WO2015050360A1 - 차량용 무선전력 전송장치 및 무선 충전 방법 - Google Patents

차량용 무선전력 전송장치 및 무선 충전 방법 Download PDF

Info

Publication number
WO2015050360A1
WO2015050360A1 PCT/KR2014/009186 KR2014009186W WO2015050360A1 WO 2015050360 A1 WO2015050360 A1 WO 2015050360A1 KR 2014009186 W KR2014009186 W KR 2014009186W WO 2015050360 A1 WO2015050360 A1 WO 2015050360A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless power
vehicle
power transmission
frequency band
frequency
Prior art date
Application number
PCT/KR2014/009186
Other languages
English (en)
French (fr)
Inventor
정춘길
황병욱
Original Assignee
주식회사 한림포스텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 한림포스텍 filed Critical 주식회사 한림포스텍
Priority to KR1020247008815A priority Critical patent/KR20240037388A/ko
Priority to CN201480055010.3A priority patent/CN105659469B/zh
Priority to KR1020167008313A priority patent/KR102329581B1/ko
Priority to KR1020217037427A priority patent/KR102529111B1/ko
Priority to US14/917,804 priority patent/US10442298B2/en
Priority to KR1020237014683A priority patent/KR102649618B1/ko
Publication of WO2015050360A1 publication Critical patent/WO2015050360A1/ko
Priority to US16/573,781 priority patent/US11618327B2/en
Priority to US18/191,357 priority patent/US20230294530A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/124Detection or removal of foreign bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/126Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R25/00Fittings or systems for preventing or indicating unauthorised use or theft of vehicles
    • B60R25/10Fittings or systems for preventing or indicating unauthorised use or theft of vehicles actuating a signalling device
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/60Circuit arrangements or systems for wireless supply or distribution of electric power responsive to the presence of foreign objects, e.g. detection of living beings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • Embodiments of the present invention relate to a wireless power transmission apparatus mounted on a vehicle and a wireless charging method of the wireless power transmission apparatus.
  • a smart phone such as a smart phone, a laptop, an MPEG-1 Audio Layer-3 (MP3) player, a headset and the like
  • MP3 MPEG-1 Audio Layer-3
  • the portable electronic device operates by consuming electric power stored in a battery cell (e.g., a primary battery, a secondary battery, and the like), it is necessary to charge or replace the battery cell There is a need.
  • a battery cell e.g., a primary battery, a secondary battery, and the like
  • a method for charging a battery cell includes a contact charging method for charging a battery using a power supply line and a power supply terminal, and wireless power induced by a magnetic field generated in a primary coil of the wireless power transmission apparatus using a wireless power receiving apparatus And a non-contact type charging method.
  • a potential difference occurs between the charger and the battery when the charger and the battery are separated from each other.
  • a momentary discharge phenomenon occurs and the terminal is exposed to the outside.
  • a non-contact charging method has been actively researched to solve the above-mentioned problems.
  • Korean Patent Registration No. 10-0971705 (filed on July 15, 2010) entitled " Solid-state charging system"
  • a delay time from a time point when the request signal is output through the primary core unit to a time point when the response signal corresponding to the request signal is received is measured and compared with a reference waiting time, It is determined that the object is a foreign object, and when the measurement time is longer than the reference waiting time, the object is determined to be a normal non-contact power receiving apparatus and the wireless power signal is transmitted.
  • the wireless power transmission system can be classified into a magnetic induction type and a resonance induction type.
  • a wireless power transmission system of a magnetic induction type according to a WPC (Wireless Power Consortium) standard has a frequency characteristic with a resonance frequency (f 0 ) set at 100 KHz, and uses a frequency band of 110 KHz to 205 KHz.
  • the Electro-Magnetic Compatibility (EMC) standard is based on a frequency band of 150 KHz or more for a vehicle. For example, a smart key that controls a vehicle uses 125 KHz as the operating frequency. Therefore, when a magnetic induction type wireless power transmission system is built in the vehicle, interference may occur between the operation frequency of the wireless power transmission system and the operation frequency for controlling the vehicle.
  • An object of the present invention is to provide a vehicle wireless power transmission apparatus and a wireless charging method capable of avoiding frequency interference with electronic devices provided in a vehicle.
  • a method for wireless charging by a vehicle wireless power transmission apparatus includes the steps of transmitting a signal for detection of a wireless power receiving apparatus using a frequency band lower than an operating frequency band used for controlling the vehicle, Receiving a response signal and a power control signal for the transmitted signal from the wireless power receiving apparatus using a frequency band; controlling an operating frequency or a voltage in the vehicular wireless power transmission apparatus according to the power control signal; And transmitting wireless power to the wireless power receiving apparatus.
  • the operating frequency band used to control the vehicle may include an operating frequency band of a smart key.
  • the frequency band used by the vehicular wireless power transmission apparatus may be a frequency band lower than a resonant frequency of the vehicular wireless power transmission apparatus.
  • the resonant frequency of the vehicular wireless power transmission apparatus may be different from the resonant frequency of the wireless power receiving apparatus.
  • the resonant frequency of the vehicular wireless power transmission apparatus may be higher than the resonant frequency of the wireless power receiving apparatus.
  • controlling may comprise setting the operating frequency to a higher frequency within the frequency band when the power control signal indicates an increase in the radio power.
  • controlling may comprise setting the operating frequency to a lower frequency within the frequency band if the power control signal indicates a drop in the radio power.
  • a vehicular wireless power transmission apparatus includes a primary coil for transmitting a signal and a power signal for detection of a wireless power receiving apparatus using a frequency band lower than an operating frequency band used for controlling a vehicle, An electric drive unit connected to the primary coil for applying an electric drive signal to the primary coil so as to generate an electromagnetic field and an electric drive unit for applying an electric drive signal to the primary coil in accordance with the power control signal received from the wireless power receiver, And a control unit for controlling at least one of a voltage in the wireless power transmission device, wherein the primary coil can transmit the controlled wireless power in accordance with the power control signal to the wireless power reception device.
  • frequency interference with electronic devices installed in a vehicle can be avoided in performing wireless charging, and compatibility with a conventional wireless power transmission system can be achieved.
  • 1 is a diagram showing a series resonance curve for wireless power transmission.
  • FIG. 2 is a diagram for explaining a frequency band used by the wireless power transmission system.
  • FIG. 3 is a flowchart illustrating a wireless charging method of a vehicle wireless power transmission apparatus according to an embodiment of the present invention.
  • FIG. 4 is a diagram for explaining a power control method of a general wireless power transmission apparatus.
  • FIG. 5 is a diagram for explaining a power control method of a vehicular wireless power transmission apparatus according to an embodiment of the present invention.
  • FIG. 6 is a diagram illustrating a wireless power transmission system to which the present invention is applied.
  • FIG. 7 is a block diagram illustrating a wireless power transmission apparatus for a vehicle according to an embodiment of the present invention.
  • unit or the like in the description means a unit for processing at least one function or operation, and may be implemented by hardware, software, or a combination of hardware and software.
  • wireless power refers to any form of energy associated with an electric field, a magnetic field, an electromagnetic field, etc. transmitted from a transmitter to a receiver without the use of physical electromagnetic conductors.
  • the wireless power may be referred to as a power signal and may also refer to an oscillating magnetic flux enclosed by the primary and secondary coils of the transmitting and receiving sides.
  • power conversion in a wireless power transmission system for wirelessly charging devices including a mobile phone, a cordless phone, a smart phone, an MP3 player, a laptop, a headset, etc. will be described as an example .
  • the basic principles of wireless power transmission include both magnetic induction coupling schemes and self-resonant coupling (i.e., resonance induction) schemes using frequencies below 30 MHz. However, a variety of frequencies may be used, including frequencies at which license-exempt operations at relatively high radiation levels, e.g., less than 135 kHz (LF) or 13.56 MHz (HF) are allowed.
  • LF 135 kHz
  • HF 13.56
  • FIG. 1 is a diagram showing a series resonance curve for wireless power transmission
  • FIG. 2 is a diagram for explaining a frequency band used by the wireless power transmission system.
  • Wireless power transmission system operates in series resonance curve such as that illustrated in Figure 1, using the resonance frequency (f o) a frequency band (i.e., a higher frequency band than the resonance frequency) in the direction of right.
  • the resonance frequency (f o) in the LC series resonant structure is set based on the following equation (1).
  • the transmitting side controls the transmission power by lowering or raising the operating frequency toward the resonance frequency (f o ) according to the value of the power compensation signal received from the receiving side.
  • the difference between the frequencies of 3 dB on both sides of the resonance frequency that is, the frequency at which the current value is attenuated by half is referred to as a 3 dB bandwidth
  • the value obtained by dividing the resonance frequency f o by the 3 dB bandwidth is a Q value. Therefore, as shown in FIG. 2, as the resonance characteristic is sharp, the 3 dB bandwidth becomes narrower and the Q value becomes larger (High Q). Therefore, in the circuit, the value of circuit Q is related to the bandwidth. That is, when the Q value of the circuit is low, it means that the bandwidth is wide. When the Q value is high, it means that the bandwidth is narrow.
  • resonance refers to a selection characteristic of a specific frequency.
  • the wireless power transmission system can use a wide frequency band by using resonance with a low Q value.
  • FIG. 3 is a flowchart illustrating a wireless charging method of a vehicle wireless power transmission apparatus according to an embodiment of the present invention.
  • the vehicle wireless power transmission apparatus can perform the process shown in FIG. 3, for example, in order to charge the battery cell.
  • the battery cell may be included in a portable electronic device, and may be connected to or included in a wireless power receiving device.
  • the vehicle wireless power transmission device according to the present invention may be provided inside a vehicle, and the portable electronic device may charge the battery cell using the wireless power receiving device inside the vehicle.
  • the vehicular wireless power transmission apparatus transmits a signal for detecting the wireless power receiving apparatus using a frequency band lower than an operating frequency band for controlling the vehicle (S310).
  • the operating frequency band controlling the vehicle may include an operating frequency band of a smart key.
  • the smart key may operate at a frequency of 125 KHz, and the vehicle wireless power transmission apparatus may use a frequency band of 90 to 110 KHz.
  • the vehicular wireless power transmission apparatus may perform wireless charging using a frequency band lower than the resonance frequency set in the vehicular wireless power transmission apparatus.
  • the resonant frequency of the vehicular wireless power transmission apparatus according to the present invention may be different from the resonant frequency of the wireless power receiving apparatus.
  • the resonant frequency of the vehicular wireless power transmission apparatus may be set to be higher than the resonant frequency (100 KHz) of the wireless power receiving apparatus.
  • the signal for detecting the wireless power receiving apparatus may be a digital ping.
  • the digital ping is for enabling a wireless power receiving apparatus to transmit necessary information to a wireless power transmitting apparatus.
  • the wireless power transmitting apparatus for a vehicle according to the present invention is capable of transmitting, from the wireless power receiving apparatus, Signal, a power control signal, and the like (S320). For example, when a wireless power receiving apparatus receives a digital ping from a wireless power transmitting apparatus, information on a unique identifier (ID), manufacturer ID, and the like of the wireless power receiving apparatus is transmitted to the wireless power transmitting apparatus .
  • ID unique identifier
  • manufacturer ID manufacturer ID
  • the wireless power receiving apparatus may further include, through the load modulation, power control information requesting to adjust the level of the wireless power received from the wireless power transmission apparatus, charge state information indicating a charge level of the battery cell, Al may transmit full charge information, signal strength information to enable the transmitter to determine the primary coil for power transmission, rectified power information indicating the amount of power provided to the output, and the like. If the unique ID and the manufacturer ID of the wireless power receiving apparatus are not received within a predetermined time even though the object is detected through the digital ping, the vehicle wireless power transmission apparatus according to the present invention transmits the corresponding object object). When the sensed object is judged to be a foreign object, the vehicular wireless power transmission apparatus does not transmit the wireless power. If the sensed object is identified as a wireless power receiving device, the in-vehicle wireless power transmission device may initiate a wireless power transmission.
  • the vehicle wireless power transmission apparatus may further include a control unit that, when receiving a power control signal from a wireless power receiving apparatus during transmission of wireless power, transmits at least one of an operating frequency of the vehicle wireless power transmission apparatus and a voltage in the vehicle wireless power transmission apparatus (S330).
  • a control unit that, when receiving a power control signal from a wireless power receiving apparatus during transmission of wireless power, transmits at least one of an operating frequency of the vehicle wireless power transmission apparatus and a voltage in the vehicle wireless power transmission apparatus (S330).
  • the power control signal indicates an increase in the power of the wireless power, that is, when the wireless power receiving apparatus requests to transmit more power
  • the in-vehicle wireless power transmission apparatus transmits the power control signal in the frequency band
  • the operating frequency can be set to a higher frequency.
  • the in-vehicle wireless power transmission apparatus can set the operating frequency to a lower frequency within the frequency band when the power control signal indicates a drop in wireless power.
  • the in-vehicle wireless power transmission apparatus may transmit the adjusted wireless power according to
  • FIG. 4 is a view for explaining a power control method of a general wireless power transmission apparatus
  • FIG. 5 is a diagram for explaining a power control method of a vehicular wireless power transmission apparatus according to an embodiment of the present invention.
  • a power control method for a vehicular wireless power transmission apparatus according to the present invention will be described in detail with reference to FIGS. 4 and 5.
  • FIG. 4 is a view for explaining a power control method of a general wireless power transmission apparatus
  • FIG. 5 is a diagram for explaining a power control method of a vehicular wireless power transmission apparatus according to an embodiment of the present invention.
  • a conventional wireless power transmission apparatus uses a resonance frequency (F o ) of 100 KHz in the same manner as a wireless power receiving apparatus.
  • F o resonance frequency
  • control is performed so that the operating frequency is shifted to the minimum current frequency (F2).
  • the maximum current frequency F1 is 110KHz and the minimum current frequency F2 is 205KHz (F1 ⁇ F2). That is, the frequency band used by the wireless power transmission apparatus may be 110 KHz to 205 KHz.
  • interference may occur between the frequency used by the wireless power transmission device and the frequency used by the electronic devices provided in the vehicle.
  • the vehicle-use wireless power transmission apparatus is configured such that the resonance frequency (F ' o ) of the vehicle-use wireless power transmission apparatus is lower than the resonance frequency Low frequency band) can be used.
  • the frequency band of use (or operation) is narrow, so that voltage control can be used together if necessary.
  • the vehicular wireless power transmission apparatus according to the present invention can use a frequency band of 90 KHz to 110 KHz.
  • the maximum current frequency F1 and the minimum current frequency F2 are changed in position with respect to the resonance frequency F o of the wireless power receiving apparatus (F2 ⁇ F1).
  • F2 to F o the amount of the signal is wireless power receiving device sends to the (send more power signal) following the same frequency control (frequency down) with the existing
  • the received power of the wireless power receiving apparatus is lowered, so that the vehicle wireless power transmitting apparatus reverses the frequency control as compared with the conventional one.
  • the operating frequency is F2 to F o can be set to raise the operating frequency for the additional power requirements of the wireless power receiving device when it is set to up a resonance frequency (F 'o) between have.
  • the operating frequency can be set to the minimum current frequency F2.
  • FIG. 6 is a diagram illustrating a wireless power transmission system to which the present invention is applied.
  • the wireless power transmission system 600 includes a wireless power transmission apparatus 610 and one wireless power reception apparatus 650-1 or n wireless power reception apparatuses 650 (n is a natural number) -1, ..., 650-n.
  • the wireless power transmission device 610 may be an in-vehicle wireless power transmission device.
  • the wireless power transmission apparatus 310 includes a primary core.
  • the primary core may include one or more primary coils.
  • the wireless power transmission device 610 may have any suitable form, but one preferred form may be a flat platform with a power transfer surface.
  • Each of the wireless power receiving devices 650-1, ..., 650-n may be located on or near the platform.
  • Each of the wireless power receiving apparatuses 650-1 to 650-n is detachable from the wireless power transmitting apparatus 610.
  • Each of the wireless power receiving devices 650-1 ... 650-n is coupled to an electromagnetic field generated by the primary core of the wireless power transmission device 610 when it is near the wireless power transmission device 610 And includes a secondary core.
  • the secondary core may include one or more secondary coils.
  • the wireless power transmission device 610 transmits power to the wireless power receiving devices 650-1, ..., 650-n without direct electrical contact.
  • the primary core and the secondary core are magnetically inductive coupling or resonance inductively coupled to each other.
  • the primary coil or secondary coil may have any suitable shape.
  • the primary and secondary coils may be copper wire wrapped around a high permeability formation such as ferrite or amorphous material.
  • the wireless power receiving apparatuses 650-1 to 650-n are connected to an external load (not shown here, also referred to as an actual load of the wireless power receiving apparatus) and are wirelessly transmitted from the wireless power transmitting apparatus 610
  • the received power can be supplied to the external load.
  • the wireless power receiving devices 650-1, ..., 650-n may each be configured to carry power received by an object that consumes or stores power, such as a portable electric or electronic device or a rechargeable battery cell or battery, can do.
  • FIG. 7 is a block diagram illustrating a wireless power transmission apparatus for a vehicle according to an embodiment of the present invention.
  • the vehicular wireless power transmission apparatus 700 includes a primary coil 710, an electric drive unit 720, a control unit 730, and a current measurement unit 740.
  • the primary coil 710 transmits signals and power signals for detection of the wireless power receiving apparatus using frequency bands lower than the operating frequency band of the smart key controlling the vehicle.
  • the electric drive unit 720 is connected to the primary coil 710 to apply the electric drive signals to the primary coil 710 so that an electromagnetic field is generated at the primary coil 710.
  • the control unit 730 is connected to the electric drive unit 720 and includes a control signal 731 for controlling an alternating current signal required when the primary coil 710 generates an induction magnetic field or causes self- Can be generated.
  • the control unit 730 may control at least one of the operating frequency and the voltage in the wireless power transmission device according to the power control signal received from the wireless power receiving device.
  • the current measuring unit 740 measures a current flowing in the primary coil 710.
  • the current measured by the current measuring unit 740 may be an alternating current.
  • the current measurement unit 740 may be a current sensor.
  • the current measuring unit 740 may be a transformer that uses the high current flowing in the primary coil to a low current.
  • the control unit 730 can obtain the information transmitted by the wireless power receiving apparatus using the current value measured by the current measuring unit 740.
  • the wireless power receiving apparatus can continuously or periodically transmit the power control signal requesting the power increase or the power down request requesting the power down to the vehicle wireless power transmission apparatus 700 until the required power is satisfied by varying the load . For example, when the control unit 730 receives a power control signal requesting a power increase from the wireless power receiving apparatus through a load variation, a current flowing in the primary coil 710 such that a higher power is transmitted as a response thereto Can be increased.
  • the control unit 730 in order to allow a larger current to flow in the primary coil 710, the control unit 730 generates a control signal 731 so that an AC signal larger than the reference AC signal can be applied to the primary coil 710. [ Can be adjusted.
  • the control unit 730 receives the power control signal requesting the power down from the wireless power receiving apparatus, an AC signal lower than the reference AC signal is supplied to the primary coil 710 so that power lower than the current transmission power is transmitted
  • the control signal 731 can be adjusted.
  • the control unit 730 transmits the in- The operating frequency can be set to a higher frequency within the operating frequency band of the apparatus 700.
  • the control unit 730 controls the in- The operating frequency can be set to a lower frequency within the operating frequency band of the controller 700.
  • the control unit 730 causes the AC signal, The control signal 731 can be adjusted so that it can be applied to the coil 710.
  • the control unit 730 outputs an AC signal lower than the reference AC signal to the primary coil 710
  • the control signal 731 can be adjusted so that it can be applied.
  • the primary coil 710 may transmit the wireless power controlled by the control unit 730 to the wireless power receiving device in accordance with the power control signal received from the wireless power receiving device.
  • the vehicular wireless power transmission apparatus may include a shielding member for protecting a vehicular wireless power transmission apparatus from a stray magnetic field or an eddy current.
  • the vehicular wireless power transmission apparatus may include a temperature protection circuit for monitoring the temperature around the interface. When the temperature measured by the temperature protection circuit exceeds the threshold value, the vehicle wireless power transmission apparatus according to the present invention can stop or terminate the power transmission for safety.

Abstract

차량용 무선전력 전송장치 및 무선 충전 방법을 제공한다. 차량용 무선전력 전송장치에 의한 무선 충전 방법은 차량의 제어에 사용되는 동작 주파수 대역 보다 낮은 주파수 대역을 사용하여 무선전력 수신장치의 검출을 위한 신호를 전송하는 단계, 상기 무선전력 수신장치로부터 상기 전송된 신호에 대한 응답 신호 및 전력 제어 신호를 수신하는 단계, 상기 전력 제어 신호에 따라 동작 주파수와 상기 차량용 무선전력 전송장치 무선전력 전송장치 내의 전압 중 적어도 하나를 제어하는 단계 및 상기 무선전력 수신장치로 무선전력을 전송하는 단계를 포함할 수 있다.

Description

차량용 무선전력 전송장치 및 무선 충전 방법
본 발명의 실시예들은 차량에 탑재되는 무선전력 전송장치 및 상기 무선전력 전송장치의 무선 충전 방법에 관한 것이다.
최근 스마트폰(smart phone), 랩탑(laptop), MP3(MPEG-1 Audio Layer-3) 플레이어(player), 헤드셋(headset) 등과 같은 휴대용 전자 장치의 보급이 확산되고 있다. 그러나, 휴대용 전자 장치는 베터리셀(예를 들어, 1차전지, 2차전지 등)에 저장된 전력을 소비함으로써 동작하기 때문에 휴대용 전자 장치가 지속적으로 동작할 수 있도록 하기 위해서는 배터리셀을 충전 또는 교체할 필요가 있다.
배터리셀을 충전하는 방식은 크게 전원 공급선과 전원 공급 단자를 이용하여 충전하는 접촉식 충전 방식 및 무선전력 전송장치의 1차코일에서 발생되는 자기장에 의해 유도되는 무선전력을 무선전력 수신장치를 이용하여 충전하는 비접촉식 충전 방식으로 구분된다. 그러나, 접촉식 충전 방식은 충전기와 배터리가 서로 결합되거나 분리될 때 양측 단자에 서로 다른 전위차가 발생함에 따라 순간방전현상이 나타나고, 단자가 외부로 노출되기 때문에 단자에 이물질이 쌓이면 화재가 발생할 수 있으며, 습기로 인해 배터리가 자연 방전되고 배터리의 수명과 성능이 저하되는 등의 문제가 있다. 따라서 최근에는 상술한 문제점들을 해결하기 위하여 비접촉식 충전 방식에 대한 연구가 활발히 진행되고 있다.
비접촉식 충전 방식에 관한 기술 중 하나로, 한국등록특허공보 제10-0971705호(등록일 2010년 7월 15일) "무접점 충전 시스템"에는 무접점전력전송장치의 1차측코어부에 부하변화가 감지되면, 1차측코어부를 통해 요청신호의 출력시점으로부터 상기 요청신호에 대응하는 응답신호의 수신시점까지의 딜레이 타임(Delay time)을 측정하여 기준대기시간과 비교한 후, 기준대기시간보다 측정시간이 짧은 경우 해당 물체가 이물질인 것으로 판단하고, 기준대기시간보다 측정시간이 긴 경우 해당 물체가 정상적인 무접점전력수신장치로 판단하여 무선전력신호를 송출하는 것이 기재되어 있다.
무선전력 전송 시스템은 자기 유도 방식과 공진 유도 방식으로 구분될 수 있다. WPC(Wireless Power Consortium) 표준에 따른 자기 유도 방식의 무선전력 전송 시스템은 공진 주파수(fo)가 100KHz로 설정된 주파수 특성을 가진 시스템으로서, 110KHz 내지 205KHz의 주파수 대역을 사용한다. 한편, 전자기 적합성(EMC: Electro-Magnetic Compatibility) 표준은 차량에 대해 150KHz 이상의 주파수 대역을 기준으로 관리하고 있다. 예를 들어 차량을 제어하는 스마트 키(smart key)는 동작 주파수로서 125KHz를 사용한다. 따라서, 차량에 자기 유도 방식의 무선전력 전송 시스템을 구축하면 상기 무선전력 전송 시스템의 동작 주파수와 해당 차량을 제어하는 동작 주파수 간에 간섭이 발생할 수 있다. 이는 무선전력 전송 시스템 및 차량의 오작동을 초래하게 된다. 차량이 오작동하는 경우 대형 사고가 발생될 수 있다. 그러므로, 차량에 구비된 전자 장치들과의 간섭 주파수를 회피함과 동시에 기존의 무선전력 전송 시스템과 호환 가능한 차량용 무선전력 전송 장치 및 무선 충전 방법이 요구된다.
본 발명의 기술적 과제는 차량에 구비된 전자 장치들과의 주파수 간섭을 회피할 수 있는 차량용 무선전력 전송 장치 및 무선 충전 방법을 제공함에 있다.
본 발명의 다른 기술적 과제는 기존의 무선전력 전송 시스템과 호환 가능한 차량용 무선전력 전송 장치 및 무선 충전 방법을 제공함에 있다.
본 발명의 일 양태에 따르면, 차량용 무선전력 전송장치에 의한 무선 충전 방법은 차량의 제어에 사용되는 동작 주파수 대역 보다 낮은 주파수 대역을 사용하여 무선전력 수신장치의 검출을 위한 신호를 전송하는 단계, 상기 주파수 대역을 사용하여 상기 무선전력 수신장치로부터 상기 전송된 신호에 대한 응답 신호 및 전력 제어 신호를 수신하는 단계, 상기 전력 제어 신호에 따라 동작 주파수 또는 상기 차량용 무선전력 전송장치 내의 전압을 제어하는 단계 및 상기 무선전력 수신장치로 무선전력을 전송하는 단계를 포함할 수 있다.
일 실시예로서, 상기 차량의 제어에 사용되는 동작 주파수 대역은 스마트 키(smart key)의 동작 주파수 대역을 포함할 수 있다.
다른 실시예에 있어서, 상기 차량용 무선전력 전송장치가 사용하는 주파수 대역은 상기 차량용 무선전력 전송장치의 공진 주파수 보다 낮은 주파수 대역일 수 있다.
또 다른 실시예로서, 상기 차량용 무선전력 전송장치의 공진 주파수와 상기 무선전력 수신장치의 공진 주파수는 서로 다를 수 있다.
또 다른 실시예로서, 상기 차량용 무선전력 전송장치의 공진 주파수는 상기 무선전력 수신장치의 공진 주파수보다 높을 수 있다.
또 다른 실시예로서, 상기 제어하는 단계는 상기 전력 제어 신호가 상기 무선전력의 상승을 지시하는 경우, 상기 주파수 대역 내에서 상기 동작 주파수를 더 높은 주파수로 설정하는 단계를 포함할 수 있다.
또 다른 실시예로서, 상기 제어하는 단계는 상기 전력 제어 신호가 상기 무선전력의 하강을 지시하는 경우, 상기 주파수 대역 내에서 상기 동작 주파수를 더 낮은 주파수로 설정하는 단계를 포함할 수 있다.
본 발명의 다른 양태에 따르면, 차량용 무선전력 전송장치는 차량의 제어에 사용되는 동작 주파수 대역 보다 낮은 주파수 대역을 사용하여 무선전력 수신장치의 검출을 위한 신호 및 전력 신호를 전송하는 1차 코일, 상기 1차 코일에 연결되어, 전자기장이 발생되도록 상기 1차 코일에 전기 구동 신호를 인가하는 전기 구동 유닛 및 상기 무선전력 수신장치로부터 수신한 전력 제어 신호에 따라 차량용 무선전력 전송장치의 동작 주파수 및 상기 차량용 무선전력 전송장치 내의 전압 중 적어도 하나를 제어하는 제어 유닛을 포함하고, 상기 1차 코일은 상기 무선전력 수신장치로 상기 전력 제어 신호에 따라 제어된 무선전력을 전송할 수 있다.
차량용 무선전력 전송장치가 무선충전을 수행함에 있어 스마트 키와 같이 차량에 구비되는 전자 장치들과의 주파수 간섭을 회피할 수 있으며, 기존의 무선전력 전송 시스템과의 호환성을 가질 수 있다.
도 1은 무선전력 전송을 위한 직렬 공진 곡선을 나타내는 도면이다.
도 2는 무선전력 전송 시스템이 사용하는 주파수 대역을 설명하기 위한 도면이다.
도 3은 본 발명의 일실시예에 따른 차량용 무선전력 전송장치의 무선 충전 방법을 나타내는 흐름도이다.
도 4는 일반적인 무선전력 전송장치의 전력 제어 방법을 설명하기 위한 도면이다.
도 5는 본 발명의 일실시예에 따른 차량용 무선전력 전송장치의 전력 제어 방법을 설명하기 위한 도면이다.
도 6은 본 발명이 적용되는 무선전력 전송 시스템을 나타내는 도면이다.
도 7은 본 발명의 일실시예에 따른 차량용 무선전력 전송장치를 나타내는 블록도이다.
아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서에 기재된 "~유닛" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.
본 명세서에서 사용되는 "무선전력" 이라는 용어는, 물리적인 전자기 전도체들의 사용 없이 송신기로부터 수신기로 송신되는 전기장, 자기장, 전자기장 등과 관련된 임의의 형태의 에너지를 의미한다. 무선전력은 전력 신호(power signal)라고 불릴 수도 있으며, 송신측의 1차 코일과 수신측의 2차 코일에 의해 둘러싸이는(enclosed) 진동하는 자속(oscillating magnetic flux)을 의미할 수도 있다. 이하, 휴대 전화기(mobile phone), 코드리스(cordless) 전화기, 스마트폰, MP3 플레이어, 랩탑, 헤드셋 등을 포함하는 장치들을 무선으로 충전하기 위한 무선전력 전송 시스템에서의 전력 변환에 대해 예를 들어 설명한다. 무선전력 전송의 기본적인 원리는, 자기 유도 커플링 방식이나 30MHz 미만의 주파수들을 사용하는 자기 공진 커플링(즉, 공진 유도) 방식을 모두 포함한다. 그러나, 비교적 높은 방사 레벨들에서의, 예를 들어, 135kHz (LF) 미만 또는 13.56MHz (HF)에서의 라이센스-면제 동작이 허용되는 주파수들을 포함하는 다양한 주파수들이 이용될 수도 있다.
도 1은 무선전력 전송을 위한 직렬 공진 곡선을 나타내는 도면이고, 도 2는 무선전력 전송 시스템이 사용하는 주파수 대역을 설명하기 위한 도면이다.
무선전력 전송 시스템은 도 1에 도시된 것과 같은 직렬 공진 곡선에서, 공진 주파수(fo)의 우측 방향의 주파수 대역(즉, 공진 주파수보다 높은 주파수 대역)을 사용하여 동작한다. LC 직렬 공진 구조에 있어서 공진 주파수(fo)는 다음의 수학식 1을 기반으로 설정된다.
수학식 1
Figure PCTKR2014009186-appb-M000001
이때, 송신측은 수신측으로부터 수신한 전력 보상 신호의 값에 따라 동작 주파수를 공진 주파수(fo) 쪽으로 내리거나 올림으로써 송신 전력을 제어한다.
한편, 공진 주파수를 기준으로 양쪽으로 3dB 즉, 전류 값이 반으로 감쇄되는 지점의 주파수 간의 차이를 3dB 대역폭(bandwidth)이라 하며, 공진 주파수(fo)를 3dB 대역폭으로 나눈 것이 Q 값이다. 따라서 도 2에 도시된 것과 같이, 공진특성이 샤프(sharp)할수록 3dB 대역폭은 좁아지게 되며 Q 값은 커지게 된다(High Q). 그러므로, 회로에서 Q(circuit Q) 값은 대역폭과 관련이 있다. 즉, 회로의 Q 값이 낮으면 대역폭이 넓음을 의미하며, Q 값이 높으면 대역폭이 좁음을 의미한다. 여기서, 공진은 특정 주파수의 선택특성을 말하는 것이다. 샤프하게 주파수를 선택한다는 것은 결국 Q 값을 높이는 것을 의미한다. 고정으로 좁은 주파수 대역이 필요한 경우는 Q 값이 높아야 좋은 경우이다. 반대로 사용 주파수 대역이 넓을 경우에는 Q 값이 낮아야 한다. 따라서, 무선전력 전송 시스템을 설계 시 어느 정도의 선택도와 대역폭이 필요한지가 중요하며 이는 Q 값에 의해 결정된다. 그러므로, 본 발명에 따른 무선전력 전송 시스템은 Q 값이 낮은 공진을 사용함으로써 주파수 대역을 넓게 사용할 수 있다.
도 3은 본 발명의 일실시예에 따른 차량용 무선전력 전송장치의 무선 충전 방법을 나타내는 흐름도이다.
본 발명에 따른 차량용 무선전력 전송장치는 배터리셀을 충전하기 위하여 일 예로 도 3에 도시된 과정을 수행할 수 있다. 여기서, 상기 배터리셀은 휴대용 전자 장치에 포함될 수 있으며, 무선전력 수신장치에 연결되나 포함될 수 있다. 일 예로, 본 발명에 따른 차량용 무선전력 전송장치는 차량(vehicle) 내부에 구비될 수 있으며, 이 경우 상기 휴대용 전자 장치는 차량 내부에서 상기 무선전력 수신장치를 이용하여 배터리셀을 충전할 수 있다.
도 3을 참조하면, 차량용 무선전력 전송장치는 차량을 제어하는 동작 주파수 대역 보다 낮은 주파수 대역을 사용하여 무선전력 수신장치의 검출을 위한 신호를 전송한다(S310). 예를 들어, 상기 차량을 제어하는 동작 주파수 대역은 스마트 키(smart key)의 동작 주파수 대역을 포함할 수 있다. 또한 상기 스마트 키는 125KHz의 주파수로 동작할 수 있으며, 차량용 무선전력 전송장치는 90 내지 110KHz의 주파수 대역을 사용할 수 있다.
한편, 상기 차량용 무선전력 전송장치는 상기 차량용 무선전력 전송장치에 설정된 공진 주파수 보다 낮은 주파수 대역을 사용하여 무선충전을 수행할 수 있다. 본 발명에 따른 차량용 무선전력 전송장치의 공진 주파수는 무선전력 수신장치의 공진 주파수와 서로 다를 수 있다. 일 예로, 차량용 무선전력 전송장치의 공진 주파수는 무선전력 수신장치의 공진 주파수(100KHz)보다 높게 설정될 수 있다.
또한, 상기 무선전력 수신장치의 검출을 위한 신호는 디지털 핑(digital ping)일 수 있다. 디지털 핑은 무선전력 수신장치가 무선전력 전송장치로 필요한 정보를 전달할 수 있도록 하기 위한 것으로, 본 발명에 따른 차량용 무선전력 전송장치는 상기 주파수 대역을 사용하여 상기 무선전력 수신장치로부터 디지털 핑에 대한 응답 신호, 전력 제어 신호 등을 수신할 수 있다(S320). 예를 들어, 무선전력 수신장치는 무선전력 전송장치로부터 디지털 핑을 수신하면, 무선전력 수신장치의 고유 식별자(ID), 제조사 ID 등에 대한 정보를 부하 변조(load modulation)을 이용하여 무선전력 전송장치로 보낼 수 있다. 또한, 무선전력 수신장치는 상기 부하 변조를 통해, 무선전력 전송장치로부터 수신되는 무선전력의 레벨을 조절할 것을 요청하는 전력 제어 정보, 배터리셀의 충전 수준을 나타내는 충전 상태 정보, 배터리셀이 완전히 충전되었음을 알리는 만충전 정보, 송신측이 전력전송을 위한 1차 코일을 결정할 수 있도록 하기 위한 신호 세기 정보, 아웃풋(output)에 제공되는 전력의 양을 나타내는 정류 전력(rectified power) 정보 등을 전송할 수 있다. 만일, 상기 디지털 핑을 통해 물체(object)가 감지되었음에도 일정 시간 내에 무선전력 수신장치의 고유 ID, 제조사 ID 등이 수신되지 않는 경우, 본 발명에 따른 차량용 무선전력 전송장치는 해당 물체를 이물질(foreign object)로 판단할 수 있다. 감지된 물체가 이물질로 판단되는 경우, 차량용 무선전력 전송장치는 무선전력을 전송하지 않는다. 감지된 물체가 무선전력 수신장치로 식별되는 경우, 차량용 무선전력 전송장치는 무선전력 전송을 개시할 수 있다.
한편 차량용 무선전력 전송장치는 무선전력을 전송 중 무선전력 수신장치로부터 전력 제어 신호가 수신되면, 상기 전력 제어 신호에 따라 차량용 무선전력 전송장치의 동작 주파수 및 상기 차량용 무선전력 전송장치 내의 전압 중 적어도 하나를 제어할 수 있다(S330). 예를 들어, 차량용 무선전력 전송장치는 상기 전력 제어 신호가 무선전력의 상승을 지시하는 경우 즉, 무선전력 수신장치가 보다 많은 전력을 전송할 것을 요청하는 경우, 차량용 무선전력 전송장치에 설정된 주파수 대역 내에서 상기 동작 주파수를 더 높은 주파수로 설정할 수 있다. 반대로, 차량용 무선전력 전송장치는 상기 전력 제어 신호가 무선전력의 하강을 지시하는 경우, 상기 주파수 대역 내에서 상기 동작 주파수를 더 낮은 주파수로 설정할 수 있다. 이후, 차량용 무선전력 전송장치는 해당 무선전력 수신장치로 주파수 및/또는 전력 제어를 통해 상기 전력 제어 신호에 따라 조절된 무선전력을 전송할 수 있다(S340).
도 4는 일반적인 무선전력 전송장치의 전력 제어 방법을 설명하기 위한 도면이고, 도 5는 본 발명의 일실시예에 따른 차량용 무선전력 전송장치의 전력 제어 방법을 설명하기 위한 도면이다. 이하, 도 4 및 도 5를 참조하여 본 발명에 따른 차량용 무선전력 전송장치의 전력 제어 방법에 대해 보다 상세히 설명한다.
먼저 도 4를 참조하면, 일반적인 무선전력 전송장치는 무선전력 수신장치와 동일하게 100KHz의 공진 주파수(Fo)를 사용하며, 파워를 크게 전송하고자 할 때는 최대 전류 주파수(F1)로, 파워를 적게 전송하고자 할 때는 최소 전류 주파수(F2)로 동작 주파수가 이동되도록 제어한다. 이때, 최대 전류 주파수(F1)는 110KHz 이고, 최소 전류 주파수(F2)는 205KHz일 수 있다(F1<F2). 즉, 무선전력 전송장치가 사용하는 주파수 대역은 110KHz 내지 205KHz일 수 있다. 그러나, 차량에서 무선전력 전송장치가 사용하는 주파수 대역이 그대로 사용되는 경우, 무선전력 전송장치가 사용하는 주파수와 차량에 구비된 전자 장치들이 사용하는 주파수 간에 간섭이 발생할 수 있다. 특히 차량을 제어하는 스마트 키(smart key)는 동작 주파수로서 125KHz를 사용 가능하기 때문에, 무선전력 전송장치가 차량에서 사용되면 스마트 키의 동작 주파수와 무선전력 전송장치의 동작 주파수 간의 간섭에 의해 차량이 오작동하게 된다. 따라서, 본 발명에 따른 차량용 무선전력 전송장치는 도 5에 도시된 것과 같이 상기 차량용 무선전력 전송장치의 공진 주파수(F'o)를 기준으로 왼쪽의 주파수 대역(차량용 무선전력 전송장치의 공진 주파수보다 낮은 주파수 대역)을 사용할 수 있다. 또한, 사용(또는 동작) 주파수 대역이 좁아 필요 시 전압 제어를 함께 사용할 수 있다. 일 예로, 본 발명에 따른 차량용 무선전력 전송장치는 90KHz 내지 110KHz의 주파수 대역을 사용할 수 있다. 그러나, 이 경우 무선전력 수신장치의 공진 주파수(Fo)를 기준으로 최대 전류 주파수(F1)와 최소 전류 주파수(F2)는 위치가 서로 바뀌게 된다(F2<F1). 따라서, F2 내지 Fo 사이에서는 즉, 동작 주파수가 Fo 보다 낮은 경우에는 무선전력 수신장치가 보내는 양의 신호(전력을 더 보내라는 신호)에 대해 기존과 동일한 주파수 제어(주파수 내림)를 수행하면 무선전력 수신장치의 수신 전력이 하강하게 되므로, 차량용 무선전력 전송장치는 기존 대비 주파수 제어를 반대로 수행한다. 즉, 본 발명에 따른 차량용 무선전력 전송장치는 동작 주파수가 F2 내지 Fo 사이에 설정되어 있는 경우 무선전력 수신장치의 추가 전력요구에 대해 동작 주파수를 공진 주파수(F'o)쪽으로 올리도록 설정할 수 있다. 반대로, 무선전력 수신장치의 전력 감소요구에 대해서는 동작 주파수를 최소전류 주파수(F2) 쪽으로 설정할 수 있다. 이와 같은 동작으로 인해 본 발명에 따른 차량용 무선전력 전송장치는 일반적인 무선전력 수신장치와 호환 가능하다.
도 6은 본 발명이 적용되는 무선전력 전송 시스템을 나타내는 도면이다.
도 6을 참조하면, 무선전력 전송 시스템(600)은 무선전력 전송장치(610) 및 하나의 무선전력 수신장치(650-1) 또는 n개(여기서, n은 자연수)의 무선전력 수신장치(650-1,...,650-n)를 포함한다. 상기 무선전력 전송장치(610)는 차량용 무선전력 전송장치일 수 있다.
무선전력 전송장치(310)는 1차 코어(primary core)를 포함한다. 1차 코어는 하나 또는 그 이상의 1차 코일(primary coil)을 포함할 수 있다. 무선전력 전송장치(610)는 임의의 적합한 형태를 가질 수 있으나, 한 가지 바람직한 형태는 전력 전송 표면을 가진 평탄한 플랫폼일 수 있다. 각각의 무선전력 수신장치(650-1,...,650-n)는 상기 플랫폼 상에 또는 그 근처에 위치할 수 있다.
각 무선전력 수신장치(650-1,...,650-n)는 무선전력 전송장치(610)로부터 분리 가능하다. 각 무선전력 수신장치(650-1,...,650-n)는 무선전력 전송장치(610)의 근처에 있을 때 무선전력 전송장치(610)의 1차 코어에 의해 발생되는 전자기장과 결합되는 2차 코어(secondary core)를 포함한다. 2차 코어는 하나 또는 그 이상의 2차 코일(secondary coil)을 포함할 수 있다.
무선전력 전송장치(610)는 직접적인 전기 접촉 없이 무선전력 수신장치(650-1,...,650-n)로 전력을 전송한다. 이때, 1차 코어와 2차 코어는 서로 자기 유도 커플링(coupling) 또는 공진 유도 커플링되었다고 한다. 1차 코일 또는 2차 코일은 임의의 적합한 형태들을 가질 수 있다. 일 예로, 1차 코일 및 2차 코일은 페라이트(ferrite) 또는 비정질 금속(amorphous material)과 같은 고투자율의 형성물의 주위에 감긴 동선일 수 있다.
무선전력 수신장치(650-1,...,650-n)는 외부 부하(도시되지 않음. 여기서는 무선전력 수신장치의 실제 부하라고도 함)에 연결되어, 무선전력 전송장치(610)로부터 무선으로 수신한 전력을 외부 부하에 공급할 수 있다. 예를 들어 무선전력 수신장치(650-1,...,650-n)는 각각 휴대형 전기 또는 전자 장치 또는 재충전가능 배터리셀 또는 전지와 같이, 전력을 소비하거나 저장하는 물체로 수신한 전력을 운반할 수 있다.
도 7는 본 발명의 일실시예에 따른 차량용 무선전력 전송장치를 나타내는 블록도이다.
도 7을 참조하면, 차량용 무선전력 전송장치(700)는 1차 코일(710), 전기 구동 유닛(720), 제어 유닛(730) 및 전류 측정 유닛(740)을 포함한다.
1차 코일(710)은 차량을 제어하는 스마트 키(smart key)의 동작 주파수 대역 보다 낮은 주파수 대역을 사용하여 무선전력 수신장치의 검출을 위한 신호 및 전력 신호를 전송한다.
전기 구동 유닛(720)은 1차 코일(710)에 연결되어, 1차 코일(710)에서 전자기장이 발생되도록 1차 코일(710)에 전기 구동 신호들을 인가한다.
제어 유닛(730)은 전기 구동 유닛(720)에 연결되고, 1차 코일(710)이 유도 자기장을 발생시키거나 자기공진을 일으킬 때 필요한 교류(AC: Alternating Current) 신호를 제어해주는 제어 신호(731)를 생성할 수 있다. 제어 유닛(730)은 무선전력 수신장치로부터 수신한 전력 제어 신호에 따라 동작 주파수 및 상기 무선전력 전송장치 내의 전압 중 적어도 하나를 제어할 수 있다.
전류 측정 유닛(740)은 1차 코일(710)에 흐르는 전류를 측정한다. 전류 측정 유닛(740)이 측정하는 전류는 교류 전류일 수 있다. 일 예로, 전류 측정 유닛(740)은 전류 센서(current sensor)일 수 있다. 또는 전류 측정 유닛(740)은 1차 코일에 흐르는 고전류를 저전류로 낮추어 사용하는 변압기(transformer)일 수 있다.
제어 유닛(730)은 전류 측정 유닛(740)에서 측정된 전류 값을 이용하여 무선전력 수신장치가 송신한 정보를 획득할 수 있다. 무선전력 수신장치는 부하를 변동시킴으로써 요구전력이 만족될 때까지 전력 상승을 요청하는 전력 제어 신호 또는 전력 하강을 요청하는 전력 제어 신호를 계속적/주기적으로 차량용 무선전력 전송장치(700)로 전송할 수 있다. 예를 들어, 제어 유닛(730)은 부하 변동을 통해 무선전력 수신장치로부터 전력 상승을 요청하는 전력 제어 신호를 수신하면, 그에 따른 응답으로서 더 높은 전력이 전송되도록 1차 코일(710)에 흐르는 전류의 세기를 상승시킬 수 있다. 보다 구체적으로, 1차 코일(710)에 더 큰 전류가 흐르도록 하기 위해, 제어 유닛(730)은 기준 AC 신호 보다 더 큰 AC 신호가 1차 코일(710)에 인가될 수 있도록 제어 신호(731)를 조정할 수 있다. 반대로, 제어 유닛(730)은 무선전력 수신장치로부터 전력 하강을 요청하는 전력 제어 신호를 수신하면, 현재 전송 전력 보다 낮은 전력이 전송되도록 기준 AC 신호 보다 낮은 AC 신호가 1차 코일(710)에 인가될 수 있도록 제어 신호(731)를 조절할 수 있다.
또한, 차량용 무선전력 전송장치의 동작 주파수가 무선전력 수신장치의 공진 주파수 보다 낮은 경우, 1차 코일(710)을 통해 보다 큰 무선전력이 전송되도록 하기 위해, 제어 유닛(730)은 차량용 무선전력 전송장치(700)의 동작 주파수 대역 내에서 동작 주파수를 더 높은 주파수로 설정할 수 있다. 반대로, 차량용 무선전력 전송장치의 동작 주파수가 무선전력 수신장치의 공진 주파수 보다 낮은 경우 1차 코일(710)을 통해 보다 낮은 무선전력이 전송되도록 하기 위해, 제어 유닛(730)은 차량용 무선전력 전송장치(700)의 동작 주파수 대역 내에서 동작 주파수를 더 낮은 주파수로 설정할 수 있다.
한편, 차량용 무선전력 전송장치의 동작 주파수가 무선전력 수신장치의 공진 주파수가 동일함에도 무선전력 수신장치가 전력 상승을 요구하는 경우, 제어 유닛(730)은 기준 AC 신호 보다 더 큰 AC 신호가 1차 코일(710)에 인가될 수 있도록 제어 신호(731)를 조정할 수 있다. 반대로, 차량용 무선전력 전송장치의 동작 주파수가 F1 또는 F2와 동일함에도 무선전력 수신장치가 전력 하강을 요청하는 경우, 제어 유닛(730)은 기준 AC 신호 보다 낮은 AC 신호가 1차 코일(710)에 인가될 수 있도록 제어 신호(731)를 조정할 수 있다. 상술한 일련의 과정을 통칭하여 전력 제어(power control)라 한다.
1차 코일(710)은 무선전력 수신장치로부터 수신된 전력 제어 신호에 따라 제어 유닛(730)에 의해 제어된 무선전력을 상기 무선전력 수신장치로 전송할 수 있다.
한편 도 7에는 도시되지 않았지만, 본 발명에 따른 차량용 무선전력 전송장치는 표유 자기장(stray magnetic field) 또는 와전류(eddy current)로부터 차량용 무선전력 전송장치를 보호하기 위한 차폐부재를 포함할 수 있다.
또한, 본 발명에 따른 차량용 무선전력 전송장치는 인터페이스 주변의 온도를 모니터링하는 온도 보호 회로를 포함할 수 있다. 온도 보호 회로에 의해 측정된 온도가 임계값을 초과하는 경우, 본 발명에 따른 차량용 무선전력 전송장치는 안전을 위해 전력 전송을 중단 또는 종료할 수 있다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (14)

  1. 차량용 무선전력 전송장치에 의한 무선 충전 방법에 있어서,
    차량의 제어에 사용되는 동작 주파수 대역 보다 낮은 주파수 대역을 사용하여 무선전력 수신장치의 검출을 위한 신호를 전송하는 단계;
    상기 무선전력 수신장치로부터 상기 전송된 신호에 대한 응답 신호 및 전력 제어 신호를 수신하는 단계;
    상기 전력 제어 신호에 따라 동작 주파수와 상기 차량용 무선전력 전송장치 내의 전압 중 적어도 하나를 제어하는 단계; 및
    상기 무선전력 수신장치로 무선전력을 전송하는 단계
    를 포함하는 차량용 무선전력 전송장치의 무선 충전 방법.
  2. 제1항에 있어서,
    상기 차량의 제어에 사용되는 동작 주파수 대역은,
    스마트 키(smart key)의 동작 주파수 대역을 포함하는 것을 특징으로 하는 차량용 무선전력 전송장치의 무선 충전 방법.
  3. 제1항에 있어서,
    상기 차량용 무선전력 전송장치가 사용하는 주파수 대역은,
    상기 차량용 무선전력 전송장치의 공진 주파수 보다 낮은 주파수 대역인 것을 특징으로 하는 차량용 무선전력 전송장치의 무선 충전 방법.
  4. 제1항에 있어서,
    상기 차량용 무선전력 전송장치의 공진 주파수와 상기 무선전력 수신장치의 공진 주파수는 서로 다른 것을 특징으로 하는 차량용 무선전력 전송장치의 무선 충전 방법.
  5. 제4항에 있어서,
    상기 차량용 무선전력 전송장치의 공진 주파수는,
    상기 무선전력 수신장치의 공진 주파수보다 높은 것을 특징으로 하는 차량용 무선전력 전송장치의 무선 충전방법.
  6. 제1항에 있어서,
    상기 제어하는 단계는,
    상기 전력 제어 신호가 상기 무선전력의 상승을 지시하는 경우, 상기 주파수 대역 내에서 상기 동작 주파수를 더 높은 주파수로 설정하는 단계를 포함하는 차량용 무선전력 전송장치의 무선 충전 방법.
  7. 제1항에 있어서,
    상기 제어하는 단계는,
    상기 전력 제어 신호가 상기 무선전력의 하강을 지시하는 경우, 상기 주파수 대역 내에서 상기 동작 주파수를 더 낮은 주파수로 설정하는 단계를 포함하는 차량용 무선전력 전송장치의 무선 충전 방법.
  8. 차량의 제어에 사용되는 동작 주파수 대역 보다 낮은 주파수 대역을 사용하여 무선전력 수신장치의 검출을 위한 신호 및 전력 신호를 전송하는 1차 코일;
    상기 1차 코일에 연결되어, 전자기장이 발생되도록 상기 1차 코일에 전기 구동 신호를 인가하는 전기 구동 유닛; 및
    상기 무선전력 수신장치로부터 수신한 전력 제어 신호에 따라 차량용 무선전력 전송장치의 동작 주파수 및 상기 차량용 무선전력 전송장치 내의 전압 중 적어도 하나를 제어하는 제어 유닛
    을 포함하고,
    상기 1차 코일은,
    상기 무선전력 수신장치로 상기 전력 제어 신호에 따라 제어된 무선전력을 전송하는 것을 특징으로 하는 차량용 무선전력 전송장치.
  9. 제8항에 있어서,
    상기 차량의 제어에 사용되는 동작 주파수 대역은,
    스마트 키(smart key)의 동작 주파수 대역을 포함하는 것을 특징으로 하는 차량용 무선전력 전송장치.
  10. 제8항에 있어서,
    상기 차량용 무선전력 전송장치가 사용하는 주파수 대역은,
    상기 차량용 무선전력 전송장치의 공진 주파수 보다 낮은 주파수 대역인 것을 특징으로 하는 차량용 무선전력 전송장치.
  11. 제8항에 있어서,
    상기 차량용 무선전력 전송장치의 공진 주파수와 상기 무선전력 수신장치의 공진 주파수는 서로 다른 것을 특징으로 하는 차량용 무선전력 전송장치.
  12. 제11항에 있어서,
    상기 차량용 무선전력 전송장치 무선전력 전송장치의 공진 주파수는,
    상기 무선전력 수신장치의 공진 주파수보다 높은 것을 특징으로 하는 차량용 무선전력 전송장치.
  13. 제8항에 있어서,
    상기 제어 유닛은,
    상기 전력 제어 신호가 상기 무선전력의 상승을 지시하는 경우, 상기 주파수 대역 내에서 상기 동작 주파수를 더 높은 주파수로 설정하는 것을 특징으로 하는 차량용 무선전력 전송장치.
  14. 제8항에 있어서,
    상기 제어 유닛은,
    상기 전력 제어 신호가 상기 무선전력의 하강을 지시하는 경우, 상기 주파수 대역 내에서 상기 동작 주파수를 더 낮은 주파수로 설정하는 것을 특징으로 하는 차량용 무선전력 전송장치.
PCT/KR2014/009186 2013-10-02 2014-09-30 차량용 무선전력 전송장치 및 무선 충전 방법 WO2015050360A1 (ko)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020247008815A KR20240037388A (ko) 2013-10-02 2014-09-30 차량용 무선전력 전송장치 및 무선 충전 방법
CN201480055010.3A CN105659469B (zh) 2013-10-02 2014-09-30 车辆用无线电力传送装置及无线充电方法
KR1020167008313A KR102329581B1 (ko) 2013-10-02 2014-09-30 차량용 무선전력 전송장치 및 무선 충전 방법
KR1020217037427A KR102529111B1 (ko) 2013-10-02 2014-09-30 차량용 무선전력 전송장치 및 무선 충전 방법
US14/917,804 US10442298B2 (en) 2013-10-02 2014-09-30 Wireless power transmission device for vehicle and wireless charging method
KR1020237014683A KR102649618B1 (ko) 2013-10-02 2014-09-30 차량용 무선전력 전송장치 및 무선 충전 방법
US16/573,781 US11618327B2 (en) 2013-10-02 2019-09-17 Wireless power transmission device for vehicle and wireless charging method
US18/191,357 US20230294530A1 (en) 2013-10-02 2023-03-28 Wireless power transmission device for vehicle and wireless charging method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361885522P 2013-10-02 2013-10-02
US61/885,522 2013-10-02

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/917,804 A-371-Of-International US10442298B2 (en) 2013-10-02 2014-09-30 Wireless power transmission device for vehicle and wireless charging method
US16/573,781 Continuation US11618327B2 (en) 2013-10-02 2019-09-17 Wireless power transmission device for vehicle and wireless charging method

Publications (1)

Publication Number Publication Date
WO2015050360A1 true WO2015050360A1 (ko) 2015-04-09

Family

ID=52778907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/009186 WO2015050360A1 (ko) 2013-10-02 2014-09-30 차량용 무선전력 전송장치 및 무선 충전 방법

Country Status (4)

Country Link
US (3) US10442298B2 (ko)
KR (4) KR102529111B1 (ko)
CN (1) CN105659469B (ko)
WO (1) WO2015050360A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113119786A (zh) * 2019-12-30 2021-07-16 北京新能源汽车股份有限公司 一种充电控制系统及充电控制方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015050360A1 (ko) 2013-10-02 2015-04-09 주식회사 한림포스텍 차량용 무선전력 전송장치 및 무선 충전 방법
JP6359924B2 (ja) * 2014-09-17 2018-07-18 トヨタ自動車株式会社 非接触送受電システム
US10536041B2 (en) * 2016-07-13 2020-01-14 Comcast Cable Communications, Llc System and method for wireless intercommunication and power delivery
EP3346581B1 (en) * 2017-01-04 2023-06-14 LG Electronics Inc. Wireless charger for mobile terminal in vehicle
KR20180130774A (ko) * 2017-05-30 2018-12-10 엘지이노텍 주식회사 무선 충전 방법
US11462953B2 (en) * 2017-11-13 2022-10-04 Tdk Electronics Ag Dynamic transmission coil positioning system, wireless power transfer system and method of positioning a transmit coil
WO2019225806A1 (ko) * 2018-05-23 2019-11-28 엘지이노텍(주) 무선 전력 송신 방법 및 장치
KR101987159B1 (ko) * 2018-07-25 2019-06-10 현대자동차 주식회사 무선 충전 영역 내에 있는 물체를 검출하기 위한 장치 및 방법
CN110525241A (zh) * 2019-08-12 2019-12-03 国家电网有限公司 一种对无线充电系统接收端的功率进行调节的装置及方法
KR20220026407A (ko) * 2020-08-25 2022-03-04 삼성전자주식회사 전자 장치 및 전자 장치에서 적응적 동작 전압 기반의 무선 전력 전송 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120153894A1 (en) * 2010-12-16 2012-06-21 Qualcomm Incorporated Wireless energy transfer and continuous radio station signal coexistence
KR101171142B1 (ko) * 2009-11-20 2012-08-06 전자부품연구원 공진자기유도 기반의 차량용 무선충전장치, 방법 및 시스템
US20130002035A1 (en) * 2011-06-28 2013-01-03 Kabushiki Kaisha Toshiba Wireless power transmission system, power transmission apparatus and power reception apparatus
KR20130003965A (ko) * 2011-07-01 2013-01-09 엘지전자 주식회사 복수의 전력 수신기에 대한 무선 전력 전송
JP2013176196A (ja) * 2012-02-24 2013-09-05 Toko Inc ワイヤレス電力伝送装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4909750B2 (ja) * 2007-01-29 2012-04-04 Necカシオモバイルコミュニケーションズ株式会社 無線通信装置、移動体通信端末、および、プログラム
JP4911148B2 (ja) * 2008-09-02 2012-04-04 ソニー株式会社 非接触給電装置
KR100971705B1 (ko) 2009-09-03 2010-07-22 주식회사 한림포스텍 무접점 충전 시스템
KR101662513B1 (ko) * 2011-05-04 2016-10-05 현대자동차주식회사 주파수 간섭을 방지하는 무선 전력 전송 방법
US9735623B2 (en) * 2011-05-17 2017-08-15 Samsung Electronics Co., Ltd. Power transmitting method and power transmitter for communication with power receiver
US8541976B2 (en) * 2011-05-23 2013-09-24 Honda Motor Co., Ltd. Vehicle mounted personal device battery charging station and operating methods to avoid interference
JP5842106B2 (ja) * 2011-09-20 2016-01-13 パナソニックIpマネジメント株式会社 非接触給電システム
KR101951358B1 (ko) * 2011-12-15 2019-02-22 삼성전자주식회사 무선 전력 송신기 및 그 제어 방법
KR20130091868A (ko) * 2012-02-09 2013-08-20 현대자동차주식회사 주파수 간섭을 방지하는 무선 전력 전송 방법
KR101902795B1 (ko) * 2012-02-21 2018-11-14 삼성전자주식회사 무선 충전 장치 및 방법
WO2014006627A1 (en) * 2012-07-05 2014-01-09 Powermat Technologies Ltd. System and method for providing inductive power at multiple power levels
WO2015050360A1 (ko) 2013-10-02 2015-04-09 주식회사 한림포스텍 차량용 무선전력 전송장치 및 무선 충전 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101171142B1 (ko) * 2009-11-20 2012-08-06 전자부품연구원 공진자기유도 기반의 차량용 무선충전장치, 방법 및 시스템
US20120153894A1 (en) * 2010-12-16 2012-06-21 Qualcomm Incorporated Wireless energy transfer and continuous radio station signal coexistence
US20130002035A1 (en) * 2011-06-28 2013-01-03 Kabushiki Kaisha Toshiba Wireless power transmission system, power transmission apparatus and power reception apparatus
KR20130003965A (ko) * 2011-07-01 2013-01-09 엘지전자 주식회사 복수의 전력 수신기에 대한 무선 전력 전송
JP2013176196A (ja) * 2012-02-24 2013-09-05 Toko Inc ワイヤレス電力伝送装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113119786A (zh) * 2019-12-30 2021-07-16 北京新能源汽车股份有限公司 一种充电控制系统及充电控制方法

Also Published As

Publication number Publication date
US20200009972A1 (en) 2020-01-09
KR20230067699A (ko) 2023-05-16
KR102529111B1 (ko) 2023-05-03
CN105659469B (zh) 2019-11-19
KR102649618B1 (ko) 2024-03-19
KR20210143930A (ko) 2021-11-29
US20160221459A1 (en) 2016-08-04
US10442298B2 (en) 2019-10-15
KR102329581B1 (ko) 2021-11-23
CN105659469A (zh) 2016-06-08
US11618327B2 (en) 2023-04-04
KR20160065841A (ko) 2016-06-09
US20230294530A1 (en) 2023-09-21
KR20240037388A (ko) 2024-03-21

Similar Documents

Publication Publication Date Title
WO2015050360A1 (ko) 차량용 무선전력 전송장치 및 무선 충전 방법
US11750040B2 (en) Apparatus and method for detecting foreign object in wireless power transmitting system
US11757309B2 (en) Apparatus and method for detecting foreign objects in wireless power transmission system
US9588163B2 (en) Apparatus and method for detecting foreign object in wireless power transmitting system
CN110266119B (zh) 检测设备、电力供应系统以及控制检测设备的方法
WO2013125849A1 (en) Wireless charging apparatus and method
US20130154386A1 (en) Wireless power transmitter, wireless power receiver and wireless power transmission method
CN102694425A (zh) 无线电力接收装置及其电力控制方法
WO2015182958A1 (ko) 무선전력 수신 장치 및 무선 통신 방법
WO2016114629A1 (ko) 무선 전력 전송 장치
KR20140008273A (ko) 무선 전력 전송 시스템에서 이물질 감지 장치 및 방법
KR20190042426A (ko) 무선 전력 전송 기술을 이용하여 전자기기를 충전하는 전자 장치
KR20190090751A (ko) 무선 전력 전송 시스템에서 이물질 감지 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14850531

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14917804

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167008313

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14850531

Country of ref document: EP

Kind code of ref document: A1