampling resistor. It should be understood that the sampling circuit of the power parameter can be used to set the sampling resistor on the main circuit, and the waveform obtained on the sampling resistor can reflect the current in the main circuit without distortion. Therefore, the accurate current rms I rms can be obtained directly by coefficient calibration.
  • This step 104 can also be performed before step 102, without limitation.
  • the calculation method of the voltage effective value can be as follows:
  • the voltage ratio at the conduction angle can be multiplied by a standard voltage to obtain a voltage effective value.
  • the standard voltage in this embodiment may be 220V, then the voltage effective value U rms is:
  • K V is the voltage rms calibration coefficient
  • K V includes the voltage ratio
  • V pn (n) is the voltage instantaneous value at time n
  • Sample Count is the voltage sampling point in one cycle.
  • Vpn(n) is a voltage instantaneous value at time n at the standard voltage, and the waveform under the standard voltage can be saved in advance for subsequent calculation.
  • the voltage signal is constant and is a standard sinusoidal waveform.
  • the value of the voltage waveform sampling point that is, the instantaneous voltage value under the standard voltage, can be calculated in advance and stored in the array.
  • the sampling time can be set to 89 us, then the instantaneous power
  • the pressure value v(n) is:
  • FIG. 7 is a schematic diagram of the measurement circuit of the power parameter in this embodiment. The circuit diagram will be described in detail in the following embodiments, and details are not described herein again.
  • the linearity verification of the voltage effective value obtained above may be performed, and the specific operation may be as follows:
  • incandescent lamps PHLIPS, 60W
  • energy-saving lamps PHILIPS, Dimmable, 25W
  • the voltage scan firmware is written into the micro-control unit (MCU, MicroController Unit) of the dimmer, and the magnitude of the effective value of the voltage is adjusted to obtain scan curves at different voltages.
  • the voltage effective value can be changed from 195V to 265V, each time changing 5V.
  • FIG. 8 is a voltage scan curve obtained when the voltage effective value is changed from 195V to 265V, wherein the voltage effective values are 195V, 200V, 205V, ... from the top to the bottom of the curve. .. 260V, 265V obtained voltage scan curve.
  • FIG. 9 is a normalized curve of the voltage scan curve of FIG. 8 divided by the 220V scan curve, wherein the voltage effective values are 195V, 200V, 205V from the top to the bottom of the curve. Across normalized curve divided by the voltage sweep curve obtained at 260V and 265V and the 220V scan curve.
  • FIG. 9 is a graph characterizing the dispersion of voltage values at each conduction angle in Figure 9.
  • the conduction angle is between 6.94ms and 1.5ms, and the dispersion is small, which is basically 0.
  • the dispersion becomes higher and higher, indicating that the algorithm is guided.
  • the angle is adjusted between 6.94ms and 1.5ms, the voltage coefficient can be calculated in real time and the accuracy can be guaranteed.
  • the apparent power P APP at the conduction angle can be calculated by using the voltage effective value U rms and the current effective value I rms at different conduction angles obtained above, wherein the apparent power is the current effective value and the voltage effective value.
  • the apparent power is the current effective value and the voltage effective value.
  • the method for obtaining the active power P ACT in this embodiment is divided into the following two cases.
  • the measurement circuit of the power parameter contains an inductive load and does not contain an inductive load
  • the calculation method of the active power is greatly different.
  • the energy-saving lamps (NELSON, 20W) with strong capacitive load and the halogen lamps with strong sensibility are respectively tested to obtain the zero-crossing waveforms of the above two loads.
  • the zero-crossing waveform of the energy-saving lamp, and Figure 12 is the zero-crossing waveform of the halogen lamp.
  • the curve 1 in FIG. 11 is a zero-crossing voltage waveform
  • the curve 2 is a normal voltage waveform
  • the curve 1 in FIG. 12 is a zero-crossing voltage waveform
  • the curve 2 is a normal voltage waveform.
  • the zero-crossing waveform can truly reflect the zero-crossing point of the voltage, and the inductive load will have a zero-crossing delay, which is caused by the current lags behind the voltage because the current sampling is The zero point is triggered, so the active power is calculated and the number of delay points for the zero crossing must be calculated.
  • the instantaneous power in one cycle under the standard voltage is integrated and averaged at different conduction angles, and calibrated by the voltage ratio under the conduction angle to obtain different Active power at the conduction angle. See the following formula for details:
  • the Sample Count is a voltage sampling point of one cycle
  • v(n) is the instantaneous voltage value at the standard voltage
  • i(n) is the instantaneous current value at the standard voltage
  • Kp is the power correction factor, where Kp includes the voltage ratio.
  • the voltage signal is assumed to be a frequency-invariant, standard sinusoidal waveform.
  • the value of the voltage waveform sampling point that is, the instantaneous voltage value under the standard voltage, may be pre-calculated.
  • the zero-crossing waveform of the capacitive load can truly reflect the zero-crossing point of the voltage, and the inductive load will have a zero-crossing delay. Because of the inductive reactance, the current lags behind the voltage. Therefore, when calculating the active power, it must be calculated. Zero delay points to get more accurate active power.
  • the specific steps of obtaining the active power may be as follows:
  • a range of conduction angles of a certain range can be selected.
  • a peak can always be detected on the Live end, and as the conduction angle becomes larger, the detected peak is gradually decreased.
  • a voltage waveform of one cycle of the Live terminal can be collected and stored when the conduction angle is ⁇ 5 ms.
  • the frequency stability of China's power grid is within the range of ⁇ 0.2HZ, and the cumulative error of grid frequency fluctuation is small and relatively stable. It is assumed in the present embodiment that the target voltage frequency is fixed at 50 Hz.
  • the Goertzel algorithm can be used for the Live waveform to calculate the phase P corresponding to the voltage frequency F, which can be as follows:
  • N Before running the Goertzel algorithm, first determine the size of the block N, and the size of the block N controls the size of the frequency resolution. In order to obtain the maximum frequency resolution, a higher N can be selected as much as possible. However, the larger N is, the more time is required to detect each target frequency. According to the computing speed of the embedded system, the appropriate N value is selected to make the target frequency. Within the midpoint of the corresponding frequency resolution region. It should be noted that N in this embodiment does not have to be an integer power of 2.
  • K N*target_freq/sample_rate
  • the presence of the target frequency can be detected:
  • FIG. 13 is a phase offset diagram of a zero-crossing point obtained by using the G algorithm.
  • the present embodiment is described by taking an example of a conduction angle of 2 ms.
  • the curve 2 is a waveform at the hot end.
  • curve 1 is the target voltage frequency harmonic
  • the phase offset is 32 pixels from the region 3 in the figure.
  • the fast Fourier transform is used to obtain the phase P corresponding to the voltage frequency F.
  • one or several frequency components are detected, and the Goertzel algorithm is more efficient, and the required CPU resources are much less.
  • the Goertzel algorithm allows digital signal processing to be done at the sample interval.
  • phase offset Ps is:
  • the current waveform is multiplied and integrated, and calibrated by the voltage ratio at the conduction angle to obtain the active power P ACT at different conduction angles.
  • the inductive load identification can be used in combination with the bulb load identification algorithm.
  • the algorithm will be called to calculate the zero-point phase shift point N.
  • the phase-shifted voltage should be used. , that is, in the [N, Fs/F+N] interval, the voltage after the phase shift is multiplied and integrated with the point of the current waveform, and calibrated by the voltage ratio at the conduction angle to obtain the active power at different conduction angles. P ACT .
  • FIG. 14 is a flowchart of a method for obtaining a range of voltage values after phase shift in the presence of an inductive load. Firstly, if it is detected that the load is an inductive load, the voltage curve is selected at a small conduction angle, and the voltage waveform of one cycle of the hot line end is respectively collected under the above-mentioned selected conduction angle, and then the phase P at the target frequency F is obtained. And the voltage waveform collected above is obtained by using the G algorithm to obtain the phase offset Ps of different conduction angles, and finally the voltage range value is [PS, Fs/F+PS].
  • the current rms value is obtained in step 104, and the voltage rms value, the active power, and the apparent power are obtained in step 105, and the power parameter can be displayed in real time for reference by the user.
  • the power parameter is visually displayed to the user. For users to refer to at any time, convenient for users to use.
  • the power factor can be obtained, and the power factor is the product of the active power and the apparent power. Therefore, it is also possible to control the power factor display.
  • the embodiment is not limited to use in a two-wire device, and can also be applied to a three-wire device.
  • the present invention firstly adjusts the conduction angle to obtain the maximum voltage waveform value of the hot wire end or the load end at different conduction angles, and then the maximum voltage waveform value under different conduction angles and the corresponding conduction angle.
  • the effective value and the current effective value obtain the apparent power at different conduction angles, and finally control the current effective value, the voltage effective value, the active power and the apparent power display for the user's reference.
  • the invention can calibrate the power parameters according to the voltage ratios obtained under different conduction angles, can accurately obtain the power parameters of the two-wire circuit, and the user can intuitively observe the real-time power parameters, which is convenient for the user to use.
  • the embodiment further provides a measurement circuit for the power parameter, which may specifically include a live line end, a load end, a micro control unit 200, and a display module 300.
  • a measurement circuit for the power parameter which may specifically include a live line end, a load end, a micro control unit 200, and a display module 300.
  • FIG. 15 is the embodiment. A schematic diagram of a measurement circuit for power parameters in an example.
  • a micro control unit may include: a live line end, a load end, a micro control unit 200, and a display module 300;
  • One end of the micro control unit 200 is connected to the live end, and the other end is connected to the load end;
  • the micro control unit 200 is configured to adjust the conduction angle and obtain the load end or the fire end respectively.
  • the maximum voltage waveform value under different conduction angles and is used to obtain the standard maximum waveform value of different conduction angles under the standard voltage, and is used to obtain the current waveform under different conduction angles, thereby obtaining the current effective value and obtaining according to the voltage ratio.
  • the effective value of the voltage and the active power under different conduction angles, and the apparent power at different conduction angles are obtained according to the voltage effective value and the current effective value at different conduction angles, and the control display module 300 validates the current effective value and the voltage. Value, active power, and apparent power display;
  • the display module 300 is configured to display a current effective value, a voltage effective value, an active power, and an apparent power.
  • the measurement circuit of the power parameter in this embodiment may further include: a sampling resistor 400 for acquiring a current waveform, and a first field effect transistor 501 and a second field effect transistor 502 for controlling a current magnitude in the measurement circuit,
  • a sampling resistor 400 for acquiring a current waveform
  • a first field effect transistor 501 and a second field effect transistor 502 for controlling a current magnitude in the measurement circuit
  • FIG. 7 or FIG. 16, FIG. 17, FIG. 7 is a circuit diagram of a power parameter measuring circuit
  • FIG. 16 and FIG. 17 are another schematic diagram of a power parameter measuring circuit
  • FIG. 16 is a first collecting port connected to a live line end. Schematic diagram of time
  • FIG. 17 is a schematic diagram when the first collection port is connected to the load end:
  • the micro-control unit 200 may include a first collection port 201, a second collection port 202, and a processing unit 203, wherein the first collection port 201 may be connected to the hot line end or connected to the load end;
  • the second collection port 202 is connected to one end of the sampling resistor 400, and the other end of the sampling resistor 400 is connected and grounded;
  • the second collection port 202 When the first collection port 201 is connected to the load end, the second collection port 202 is connected to one end of the sampling resistor 400, and the other end of the sampling resistor 400 is connected and grounded;
  • the first field effect transistor 501 is located between the live line end and the sampling resistor 400, the second field effect transistor 502 is located between the sampling resistor 400 and the load, and the first field effect transistor 501 and the second field effect transistor 502 are used to control the current. ;
  • the first collection port 201 of the micro control unit 200 is configured to adjust the conduction angle size, obtain the maximum voltage waveform value of the load end or the hot end at different conduction angles, and obtain the standard maximum value of different conduction angles under the standard voltage.
  • a waveform value a second acquisition port 202 of the micro control unit 200, configured to acquire a current waveform at different conduction angles to obtain a current effective value; and a processing unit 203 configured to obtain the maximum voltage at different conduction angles obtained above
  • the waveform value is divided by the standard maximum waveform value under the corresponding conduction angle to obtain the voltage ratio under different conduction angles; the voltage effective value and the active power at different conduction angles are obtained according to the voltage ratio, and are valid according to the current effective value and the voltage.
  • the value obtains the apparent power and controls the display module 300 to apply the voltage rms value, the current RMS value, the active power, Apparent power display;
  • the display module 300 is configured to display a power parameter including a voltage effective value, a current effective value, an active power, an apparent power, and a power factor. It should be understood that the power parameter can be calculated according to the active power and the apparent power.
  • the display module 300 may specifically be a liquid crystal display (LCD).
  • LCD liquid crystal display
  • the embodiment further includes: a voltage dividing resistor.
  • a voltage dividing resistor When the first collection port 201 of the micro control unit 200 is connected to the live line end, a voltage dividing resistor is disposed between the first collection port 201 and the live line end.
  • a voltage dividing resistor When the first collection port 201 of the micro control unit 200 is connected to the load end, a voltage dividing resistor is disposed between the first collection port 201 and the load end.
  • FIG. 7 is a circuit diagram of the measurement circuit of the power parameter in the embodiment.
  • the micro control unit MCU may include a primary MCU and a secondary MCU.
  • the primary MCU may be described as a first MCU
  • the secondary MCU may be described as a second MCU.
  • the first MCU is configured to obtain a power parameter, and transmit the power parameter to the second MCU by using analog I2C communication, and the second MCU controls the display module to display the power parameter.
  • the sampling resistor may include a sampling resistor R1 and a sampling resistor R2; the voltage dividing resistor may include a voltage dividing resistor R3 and a voltage dividing resistor R4; the embodiment includes two field effect transistors, Q1 and Q2, wherein, for convenience of description, the first The FET is described as Q1, Q1 is between the live line and the sampling resistor, the second FET is described as Q2, Q2 is between the sampling resistor and the load, and Q1 and Q2 are used to control the magnitude of the current.
  • the first MCU is the main MCU, and the maximum voltage waveform value Vmax at different conduction angles can be obtained from the Live terminal, according to the maximum voltage waveform value Vmax and the standard maximum waveform value obtained under the standard voltage.
  • the voltage ratio at a certain conduction angle can be obtained, according to which the accurate power parameter can be obtained, and the current of the main loop can be obtained from the sampling resistors R1 and R2 to obtain an accurate current RMS value.
  • the second MCU is a slave MCU, and the first MCU transmits power parameters to the second MCU through analog I2C communication, and the second MCU controls the LCD to display the acquired power parameters.
  • the power parameters in this embodiment may mainly include a voltage RMS value, a current RMS value, an active power, an apparent power, and a power factor.
  • the sampling resistor R1 and the sampling resistor R2 are located at the second acquisition port AD2 of the MCU. And Q2.
  • the waveforms obtained by the sampling resistor R1 and the sampling resistor R2 in the main loop respectively indicate the sampling of the currents in the positive and negative directions in the measuring circuit on R1 and R2, and they can reflect the current in the main loop without distortion. Therefore, accurate current RMS values can be obtained.
  • the present embodiment is further provided with voltage dividing resistors R3 and R4.
  • a voltage dividing resistor R3 and R4 are provided between the first acquisition port AD1 and the live line end; or when the first acquisition port AD1 of the micro control unit is When the load terminal is connected, correspondingly, the voltage dividing resistors R3 and R4 are provided between the first acquisition port AD1 and the load terminal.
  • one end of the dimmer is connected to the live end, and the other end is connected to the load end, and there is no neutral end.
  • the power can be compared according to the voltage ratio obtained at different conduction angles.
  • the parameters are calibrated to obtain the power parameters accurately, and the user can intuitively obtain the power parameters at any time, which is convenient for the user to use.
  • the measuring circuit of the power parameter in the embodiment of the invention comprises: a micro control unit, a first field effect transistor and a second field effect transistor for controlling the magnitude of the current, a sampling resistor and a display module for displaying the power parameter, and the micro control
  • the first collecting port of the unit is used for adjusting the conduction angle, obtaining the maximum voltage waveform value of the load end or the hot end at different conduction angles, and obtaining the standard maximum waveform value of different conduction angles under the standard voltage
  • a second acquisition port of the control unit is configured to acquire a current waveform at different conduction angles to obtain a current effective value
  • a fourth processing unit of the micro control unit is configured to obtain a maximum voltage waveform at different conduction angles obtained as described above
  • the value is divided by the standard maximum waveform value under the corresponding conduction angle to obtain the voltage ratio under different conduction angles, and the voltage effective value and the active power at different conduction angles are obtained according to the voltage ratio, according to the current effective value and the voltage effective value. Get the apparent power

Abstract

公开了一种功率参数的测量方法以及测量电路。该测量方法包括:调整导通角大小,获取火线端或负载端在不同导通角下的最大电压波形值,再将不同导通角下的最大电压波形值与对应导通角在标准电压下获取的标准最大波形值相除,得到不同导通角下的电压比率,根据电压比率获取不同导通角下的电压有效值和有功功率,根据不同导通角下的电压有效值和电流有效值获取不同导通角下的视在功率,最后控制电流有效值、电压有效值、有功功率和视在功率显示供用户参考。可以根据在不同导通角下获得的电压比率来对功率参数进行校准,可以准确获取功率参数,并且用户可以直观的观察到实时功率参数,方便用户使用。

Description

一种功率参数的测量方法以及测量电路 技术领域
本发明涉及通信领域,尤其涉及一种功率参数的测量方法以及测量电路。
背景技术
功率表是现今智能电网的重要组成部分,他不仅是电网公司电力调度的重要参考依据,同时也能直观的为用户提供用电消耗,帮助用户养成节能用电习惯,具有重要意义。这样的功率表一般安装在每个家庭用户的总进线端,计量家庭内部所有耗电设备的电能消耗,并作为收取电费的凭证。而对于每个家用电器的电能损耗,需要设置具有计量功能的装置来实时显示每个家用电器的电能损耗。
目前,功率参数的测量大都是基于三线制,即电表上有三个接线端子,分别是火线、负载线和零线。想要获得功率参数,必须获取准确的电流和电压采样值,这就需要分别测得精准的电压和电流波形才可以精确的对功率参数进行运算。
而随着智能家居概念的兴起,开始研发基于两线制供电的各种电子智能设备,比如两线制的电子开关、调光器等。在家庭照明的布线系统的控制装置中,两线制的调光器或开关一般置于火线端,腔体中只有火线和负载线,没有零线。对于这种两线制的电路,没有零线端,现有技术中基于三线制的采集方法采集不到火线端和零线端两端的压差,在实际应用中无法获取准确的电压波形,也就无法获取准确的功率参数。
发明内容
本发明实施例提供了一种功率参数的测量方法以及测量电路,可以准确获取功率参数,方便用户使用。
本发明一方面提供了一种功率参数的测量方法,包括:
调整导通角大小,分别获取火线端或负载端在不同导通角下的最大电 压波形值;
将不同导通角下的最大电压波形值与对应导通角下的标准最大波形值相除,得到不同导通角下的电压比率,其中,所述标准最大波形值是在标准电压下测得的电压波形的峰值;
获取不同导通角下的电流有效值;
根据所述电压比率获取不同导通角下的电压有效值和有功功率,并根据不同导通角下的所述电压有效值和电流有效值获取不同导通角下的视在功率;
控制所述电流有效值、电压有效值、有功功率和视在功率显示。
可选的,获取不同导通角下的电流有效值,具体包括:通过采样电阻获取电流有效值。
可选的,将不同导通角下的最大电压波形值与对应导通角下的标准最大波形值相除的步骤之前,还包括:获取不同导通角下的标准最大波形值。
可选的,测量不同导通角下的标准最大波形值,具体包括:在标准电压下由大到小调整导通角的大小,并分别获取火线端或负载端在不同导通角下的最大电压值;根据不同导通角下获取的最大电压值得到电压最大值曲线,电压最大值曲线的横坐标为导通角,纵坐标为与导通角对应的最大电压值;根据电压最大值曲线获取不同导通角下的标准最大波形值。
可选的,根据电压比率获取不同导通角下的电压有效值,具体包括:将不同导通角下的电压比率与标准电压相乘,得到不同导通角下的电压有效值。
可选的,根据电压比率获取不同导通角下的电压有效值,具体包括:在不同导通角下,将标准电压下的一个周期内的瞬间电压的平方积分并取平均值后开平方根,并用导通角下的电压比率进行校准,得到不同导通角下的电压有效值。
可选的,当功率参数的测量电路中不包括感性负载时,根据电压比率获取不同导通角下的有功功率,具体包括:在不同导通角下,将标准电压下的一个周期内的瞬时功率积分并取平均值,并用导通角下的电压比率进行校准,得到不同导通角下的有功功率。
可选的,当功率参数的测量电路中包括感性负载时,根据电压比率获取不同导通角下的有功功率,具体包括:
在不同导通角下采集火线端或负载端在一个周期内的电压波形;
获取不同导通角下与目标电压频率F对应的相位P;
获取不同导通角下的过零点相位偏移,相位偏移Ps为:
Figure PCTCN2014088190-appb-000001
其中,Fs为采样频率;
将电压波形延迟Ps后与电流波形点对点相乘并积分,并用导通角下的电压比率进行校准,得到不同导通角下的有功功率。
可选的,可以根据电压频率F,采用Goertzel算法获取与目标电压频率F对应的相位P。
本发明第二方面提供了一种功率参数的测量电路,包括:
火线端、负载端、微控制单元和显示模块;
微控制单元的一端与火线端连接,另一端与负载端连接;
微控制单元,用于调整导通角大小,分别获取负载端或火线端在不同导通角下的最大电压波形值,并用于获取标准电压下不同导通角的标准最大波形值,并且用于获取不同导通角下的电流波形,从而获取电流有效值,根据电压比率获取不同导通角下的电压有效值和有功功率,并根据不同导通角下的电压有效值和电流有效值获取不同导通角下的视在功率,控制显示模块将电流有效值、电压有效值、有功功率和视在功率显示;
显示模块,用于显示电流有效值、电压有效值、有功功率和视在功率。
可选的,该功率参数的测量电路还可以包括:用于控制测量电路中电流大小的第一场效应管和第二场效应管,以及用于获取电流波形的采样电阻;
微控制单元包括处理单元、第一采集端口和第二采集端口;
第一场效应管位于火线端与采样电阻之间,第二场效应管位于采样电阻和负载之间;
微控制单元的第一采集端口与火线端连接,第二采集端口与采样电阻的一端连接,采样电阻的另一端与负载连接并接地;或微控制单元的第一采集端口与负载端连接,第二采集端口与采样电阻的一端连接,采样电阻的另一端与负载连接并接地;
微控制单元的第一采集端口,用于调整导通角大小,分别获取负载端或火线端在不同导通角下的最大电压波形值,并用于获取标准电压下不同导通角的标准最大波形值;
微控制单元的第二采集端口,用于根据采样电阻上获取到的电流波形获取不同导通角下的电流波形,从而获取电流有效值;
处理单元,用于将不同导通角下的最大电压波形值与对应导通角下的标准最大波形值相除,得到不同导通角下的电压比率;根据电压比率获取不同导通角下的电压有效值和有功功率,根据电流有效值和电压有效值获取视在功率。
可选的,该功率参数的测量电路还可以包括:分压电阻;当微控制单元的第一采集端口与火线端连接时,第一采集端口和火线端之间设有分压电阻;当微控制单元的第一采集端口与负载端连接时,第一采集端口和负载端之间设有分压电阻。
可选的,微控制单元包括:第一微控制单元和第二微控制单元;第一微控制单元用于获取功率参数并通过模拟I2C通信将功率参数传输到第二微控制单元中,由第二微控制单元控制显示模块将功率参数显示。
从以上技术方案可以看出,本发明实施例具有以下优点:
本发明采用先调整导通角大小,获取火线端或负载端在不同导通角下的最大电压波形值,再将不同导通角下的最大电压波形值与对应导通角下的在标准电压下获取的标准最大波形值相除,得到不同导通角下的电压比率,然后根据电压比率获取不同导通角下的电压有效值和有功功率,根据不同导通角下的电压有效值和电流有效值获取不同导通角下的视在功率,最后控制电流有效值、电压有效值、有功功率和视在功率显示以供用户参考。本发明可以根据在不同导通角下获得的电压比率来对功率参数进行校准,可以准确获取两线制电路的功率参数,并且用户可以直观的观察到实时功率参数,方便用户使用。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例中功率参数的测量方法的流程图;
图2a是本发明实施例中导通角为0时火线端的电压波形图;
图2b是本发明实施例中导通角为0时负载端的电压波形图;
图3a是本发明实施例中导通角为3ms时火线端的电压波形图;
图3b是本发明实施例中导通角为3ms时负载端的电压波形图;
图4a是本发明实施例中导通角为7ms时火线端的电压波形图;
图4b是本发明实施例中导通角为7ms时负载端的电压波形图;
图5是本发明实施例中获取最大电压波形值的方法流程图;
图6是本发明实施例中获取电压波形的方法流程图;
图7是本发明实施例中功率参数的测量电路的电路图;
图8是本发明实施例中电压有效值为195V~265V变化时得到的电压扫描曲线;
图9是图8中各电压扫描曲线与220V扫描曲线相除的归一化曲线;
图10是对图9中每个导通角下的电压值离散度予以表征的曲线图;
图11是节能灯的过零点波形图;
图12是卤素灯的过零点波形图;
图13是本实施例中采用G算法得到过零点相位偏移的示意图;
图14是本实施例中获取相位偏移后的电压值范围的示意图;
图15是本实施例中功率参数的测量电路的一个结构示意图;
图16是本实施例中功率参数的测量电路的另一个结构示意图
图17是本实施例中功率参数的测量电路的另一个结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范 围。
本发明实施例提供了一种功率参数的测量方法。本发明实施例还提供相关的功率参数的测量电路。以下分别详细说明,具体可参阅图1至17。
实施例一
本发明实施例提供了一种功率参数的测量方法,其中,为了描述方便,将以功率参数的测量电路的角度进行描述。
一种功率参数的测量方法,包括:调整导通角大小,获取火线端或负载端在不同导通角下的最大电压波形值;将不同导通角下的最大电压波形值与对应导通角下的标准最大波形值相除,得到不同导通角下的电压比率,其中,标准最大波形值是在标准电压下测得的电压波形的峰值;根据电压比率获取不同导通角下的电压有效值和有功功率,获取不同导通角下的电流有效值,并根据不同导通角下的电压有效值和电流有效值获取不同导通角下的视在功率;控制电流有效值、电压有效值、有功功率和视在功率显示。
应当理解的是,对于两线制电路,比如两线制的电子开关、调光器等,腔体内只有火线和负载线,没有零线,基于现有技术中针对三线制的采集方法无法采集到火线端和零线端两端的压差,也就无法获取准确的电压波形。
本实施例在工作状态下,可以通过调整导通角的大小,直接获取火线端或负载端的最大电压波形值,以及根据在标准电压下获取到的标准最大波形值来得到不同导通角下的电压比率,并使用该电压比率对功率参数进行校准,可以准确获取功率参数,解决了现有技术无法采集准确电压来获取功率参数的技术问题,并且用户可以随时直观的获取功率参数,方便用户使用。
本实施例还可以直接通过采样电阻获取电流有效值,并将电流有效值显示。
其中,本实施例可以将上述获取到的电流有效值与电压有效值相乘,得到视在功率。
其中,本实施例可以将上述获取到的电压比率与标准电压相乘,得到电压有效值。
其中,本实施例可以在不同导通角下,将标准电压下的一个周期内的 瞬间电压的平方积分并取平均值后开平方根,并用导通角下的电压比率进行校准,得到电压有效值。
其中,当本实施例中的功率参数的测量电路中不包括感性负载时,可以在不同导通角下,将标准电压下的一个周期内的瞬时功率积分并取平均值,并用该导通角下的电压比率进行校准,得到该导通角下的有功功率。
而当功率参数的测量电路中包括感性负载时,可以在不同导通角下采集火线端或负载端在一个周期内的电压波形,并获取不同导通角下与目标电压频率F对应的相位P,并获取不同导通角下的过零点相位偏移Ps,最后获取不同导通角下的有功功率,有功功率为将电压波形延迟Ps后与电流波形点对点相乘并积分,并用导通角下的电压比率进行校准。
其中,可以预先测得不同导通角下的标准最大波形值,具体可以通过以下方式获取标准电压下火线端或负载端在不同导通角下的标准最大波形值:
首先在标准电压下由大到小调整导通角的大小,并分别获取火线端或负载端在不同导通角下的最大电压值,然后根据不同导通角下获取的最大电压值得到电压最大值曲线,电压最大值曲线的横坐标为导通角,纵坐标为与导通角对应的最大电压值,再根据电压最大值曲线获取不同导通角下的标准最大波形值。
由上可知,本发明采用先调整导通角大小,获取火线端或负载端在不同导通角下的最大电压波形值,再将不同导通角下的最大电压波形值与对应导通角下的在标准电压下获取的标准最大波形值相除,得到不同导通角下的电压比率,然后根据电压比率获取不同导通角下的电压有效值和有功功率,根据不同导通角下的电压有效值和电流有效值获取不同导通角下的视在功率,最后控制电流有效值、电压有效值、有功功率和视在功率显示以供用户参考。本发明可以根据在不同导通角下获得的电压比率来对功率参数进行校准,可以准确获取两线制电路的功率参数,并且用户可以直观的观察到实时功率参数,方便用户使用。
实施例二
下面将以具体的应用例对本发明实施例的技术方案进行详细描述。
请参阅图1,具体流程可以如下:
101、在标准电压下,分别获取不同导通角下的标准最大波形值Vref;
标准最大波形值是在标准电压下获取到的电压波形的峰值,可以是一个周期内的波形峰值。其中,可以分别获取在不同导通角下火线端或零线端的标准最大波形值Vref,本实施例以获取火线端的标准最大波形值为例进行详细说明。
这个标准电压值可以是220V或110V等电压值,例如,家用情况下的市电标准电压一般为220V,本实施例中具体不做限定。
例如,在220V标准电压下,调整导通角的大小,分别获取在不同导通角下火线端的波形峰值Vref,其中,可以是从大到小调整导通角的大小,具体可以如下:
1011、在标准电压下由大到小调整导通角的大小,并分别获取火线端在不同导通角下的最大电压值;
应当理解的是,在标准电压220V下,半个波形的导通角范围为0~10ms。例如,本实施例中为了取得更准确的波形,本实施例中可以选取导通角为1.5ms~8.5ms的范围。可以将导通角从8.5ms到1.5ms逐渐减小,然后分别扫描Live端的最大电压值,得到不同导通角下的最大电压值。
需说明的是,也可以获取负载端在不同导通角下的最大电压值,具体不做限定。
1012、根据步骤1011获取到的不同导通角下的最大电压值得到电压最大值曲线;
步骤1011中获取到了在不同导通角下可以得到不同的最大电压值,将这些最大电压值依次存入数组中,可以得到一条电压最大值曲线,可以将该电压最大值曲线的横坐标为导通角,纵坐标为与该导通角对应的最大电压值。也可以将电压最大值曲线的纵坐标为导通角,横坐标为与导通角对应的最大电压值,本实施例不做具体限定。
1013、根据步骤1012得到的电压最大值曲线获取不同导通角下的标准最大波形值Vref。
从电压最大值曲线中可以直观的获取到不同导通角下对应有一个标准最大波形值Vref。
其中,最大电压波形值的获取方法具体还可以参阅图5,图5是扫描火线端时获取标准最大波形值Vref的方法流程图。首先打开负载,并在 标准电压下由大到小调整导通角的大小,然后判断当前导通角是否大于最小导通角,若是,则获取当前导通角下的标准最大电压波形值并存储,若否,则滑动窗口滤波,并储存。
102、调整导通角的大小,获取火线端在不同导通角下的最大电压波形值Vmax;具体可以如下:
应当理解的是,电网频率和电压的稳定度是衡量供电系统质量的两个主要指标,我国电网的频率稳定度在±0.2HZ的范围内,电网频率波动的累计误差很小,是相对稳定的。本实施例中假设目标电压频率是50Hz固定,并且是一个标准的正弦波,检测电网中的电压幅值变化。
分别取导通角为0、3ms和7ms为例,获取火线Live端或负载Load端的电压波形,具体可参阅图2a至图4b,图2a是导通角为0时Live端的电压波形图,图2b是导通角为0时Load端的电压波形图,图3a是导通角为3ms时Live端的电压波形图,图3b是导通角为3ms时Load端的电压波形图,图4a是导通角为7ms时Live端的电压波形图,图4b是导通角为7ms时Load端的电压波形图。由图2a至图4b可知,Live端和Load端的电压波形相等,仅是有180度的相位差,因此可以选择Live端或Load端作为检测电压幅值的基准信号。为了描述方便,本实施例中以Live端为例进行详细说明。
例如,可以在工作状态下,调整导通角的大小,选取一个周期内的电压波形,来获取火线端在不同导通角下的Vmax。例如,用户可以调整调光开关来控制负载的亮度,来获取在不同亮度下火线端的Vmax
其中,对步骤101和步骤102的执行顺序不作具体限定。
103、获取不同导通角下的电压比率Ratio,其中,Ratio=Vmax/Vref;
电压比率为步骤102中获取到的最大电压波形值Vmax与步骤101中测得的标准最大波形值Vref相除;
Ratio=Vmax/Vref;
其中,Ratio是电压比率。
其中,电压比率的获取方法具体还可以参阅图6,图6是电压比率的获取方法的方法流程图。首先判断场效应管是否关闭,若关闭,则获取不同导通角下的最大电压波形值Vmax,并将Vmax与标准电压下获取的标准最大电压波形值Vref相除,得到Ratio的值,若未关闭,则判断当前 导通角是否小于预置的一个导通角(例如,判断当前导通角是否小于7毫秒),若当前导通角小于7毫秒,则可以分别采集N次电压波形值(例如,可以分别采集5次电压波形值),并将每次获取的最大电压波形值存入数组,并求数组内这5个电压波形值的平均值Vavg,然后将Vavg与标准电压下获取的标准最大电压波形值Vref相除,得到Ratio的值,最后记录Ratio的值。
104、获取不同导通角下的电流有效值;
通过采样电阻获取电流有效值Irms,应当理解的是,通过功率参数的测量电路可知,可以在主回路上设置采样电阻,该采样电阻上得到的波形可以无失真反应主回路中的电流大小,因此直接通过系数校准即可获取准确的电流有效值Irms
该步骤104也可以在步骤102之前执行,具体不做限制。
105、根据电压比率Ratio获取不同导通角下的电压有效值和有功功率,并根据不同导通角下的电压有效值和电流有效值获取不同导通角下的视在功率;具体可以如下:
其中,电压有效值的计算方法可以如下:
可以将该导通角下的电压比率与标准电压相乘,得到电压有效值。例如,本实施例中的标准电压可以为220V,那么,电压有效值Urms为:
Urms=Ratio*220v。
还可以在不同导通角下,将标准电压下的一个周期内的瞬间电压的平方积分并取平均值后开平方根,并用导通角下的电压比率进行校准,得到不同导通角下的电压有效值,具体可参阅下述公式:
Figure PCTCN2014088190-appb-000002
其中,KV为电压有效值校准系数,KV包括了电压比率,Vpn(n)为在n时刻的电压瞬时值,Sample Count为在一个周期的电压采样点数。
需说明的是,本实施例中的Vpn(n)是在标准电压下n时刻的电压瞬时值,可以预先将标准电压下的波形预先保存,用于后续的计算。具体的,假设电压信号是频率不变,是标准的正弦波形,根据采样时间设定,可以预先计算出电压波形采样点的值,即标准电压下的瞬时电压值,并存入数组中。例如,本实施例中可以将采样时间设定为89us,那么瞬时电 压值v(n)为:
v(n)=774*sin(2*π*f*t)(f=50Hz,t=89us*n)。
其中,本实施例中功率参数的测量电路具体可参阅图7,图7是本实施例中功率参数的测量电路的示意图。具体将在后面实施例中对该电路图进行详细描述,此处不再赘述。
其中,为了得到准确的功率参数,可以对上述得到的电压有效值进行线性度验证,具体操作可以如下:
本实施例中以白炽灯(PHLIPS,60W)和节能灯(PHILIPS,Dimmable,25W)为例进行详细说明,并将其串入调光器线路中,供给交流电。
首先电压扫描firmware写入调光器的微控制单元(MCU,MicroControllerUnit)中,调节电压有效值的大小,分别得到不同电压下的扫描曲线。其中,电压有效值可以从195V到265V变化,每次变化5V。具体可参阅图8,图8是电压有效值为195V~265V变化时得到的电压扫描曲线,其中,从该曲线末端由上至下依次是电压有效值为195V、200V、205V、......260V、265V时得到的电压扫描曲线。
由图8可知,不同电压下的扫描曲线具有规律性,将220V的曲线作为基准曲线,其他电压下的曲线与220V曲线点对点相除,得到系数曲线,每条曲线以后10个点的均值分别作为基准值做归一化。请参阅图9,图9是图8中各电压扫描曲线与220V扫描曲线相除的归一化曲线,其中,从该曲线始端由上至下依次是电压有效值为195V、200V、205V、......260V、265V时得到的电压扫描曲线与220V扫描曲线相除的归一化曲线。
由图9可得,在导通角从6.94ms(8.5ms-26us*30*2)~1.5ms(8.5ms-26us*135*2)变化时,系数波动很小,我们可以通过对每个导通角下的电压值离散度(方差)予以表征,请参阅图10,图10是对图9中每个导通角下的电压值离散度予以表征的曲线图。
由图10可得,在导通角在6.94ms~1.5ms之间,离散度很小,基本为0,但随着导通的变大,离散度越来越高,说明此种算法在导通角6.94ms~1.5ms之间调节时可以实时的计算得到电压系数并能保证其准确性。
可以通过上述得到的不同导通角下的电压有效值Urms和电流有效值 Irms来计算得到该导通角下的视在功率PAPP,其中,视在功率为电流有效值与电压有效值的乘积,参见如下公式:
PAPP=Urms*Irms
需说明的是,视在功率的计算可以设定为2S计算一次。
本实施例中获取有功功率PACT的方法则分为以下两种情况,当功率参数的测量电路中含有感性负载,和不含有感性负载时,对有功功率的计算方法有很大不同。例如,用容性较强的负载的节能灯(NELSON,20W)和感性较强的卤素灯分别作测试,得到上述两个负载的过零点波形,具体可参阅图11和图12,图11是节能灯的过零点波形,图12是卤素灯的过零点波形。其中,图11中的曲线1为过零点电压波形,曲线2为正常的电压波形,图12中的曲线1为过零点电压波形,曲线2为正常的电压波形。
由图11和图12可知,对于容性负载,过零点波形可以真实反映电压的过零点,而对于感性负载会产生过零点延迟,这是由于电流滞后于电压造成的,因为电流采样是由过零点触发,所以计算有功功率,必须计算过零点的延迟点数。以下进行详细说明:
情况一、当功率参数的测量电路中不包括感性负载时:
当功率参数的测量电路中不包括感性负载时,在不同导通角下,将标准电压下的一个周期内的瞬时功率积分并取平均值,并用导通角下的电压比率进行校准,得到不同导通角下的有功功率。具体可参见下述公式:
Figure PCTCN2014088190-appb-000003
其中,Sample Count为一个周期的电压采样点数;
v(n)为标准电压下的瞬时电压值;
i(n)为标准电压下的瞬时电流值;
Kp为功率校正系数,其中,Kp包括了电压比率。
需说明的是,本实施例中假设电压信号是频率不变、标准的正弦波形,根据采样时间设定,可以预先计算出电压波形采样点的值,即标准电压下的瞬时电压值,并存入数组中。例如,本实施例中可以将采样时间设定为89us,那么瞬时电压值v(n)为:v(n)=774*sin(2*π*f*t)(f=50Hz,t=89us*n)。
情况二、当功率参数的测量电路中包括感性负载时:
由上可知,容性负载的过零点波形可以真实反映电压的过零点,而对于感性负载会产生过零点延迟,由于感抗的存在,导致电流滞后于电压,所以计算有功功率时,必须计算过零点的延迟点数,获取更正确的有功功率。
当功率参数的测量电路中包括感性负载时,获取有功功率的具体步骤可以如下:
S1、在不同导通角下采集火线端或负载端一个周期的电压波形;
其中,为了更好的呈现一个周期内的电压波形,可以选取一定幅度的导通角范围。
由图2a至图4b可知,当导通角小于5ms时,在Live端上总能检测到峰值,而随着导通角逐渐变大,所检测到的峰值也逐渐减小。优选的,可以在导通角<5ms时,采集Live端的一个周期的电压波形,并存储。
S2、获取不同导通角下与目标电压频率F对应的相位P;
应当理解的是,我国电网的频率稳定度在±0.2HZ的范围内,电网频率波动的累计误差很小,是相对稳定的。本实施例中假设目标电压频率是50Hz固定。为了更好的获取该电压频率F对应的相位P,可以对Live波形采用Goertzel算法来计算电压频率F对应的相位P,具体可以如下:
其中,运行Goertzel算法之前,先确定块的大小N,块的大小N控制频率分辨率的大小。为了获取最大频率分辨率可以尽量选取较高的N,然而N越大,检测到每个目标频率所需的时间就越多,根据嵌入式系统的运算速度,选取合适的N值,使目标频率在相应的频率分辨率区域的中点范围内。需说明的是,本实施例中的N不必是2的整数次幂。
具体的Goertzel算法步骤如下:
首先初始化系数:
K=N*target_freq/sample_rate;
w=2* *k/N;
cosine=cos(w);
Sine=sin(w);
Coeff=2*cosine。
每次迭代都需要三个变量q0,q1和q2,首先将这三个系数初始化为0,然后每次迭代都按照下面三个等式进行:
q0=coeff*q1-q2+sample;
q2=q1;
q1=q0。
N次迭代之后,就可以检测到目标频率的存在:
Real=(q1-q2*cosine)
Imag=(q2*sine)
Magnitude=sqrt(real^2+img^2)
Phase=atan2(real/imag)
其中,具体可参阅图13,图13是采用G算法后得到过零点的相位偏移图,其中,本实施例是以导通角为2ms为例进行详细说明,图中曲线2为火线端的波形,曲线1为目标电压频率谐波,则由图中区域3可知相位偏移为32个采样点。
相对于现有技术中采用快速傅立叶变换来得到电压频率F对应的相位P,本实施例中是检测一个或几个频率分量,采用Goertzel算法更有效率,所需的CPU资源少得多,运算速度快,并且对于一切不具备连续实时的FFT处理能力的嵌入式系统,采用Goertzel算法,其数字信号处理完全可以在采样间隔间完成。
S3、获取不同导通角下的过零点相位偏移Ps;
相位偏移Ps为:
Figure PCTCN2014088190-appb-000004
其中,Fs为采样频率。
S4、获取有功功率PACT
将电压波形延迟Ps后与电流波形点对点相乘并积分,并用该导通角下的电压比率进行校准,得到不同导通角下的有功功率PACT
需说明的是,感性负载识别可以和灯泡负载识别算法结合起来使用,当检测到感性负载时将调用本算法计算过零点相移点数N,计算有功功率时,则应使用经过相移后的电压,即[N,Fs/F+N]区间,使用该相移后的电压与电流波形点对点相乘并积分,并用该导通角下的电压比率进行校准,得到不同导通角下的有功功率PACT
其中,测量电路中含有感性负载时,电压比率的获取方法具体还可以 参阅图14,图14是存在感性负载时获取相位偏移后的电压值范围的方法流程图。首先若检测到负载为感性负载,则选取在较小导通角下扫描电压曲线,并在上述选取的导通角下分别采集火线端一个周期的电压波形,然后获取目标频率F下的相位P,并将上述采集到的电压波形采用G算法来获取不同导通角细啊的相位偏移Ps,最终得到电压范围值为[PS,Fs/F+PS]。
106、控制电流有效值、电压有效值、有功功率和视在功率显示。
在步骤104中获得了电流有效值,在步骤105中获得了电压有效值、有功功率和视在功率,则可以将上述功率参数实时显示供用户参考,本实施例将功率参数直观的显示给用户,供用户随时参考,方便了用户使用。
其中,上述获取了有功功率和视在功率,可以得到功率因数,功率因素为有功功率与视在功率的积。因此,还可以控制功率因数显示。
需说明的是,本实施例不限制用于两线制设备中,同时还可以应用在三线制设备中。
由上可知,本发明采用先调整导通角大小,获取火线端或负载端在不同导通角下的最大电压波形值,再将不同导通角下的最大电压波形值与对应导通角下的在标准电压下获取的标准最大波形值相除,得到不同导通角下的电压比率,然后根据电压比率获取不同导通角下的电压有效值和有功功率,根据不同导通角下的电压有效值和电流有效值获取不同导通角下的视在功率,最后控制电流有效值、电压有效值、有功功率和视在功率显示以供用户参考。本发明可以根据在不同导通角下获得的电压比率来对功率参数进行校准,可以准确获取两线制电路的功率参数,并且用户可以直观的观察到实时功率参数,方便用户使用。
实施例三
为了更好的实施上述方案,本实施例还提供了一种功率参数的测量电路,具体可以包括火线端、负载端、微控制单元200和显示模块300,可参阅图15,图15是本实施例中功率参数的测量电路的一个示意图。
一种微控制单元,可以包括:火线端、负载端、微控制单元200和显示模块300;
微控制单元200的一端与火线端连接,另一端与负载端连接;
微控制单元200,用于调整导通角大小,分别获取负载端或火线端在 不同导通角下的最大电压波形值,并用于获取标准电压下不同导通角的标准最大波形值,并且用于获取不同导通角下的电流波形,从而获取电流有效值,根据电压比率获取不同导通角下的电压有效值和有功功率,并根据不同导通角下的电压有效值和电流有效值获取不同导通角下的视在功率,控制显示模块300将电流有效值、电压有效值、有功功率和视在功率显示;
显示模块300,用于显示电流有效值、电压有效值、有功功率和视在功率。
具体的,本实施例中功率参数的测量电路还可以包括:用于获取电流波形的采样电阻400、以及用于控制测量电路中电流大小的第一场效应管501和第二场效应管502,具体可参阅图7或图16、图17,图7是功率参数的测量电路的电路图,图16和图17是功率参数的测量电路的另一个示意图,图16是第一采集端口与火线端连接时的示意图,图17是第一采集端口与负载端连接时的示意图:
微控制单元200可以包括第一采集端口201、第二采集端口202和处理单元203,其中,第一采集端口201可以与火线端连接,或者与负载端连接;
其中,当第一采集端口201与火线端连接时,第二采集端口202与采样电阻400的一端连接,采样电阻400的另一端负载连接并接地;
其中,当第一采集端口201与负载端连接时,第二采集端口202与采样电阻400的一端连接,采样电阻400的另一端负载连接并接地;
第一场效应管501位于火线端与采样电阻400之间,第二场效应管502位于采样电阻400和负载之间,第一场效应管501和第二场效应管502用于控制电流的大小;
微控制单元200的第一采集端口201,用于调整导通角大小,获取负载端或火线端在不同导通角下的最大电压波形值,并用于获取标准电压下不同导通角的标准最大波形值;微控制单元200的第二采集端口202,用于获取不同导通角下的电流波形,从而获取电流有效值;处理单元203,用于将上述得到的不同导通角下的最大电压波形值与对应导通角下的标准最大波形值相除,得到不同导通角下的电压比率;根据电压比率获取不同导通角下的电压有效值和有功功率,根据电流有效值和电压有效值获取视在功率,并控制显示模块300将电压有效值、电流有效值、有功功率、 视在功率显示;
显示模块300,用于显示功率参数,功率参数包括电压有效值、电流有效值、有功功率、视在功率和功率因素,应当理解的是,功率参数可以根据有功功率和视在功率计算得到。
其中,该显示模块300具体可以为液晶显示器(LCD,Liquid Crystal Display)。
为了获得更准确的电压波形,本实施例还包括:分压电阻。当微控制单元200的第一采集端口201与火线端连接时,第一采集端口201和火线端之间设有分压电阻。而当微控制单元200的第一采集端口201与负载端连接时,第一采集端口201和负载端之间设有分压电阻。
其中,功率参数的测量电路的电路图可以参阅图7,图7是本实施例中功率参数的测量电路的电路图。其中,该微控制单元MCU可以包括主MCU和从MCU,为了描述方便,可以将主MCU描述为第一MCU,将从MCU描述为第二MCU。
其中,第一MCU用于获取功率参数,并通过模拟I2C通信将功率参数传输到第二MCU中,由第二MCU控制显示模块将功率参数显示。采样电阻可以包括采样电阻R1和采样电阻R2;分压电阻可以包括分压电阻R3和分压电阻R4;本实施例包括两个场效应管,Q1和Q2,其中,为了描述方便,将第一场效应管描述为Q1,Q1位于火线端与采样电阻之间,将第二场效应管描述为Q2,Q2位于采样电阻和负载之间,Q1和Q2用于控制电流的大小。
由图7可知,第一MCU为主MCU,可以从Live端获取在不同导通角下的最大电压波形值Vmax,根据该最大电压波形值Vmax,以及在标准电压下获得的标准最大波形值,可以得到某个导通角下的电压比率,根据该电压比率可以获取准确的功率参数,并可以从采样电阻R1和R2中获取主回路的电流大小以此获取准确的电流有效值。第二MCU为从MCU,第一MCU通过模拟I2C通信将功率参数传输到第二MCU中,由第二MCU控制LCD将获取到的功率参数予以显示。其中,本实施例中的功率参数主要可以包括电压有效值、电流有效值、有功功率、视在功率和功率因素等。
其中,采样电阻R1和采样电阻R2位于MCU的第二采集端口AD2 和Q2。其中,主回路中的采样电阻R1和采样电阻R2上所得到的波形,分别表示测量电路中正负方向的电流在R1和R2上的采样,它们可以无失真的反应主回路中的电流大小,因此可以获取准确的电流有效值。
为了得到准确的电压波形,本实施例还设有分压电阻R3和R4。其中,当MCU的第一采集端口AD1与火线端连接时,相应的,第一采集端口AD1和火线端之间设有分压电阻R3和R4;或当微控制单元的第一采集端口AD1与负载端连接时,相应的,第一采集端口AD1和负载端之间设有分压电阻R3和R4。
由图7可知,本实施例中调光器的一端与火线端连接,另一端与负载端连接,并没有零线端,本实施例可以根据在不同导通角下获得的电压比率来对功率参数进行校准,可以准确获取功率参数,并且用户可以随时直观的获取功率参数,方便用户使用。
本发明实施例中的功率参数的测量电路包括:微控制单元、用于控制电流的大小的第一场效应管和第二场效应管、采样电阻和用于显示功率参数的显示模块,微控制单元的第一采集端口,用于调整导通角大小,获取负载端或火线端在不同导通角下的最大电压波形值,并用于获取标准电压下不同导通角的标准最大波形值;微控制单元的第二采集端口,用于获取不同导通角下的电流波形,从而获取电流有效值;微控制单元的第四处理单元,用于将上述得到的不同导通角下的最大电压波形值与对应导通角下的标准最大波形值相除,得到不同导通角下的电压比率,根据电压比率获取不同导通角下的电压有效值和有功功率,根据电流有效值和电压有效值获取视在功率。本发明可以根据在不同导通角下获得的电压比率来对功率参数进行校准,可以准确获取两线制电路的功率参数,并且用户可以直观的观察到实时功率参数,方便用户使用。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关的硬件完成,的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上对本发明所提供的一种功率参数的测量方法以及测量电路进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐 述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的技术人员,依据本发明实施例的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (13)

  1. 一种功率参数的测量方法,其特征在于,包括:
    调整导通角大小,分别获取火线端或负载端在不同导通角下的最大电压波形值;
    将不同导通角下的最大电压波形值与对应导通角下的标准最大波形值相除,得到不同导通角下的电压比率,其中,所述标准最大波形值是在标准电压下测得的电压波形的峰值;
    获取不同导通角下的电流有效值;
    根据所述电压比率获取不同导通角下的电压有效值和有功功率,并根据不同导通角下的所述电压有效值和电流有效值获取不同导通角下的视在功率;
    控制所述电流有效值、电压有效值、有功功率和视在功率显示。
  2. 根据权利要求1所述的方法,其特征在于,所述获取不同导通角下的电流有效值,具体包括:通过采样电阻获取电流有效值。
  3. 根据权利要求1所述的方法,其特征在于,所述将不同导通角下的最大电压波形值与对应导通角下的标准最大波形值相除的步骤之前,还包括:
    获取不同导通角下的标准最大波形值。
  4. 根据权利要求3所述的方法,其特征在于,所述测量不同导通角下的标准最大波形值,具体包括:
    在标准电压下由大到小调整导通角的大小,并分别获取火线端或负载端在不同导通角下的最大电压值;
    根据不同导通角下获取的最大电压值得到电压最大值曲线,所述电压最大值曲线的横坐标为导通角,纵坐标为与所述导通角对应的最大电压值;
    根据所述电压最大值曲线获取不同导通角下的标准最大波形值。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,根据所述电压比率获取不同导通角下的电压有效值,具体包括:
    将不同导通角下的所述电压比率与标准电压相乘,得到不同导通角下的电压有效值。
  6. 根据权利要求1至4中任一项所述的方法,其特征在于,根据所述电压比率获取不同导通角下的电压有效值,具体包括:
    在不同导通角下,将标准电压下的一个周期内的瞬间电压的平方积分并取平均值后开平方根,并用所述导通角下的电压比率进行校准,得到不同导通角下的电压有效值。
  7. 根据权利要求1至4中任一项所述的方法,其特征在于,当功率参数的测量电路中不包括感性负载时,根据所述电压比率获取不同导通角下的有功功率,具体包括:
    在不同导通角下,将标准电压下的一个周期内的瞬时功率积分并取平均值,并用所述导通角下的电压比率进行校准,得到不同导通角下的有功功率。
  8. 根据权利要求1至4中任一项所述的方法,其特征在于,当功率参数的测量电路中包括感性负载时,根据所述电压比率获取不同导通角下的有功功率,具体包括:
    在不同导通角下采集火线端或负载端在一个周期内的电压波形;
    获取不同导通角下与目标电压频率F对应的相位P;
    获取不同导通角下的过零点相位偏移,相位偏移Ps为:
    Figure PCTCN2014088190-appb-100001
    其中,Fs为采样频率;
    将电压波形延迟Ps后与电流波形点对点相乘并积分,并用所述导通角下的电压比率进行校准,得到不同导通角下的有功功率。
  9. 根据权利要求8所述的方法,其特征在于,
    根据电压频率F,采用Goertzel算法获取与目标电压频率F对应的相位P。
  10. 一种功率参数的测量电路,其特征在于,包括:
    火线端、负载端、微控制单元和显示模块;
    所述微控制单元的一端与火线端连接,另一端与负载端连接;
    所述微控制单元,用于调整导通角大小,分别获取负载端或火线端在不同导通角下的最大电压波形值,并用于获取标准电压下不同导通角的标准最大波形值,并且用于获取不同导通角下的电流波形,从而获取电流有效值,根据所述电压比率获取不同导通角下的电压有效值和有功功率,并根据不同导通角下的所述电压有效值和电流有效值获取不同导通角下的视在功率,控制显示模块将所述电流有效值、电压有效值、有功功率和视在功率显示;
    所述显示模块,用于显示所述电流有效值、电压有效值、有功功率和视在功率。
  11. 根据权利要求10所述的功率参数的测量电路,其特征在于,还包括:用于控制所述测量电路中电流大小的第一场效应管和第二场效应管,以及用于获取电流波形的采样电阻;
    所述微控制单元包括处理单元、第一采集端口和第二采集端口;
    所述第一场效应管位于火线端与采样电阻之间,第二场效应管位于采样电阻和负载之间;
    所述微控制单元的第一采集端口与火线端连接,第二采集端口与采样电阻的一端连接,所述采样电阻的另一端与负载连接并接地;或所述微控制单元的第一采集端口与负载端连接,第二采集端口与采样电阻的一端连接,所述采样电阻的另一端与负载连接并接地;
    所述微控制单元的第一采集端口,用于调整导通角大小,分别获取负载端或火线端在不同导通角下的最大电压波形值,并用于获取标准电压下不同导通角的标准最大波形值;
    所述微控制单元的第二采集端口,用于根据所述采样电阻上获取到的电流波形获取不同导通角下的电流波形,从而获取电流有效值;
    所述处理单元,用于将不同导通角下的最大电压波形值与对应导通角下的标准最大波形值相除,得到不同导通角下的电压比率;根据所述电压比率获取不同导通角下的电压有效值和有功功率,根据所述电流有效值和所述电压有效值获取视在功率。
  12. 根据权利要求10或11所述的功率参数的测量电路,其特征在于,
    还包括:分压电阻;
    当所述微控制单元的第一采集端口与火线端连接时,所述第一采集端口和火线端之间设有所述分压电阻;
    当所述微控制单元的第一采集端口与负载端连接时,所述第一采集端口和负载端之间设有所述分压电阻。
  13. 根据权利要求10或11所述的功率参数的测量电路,其特征在于,
    所述微控制单元包括:第一微控制单元和第二微控制单元;
    所述第一微控制单元用于获取功率参数并通过模拟I2C通信将所述功率参数传输到第二微控制单元中,由所述第二微控制单元控制显示模块将所述功率参数显示。
PCT/CN2014/088190 2013-10-12 2014-10-09 一种功率参数的测量方法以及测量电路 WO2015051744A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
NZ718882A NZ718882A (en) 2013-10-12 2014-10-09 Measurement method and measurement circuit for power parameter
MYPI2016701227A MY186129A (en) 2013-10-12 2014-10-09 Measurement method and measurement circuit for power parameter
AU2014334295A AU2014334295B2 (en) 2013-10-12 2014-10-09 Measurement method and measurement circuit for power parameter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310475639.0 2013-10-12
CN201310475639.0A CN104569573B (zh) 2013-10-12 2013-10-12 一种功率参数的测量方法以及测量电路

Publications (1)

Publication Number Publication Date
WO2015051744A1 true WO2015051744A1 (zh) 2015-04-16

Family

ID=52812530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/088190 WO2015051744A1 (zh) 2013-10-12 2014-10-09 一种功率参数的测量方法以及测量电路

Country Status (5)

Country Link
CN (1) CN104569573B (zh)
AU (1) AU2014334295B2 (zh)
MY (1) MY186129A (zh)
NZ (1) NZ718882A (zh)
WO (1) WO2015051744A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113794955A (zh) * 2021-11-16 2021-12-14 成都理工大学 一种分布式注浆过程动态监测装置及方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109690329A (zh) * 2016-08-19 2019-04-26 路晟(上海)科技有限公司 电功率控制系统和方法
CN111736648B (zh) * 2020-05-26 2022-08-09 科华恒盛股份有限公司 输出电压控制方法、装置及终端设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4720761A (en) * 1987-02-19 1988-01-19 Westinghouse Electric Corp. Electromagnetic contactor with current regulated electromagnetic coil for holding the contacts closed
CN1356859A (zh) * 2000-06-15 2002-07-03 香港城市大学 可调光式电子镇流器
CN1702465A (zh) * 2005-06-16 2005-11-30 赵熙华 普适电能表
CN1815247A (zh) * 2006-03-10 2006-08-09 中国航天科技集团公司第五研究院第五一四研究所 一种电功率测量方法及其测量装置
US20070063753A1 (en) * 2003-05-30 2007-03-22 Brian Cuthbertson Waveform detection, in particular for the representation of the root mean square of a waveform
CN101149405A (zh) * 2007-09-20 2008-03-26 上海交通大学 交流点焊动态电阻实时测量装置与方法
CN101490573A (zh) * 2006-06-19 2009-07-22 Mrl工业公司 高精度原位电阻测量方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101909391B (zh) * 2010-08-10 2013-07-31 浙江大学 相控调光的led驱动器及其驱动方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4720761A (en) * 1987-02-19 1988-01-19 Westinghouse Electric Corp. Electromagnetic contactor with current regulated electromagnetic coil for holding the contacts closed
CN1356859A (zh) * 2000-06-15 2002-07-03 香港城市大学 可调光式电子镇流器
US20070063753A1 (en) * 2003-05-30 2007-03-22 Brian Cuthbertson Waveform detection, in particular for the representation of the root mean square of a waveform
CN1702465A (zh) * 2005-06-16 2005-11-30 赵熙华 普适电能表
CN1815247A (zh) * 2006-03-10 2006-08-09 中国航天科技集团公司第五研究院第五一四研究所 一种电功率测量方法及其测量装置
CN101490573A (zh) * 2006-06-19 2009-07-22 Mrl工业公司 高精度原位电阻测量方法
CN101149405A (zh) * 2007-09-20 2008-03-26 上海交通大学 交流点焊动态电阻实时测量装置与方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113794955A (zh) * 2021-11-16 2021-12-14 成都理工大学 一种分布式注浆过程动态监测装置及方法

Also Published As

Publication number Publication date
CN104569573B (zh) 2017-10-13
NZ718882A (en) 2017-06-30
AU2014334295A1 (en) 2016-05-05
CN104569573A (zh) 2015-04-29
MY186129A (en) 2021-06-24
AU2014334295B2 (en) 2016-12-08

Similar Documents

Publication Publication Date Title
US8843334B2 (en) Utility metering
US9869705B2 (en) Magnetometer sampling to determine an electric power parameter
WO2015051744A1 (zh) 一种功率参数的测量方法以及测量电路
CN106526505B (zh) 交流稳压电源非线性带载能力特性测试方法及系统
CN103675749A (zh) 电能表直流与偶次谐波状态下性能检测装置
CN103197111A (zh) 三相交流电综合电量检测方法及检测电路
CN110231504A (zh) 检测窃电行为的方法及窃电检测设备
CN112986681A (zh) 一种低压电力信号相位差测量装置
CN202794284U (zh) 多功能智能电力仪表
WO2018032514A1 (zh) 电功率控制系统和方法
CN107918050A (zh) 一种功耗测试系统及方法
CN204613303U (zh) 一种小型阻抗分析仪
CN103278676A (zh) 电动机软起动器的电流真有效值检测电路
CN203688788U (zh) 基于铁磁材料基本磁化曲线的自动测量装置
CN201417260Y (zh) 一种分倍频式绝缘子等值附盐密度测量仪
CN211554130U (zh) 一种基于nb-iot的智慧安全用电监测装置
CN203204073U (zh) 一种数字式相位差测量仪
CN206638728U (zh) 一种隔离电力线电压测量装置
CN206223958U (zh) 一种程控交直流模拟标准电阻器
CN203643594U (zh) 电能表直流与偶次谐波状态下性能检测装置
CN219842502U (zh) 一种线路状态监测装置及系统
Shuming et al. Application of benchmark nonlinear load in UPS power supply testing
CN203101473U (zh) 三相交流电综合电量检测电路
Zhang et al. Research and Design of High Voltage Line Harmonic Detector Based on Electric Field Coupling Method
Zhou et al. Non-invasive electrical appliance analysis and identification device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14851937

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014334295

Country of ref document: AU

Date of ref document: 20141009

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14851937

Country of ref document: EP

Kind code of ref document: A1