WO2015051668A1 - 天线系统和基站 - Google Patents
天线系统和基站 Download PDFInfo
- Publication number
- WO2015051668A1 WO2015051668A1 PCT/CN2014/084275 CN2014084275W WO2015051668A1 WO 2015051668 A1 WO2015051668 A1 WO 2015051668A1 CN 2014084275 W CN2014084275 W CN 2014084275W WO 2015051668 A1 WO2015051668 A1 WO 2015051668A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- radio frequency
- beam port
- narrow beam
- antenna array
- antenna
- Prior art date
Links
- 238000002955 isolation Methods 0.000 claims description 6
- 238000010586 diagram Methods 0.000 description 23
- 238000000034 method Methods 0.000 description 10
- 238000004891 communication Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000010295 mobile communication Methods 0.000 description 2
- 238000003491 array Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q25/00—Antennas or antenna systems providing at least two radiating patterns
- H01Q25/002—Antennas or antenna systems providing at least two radiating patterns providing at least two patterns of different beamwidth; Variable beamwidth antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/24—Supports; Mounting means by structural association with other equipment or articles with receiving set
- H01Q1/241—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
- H01Q1/246—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/52—Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
- H01Q1/521—Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/0006—Particular feeding systems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/06—Arrays of individually energised antenna units similarly polarised and spaced apart
- H01Q21/061—Two dimensional planar arrays
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/06—Arrays of individually energised antenna units similarly polarised and spaced apart
- H01Q21/08—Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
Definitions
- the embodiments of the present invention relate to communication technologies, and in particular, to an antenna system and a base station.
- GSM Global System For Mobile Communications
- UMTS Universal Mobile Telecommunications System
- LTE Long Term Evolution
- an embodiment of the present invention provides an antenna system and a base station to solve the problem that a small-interval multi-column antenna can only provide a narrow beam, and meet the requirement that the antenna system simultaneously provide a wide beam and a narrow beam.
- an embodiment of the present invention provides an antenna system, including:
- a first antenna array for forming a wide beam coverage and a second antenna array for forming a narrow beam coverage
- the first antenna array includes at least one column of antennas, each column of antennas provides at least one wide beam port, the second antenna array includes at least two columns of antennas, and the second antenna array provides at least one narrow beam port.
- the interval between the first antenna array and the second antenna array is greater than the column spacing of the second antenna array, and/or, the first day An isolation device is disposed between the line array and the second antenna array.
- the first antenna array includes at least two columns of antennas
- the column spacing of the first antenna array Greater than the column spacing of the second antenna array.
- any one of the first to the second possible implementation manners of the first aspect in a third possible implementation manner of the first aspect, the method further includes: a multi-beam forming device, a second antenna The array forms at least one narrow beam through the multi-beamforming device, and at least one narrow beam is extracted through the narrow beam port.
- the first implementation of the first to the third aspect the fourth possible implementation manner of the first aspect, further includes: a frequency band combiner, a frequency band The combiner is connected to a narrow beam port, and/or a wide beam port.
- a base station including:
- the at least one wide beam port is connected to a first radio frequency module; or
- At least one wide beam port is connected to at least two first radio frequency modules through a sub-band combiner; or at least one wide beam port is connected to one first radio frequency module, and the other at least one wide beam port is connected to the sub-band combiner At least two first radio frequency modules are connected.
- the at least one narrow beam port is connected to a second radio frequency module; or At least one narrow beam port is connected to at least two second radio frequency modules through a subband combiner; or at least one narrow beam port is connected to one second radio frequency module, and the other at least one narrow beam port is connected to the subband combiner At least two second radio frequency modules are connected.
- the at least one wide beam port is connected to a third radio frequency module, and the at least one narrow beam port is connected to a third radio frequency module; or
- the at least one wide beam port is connected to the at least two third radio frequency modules by the subband combiner, and the at least one narrow beam port is connected to a third radio frequency module; or the at least one wide beam port is connected to a third radio frequency module, And the other at least one wide beam port is connected to the at least two third radio frequency modules through the subband combiner, and the at least one narrow beam port is connected to a third radio frequency module; or the at least one wide beam port and the third radio frequency module Connecting, and at least one narrow beam port is connected to at least two third radio frequency modules through a sub-band combiner; or
- At least one wide beam port is connected to at least two third radio frequency modules through a subband combiner, and at least one narrow beam port is connected to at least two third radio frequency modules through a subband combiner; or at least one wide beam port Connected to a third radio frequency module, and the other at least one wide beam port is connected to the at least two third radio frequency modules through the sub-band combiner, and the at least one narrow beam port passes through the sub-band combiner and the at least two third radio frequency Module connection; or, The at least one wide beam port is connected to a third radio frequency module, and the at least one narrow beam port is connected to a third radio frequency module, and the other at least one narrow beam port is connected to the at least two third radio frequency modules by using the subband combiner; Or at least one wide beam port is connected to at least two third radio frequency modules through a sub-band combiner, and at least one narrow beam port is connected to one third radio frequency module, and the other at least one narrow beam port is connected to the sub-band combiner Connected to at least two
- an antenna system and a base station includes a first antenna array forming a wide beam and a second antenna array forming a narrow beam, wherein the first antenna array includes at least one column of antennas, and each column antenna provides at least one wide beam Port, the second antenna array includes at least two columns of antennas, the second antenna array provides at least one narrow beam port, the wide beam formed by the antenna system is led out through at least one wide beam port, and the narrow beam formed by the antenna system is led out through at least one narrow beam port It can solve the problem that the small-interval multi-column antenna can only provide a narrow beam, and meet the requirement that the antenna system provides both a wide beam and a narrow beam.
- FIG. 1 is a schematic structural diagram of Embodiment 1 of an antenna system according to the present invention
- FIG. 2 is a schematic structural diagram of Embodiment 1 of an antenna system according to the present invention
- 3 is a schematic diagram of a wide beam of the antenna system according to the first embodiment of the present invention
- FIG. 4 is a schematic diagram of a narrow beam of the antenna system according to the first embodiment of the present invention
- FIG. 1 is a schematic structural diagram of Embodiment 1 of an antenna system according to the present invention
- FIG. 2 is a schematic structural diagram of Embodiment 1 of an antenna system according to the present invention
- 3 is a schematic diagram of a wide beam of the antenna system according to the first embodiment of the present invention
- FIG. 4 is a schematic diagram of a narrow beam of the antenna system according to the first embodiment of the present invention
- FIG. 1 is a schematic structural diagram of Embodiment 1 of an antenna system according to the present invention
- 3 is a schematic diagram of a wide beam of the antenna system according
- FIG. 7 is a schematic structural diagram of Embodiment 4 of an antenna system according to the present invention
- FIG. 8 is a schematic structural diagram of Embodiment 1 of a base station according to the present invention
- FIG. 9 is a schematic structural diagram of Embodiment 2 of a base station according to the present invention
- FIG. 11 is a schematic structural diagram of Embodiment 4 of a base station according to the present invention
- FIG. 12 is a schematic diagram of a wide and narrow beam 1 of Embodiment 4 of the base station according to the present invention
- Schematic diagram of wide and narrow beam two The technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention.
- the embodiments are a part of the embodiments of the invention, and not all of the embodiments. All other embodiments obtained by those skilled in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
- the antenna system 10 of this embodiment may include: a first antenna array 11 and a second antenna array 12, wherein the first antenna array 11, For forming a wide beam coverage; a second antenna array 12 for forming a narrow beam coverage.
- the first antenna array 11 includes at least one column of antennas, each column of antennas providing at least one wide beam port 112, the second antenna array 12 includes at least two columns of antennas, and the second antenna array provides at least one narrow beam port 122.
- the antenna system 10 includes a first antenna array 11 and a second antenna array 12.
- the first antenna array 11 includes a column of antennas 111.
- a wide beam port 112 the second antenna array 12 includes four columns of antennas 121, providing three narrow beam ports 122a, 122b, and 122c, narrow beams passing through the narrow The beam port is taken out.
- 3 is a schematic diagram of a wide beam according to Embodiment 1 of the antenna system of the present invention. As shown in FIG. 3, a wide beam coverage formed by a column of antennas 111 of the first antenna array 11 in FIG.
- FIG. 2 is an omnidirectional beam, which can cover a larger 4 is a schematic diagram of a narrow beam of the antenna system of the first embodiment of the present invention.
- the four-column antenna 121 of the second antenna array 12 of FIG. 2 forms three narrow beam covers, respectively, and the second antenna array
- the three narrow beam ports 122a, 122b, and 122c of 12 are led out, the coverage of each narrow beam is smaller than the coverage of the wide beam, and the second antenna array 12 is configured by a small-interval multi-column antenna, by splitting a single beam into Multi-beam implementation of space division multiple access can increase antenna capacity.
- the antenna system of this embodiment includes a first antenna array forming a wide beam and a second antenna array forming a narrow beam, wherein the first antenna array includes at least one column of antennas, each column antenna provides at least one wide beam port, and the second antenna The array includes at least two columns of antennas, and the second antenna array provides at least one narrow beam port.
- the wide beam formed by the antenna system is led out through at least one wide beam port, and the narrow beam formed by the antenna system is led out through at least one narrow beam port, which can solve the small interval.
- Multi-column antennas can only provide narrow beam problems, meeting the need for antenna systems to provide both wide and narrow beams.
- the antenna system 10 of the present embodiment is based on the antenna structure shown in FIG. 1, the interval between the first antenna array 11 and the second antenna array 12 is larger than the column spacing of the second antenna array 12, and / Or, an isolation device is disposed between the first antenna array 11 and the second antenna array 12 to reduce mutual coupling between the first antenna array 11 and the second antenna array 12.
- 5 is a schematic structural diagram of Embodiment 2 of an antenna system according to the present invention. As shown in FIG. 5, based on the antenna structure shown in FIG. 1, further, a first antenna array 11 and a second antenna array 12 are disposed between The isolation device 21 is configured to reduce the mutual coupling between the first antenna array 11 and the second antenna array 12 to ensure the beam quality of the wide beam.
- the isolation wall, the isolation board, etc. This is not specifically limited.
- the column spacing of the first antenna array is greater than the column spacing of the second antenna array.
- the column spacing of the multi-column antennas of the first antenna array is larger than the column spacing of the antenna arrays of the second antenna, wide beam coverage is formed by the first antenna array, and the large column spacing of the first antenna array can be reduced to provide a wide beam. Interference between the covered columns of antennas.
- FIG. 6 is a schematic structural diagram of Embodiment 3 of an antenna system according to the present invention, as shown in FIG.
- the antenna system 10 of the example may further include: a multi-beam forming device 31, the multi-beam forming device 31 is connected to the second antenna array 12, and the second antenna array is further provided on the basis of the antenna structures shown in the above two embodiments. 12 is formed by the multi-beamforming device 31 to form at least one narrow beam, the at least one narrow beam being led out through the narrow beam port 122.
- the second antenna array 12 is configured to form a narrow beam coverage, and the specific direction, coverage area, and number of beams of the narrow beam may be controlled by the multi-beam forming device 31, for example, by the multi-beam forming device 31.
- the phase, amplitude and other parameters of the array antenna can be adjusted to form a plurality of narrow beam coverages.
- the multi-beam forming device by integrating the multi-beam forming device in the antenna system, it is not necessary to separately configure the multi-beam forming device for the antenna system, so that the function of forming the wide and narrow beam of the antenna system is more intelligent, and the antenna system leads the wide beam through the wide beam port.
- a narrow beam is extracted through a narrow beam port, and only a wide beam or only a narrow beam can be provided as needed, or a wide and narrow beam can be provided at the same time.
- FIG. 7 is a schematic structural diagram of Embodiment 4 of the antenna system of the present invention.
- the antenna system 10 of the present embodiment may further include: a sub-band combined circuit on the basis of the antenna structure shown in FIG.
- the frequency division combiner 41 is connected to the wide beam port and/or the narrow beam port, and the antenna system 10 combines signals of different frequency bands into a mixed signal or divides the mixed signal into different signals by the frequency division combiner 41. The signal of the band.
- the frequency band combiner 41 can combine signals of different frequency bands into a mixed signal, or divide the mixed signal into signals of different frequency bands, so that the antenna system can simultaneously process signals of different frequency bands, for example,
- the signal of the frequency band supported by the GSM system and the signal of the frequency band supported by the LTE system are combined and fed into the antenna system, so that the antenna system can process the signals of the two different frequency bands.
- the port of the mixed signal can be directly provided to the radio frequency module, simplifying the connection structure between the antenna system and the radio frequency module.
- sub-band combiner 41 may be integrated in the antenna system as shown in FIG. 7, as an integral part of the antenna, or may not be integrated in the antenna system, as an independent structure and antenna system 10 Connection, here is not specifically limited.
- FIG. 8 is a schematic structural diagram of Embodiment 1 of a base station according to the present invention.
- the system in this embodiment includes: an antenna system 10 and at least one radio frequency module 20, wherein the antenna system 10 can adopt FIG. 1 to FIG. 7 (FIG. 3 and Figure 4 except for the structure of any antenna system embodiment, RF module 20 is coupled to antenna system 10 via at least one wide beam port and/or at least one narrow beam port.
- the structure of the base station embodiment shown in FIG. 8 will be described in detail below by using several specific embodiments.
- FIG. 9 is a schematic structural diagram of Embodiment 2 of a base station according to the present invention.
- the antenna system 10 includes a first antenna array 11 and a second antenna array 12.
- the first antenna array 11 includes two columns of antennas 111a and 111b.
- the antenna 111a provides a wide beam port 112a
- the antenna 111b provides a wide beam port 112b
- the second antenna array 12 includes four columns of antennas 121
- three narrow beam ports 122a, 122b and 122c are provided
- the second antenna array 12 forms three The narrow beams are led out through narrow beam ports 122a, 122b, and 122c, respectively.
- the antenna system is connected to the first radio frequency module through a wide beam port, and the connection mode may be that the wide beam port is connected to one first radio frequency module, or the wide beam port is supported by the sub-band combiner and two or more support different frequency bands.
- the first RF module is connected.
- the first radio frequency module is connected to the wide beam port, and therefore the first radio frequency module is a radio frequency module supporting a wide beam.
- the first radio module supporting the different frequency bands is the first radio frequency module 21, the first radio frequency module 22, and the first radio frequency module 23 of the frequency band 3.
- the wide beam port 112a is connected to the frequency band first frequency module 21 and the frequency band two first radio frequency module 22 through the frequency band combiner 40, and the other wide beam port 112b is connected to the frequency band three first radio frequency module 23.
- the antenna 111a can simultaneously transmit and receive the mixed signal of the frequency band 1 and the frequency band 2, and the antenna 11b can transmit and receive the signal of the frequency band 3, where the frequency band 1, the frequency band 2 and the frequency band 3 can be any communication.
- the frequency band is not specifically limited here.
- the antenna system can provide wide beam coverage of different frequency bands, and the coverage range can be the range shown in FIG.
- FIG. 10 is a schematic structural diagram of Embodiment 3 of a base station according to the present invention, as shown in FIG. 10, an antenna system
- the 10 includes a first antenna array 11 and a second antenna array 12, wherein the first antenna array 11 includes two columns of antennas 111a and 111b, the antenna 111a provides a wide beam port 112a, and the antenna 11b provides a wide beam port 112b,
- the two antenna array 12 includes four columns of antennas 121, three narrow beam ports 122a, 122b, and 122c are provided, and three narrow beams formed by the second antenna array 12 are taken out through the narrow beam ports 122a, 122b, and 122c, respectively.
- the antenna system is connected to the second radio frequency module through a narrow beam port, and the connection mode may be that the narrow beam port is connected to a second radio frequency module, or the narrow beam port can support different frequency bands through the sub-band combiner and two or more.
- the second RF module is connected.
- the second radio frequency module is connected to the narrow beam port, so the second radio frequency module is a radio frequency module supporting the narrow beam.
- the present embodiment has three second radio frequency modules supporting different frequency bands, namely, a second radio frequency module 31, a second radio frequency module 32, and a second radio frequency module 33.
- the narrow beam port 122a is connected to the second frequency module 31, the second frequency module 32, and the second frequency module 33 of the frequency band 3 through the frequency band combiner 40a, and the narrow beam port 122b is divided by the frequency band.
- the router 40b is connected to the second RF module 31 of the frequency band, the second RF module 32 of the frequency band 2, and the second RF module 33 of the frequency band 3, and the narrow beam port 122c passes through the frequency band combiner 40c and the second frequency module 31 and the frequency band of the frequency band.
- the second RF module 32 and the third RF module 33 of the frequency band 3 are connected.
- the second antenna array 12 can simultaneously transmit and receive the mixed signals of the frequency band 1, the frequency band 2, and the frequency band 3, wherein the frequency band 1, the frequency band 2, and the frequency band 3 can be any communication frequency band, where No specific restrictions.
- the antenna system can provide narrow beam coverage of different frequency bands, and the coverage range can be the range as shown in FIG.
- the antenna system 10 includes a first antenna array 11 and a second antenna array 12.
- the first antenna array 11 includes two columns of antennas 111a and 111b.
- the antenna 111a provides a wide beam port 112a
- the antenna 111b provides a wide beam port 112b
- the second antenna array 12 includes four columns of antennas 121, three narrow beam ports 122a, 122b and 122c are provided, and the second antenna array 12 forms three
- the narrow beams are led out through narrow beam ports 122a, 122b, and 122c, respectively.
- the wide beam port and the narrow beam port of the antenna system are connected to the third RF module, and the connection mode may be that the wide beam port and the narrow beam port are both connected to one third RF module, or the wide beam port is passed through the subband combiner.
- the third radio frequency module is connected to the wide beam port and the narrow beam at the same time, so the third radio frequency module is a radio frequency module supporting a wide narrow beam.
- this embodiment has three third radio frequency modules supporting different frequency bands, which are respectively a frequency band.
- the wide beam port 112a is connected to the band-first third RF module 41
- the other wide beam port 112b is connected to the band 2 third RF module 42 and the band 3 third RF module 43 through the sub-band combiner 40a.
- the narrow beam port 122a is connected to the band 1 third RF module 41 and the band 2 third RF module 42 through the subband combiner 40b
- the other two narrow beam ports 122b and 122c are connected to the band 3 third RF module 43.
- the antenna 111a can transmit and receive the signal of the frequency band one, and the other antenna 111b can simultaneously transmit and receive the mixed signal of the signal combination of the frequency band 2 and the frequency band 3, and the second antenna array 12 can simultaneously transmit and receive the frequency band 1 and the frequency band 2 and
- the mixed signal of the signal of the frequency band 3 is combined, and the frequency band 1, the frequency band 2 and the frequency band 3 herein may be any communication frequency band, which is not specifically limited herein.
- the antenna system can provide wide and narrow beam coverage in different frequency bands, and the frequency band is a third radio frequency module.
- FIG. 12 is a schematic diagram of the wide and narrow beam one of the fourth embodiment of the base station according to the present invention.
- the third frequency third radio frequency module 43 is simultaneously connected to the narrow beam ports 122b and 122c, so the antenna system
- the coverage of the wide and narrow beams provided by the third radio frequency module may be in the range shown in FIG. 13, the wide beam provides a large coverage, and the narrow beams led by the narrow beam ports 122b and 122c provide focus area coverage.
- FIG. 13 is a base station of the present invention. A schematic diagram of the wide and narrow beam two of the fourth embodiment.
- the aforementioned program can be stored in a computer readable storage medium.
- the program when executed, performs the steps including the above-described method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本发明实施例提供一种天线系统和基站。本发明天线系统,包括:用于形成宽波束覆盖的第一天线阵列和用于形成窄波束覆盖的第二天线阵列;第一天线阵列包括至少一列天线,每列天线提供至少一个宽波束端口,第二天线阵列包括至少两列天线,第二天线阵列提供至少一个窄波束端口。本发明实施例解决小间隔多列天线只能提供窄波束的问题,满足天线系统同时提供宽波束和窄波束的需求。
Description
天线系统和基站
技术领域
本发明实施例涉及通信技术, 尤其涉及一种天线系统和基站。
背景技术
随着通信技术的发展, 天线的布设面临站址空间有限和容量小的双重 挑战, 在天线中同时支持多种系统, 例如同时支持全球移动通信系统
( Global System For Mobile Communications , 以下简称 GSM )、 通用移动 通信系统 ( Universal Mobile Telecommunications System, 以下简称 UMTS ) 和长期演进(Long Term Evolution, 以下简称 LTE)系统, 成为必然趋势。 现有的小间隔多列天线的布设技术, 通过将单波束劈裂成多波束实现空分 多址, 达到了提高天线的容量的目的。
但是, 这种天线布设技术只能提供窄波束覆盖, 无法满足天线系统同 时提供宽波束和窄波束的需求。
发明内容
本发明实施例提供一种天线系统和基站, 以解决小间隔多列天线只能 提供窄波束的问题, 满足天线系统同时提供宽波束和窄波束的需求。 第一方面, 本发明实施例提供一种天线系统, 包括:
用于形成宽波束覆盖的第一天线阵列和用于形成窄波束覆盖的第二 天线阵列;
第一天线阵列包括至少一列天线, 每列天线提供至少一个宽波束端 口, 第二天线阵列包括至少两列天线, 第二天线阵列提供至少一个窄波束 端口。 结合第一方面, 在第一方面的第一种可能的实现方式中, 第一天线阵 列和第二天线阵列之间的间隔大于第二天线阵列的列间隔, 和 /或,第一天
线阵列和第二天线阵列之间设有隔离装置。 结合第一方面或第一方面的第一种可能的实现方式, 在第一方面的第 二种可能的实现方式中, 当第一天线阵列包括至少两列天线时, 第一天线 阵列的列间隔大于第二天线阵列的列间隔。 结合第一方面、 第一方面的第一种至第二种中任一种可能的实现方 式, 在第一方面的第三种可能的实现方式中, 还包括: 多波束形成设备, 第二天线阵列通过多波束形成设备形成至少一个窄波束, 至少一个窄波束 通过窄波束端口引出。 结合第一方面、 第一方面的第一种至第三种中任一种可能的实现方 式, 在第一方面的第四种可能的实现方式中, 还包括: 分频段合路器, 分 频段合路器与窄波束端口, 和 /或, 宽波束端口连接。 第二方面, 本发明实施例提供一种基站, 包括:
如第一方面、第一方面的第一种至第四种中任一天线系统和至少一个 射频模块; 射频模块通过至少一个宽波束端口和 /或至少一个窄波束端口与天线 系统连接。 结合第二方面, 在第二方面的第一种可能的实现方式中, 至少一个宽 波束端口与一个第一射频模块连接; 或者,
至少一个宽波束端口通过分频段合路器与至少两个第一射频模块连 接; 或者, 至少一个宽波束端口与一个第一射频模块连接, 且其它至少一个宽波 束端口通过分频段合路器与至少两个第一射频模块连接。
结合第二方面, 在第二方面的第二种可能的实现方式中, 至少一个窄 波束端口与一个第二射频模块连接; 或者,
至少一个窄波束端口通过分频段合路器与至少两个第二射频模块连 接; 或者, 至少一个窄波束端口与一个第二射频模块连接, 且其它至少一个窄波 束端口通过分频段合路器与至少两个第二射频模块连接。 结合第二方面, 在第二方面的第三种可能的实现方式中, 至少一个宽 波束端口与一个第三射频模块连接, 且至少一个窄波束端口与一个第三射 频模块连接; 或者,
至少一个宽波束端口通过分频段合路器与至少两个第三射频模块连 接, 且至少一个窄波束端口与一个第三射频模块连接; 或者, 至少一个宽波束端口与一个第三射频模块连接, 且其它至少一个宽波 束端口通过分频段合路器与至少两个第三射频模块连接, 且至少一个窄波 束端口与一个第三射频模块连接; 或者, 至少一个宽波束端口与一个第三射频模块连接, 且至少一个窄波束端 口通过分频段合路器与至少两个第三射频模块连接; 或者,
至少一个宽波束端口通过分频段合路器与至少两个第三射频模块连 接, 且至少一个窄波束端口通过分频段合路器与至少两个第三射频模块连 接; 或者, 至少一个宽波束端口与一个第三射频模块连接, 且其它至少一个宽波 束端口通过分频段合路器与至少两个第三射频模块连接, 且至少一个窄波 束端口通过分频段合路器与至少两个第三射频模块连接; 或者,
至少一个宽波束端口与一个第三射频模块连接, 且至少一个窄波束端 口与一个第三射频模块连接, 且其它至少一个窄波束端口通过分频段合路 器与至少两个第三射频模块连接; 或者, 至少一个宽波束端口通过分频段合路器与至少两个第三射频模块连 接, 且至少一个窄波束端口与一个第三射频模块连接, 且其它至少一个窄 波束端口通过分频段合路器与至少两个第三射频模块连接; 或者, 至少一个宽波束端口与一个第三射频模块连接, 且其它至少一个宽波 束端口通过分频段合路器与至少两个第三射频模块连接, 且至少一个窄波 束端口与一个第三射频模块连接, 且其它至少一个窄波束端口通过分频段 合路器与至少两个第三射频模块连接。 本发明实施例天线系统和基站, 天线系统通过包括形成宽波束的第一 天线阵列和形成窄波束的第二天线阵列, 其中, 第一天线阵列包括至少一 列天线, 每列天线提供至少一个宽波束端口, 第二天线阵列包括至少两列 天线, 第二天线阵列提供至少一个窄波束端口, 天线系统形成的宽波束通 过至少一个宽波束端口引出, 天线系统形成的窄波束通过至少一个窄波束 端口引出, 能够解决小间隔多列天线只能提供窄波束的问题, 满足天线系 统同时提供宽波束和窄波束的需求。
附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对 实施例或现有技术描述中所需要使用的附图作一简单地介绍, 显而易见 地, 下面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员 来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的 附图。 图 1为本发明天线系统实施例一的结构示意图; 图 2为本发明天线系统实施例一的结构举例示意图;
图 3为本发明天线系统实施例一的宽波束示意图; 图 4为本发明天线系统实施例一的窄波束示意图; 图 5为本发明天线系统实施例二的结构示意图; 图 6为本发明天线系统实施例三的结构示意图; 图 7为本发明天线系统实施例四的结构示意图; 图 8为本发明基站实施例一的结构示意图; 图 9为本发明基站实施例二的结构示意图; 图 10为本发明基站实施例三的结构示意图; 图 11为本发明基站实施例四的结构示意图; 图 12为本发明基站实施例四的宽窄波束一的示意图; 图 13为本发明基站实施例四的宽窄波束二的示意图。 具体实施方式 为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本 发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描 述, 显然,所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提 下所获得的所有其他实施例, 都属于本发明保护的范围。
图 1为本发明天线系统实施例一的结构示意图, 如图 1所示, 本实施 例的天线系统 10可以包括: 第一天线阵列 11和第二天线阵列 12, 其中, 第一天线阵列 11, 用于形成宽波束覆盖; 第二天线阵列 12, 用于形成窄 波束覆盖。 第一天线阵列 11包括至少一列天线, 每列天线提供至少一个 宽波束端口 112, 第二天线阵列 12包括至少两列天线, 该第二天线阵列提 供至少一个窄波束端口 122。
图 2为本发明天线系统实施例一的结构举例示意图, 如图 2所示, 天 线系统 10包括第一天线阵列 11和第二天线阵列 12, 其中, 第一天线阵列 11包括一列天线 111, 提供一个宽波束端口 112, 第二天线阵列 12包括四 列天线 121, 提供三个窄波束端口 122a、 122b以及 122c, 窄波束通过窄
波束端口引出。 图 3为本发明天线系统实施例一的宽波束示意图, 如图 3 所示, 图 2中的第一天线阵列 11的一列天线 111形成的宽波束覆盖即全 向波束, 可以覆盖一个较大的范围; 图 4为本发明天线系统实施例一的窄 波束示意图, 如图 4所示, 图 2中的第二天线阵列 12的四列天线 121形 成三个窄波束覆盖,分别由第二天线阵列 12的三个窄波束端口 122a、122b 以及 122c引出, 每一个窄波束的覆盖范围小于宽波束的覆盖范围, 第二 天线阵列 12采用小间隔多列天线的布设技术, 通过将单波束劈裂成多波 束实现空分多址, 可以提高天线容量。
本实施例的天线系统通过包括形成宽波束的第一天线阵列和形成窄 波束的第二天线阵列, 其中, 第一天线阵列包括至少一列天线, 每列天线 提供至少一个宽波束端口, 第二天线阵列包括至少两列天线, 第二天线阵 列提供至少一个窄波束端口, 天线系统形成的宽波束通过至少一个宽波束 端口引出, 天线系统形成的窄波束通过至少一个窄波束端口引出, 能够解 决小间隔多列天线只能提供窄波束的问题, 满足天线系统同时提供宽波束 和窄波束的需求。
进一歩的, 本实施例的天线系统 10在图 1所示的天线结构的基础上, 第一天线阵列 11和第二天线阵列 12之间的间隔大于第二天线阵列 12的 列间隔, 和 /或, 第一天线阵列 11和第二天线阵列 12之间设有隔离装置, 以降低第一天线阵列 11和第二天线阵列 12之间的互耦。 图 5为本发明天 线系统实施例二的结构示意图, 如图 5所示, 在图 1所示天线结构的基础 上,进一歩的,第一天线阵列 11与第二天线阵列 12之间设有隔离装置 21, 该隔离装置 21用于降低第一天线阵列 11和第二天线阵列 12之间的互耦, 保证宽波束的波束质量, 例如可以是一隔离墙, 隔离板等, 本实施例对此 并不做具体限定。
进一歩的, 当第一天线阵列包括至少两列天线时, 第一天线阵列的列 间隔大于第二天线阵列的列间隔。
本实施例通过使第一天线阵列的多列天线的列间隔大于第二天天线 阵列的列间隔, 实现由第一天线阵列形成宽波束覆盖, 第一天线阵列的大 列间隔可以减少提供宽波束覆盖的各列天线之间的干扰。
图 6为本发明天线系统实施例三的结构示意图, 如图 6所示, 本实施
例的天线系统 10在上面两个实施例所示天线结构的基础上, 进一歩地, 还可以包括: 多波束形成设备 31, 多波束形成设备 31与第二天线阵列 12 连接, 第二天线阵列 12通过多波束形成设备 31形成至少一个窄波束, 该 至少一个窄波束通过该窄波束端口 122引出。
本实施例中, 第二天线阵列 12用于形成窄波束覆盖, 该窄波束具体 的方向、 覆盖面积以及波束数目等, 可以是通过多波束形成设备 31控制 实现的, 例如通过多波束形成设备 31可以调整阵列天线的相位、 幅度等 参数, 进而形成多个窄波束覆盖。
本实施例通过将多波束形成设备集成在天线系统中, 不需要再另外为 天线系统配置多波束形成设备, 使天线系统形成宽窄波束的功能更智能, 另外,天线系统通过宽波束端口引出宽波束,通过窄波束端口引出窄波束, 可以根据需要只提供宽波束或只提供窄波束, 或者同时提供宽窄波束。
图 7为本发明天线系统实施例四的结构示意图, 如图 7所示, 本实施 例的天线系统 10在图 1所示天线结构的基础上, 进一歩地, 还可以包括: 分频段合路器 41, 分频段合路器 41与宽波束端口和 /或窄波束端口连接, 天线系统 10通过分频段合路器 41使不同频段的信号合路成混合信号或者 将该混合信号分频成不同频段的信号。
本实施例中, 分频段合路器 41可以将不同频段的信号合路成混合信 号, 或者将混合信号分频成不同频段信号, 以使天线系统可以同时对不同 频段的信号进行处理, 例如可以将 GSM系统支持的频段的信号和 LTE系 统支持的频段的信号经过合路馈入天线系统中, 即可以实现该天线系统对 这两种不同频段的信号进行处理。
本实施例通过将分频段合路器集成在天线系统中, 可以直接对射频模 块提供混合信号的端口, 简化天线系统和射频模块之间的连线结构。
进一歩的, 分频段合路器 41可以如图 7所示, 被集成在天线系统中, 作为该天线的一个组成部分, 也可以不被集成在天线系统中, 作为独立的 结构与天线系统 10连接, 此处不做具体限定。
图 8为本发明基站实施例一的结构示意图, 如图 8所示, 本实施例的 系统包括: 天线系统 10和至少一个射频模块 20, 其中, 天线系统 10可以 采用图 1〜图 7 (图 3和图 4除外)任一天线系统实施例的结构, 射频模块
20通过至少一个宽波束端口和 /或至少一个窄波束端口与天线系统 10连 接。
下面采用几个具体的实施例, 对图 8所示基站实施例的结构进行详细 说明。
图 9为本发明基站实施例二的结构示意图, 如图 9所示, 天线系统 10 包括第一天线阵列 11和第二天线阵列 12, 其中, 第一天线阵列 11包括两 列天线 111a和 l l lb , 天线 111a提供一个宽波束端口 112a, 天线 111b提 供一个宽波束端口 112b, 第二天线阵列 12包括四列天线 121, 提供三个 窄波束端口 122a、 122b以及 122c, 第二天线阵列 12形成的三个窄波束分 别通过窄波束端口 122a、 122b以及 122c引出。
天线系统通过宽波束端口与第一射频模块连接, 连接方式可以是宽波 束端口与一个第一射频模块连接, 还可以是宽波束端口通过分频段合路器 与两个或两个以上支持不同频段的第一射频模块连接。 本实施例中, 第一 射频模块与宽波束端口连接, 因此第一射频模块为支持宽波束的射频模 块。 如图 9所示, 本实施例有三个支持不同频段的第一射频模块, 分别是 频段一第一射频模块 21、 频段二第一射频模块 22以及频段三第一射频模 块 23。
本实施例中, 宽波束端口 112a通过分频段合路器 40与频段一第一射 频模块 21以及频段二第一射频模块 22连接, 另一个宽波束端口 112b与 频段三第一射频模块 23连接。 通过这种连接方式, 天线 111a可以同时收 发频段一和频段二的信号合路成的混合信号, 天线 l l lb可以收发频段三 的信号, 这里的频段一、 频段二以及频段三可以是任一通信频段, 此处不 做具体限定。 通过上述连接方式, 可以使天线系统提供不同频段的宽波束 覆盖, 其覆盖范围可以是如图 3所示的范围。
图 10为本发明基站实施例三的结构示意图, 如图 10所示, 天线系统
10包括第一天线阵列 11和第二天线阵列 12, 其中, 第一天线阵列 11包 括两列天线 111a和 l l lb ,天线 111a提供一个宽波束端口 112a,天线 l l lb 提供一个宽波束端口 112b, 第二天线阵列 12包括四列天线 121, 提供三 个窄波束端口 122a、 122b以及 122c, 第二天线阵列 12形成的三个窄波束 分别通过窄波束端口 122a、 122b以及 122c引出。
天线系统通过窄波束端口与第二射频模块连接, 连接方式可以是窄波 束端口与一个第二射频模块连接, 还可以是窄波束端口通过分频段合路器 与两个或两个以上支持不同频段的第二射频模块连接。 本实施例中, 第二 射频模块与窄波束端口连接, 因此第二射频模块为支持窄波束的射频模 块。 如图 10所示, 本实施例有三个支持不同频段的第二射频模块, 分别 是频段一第二射频模块 31、 频段二第二射频模块 32以及频段三第二射频 模块 33。
本实施例中, 窄波束端口 122a通过分频段合路器 40a与频段一第二 射频模块 31、 频段二第二射频模块 32以及频段三第二射频模块 33连接, 窄波束端口 122b通过分频段合路器 40b与频段一第二射频模块 31、 频段 二第二射频模块 32以及频段三第二射频模块 33连接, 窄波束端口 122c 通过分频段合路器 40c与频段一第二射频模块 31、 频段二第二射频模块 32以及频段三第二射频模块 33连接。 通过这种连接方式, 第二天线阵列 12可以同时收发频段一、频段二以及频段三的信号合路成的混合信号, 这 里的频段一、频段二以及频段三可以是任一通信频段,此处不做具体限定。 通过上述连接方式, 可以使天线系统提供不同频段的窄波束覆盖, 其覆盖 范围可以是如图 4所示的范围。
图 11为本发明基站实施例四的结构示意图, 如图 11所示, 天线系统 10包括第一天线阵列 11和第二天线阵列 12, 其中, 第一天线阵列 11包 括两列天线 111a和 l l lb ,天线 111a提供一个宽波束端口 112a,天线 111b 提供一个宽波束端口 112b, 第二天线阵列 12包括四列天线 121, 提供三 个窄波束端口 122a、 122b以及 122c, 第二天线阵列 12形成的三个窄波束 分别通过窄波束端口 122a、 122b以及 122c引出。
天线系统的宽波束端口和窄波束端口均与第三射频模块连接, 连接方 式可以是宽波束端口和窄波束端口均与一个第三射频模块连接, 还可以是 宽波束端口通过分频段合路器与两个或两个以上支持不同频段的第三射 频模块连接, 窄波束端口通过分频段合路器再与前述两个或两个以上支持 不同频段的第三射频模块连接。 本实施例中, 第三射频模块同时与宽波束 端口和窄波束连接, 因此第三射频模块为支持宽窄波束的射频模块。 如图 11所示, 本实施例有三个支持不同频段的第三射频模块, 分别是频段一第
三射频模块 41、 频段二第三射频模块 42以及频段三第三射频模块 43。 本实施例中, 宽波束端口 112a与频段一第三射频模块 41连接, 另一 个宽波束端口 112b通过分频段合路器 40a与频段二第三射频模块 42以及 频段三第三射频模块 43连接, 窄波束端口 122a通过分频段合路器 40b与 频段一第三射频模块 41以及频段二第三射频模块 42连接, 另外两个窄波 束端口 122b和 122c均与频段三第三射频模块 43连接。 通过这种连接方 式, 天线 111a可以收发频段一的信号, 另一天线 111b可以同时收发频段 二和频段三的信号合路成的混合信号, 第二天线阵列 12可以同时收发频 段一、 频段二以及频段三的信号合路成的混合信号, 这里的频段一、 频段 二以及频段三可以是任一通信频段, 此处不做具体限定。 通过上述连接方 式, 可以使天线系统提供不同频段的宽窄波束覆盖, 频段一第三射频模块
41和频段二第三射频模块 42都和窄波束端口 122a连接,因此天线系统对 这两个第三射频模块提供的宽窄波束的覆盖范围可以如图 12所示的范围, 宽波束提供大覆盖范围, 窄波束端口 122a引出的窄波束提供重点区域覆 盖, 图 12为本发明基站实施例四的宽窄波束一的示意图, 频段三第三射 频模块 43同时和窄波束端口 122b以及 122c连接, 因此天线系统对该第 三射频模块提供的宽窄波束的覆盖范围可以如图 13所示的范围, 宽波束 提供大覆盖范围, 窄波束端口 122b和 122c引出的窄波束提供重点区域覆 盖, 图 13为本发明基站实施例四的宽窄波束二的示意图。
本领域普通技术人员可以理解: 实现上述各方法实施例的全部或部分 歩骤可以通过程序指令相关的硬件来完成。 前述的程序可以存储于一计算 机可读取存储介质中。 该程序在执行时, 执行包括上述各方法实施例的歩 骤; 而前述的存储介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存 储程序代码的介质。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或者替换, 并 不使相应技术方案的本质脱离本发明各实施例技术方案的范围。
Claims
1、 一种天线系统, 其特征在于, 包括: 用于形成宽波束覆盖的第一天线阵列和用于形成窄波束覆盖的第二天线 阵列; 所述第一天线阵列包括至少一列天线, 每列天线提供至少一个宽波束端 口, 所述第二天线阵列包括至少两列天线, 所述第二天线阵列提供至少一个 窄波束端口。
2、 根据权利要求 1所述的天线系统, 其特征在于, 所述第一天线阵列和 所述第二天线阵列之间的间隔大于所述第二天线阵列的列间隔, 和 /或, 所述 第一天线阵列和所述第二天线阵列之间设有隔离装置。
3、 根据权利要求 1或 2所述的天线系统, 其特征在于, 当所述第一天线 阵列包括至少两列天线时, 所述第一天线阵列的列间隔大于所述第二天线阵 列的列间隔。
4、 根据权利要求 1~3中任一项所述的天线系统, 其特征在于, 还包括: 多波束形成设备, 所述第二天线阵列通过所述多波束形成设备形成至少一个 窄波束, 所述至少一个窄波束通过所述窄波束端口引出。
5、 根据权利要求 1~4中任一项所述的天线系统, 其特征在于, 还包括: 分频段合路器, 所述分频段合路器与所述窄波束端口, 和 /或, 所述宽波束端 口连接。
6、 一种基站, 其特征在于, 包括如权利要求 1-5中任一所述的天线系统 和至少一个射频模块; 所述射频模块通过所述至少一个宽波束端口和 /或所述至少一个窄波束 端口与所述天线系统连接。
7、 根据权利要求 6所述的基站, 其特征在于, 所述至少一个宽波束端口 与一个第一射频模块连接; 或者, 所述至少一个宽波束端口通过所述分频段合路器与至少两个第一射频模
块连接; 或者, 所述至少一个宽波束端口与一个第一射频模块连接, 且其它所述至少一 个宽波束端口通过所述分频段合路器与至少两个第一射频模块连接。
8、 根据权利要求 6所述的基站, 其特征在于, 所述至少一个窄波束端口 与一个第二射频模块连接; 或者, 所述至少一个窄波束端口通过所述分频段合路器与至少两个第二射频模 块连接; 或者, 所述至少一个窄波束端口与一个第二射频模块连接, 且其它所述至少一 个窄波束端口通过所述分频段合路器与至少两个第二射频模块连接。
9、 根据权利要求 6所述的基站, 其特征在于, 所述至少一个宽波束端口 与一个第三射频模块连接, 且所述至少一个窄波束端口与一个所述第三射频 模块连接; 或者, 所述至少一个宽波束端口通过所述分频段合路器与至少两个第三射频模 块连接, 且所述至少一个窄波束端口与一个所述第三射频模块连接; 或者, 所述至少一个宽波束端口与一个第三射频模块连接, 且其它所述至少一 个宽波束端口通过所述分频段合路器与至少两个第三射频模块连接, 且所述 至少一个窄波束端口与一个所述第三射频模块连接; 或者, 所述至少一个宽波束端口与一个第三射频模块连接, 且所述至少一个窄 波束端口通过所述分频段合路器与至少两个所述第三射频模块连接; 或者,
所述至少一个宽波束端口通过所述分频段合路器与至少两个第三射频模 块连接, 且所述至少一个窄波束端口通过所述分频段合路器与至少两个所述 第三射频模块连接;
或者,
所述至少一个宽波束端口与一个第三射频模块连接, 且其它所述至少一 个宽波束端口通过所述分频段合路器与至少两个第三射频模块连接, 且所述 至少一个窄波束端口通过所述分频段合路器与至少两个所述第三射频模块连 接;
或者,
所述至少一个宽波束端口与一个第三射频模块连接, 且所述至少一个窄 波束端口与一个所述第三射频模块连接, 且其它所述至少一个窄波束端口通 过所述分频段合路器与至少两个所述第三射频模块连接;
或者,
所述至少一个宽波束端口通过所述分频段合路器与至少两个第三射频模 块连接, 且所述至少一个窄波束端口与一个所述第三射频模块连接, 且其它 所述至少一个窄波束端口通过所述分频段合路器与至少两个所述第三射频模 块连接; 或者,
所述至少一个宽波束端口与一个第三射频模块连接, 且其它所述至少一 个宽波束端口通过所述分频段合路器与至少两个第三射频模块连接, 且所述 至少一个窄波束端口与一个所述第三射频模块连接, 且其它所述至少一个窄 波束端口通过所述分频段合路器与至少两个所述第三射频模块连接。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14852403.6A EP3057179B1 (en) | 2013-10-12 | 2014-08-13 | Antenna system and base station |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310477365.9 | 2013-10-12 | ||
CN201310477365.9A CN104577356B (zh) | 2013-10-12 | 2013-10-12 | 天线系统和基站 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015051668A1 true WO2015051668A1 (zh) | 2015-04-16 |
Family
ID=52812505
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/084275 WO2015051668A1 (zh) | 2013-10-12 | 2014-08-13 | 天线系统和基站 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3057179B1 (zh) |
CN (1) | CN104577356B (zh) |
WO (1) | WO2015051668A1 (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10431877B2 (en) | 2017-05-12 | 2019-10-01 | Commscope Technologies Llc | Base station antennas having parasitic coupling units |
CN107294572B (zh) * | 2017-07-12 | 2020-06-09 | 西安空间无线电技术研究所 | 一种大规模多波束的快速布站方法 |
CN110994203B (zh) * | 2019-11-25 | 2022-04-01 | 广东博纬通信科技有限公司 | 一种宽频混合多波束阵列天线 |
WO2023052855A1 (en) * | 2021-09-30 | 2023-04-06 | Poynting Antennas (Pty) Limited | A wireless communications system for a marine vessel |
EP4307574A1 (en) * | 2022-07-12 | 2024-01-17 | Nokia Technologies Oy | Methods, apparatuses and system for nr beam alignment |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1553725A (zh) * | 2003-06-05 | 2004-12-08 | 中兴通讯股份有限公司 | 空间多波束馈电网络的实现装置 |
CN1985187A (zh) * | 2004-07-16 | 2007-06-20 | 富士通天株式会社 | 单脉冲雷达装置及天线切换开关 |
CN201233956Y (zh) * | 2008-07-25 | 2009-05-06 | 中国电子科技集团公司第五十四研究所 | 天线快速对准装置 |
CN101562817A (zh) * | 2009-05-25 | 2009-10-21 | 北京理工大学 | 一种基于天线波束交叠的中继传输方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5684491A (en) * | 1995-01-27 | 1997-11-04 | Hazeltine Corporation | High gain antenna systems for cellular use |
WO1998042150A2 (en) * | 1997-03-14 | 1998-09-24 | At & T Corp. | Downlink smart antennas for is-54/is-136 tdma systems |
AU1167901A (en) * | 1999-04-29 | 2001-01-31 | Telefonaktiebolaget Lm Ericsson (Publ) | Integrated adaptive and sector antennas |
-
2013
- 2013-10-12 CN CN201310477365.9A patent/CN104577356B/zh active Active
-
2014
- 2014-08-13 WO PCT/CN2014/084275 patent/WO2015051668A1/zh active Application Filing
- 2014-08-13 EP EP14852403.6A patent/EP3057179B1/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1553725A (zh) * | 2003-06-05 | 2004-12-08 | 中兴通讯股份有限公司 | 空间多波束馈电网络的实现装置 |
CN1985187A (zh) * | 2004-07-16 | 2007-06-20 | 富士通天株式会社 | 单脉冲雷达装置及天线切换开关 |
CN201233956Y (zh) * | 2008-07-25 | 2009-05-06 | 中国电子科技集团公司第五十四研究所 | 天线快速对准装置 |
CN101562817A (zh) * | 2009-05-25 | 2009-10-21 | 北京理工大学 | 一种基于天线波束交叠的中继传输方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3057179A1 (en) | 2016-08-17 |
CN104577356A (zh) | 2015-04-29 |
CN104577356B (zh) | 2018-05-29 |
EP3057179B1 (en) | 2019-04-03 |
EP3057179A4 (en) | 2016-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2846400B1 (en) | Antenna array, antenna device and base station | |
US10205235B2 (en) | Wireless communication system node with re-configurable antenna devices | |
US20230163465A1 (en) | High gain and large bandwidth antenna incorporating a built-in differential feeding scheme | |
EP2539960B1 (en) | A communication system node comprising a re-configuration network | |
US9627774B2 (en) | Antenna device and system having active and passive modules | |
US9472861B2 (en) | Multi-mode antenna and base station | |
KR101858042B1 (ko) | 다중 빔 안테나 시스템 및 그 위상 조정 방법, 그리고 이중 편파 안테나 시스템 | |
US20150288438A1 (en) | Modular antenna array with rf and baseband beamforming | |
EP3686991B1 (en) | Compact omnidirectional antennas having stacked reflector structures | |
US20130278461A1 (en) | Antenna and base station | |
JP2008011565A (ja) | アンテナアパーチャを任意に用いる統合形送信/受信アンテナ | |
WO2015051668A1 (zh) | 天线系统和基站 | |
JPH0779475A (ja) | 基地局アンテナ・アレンジメント | |
EP3379648B1 (en) | Planar array antenna and communication device | |
CN210111047U (zh) | 用于天线的馈电网络及天线 | |
US10840607B2 (en) | Cellular communication systems having antenna arrays therein with enhanced half power beam width (HPBW) control | |
WO2021000476A1 (zh) | 多频窄波束天线 | |
US20080238797A1 (en) | Horn antenna array systems with log dipole feed systems and methods for use thereof | |
US20220311130A1 (en) | Antenna feed networks and related antennas and methods | |
US20040178862A1 (en) | Systems and methods for providing independent transmit paths within a single phased-array antenna | |
CN106816718B (zh) | 一种低副瓣锐截止平顶波束基站天线及设计方法 | |
EP3365944B1 (en) | A wireless communication node with an antenna arrangement for triple band reception and transmission | |
WO2013028060A1 (en) | An antenna to produce multiple beams and a method thereof | |
US20240120642A1 (en) | Antenna module and electronic device including same | |
CN107919888A (zh) | 一种信号收发系统和方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14852403 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2014852403 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014852403 Country of ref document: EP |