WO2015050095A1 - Power transmission apparatus, power reception apparatus, and wireless power transmission system - Google Patents

Power transmission apparatus, power reception apparatus, and wireless power transmission system Download PDF

Info

Publication number
WO2015050095A1
WO2015050095A1 PCT/JP2014/075986 JP2014075986W WO2015050095A1 WO 2015050095 A1 WO2015050095 A1 WO 2015050095A1 JP 2014075986 W JP2014075986 W JP 2014075986W WO 2015050095 A1 WO2015050095 A1 WO 2015050095A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
power
transformer
power transmission
voltage
Prior art date
Application number
PCT/JP2014/075986
Other languages
French (fr)
Japanese (ja)
Inventor
市川敬一
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2015540490A priority Critical patent/JP5935950B2/en
Publication of WO2015050095A1 publication Critical patent/WO2015050095A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields

Definitions

  • the present invention relates to a power transmission device, a power reception device, and a wireless power transmission system that transmit power wirelessly by an electric field coupling method.
  • wireless power transmission can be performed simply by installing the electronic device in the charging device in order to eliminate the trouble of connecting a charging cable to the electronic device.
  • a method of transmitting electric power from a power transmission device (charging device) side to a power reception device (electronic device) side using electric field coupling is known (for example, see Patent Document 1).
  • each of the power transmitting device and the power receiving device includes an active electrode on the high potential side and a passive electrode on the low potential side, and the active electrodes and the passive electrodes are separated by a gap.
  • a strong electric field is formed between the electrodes by making them face each other, and the electrodes are electric field coupled. This electric field coupling enables wireless power transmission between devices.
  • an object of the present invention is to provide a power receiving device, a power transmitting device, and a wireless power transmission system in which a ratio of capacities generated in a high potential portion and a low potential portion can be easily set in order to suppress a change in reference potential. It is in.
  • the power receiving device includes a power receiving side active electrode facing the power transmitting side active electrode of the power transmitting device, a power receiving side passive electrode facing the power transmitting side passive electrode of the power transmitting device, the power receiving side active electrode, and the power receiving side
  • a power receiving apparatus comprising: a first transformer to which a voltage induced in a passive electrode is applied; and a load circuit to which a voltage excited by the first transformer is applied, wherein power is transmitted from the power transmitting apparatus by electric field coupling.
  • the first transformer has a primary coil and a secondary coil, a first end of the primary coil is connected to the power receiving side active electrode, and a second end is connected to a reference potential of the device itself.
  • the primary coil has a single-winding transformer, a primary coil, and a secondary coil.
  • the first end of the primary coil is connected to the passive passive electrode, and the second end is connected to the reference potential of the device.
  • the capacitance is C11
  • the inductance of the primary coil of the second winding transformer is L12
  • the second capacitance generated between the first end and the second end of the primary coil is C12
  • power transmission In the case of 1 / ⁇ C11 ⁇ L11 and 1 / ⁇ C12 ⁇ L12, C11 ⁇ C12, and when 1 / ⁇ C11> ⁇ L11 and 1 / ⁇ C12> ⁇ L12, L11 ⁇ L12. It is characterized by being.
  • the capacitance ratio generated between the active electrode (high potential portion) and the passive electrode (low potential portion) can be set by combining the first winding transformer and the second winding transformer so as to satisfy each condition. .
  • variation of the reference electric potential of a receiving device can be suppressed, and a malfunction can be prevented.
  • first capacitance and the second capacitance are stray capacitances between windings of the primary coil of the first winding transformer and the second winding transformer.
  • the capacitance ratio generated between the active electrode (high potential part) and the passive electrode (low potential part) is set by combining the primary coil and the secondary coil according to the winding ratio of the winding transformer. it can.
  • the present invention is induced on a power receiving side active electrode facing a power transmitting side active electrode of a power transmitting device, a power receiving side passive electrode facing the power transmitting side passive electrode of the power transmitting device, the power receiving side active electrode, and the power receiving side passive electrode
  • a first transformer to which a voltage to be applied is applied; and a load circuit to which a voltage excited by the first transformer is applied, wherein the first power is transmitted from the power transmission device by electric field coupling.
  • the transformer has a first winding transformer and a second winding transformer having a primary coil and a secondary coil, and the first winding transformer has a first end of the primary coil connected to the power receiving side active electrode.
  • the second end is connected to the first end of the primary coil of the second winding transformer, and the second end of the primary coil is the front end of the second winding transformer. It is the structure connected to the power receiving side passive electrode, and the electrostatic capacitance between the primary coil and the secondary coil of the first winding transformer is C13, the primary coil of the second winding transformer and the When the capacitance between the secondary coils is represented by C14, C13 ⁇ C14.
  • the capacitance ratio generated between the active electrode (high potential portion) and the passive electrode (low potential portion) can be set by combining the first winding transformer and the second winding transformer so as to satisfy each condition. .
  • variation of the reference electric potential of a receiving device can be suppressed, and a malfunction can be prevented.
  • the present invention is induced on a power receiving side active electrode facing a power transmitting side active electrode of a power transmitting device, a power receiving side passive electrode facing the power transmitting side passive electrode of the power transmitting device, the power receiving side active electrode, and the power receiving side passive electrode
  • a first transformer to which a voltage to be applied is applied; and a load circuit to which a voltage excited by the first transformer is applied, wherein the first power is transmitted from the power transmission device by electric field coupling.
  • the transformer includes a first piezoelectric transformer and a second piezoelectric transformer having a voltage input electrode, a voltage output electrode, and a reference potential electrode connected to a reference potential of the device itself, and the first piezoelectric transformer includes the voltage An input electrode is connected to the power receiving side active electrode, and the voltage output electrode is connected to the voltage output electrode of the second piezoelectric transformer.
  • the second piezoelectric transformer has a configuration in which the voltage input electrode is connected to the power-receiving-side passive electrode, and an electrostatic charge generated between the voltage input electrode of the first piezoelectric transformer and the reference potential electrode.
  • the capacitance ratio generated between the active electrode (high potential portion) and the passive electrode (low potential portion) can be set by combining the first winding transformer and the second winding transformer so as to satisfy each condition. .
  • variation of the reference electric potential of a receiving device can be suppressed, and a malfunction can be prevented.
  • the power receiving device can be reduced in size and thickness.
  • the present invention is induced on a power receiving side active electrode facing a power transmitting side active electrode of a power transmitting device, a power receiving side passive electrode facing the power transmitting side passive electrode of the power transmitting device, the power receiving side active electrode, and the power receiving side passive electrode
  • a first transformer to which a voltage to be applied is applied; and a load circuit to which a voltage excited by the first transformer is applied, wherein the first power is transmitted from the power transmission device by electric field coupling.
  • the transformer includes a first piezoelectric transformer and a second piezoelectric transformer having a first voltage input electrode, a second voltage input electrode, a first voltage output electrode, and a second voltage output electrode, wherein the first piezoelectric transformer One voltage input electrode is connected to the power receiving side active electrode, and the second voltage input electrode is connected to a reference potential of the device itself, and the second piezoelectric The lance has the second voltage input electrode connected to the power-receiving-side passive electrode, the first voltage input electrode connected to the second voltage input electrode of the first piezoelectric transformer, and a reference potential of the device itself.
  • the capacitance generated between the first voltage input electrode and the second voltage input electrode of the first piezoelectric transformer is C51, the first voltage input electrode, the second voltage input electrode, and the A capacitance generated between the first voltage output electrode and the second voltage output electrode is represented by C53, and a static electricity generated between the first voltage input electrode and the second voltage input electrode of the second piezoelectric transformer.
  • the capacitance generated between the first voltage input electrode and the second voltage input electrode and the first voltage output electrode and the second voltage output electrode is represented by C63, and C51 + C53 ⁇ C61 + C63. Ah It is characterized in.
  • the present invention is induced on a power receiving side active electrode facing a power transmitting side active electrode of a power transmitting device, a power receiving side passive electrode facing the power transmitting side passive electrode of the power transmitting device, the power receiving side active electrode, and the power receiving side passive electrode
  • a first transformer to which a voltage to be applied is applied; and a load circuit to which a voltage applied by the first transformer is applied, wherein the first transformer Includes a first piezoelectric transformer and a second piezoelectric transformer having a first voltage input electrode, a second voltage input electrode, a first voltage output electrode, and a second voltage output electrode, wherein the first piezoelectric transformer includes the first piezoelectric transformer
  • the voltage input electrode is connected to the power receiving side active electrode, and the second piezoelectric transformer is configured such that the second voltage input electrode is the power receiving side passive electrode.
  • the first voltage input electrode is connected to the second voltage input electrode of the first piezoelectric transformer, and the first voltage input electrode and the second voltage input electrode of the first piezoelectric transformer are connected.
  • a capacitance generated between the first voltage output electrode and the second voltage output electrode is represented by C53, and the first voltage input electrode, the second voltage input electrode, and the first voltage of the second piezoelectric transformer
  • the capacitance generated between the voltage output electrode and the second voltage output electrode is represented by C63, and C53 ⁇ C63.
  • the capacitance ratio generated between the active electrode (high potential portion) and the passive electrode (low potential portion) can be set by combining the first piezoelectric transformer and the second piezoelectric transformer so as to satisfy each condition.
  • variation of the reference electric potential of a receiving device can be suppressed, and a malfunction can be prevented.
  • the power receiving device can be reduced in size and thickness.
  • the ratio between the capacitance generated between the active electrode and the reference potential and the capacitance generated between the passive electrode and the reference potential. can be set. Thereby, the fluctuation
  • FIG. 1 is a circuit diagram of a wireless power transmission system according to a first embodiment.
  • the figure which shows the equivalent circuit of the power receiving apparatus shown in FIG. Equivalent circuit diagram of a wireless power transmission system with some parts omitted
  • voltage fall part The figure which shows another example of the pressure
  • FIG. 10 is a diagram illustrating an example of a piezoelectric transformer according to a fifth embodiment. Equivalent circuit diagram of the wireless power transmission system shown in FIG. Diagram for explaining a method for measuring parasitic capacitance generated in a piezoelectric transformer Circuit diagram of wireless power transmission system according to Embodiment 6
  • FIG. 10 is a diagram illustrating an example of a piezoelectric transformer according to a sixth embodiment. The figure for explaining the measuring method of the capacitor which occurs in the piezoelectric transformer
  • FIG. 1 is a circuit diagram of a wireless power transmission system 1 according to the first embodiment.
  • the wireless power transmission system 1 includes a power transmission device 101 and a power reception device 201.
  • a power receiving apparatus 201 is placed on the power transmitting apparatus 101. In that state, the power transmission apparatus 101 transmits electric power to the power reception apparatus 201 using electric field coupling.
  • the power receiving apparatus 201 includes a load circuit RL including a secondary battery and a charging circuit, and charges the secondary battery with the power transmitted from the power transmitting apparatus 101.
  • the power transmission device 101 includes a power circuit 11.
  • the power supply circuit 11 converts a DC voltage (for example, DC 19 V) converted from an AC voltage (AC 100 V to 240 V) by an AC adapter connected to a commercial power source into an AC voltage using a DC-AC inverter circuit.
  • a step-up transformer 12 is connected to the power circuit 11.
  • the step-up transformer 12 is an insulated winding transformer having a primary coil and a secondary coil.
  • the primary coil is connected to the power supply circuit 11.
  • One end of the secondary coil is connected to the active electrode 13, and the other end is connected to the passive electrode 14.
  • the active electrode 13 and the passive electrode 14 are both flat, and the active electrode 13 has the same or smaller area than the passive electrode 14.
  • the active electrode 13 has the same or larger potential difference than the passive electrode 14 with respect to the reference potential of the power transmission device 101.
  • An alternating voltage boosted by the step-up transformer 12 is applied to the active electrode 13 and the passive electrode 14.
  • capacitors C1a and C1p are connected in series.
  • the connection point of the capacitors C1a and C1p is connected to the reference potential of the power transmission device 101.
  • the capacitance of the capacitor C1a (hereinafter referred to as C1a) is smaller than or equal to the capacitance of the capacitor C1p (hereinafter referred to as C1p), and the relationship of C1a ⁇ C1p is established.
  • the capacitors C1a and C1p suppress fluctuations in the reference potential and will be described in detail later.
  • the power receiving apparatus 201 includes an active electrode 23 and a passive electrode 24.
  • the active electrode 23 faces the active electrode 13 of the power transmission apparatus 101
  • the passive electrode 24 faces the passive electrode 14 of the power transmission apparatus 101.
  • the active electrode 23 and the passive electrode 24 are both flat, the active electrode 23 has the same area as the opposing active electrode 13, and the passive electrode 24 has the same area as the opposing passive electrode 14. . That is, the active electrode 23 has a smaller area or the same area as the passive electrode 24.
  • the active electrode 23 has a larger potential difference or the same potential as the reference potential of the power receiving device 201 than the passive electrode 24.
  • the capacitance generated (equivalently connected) between the active electrodes 13 and 23 is represented by a capacitor Ca
  • the capacitance generated (equivalently connected) between the passive electrodes 14 and 24 is represented by a capacitor Cp.
  • the capacitance of the capacitor Ca is represented by Caa
  • the capacitance of the capacitor Cp is represented by Cpp.
  • the active electrode 23 and the passive electrode 24 have the same area as the active electrode 13 and the passive electrode 14 facing each other.
  • the size of the electrodes is determined so that the facing area between the active electrodes 13 and 23 is smaller than or equal to the facing area between the passive electrodes 14 and 24, and the relationship of Caa ⁇ Cpp may be established.
  • a load circuit RL is connected to the active electrode 23 and the passive electrode 24 via a step-down unit 25, a rectifying diode bridge DB, a smoothing inductor L1, and a capacitor Co.
  • a voltage is applied to the active electrode 13 and the passive electrode 14 of the power transmission device 101, the active electrodes 13 and 23 and the passive electrodes 14 and 24 are electrically coupled.
  • a voltage is induced in the active electrode 23 and the passive electrode 24.
  • the step-down unit 25 steps down the induced voltage.
  • the step-down unit 25 corresponds to a “first transformer” according to the present invention.
  • the step-down unit 25 has two winding transformers T21 and T22.
  • the winding transformer T21 corresponds to the first winding transformer according to the present invention
  • the winding transformer T22 corresponds to the second winding transformer according to the present invention.
  • Winding transformers T21 and T22 have a primary coil and a secondary coil.
  • a capacitor C11 indicated by a broken line in the figure is a stray capacitance between windings of the primary coil of the winding transformer T21.
  • the capacitor C12 is a stray capacitance between windings of the primary coil of the winding transformer T22.
  • the primary coils of the winding transformers T21 and T22 and the secondary coils are connected in series.
  • a connection point of the primary coils connected in series is connected to the reference potential of the power receiving device 201. More specifically, one end of the primary coil of the winding transformer T21 is connected to the active electrode 23, and the other end is connected to the reference potential of the power transmission apparatus 101.
  • One end of the primary coil of the winding transformer T22 is connected to the passive electrode 24, and the other end is connected to the reference potential of the power transmission apparatus 101.
  • the secondary coils of the winding transformers T21 and T22 are connected in series.
  • condition (1) When 1 / ⁇ C11 ⁇ L11 and 1 / ⁇ C12 ⁇ L12, the influence of the capacitances C11 and C12 is dominant in the fluctuation of the reference potential of the power receiving apparatus 201.
  • the winding transformers T21 and T22 are selected so as to satisfy at least the condition of C11 ⁇ C12 (hereinafter referred to as condition (1)).
  • condition (2) the condition of L11 ⁇ L12
  • FIG. 2 is a diagram showing an equivalent circuit of the power receiving device 201 shown in FIG.
  • the step-down unit 25 can be equivalently represented by the circuit shown in FIG.
  • the primary coil of the winding transformers T21 and T22 connected in series is represented by one primary coil n1
  • the secondary coil of the winding transformers T21 and T22 connected in series is one secondary coil. This is represented by n2.
  • the capacitors C11 and C12 can be represented by a configuration in which the capacitors C11 and C12 are connected in series between the active electrode 23 and the passive electrode 24, as shown in FIG.
  • the connection point between the capacitors C11 and C12 is connected to the reference potential of the power receiving device 201.
  • FIG. 3 is an equivalent circuit diagram of the wireless power transmission system 1 with a part omitted.
  • FIG. 3 mainly shows a circuit composed of capacitors C1a, C1p, C11, C12 and capacitors Ca, Cp, and other circuits, for example, the diode bridge DB of the power receiving device 201, are grouped as a load circuit RL.
  • 3 is a reference potential point of the power transmitting apparatus 101
  • RG is a reference potential point of the power receiving apparatus 201.
  • the reference potential of the power receiving apparatus 201 can be stabilized by suppressing the potential difference between the power transmitting apparatus side reference potential point TG and the power receiving apparatus side reference potential point RG.
  • the impedances of the capacitors C1a and C1p are represented by Z1 and Z2.
  • the impedance of the capacitor C11 and the inductor L11 connected in parallel is represented by Z3, and the impedance of the capacitor C12 and the inductor L12 connected in parallel is represented by Z4.
  • the resistance component is ignored.
  • the impedances Z1, Z2, Z3, and Z4 are expressed by the following equations (1) to (4) (in the following, the symbol “//” represents parallel connection).
  • Z1 1 / j ⁇ C1a (1)
  • Z2 1 / j ⁇ C1p (2)
  • Z3 (j ⁇ L11) // (1 / j ⁇ C11) (3)
  • Z4 (j ⁇ L12) // (1 / j ⁇ C12) (4)
  • the reference of the power receiving device 201 As described above, by making the capacitance ratio of the capacitances C1a and C1p, the capacitance ratio of the capacitances Caa and Cpp, the capacitance ratio of the capacitances C11 and C12, or the inductance ratio of the inductances L2p and L2a, the reference of the power receiving device 201 The potential can be prevented from fluctuating.
  • the winding transformers T21 and T22 are configured so as to be the same as (or close to) the capacitance ratio of the capacitors Ca and Cp when the power receiving apparatus 201 is manufactured. You just have to decide on a combination.
  • an existing winding transformer may be selected as appropriate, and it is necessary to newly design the winding transformer to suppress the variation of the reference potential. Absent. Further, it is not necessary to provide the elements of the capacitors C11 and C12, and the power receiving device 201 can be saved in space.
  • the step-down unit 25 according to the present embodiment is not limited to the above-described configuration.
  • 4A and 4B are diagrams illustrating another example of the step-down unit 25.
  • FIG. 4A and 4B are diagrams illustrating another example of the step-down unit 25.
  • the secondary coils of the winding transformers T21 and T22 of the step-down unit 25 are connected in series, but the secondary coils may be connected in parallel as shown in FIG. 4A.
  • the step-down unit 25 according to the present embodiment is an insulated winding transformer that can handle a high voltage, but the step-down unit 25 has non-insulated winding transformers T21 and T22 as shown in FIG. 4B. A winding transformer may be used.
  • the primary coils of the winding transformers T21 and T22 are connected in series, and the connection point is connected to the reference potential of the power receiving apparatus 201, but is connected to the reference potential. You don't have to.
  • FIG. 5 is a diagram illustrating an example in which the connection point of the primary coil of the winding transformers T21 and T22 included in the step-down unit 25 is not connected to the ground.
  • the primary sides of the winding transformers T21 and T22 are insulated from the reference potential of the power receiving device 201.
  • the inductances L11 and L12 and the capacitances C11 and C12 do not contribute to fluctuations in the reference potential of the power receiving apparatus 201. Therefore, in this example, in order to suppress the fluctuation of the reference potential of the power receiving apparatus 201, the primary-secondary capacitance C13 of the winding transformer T21 and the primary-order of the winding transformer T22 are illustrated.
  • the winding transformers T21 and T22 need to be combined so that the relationship between the secondary capacitance C14 satisfies C13 ⁇ C14.
  • the voltage generated in the secondary coil is sufficiently low. Since the secondary coil is connected to the reference potential, it can be equivalently viewed as a circuit having the entire secondary coil as the reference potential.
  • the ratio between the capacitance C13 and the capacitance C14 is adjusted to (close to) the ratio between the capacitances Caa and Cpp. That is, the condition of C13 ⁇ C14 can be derived from the relationship of Caa ⁇ Cpp.
  • FIG. 6 is a diagram for explaining the capacitances C13 and C14.
  • a line capacitance C01 is generated between the primary coil and the secondary coil of the winding transformer T21.
  • the capacitance C13 is an equivalent representation of the inter-line capacitance C01.
  • a line capacitance C02 is generated between the primary coil and the secondary coil of the winding transformer T22.
  • the capacitance C14 is an equivalent representation of the inter-line capacitance C02.
  • the power transmission device 101 includes the step-up transformer 12 and the power reception device 201 includes the step-down unit 25.
  • the transformers included in the devices 101 and 201 are not limited to step-up and step-down.
  • the power transmission device 101 and the power reception device 201 may include an insulating transformer that does not transform
  • the power transmission device 101 may include a step-down transformer
  • the power reception device 201 may include a step-up transformer.
  • the winding transformer of the step-up transformer is appropriately combined using the capacitors C11 and C12 that are capacitor components included in the step-up transformer, as in the present embodiment, and You may make it suppress the fluctuation
  • Emodiment 2 In the present embodiment, the configuration of the step-up transformer included in the power transmission device of the wireless power transmission system is different from that in the first embodiment.
  • the power receiving apparatus is the same as that in the first embodiment.
  • FIG. 7 is a circuit diagram of the power transmission apparatus 102 according to the second embodiment.
  • the power transmission device 102 includes a power supply circuit 11, a booster 15, an active electrode 13, and a passive electrode 14.
  • the booster 15 has two winding transformers T11 and T12.
  • the booster 15 corresponds to a second transformer according to the present invention.
  • the winding transformer T11 corresponds to a third winding transformer according to the present invention, and the winding transformer T12 corresponds to a fourth winding transformer according to the present invention.
  • Winding transformers T11 and T12 have a primary coil and a secondary coil.
  • a capacitor C21 indicated by a broken line in FIG. 7 is a stray capacitance between windings of the secondary coil of the winding transformer T11.
  • the capacitor C22 is a stray capacitance between windings of the secondary coil of the winding transformer T12.
  • the primary coils and secondary coils of the winding transformers T11 and T12 are connected in series.
  • the connection point of the secondary coils connected in series is connected to the reference potential of the power transmission device 102. More specifically, one end of the secondary coil of the winding transformer T ⁇ b> 11 is connected to the active electrode 13, and the other end is connected to the reference potential of the power transmission device 102.
  • One end of the secondary coil of the winding transformer T ⁇ b> 12 is connected to the passive electrode 14, and the other end is connected to the reference potential of the power transmission device 102.
  • the primary coils of the winding transformers T11 and T12 are connected in series.
  • the inductance of the secondary coil of the winding transformer T11 is represented by L21, and the capacitance of the capacitor C21 of the primary coil is represented by C21. Further, the inductance of the secondary coil of the winding transformer T12 is represented by L22, and the capacitance of the capacitor C22 of the primary coil is represented by C22.
  • the operating angular frequency during power transmission of the wireless power transmission system 1 is represented by ⁇ .
  • the winding transformers T11 and T12 are selected so as to satisfy at least the condition of C21 ⁇ C22 (hereinafter referred to as condition (3)). Thereby, the fluctuation
  • variation of the reference electric potential of a receiving device can be suppressed. Further, if C21 / C22 Caa / Cpp, fluctuations in the reference potential of the power receiving apparatus can be further stabilized.
  • the influence of the inductances L21 and L22 is dominant in the fluctuation of the reference potential of the power receiving apparatus.
  • the winding transformers T11 and T12 are selected so as to satisfy at least the condition of L21 ⁇ L22 (hereinafter referred to as condition (4)). Thereby, the fluctuation
  • variation of the reference electric potential of a receiving device can be suppressed. Further, if L22 / L21 Caa / Cpp, the fluctuation of the reference potential of the power receiving apparatus can be more stabilized.
  • the winding transformer T11 of the step-up unit and the winding transformer T21 of the step-down unit are the same winding transformer.
  • the winding transformer T12 of the step-up unit and the winding transformer T22 of the step-down unit can use the same winding transformer.
  • the power transmission device 101 and the power receiving device 201 can have substantially the same capacity ratio, and the reference potential of the power receiving device 201 can be further stabilized.
  • connection point of the secondary coils of the winding transformers T11 and T12 included in the boosting unit 15 may not be connected to the ground.
  • the secondary sides of the winding transformers T11 and T12 are insulated from the reference potential of the power transmission device 102.
  • inductance L21, L22 and capacitance C21, C22 do not contribute to the fluctuation
  • FIG. Therefore, in this example, in order to suppress the fluctuation of the reference potential of the power transmitting apparatus 102, the primary-secondary capacitance C23 of the winding transformer T11 and the primary-secondary of the winding transformer T12. It is necessary to combine the winding transformers T11 and T12 so that the relationship with the electrostatic capacity C24 satisfies C23 ⁇ C24.
  • FIG. 8 is a circuit diagram of a power receiving device of the wireless power transmission system according to the third embodiment.
  • the power receiving device 202 according to the present embodiment is different from the first embodiment in the configuration of the step-down unit 26.
  • the power transmission device of the wireless power transmission system is the same as that of the first embodiment.
  • the step-down unit 26 includes Rosen-type piezoelectric transformers 261 and 262.
  • the piezoelectric transformer 261 corresponds to the first piezoelectric transformer according to the present invention
  • the piezoelectric transformer 262 corresponds to the second piezoelectric transformer according to the present invention.
  • the piezoelectric transformer 261 vibrates in the ⁇ resonance mode
  • the piezoelectric transformer 262 vibrates in the ( ⁇ / 2) resonance mode.
  • the piezoelectric transformers 261 and 262 have first electrodes E11 and E21, second electrodes E12 and E22, and third electrodes E13 and E23.
  • the first electrode E11 of the piezoelectric transformer 261 is connected to the active electrode 23.
  • the first electrode E ⁇ b> 21 of the piezoelectric transformer 262 is connected to the passive electrode 24.
  • the second electrodes E12 and E22 of the piezoelectric transformers 261 and 262 are connected to the reference potential of the power receiving device 202.
  • the third electrodes E13 and E23 of the piezoelectric transformers 261 and 262 are connected to a resonance inductor L2, a rectification diode bridge DB, a smoothing inductor L1, and a capacitor Co.
  • the piezoelectric transformers 261 and 262 when a voltage is applied to the first electrodes E11 and E21, the piezoelectric transformers 261 and 262 generate stress at a period corresponding to the drive signal due to the inverse piezoelectric effect, and the voltage is lowered due to the mechanical distortion. The voltage is output from the third electrodes E13 and E23. In the piezoelectric transformers 261 and 262, the first electrodes E11 and E21 and the third electrodes E13 and E23 maintain insulation. For this reason, in the step-down unit of the power receiving apparatus 202, the influence of noise due to the high-voltage unit (the coupling of the active electrodes 13 and 23) to the load circuit RL side can be suppressed by electrically insulating the input and output.
  • a capacitor C15 indicated by a broken line in FIG. 8 is a capacitance component generated between the first electrode E11 and the second electrode E12 of the piezoelectric transformer 261, and the capacitor C16 is a first electrode E21 and a second electrode E22 of the piezoelectric transformer 262. Is a capacitance component generated between The third electrodes E13 and E23 are connected to the reference potential of the power receiving device 202.
  • the capacitor C15 is a capacitance generated between the active electrode 23 and the reference potential
  • the capacitor C16 is a capacitance generated between the passive electrode 24 and the reference potential.
  • the piezoelectric transformer 261 vibrates in the ⁇ resonance mode and the piezoelectric transformer 262 vibrates in the ( ⁇ / 2) resonance mode
  • the distance between the first electrode E11 and the second electrode E12 is the first electrode E21 and the first electrode E21. It is longer than the distance to the two electrodes E22. That is, the capacitance of the capacitor C15 (hereinafter represented by C15) is smaller than the capacitance of the capacitor C16 (hereinafter represented by C16). For this reason, the relationship of C15 ⁇ C16 is established.
  • the relationship of C15 16 is established.
  • the capacitors C15 and C16 can be regarded as a circuit configuration in which the connection points of the capacitors C15 and C16 are connected to the reference potential in series between the active electrode 23 and the passive electrode 24 as in the first embodiment. .
  • the influence of the capacitors C15 and C16 becomes dominant, fluctuations in the reference potential of the power receiving apparatus 202 can be suppressed by combining the piezoelectric transformers 261 and 262 so that C15 ⁇ C16 holds.
  • C15 / C16 Caa / Cpp
  • fluctuations in the reference potential of the power receiving apparatus 202 can be further stabilized.
  • the voltage step-down unit 26 is configured by the piezoelectric transformers 261 and 262 so that the power receiving device 202 is reduced in size and thickness. Can be realized.
  • the configuration of the step-up transformer included in the power transmission device of the wireless power transmission system is different from that in the third embodiment.
  • the power receiving device is the same as the power receiving device according to the first or third embodiment.
  • FIG. 9 is a circuit diagram of the power transmission device 103 according to the fourth embodiment.
  • the power transmission device 103 includes a power supply circuit 11, a booster 16, an active electrode 13, and a passive electrode 14.
  • the step-up unit 16 has two Rosen-type piezoelectric transformers 161 and 162.
  • the piezoelectric transformer 161 corresponds to the third piezoelectric transformer according to the present invention
  • the piezoelectric transformer 162 corresponds to the fourth piezoelectric transformer according to the present invention.
  • the piezoelectric transformer 161 vibrates in the ⁇ resonance mode
  • the piezoelectric transformer 162 vibrates in the ( ⁇ / 2) resonance mode.
  • the piezoelectric transformers 161 and 162 have first electrodes E31 and E41, second electrodes E32 and E42, and third electrodes E33 and E43.
  • the first electrode E31 of the piezoelectric transformer 161 is connected to the active electrode 13.
  • the first electrode E41 of the piezoelectric transformer 162 is connected to the passive electrode 14.
  • the second electrodes E32 and E42 of the piezoelectric transformers 161 and 162 are connected to the reference potential of the power transmission device 103.
  • the third electrodes E33 and E43 of the piezoelectric transformers 161 and 162 are connected to the power supply circuit 11.
  • the piezoelectric transformers 161 and 162 when the AC voltage is applied to the piezoelectric transformers 161 and 162 from the power supply circuit 11 to the second electrodes E32 and E42 and the third electrodes E33 and E43, the piezoelectric transformers 161 and 162 have an inverse piezoelectric effect. Stress is generated at a period corresponding to the drive signal, and a voltage boosted by the mechanical strain is output from the first electrodes E31 and E41. The voltage boosted by the piezoelectric transformers 161 and 162 is applied to the active electrode 13 and the passive electrode 14.
  • a capacitor C25 indicated by a broken line in FIG. 9 is a capacitance component generated between the first electrode E31 and the second electrode E32 of the piezoelectric transformer 161, and the capacitor C26 is a first electrode E41 and a second electrode E42 of the piezoelectric transformer 162. Is a capacitance component generated between The third electrodes E33 and E43 are connected to the reference potential of the power transmission device 103.
  • the capacitor C25 is a capacitance generated between the active electrode 13 and the reference potential
  • the capacitor C26 is a capacitance generated between the passive electrode 14 and the reference potential.
  • the distance between the first electrode E31 and the second electrode E32 of the piezoelectric transformer 161 is the piezoelectric transformer. 162 is longer than the distance between the first electrode E41 and the second electrode E42. That is, the capacitance of the capacitor C25 (hereinafter represented by C25) is smaller than the capacitance of the capacitor C26 (hereinafter represented by C26). For this reason, the relationship of C25 ⁇ C26 is established.
  • C25 C26
  • the capacitors C25 and C26 are connected in series between the active electrode 13 and the passive electrode 14 as in the second embodiment, and can be regarded as a circuit configuration in which the connection point of the capacitors C25 and C26 is connected to the reference potential. .
  • the power transmission device 103 can be reduced in size and thickness.
  • the piezoelectric transformer 261 of the step-down unit 26 of the third embodiment and the piezoelectric transformer 161 of the step-up unit 16 of the present embodiment are the same. It is a piezoelectric transformer, and it is preferable that the piezoelectric transformer 262 of the step-down unit 26 of the third embodiment and the piezoelectric transformer 162 of the step-up unit 16 of the present embodiment are the same piezoelectric transformer. In this case, the capacity ratio can be made substantially the same between the power transmission device and the power reception device, and the reference potential of the power reception device can be further stabilized.
  • FIG. 10 is a circuit diagram of the wireless power transmission system 5 according to the fifth embodiment.
  • the power transmission device 105 and the power reception device 205 included in the wireless power transmission system 5 include reference potential electrodes 105A and 205A connected to respective reference potentials.
  • the reference potential electrodes 105A and 205A face each other to form a capacitor Cg. Therefore, the reference potential of the power receiving device 205 is connected to the reference potential of the power transmission device 105 via the formed capacitor Cg.
  • the power transmission device 105 includes a boosting unit 17 that boosts an AC voltage from the power supply circuit 11 and applies the boosted voltage to the active electrode 13 and the passive electrode 14.
  • the booster unit 17 has two piezoelectric transformers 171 and 172.
  • the piezoelectric transformer 171 corresponds to a “third piezoelectric transformer” according to the present invention, and the piezoelectric transformer 171 corresponds to a “fourth piezoelectric transformer” according to the present invention.
  • the piezoelectric transformer 171 includes a first electrode E51, a second electrode E52, a third electrode E53, and a fourth electrode E54.
  • the piezoelectric transformer 172 includes a first electrode E61, a second electrode E62, a third electrode E63, and a fourth electrode E64.
  • the first electrodes E51 and E61 correspond to “first voltage input electrodes” according to the present invention.
  • the second electrodes E52 and E62 correspond to the “second voltage input electrode” according to the present invention.
  • the third electrodes E53 and E63 correspond to the “first voltage output electrode” according to the present invention.
  • the fourth electrodes E54 and E64 correspond to the “second voltage output electrode” according to the present invention.
  • the first electrode E51 and the second electrode E52 of the piezoelectric transformer 171 are connected to the power supply circuit 11.
  • the third electrode E53 is connected to the active electrode 13.
  • the fourth electrode E54 is connected to the third electrode E63 of the piezoelectric transformer 172 and the reference potential of the power transmission device 105.
  • the first electrode E61 and the second electrode E62 of the piezoelectric transformer 172 are connected to the power supply circuit 11.
  • the third electrode E63 is connected to the fourth electrode E54 of the piezoelectric transformer 171 and the reference potential of the power transmission device 105.
  • the fourth electrode E64 is connected to the passive electrode 14.
  • the second electrode E52 of the piezoelectric transformer 171 and the first electrode E61 of the piezoelectric transformer 172 are connected to the power supply circuit 11, respectively, but the second electrode E52 of the piezoelectric transformer 171 and the first electrode of the piezoelectric transformer 172 are connected.
  • the electrode E61 may be connected to each other.
  • a parasitic capacitance (capacitor) is generated between the electrodes.
  • a parasitic capacitance generated between the first electrode E51 and the second electrode E52 of the piezoelectric transformer 171 is represented by C31
  • a parasitic capacitance generated between the third electrode E53 and the fourth electrode E54 is represented by C32.
  • a parasitic capacitance generated between the first electrode E51 and the second electrode E52 and the third electrode E53 and the fourth electrode E54 is represented by C33.
  • the parasitic capacitance generated between the first electrode E61 and the second electrode E62 of the piezoelectric transformer 172 is represented by C41
  • the parasitic capacitance generated between the third electrode E63 and the fourth electrode E64 is represented by C42
  • a parasitic capacitance generated between the first electrode E61 and the second electrode E62 and between the third electrode E63 and the fourth electrode E64 is represented by C43.
  • the power receiving device 205 includes a step-down unit 27 that steps down the voltage induced in the active electrode 23 and the passive electrode 24 and supplies the voltage to the diode bridge DB.
  • the step-down unit 27 has two piezoelectric transformers 271 and 272.
  • the piezoelectric transformer 271 corresponds to a “first piezoelectric transformer” according to the present invention.
  • the piezoelectric transformer 272 corresponds to a “second piezoelectric transformer” according to the present invention.
  • the piezoelectric transformer 271 includes a first electrode E71, a second electrode E72, a third electrode E73, and a fourth electrode E74.
  • the piezoelectric transformer 272 includes a first electrode E81, a second electrode E82, a third electrode E83, and a fourth electrode E84.
  • the first electrodes E71 and E81 correspond to the “first voltage input electrode” according to the present invention.
  • the second electrodes E72 and E82 correspond to the “second voltage input electrode” according to the present invention.
  • the third electrodes E73 and E83 correspond to the “first voltage output electrode” according to the present invention.
  • the fourth electrodes E74 and E84 correspond to the “second voltage output electrode” according to the present invention.
  • the first electrode E71 of the piezoelectric transformer 271 is connected to the active electrode 23.
  • the second electrode E72 is connected to the first electrode E81 of the piezoelectric transformer 272 and the reference potential of the power receiving device 205.
  • the third electrode E73 and the fourth electrode E74 are connected to the diode bridge DB.
  • the first electrode E81 of the piezoelectric transformer 272 is connected to the second electrode E72 of the piezoelectric transformer 271 and the reference potential of the power receiving device 205.
  • the second electrode E82 is connected to the passive electrode 24.
  • the third electrode E83 and the fourth electrode E84 are connected to the diode bridge DB.
  • the fourth electrode E74 of the piezoelectric transformer 271 and the third electrode E83 of the piezoelectric transformer 272 are connected to the diode bridge DB, respectively, the fourth electrode E74 of the piezoelectric transformer 271 and the third electrode of the piezoelectric transformer 272 are connected.
  • the electrode E83 may be connected to each other.
  • parasitic capacitance is generated between the electrodes.
  • a parasitic capacitance generated between the first electrode E71 and the second electrode E72 of the piezoelectric transformer 271 is represented by C51
  • a parasitic capacitance generated between the third electrode E73 and the fourth electrode E74 is represented by C52
  • the parasitic capacitance generated between the first electrode E71 and the second electrode E72 and the third electrode E73 and the fourth electrode E74 is represented by C53.
  • the parasitic capacitance generated between the first electrode E81 and the second electrode E82 of the piezoelectric transformer 272 is represented by C61
  • the parasitic capacitance generated between the third electrode E83 and the fourth electrode E84 is represented by C62
  • a parasitic capacitance generated between the first electrode E81 and the second electrode E82 and the third electrode E83 and the fourth electrode E84 is represented by C63.
  • the piezoelectric transformers 171, 172, 271, 272 are formed on separate piezoelectric element bodies.
  • the piezoelectric transformers 171, 172, 271, and 272 have the same configuration, and are polarized in the thickness direction of the piezoelectric element body on both the input side and the output side.
  • the piezoelectric transformer 271 will be described.
  • FIG. 11 is a diagram illustrating an example of the piezoelectric transformer 271 according to the fifth embodiment.
  • the piezoelectric transformer 271 includes a piezoelectric body 301 formed by stacking, for example, PZT ceramic sheets.
  • the piezoelectric body 301 has, along the length direction, a high impedance drive unit A1, a low impedance power generation unit A2, and an insulation unit A3 formed between the drive unit A1 and the power generation unit A2. .
  • the piezoelectric body 301 in the driving unit A1 is polarized in the thickness direction.
  • the internal electrodes 302 and 303 are alternately stacked in the thickness direction inside the piezoelectric body 301, and the first electrode E71 and the second electrode E72 are provided on the upper and lower surfaces.
  • the internal electrode 302 is connected to the first electrode E71 by a side electrode 304, and the internal electrode 303 is connected to the second electrode E72 by a side electrode (not shown) formed at a position facing the side electrode 304.
  • the piezoelectric body 301 is polarized in the thickness direction.
  • a plurality of piezoelectric bodies 301 and internal electrodes 305 and 306 are alternately stacked, and a third electrode E73 and a fourth electrode E74 are formed on the upper and lower surfaces.
  • the internal electrode 305 is connected to the third electrode E73 by the side electrode 307.
  • the internal electrode 306 indicated by a broken line is not exposed on the surface side on which the side electrode 307 is formed, but is exposed on the opposite surface side.
  • the internal electrode 306 is connected to the fourth electrode E74 by a side electrode (not shown) formed at a position facing the side electrode 307.
  • the piezoelectric transformer 271 having this structure, when an AC voltage is input to the first electrode E71 and the second electrode E72 of the drive unit A1 and driven, the voltage is stepped down from the third electrode E73 and the fourth electrode E74 of the power generation unit A2. A voltage is output.
  • the step-down and step-up voltage transformation ratios can be set by adjusting the laminated configuration of the drive unit A1 and the power generation unit A2.
  • FIG. 12 is an equivalent circuit diagram of the wireless power transmission system 5 shown in FIG. In FIG. 12, the piezoelectric transformers 171 and 172 of the booster unit 17 and the piezoelectric transformers 271 and 272 of the step-down unit 27 are shown as equivalent circuits.
  • the booster 17 has a transformer 170.
  • the transformer 170 is connected between the power supply circuit 11 and the active electrode 13 and the passive electrode 14.
  • a series circuit of capacitors C33 and C43 generated in the piezoelectric transformers 171 and 172 and a series circuit of capacitors C32 and C42 are connected between the active electrode 13 and the passive electrode 14.
  • the connection points of the capacitors C33 and C43 and the connection points of the capacitors C32 and C42 are respectively connected to the reference potential.
  • the step-down unit 27 has a transformer 270.
  • the transformer 270 is connected between the active electrode 23 and the passive electrode 24 and the diode bridge DB.
  • a series circuit of capacitors C51 and C61 generated in the piezoelectric transformers 271 and 272 and a series circuit of capacitors C53 and C63 are connected between the active electrode 23 and the passive electrode 24.
  • the connection point between the capacitors C51 and C61 and the connection point between the capacitors C53 and C63 are connected to a reference potential.
  • the capacitors C52 and C62 generated in the piezoelectric transformers 271 and 272 are not shown.
  • the booster unit 17 of the power transmission device 105 can be equivalently expressed as a configuration in which the capacitors C32 and C33 connected in parallel and the capacitors C42 and C43 connected in parallel are connected in series.
  • capacitors C51 and C53 connected in parallel and capacitors C61 and C63 connected in parallel can be equivalently expressed as a series connection.
  • the capacitances of the capacitors C32, C33, C42, C43, C51, C53, C61, and C63 are represented by C32, C33, C42, C43, C51, C53, C61, and C63, respectively.
  • the capacitors C32, C33, C42, and C43 shown in FIG. 12 can be expressed by a configuration in which a capacitor having a capacitance of C32 + C33 and a capacitor having a capacitance of C42 + C43 are connected in series.
  • the capacitors C51, C53, C61, and C63 shown in FIG. 12 have a configuration in which a capacitor having a capacitance of C51 + C53 and a capacitor having a capacitance of C61 + C63 are connected in series.
  • the area of the passive electrodes 14 and 24 is larger than or equal to the area of the active electrodes 13 and 23, and the relationship of Caa ⁇ Cpp is established.
  • the piezoelectric transformers 171, 172, 271, and 272 are selected so that C32 + C33 ⁇ C42 + C43 and C51 + C53 ⁇ C61 + C63 are satisfied.
  • variation of the reference electric potential of the power receiving apparatus 205 can be suppressed.
  • problems due to fluctuations in the reference potential, for example, malfunction of the device can be prevented.
  • FIG. 13 is a diagram for explaining a method for measuring the parasitic capacitance generated in the piezoelectric transformer 271.
  • a method for measuring the parasitic capacitance generated in the piezoelectric transformer 271 is described, but the method for measuring the parasitic capacitance generated in the other piezoelectric transformers 171, 172, 272 is the same.
  • the constant current source 150 is connected to the first electrode E71 of the piezoelectric transformer 271 and the second electrode E72 is connected to the ground.
  • the third electrode E73 and the fourth electrode E74 are short-circuited and connected to the ground.
  • the capacitor C51 generated in the piezoelectric transformer 271 is a capacitance generated between the first electrode E71 and the second electrode E72
  • the capacitor C52 is a capacitance generated between the third electrode E73 and the fourth electrode E74. Therefore, for example, the capacitance of the capacitor C51 can be obtained by measuring the capacitance between the first electrode E71 and the second electrode E72. Further, the capacitance of the capacitor C52 is obtained by measuring the capacitance between the third electrode E73 and the fourth electrode E74.
  • each of the power transmission device 105 and the power reception device 205 is configured to include a piezoelectric transformer, but only one of the power transmission device 105 and the power reception device 205 may include a piezoelectric transformer.
  • the step-down unit 27 of the power reception device 205 is configured by a winding transformer.
  • the piezoelectric transformers 171 and 172 are selected so as to satisfy C32 + C33 ⁇ C42 + C43.
  • the booster unit 17 of the power transmitting device 105 includes a winding transformer.
  • the piezoelectric transformers 271 and 272 are selected so as to satisfy C51 + C53 ⁇ C61 + C63.
  • the input electrode E72 of the piezoelectric transformer 271 and the input electrode E81 of the piezoelectric transformer 272 are connected to the reference potential, respectively. Good.
  • the input electrode side and the output electrode side of the piezoelectric transformers 271 and 272 are in an insulated state, noise flowing into the input electrode side via the ground can be suppressed.
  • the variation of the reference potential of the power receiving device 205 can be suppressed by selecting the piezoelectric transformers 271 and 272 so as to satisfy C53 ⁇ C63.
  • the fourth electrode E54 of the piezoelectric transformer 171 and the third electrode E63 of the piezoelectric transformer 172 may not be connected to the reference potential of the power transmission device 105.
  • the variation in the reference potential of the power receiving device 205 can be suppressed by selecting the piezoelectric transformers 171 and 172 to satisfy C33 ⁇ C43.
  • the input / output unit uses a piezoelectric transformer that is polarized in the thickness direction of the piezoelectric element body, whereas in the present embodiment, either the input unit or the output unit is a piezoelectric element element.
  • This embodiment is different from the fifth embodiment in that a piezoelectric transformer is used which is polarized in the longitudinal direction and the other is polarized in the thickness direction.
  • differences from the fifth embodiment will be described.
  • FIG. 14 is a circuit diagram of the wireless power transmission system 6 according to the sixth embodiment.
  • the power transmission device 106 included in the wireless power transmission system 6 includes a boosting unit 18 that boosts the AC voltage from the power supply circuit 11 and applies the boosted voltage to the active electrode 13 and the passive electrode 14.
  • the booster 18 has two piezoelectric transformers 181 and 182.
  • the piezoelectric transformer 181 corresponds to a “third piezoelectric transformer” according to the present invention.
  • the piezoelectric transformer 182 corresponds to a “fourth piezoelectric transformer” according to the present invention.
  • the piezoelectric transformer 181 includes a first electrode E91, a second electrode E92, a third electrode E93, and a fourth electrode E94.
  • the piezoelectric transformer 172 includes a first electrode E101, a second electrode E102, a third electrode E103, and a fourth electrode E104.
  • the first electrodes E91 and E101 correspond to “first voltage input electrodes” according to the present invention.
  • the second electrodes E92 and E102 correspond to the “second voltage input electrode” according to the present invention.
  • the third electrodes E93 and E103 correspond to the “first voltage output electrode” according to the present invention.
  • the fourth electrodes E94 and E104 correspond to the “second voltage output electrode” according to the present invention.
  • the first electrode E91 and the second electrode E92 of the piezoelectric transformer 181 are connected to the power supply circuit 11.
  • the first electrode E91 is also connected to the reference potential of the power transmission device 106.
  • the third electrode E93 is connected to the active electrode 13.
  • the fourth electrode E94 is connected to the third electrode E103 of the piezoelectric transformer 182 and the reference potential of the power transmission device 106.
  • the first electrode E101 and the second electrode E102 of the piezoelectric transformer 182 are connected to the power supply circuit 11.
  • the first electrode E101 is also connected to the reference potential of the power transmission device 106.
  • the fourth electrode E104 is connected to the passive electrode.
  • the third electrode E103 is connected to the fourth electrode E94 of the piezoelectric transformer 181 and the reference potential of the power transmission device 106.
  • parasitic capacitance is generated between the electrodes.
  • a parasitic capacitance generated between the first electrode E91 and the second electrode E92 of the piezoelectric transformer 181 and the third electrode E93 is represented by Ca1, and between the first electrode E91, the second electrode E92, and the fourth electrode E94.
  • the resulting parasitic capacitance is represented by Cb1.
  • a parasitic capacitance generated between the first electrode E91 and the second electrode E92 is represented by Cc1.
  • a parasitic capacitance generated between the first electrode E101 and the second electrode E102 of the piezoelectric transformer 182 and the third electrode E103 is represented by Ca2
  • the first electrode E101, the second electrode E102, the fourth electrode E104, The parasitic capacitance generated during the period is represented by Cb2.
  • a parasitic capacitance generated between the first electrode E101 and the second electrode E102 is represented by Cc2.
  • the power receiving device 206 included in the wireless power transmission system 6 includes a step-down unit 28 that steps down the voltage induced in the active electrode 23 and the passive electrode 24 and supplies the voltage to the diode bridge DB.
  • the step-down unit 28 has two piezoelectric transformers 281 and 282.
  • the piezoelectric transformer 281 corresponds to a “first piezoelectric transformer” according to the present invention.
  • the piezoelectric transformer 282 corresponds to a “second piezoelectric transformer” according to the present invention.
  • the piezoelectric transformer 281 includes a first electrode E111, a second electrode E112, a third electrode E113, and a fourth electrode E114.
  • the piezoelectric transformer 282 includes a first electrode E121, a second electrode E122, a third electrode E123, and a fourth electrode E124.
  • the first electrodes E111 and E121 correspond to “first voltage output electrodes” according to the present invention.
  • the second electrodes E112 and E122 correspond to the “second voltage output electrode” according to the present invention.
  • the third electrodes E113 and E123 correspond to the “first voltage input electrode” according to the present invention.
  • the fourth electrodes E114 and E124 correspond to “second voltage input electrodes” according to the invention.
  • the first electrode E111 and the second electrode E112 of the piezoelectric transformer 281 are connected to the diode bridge DB.
  • the third electrode E113 is connected to the active electrode 23.
  • the fourth electrode E114 is connected to the third electrode E123 of the piezoelectric transformer E282 and the reference potential of the power receiving device 206.
  • the first electrode E121 and the second electrode E122 of the piezoelectric transformer 282 are connected to the diode bridge DB.
  • the fourth electrode E124 is connected to the passive electrode 24.
  • the third electrode E123 is connected to the fourth electrode E114 of the piezoelectric transformer E281 and the reference potential of the power receiving device 206.
  • parasitic capacitance is generated between the electrodes.
  • a parasitic capacitance generated between the first electrode E111 and the second electrode E112 of the piezoelectric transformer 281 and the third electrode E113 is represented by Ca3, and between the first electrode E111, the second electrode E112, and the fourth electrode E114.
  • the resulting parasitic capacitance is represented by Cb3.
  • a parasitic capacitance generated between the first electrode E111 and the second electrode E112 is represented by Cc3.
  • a parasitic capacitance generated between the first electrode E121 and the second electrode E122 of the piezoelectric transformer 282 and the third electrode E123 is represented by Ca4, and the first electrode E121, the second electrode E122, and the fourth electrode E124 The parasitic capacitance generated during the period is represented by Cb4. Further, the parasitic capacitance generated between the first electrode E121 and the second electrode E122 is represented by Cc4.
  • the piezoelectric transformers 181, 182, 281 and 282 are piezoelectric transformers in which one of the input unit and the output unit is polarized in the longitudinal direction of the piezoelectric body and the other is polarized in the thickness direction.
  • Each of the piezoelectric transformers 181, 182, 281, and 282 has the same configuration, and the piezoelectric transformer 281 will be described below.
  • FIG. 15 is a diagram illustrating an example of the piezoelectric transformer 281 according to the sixth embodiment.
  • the piezoelectric transformer 281 includes a piezoelectric body 401 formed by stacking, for example, PZT ceramic sheets.
  • the piezoelectric transformer 281 vibrates in the length direction in the (3 ⁇ / 2) resonance mode.
  • is one wavelength of vibration in the length direction. Therefore, the length of the piezoelectric body 401 is (3 ⁇ / 2).
  • the width and thickness of the piezoelectric body 401 are preferably less than ( ⁇ / 2). By doing so, the vibration in the width direction and the thickness direction is not coupled to the vibration in the length direction, and the vibration of the entire piezoelectric transformer 281 is not unstable.
  • the piezoelectric body 401 has a first region B1, a second region B2, and a third region B3. Each of the regions B1 to B3 has a length of ⁇ / 2.
  • the first region B1 and the third region B3 are polarized in parallel with the length direction of the piezoelectric body, and the second region B2 is polarized in parallel with the thickness direction.
  • the first region B1 and the third region B3 are polarized in opposite directions.
  • Examples of the polarization treatment method include a method of applying a voltage of 2 kV / mm to the piezoelectric plate in insulating oil at 170 ° C.
  • the first electrode E111 and the second electrode E112 are provided to face the side surface of the piezoelectric body 401.
  • the second region B2 is provided with a plurality of internal electrodes 402 stacked in the thickness direction.
  • the internal electrodes 402 are alternately connected to the first electrode E111 and the second electrode E112.
  • a pair of third electrodes E113A and 113B are provided in the first region B1 so as to face the side surface of the piezoelectric body 401.
  • the pair of third electrodes E113A and 113B corresponds to the third electrode E113 shown in FIG.
  • a plurality of internal electrodes 403 stacked in the thickness direction are provided in the first region B1. All of the internal electrodes 403 are connected to both the third electrodes E113A and 113B.
  • a pair of fourth electrodes E114A and 114B are provided to face the side surface of the piezoelectric body 401.
  • the pair of fourth electrodes E114A and 114B corresponds to the fourth electrode E114 shown in FIG.
  • a plurality of internal electrodes 404 stacked in the thickness direction are provided. All of the internal electrodes 404 are connected to both the fourth electrodes E114A and 114B.
  • the piezoelectric transformer 281 configured as described above, when voltage is input from the pair of third electrodes E113A and 113B and the pair of fourth electrodes E114A and 114B, the first region B1 and the third region B3 An electric field is applied in the polarization direction (length direction). Then, longitudinal vibration is excited in the polarization direction, that is, the length direction of the piezoelectric body 401 by the inverse piezoelectric effect. When longitudinal vibration is excited, mechanical distortion occurs in the polarization direction in the second region B2, and a potential difference occurs in the polarization direction due to the piezoelectric transverse effect. Due to this potential difference, the second region B2 becomes a low voltage portion, and a low voltage is extracted from the first electrode E111 and the second electrode E112 in the second region B2.
  • the relationship between the parasitic capacitance generated in the piezoelectric transformers 181, 182, 281, and 282 according to the present embodiment and the parasitic capacitance generated in the piezoelectric transformers 171, 172, 271, and 272 according to the fifth embodiment will be described.
  • the relationship between the capacitors Ca3, Cb3, Cc3 generated in the piezoelectric transformer 281 according to the present embodiment and the capacitors C51, C52, C53 (see FIG. 10) generated in the piezoelectric transformer 271 according to the fifth embodiment is taken as an example. explain.
  • the capacitors Ca1, Cb1, and Cc1 generated in the piezoelectric transformer 181 have the same correspondence relationship as the capacitors C31, C32, and C33 generated in the piezoelectric transformer 171.
  • the capacitors Ca2, Cb2, and Cc2 generated in the piezoelectric transformer 182 have the same correspondence relationship as the capacitors C41, C42, and C43 generated in the piezoelectric transformer 172.
  • the capacitors Ca4, Cb4, and Cc4 generated in the piezoelectric transformer 282 have the same correspondence relationship as the capacitors C61, C62, and C63 generated in the piezoelectric transformer 272.
  • the piezoelectric transformers 181, 182, 281, and 282 are selected so as to satisfy C32 + C33 ⁇ C42 + C43 and C51 + C53 ⁇ C61 + C63. Thereby, the fluctuation
  • FIG. 16 is a diagram for explaining a method for measuring a capacitor generated in the piezoelectric transformer 281.
  • FIG. 16 only the method for measuring the capacitor generated in the piezoelectric transformer 281 is described, but the method for measuring the capacitor generated in the other piezoelectric transformers 181, 182, and 282 is the same.
  • the constant current source 150 is connected to the third electrode E113 of the piezoelectric transformer 281 and the fourth electrode E114 is connected to the ground.
  • the first electrode E111 and the second electrode E112 are short-circuited and connected to the ground.
  • the capacitance when the capacitors Ca3 and Cb3 are connected in series can be measured.
  • Piezoelectric transformer (second piezoelectric transformer)
  • C11 Capacitor (first capacitance)
  • C12 Capacitor (second capacitance)
  • C13 Capacitor (third capacitance)
  • C14 Capacitor (fourth capacitance)
  • C15 Capacitor (input capacitance of the first piezoelectric transformer)
  • C16 Capacitor (input capacitance of the second piezoelectric transformer)
  • C17 Capacitor (input capacitance of the third piezoelectric transformer)
  • C18 Capacitor (input capacitance of the fourth piezoelectric transformer)
  • Co ... capacitor Ca Cp ... capacitor DB ... diode bridge E11, E21 ...

Abstract

A step-down section (25) that is provided in a power reception apparatus (201) is provided with winding transformers (T21, T22), said power reception apparatus having power transmitted thereto from a power transmission apparatus (101) by means of electric field-coupling. Primary coils of the winding transformers (T21, T22) are connected in series, and a connection point is connected to a reference potential of the power reception apparatus (201). When an electrostatic capacitance generated in the primary coil of the winding transformer (T21) is expressed as (C11), and an inductance is expressed as (L11), an electrostatic capacitance generated between the primary coils of the winding transformer (T21) is expressed as (C12), and an inductance is expressed as (L12), the winding transformers (T11, T12) are selected such that the condition of C11≤C12 is satisfied in the cases where 1/ωC11<ωL11 and 1/ωC12<ωL12, and the condition of L11≥L12 is satisfied in the cases where 1/ωC11>ωL11 and 1/ωC12>ωL12. Consequently, the power reception apparatus wherein a ratio between capacitances generated in a high-potential section and a low-potential section can be easily set in order to suppress fluctuation of the reference potential, a power transmission apparatus, and a wireless power transmission system are provided.

Description

送電装置、受電装置及びワイヤレス電力伝送システムPower transmission device, power reception device, and wireless power transmission system
 本発明は、電界結合方式によりワイヤレスで電力を伝送する送電装置、受電装置及びワイヤレス電力伝送システムに関する。 The present invention relates to a power transmission device, a power reception device, and a wireless power transmission system that transmit power wirelessly by an electric field coupling method.
 近年、携帯電話機、又はモバイルPCなどの電子機器を充電する際、電子機器に充電用のケーブルを接続するといった煩わしさを無くすために、充電装置に電子機器を設置するだけで充電できるワイヤレス電力伝送が提案されている。ワイヤレス電力伝送として、電界結合を利用して送電装置(充電装置)側から受電装置(電子機器)側へ電力を伝送する方式が知られている(例えば、特許文献1参照)。 In recent years, when charging an electronic device such as a mobile phone or a mobile PC, wireless power transmission can be performed simply by installing the electronic device in the charging device in order to eliminate the trouble of connecting a charging cable to the electronic device. Has been proposed. As wireless power transmission, a method of transmitting electric power from a power transmission device (charging device) side to a power reception device (electronic device) side using electric field coupling is known (for example, see Patent Document 1).
 特許文献1に記載の電力伝送システムでは、送電装置、及び受電装置それぞれに高電位側となるアクティブ電極と、低電位側となるパッシブ電極とを備え、アクティブ電極同士、及びパッシブ電極同士を、間隙を介して対向させることで電極間に強い電界を形成し、電極同士を電界結合させる。この電界結合により装置間でのワイヤレスな電力伝送を可能としている。 In the power transmission system described in Patent Document 1, each of the power transmitting device and the power receiving device includes an active electrode on the high potential side and a passive electrode on the low potential side, and the active electrodes and the passive electrodes are separated by a gap. A strong electric field is formed between the electrodes by making them face each other, and the electrodes are electric field coupled. This electric field coupling enables wireless power transmission between devices.
特表2009-531009号公報JP-T 2009-531009
 この電界結合方式のワイヤレス電力伝送システムでは、アクティブ電極同士に印加される電圧を相対的に高くし、パッシブ電極同士に印加される電圧を相対的に低くして電力伝送される。このため、基準電位に対するアクティブ電極の電位の絶対値と、基準電位に対するパッシブ電極の電位の絶対値との差は大きい。この場合、装置の基準電位とアクティブ電極(高電位部)との間に形成される容量と、装置の基準電位とパッシブ電極(低電位部)との間に形成される容量との容量比が適切な値に設定されていないと、受電装置の基準電位が変動するおそれがある。そして、基準電位が変動すると、それに伴い、受電装置において不具合が生じるおそれがある。 In this electric field coupling type wireless power transmission system, power is transmitted with a relatively high voltage applied between the active electrodes and a relatively low voltage applied between the passive electrodes. For this reason, the difference between the absolute value of the potential of the active electrode with respect to the reference potential and the absolute value of the potential of the passive electrode with respect to the reference potential is large. In this case, the capacitance ratio between the capacitance formed between the reference potential of the device and the active electrode (high potential portion) and the capacitance formed between the reference potential of the device and the passive electrode (low potential portion) is If it is not set to an appropriate value, the reference potential of the power receiving apparatus may fluctuate. If the reference potential fluctuates, a problem may occur in the power receiving apparatus.
 この問題を回避するために、変動する容量比を調整する回路を構成することが考えられるが、この場合、外付け部品により省スペース化を阻害するといった問題が生じる。また、装置の回路又は素子の設計変更を必要とし、手間を要するといった問題も生じる。このため、高電位部と低電位部とに生じる容量の比を、容易に調整することは難しい。 In order to avoid this problem, it is conceivable to construct a circuit that adjusts the changing capacitance ratio. In this case, however, there arises a problem that space saving is hindered by external parts. In addition, there is a problem in that it requires a design change of the circuit or element of the apparatus, which takes time. For this reason, it is difficult to easily adjust the ratio of the capacitance generated between the high potential portion and the low potential portion.
 そこで、本発明の目的は、基準電位の変動を抑制するために、高電位部と低電位部とに生じる容量の比を容易に設定できる受電装置、送電装置及びワイヤレス電力伝送システムを提供することにある。 Accordingly, an object of the present invention is to provide a power receiving device, a power transmitting device, and a wireless power transmission system in which a ratio of capacities generated in a high potential portion and a low potential portion can be easily set in order to suppress a change in reference potential. It is in.
 本発明に係る受電装置は、送電装置の送電側アクティブ電極に対向する受電側アクティブ電極と、前記送電装置の送電側パッシブ電極に対向する受電側パッシブ電極と、前記受電側アクティブ電極及び前記受電側パッシブ電極に誘起される電圧が印加される第1トランスと、前記第1トランスにより励起された電圧が印加される負荷回路とを備え、電界結合により前記送電装置から電力が伝送される受電装置において、前記第1トランスは、1次コイル及び2次コイルを有し、前記1次コイルの第1端が前記受電側アクティブ電極に接続され、第2端が自装置の基準電位に接続された第1巻線トランスと、1次コイル、及び2次コイルを有し、前記1次コイルの第1端が前記受電側パッシブ電極に接続され、第2端が自装置の基準電位に接続された第2巻線トランスと、を有し、前記第1巻線トランスの前記1次コイルのインダクタンスをL11、前記1次コイルの前記第1端と前記第2端との間に生じる第1静電容量をC11、前記第2巻線トランスの1次コイルのインダクタンスをL12、前記1次コイルの前記第1端と前記第2端との間に生じる第2静電容量をC12、電力伝送の動作角周波数をωで表すと、1/ωC11<ωL11、1/ωC12<ωL12である場合、C11≦C12であり、1/ωC11>ωL11、1/ωC12>ωL12である場合、L11≧L12であることを特徴とする。 The power receiving device according to the present invention includes a power receiving side active electrode facing the power transmitting side active electrode of the power transmitting device, a power receiving side passive electrode facing the power transmitting side passive electrode of the power transmitting device, the power receiving side active electrode, and the power receiving side In a power receiving apparatus, comprising: a first transformer to which a voltage induced in a passive electrode is applied; and a load circuit to which a voltage excited by the first transformer is applied, wherein power is transmitted from the power transmitting apparatus by electric field coupling. The first transformer has a primary coil and a secondary coil, a first end of the primary coil is connected to the power receiving side active electrode, and a second end is connected to a reference potential of the device itself. It has a single-winding transformer, a primary coil, and a secondary coil. The first end of the primary coil is connected to the passive passive electrode, and the second end is connected to the reference potential of the device. A first winding that is generated between the first end and the second end of the primary coil. The capacitance is C11, the inductance of the primary coil of the second winding transformer is L12, the second capacitance generated between the first end and the second end of the primary coil is C12, power transmission In the case of 1 / ωC11 <ωL11 and 1 / ωC12 <ωL12, C11 ≦ C12, and when 1 / ωC11> ωL11 and 1 / ωC12> ωL12, L11 ≧ L12. It is characterized by being.
 この構成では、各条件を満たすよう、第1巻線トランスと第2巻線トランスとを組み合わせることにより、アクティブ電極(高電位部)とパッシブ電極(低電位部)とに生じる容量比を設定できる。これにより、受電装置の基準電位の変動を抑制して、不具合を防止できる。 In this configuration, the capacitance ratio generated between the active electrode (high potential portion) and the passive electrode (low potential portion) can be set by combining the first winding transformer and the second winding transformer so as to satisfy each condition. . Thereby, the fluctuation | variation of the reference electric potential of a receiving device can be suppressed, and a malfunction can be prevented.
 前記第1静電容量、及び前記第2静電容量は、前記第1巻線トランス、及び前記第2巻線トランスの前記1次コイルの巻線間浮遊容量である、ことが好ましい。 It is preferable that the first capacitance and the second capacitance are stray capacitances between windings of the primary coil of the first winding transformer and the second winding transformer.
 この構成では、巻線トランスの巻線比に応じて、1次コイル及び2次コイルを組み合わせすることで、アクティブ電極(高電位部)とパッシブ電極(低電位部)とに生じる容量比を設定できる。 In this configuration, the capacitance ratio generated between the active electrode (high potential part) and the passive electrode (low potential part) is set by combining the primary coil and the secondary coil according to the winding ratio of the winding transformer. it can.
 本発明は、送電装置の送電側アクティブ電極に対向する受電側アクティブ電極と、前記送電装置の送電側パッシブ電極に対向する受電側パッシブ電極と、前記受電側アクティブ電極及び前記受電側パッシブ電極に誘起される電圧が印加される第1トランスと、前記第1トランスにより励起された電圧が印加される負荷回路とを備え、電界結合により前記送電装置から電力が伝送される受電装置において、前記第1トランスは、1次コイル及び2次コイルを有する第1巻線トランス及び第2巻線トランスを有し、前記第1巻線トランスは、前記1次コイルの第1端が前記受電側アクティブ電極に接続され、第2端が前記第2巻線トランスの1次コイルの第1端に接続された構成であり、前記第2巻線トランスは、前記1次コイルの第2端が前記受電側パッシブ電極に接続された構成であり、前記第1巻線トランスの前記1次コイル及び前記2次コイルの間の静電容量をC13、前記第2巻線トランスの前記1次コイル及び前記2次コイルの間の静電容量をC14で表すと、C13<C14であることを特徴とする。 The present invention is induced on a power receiving side active electrode facing a power transmitting side active electrode of a power transmitting device, a power receiving side passive electrode facing the power transmitting side passive electrode of the power transmitting device, the power receiving side active electrode, and the power receiving side passive electrode A first transformer to which a voltage to be applied is applied; and a load circuit to which a voltage excited by the first transformer is applied, wherein the first power is transmitted from the power transmission device by electric field coupling. The transformer has a first winding transformer and a second winding transformer having a primary coil and a secondary coil, and the first winding transformer has a first end of the primary coil connected to the power receiving side active electrode. And the second end is connected to the first end of the primary coil of the second winding transformer, and the second end of the primary coil is the front end of the second winding transformer. It is the structure connected to the power receiving side passive electrode, and the electrostatic capacitance between the primary coil and the secondary coil of the first winding transformer is C13, the primary coil of the second winding transformer and the When the capacitance between the secondary coils is represented by C14, C13 <C14.
 この構成では、各条件を満たすよう、第1巻線トランスと第2巻線トランスとを組み合わせることにより、アクティブ電極(高電位部)とパッシブ電極(低電位部)とに生じる容量比を設定できる。これにより、受電装置の基準電位の変動を抑制して、不具合を防止できる。 In this configuration, the capacitance ratio generated between the active electrode (high potential portion) and the passive electrode (low potential portion) can be set by combining the first winding transformer and the second winding transformer so as to satisfy each condition. . Thereby, the fluctuation | variation of the reference electric potential of a receiving device can be suppressed, and a malfunction can be prevented.
 本発明は、送電装置の送電側アクティブ電極に対向する受電側アクティブ電極と、前記送電装置の送電側パッシブ電極に対向する受電側パッシブ電極と、前記受電側アクティブ電極及び前記受電側パッシブ電極に誘起される電圧が印加される第1トランスと、前記第1トランスにより励起された電圧が印加される負荷回路とを備え、電界結合により前記送電装置から電力が伝送される受電装置において、前記第1トランスは、電圧入力電極、電圧出力電極、及び、自装置の基準電位に接続される基準電位用電極を有する第1圧電トランス及び第2圧電トランスを有し、前記第1圧電トランスは、前記電圧入力電極が前記受電側アクティブ電極に接続され、前記電圧出力電極が、前記第2圧電トランスの前記電圧出力電極に接続された構成であり、前記第2圧電トランスは、前記電圧入力電極が前記受電側パッシブ電極に接続された構成であり、前記第1圧電トランスの前記電圧入力電極と前記基準電位用電極との間に生じる静電容量をC15、前記第2圧電トランスの前記電圧入力電極と前記基準電位用電極との間に生じる静電容量をC16で表すと、C15≦C16であることを特徴とする。 The present invention is induced on a power receiving side active electrode facing a power transmitting side active electrode of a power transmitting device, a power receiving side passive electrode facing the power transmitting side passive electrode of the power transmitting device, the power receiving side active electrode, and the power receiving side passive electrode A first transformer to which a voltage to be applied is applied; and a load circuit to which a voltage excited by the first transformer is applied, wherein the first power is transmitted from the power transmission device by electric field coupling. The transformer includes a first piezoelectric transformer and a second piezoelectric transformer having a voltage input electrode, a voltage output electrode, and a reference potential electrode connected to a reference potential of the device itself, and the first piezoelectric transformer includes the voltage An input electrode is connected to the power receiving side active electrode, and the voltage output electrode is connected to the voltage output electrode of the second piezoelectric transformer. The second piezoelectric transformer has a configuration in which the voltage input electrode is connected to the power-receiving-side passive electrode, and an electrostatic charge generated between the voltage input electrode of the first piezoelectric transformer and the reference potential electrode. When the capacitance is expressed as C15 and the capacitance generated between the voltage input electrode and the reference potential electrode of the second piezoelectric transformer is expressed as C16, C15 ≦ C16.
 この構成では、各条件を満たすよう、第1巻線トランスと第2巻線トランスとを組み合わせることにより、アクティブ電極(高電位部)とパッシブ電極(低電位部)とに生じる容量比を設定できる。これにより、受電装置の基準電位の変動を抑制して、不具合を防止できる。また、圧電トランスを用いることで、受電装置の小型化、薄型化を実現できる。 In this configuration, the capacitance ratio generated between the active electrode (high potential portion) and the passive electrode (low potential portion) can be set by combining the first winding transformer and the second winding transformer so as to satisfy each condition. . Thereby, the fluctuation | variation of the reference electric potential of a receiving device can be suppressed, and a malfunction can be prevented. In addition, by using a piezoelectric transformer, the power receiving device can be reduced in size and thickness.
 本発明は、送電装置の送電側アクティブ電極に対向する受電側アクティブ電極と、前記送電装置の送電側パッシブ電極に対向する受電側パッシブ電極と、前記受電側アクティブ電極及び前記受電側パッシブ電極に誘起される電圧が印加される第1トランスと、前記第1トランスにより励起された電圧が印加される負荷回路とを備え、電界結合により前記送電装置から電力が伝送される受電装置において、前記第1トランスは、第1電圧入力電極、第2電圧入力電極、第1電圧出力電極及び第2電圧出力電極を有する第1圧電トランス及び第2圧電トランスを有し、前記第1圧電トランスは、前記第1電圧入力電極が前記受電側アクティブ電極に接続され、前記第2電圧入力電極が、自装置の基準電位に接続された構成であり、前記第2圧電トランスは、前記第2電圧入力電極が前記受電側パッシブ電極に接続され、前記第1電圧入力電極が、前記第1圧電トランスの前記第2電圧入力電極、及び、自装置の基準電位に接続された構成であり、前記第1圧電トランスの前記第1電圧入力電極と前記第2電圧入力電極との間に生じる静電容量をC51、前記第1電圧入力電極及び前記第2電圧入力電極と前記第1電圧出力電極及び前記第2電圧出力電極との間に生じる静電容量をC53で表し、前記第2圧電トランスの前記第1電圧入力電極と前記第2電圧入力電極との間に生じる静電容量をC61、前記第1電圧入力電極及び前記第2電圧入力電極と前記第1電圧出力電極及び前記第2電圧出力電極との間に生じる静電容量をC63で表すと、C51+C53≦C61+C63であることを特徴とする。 The present invention is induced on a power receiving side active electrode facing a power transmitting side active electrode of a power transmitting device, a power receiving side passive electrode facing the power transmitting side passive electrode of the power transmitting device, the power receiving side active electrode, and the power receiving side passive electrode A first transformer to which a voltage to be applied is applied; and a load circuit to which a voltage excited by the first transformer is applied, wherein the first power is transmitted from the power transmission device by electric field coupling. The transformer includes a first piezoelectric transformer and a second piezoelectric transformer having a first voltage input electrode, a second voltage input electrode, a first voltage output electrode, and a second voltage output electrode, wherein the first piezoelectric transformer One voltage input electrode is connected to the power receiving side active electrode, and the second voltage input electrode is connected to a reference potential of the device itself, and the second piezoelectric The lance has the second voltage input electrode connected to the power-receiving-side passive electrode, the first voltage input electrode connected to the second voltage input electrode of the first piezoelectric transformer, and a reference potential of the device itself. The capacitance generated between the first voltage input electrode and the second voltage input electrode of the first piezoelectric transformer is C51, the first voltage input electrode, the second voltage input electrode, and the A capacitance generated between the first voltage output electrode and the second voltage output electrode is represented by C53, and a static electricity generated between the first voltage input electrode and the second voltage input electrode of the second piezoelectric transformer. The capacitance generated between the first voltage input electrode and the second voltage input electrode and the first voltage output electrode and the second voltage output electrode is represented by C63, and C51 + C53 ≦ C61 + C63. Ah It is characterized in.
 本発明は、送電装置の送電側アクティブ電極に対向する受電側アクティブ電極と、前記送電装置の送電側パッシブ電極に対向する受電側パッシブ電極と、前記受電側アクティブ電極及び前記受電側パッシブ電極に誘起される電圧が印加される第1トランスと、前記第1トランスによりされた電圧が印加される負荷回路とを備え、電界結合により前記送電装置から電力が伝送される受電装置において、前記第1トランスは、第1電圧入力電極、第2電圧入力電極、第1電圧出力電極及び第2電圧出力電極を有する第1圧電トランス及び第2圧電トランスを有し、前記第1圧電トランスは、前記第1電圧入力電極が前記受電側アクティブ電極に接続された構成であり、前記第2圧電トランスは、前記第2電圧入力電極が前記受電側パッシブ電極に接続され、前記第1電圧入力電極が、前記第1圧電トランスの前記第2電圧入力電極に接続された構成であり、前記第1圧電トランスの前記第1電圧入力電極及び前記第2電圧入力電極と前記第1電圧出力電極及び前記第2電圧出力電極との間に生じる静電容量をC53で表し、前記第2圧電トランスの前記第1電圧入力電極及び前記第2電圧入力電極と前記第1電圧出力電極及び前記第2電圧出力電極との間に生じる静電容量をC63で表すと、C53≦C63であることを特徴とする。 The present invention is induced on a power receiving side active electrode facing a power transmitting side active electrode of a power transmitting device, a power receiving side passive electrode facing the power transmitting side passive electrode of the power transmitting device, the power receiving side active electrode, and the power receiving side passive electrode A first transformer to which a voltage to be applied is applied; and a load circuit to which a voltage applied by the first transformer is applied, wherein the first transformer Includes a first piezoelectric transformer and a second piezoelectric transformer having a first voltage input electrode, a second voltage input electrode, a first voltage output electrode, and a second voltage output electrode, wherein the first piezoelectric transformer includes the first piezoelectric transformer The voltage input electrode is connected to the power receiving side active electrode, and the second piezoelectric transformer is configured such that the second voltage input electrode is the power receiving side passive electrode. The first voltage input electrode is connected to the second voltage input electrode of the first piezoelectric transformer, and the first voltage input electrode and the second voltage input electrode of the first piezoelectric transformer are connected. A capacitance generated between the first voltage output electrode and the second voltage output electrode is represented by C53, and the first voltage input electrode, the second voltage input electrode, and the first voltage of the second piezoelectric transformer The capacitance generated between the voltage output electrode and the second voltage output electrode is represented by C63, and C53 ≦ C63.
 この構成では、各条件を満たすよう、第1圧電トランスと第2圧電トランスとを組み合わせることにより、アクティブ電極(高電位部)とパッシブ電極(低電位部)とに生じる容量比を設定できる。これにより、受電装置の基準電位の変動を抑制して、不具合を防止できる。また、圧電トランスを用いることで、受電装置の小型化、薄型化を実現できる。 In this configuration, the capacitance ratio generated between the active electrode (high potential portion) and the passive electrode (low potential portion) can be set by combining the first piezoelectric transformer and the second piezoelectric transformer so as to satisfy each condition. Thereby, the fluctuation | variation of the reference electric potential of a receiving device can be suppressed, and a malfunction can be prevented. In addition, by using a piezoelectric transformer, the power receiving device can be reduced in size and thickness.
 本発明によれば、第1巻線トランスと第2巻線トランスとを組み合わせることにより、アクティブ電極と基準電位との間に生じる容量と、パッシブ電極と基準電位との間に生じる容量との比を設定できる。これにより、受電装置の基準電位の変動を抑制して、不具合を防止できる。 According to the present invention, by combining the first winding transformer and the second winding transformer, the ratio between the capacitance generated between the active electrode and the reference potential and the capacitance generated between the passive electrode and the reference potential. Can be set. Thereby, the fluctuation | variation of the reference electric potential of a receiving device can be suppressed, and a malfunction can be prevented.
実施形態1に係るワイヤレス電力伝送システムの回路図1 is a circuit diagram of a wireless power transmission system according to a first embodiment. 図1に示す受電装置の等価回路を示す図The figure which shows the equivalent circuit of the power receiving apparatus shown in FIG. 一部を省略したワイヤレス電力伝送システムの等価回路図Equivalent circuit diagram of a wireless power transmission system with some parts omitted 降圧部の別の例を示す図The figure which shows another example of the pressure | voltage fall part 降圧部の別の例を示す図The figure which shows another example of the pressure | voltage fall part 降圧部が有する巻線トランスの1次コイルの接続点を、グランド接続しない場合の例を示す図The figure which shows the example in case the connection point of the primary coil of the coil | winding transformer which a step-down part does not connect to the ground 静電容量を説明するための図Diagram for explaining capacitance 実施形態2に係る送電装置の回路図Circuit diagram of power transmission device according to embodiment 2 実施形態3に係るワイヤレス電力伝送システムの受電装置の回路図Circuit diagram of power receiving device of wireless power transmission system according to embodiment 3 実施形態4に係る送電装置の回路図Circuit diagram of power transmission device according to Embodiment 4 実施形態5に係るワイヤレス電力伝送システムの回路図Circuit diagram of wireless power transmission system according to Embodiment 5 実施形態5に係る圧電トランスの一例を示す図FIG. 10 is a diagram illustrating an example of a piezoelectric transformer according to a fifth embodiment. 図10に示すワイヤレス電力伝送システムの等価回路図Equivalent circuit diagram of the wireless power transmission system shown in FIG. 圧電トランスに生じる寄生容量の測定方法を説明するための図Diagram for explaining a method for measuring parasitic capacitance generated in a piezoelectric transformer 実施形態6に係るワイヤレス電力伝送システムの回路図Circuit diagram of wireless power transmission system according to Embodiment 6 実施形態6に係る圧電トランスの一例を示す図FIG. 10 is a diagram illustrating an example of a piezoelectric transformer according to a sixth embodiment. 圧電トランスに生じるキャパシタの測定方法を説明するための図The figure for explaining the measuring method of the capacitor which occurs in the piezoelectric transformer
(実施形態1)
 図1は、実施形態1に係るワイヤレス電力伝送システム1の回路図である。ワイヤレス電力伝送システム1は、送電装置101と受電装置201とを備えている。送電装置101には受電装置201が載置される。その状態で、送電装置101は、電界結合を利用して受電装置201へ電力を伝送する。受電装置201は、二次電池及び充電回路を含む負荷回路RLを備えていて、送電装置101から送電された電力を二次電池に充電する。
(Embodiment 1)
FIG. 1 is a circuit diagram of a wireless power transmission system 1 according to the first embodiment. The wireless power transmission system 1 includes a power transmission device 101 and a power reception device 201. A power receiving apparatus 201 is placed on the power transmitting apparatus 101. In that state, the power transmission apparatus 101 transmits electric power to the power reception apparatus 201 using electric field coupling. The power receiving apparatus 201 includes a load circuit RL including a secondary battery and a charging circuit, and charges the secondary battery with the power transmitted from the power transmitting apparatus 101.
 送電装置101は電源回路11を備えている。電源回路11は、商用電源に接続されたACアダプタにより交流電圧(AC100V~240V)から変換された直流電圧(例えばDC19V)を、DC-ACインバータ回路で交流電圧に変換する。 The power transmission device 101 includes a power circuit 11. The power supply circuit 11 converts a DC voltage (for example, DC 19 V) converted from an AC voltage (AC 100 V to 240 V) by an AC adapter connected to a commercial power source into an AC voltage using a DC-AC inverter circuit.
 電源回路11には昇圧トランス12が接続されている。昇圧トランス12は、1次コイル及び2次コイルを有する絶縁型巻線トランスである。1次コイルは電源回路11に接続されている。2次コイルの一端はアクティブ電極13に接続され、他端はパッシブ電極14に接続されている。 A step-up transformer 12 is connected to the power circuit 11. The step-up transformer 12 is an insulated winding transformer having a primary coil and a secondary coil. The primary coil is connected to the power supply circuit 11. One end of the secondary coil is connected to the active electrode 13, and the other end is connected to the passive electrode 14.
 アクティブ電極13及びパッシブ電極14はいずれも平板状であり、アクティブ電極13はパッシブ電極14よりも面積が同じ又は小さい。そして、アクティブ電極13はパッシブ電極14よりも送電装置101の基準電位に対して電位差が同じ又は大きい。これらアクティブ電極13及びパッシブ電極14には、昇圧トランス12で昇圧された交流電圧が印加される。 The active electrode 13 and the passive electrode 14 are both flat, and the active electrode 13 has the same or smaller area than the passive electrode 14. The active electrode 13 has the same or larger potential difference than the passive electrode 14 with respect to the reference potential of the power transmission device 101. An alternating voltage boosted by the step-up transformer 12 is applied to the active electrode 13 and the passive electrode 14.
 アクティブ電極13及びパッシブ電極14の間には、キャパシタC1a,C1pが直列に接続されている。キャパシタC1a,C1pの接続点は、送電装置101の基準電位に接続されている。また、キャパシタC1aの容量(以下、C1aで表す)は、キャパシタC1pの容量(以下、C1pで表す)より小さい又は等しく、C1a≦C1pの関係が成り立つ。このキャパシタC1a,C1pは、基準電位の変動を抑制するものであり、詳しくは後述する。 Between the active electrode 13 and the passive electrode 14, capacitors C1a and C1p are connected in series. The connection point of the capacitors C1a and C1p is connected to the reference potential of the power transmission device 101. Further, the capacitance of the capacitor C1a (hereinafter referred to as C1a) is smaller than or equal to the capacitance of the capacitor C1p (hereinafter referred to as C1p), and the relationship of C1a ≦ C1p is established. The capacitors C1a and C1p suppress fluctuations in the reference potential and will be described in detail later.
 受電装置201は、アクティブ電極23及びパッシブ電極24を備えている。受電装置201を送電装置101に載置した場合に、アクティブ電極23は、送電装置101のアクティブ電極13に対向し、パッシブ電極24は、送電装置101のパッシブ電極14に対向する。アクティブ電極23及びパッシブ電極24はいずれも平板状であり、アクティブ電極23は、対向するアクティブ電極13と同面積を有し、パッシブ電極24は、対向するパッシブ電極14と同面積を有している。すなわち、アクティブ電極23はパッシブ電極24よりも面積が小さい、又は同じである。そして、アクティブ電極23はパッシブ電極24よりも受電装置201の基準電位に対して電位差が大きい、又は同じである。 The power receiving apparatus 201 includes an active electrode 23 and a passive electrode 24. When the power receiving apparatus 201 is placed on the power transmission apparatus 101, the active electrode 23 faces the active electrode 13 of the power transmission apparatus 101, and the passive electrode 24 faces the passive electrode 14 of the power transmission apparatus 101. The active electrode 23 and the passive electrode 24 are both flat, the active electrode 23 has the same area as the opposing active electrode 13, and the passive electrode 24 has the same area as the opposing passive electrode 14. . That is, the active electrode 23 has a smaller area or the same area as the passive electrode 24. The active electrode 23 has a larger potential difference or the same potential as the reference potential of the power receiving device 201 than the passive electrode 24.
 以下では、アクティブ電極13,23の間に生じる(等価的に接続される)容量をキャパシタCaで表し、パッシブ電極14,24の間に生じる(等価的に接続される)容量をキャパシタCpで表す。また、キャパシタCaのキャパシタンスをCaa、キャパシタCpのキャパシタンスをCppで表す。この場合、パッシブ電極14,24間の対向面積は、アクティブ電極13,23間の対向面積よりも大きい、又は同じであるから、Caa≦Cppの関係が成り立つ。 In the following, the capacitance generated (equivalently connected) between the active electrodes 13 and 23 is represented by a capacitor Ca, and the capacitance generated (equivalently connected) between the passive electrodes 14 and 24 is represented by a capacitor Cp. . The capacitance of the capacitor Ca is represented by Caa, and the capacitance of the capacitor Cp is represented by Cpp. In this case, since the facing area between the passive electrodes 14 and 24 is larger than or the same as the facing area between the active electrodes 13 and 23, a relationship of Caa ≦ Cpp is established.
 なお、アクティブ電極23及びパッシブ電極24は、対向するアクティブ電極13及びパッシブ電極14と同面積を有しているとしているが、これに限らない。アクティブ電極13,23間の対向面積が、パッシブ電極14,24間の対向面積より小さい、または同じであるように電極の大きさを定め、Caa≦Cppの関係が成り立てばよい。 The active electrode 23 and the passive electrode 24 have the same area as the active electrode 13 and the passive electrode 14 facing each other. However, the present invention is not limited to this. The size of the electrodes is determined so that the facing area between the active electrodes 13 and 23 is smaller than or equal to the facing area between the passive electrodes 14 and 24, and the relationship of Caa ≦ Cpp may be established.
 アクティブ電極23及びパッシブ電極24には、降圧部25、整流用のダイオードブリッジDB、平滑用のインダクタL1及びキャパシタCoを介して、負荷回路RLが接続されている。送電装置101のアクティブ電極13及びパッシブ電極14に電圧が印加されると、アクティブ電極13,23同士、パッシブ電極14,24同士が電界結合する。そして、アクティブ電極23及びパッシブ電極24には電圧が誘起される。降圧部25は、この誘起された電圧を降圧する。降圧部25は、本発明に係る「第1トランス」に相当する。 A load circuit RL is connected to the active electrode 23 and the passive electrode 24 via a step-down unit 25, a rectifying diode bridge DB, a smoothing inductor L1, and a capacitor Co. When a voltage is applied to the active electrode 13 and the passive electrode 14 of the power transmission device 101, the active electrodes 13 and 23 and the passive electrodes 14 and 24 are electrically coupled. A voltage is induced in the active electrode 23 and the passive electrode 24. The step-down unit 25 steps down the induced voltage. The step-down unit 25 corresponds to a “first transformer” according to the present invention.
 降圧部25は、二つの巻線トランスT21,T22を有している。巻線トランスT21は、本発明に係る第1巻線トランスに相当し、巻線トランスT22は、本発明に係る第2巻線トランスに相当する。巻線トランスT21,T22は、1次コイルと2次コイルとを有している。 The step-down unit 25 has two winding transformers T21 and T22. The winding transformer T21 corresponds to the first winding transformer according to the present invention, and the winding transformer T22 corresponds to the second winding transformer according to the present invention. Winding transformers T21 and T22 have a primary coil and a secondary coil.
 なお、図の破線で示すキャパシタC11は、巻線トランスT21の1次コイルの巻線間浮遊容量である。また、キャパシタC12は、巻線トランスT22の1次コイルの巻線間浮遊容量である。 Note that a capacitor C11 indicated by a broken line in the figure is a stray capacitance between windings of the primary coil of the winding transformer T21. The capacitor C12 is a stray capacitance between windings of the primary coil of the winding transformer T22.
 巻線トランスT21,T22の1次コイル同士、2次コイル同士はそれぞれ直列に接続されている。直列に接続された1次コイルの接続点は、受電装置201の基準電位に接続されている。より詳しくは、巻線トランスT21の1次コイルの一端はアクティブ電極23に接続され、他端は送電装置101の基準電位に接続されている。巻線トランスT22の1次コイルの一端はパッシブ電極24に接続され、他端は送電装置101の基準電位に接続されている。また、巻線トランスT21,T22の2次コイルは直列接続されている。 The primary coils of the winding transformers T21 and T22 and the secondary coils are connected in series. A connection point of the primary coils connected in series is connected to the reference potential of the power receiving device 201. More specifically, one end of the primary coil of the winding transformer T21 is connected to the active electrode 23, and the other end is connected to the reference potential of the power transmission apparatus 101. One end of the primary coil of the winding transformer T22 is connected to the passive electrode 24, and the other end is connected to the reference potential of the power transmission apparatus 101. The secondary coils of the winding transformers T21 and T22 are connected in series.
 巻線トランスT21,T22を所定の条件を満たすように組み合わせ、降圧部25を構成した場合、受電装置201の基準電位の変動を抑制できる。以下に、その条件について説明する。 When the winding transformers T21 and T22 are combined so as to satisfy a predetermined condition and the step-down unit 25 is configured, fluctuations in the reference potential of the power receiving device 201 can be suppressed. The conditions will be described below.
 巻線トランスT21の1次コイルのインダクタンスをL11、その1次コイルのキャパシタC11のキャパシタンスをC11で表す。また、巻線トランスT22の1次コイルのインダクタンスをL12、その1次コイルのキャパシタC12のキャパシタンスをC12で表す。ワイヤレス電力伝送システム1の電力伝送時の動作角周波数ω(=2πf、f:動作周波数)で表す。 The inductance of the primary coil of the winding transformer T21 is represented by L11, and the capacitance of the capacitor C11 of the primary coil is represented by C11. Further, the inductance of the primary coil of the winding transformer T22 is represented by L12, and the capacitance of the capacitor C12 of the primary coil is represented by C12. It is represented by an operating angular frequency ω (= 2πf, f: operating frequency) during power transmission of the wireless power transmission system 1.
 1/ωC11<ωL11、1/ωC12<ωL12である場合、受電装置201の基準電位の変動は、キャパシタンスC11,C12による影響が支配的となる。この場合、少なくともC11≦C12の条件(以下、条件(1)と言う。)を満たすように、巻線トランスT21,T22を選択する。 When 1 / ωC11 <ωL11 and 1 / ωC12 <ωL12, the influence of the capacitances C11 and C12 is dominant in the fluctuation of the reference potential of the power receiving apparatus 201. In this case, the winding transformers T21 and T22 are selected so as to satisfy at least the condition of C11 ≦ C12 (hereinafter referred to as condition (1)).
 1/ωC11>ωL11、1/ωC12>ωL12である場合、受電装置201の基準電位の変動は、インダクタンスL11,L12による影響が支配的となる。この場合、少なくともL11≧L12の条件(以下、条件(2)と言う。)を満たすように、巻線トランスT21,T22を選択する。 When 1 / ωC11> ωL11 and 1 / ωC12> ωL12, the influence of the inductances L11 and L12 is dominant in the fluctuation of the reference potential of the power receiving apparatus 201. In this case, the winding transformers T21 and T22 are selected so as to satisfy at least the condition of L11 ≧ L12 (hereinafter referred to as condition (2)).
 図2は、図1に示す受電装置201の等価回路を示す図である。降圧部25は、等価的に図2に示す回路で表すことができる。図2では、直列接続された、巻線トランスT21,T22の1次コイルを一つの1次コイルn1で表し、直列接続された、巻線トランスT21,T22の2次コイルを一つの2次コイルn2で表している。キャパシタC11,C12は、図2で示すように、アクティブ電極23及びパッシブ電極24の間に直列に接続された構成で表せる。そして、キャパシタC11,C12の接続点は、受電装置201の基準電位に接続された構成となる。 FIG. 2 is a diagram showing an equivalent circuit of the power receiving device 201 shown in FIG. The step-down unit 25 can be equivalently represented by the circuit shown in FIG. In FIG. 2, the primary coil of the winding transformers T21 and T22 connected in series is represented by one primary coil n1, and the secondary coil of the winding transformers T21 and T22 connected in series is one secondary coil. This is represented by n2. The capacitors C11 and C12 can be represented by a configuration in which the capacitors C11 and C12 are connected in series between the active electrode 23 and the passive electrode 24, as shown in FIG. The connection point between the capacitors C11 and C12 is connected to the reference potential of the power receiving device 201.
 このワイヤレス電力伝送システム1において、前記の各条件(1)、(2)を満たすことで、受電装置201の基準電位の変動を抑制できる。そして、その結果、基準電位の変動による不具合、例えば、装置の誤作動等を防止できる。 In the wireless power transmission system 1, fluctuations in the reference potential of the power receiving device 201 can be suppressed by satisfying the above conditions (1) and (2). As a result, problems due to fluctuations in the reference potential, for example, malfunction of the device can be prevented.
 以下に、受電装置201の基準電位が安定する理由について説明する。 Hereinafter, the reason why the reference potential of the power receiving apparatus 201 is stabilized will be described.
 図3は、一部を省略したワイヤレス電力伝送システム1の等価回路図である。図3では、キャパシタC1a,C1p,C11,C12及びキャパシタCa,Cpから構成される回路を主に示し、他の回路、例えば、受電装置201のダイオードブリッジDBなどは負荷回路RLとしてまとめている。また、図3に示すTGは、送電装置101の基準電位点であり、RGは受電装置201の基準電位点である。この図3において、送電装置側基準電位点TGと受電装置側基準電位点RGとの電位差を抑えることにより、受電装置201の基準電位の安定化が可能となる。 FIG. 3 is an equivalent circuit diagram of the wireless power transmission system 1 with a part omitted. FIG. 3 mainly shows a circuit composed of capacitors C1a, C1p, C11, C12 and capacitors Ca, Cp, and other circuits, for example, the diode bridge DB of the power receiving device 201, are grouped as a load circuit RL. 3 is a reference potential point of the power transmitting apparatus 101, and RG is a reference potential point of the power receiving apparatus 201. In FIG. 3, the reference potential of the power receiving apparatus 201 can be stabilized by suppressing the potential difference between the power transmitting apparatus side reference potential point TG and the power receiving apparatus side reference potential point RG.
 図3において、キャパシタC1a,C1pのインピーダンスをZ1,Z2で表す。また、並列接続したキャパシタC11及びインダクタL11のインピーダンスをZ3で表し、並列接続したキャパシタC12及びインダクタL12のインピーダンスをZ4で表す。なお、説明を簡単にするため抵抗成分は無視する。この場合、インピーダンスZ1,Z2,Z3,Z4それぞれは以下の式(1)~(4)で表される(以下では、記号「//」は並列接続を表す)。 In FIG. 3, the impedances of the capacitors C1a and C1p are represented by Z1 and Z2. The impedance of the capacitor C11 and the inductor L11 connected in parallel is represented by Z3, and the impedance of the capacitor C12 and the inductor L12 connected in parallel is represented by Z4. For the sake of simplicity, the resistance component is ignored. In this case, the impedances Z1, Z2, Z3, and Z4 are expressed by the following equations (1) to (4) (in the following, the symbol “//” represents parallel connection).
 Z1=1/jωC1a…(1)
 Z2=1/jωC1p…(2)
 Z3=(jωL11)//(1/jωC11)…(3)
 Z4=(jωL12)//(1/jωC12)…(4)
 ここで、電源回路側から視たブリッジ回路及び負荷回路側から視たブリッジ回路の両方の平衡条件から、
 Z1/Z2=Z3/Z4=(1/jωCaa)/(1/jωCpp)…(5)
 を満たしているとき、送電装置側基準電位点TGと受電装置側基準電位点RGとの電位差が0となる。
Z1 = 1 / jωC1a (1)
Z2 = 1 / jωC1p (2)
Z3 = (jωL11) // (1 / jωC11) (3)
Z4 = (jωL12) // (1 / jωC12) (4)
Here, from the equilibrium condition of both the bridge circuit viewed from the power supply circuit side and the bridge circuit viewed from the load circuit side,
Z1 / Z2 = Z3 / Z4 = (1 / jωCaa) / (1 / jωCpp) (5)
Is satisfied, the potential difference between the power transmission device side reference potential point TG and the power reception device side reference potential point RG is zero.
 前記式(1)~(5)から以下の式(6)が成り立つ。 The following formula (6) is established from the above formulas (1) to (5).
 C1p/C1a=(ωL11-1/ωC11)/(ωL12-1/ωC12)=Cpp/Caa…(6)
 よって、前記式(6)が成り立つように周波数に応じて各定数を定めれば送電装置側基準電位点TGと受電装置側基準電位点RGとの電位差が0となる。
C1p / C1a = (ωL11-1 / ωC11) / (ωL12-1 / ωC12) = Cpp / Caa (6)
Therefore, if each constant is determined according to the frequency so that the formula (6) is satisfied, the potential difference between the power transmission device side reference potential point TG and the power reception device side reference potential point RG becomes zero.
 ここで、Caa≦Cppであるから、式(6)により、少なくともC1a≦C1p、|ωL11-1/ωC11|≧|ωL12-1/ωC12|であることにより、不等号が逆の場合と比べて式(5)の各辺の差は小さい。このため、送電装置側基準電位点TGと受電装置側基準電位点RGとの電位差は小さい。ωL11-1/ωC11及びωL12-1/ωC12は、周波数によってインダクタンスL11,L12、又はキャパシタンスC11,C12の影響の大きさは変化する。 Here, since Caa ≦ Cpp, according to the equation (6), at least C1a ≦ C1p and | ωL11-1 / ωC11 | ≧ | ωL12-1 / ωC12 | The difference between the sides in (5) is small. For this reason, the potential difference between the power transmission device side reference potential point TG and the power reception device side reference potential point RG is small. In ωL11-1 / ωC11 and ωL12-1 / ωC12, the magnitude of the influence of the inductances L11 and L12 or the capacitances C11 and C12 varies depending on the frequency.
 以上より、キャパシタンスC1a,C1pの容量比と、キャパシタンスCaa,Cppの容量比と、キャパシタンスC11,C12の容量比、又はインダクタンスL2p,L2aのインダクタンス比とを同じにすることで、受電装置201の基準電位が変動しないようにできる。 As described above, by making the capacitance ratio of the capacitances C1a and C1p, the capacitance ratio of the capacitances Caa and Cpp, the capacitance ratio of the capacitances C11 and C12, or the inductance ratio of the inductances L2p and L2a, the reference of the power receiving device 201 The potential can be prevented from fluctuating.
 条件(1)の場合、キャパシタンスC11,C12の影響が支配的となるため、C11≦C12が成り立つよう巻線トランスT21,T22の組み合わせることで、受電装置201の基準電位の変動を抑制できる。また、C11/C12=Caa/Cppであれば、より受電装置201の基準電位の変動を安定できる。 In the case of condition (1), the influence of the capacitances C11 and C12 becomes dominant. Therefore, by combining the winding transformers T21 and T22 so that C11 ≦ C12 is satisfied, fluctuations in the reference potential of the power receiving device 201 can be suppressed. Further, if C11 / C12 = Caa / Cpp, the fluctuation of the reference potential of the power receiving apparatus 201 can be further stabilized.
 条件(2)の場合、インダクタンスL11,L12の影響が支配的となるため、L11≧L12が成り立つよう巻線トランスT21,T22の組み合わせることで、受電装置201の基準電位の変動を抑制できる。また、L12/L11=Caa/Cppであれば、より受電装置201の基準電位の変動を安定できる。 In the condition (2), the influence of the inductances L11 and L12 becomes dominant. Therefore, by combining the winding transformers T21 and T22 so that L11 ≧ L12 is satisfied, fluctuations in the reference potential of the power receiving device 201 can be suppressed. Further, if L12 / L11 = Caa / Cpp, fluctuations in the reference potential of the power receiving apparatus 201 can be further stabilized.
 以上から、基準電位の変動を抑制するためには、受電装置201の製造時において、キャパシタCa,Cpの容量比と同じになるように(又はそれに近づけるように)、巻線トランスT21,T22の組み合わせを決めればよい。 From the above, in order to suppress fluctuations in the reference potential, the winding transformers T21 and T22 are configured so as to be the same as (or close to) the capacitance ratio of the capacitors Ca and Cp when the power receiving apparatus 201 is manufactured. You just have to decide on a combination.
 巻線トランスT21,T22の組み合わせにより、基準電位の変動を抑制できるため、既存の巻線トランスを適宜選択すればよく、基準電位の変動を抑制のために巻線トランスを新たに設計する必要がない。また、キャパシタC11,C12の素子を設ける必要がなく、受電装置201の省スペース化が図れる。 Since the variation of the reference potential can be suppressed by the combination of the winding transformers T21 and T22, an existing winding transformer may be selected as appropriate, and it is necessary to newly design the winding transformer to suppress the variation of the reference potential. Absent. Further, it is not necessary to provide the elements of the capacitors C11 and C12, and the power receiving device 201 can be saved in space.
 本実施形態に係る降圧部25は、上述の構成に限定されない。図4A及び図4Bは、降圧部25の別の例を示す図である。 The step-down unit 25 according to the present embodiment is not limited to the above-described configuration. 4A and 4B are diagrams illustrating another example of the step-down unit 25. FIG.
 本実施形態では、降圧部25の巻線トランスT21,T22の2次コイルは直列に接続されているが、図4Aに示すように、2次コイルは並列に接続されてもよい。また、本実施形態に係る降圧部25は、高電圧を取り扱うことができる絶縁型巻線トランスとしているが、降圧部25は、図4Bに示すように、巻線トランスT21,T22は非絶縁型巻線トランスであってもよい。 In the present embodiment, the secondary coils of the winding transformers T21 and T22 of the step-down unit 25 are connected in series, but the secondary coils may be connected in parallel as shown in FIG. 4A. In addition, the step-down unit 25 according to the present embodiment is an insulated winding transformer that can handle a high voltage, but the step-down unit 25 has non-insulated winding transformers T21 and T22 as shown in FIG. 4B. A winding transformer may be used.
 また、本実施形態に係る降圧部25において、巻線トランスT21,T22の1次コイルは直列に接続され、その接続点は、受電装置201の基準電位に接続されているが、基準電位に接続しなくてもよい。 In the step-down unit 25 according to the present embodiment, the primary coils of the winding transformers T21 and T22 are connected in series, and the connection point is connected to the reference potential of the power receiving apparatus 201, but is connected to the reference potential. You don't have to.
 図5は、降圧部25が有する巻線トランスT21,T22の1次コイルの接続点を、グランド接続しない場合の例を示す図である。 FIG. 5 is a diagram illustrating an example in which the connection point of the primary coil of the winding transformers T21 and T22 included in the step-down unit 25 is not connected to the ground.
 この例では、巻線トランスT21,T22の1次側が、受電装置201の基準電位に対して絶縁している。このため、インダクタンスL11,L12、及びキャパシタンスC11,C12は、受電装置201の基準電位の変動には寄与しない。したがって、この例では、受電装置201の基準電位の変動を抑制するためには、図示する、巻線トランスT21の1次-2次間の静電容量C13と、巻線トランスT22の1次-2次間の静電容量C14との関係が、C13≦C14を満たすように、巻線トランスT21,T22を組み合わせる必要がある。 In this example, the primary sides of the winding transformers T21 and T22 are insulated from the reference potential of the power receiving device 201. For this reason, the inductances L11 and L12 and the capacitances C11 and C12 do not contribute to fluctuations in the reference potential of the power receiving apparatus 201. Therefore, in this example, in order to suppress the fluctuation of the reference potential of the power receiving apparatus 201, the primary-secondary capacitance C13 of the winding transformer T21 and the primary-order of the winding transformer T22 are illustrated. The winding transformers T21 and T22 need to be combined so that the relationship between the secondary capacitance C14 satisfies C13 ≦ C14.
 巻線トランスT21,T22の1次コイルに印加される電圧と比較すると、2次コイルに発生する電圧は十分低い。2次コイルは基準電位に接続しているため、2次コイル全体を基準電位とした回路と等価的に見ることができる。この場合、静電容量C13と静電容量C14との比を、キャパシタンスCaa,Cppの比に合わせる(近づける)。すなわち、Caa≦Cppの関係から、C13≦C14の条件が導くことができる。C13≦C14の条件を満たすように、巻線トランスT21,T22の組み合わせることで、受電装置201の基準電位の変動を抑制できる。 Compared with the voltage applied to the primary coil of the winding transformers T21 and T22, the voltage generated in the secondary coil is sufficiently low. Since the secondary coil is connected to the reference potential, it can be equivalently viewed as a circuit having the entire secondary coil as the reference potential. In this case, the ratio between the capacitance C13 and the capacitance C14 is adjusted to (close to) the ratio between the capacitances Caa and Cpp. That is, the condition of C13 ≦ C14 can be derived from the relationship of Caa ≦ Cpp. By combining the winding transformers T21 and T22 so as to satisfy the condition of C13 ≦ C14, fluctuations in the reference potential of the power receiving device 201 can be suppressed.
 図6は、静電容量C13,C14を説明するための図である。図に示すように、巻線トランスT21の1次コイルと2次コイルとの間には、線間容量C01が生じる。静電容量C13は、この線間容量C01を総合して等価的に表したものである。同様に、巻線トランスT22の1次コイルと2次コイルとの間には、線間容量C02が生じる。静電容量C14は、この線間容量C02を総合して等価的に表したものである。 FIG. 6 is a diagram for explaining the capacitances C13 and C14. As shown in the figure, a line capacitance C01 is generated between the primary coil and the secondary coil of the winding transformer T21. The capacitance C13 is an equivalent representation of the inter-line capacitance C01. Similarly, a line capacitance C02 is generated between the primary coil and the secondary coil of the winding transformer T22. The capacitance C14 is an equivalent representation of the inter-line capacitance C02.
 なお、本実施形態では、送電装置101は昇圧トランス12を備え、受電装置201は降圧部25を備えた場合について説明したが、各装置101,201が備えるトランスは、昇圧及び降圧に限定されない。例えば、送電装置101及び受電装置201は変圧しない絶縁型トランスを備えていてもよいし、送電装置101は降圧トランスを備え、受電装置201は昇圧トランスを備えていてもよい。そして、受電装置201が昇圧トランスを備える場合、本実施形態と同様に、昇圧トランスが有するキャパシタ成分であるキャパシタC11,C12を利用して、昇圧トランスの巻線トランスを適宜組み合わせ、受電装置201の基準電位の変動を抑制するようにしてもよい。 In the present embodiment, the power transmission device 101 includes the step-up transformer 12 and the power reception device 201 includes the step-down unit 25. However, the transformers included in the devices 101 and 201 are not limited to step-up and step-down. For example, the power transmission device 101 and the power reception device 201 may include an insulating transformer that does not transform, the power transmission device 101 may include a step-down transformer, and the power reception device 201 may include a step-up transformer. When the power receiving device 201 includes a step-up transformer, the winding transformer of the step-up transformer is appropriately combined using the capacitors C11 and C12 that are capacitor components included in the step-up transformer, as in the present embodiment, and You may make it suppress the fluctuation | variation of a reference potential.
(実施形態2)
 本実施形態では、ワイヤレス電力伝送システムの送電装置が有する昇圧トランスの構成が、実施形態1と相違する。受電装置は実施形態1と同様である。
(Embodiment 2)
In the present embodiment, the configuration of the step-up transformer included in the power transmission device of the wireless power transmission system is different from that in the first embodiment. The power receiving apparatus is the same as that in the first embodiment.
 図7は、実施形態2に係る送電装置102の回路図である。送電装置102は、電源回路11、昇圧部15、アクティブ電極13及びパッシブ電極14を備えている。 FIG. 7 is a circuit diagram of the power transmission apparatus 102 according to the second embodiment. The power transmission device 102 includes a power supply circuit 11, a booster 15, an active electrode 13, and a passive electrode 14.
 昇圧部15は、二つの巻線トランスT11,T12を有している。昇圧部15は、本発明に係る第2トランスに相当する。巻線トランスT11は、本発明に係る第3巻線トランスに相当し、巻線トランスT12は、本発明に係る第4巻線トランスに相当する。巻線トランスT11,T12は、1次コイルと2次コイルとを有している。 The booster 15 has two winding transformers T11 and T12. The booster 15 corresponds to a second transformer according to the present invention. The winding transformer T11 corresponds to a third winding transformer according to the present invention, and the winding transformer T12 corresponds to a fourth winding transformer according to the present invention. Winding transformers T11 and T12 have a primary coil and a secondary coil.
 なお、図7の破線で示すキャパシタC21は、巻線トランスT11の2次コイルの巻線間浮遊容量である。また、キャパシタC22は、巻線トランスT12の2次コイルの巻線間浮遊容量である。 Note that a capacitor C21 indicated by a broken line in FIG. 7 is a stray capacitance between windings of the secondary coil of the winding transformer T11. The capacitor C22 is a stray capacitance between windings of the secondary coil of the winding transformer T12.
 巻線トランスT11,T12の1次コイル同士、2次コイル同士はそれぞれ直列に接続されている。直列に接続された2次コイルの接続点は、送電装置102の基準電位に接続されている。より詳しくは、巻線トランスT11の2次コイルは、一端がアクティブ電極13に接続され、他端が送電装置102の基準電位に接続されている。巻線トランスT12の2次コイルは、一端がパッシブ電極14に接続され、他端が送電装置102の基準電位に接続されている。また、巻線トランスT11,T12の1次コイルは直列接続されている。 The primary coils and secondary coils of the winding transformers T11 and T12 are connected in series. The connection point of the secondary coils connected in series is connected to the reference potential of the power transmission device 102. More specifically, one end of the secondary coil of the winding transformer T <b> 11 is connected to the active electrode 13, and the other end is connected to the reference potential of the power transmission device 102. One end of the secondary coil of the winding transformer T <b> 12 is connected to the passive electrode 14, and the other end is connected to the reference potential of the power transmission device 102. The primary coils of the winding transformers T11 and T12 are connected in series.
 巻線トランスT11,T12を所定の条件を満たすように組み合わせ、昇圧部15を構成した場合、送電装置102から電力伝送される受電装置の基準電位の変動を抑制できる。以下に、その条件について説明する。 When the winding transformers T <b> 11 and T <b> 12 are combined so as to satisfy a predetermined condition and the boosting unit 15 is configured, fluctuations in the reference potential of the power receiving device to which power is transmitted from the power transmitting device 102 can be suppressed. The conditions will be described below.
 巻線トランスT11の2次コイルのインダクタンスをL21、その1次コイルのキャパシタC21のキャパシタンスをC21で表す。また、巻線トランスT12の2次コイルのインダクタンスをL22、その1次コイルのキャパシタC22のキャパシタンスをC22で表す。ワイヤレス電力伝送システム1の電力伝送時の動作角周波数をωで表す。 The inductance of the secondary coil of the winding transformer T11 is represented by L21, and the capacitance of the capacitor C21 of the primary coil is represented by C21. Further, the inductance of the secondary coil of the winding transformer T12 is represented by L22, and the capacitance of the capacitor C22 of the primary coil is represented by C22. The operating angular frequency during power transmission of the wireless power transmission system 1 is represented by ω.
 1/ωC21<ωL21、1/ωC22<ωL22である場合、受電装置の基準電位の変動は、キャパシタンスC21,C22による影響が支配的となる。この場合、少なくともC21≦C22の条件(以下、条件(3)と言う。)を満たすように、巻線トランスT11,T12を選択する。これにより、受電装置の基準電位の変動を抑制できる。また、C21/C22=Caa/Cppであれば、より受電装置の基準電位の変動を安定できる。 When 1 / ωC21 <ωL21 and 1 / ωC22 <ωL22, the influence of the capacitances C21 and C22 is dominant in the fluctuation of the reference potential of the power receiving apparatus. In this case, the winding transformers T11 and T12 are selected so as to satisfy at least the condition of C21 ≦ C22 (hereinafter referred to as condition (3)). Thereby, the fluctuation | variation of the reference electric potential of a receiving device can be suppressed. Further, if C21 / C22 = Caa / Cpp, fluctuations in the reference potential of the power receiving apparatus can be further stabilized.
 1/ωC21>ωL21、1/ωC22>ωL22である場合、受電装置の基準電位の変動は、インダクタンスL21,L22による影響が支配的となる。この場合、少なくともL21≧L22の条件(以下、条件(4)と言う。)を満たすように、巻線トランスT11,T12を選択する。これにより、受電装置の基準電位の変動を抑制できる。また、L22/L21=Caa/Cppであれば、より受電装置の基準電位の変動を安定できる。 When 1 / ωC21> ωL21 and 1 / ωC22> ωL22, the influence of the inductances L21 and L22 is dominant in the fluctuation of the reference potential of the power receiving apparatus. In this case, the winding transformers T11 and T12 are selected so as to satisfy at least the condition of L21 ≧ L22 (hereinafter referred to as condition (4)). Thereby, the fluctuation | variation of the reference electric potential of a receiving device can be suppressed. Further, if L22 / L21 = Caa / Cpp, the fluctuation of the reference potential of the power receiving apparatus can be more stabilized.
 なお、送電装置101の昇圧部、及び受電装置201の降圧部それぞれに巻線トランスを設ける本実施形態において、昇圧部の巻線トランスT11と、降圧部の巻線トランスT21とが同じ巻線トランスを用い、昇圧部の巻線トランスT12と、降圧部の巻線トランスT22とが同じ巻線トランスを用いることができる。この場合、送電装置101と受電装置201とで容量比を略同じにすることができ、受電装置201の基準電位をより安定化できる。 In this embodiment in which a winding transformer is provided in each of the step-up unit of the power transmission device 101 and the step-down unit of the power receiving device 201, the winding transformer T11 of the step-up unit and the winding transformer T21 of the step-down unit are the same winding transformer. The winding transformer T12 of the step-up unit and the winding transformer T22 of the step-down unit can use the same winding transformer. In this case, the power transmission device 101 and the power receiving device 201 can have substantially the same capacity ratio, and the reference potential of the power receiving device 201 can be further stabilized.
 また、実施形態1の図5で説明した場合と同様に、昇圧部15が有する巻線トランスT11,T12の2次コイルの接続点は、グランド接続されていなくてもよい。この場合、巻線トランスT11,T12の2次側が、送電装置102の基準電位に対して絶縁している。このため、インダクタンスL21,L22、及びキャパシタンスC21,C22は、送電装置102の基準電位の変動には寄与しない。したがって、この例では、送電装置102の基準電位の変動を抑制するためには、巻線トランスT11の1次-2次間の静電容量C23と、巻線トランスT12の1次-2次間の静電容量C24との関係が、C23≦C24を満たすように、巻線トランスT11,T12を組み合わせる必要がある。 Further, similarly to the case described with reference to FIG. 5 of the first embodiment, the connection point of the secondary coils of the winding transformers T11 and T12 included in the boosting unit 15 may not be connected to the ground. In this case, the secondary sides of the winding transformers T11 and T12 are insulated from the reference potential of the power transmission device 102. For this reason, inductance L21, L22 and capacitance C21, C22 do not contribute to the fluctuation | variation of the reference electric potential of the power transmission apparatus 102. FIG. Therefore, in this example, in order to suppress the fluctuation of the reference potential of the power transmitting apparatus 102, the primary-secondary capacitance C23 of the winding transformer T11 and the primary-secondary of the winding transformer T12. It is necessary to combine the winding transformers T11 and T12 so that the relationship with the electrostatic capacity C24 satisfies C23 ≦ C24.
(実施形態3)
 図8は、実施形態3に係るワイヤレス電力伝送システムの受電装置の回路図である。本実施形態に係る受電装置202は、降圧部26の構成が実施形態1と相違する。ワイヤレス電力伝送システムの送電装置は、実施形態1と同様である。
(Embodiment 3)
FIG. 8 is a circuit diagram of a power receiving device of the wireless power transmission system according to the third embodiment. The power receiving device 202 according to the present embodiment is different from the first embodiment in the configuration of the step-down unit 26. The power transmission device of the wireless power transmission system is the same as that of the first embodiment.
 降圧部26は、ローゼン型の圧電トランス261,262を備えている。圧電トランス261は、本発明に係る第1圧電トランスに相当し、圧電トランス262は、本発明に係る第2圧電トランスに相当する。圧電トランス261は、λ共振モードで振動し、圧電トランス262は、(λ/2)共振モードで振動する。 The step-down unit 26 includes Rosen-type piezoelectric transformers 261 and 262. The piezoelectric transformer 261 corresponds to the first piezoelectric transformer according to the present invention, and the piezoelectric transformer 262 corresponds to the second piezoelectric transformer according to the present invention. The piezoelectric transformer 261 vibrates in the λ resonance mode, and the piezoelectric transformer 262 vibrates in the (λ / 2) resonance mode.
 圧電トランス261,262は、第1電極E11,E21、第2電極E12,E22、及び第3電極E13,E23を有している。圧電トランス261の第1電極E11は、アクティブ電極23に接続されている。圧電トランス262の第1電極E21は、パッシブ電極24に接続されている。圧電トランス261,262の第2電極E12,E22は、受電装置202の基準電位に接続されている。圧電トランス261,262の第3電極E13,E23は、共振用のインダクタL2、整流用のダイオードブリッジDB、平滑用のインダクタL1及びキャパシタCoが接続されている。 The piezoelectric transformers 261 and 262 have first electrodes E11 and E21, second electrodes E12 and E22, and third electrodes E13 and E23. The first electrode E11 of the piezoelectric transformer 261 is connected to the active electrode 23. The first electrode E <b> 21 of the piezoelectric transformer 262 is connected to the passive electrode 24. The second electrodes E12 and E22 of the piezoelectric transformers 261 and 262 are connected to the reference potential of the power receiving device 202. The third electrodes E13 and E23 of the piezoelectric transformers 261 and 262 are connected to a resonance inductor L2, a rectification diode bridge DB, a smoothing inductor L1, and a capacitor Co.
 この降圧部26において、圧電トランス261,262は、第1電極E11,E21に電圧が印加されると、逆圧電効果により、駆動信号に応じた周期で応力が生じ、その機械的歪みにより降圧した電圧を第3電極E13,E23から出力する。この圧電トランス261,262は、第1電極E11,E21と、第3電極E13,E23とは絶縁性を保っている。このため、受電装置202の降圧部において、入出力間で電気的に絶縁することで、負荷回路RL側への高圧部(アクティブ電極13,23の結合)によるノイズの影響を抑制できる。 In the step-down unit 26, when a voltage is applied to the first electrodes E11 and E21, the piezoelectric transformers 261 and 262 generate stress at a period corresponding to the drive signal due to the inverse piezoelectric effect, and the voltage is lowered due to the mechanical distortion. The voltage is output from the third electrodes E13 and E23. In the piezoelectric transformers 261 and 262, the first electrodes E11 and E21 and the third electrodes E13 and E23 maintain insulation. For this reason, in the step-down unit of the power receiving apparatus 202, the influence of noise due to the high-voltage unit (the coupling of the active electrodes 13 and 23) to the load circuit RL side can be suppressed by electrically insulating the input and output.
 図8の破線で示すキャパシタC15は、圧電トランス261の第1電極E11と第2電極E12との間に生じるキャパシタンス成分であり、キャパシタC16は、圧電トランス262の第1電極E21と第2電極E22との間に生じるキャパシタンス成分である。また、第3電極E13,E23は、受電装置202の基準電位に接続されている。換言すれば、キャパシタC15は、アクティブ電極23と基準電位との間に生じる容量、キャパシタC16は、パッシブ電極24と基準電位との間に生じる容量である。 A capacitor C15 indicated by a broken line in FIG. 8 is a capacitance component generated between the first electrode E11 and the second electrode E12 of the piezoelectric transformer 261, and the capacitor C16 is a first electrode E21 and a second electrode E22 of the piezoelectric transformer 262. Is a capacitance component generated between The third electrodes E13 and E23 are connected to the reference potential of the power receiving device 202. In other words, the capacitor C15 is a capacitance generated between the active electrode 23 and the reference potential, and the capacitor C16 is a capacitance generated between the passive electrode 24 and the reference potential.
 また、圧電トランス261はλ共振モードで振動し、圧電トランス262は(λ/2)共振モードで振動することから、第1電極E11と第2電極E12との距離は、第1電極E21と第2電極E22との距離より長い。すなわち、キャパシタC15のキャパシタンス(以下、C15で表す)は、キャパシタC16(以下、C16で表す)のキャパシタンスよりも小さい。このため、C15<C16の関係が成り立つ。なお、圧電トランス261,262に同じ圧電トランスを用いた場合には、C15=16の関係が成り立つ。 Further, since the piezoelectric transformer 261 vibrates in the λ resonance mode and the piezoelectric transformer 262 vibrates in the (λ / 2) resonance mode, the distance between the first electrode E11 and the second electrode E12 is the first electrode E21 and the first electrode E21. It is longer than the distance to the two electrodes E22. That is, the capacitance of the capacitor C15 (hereinafter represented by C15) is smaller than the capacitance of the capacitor C16 (hereinafter represented by C16). For this reason, the relationship of C15 <C16 is established. When the same piezoelectric transformer is used for the piezoelectric transformers 261 and 262, the relationship of C15 = 16 is established.
 以上より、キャパシタC15,C16は、実施形態1と同様に、アクティブ電極23及びパッシブ電極24の間に直列に接続され、キャパシタC15,C16の接続点が基準電位に接続された回路構成と同視できる。この場合、キャパシタC15,C16の影響が支配的となるため、C15≦C16が成り立つよう、圧電トランス261,262を組み合わせることで、受電装置202の基準電位の変動を抑制できる。また、C15/C16=Caa/Cppであれば、より受電装置202の基準電位の変動を安定できる。 As described above, the capacitors C15 and C16 can be regarded as a circuit configuration in which the connection points of the capacitors C15 and C16 are connected to the reference potential in series between the active electrode 23 and the passive electrode 24 as in the first embodiment. . In this case, since the influence of the capacitors C15 and C16 becomes dominant, fluctuations in the reference potential of the power receiving apparatus 202 can be suppressed by combining the piezoelectric transformers 261 and 262 so that C15 ≦ C16 holds. Further, if C15 / C16 = Caa / Cpp, fluctuations in the reference potential of the power receiving apparatus 202 can be further stabilized.
 また、受電装置202が例えば携帯電話機等、小型化、薄型化が望まれる装置である場合には、圧電トランス261,262により降圧部26を構成することで、受電装置202の小型化、薄型化を実現できる。 Further, when the power receiving device 202 is a device that is desired to be reduced in size and thickness, such as a mobile phone, the voltage step-down unit 26 is configured by the piezoelectric transformers 261 and 262 so that the power receiving device 202 is reduced in size and thickness. Can be realized.
(実施形態4)
 本実施形態では、ワイヤレス電力伝送システムの送電装置が有する昇圧トランスの構成が、実施形態3と相違する。受電装置は、実施形態1又は実施形態3に係る受電装置と同じである。
(Embodiment 4)
In the present embodiment, the configuration of the step-up transformer included in the power transmission device of the wireless power transmission system is different from that in the third embodiment. The power receiving device is the same as the power receiving device according to the first or third embodiment.
 図9は、実施形態4に係る送電装置103の回路図である。送電装置103は、電源回路11、昇圧部16、アクティブ電極13及びパッシブ電極14を備えている。 FIG. 9 is a circuit diagram of the power transmission device 103 according to the fourth embodiment. The power transmission device 103 includes a power supply circuit 11, a booster 16, an active electrode 13, and a passive electrode 14.
 昇圧部16は、二つのローゼン型の圧電トランス161,162を有している。圧電トランス161は、本発明に係る第3圧電トランスに相当し、圧電トランス162は、本発明に係る第4圧電トランスに相当する。圧電トランス161は、λ共振モードで振動し、圧電トランス162は、(λ/2)共振モードで振動する。 The step-up unit 16 has two Rosen-type piezoelectric transformers 161 and 162. The piezoelectric transformer 161 corresponds to the third piezoelectric transformer according to the present invention, and the piezoelectric transformer 162 corresponds to the fourth piezoelectric transformer according to the present invention. The piezoelectric transformer 161 vibrates in the λ resonance mode, and the piezoelectric transformer 162 vibrates in the (λ / 2) resonance mode.
 圧電トランス161,162は、第1電極E31,E41、第2電極E32,E42、及び第3電極E33,E43を有している。圧電トランス161の第1電極E31は、アクティブ電極13に接続されている。圧電トランス162の第1電極E41は、パッシブ電極14に接続されている。圧電トランス161,162の第2電極E32,E42は、送電装置103の基準電位に接続されている。圧電トランス161,162の第3電極E33,E43は、電源回路11に接続されている。 The piezoelectric transformers 161 and 162 have first electrodes E31 and E41, second electrodes E32 and E42, and third electrodes E33 and E43. The first electrode E31 of the piezoelectric transformer 161 is connected to the active electrode 13. The first electrode E41 of the piezoelectric transformer 162 is connected to the passive electrode 14. The second electrodes E32 and E42 of the piezoelectric transformers 161 and 162 are connected to the reference potential of the power transmission device 103. The third electrodes E33 and E43 of the piezoelectric transformers 161 and 162 are connected to the power supply circuit 11.
 このように構成される昇圧部16において、圧電トランス161,162は、第2電極E32,E42、及び第3電極E33,E43に、電源回路11から交流電圧が印加されると、逆圧電効果により、駆動信号に応じた周期で応力が生じ、その機械的歪みにより昇圧した電圧を第1電極E31,E41から出力する。そして、アクティブ電極13及びパッシブ電極14には、圧電トランス161,162により昇圧された電圧が印加される。 In the boosting unit 16 configured as described above, when the AC voltage is applied to the piezoelectric transformers 161 and 162 from the power supply circuit 11 to the second electrodes E32 and E42 and the third electrodes E33 and E43, the piezoelectric transformers 161 and 162 have an inverse piezoelectric effect. Stress is generated at a period corresponding to the drive signal, and a voltage boosted by the mechanical strain is output from the first electrodes E31 and E41. The voltage boosted by the piezoelectric transformers 161 and 162 is applied to the active electrode 13 and the passive electrode 14.
 図9の破線で示すキャパシタC25は、圧電トランス161の第1電極E31と第2電極E32との間に生じるキャパシタンス成分であり、キャパシタC26は、圧電トランス162の第1電極E41と第2電極E42との間に生じるキャパシタンス成分である。また、第3電極E33,E43は、送電装置103の基準電位に接続されている。換言すれば、キャパシタC25は、アクティブ電極13と基準電位との間に生じる容量、キャパシタC26は、パッシブ電極14と基準電位との間に生じる容量である。 A capacitor C25 indicated by a broken line in FIG. 9 is a capacitance component generated between the first electrode E31 and the second electrode E32 of the piezoelectric transformer 161, and the capacitor C26 is a first electrode E41 and a second electrode E42 of the piezoelectric transformer 162. Is a capacitance component generated between The third electrodes E33 and E43 are connected to the reference potential of the power transmission device 103. In other words, the capacitor C25 is a capacitance generated between the active electrode 13 and the reference potential, and the capacitor C26 is a capacitance generated between the passive electrode 14 and the reference potential.
 また、圧電トランス161はλ共振モードで振動し、圧電トランス162は(λ/2)共振モードで振動することから、圧電トランス161の第1電極E31と第2電極E32との距離は、圧電トランス162の第1電極E41と第2電極E42との距離より長い。すなわち、キャパシタC25のキャパシタンス(以下、C25で表す)は、キャパシタC26のキャパシタンス(以下、C26で表す)よりも小さい。このため、C25<C26の関係が成り立つ。なお、圧電トランス161,162に同じ圧電トランスを用いた場合には、C25=C26の関係が成り立つ。 Also, since the piezoelectric transformer 161 vibrates in the λ resonance mode and the piezoelectric transformer 162 vibrates in the (λ / 2) resonance mode, the distance between the first electrode E31 and the second electrode E32 of the piezoelectric transformer 161 is the piezoelectric transformer. 162 is longer than the distance between the first electrode E41 and the second electrode E42. That is, the capacitance of the capacitor C25 (hereinafter represented by C25) is smaller than the capacitance of the capacitor C26 (hereinafter represented by C26). For this reason, the relationship of C25 <C26 is established. When the same piezoelectric transformer is used for the piezoelectric transformers 161 and 162, the relationship of C25 = C26 is established.
 以上より、キャパシタC25,C26は、実施形態2と同様に、アクティブ電極13及びパッシブ電極14の間に直列に接続され、キャパシタC25,C26の接続点が基準電位に接続された回路構成と同視できる。この場合、キャパシタC25,C26の影響が支配的となるため、C25≦C26が成り立つよう、圧電トランス161,162を組み合わせることで、受電装置の基準電位の変動を抑制できる。また、C25/C26=Caa/Cppであれば、より受電装置の基準電位の変動を安定できる。 As described above, the capacitors C25 and C26 are connected in series between the active electrode 13 and the passive electrode 14 as in the second embodiment, and can be regarded as a circuit configuration in which the connection point of the capacitors C25 and C26 is connected to the reference potential. . In this case, since the influence of the capacitors C25 and C26 becomes dominant, the piezoelectric transformers 161 and 162 are combined so that C25 ≦ C26 can be satisfied, so that fluctuations in the reference potential of the power receiving device can be suppressed. Further, if C25 / C26 = Caa / Cpp, fluctuations in the reference potential of the power receiving apparatus can be further stabilized.
 また、送電装置103に圧電トランス161,162を適用することで、送電装置103の小型化、薄型化を実現できる。 Further, by applying the piezoelectric transformers 161 and 162 to the power transmission device 103, the power transmission device 103 can be reduced in size and thickness.
 なお、送電装置の昇圧部、及び受電装置の降圧部それぞれに圧電トランスを設けた場合、実施形態3の降圧部26の圧電トランス261と、本実施形態の昇圧部16の圧電トランス161とが同じ圧電トランスであり、実施形態3の降圧部26の圧電トランス262と、本実施形態の昇圧部16の圧電トランス162とが同じ圧電トランスであることが好ましい。この場合、送電装置と受電装置とで容量比を略同じにすることができ、受電装置の基準電位をより安定化できる。 In addition, when a piezoelectric transformer is provided in each of the step-up unit of the power transmission device and the step-down unit of the power receiving device, the piezoelectric transformer 261 of the step-down unit 26 of the third embodiment and the piezoelectric transformer 161 of the step-up unit 16 of the present embodiment are the same. It is a piezoelectric transformer, and it is preferable that the piezoelectric transformer 262 of the step-down unit 26 of the third embodiment and the piezoelectric transformer 162 of the step-up unit 16 of the present embodiment are the same piezoelectric transformer. In this case, the capacity ratio can be made substantially the same between the power transmission device and the power reception device, and the reference potential of the power reception device can be further stabilized.
(実施形態5)
 図10は、実施形態5に係るワイヤレス電力伝送システム5の回路図である。
(Embodiment 5)
FIG. 10 is a circuit diagram of the wireless power transmission system 5 according to the fifth embodiment.
 ワイヤレス電力伝送システム5が備える送電装置105及び受電装置205は、それぞれの基準電位に接続された基準電位電極105A,205Aを備えている。送電装置105に受電装置205を載置した場合、基準電位電極105A,205Aは対向し、キャパシタCgを形成する。したがって、受電装置205の基準電位は、形成されたキャパシタCgを介して、送電装置105の基準電位と接続される。受電装置205の基準電位を、キャパシタCgを介して送電装置105の基準電位に接続することで、受電装置205の基準電位の安定化が図れる。 The power transmission device 105 and the power reception device 205 included in the wireless power transmission system 5 include reference potential electrodes 105A and 205A connected to respective reference potentials. When the power receiving device 205 is mounted on the power transmitting device 105, the reference potential electrodes 105A and 205A face each other to form a capacitor Cg. Therefore, the reference potential of the power receiving device 205 is connected to the reference potential of the power transmission device 105 via the formed capacitor Cg. By connecting the reference potential of the power receiving apparatus 205 to the reference potential of the power transmitting apparatus 105 via the capacitor Cg, the reference potential of the power receiving apparatus 205 can be stabilized.
 送電装置105は、電源回路11からの交流電圧を昇圧し、アクティブ電極13及びパッシブ電極14へ印加する昇圧部17を備えている。昇圧部17は、二つの圧電トランス171,172を有している。圧電トランス171は、本発明に係る「第3圧電トランス」に相当し、圧電トランス171は、本発明に係る「第4圧電トランス」に相当する。 The power transmission device 105 includes a boosting unit 17 that boosts an AC voltage from the power supply circuit 11 and applies the boosted voltage to the active electrode 13 and the passive electrode 14. The booster unit 17 has two piezoelectric transformers 171 and 172. The piezoelectric transformer 171 corresponds to a “third piezoelectric transformer” according to the present invention, and the piezoelectric transformer 171 corresponds to a “fourth piezoelectric transformer” according to the present invention.
 圧電トランス171は、第1電極E51、第2電極E52、第3電極E53及び第4電極E54を備えている。圧電トランス172は、第1電極E61、第2電極E62、第3電極E63及び第4電極E64を備えている。第1電極E51,E61は、本発明に係る「第1電圧入力電極」に相当する。第2電極E52,E62は、本発明に係る「第2電圧入力電極」に相当する。第3電極E53,E63は、本発明に係る「第1電圧出力電極」に相当する。第4電極E54,E64は、本発明に係る「第2電圧出力電極」に相当する。 The piezoelectric transformer 171 includes a first electrode E51, a second electrode E52, a third electrode E53, and a fourth electrode E54. The piezoelectric transformer 172 includes a first electrode E61, a second electrode E62, a third electrode E63, and a fourth electrode E64. The first electrodes E51 and E61 correspond to “first voltage input electrodes” according to the present invention. The second electrodes E52 and E62 correspond to the “second voltage input electrode” according to the present invention. The third electrodes E53 and E63 correspond to the “first voltage output electrode” according to the present invention. The fourth electrodes E54 and E64 correspond to the “second voltage output electrode” according to the present invention.
 圧電トランス171の第1電極E51及び第2電極E52は電源回路11に接続されている。第3電極E53は、アクティブ電極13に接続されている。第4電極E54は、圧電トランス172の第3電極E63、及び、送電装置105の基準電位に接続されている。 The first electrode E51 and the second electrode E52 of the piezoelectric transformer 171 are connected to the power supply circuit 11. The third electrode E53 is connected to the active electrode 13. The fourth electrode E54 is connected to the third electrode E63 of the piezoelectric transformer 172 and the reference potential of the power transmission device 105.
 圧電トランス172の第1電極E61及び第2電極E62は、電源回路11に接続されている。第3電極E63は、圧電トランス171の第4電極E54、及び、送電装置105の基準電位に接続されている。第4電極E64は、パッシブ電極14に接続されている。 The first electrode E61 and the second electrode E62 of the piezoelectric transformer 172 are connected to the power supply circuit 11. The third electrode E63 is connected to the fourth electrode E54 of the piezoelectric transformer 171 and the reference potential of the power transmission device 105. The fourth electrode E64 is connected to the passive electrode 14.
 なお、圧電トランス171の第2電極E52と、圧電トランス172の第1電極E61とはそれぞれ、電源回路11に接続しているが、圧電トランス171の第2電極E52と、圧電トランス172の第1電極E61とが互いに接続された構成でもよい。 The second electrode E52 of the piezoelectric transformer 171 and the first electrode E61 of the piezoelectric transformer 172 are connected to the power supply circuit 11, respectively, but the second electrode E52 of the piezoelectric transformer 171 and the first electrode of the piezoelectric transformer 172 are connected. The electrode E61 may be connected to each other.
 圧電トランス171,172には電極間に寄生容量(キャパシタ)が生じる。圧電トランス171の第1電極E51及び第2電極E52間に生じる寄生容量をC31で表し、第3電極E53及び第4電極E54間に生じる寄生容量をC32で表す。また、第1電極E51及び第2電極E52と第3電極E53及び第4電極E54との間に生じる寄生容量をC33で表す。 In the piezoelectric transformers 171 and 172, a parasitic capacitance (capacitor) is generated between the electrodes. A parasitic capacitance generated between the first electrode E51 and the second electrode E52 of the piezoelectric transformer 171 is represented by C31, and a parasitic capacitance generated between the third electrode E53 and the fourth electrode E54 is represented by C32. Further, a parasitic capacitance generated between the first electrode E51 and the second electrode E52 and the third electrode E53 and the fourth electrode E54 is represented by C33.
 また、圧電トランス172の第1電極E61及び第2電極E62間に生じる寄生容量をC41で表し、第3電極E63及び第4電極E64間に生じる寄生容量をC42で表す。また、第1電極E61及び第2電極E62間と第3電極E63及び第4電極E64との間に生じる寄生容量をC43で表す。 Further, the parasitic capacitance generated between the first electrode E61 and the second electrode E62 of the piezoelectric transformer 172 is represented by C41, and the parasitic capacitance generated between the third electrode E63 and the fourth electrode E64 is represented by C42. A parasitic capacitance generated between the first electrode E61 and the second electrode E62 and between the third electrode E63 and the fourth electrode E64 is represented by C43.
 受電装置205は、アクティブ電極23及びパッシブ電極24に誘起される電圧を降圧し、ダイオードブリッジDBへ供給する降圧部27を備えている。降圧部27は、二つの圧電トランス271,272を有している。圧電トランス271は、本発明に係る「第1圧電トランス」に相当する。圧電トランス272は、本発明に係る「第2圧電トランス」に相当する。 The power receiving device 205 includes a step-down unit 27 that steps down the voltage induced in the active electrode 23 and the passive electrode 24 and supplies the voltage to the diode bridge DB. The step-down unit 27 has two piezoelectric transformers 271 and 272. The piezoelectric transformer 271 corresponds to a “first piezoelectric transformer” according to the present invention. The piezoelectric transformer 272 corresponds to a “second piezoelectric transformer” according to the present invention.
 圧電トランス271は、第1電極E71、第2電極E72、第3電極E73及び第4電極E74を備えている。圧電トランス272は、第1電極E81、第2電極E82、第3電極E83及び第4電極E84を備えている。第1電極E71,E81は、本発明に係る「第1電圧入力電極」に相当する。第2電極E72,E82は、本発明に係る「第2電圧入力電極」に相当する。第3電極E73,E83は、本発明に係る「第1電圧出力電極」に相当する。第4電極E74,E84は、本発明に係る「第2電圧出力電極」に相当する。 The piezoelectric transformer 271 includes a first electrode E71, a second electrode E72, a third electrode E73, and a fourth electrode E74. The piezoelectric transformer 272 includes a first electrode E81, a second electrode E82, a third electrode E83, and a fourth electrode E84. The first electrodes E71 and E81 correspond to the “first voltage input electrode” according to the present invention. The second electrodes E72 and E82 correspond to the “second voltage input electrode” according to the present invention. The third electrodes E73 and E83 correspond to the “first voltage output electrode” according to the present invention. The fourth electrodes E74 and E84 correspond to the “second voltage output electrode” according to the present invention.
 圧電トランス271の第1電極E71は、アクティブ電極23に接続されている。第2電極E72は、圧電トランス272の第1電極E81、及び、受電装置205の基準電位に接続されている。第3電極E73及び第4電極E74は、ダイオードブリッジDBに接続されている。 The first electrode E71 of the piezoelectric transformer 271 is connected to the active electrode 23. The second electrode E72 is connected to the first electrode E81 of the piezoelectric transformer 272 and the reference potential of the power receiving device 205. The third electrode E73 and the fourth electrode E74 are connected to the diode bridge DB.
 圧電トランス272の第1電極E81は、圧電トランス271の第2電極E72、及び、受電装置205の基準電位に接続されている。第2電極E82は、パッシブ電極24に接続されている。第3電極E83及び第4電極E84は、ダイオードブリッジDBに接続されている。 The first electrode E81 of the piezoelectric transformer 272 is connected to the second electrode E72 of the piezoelectric transformer 271 and the reference potential of the power receiving device 205. The second electrode E82 is connected to the passive electrode 24. The third electrode E83 and the fourth electrode E84 are connected to the diode bridge DB.
 なお、圧電トランス271の第4電極E74と、圧電トランス272の第3電極E83とはそれぞれ、ダイオードブリッジDBに接続しているが、圧電トランス271の第4電極E74と、圧電トランス272の第3電極E83とが互いに接続された構成でもよい。 Although the fourth electrode E74 of the piezoelectric transformer 271 and the third electrode E83 of the piezoelectric transformer 272 are connected to the diode bridge DB, respectively, the fourth electrode E74 of the piezoelectric transformer 271 and the third electrode of the piezoelectric transformer 272 are connected. The electrode E83 may be connected to each other.
 圧電トランス271,272には電極間に寄生容量が生じる。圧電トランス271の第1電極E71及び第2電極E72間に生じる寄生容量をC51で表し、第3電極E73及び第4電極E74間に生じる寄生容量をC52で表す。また、第1電極E71及び第2電極E72と第3電極E73及び第4電極E74との間に生じる寄生容量をC53で表す。 In the piezoelectric transformers 271 and 272, parasitic capacitance is generated between the electrodes. A parasitic capacitance generated between the first electrode E71 and the second electrode E72 of the piezoelectric transformer 271 is represented by C51, and a parasitic capacitance generated between the third electrode E73 and the fourth electrode E74 is represented by C52. Further, the parasitic capacitance generated between the first electrode E71 and the second electrode E72 and the third electrode E73 and the fourth electrode E74 is represented by C53.
 また、圧電トランス272の第1電極E81及び第2電極E82間に生じる寄生容量をC61で表し、第3電極E83及び第4電極E84間に生じる寄生容量をC62で表す。また、第1電極E81及び第2電極E82と第3電極E83及び第4電極E84との間に生じる寄生容量をC63で表す。 Further, the parasitic capacitance generated between the first electrode E81 and the second electrode E82 of the piezoelectric transformer 272 is represented by C61, and the parasitic capacitance generated between the third electrode E83 and the fourth electrode E84 is represented by C62. A parasitic capacitance generated between the first electrode E81 and the second electrode E82 and the third electrode E83 and the fourth electrode E84 is represented by C63.
 ここで、圧電トランス171,172,271,272の具体的構成について説明する。本実施形態では、圧電トランス171,172,271,272はそれぞれ別の圧電体素体に形成されている。圧電トランス171,172,271,272それぞれは同じ構成であり、入力側、出力側ともに圧電対素体の厚み方向に分極されている。以下では、圧電トランス271について説明する。 Here, a specific configuration of the piezoelectric transformers 171, 172, 271, 272 will be described. In the present embodiment, the piezoelectric transformers 171, 172, 271, and 272 are formed on separate piezoelectric element bodies. The piezoelectric transformers 171, 172, 271, and 272 have the same configuration, and are polarized in the thickness direction of the piezoelectric element body on both the input side and the output side. Hereinafter, the piezoelectric transformer 271 will be described.
 図11は、実施形態5に係る圧電トランス271の一例を示す図である。圧電トランス271は、例えばPZT系セラミックスシートが積層されて形成された圧電体301を備えている。圧電体301は、長さ方向に沿って、高インピーダンスの駆動部A1と、低インピーダンスの発電部A2と、駆動部A1及び発電部A2の間に形成された絶縁部A3とを有している。 FIG. 11 is a diagram illustrating an example of the piezoelectric transformer 271 according to the fifth embodiment. The piezoelectric transformer 271 includes a piezoelectric body 301 formed by stacking, for example, PZT ceramic sheets. The piezoelectric body 301 has, along the length direction, a high impedance drive unit A1, a low impedance power generation unit A2, and an insulation unit A3 formed between the drive unit A1 and the power generation unit A2. .
 駆動部A1での圧電体301は厚み方向に分極されている。そして、駆動部A1では、圧電体301内部に内部電極302,303が厚み方向に沿って交互に積層され、上下面に第1電極E71及び第2電極E72が設けられている。内部電極302は、側面電極304により第1電極E71と接続され、内部電極303は、側面電極304に対向する位置に形成された側面電極(不図示)により第2電極E72と接続されている。 The piezoelectric body 301 in the driving unit A1 is polarized in the thickness direction. In the drive unit A1, the internal electrodes 302 and 303 are alternately stacked in the thickness direction inside the piezoelectric body 301, and the first electrode E71 and the second electrode E72 are provided on the upper and lower surfaces. The internal electrode 302 is connected to the first electrode E71 by a side electrode 304, and the internal electrode 303 is connected to the second electrode E72 by a side electrode (not shown) formed at a position facing the side electrode 304.
 発電部A2では、圧電体301の厚み方向に分極されている。発電部A2では、圧電体301と内部電極305,306を交互に複数枚積層しており、上下面に第3電極E73及び第4電極E74が形成されている。内部電極305は、側面電極307により第3電極E73と接続されている。破線で示す内部電極306は、側面電極307が形成された面側には露出せず、反対面側に露出している。そして、内部電極306は、側面電極307に対向する位置に形成された側面電極(不図示)により第4電極E74と接続されている。 In the power generation unit A2, the piezoelectric body 301 is polarized in the thickness direction. In the power generation unit A2, a plurality of piezoelectric bodies 301 and internal electrodes 305 and 306 are alternately stacked, and a third electrode E73 and a fourth electrode E74 are formed on the upper and lower surfaces. The internal electrode 305 is connected to the third electrode E73 by the side electrode 307. The internal electrode 306 indicated by a broken line is not exposed on the surface side on which the side electrode 307 is formed, but is exposed on the opposite surface side. The internal electrode 306 is connected to the fourth electrode E74 by a side electrode (not shown) formed at a position facing the side electrode 307.
 この構造を有する圧電トランス271において、駆動部A1の第1電極E71及び第2電極E72に交流電圧を入力して駆動させると、発電部A2の第3電極E73及び第4電極E74から降圧された電圧が出力される。なお、図11に示す構造の圧電トランスは、駆動部A1、発電部A2の積層構成を調整することにより、降圧及び昇圧の変圧比を設定できる。 In the piezoelectric transformer 271 having this structure, when an AC voltage is input to the first electrode E71 and the second electrode E72 of the drive unit A1 and driven, the voltage is stepped down from the third electrode E73 and the fourth electrode E74 of the power generation unit A2. A voltage is output. In the piezoelectric transformer having the structure shown in FIG. 11, the step-down and step-up voltage transformation ratios can be set by adjusting the laminated configuration of the drive unit A1 and the power generation unit A2.
 図12は、図10に示すワイヤレス電力伝送システム5の等価回路図である。図12では、昇圧部17の圧電トランス171,172、及び、降圧部27の圧電トランス271,272それぞれを、等価回路で示している。 FIG. 12 is an equivalent circuit diagram of the wireless power transmission system 5 shown in FIG. In FIG. 12, the piezoelectric transformers 171 and 172 of the booster unit 17 and the piezoelectric transformers 271 and 272 of the step-down unit 27 are shown as equivalent circuits.
 昇圧部17は変圧部170を有している。この変圧部170は電源回路11と、アクティブ電極13及びパッシブ電極14との間に接続されている。また、圧電トランス171,172に生じるキャパシタC33,C43の直列回路と、キャパシタC32,C42の直列回路とが、アクティブ電極13及びパッシブ電極14の間に接続されている。キャパシタC33,C43の接続点、及び、キャパシタC32,C42の接続点は、それぞれ基準電位に接続されている。 The booster 17 has a transformer 170. The transformer 170 is connected between the power supply circuit 11 and the active electrode 13 and the passive electrode 14. A series circuit of capacitors C33 and C43 generated in the piezoelectric transformers 171 and 172 and a series circuit of capacitors C32 and C42 are connected between the active electrode 13 and the passive electrode 14. The connection points of the capacitors C33 and C43 and the connection points of the capacitors C32 and C42 are respectively connected to the reference potential.
 なお、図12では、圧電トランス171,172に生じるキャパシタC31,C41の図示は省略している。 In FIG. 12, the capacitors C31 and C41 generated in the piezoelectric transformers 171 and 172 are not shown.
 降圧部27は変圧部270を有している。この変圧部270は、アクティブ電極23及びパッシブ電極24と、ダイオードブリッジDBとの間に接続されている。また、圧電トランス271,272に生じるキャパシタC51,C61の直列回路と、キャパシタC53,C63の直列回路とが、アクティブ電極23及びパッシブ電極24の間に接続されている。キャパシタC51,C61の接続点、及び、キャパシタC53,C63の接続点は基準電位に接続されている。図12では、圧電トランス271,272に生じるキャパシタC52,C62の図示は省略している。 The step-down unit 27 has a transformer 270. The transformer 270 is connected between the active electrode 23 and the passive electrode 24 and the diode bridge DB. A series circuit of capacitors C51 and C61 generated in the piezoelectric transformers 271 and 272 and a series circuit of capacitors C53 and C63 are connected between the active electrode 23 and the passive electrode 24. The connection point between the capacitors C51 and C61 and the connection point between the capacitors C53 and C63 are connected to a reference potential. In FIG. 12, the capacitors C52 and C62 generated in the piezoelectric transformers 271 and 272 are not shown.
 この回路構成において、送電装置105の昇圧部17では、並列接続されたキャパシタC32,C33と、並列接続されたキャパシタC42,C43とが、直列接続された構成と等価的に表せる。また、受電装置205の降圧部27では、並列接続されたキャパシタC51,C53と、並列接続されたキャパシタC61,C63とが、直列接続された構成と等価的に表せる。 In this circuit configuration, the booster unit 17 of the power transmission device 105 can be equivalently expressed as a configuration in which the capacitors C32 and C33 connected in parallel and the capacitors C42 and C43 connected in parallel are connected in series. In addition, in the step-down unit 27 of the power receiving device 205, capacitors C51 and C53 connected in parallel and capacitors C61 and C63 connected in parallel can be equivalently expressed as a series connection.
 ここで、キャパシタC32,C33,C42,C43,C51,C53,C61,C63それぞれのキャパシタンスをC32,C33,C42,C43,C51,C53,C61,C63で表す。この場合、図12に示すキャパシタC32,C33,C42,C43は、C32+C33のキャパシタンスを有するキャパシタと、C42+C43のキャパシタンスを有するキャパシタとが直列接続された構成で表せる。また、図12に示すキャパシタC51,C53,C61,C63は、C51+C53のキャパシタンスを有するキャパシタと、C61+C63のキャパシタンスを有するキャパシタとが直列接続された構成となる。 Here, the capacitances of the capacitors C32, C33, C42, C43, C51, C53, C61, and C63 are represented by C32, C33, C42, C43, C51, C53, C61, and C63, respectively. In this case, the capacitors C32, C33, C42, and C43 shown in FIG. 12 can be expressed by a configuration in which a capacitor having a capacitance of C32 + C33 and a capacitor having a capacitance of C42 + C43 are connected in series. Further, the capacitors C51, C53, C61, and C63 shown in FIG. 12 have a configuration in which a capacitor having a capacitance of C51 + C53 and a capacitor having a capacitance of C61 + C63 are connected in series.
 この場合、実施形態1で説明したように、パッシブ電極14,24の面積は、アクティブ電極13,23の面積よりも大きい、又は同じであり、Caa≦Cppの関係が成り立つ。そして、C32+C33≦C42+C43、かつ、C51+C53≦C61+C63を満たすように、圧電トランス171,172,271,272を選択する。これにより、受電装置205の基準電位の変動を抑制できる。そして、その結果、基準電位の変動による不具合、例えば、装置の誤作動等を防止できる。 In this case, as described in the first embodiment, the area of the passive electrodes 14 and 24 is larger than or equal to the area of the active electrodes 13 and 23, and the relationship of Caa ≦ Cpp is established. Then, the piezoelectric transformers 171, 172, 271, and 272 are selected so that C32 + C33 ≦ C42 + C43 and C51 + C53 ≦ C61 + C63 are satisfied. Thereby, the fluctuation | variation of the reference electric potential of the power receiving apparatus 205 can be suppressed. As a result, problems due to fluctuations in the reference potential, for example, malfunction of the device can be prevented.
 以下に、圧電トランス171,172,271,272に生じる寄生容量の測定方法について説明する。 Hereinafter, a method for measuring the parasitic capacitance generated in the piezoelectric transformers 171, 172, 271 and 272 will be described.
 図13は、圧電トランス271に生じる寄生容量の測定方法を説明するための図である。なお、図13では、圧電トランス271に生じる寄生容量の測定方法について説明するが、他の圧電トランス171,172,272に生じる寄生容量の測定方法も同様である。 FIG. 13 is a diagram for explaining a method for measuring the parasitic capacitance generated in the piezoelectric transformer 271. In FIG. 13, a method for measuring the parasitic capacitance generated in the piezoelectric transformer 271 is described, but the method for measuring the parasitic capacitance generated in the other piezoelectric transformers 171, 172, 272 is the same.
 圧電トランス271の第1電極E71に定電流源150を接続し、第2電極E72はグランドに接続する。また、第3電極E73及び第4電極E74は短絡し、グランドに接続する。この接続構成において、キャパシタC53のキャパシタンスは、圧電トランス271に入力される電圧Vinと、圧電トランス271から出力される電流Ioutとから、C53=Iout/2πfVinの式により求めることができる。 The constant current source 150 is connected to the first electrode E71 of the piezoelectric transformer 271 and the second electrode E72 is connected to the ground. The third electrode E73 and the fourth electrode E74 are short-circuited and connected to the ground. In this connection configuration, the capacitance of the capacitor C53 can be obtained from the voltage Vin input to the piezoelectric transformer 271 and the current Iout output from the piezoelectric transformer 271 by the equation C53 = Iout / 2πfVin.
 なお、圧電トランス271に生じるキャパシタC51は、第1電極E71及び第2電極E72間に生じる容量、キャパシタC52は、第3電極E73及び第4電極E74間に生じる容量である。したがって、例えば、キャパシタC51のキャパシタンスは、第1電極E71と第2電極E72との間の容量を測定することで得られる。また、キャパシタC52のキャパシタンスは、第3電極E73と第4電極E74との間の容量を測定することで得られる。 The capacitor C51 generated in the piezoelectric transformer 271 is a capacitance generated between the first electrode E71 and the second electrode E72, and the capacitor C52 is a capacitance generated between the third electrode E73 and the fourth electrode E74. Therefore, for example, the capacitance of the capacitor C51 can be obtained by measuring the capacitance between the first electrode E71 and the second electrode E72. Further, the capacitance of the capacitor C52 is obtained by measuring the capacitance between the third electrode E73 and the fourth electrode E74.
 以上のように、C32+C33≦C42+C43、かつ、C51+C53≦C61+C63の条件が満たされるように、圧電トランス171,172,271,272を選択することで、受電装置205の基準電位の変動を抑制できる。そして、その結果、基準電位の変動による不具合、例えば、装置の誤作動等を防止できる。 As described above, by selecting the piezoelectric transformers 171, 172, 271, and 272 so that the conditions of C32 + C33 ≦ C42 + C43 and C51 + C53 ≦ C61 + C63 are satisfied, fluctuations in the reference potential of the power receiving device 205 can be suppressed. As a result, problems due to fluctuations in the reference potential, for example, malfunction of the device can be prevented.
 なお、本実施形態では、送電装置105及び受電装置205それぞれが圧電トランスを備えた構成としているが、送電装置105及び受電装置205の一方のみが圧電トランスを備えていてもよい。 In the present embodiment, each of the power transmission device 105 and the power reception device 205 is configured to include a piezoelectric transformer, but only one of the power transmission device 105 and the power reception device 205 may include a piezoelectric transformer.
 送電装置105のみが圧電トランスを備えている場合、受電装置205の降圧部27は、巻線トランスで構成される。そして、この場合、C32+C33<C42+C43を満たすように、圧電トランス171,172を選択する。受電装置205のみが圧電トランスを備えている場合、送電装置105の昇圧部17は、巻線トランスで構成される。そして、この場合、C51+C53≦C61+C63を満たすように、圧電トランス271,272を選択する。 When only the power transmission device 105 includes a piezoelectric transformer, the step-down unit 27 of the power reception device 205 is configured by a winding transformer. In this case, the piezoelectric transformers 171 and 172 are selected so as to satisfy C32 + C33 <C42 + C43. When only the power receiving device 205 includes a piezoelectric transformer, the booster unit 17 of the power transmitting device 105 includes a winding transformer. In this case, the piezoelectric transformers 271 and 272 are selected so as to satisfy C51 + C53 ≦ C61 + C63.
 また、本実施形態では、受電装置205の降圧部27において、圧電トランス271の入力電極E72と、圧電トランス272の入力電極E81とはそれぞれ基準電位に接続しているが、接続していなくてもよい。この場合、圧電トランス271,272の入力電極側と出力電極側とが絶縁状態となるため、グランド経由で入力電極側に流れ込むノイズを抑制できる。そして、この場合では、C53≦C63を満たすよう、圧電トランス271,272を選択することで、受電装置205の基準電位の変動を抑制できる。 In the present embodiment, in the step-down unit 27 of the power receiving device 205, the input electrode E72 of the piezoelectric transformer 271 and the input electrode E81 of the piezoelectric transformer 272 are connected to the reference potential, respectively. Good. In this case, since the input electrode side and the output electrode side of the piezoelectric transformers 271 and 272 are in an insulated state, noise flowing into the input electrode side via the ground can be suppressed. In this case, the variation of the reference potential of the power receiving device 205 can be suppressed by selecting the piezoelectric transformers 271 and 272 so as to satisfy C53 ≦ C63.
 同様に、送電装置105において、圧電トランス171の第4電極E54と、圧電トランス172の第3電極E63とが、送電装置105の基準電位に接続していなくてもよい。この場合では、C33≦C43を満たすよう、圧電トランス171,172を選択することで、受電装置205の基準電位の変動を抑制できる。 Similarly, in the power transmission device 105, the fourth electrode E54 of the piezoelectric transformer 171 and the third electrode E63 of the piezoelectric transformer 172 may not be connected to the reference potential of the power transmission device 105. In this case, the variation in the reference potential of the power receiving device 205 can be suppressed by selecting the piezoelectric transformers 171 and 172 to satisfy C33 ≦ C43.
(実施形態6)
 実施形態5では、入出力部がともに圧電体素体の厚み方向に分極された圧電トランスを用いているのに対し、本実施形態では、入力部もしくは出力部のいずれか一方が圧電体素体の長手方向に分極され、他方が厚み方向に分極された圧電トランスを用いている点で、実施形態5と相違する。以下、実施形態5との相違点について説明する。
(Embodiment 6)
In the fifth embodiment, the input / output unit uses a piezoelectric transformer that is polarized in the thickness direction of the piezoelectric element body, whereas in the present embodiment, either the input unit or the output unit is a piezoelectric element element. This embodiment is different from the fifth embodiment in that a piezoelectric transformer is used which is polarized in the longitudinal direction and the other is polarized in the thickness direction. Hereinafter, differences from the fifth embodiment will be described.
 図14は、実施形態6に係るワイヤレス電力伝送システム6の回路図である。 FIG. 14 is a circuit diagram of the wireless power transmission system 6 according to the sixth embodiment.
 ワイヤレス電力伝送システム6が備える送電装置106は、電源回路11からの交流電圧を昇圧し、アクティブ電極13及びパッシブ電極14へ印加する昇圧部18を備えている。昇圧部18は、二つの圧電トランス181,182を有している。圧電トランス181は、本発明に係る「第3圧電トランス」に相当する。圧電トランス182は、本発明に係る「第4圧電トランス」に相当する。 The power transmission device 106 included in the wireless power transmission system 6 includes a boosting unit 18 that boosts the AC voltage from the power supply circuit 11 and applies the boosted voltage to the active electrode 13 and the passive electrode 14. The booster 18 has two piezoelectric transformers 181 and 182. The piezoelectric transformer 181 corresponds to a “third piezoelectric transformer” according to the present invention. The piezoelectric transformer 182 corresponds to a “fourth piezoelectric transformer” according to the present invention.
 圧電トランス181は、第1電極E91、第2電極E92、第3電極E93及び第4電極E94を備えている。圧電トランス172は、第1電極E101、第2電極E102、第3電極E103及び第4電極E104を備えている。第1電極E91,E101は、本発明に係る「第1電圧入力電極」に相当する。第2電極E92,E102は、本発明に係る「第2電圧入力電極」に相当する。第3電極E93,E103は、本発明に係る「第1電圧出力電極」に相当する。第4電極E94,E104は、本発明に係る「第2電圧出力電極」に相当する。 The piezoelectric transformer 181 includes a first electrode E91, a second electrode E92, a third electrode E93, and a fourth electrode E94. The piezoelectric transformer 172 includes a first electrode E101, a second electrode E102, a third electrode E103, and a fourth electrode E104. The first electrodes E91 and E101 correspond to “first voltage input electrodes” according to the present invention. The second electrodes E92 and E102 correspond to the “second voltage input electrode” according to the present invention. The third electrodes E93 and E103 correspond to the “first voltage output electrode” according to the present invention. The fourth electrodes E94 and E104 correspond to the “second voltage output electrode” according to the present invention.
 圧電トランス181の第1電極E91及び第2電極E92は電源回路11に接続されている。また、第1電極E91は、送電装置106の基準電位にも接続されている。第3電極E93はアクティブ電極13に接続されている。第4電極E94は、圧電トランス182の第3電極E103、及び、送電装置106の基準電位に接続されている。 The first electrode E91 and the second electrode E92 of the piezoelectric transformer 181 are connected to the power supply circuit 11. The first electrode E91 is also connected to the reference potential of the power transmission device 106. The third electrode E93 is connected to the active electrode 13. The fourth electrode E94 is connected to the third electrode E103 of the piezoelectric transformer 182 and the reference potential of the power transmission device 106.
 圧電トランス182の第1電極E101及び第2電極E102は、電源回路11に接続されている。また、第1電極E101は、送電装置106の基準電位にも接続されている。第4電極E104はパッシブ電極14に接続されている。第3電極E103は、圧電トランス181の第4電極E94、及び、送電装置106の基準電位に接続されている。 The first electrode E101 and the second electrode E102 of the piezoelectric transformer 182 are connected to the power supply circuit 11. The first electrode E101 is also connected to the reference potential of the power transmission device 106. The fourth electrode E104 is connected to the passive electrode. The third electrode E103 is connected to the fourth electrode E94 of the piezoelectric transformer 181 and the reference potential of the power transmission device 106.
 圧電トランス181,182には電極間に寄生容量が生じる。圧電トランス181の第1電極E91及び第2電極E92と、第3電極E93との間に生じる寄生容量をCa1で表し、第1電極E91及び第2電極E92と、第4電極E94との間に生じる寄生容量をCb1で表す。また、第1電極E91と第2電極E92との間に生じる寄生容量をCc1で表す。 In the piezoelectric transformers 181 and 182, parasitic capacitance is generated between the electrodes. A parasitic capacitance generated between the first electrode E91 and the second electrode E92 of the piezoelectric transformer 181 and the third electrode E93 is represented by Ca1, and between the first electrode E91, the second electrode E92, and the fourth electrode E94. The resulting parasitic capacitance is represented by Cb1. Further, a parasitic capacitance generated between the first electrode E91 and the second electrode E92 is represented by Cc1.
 同様に、圧電トランス182の第1電極E101及び第2電極E102と、第3電極E103との間に生じる寄生容量をCa2で表し、第1電極E101及び第2電極E102と、第4電極E104との間に生じる寄生容量をCb2で表す。また、第1電極E101と第2電極E102との間に生じる寄生容量をCc2で表す。 Similarly, a parasitic capacitance generated between the first electrode E101 and the second electrode E102 of the piezoelectric transformer 182 and the third electrode E103 is represented by Ca2, and the first electrode E101, the second electrode E102, the fourth electrode E104, The parasitic capacitance generated during the period is represented by Cb2. A parasitic capacitance generated between the first electrode E101 and the second electrode E102 is represented by Cc2.
 ワイヤレス電力伝送システム6が備える受電装置206は、アクティブ電極23及びパッシブ電極24に誘起される電圧を降圧し、ダイオードブリッジDBへ供給する降圧部28を備えている。降圧部28は、二つの圧電トランス281,282を有している。圧電トランス281は、本発明に係る「第1圧電トランス」に相当する。圧電トランス282は、本発明に係る「第2圧電トランス」に相当する。 The power receiving device 206 included in the wireless power transmission system 6 includes a step-down unit 28 that steps down the voltage induced in the active electrode 23 and the passive electrode 24 and supplies the voltage to the diode bridge DB. The step-down unit 28 has two piezoelectric transformers 281 and 282. The piezoelectric transformer 281 corresponds to a “first piezoelectric transformer” according to the present invention. The piezoelectric transformer 282 corresponds to a “second piezoelectric transformer” according to the present invention.
 圧電トランス281は、第1電極E111、第2電極E112、第3電極E113及び第4電極E114を備えている。圧電トランス282は、第1電極E121、第2電極E122、第3電極E123及び第4電極E124を備えている。第1電極E111,E121は、本発明に係る「第1電圧出力電極」に相当する。第2電極E112,E122は、本発明に係る「第2電圧出力電極」に相当する。第3電極E113,E123は、本発明に係る「第1電圧入力電極」に相当する。第4電極E114,E124は、本発明に係る「第2電圧入力電極」に相当する。 The piezoelectric transformer 281 includes a first electrode E111, a second electrode E112, a third electrode E113, and a fourth electrode E114. The piezoelectric transformer 282 includes a first electrode E121, a second electrode E122, a third electrode E123, and a fourth electrode E124. The first electrodes E111 and E121 correspond to “first voltage output electrodes” according to the present invention. The second electrodes E112 and E122 correspond to the “second voltage output electrode” according to the present invention. The third electrodes E113 and E123 correspond to the “first voltage input electrode” according to the present invention. The fourth electrodes E114 and E124 correspond to “second voltage input electrodes” according to the invention.
 圧電トランス281の第1電極E111及び第2電極E112は、ダイオードブリッジDBに接続されている。第3電極E113はアクティブ電極23に接続されている。第4電極E114は、圧電トランスE282の第3電極E123、及び、受電装置206の基準電位に接続されている。 The first electrode E111 and the second electrode E112 of the piezoelectric transformer 281 are connected to the diode bridge DB. The third electrode E113 is connected to the active electrode 23. The fourth electrode E114 is connected to the third electrode E123 of the piezoelectric transformer E282 and the reference potential of the power receiving device 206.
 圧電トランス282の第1電極E121及び第2電極E122は、ダイオードブリッジDBに接続されている。第4電極E124はパッシブ電極24に接続されている。第3電極E123は、圧電トランスE281の第4電極E114、及び、受電装置206の基準電位に接続されている。 The first electrode E121 and the second electrode E122 of the piezoelectric transformer 282 are connected to the diode bridge DB. The fourth electrode E124 is connected to the passive electrode 24. The third electrode E123 is connected to the fourth electrode E114 of the piezoelectric transformer E281 and the reference potential of the power receiving device 206.
 圧電トランス281,282には電極間に寄生容量が生じる。圧電トランス281の第1電極E111及び第2電極E112と、第3電極E113との間に生じる寄生容量をCa3で表し、第1電極E111及び第2電極E112と、第4電極E114との間に生じる寄生容量をCb3で表す。また、第1電極E111と第2電極E112との間に生じる寄生容量をCc3で表す。 In the piezoelectric transformers 281 and 282, parasitic capacitance is generated between the electrodes. A parasitic capacitance generated between the first electrode E111 and the second electrode E112 of the piezoelectric transformer 281 and the third electrode E113 is represented by Ca3, and between the first electrode E111, the second electrode E112, and the fourth electrode E114. The resulting parasitic capacitance is represented by Cb3. A parasitic capacitance generated between the first electrode E111 and the second electrode E112 is represented by Cc3.
 同様に、圧電トランス282の第1電極E121及び第2電極E122と、第3電極E123との間に生じる寄生容量をCa4で表し、第1電極E121及び第2電極E122と、第4電極E124との間に生じる寄生容量をCb4で表す。また、第1電極E121と第2電極E122との間に生じる寄生容量をCc4で表す。 Similarly, a parasitic capacitance generated between the first electrode E121 and the second electrode E122 of the piezoelectric transformer 282 and the third electrode E123 is represented by Ca4, and the first electrode E121, the second electrode E122, and the fourth electrode E124 The parasitic capacitance generated during the period is represented by Cb4. Further, the parasitic capacitance generated between the first electrode E121 and the second electrode E122 is represented by Cc4.
 ここで、圧電トランス181,182,281,282の具体的構成について説明する。本実施形態では、圧電トランス181,182,281,282は、入力部もしくは出力部のいずれか一方が圧電体素体の長手方向に分極され、他方が厚み方向に分極された圧電トランスである。圧電トランス181,182,281,282それぞれは同じ構成であり、以下では、圧電トランス281について説明する。 Here, a specific configuration of the piezoelectric transformers 181, 182, 281 and 282 will be described. In the present embodiment, the piezoelectric transformers 181, 182, 281, and 282 are piezoelectric transformers in which one of the input unit and the output unit is polarized in the longitudinal direction of the piezoelectric body and the other is polarized in the thickness direction. Each of the piezoelectric transformers 181, 182, 281, and 282 has the same configuration, and the piezoelectric transformer 281 will be described below.
 図15は、実施形態6に係る圧電トランス281の一例を示す図である。圧電トランス281は、例えばPZT系セラミックスシートが積層されて形成された圧電体401を備えている。 FIG. 15 is a diagram illustrating an example of the piezoelectric transformer 281 according to the sixth embodiment. The piezoelectric transformer 281 includes a piezoelectric body 401 formed by stacking, for example, PZT ceramic sheets.
 圧電トランス281は、(3λ/2)共振モードで長さ方向に振動するものとする。ここで、λは長さ方向の振動の1波長である。したがって、圧電体401の長さは(3λ/2)としている。ここで、圧電体401の幅及び厚みは(λ/2)未満とすることが好ましい。そうすることで、幅方向及び厚み方向の振動が長さ方向の振動に結合せず、圧電トランス281全体の振動が不安定とならない。 Suppose that the piezoelectric transformer 281 vibrates in the length direction in the (3λ / 2) resonance mode. Here, λ is one wavelength of vibration in the length direction. Therefore, the length of the piezoelectric body 401 is (3λ / 2). Here, the width and thickness of the piezoelectric body 401 are preferably less than (λ / 2). By doing so, the vibration in the width direction and the thickness direction is not coupled to the vibration in the length direction, and the vibration of the entire piezoelectric transformer 281 is not unstable.
 圧電体401は、第1領域B1、第2領域B2、第3領域B3が形成されている。各領域B1~B3の長さは、何れもλ/2である。 The piezoelectric body 401 has a first region B1, a second region B2, and a third region B3. Each of the regions B1 to B3 has a length of λ / 2.
 第1領域B1及び第3領域B3は、圧電体の長さ方向に平行に分極されており、第2領域B2は、厚み方向に平行に分極されている。第1領域B1と第3領域B3とは逆方向に分極されている。分極処理の方法としては、例えば、圧電体板を170℃の絶縁油中で2kV/mmの電圧を印加する方法等が挙げられる。 The first region B1 and the third region B3 are polarized in parallel with the length direction of the piezoelectric body, and the second region B2 is polarized in parallel with the thickness direction. The first region B1 and the third region B3 are polarized in opposite directions. Examples of the polarization treatment method include a method of applying a voltage of 2 kV / mm to the piezoelectric plate in insulating oil at 170 ° C.
 第2領域B2には、第1電極E111及び第2電極E112が圧電体401の側面に対向するよう設けられている。また、第2領域B2には、厚み方向に積層された複数の内部電極402が設けられている。この内部電極402は、交互に第1電極E111及び第2電極E112に接続している。 In the second region B2, the first electrode E111 and the second electrode E112 are provided to face the side surface of the piezoelectric body 401. The second region B2 is provided with a plurality of internal electrodes 402 stacked in the thickness direction. The internal electrodes 402 are alternately connected to the first electrode E111 and the second electrode E112.
 同様に、第1領域B1には、一対の第3電極E113A,113Bが圧電体401の側面に対向するよう設けられている。一対の第3電極E113A,113Bは、図14に示す第3電極E113に相当する。第1領域B1には、厚み方向に積層された複数の内部電極403が設けられている。この内部電極403は、全てが第3電極E113A,113Bの両方に接続している。 Similarly, a pair of third electrodes E113A and 113B are provided in the first region B1 so as to face the side surface of the piezoelectric body 401. The pair of third electrodes E113A and 113B corresponds to the third electrode E113 shown in FIG. In the first region B1, a plurality of internal electrodes 403 stacked in the thickness direction are provided. All of the internal electrodes 403 are connected to both the third electrodes E113A and 113B.
 第3領域B3には、一対の第4電極E114A,114Bが圧電体401の側面に対向するよう設けられている。一対の第4電極E114A,114Bは、図14に示す第4電極E114に相当する。第3領域B3には、厚み方向に積層された複数の内部電極404が設けられている。この内部電極404は、全てが第4電極E114A,114Bの両方に接続している。 In the third region B3, a pair of fourth electrodes E114A and 114B are provided to face the side surface of the piezoelectric body 401. The pair of fourth electrodes E114A and 114B corresponds to the fourth electrode E114 shown in FIG. In the third region B3, a plurality of internal electrodes 404 stacked in the thickness direction are provided. All of the internal electrodes 404 are connected to both the fourth electrodes E114A and 114B.
 以上のように構成された圧電トランス281において、一対の第3電極E113A,113B、及び、一対の第4電極E114A,114Bから電圧が入力されると、第1領域B1及び第3領域B3には分極方向(長さ方向)に電界が加えられる。そして、逆圧電効果により分極方向、すなわち、圧電体401の長さ方向に縦振動が励振される。縦振動が励振されると、第2領域B2では分極方向に機械的歪みが生じ、圧電横効果により分極方向に電位差が発生する。この電位差により第2領域B2が低電圧部となり、第2領域B2の第1電極E111及び第2電極E112からから低電圧が取り出される。 In the piezoelectric transformer 281 configured as described above, when voltage is input from the pair of third electrodes E113A and 113B and the pair of fourth electrodes E114A and 114B, the first region B1 and the third region B3 An electric field is applied in the polarization direction (length direction). Then, longitudinal vibration is excited in the polarization direction, that is, the length direction of the piezoelectric body 401 by the inverse piezoelectric effect. When longitudinal vibration is excited, mechanical distortion occurs in the polarization direction in the second region B2, and a potential difference occurs in the polarization direction due to the piezoelectric transverse effect. Due to this potential difference, the second region B2 becomes a low voltage portion, and a low voltage is extracted from the first electrode E111 and the second electrode E112 in the second region B2.
 以下に、本実施形態に係る圧電トランス181,182,281,282に生じる寄生容量と、実施形態5に係る圧電トランス171,172,271,272に生じる寄生容量との関係について説明する。ここでは、本実施形態に係る圧電トランス281に生じるキャパシタCa3,Cb3,Cc3と、実施形態5に係る圧電トランス271に生じるキャパシタC51,C52,C53(図10参照)との関係を例に挙げて説明する。 Hereinafter, the relationship between the parasitic capacitance generated in the piezoelectric transformers 181, 182, 281, and 282 according to the present embodiment and the parasitic capacitance generated in the piezoelectric transformers 171, 172, 271, and 272 according to the fifth embodiment will be described. Here, the relationship between the capacitors Ca3, Cb3, Cc3 generated in the piezoelectric transformer 281 according to the present embodiment and the capacitors C51, C52, C53 (see FIG. 10) generated in the piezoelectric transformer 271 according to the fifth embodiment is taken as an example. explain.
 キャパシタCa3,Cb3,Cc3のキャパシタンスをそれぞれ、Ca3,Cb3,Cc3で表すと、キャパシタC51,C52,C53に対応するキャパシタンスはそれぞれ、C51=(1/Ca3+1/Cb3)-1、C52=Cc3、C53=Ca3+Cb3で表すことができる。 When the capacitances of the capacitors Ca3, Cb3, and Cc3 are represented by Ca3, Cb3, and Cc3, respectively, the capacitances corresponding to the capacitors C51, C52, and C53 are C51 = (1 / Ca3 + 1 / Cb3) −1 and C52 = Cc3, C53, respectively. = Ca3 + Cb3.
 同様に、圧電トランス181に生じるキャパシタCa1,Cb1,Cc1は、圧電トランス171に生じるキャパシタC31,C32,C33と、同様の対応関係を有する。圧電トランス182に生じるキャパシタCa2,Cb2,Cc2は、圧電トランス172に生じるキャパシタC41,C42,C43と、同様の対応関係を有する。圧電トランス282に生じるキャパシタCa4,Cb4,Cc4は、圧電トランス272に生じるキャパシタC61,C62,C63と、同様の対応関係を有する。 Similarly, the capacitors Ca1, Cb1, and Cc1 generated in the piezoelectric transformer 181 have the same correspondence relationship as the capacitors C31, C32, and C33 generated in the piezoelectric transformer 171. The capacitors Ca2, Cb2, and Cc2 generated in the piezoelectric transformer 182 have the same correspondence relationship as the capacitors C41, C42, and C43 generated in the piezoelectric transformer 172. The capacitors Ca4, Cb4, and Cc4 generated in the piezoelectric transformer 282 have the same correspondence relationship as the capacitors C61, C62, and C63 generated in the piezoelectric transformer 272.
 これらの関係から、C32+C33≦C42+C43、かつ、C51+C53≦C61+C63を満たすように、圧電トランス181,182,281,282を選択する。これにより、受電装置206の基準電位の変動を抑制できる。そして、その結果、基準電位の変動による不具合、例えば、装置の誤作動等を防止できる。 From these relationships, the piezoelectric transformers 181, 182, 281, and 282 are selected so as to satisfy C32 + C33 ≦ C42 + C43 and C51 + C53 ≦ C61 + C63. Thereby, the fluctuation | variation of the reference potential of the power receiving apparatus 206 can be suppressed. As a result, problems due to fluctuations in the reference potential, for example, malfunction of the device can be prevented.
 以下に、圧電トランス181,182,281,282に生じる寄生容量の測定方法について説明する。 Hereinafter, a method for measuring the parasitic capacitance generated in the piezoelectric transformers 181, 182, 281 and 282 will be described.
 図16は、圧電トランス281に生じるキャパシタの測定方法を説明するための図である。なお、図16では、圧電トランス281に生じるキャパシタの測定方法のみを説明するが、他の圧電トランス181,182,282に生じるキャパシタの測定方法も同様である。 FIG. 16 is a diagram for explaining a method for measuring a capacitor generated in the piezoelectric transformer 281. In FIG. 16, only the method for measuring the capacitor generated in the piezoelectric transformer 281 is described, but the method for measuring the capacitor generated in the other piezoelectric transformers 181, 182, and 282 is the same.
 圧電トランス281の第3電極E113に定電流源150を接続し、第4電極E114はグランドに接続する。また、第1電極E111及び第2電極E112は短絡し、グランドに接続する。この接続構成において、キャパシタCa3(=キャパシタC53)のキャパシタンスは、圧電トランス281に入力される電圧Vinと、圧電トランス281から出力される電流Ioutとから、Ca3=C53=Iout/2πfVinの式により求めることができる。 The constant current source 150 is connected to the third electrode E113 of the piezoelectric transformer 281 and the fourth electrode E114 is connected to the ground. The first electrode E111 and the second electrode E112 are short-circuited and connected to the ground. In this connection configuration, the capacitance of the capacitor Ca3 (= capacitor C53) is obtained from the voltage Vin input to the piezoelectric transformer 281 and the current Iout output from the piezoelectric transformer 281 by the equation Ca3 = C53 = Iout / 2πfVin. be able to.
 圧電トランス281の第3電極E113及び第4電極E114間の容量を測定することで、キャパシタCa3,Cb3を直列接続した場合のキャパシタンスが測定できる。これにより、前記のC51=(1/Ca3+1/Cb3)-1から、キャパシタンスC51を測定できる。また、第1電極E111及び第2電極E112間の容量を測定することで、前記のC52=Cc3からキャパシタンスC52を測定できる。 By measuring the capacitance between the third electrode E113 and the fourth electrode E114 of the piezoelectric transformer 281, the capacitance when the capacitors Ca3 and Cb3 are connected in series can be measured. Thereby, the capacitance C51 can be measured from the above-mentioned C51 = (1 / Ca3 + 1 / Cb3) −1 . Further, by measuring the capacitance between the first electrode E111 and the second electrode E112, the capacitance C52 can be measured from the aforementioned C52 = Cc3.
 以上のように、C32+C33≦C42+C43、かつ、C51+C53≦C61+C63の条件が満たされるように、圧電トランス181,182,281,282を選択することで、受電装置206の基準電位の変動を抑制できる。そして、その結果、基準電位の変動による不具合、例えば、装置の誤作動等を防止できる。 As described above, by selecting the piezoelectric transformers 181, 182, 281, and 282 so that the conditions of C32 + C33 ≦ C42 + C43 and C51 + C53 ≦ C61 + C63 are satisfied, fluctuations in the reference potential of the power receiving device 206 can be suppressed. As a result, problems due to fluctuations in the reference potential, for example, malfunction of the device can be prevented.
1,5,6…ワイヤレス電力伝送システム
11…電源回路
12…昇圧トランス(第2トランス)
13,23…アクティブ電極
14,24…パッシブ電極
15,16,17…昇圧部(第2トランス)
25,26,27…降圧部(第1トランス)
101,102,103,105,106…送電装置
161,171…圧電トランス(第3圧電トランス)
162,172…圧電トランス(第4圧電トランス)
201,202,203,205,206…受電装置
261,271…圧電トランス(第1圧電トランス)
262,281…圧電トランス(第2圧電トランス)
C11…キャパシタ(第1静電容量)
C12…キャパシタ(第2静電容量)
C13…キャパシタ(第3静電容量)
C14…キャパシタ(第4静電容量)
C15…キャパシタ(第1圧電トランスの入力容量)
C16…キャパシタ(第2圧電トランスの入力容量)
C17…キャパシタ(第3圧電トランスの入力容量)
C18…キャパシタ(第4圧電トランスの入力容量)
Co…キャパシタ
Ca,Cp…キャパシタ
DB…ダイオードブリッジ
E11,E21…第1電極(電圧入力電極)
E31,E41…第1電極(電圧出力電極)
E51,E61,E71,E81,E91,E101,E113,E123…第1電極(第1電圧入力電極)
E12,E22,E32,E42…第2電極(基準電位用電極)
E52,E62,E72,E82,E92,E102,E114,E124…第2電極(第2電圧入力電極)
E13,E23…第3電極(電圧出力電極)
E33,E43…第3電極(電圧入力電極)
E53,E63,E73,E83,E93,E103,E111,E121…第3電極(第1電圧出力電極)
E54,E64,E74,E84,E94,E104,E112,E122…第3電極(第2電圧出力電極)
L1…インダクタ
L2…インダクタ
n1…1次コイル
n2…2次コイル
R1…抵抗成分
RG…受電装置側基準電位点
TG…送電装置側基準電位点
RL…負荷回路
T11…巻線トランス(第3巻線トランス)
T12…巻線トランス(第4巻線トランス)
T21…巻線トランス(第1巻線トランス)
T22…巻線トランス(第2巻線トランス)
Z1,Z2,Z3,Z4…インピーダンス
DESCRIPTION OF SYMBOLS 1, 5, 6 ... Wireless electric power transmission system 11 ... Power supply circuit 12 ... Boost transformer (2nd transformer)
13, 23 ... Active electrodes 14, 24 ... Passive electrodes 15, 16, 17 ... Booster (second transformer)
25, 26, 27 ... Step-down unit (first transformer)
101, 102, 103, 105, 106 ... power transmission devices 161, 171 ... piezoelectric transformer (third piezoelectric transformer)
162, 172 ... Piezoelectric transformer (fourth piezoelectric transformer)
201, 202, 203, 205, 206 ... power receiving devices 261, 271 ... piezoelectric transformer (first piezoelectric transformer)
262, 281 ... Piezoelectric transformer (second piezoelectric transformer)
C11: Capacitor (first capacitance)
C12: Capacitor (second capacitance)
C13: Capacitor (third capacitance)
C14: Capacitor (fourth capacitance)
C15: Capacitor (input capacitance of the first piezoelectric transformer)
C16: Capacitor (input capacitance of the second piezoelectric transformer)
C17: Capacitor (input capacitance of the third piezoelectric transformer)
C18: Capacitor (input capacitance of the fourth piezoelectric transformer)
Co ... capacitor Ca, Cp ... capacitor DB ... diode bridge E11, E21 ... first electrode (voltage input electrode)
E31, E41 ... 1st electrode (voltage output electrode)
E51, E61, E71, E81, E91, E101, E113, E123... First electrode (first voltage input electrode)
E12, E22, E32, E42 ... Second electrode (reference potential electrode)
E52, E62, E72, E82, E92, E102, E114, E124 ... second electrode (second voltage input electrode)
E13, E23 ... Third electrode (voltage output electrode)
E33, E43 ... Third electrode (voltage input electrode)
E53, E63, E73, E83, E93, E103, E111, E121 ... Third electrode (first voltage output electrode)
E54, E64, E74, E84, E94, E104, E112, E122 ... Third electrode (second voltage output electrode)
L1 ... inductor L2 ... inductor n1 ... primary coil n2 ... secondary coil R1 ... resistance component RG ... power receiving device side reference potential point TG ... power transmission device side reference potential point RL ... load circuit T11 ... winding transformer (third winding) Trance)
T12 ... Winding transformer (fourth winding transformer)
T21 ... Winding transformer (first winding transformer)
T22 ... Winding transformer (second winding transformer)
Z1, Z2, Z3, Z4 ... impedance

Claims (17)

  1.  送電装置の送電側アクティブ電極に対向する受電側アクティブ電極と、前記送電装置の送電側パッシブ電極に対向する受電側パッシブ電極と、前記受電側アクティブ電極及び前記受電側パッシブ電極に誘起される電圧が印加される第1トランスと、前記第1トランスにより励起された電圧が印加される負荷回路とを備え、電界結合により前記送電装置から電力が伝送される受電装置において、
     前記第1トランスは、
     1次コイル及び2次コイルを有し、前記1次コイルの第1端が前記受電側アクティブ電極に接続され、第2端が自装置の基準電位に接続された第1巻線トランスと、
     1次コイル及び2次コイルを有し、前記1次コイルの第1端が前記受電側パッシブ電極に接続され、第2端が自装置の基準電位に接続された第2巻線トランスと、
     を有し、
     前記第1巻線トランスの前記1次コイルのインダクタンスをL11、前記1次コイルの前記第1端と前記第2端との間に生じる第1静電容量をC11、前記第2巻線トランスの1次コイルのインダクタンスをL12、前記1次コイルの前記第1端と前記第2端との間に生じる第2静電容量をC12、電力伝送の動作角周波数をωで表すと、
     1/ωC11<ωL11、1/ωC12<ωL12である場合、C11≦C12であり、
     1/ωC11>ωL11、1/ωC12>ωL12である場合、L11≧L12である、
     受電装置。
    The power receiving side active electrode facing the power transmitting side active electrode of the power transmitting device, the power receiving side passive electrode facing the power transmitting side passive electrode of the power transmitting device, and the voltage induced in the power receiving side active electrode and the power receiving side passive electrode are In a power receiving device including a first transformer to be applied and a load circuit to which a voltage excited by the first transformer is applied, power is transmitted from the power transmitting device by electric field coupling.
    The first transformer is
    A first winding transformer having a primary coil and a secondary coil, the first end of the primary coil being connected to the power-receiving-side active electrode, and the second end being connected to the reference potential of the device;
    A second winding transformer having a primary coil and a secondary coil, wherein a first end of the primary coil is connected to the power-receiving-side passive electrode, and a second end is connected to a reference potential of the device;
    Have
    The inductance of the primary coil of the first winding transformer is L11, the first capacitance generated between the first end and the second end of the primary coil is C11, and the inductance of the second winding transformer is Expressing the inductance of the primary coil as L12, the second capacitance generated between the first end and the second end of the primary coil as C12, and the operating angular frequency of power transmission as ω,
    When 1 / ωC11 <ωL11 and 1 / ωC12 <ωL12, C11 ≦ C12,
    When 1 / ωC11> ωL11 and 1 / ωC12> ωL12, L11 ≧ L12.
    Power receiving device.
  2.  前記第1静電容量及び前記第2静電容量は、前記第1巻線トランス、及び前記第2巻線トランスの前記1次コイルの巻線間浮遊容量である、
     請求項1に記載の受電装置。
    The first capacitance and the second capacitance are stray capacitances between windings of the primary coil of the first winding transformer and the second winding transformer,
    The power receiving device according to claim 1.
  3.  送電装置の送電側アクティブ電極に対向する受電側アクティブ電極と、前記送電装置の送電側パッシブ電極に対向する受電側パッシブ電極と、前記受電側アクティブ電極及び前記受電側パッシブ電極に誘起される電圧が印加される第1トランスと、前記第1トランスにより励起された電圧が印加される負荷回路とを備え、電界結合により前記送電装置から電力が伝送される受電装置において、
     前記第1トランスは、
     1次コイル及び2次コイルを有する第1巻線トランス及び第2巻線トランスを有し、
     前記第1巻線トランスは、
     前記1次コイルの第1端が前記受電側アクティブ電極に接続され、第2端が前記第2巻線トランスの1次コイルの第1端に接続された構成であり、
     前記第2巻線トランスは、前記1次コイルの第2端が前記受電側パッシブ電極に接続された構成であり、
     前記第1巻線トランスの前記1次コイル及び前記2次コイルの間の静電容量をC13、前記第2巻線トランスの前記1次コイル及び前記2次コイルの間の静電容量をC14で表すと、C13≦C14である、
     受電装置。
    The power receiving side active electrode facing the power transmitting side active electrode of the power transmitting device, the power receiving side passive electrode facing the power transmitting side passive electrode of the power transmitting device, and the voltage induced in the power receiving side active electrode and the power receiving side passive electrode are In a power receiving device including a first transformer to be applied and a load circuit to which a voltage excited by the first transformer is applied, power is transmitted from the power transmitting device by electric field coupling.
    The first transformer is
    A first winding transformer and a second winding transformer having a primary coil and a secondary coil;
    The first winding transformer
    A first end of the primary coil is connected to the power-receiving-side active electrode, and a second end is connected to a first end of the primary coil of the second winding transformer;
    The second winding transformer has a configuration in which a second end of the primary coil is connected to the power-receiving-side passive electrode,
    The capacitance between the primary coil and the secondary coil of the first winding transformer is C13, and the capacitance between the primary coil and the secondary coil of the second winding transformer is C14. When expressed, C13 ≦ C14.
    Power receiving device.
  4.  送電装置の送電側アクティブ電極に対向する受電側アクティブ電極と、前記送電装置の送電側パッシブ電極に対向する受電側パッシブ電極と、前記受電側アクティブ電極及び前記受電側パッシブ電極に誘起される電圧が印加される第1トランスと、前記第1トランスにより励起された電圧が印加される負荷回路とを備え、電界結合により前記送電装置から電力が伝送される受電装置において、
     前記第1トランスは、
     電圧入力電極、電圧出力電極、及び、自装置の基準電位に接続される基準電位用電極を有する第1圧電トランス及び第2圧電トランスを有し、
     前記第1圧電トランスは、
     前記電圧入力電極が前記受電側アクティブ電極に接続され、前記電圧出力電極が、前記第2圧電トランスの前記電圧出力電極に接続された構成であり、
     前記第2圧電トランスは、
     前記電圧入力電極が前記受電側パッシブ電極に接続された構成であり、
     前記第1圧電トランスの前記電圧入力電極と前記基準電位用電極との間に生じる静電容量をC15、前記第2圧電トランスの前記電圧入力電極と前記基準電位用電極との間に生じる静電容量をC16で表すと、C15≦C16である、
     受電装置。
    The power receiving side active electrode facing the power transmitting side active electrode of the power transmitting device, the power receiving side passive electrode facing the power transmitting side passive electrode of the power transmitting device, and the voltage induced in the power receiving side active electrode and the power receiving side passive electrode are In a power receiving device including a first transformer to be applied and a load circuit to which a voltage excited by the first transformer is applied, power is transmitted from the power transmitting device by electric field coupling.
    The first transformer is
    A first piezoelectric transformer and a second piezoelectric transformer having a voltage input electrode, a voltage output electrode, and a reference potential electrode connected to the reference potential of the device;
    The first piezoelectric transformer is
    The voltage input electrode is connected to the power receiving side active electrode, and the voltage output electrode is connected to the voltage output electrode of the second piezoelectric transformer,
    The second piezoelectric transformer is
    The voltage input electrode is connected to the power receiving side passive electrode,
    The electrostatic capacitance generated between the voltage input electrode of the first piezoelectric transformer and the reference potential electrode is C15, and the electrostatic capacitance generated between the voltage input electrode of the second piezoelectric transformer and the reference potential electrode. When the capacity is represented by C16, C15 ≦ C16.
    Power receiving device.
  5.  送電装置の送電側アクティブ電極に対向する受電側アクティブ電極と、前記送電装置の送電側パッシブ電極に対向する受電側パッシブ電極と、前記受電側アクティブ電極及び前記受電側パッシブ電極に誘起される電圧が印加される第1トランスと、前記第1トランスにより励起された電圧が印加される負荷回路とを備え、電界結合により前記送電装置から電力が伝送される受電装置において、
     前記第1トランスは、
     第1電圧入力電極、第2電圧入力電極、第1電圧出力電極及び第2電圧出力電極を有する第1圧電トランス及び第2圧電トランスを有し、
     前記第1圧電トランスは、
     前記第1電圧入力電極が前記受電側アクティブ電極に接続され、前記第2電圧入力電極が、自装置の基準電位に接続された構成であり、
     前記第2圧電トランスは、
     前記第2電圧入力電極が前記受電側パッシブ電極に接続され、前記第1電圧入力電極が、前記第1圧電トランスの前記第2電圧入力電極、及び、自装置の基準電位に接続された構成であり、
     前記第1圧電トランスの前記第1電圧入力電極と前記第2電圧入力電極との間に生じる静電容量をC51、前記第1電圧入力電極及び前記第2電圧入力電極と前記第1電圧出力電極及び前記第2電圧出力電極との間に生じる静電容量をC53で表し、
     前記第2圧電トランスの前記第1電圧入力電極と前記第2電圧入力電極との間に生じる静電容量をC61、前記第1電圧入力電極及び前記第2電圧入力電極と前記第1電圧出力電極及び前記第2電圧出力電極との間に生じる静電容量をC63で表すと、
     C51+C53≦C61+C63である、
     受電装置。
    The power receiving side active electrode facing the power transmitting side active electrode of the power transmitting device, the power receiving side passive electrode facing the power transmitting side passive electrode of the power transmitting device, and the voltage induced in the power receiving side active electrode and the power receiving side passive electrode are In a power receiving device including a first transformer to be applied and a load circuit to which a voltage excited by the first transformer is applied, power is transmitted from the power transmitting device by electric field coupling.
    The first transformer is
    A first piezoelectric transformer and a second piezoelectric transformer having a first voltage input electrode, a second voltage input electrode, a first voltage output electrode and a second voltage output electrode;
    The first piezoelectric transformer is
    The first voltage input electrode is connected to the power receiving side active electrode, and the second voltage input electrode is connected to a reference potential of the device itself,
    The second piezoelectric transformer is
    The second voltage input electrode is connected to the power-receiving-side passive electrode, and the first voltage input electrode is connected to the second voltage input electrode of the first piezoelectric transformer and a reference potential of the device itself. Yes,
    The capacitance generated between the first voltage input electrode and the second voltage input electrode of the first piezoelectric transformer is C51, the first voltage input electrode, the second voltage input electrode, and the first voltage output electrode. And the capacitance generated between the second voltage output electrode and C53 is represented by C53,
    The capacitance generated between the first voltage input electrode and the second voltage input electrode of the second piezoelectric transformer is C61, the first voltage input electrode, the second voltage input electrode, and the first voltage output electrode. And the capacitance generated between the second voltage output electrode and C63 is represented by C63,
    C51 + C53 ≦ C61 + C63,
    Power receiving device.
  6.  送電装置の送電側アクティブ電極に対向する受電側アクティブ電極と、前記送電装置の送電側パッシブ電極に対向する受電側パッシブ電極と、前記受電側アクティブ電極及び前記受電側パッシブ電極に誘起される電圧が印加される第1トランスと、前記第1トランスにより励起された電圧が印加される負荷回路とを備え、電界結合により前記送電装置から電力が伝送される受電装置において、
     前記第1トランスは、
     第1電圧入力電極、第2電圧入力電極、第1電圧出力電極及び第2電圧出力電極を有する第1圧電トランス及び第2圧電トランスを有し、
     前記第1圧電トランスは、
     前記第1電圧入力電極が前記受電側アクティブ電極に接続された構成であり、
     前記第2圧電トランスは、
     前記第2電圧入力電極が前記受電側パッシブ電極に接続され、前記第1電圧入力電極が、前記第1圧電トランスの前記第2電圧入力電極に接続された構成であり、
     前記第1圧電トランスの前記第1電圧入力電極及び前記第2電圧入力電極と前記第1電圧出力電極及び前記第2電圧出力電極との間に生じる静電容量をC53で表し、
     前記第2圧電トランスの前記第1電圧入力電極及び前記第2電圧入力電極と前記第1電圧出力電極及び前記第2電圧出力電極との間に生じる静電容量をC63で表すと、
     C53≦C63である、
     受電装置。
    The power receiving side active electrode facing the power transmitting side active electrode of the power transmitting device, the power receiving side passive electrode facing the power transmitting side passive electrode of the power transmitting device, and the voltage induced in the power receiving side active electrode and the power receiving side passive electrode are In a power receiving device including a first transformer to be applied and a load circuit to which a voltage excited by the first transformer is applied, power is transmitted from the power transmitting device by electric field coupling.
    The first transformer is
    A first piezoelectric transformer and a second piezoelectric transformer having a first voltage input electrode, a second voltage input electrode, a first voltage output electrode and a second voltage output electrode;
    The first piezoelectric transformer is
    The first voltage input electrode is connected to the power receiving side active electrode,
    The second piezoelectric transformer is
    The second voltage input electrode is connected to the power-receiving-side passive electrode, and the first voltage input electrode is connected to the second voltage input electrode of the first piezoelectric transformer,
    A capacitance generated between the first voltage input electrode and the second voltage input electrode of the first piezoelectric transformer and the first voltage output electrode and the second voltage output electrode is represented by C53.
    When the capacitance generated between the first voltage input electrode and the second voltage input electrode of the second piezoelectric transformer and the first voltage output electrode and the second voltage output electrode is represented by C63,
    C53 ≦ C63,
    Power receiving device.
  7.  受電装置の受電側アクティブ電極に対向する送電側アクティブ電極と、前記受電装置の受電側パッシブ電極に対向する送電側パッシブ電極と、前記送電側アクティブ電極及び前記送電側パッシブ電極に印加する交流電圧が印加される第2トランスとを備え、電界結合により前記受電装置へ電力を伝送する送電装置において、
     前記第2トランスは、
     1次コイル及び2次コイルを有し、前記2次コイルの第1端が前記送電側アクティブ電極に接続され、第2端が自装置の基準電位に接続された第3巻線トランスと、
     1次コイル及び2次コイルを有し、前記2次コイルの第1端が前記送電側パッシブ電極に接続され、第2端が自装置の基準電位に接続された第4巻線トランスと、
     を有し、
     前記第3巻線トランスの前記2次コイルのインダクタンスをL21、前記1次コイルの前記第1端と前記第2端との間に生じる第1静電容量をC21、前記第4巻線トランスの前記2次コイルのインダクタンスをL22、前記2次コイルの前記第1端と前記第2端との間に生じる第2静電容量をC22、電力伝送の動作角周波数をωで表すと、
     1/ωC21<ωL21、1/ωC22<ωL22である場合、C21≦C22であり、
     1/ωC21>ωL21、1/ωC22>ωL22である場合、L21≧L22である、
     送電装置。
    A power transmission side active electrode facing the power reception side active electrode of the power reception device, a power transmission side passive electrode facing the power reception side passive electrode of the power reception device, and an AC voltage applied to the power transmission side active electrode and the power transmission side passive electrode are A power transmission device including a second transformer to be applied and transmitting electric power to the power reception device by electric field coupling;
    The second transformer is
    A third winding transformer having a primary coil and a secondary coil, the first end of the secondary coil being connected to the power transmission side active electrode, and the second end being connected to the reference potential of the device itself;
    A fourth winding transformer having a primary coil and a secondary coil, a first end of the secondary coil being connected to the power transmission side passive electrode, and a second end being connected to a reference potential of the device;
    Have
    The inductance of the secondary coil of the third winding transformer is L21, the first capacitance generated between the first end and the second end of the primary coil is C21, and the inductance of the fourth winding transformer is C21. L22 represents the inductance of the secondary coil, C22 represents the second capacitance generated between the first end and the second end of the secondary coil, and ω represents the operating angular frequency of power transmission.
    When 1 / ωC21 <ωL21 and 1 / ωC22 <ωL22, C21 ≦ C22,
    When 1 / ωC21> ωL21 and 1 / ωC22> ωL22, L21 ≧ L22.
    Power transmission device.
  8.  前記第1静電容量、及び前記第2静電容量は、前記第3巻線トランス、及び前記第4巻線トランスの前記2次コイルの巻線間浮遊容量である、
     請求項7に記載の送電装置。
    The first capacitance and the second capacitance are stray capacitances between windings of the secondary coil of the third winding transformer and the fourth winding transformer,
    The power transmission device according to claim 7.
  9.  受電装置の受電側アクティブ電極に対向する送電側アクティブ電極と、前記受電装置の受電側パッシブ電極に対向する送電側パッシブ電極と、前記送電側アクティブ電極及び前記送電側パッシブ電極に印加する交流電圧が印加される第2トランスとを備え、電界結合により前記受電装置へ電力を伝送する送電装置において、
     前記第2トランスは、
     1次コイル及び2次コイルを有する第3巻線トランス及び第4巻線トランスを有し、
     前記第3巻線トランスは、前記2次コイルの第1端が前記送電側アクティブ電極に接続され、第2端が前記第4巻線トランスの前記2次コイルの第1端に接続された構成であり、
     前記第4巻線トランスは、前記2次コイルの第2端が前記送電側パッシブ電極に接続された構成であり、
     前記第3巻線トランスの1次コイル、及び前記2次コイルの間の静電容量をC23、前記第4巻線トランスの1次コイル、及び前記2次コイルの間の静電容量をC24で表すと、C23≦C24である、
     送電装置。
    A power transmission side active electrode facing the power reception side active electrode of the power reception device, a power transmission side passive electrode facing the power reception side passive electrode of the power reception device, and an AC voltage applied to the power transmission side active electrode and the power transmission side passive electrode are A power transmission device including a second transformer to be applied and transmitting electric power to the power reception device by electric field coupling;
    The second transformer is
    Having a third winding transformer and a fourth winding transformer having a primary coil and a secondary coil;
    The third winding transformer has a configuration in which a first end of the secondary coil is connected to the power transmission side active electrode and a second end is connected to a first end of the secondary coil of the fourth winding transformer. And
    The fourth winding transformer has a configuration in which a second end of the secondary coil is connected to the power transmission side passive electrode,
    The capacitance between the primary coil and the secondary coil of the third winding transformer is C23, and the capacitance between the primary coil and the secondary coil of the fourth winding transformer is C24. Expressed as C23 ≦ C24,
    Power transmission device.
  10.  受電装置の受電側アクティブ電極に対向する送電側アクティブ電極と、前記受電装置の受電側パッシブ電極に対向する送電側パッシブ電極と、前記送電側アクティブ電極及び前記送電側パッシブ電極に印加する交流電圧が印加される第2トランスとを備え、電界結合により前記受電装置へ電力を伝送する送電装置において、
     前記第2トランスは、
     電圧入力電極、電圧出力電極及び自装置の基準電位に接続される基準電位用電極を有する第3圧電トランス及び第4圧電トランスを有し、
     前記第3圧電トランスは、
     前記電圧出力電極が前記送電側アクティブ電極に接続され、前記電圧入力電極が、前記第4圧電トランスの前記電圧入力電極に接続された構成であり、
     前記第4圧電トランスは、
     前記電圧出力電極が前記送電側パッシブ電極に接続された構成であり、
     前記第3圧電トランスの前記電圧出力電極と前記基準電位用電極との間に生じる静電容量をC25、前記第4圧電トランスの前記電圧出力電極と前記基準電位用電極との間に生じる静電容量をC26で表すと、C25≦C26である、
     送電装置。
    A power transmission side active electrode facing the power reception side active electrode of the power reception device, a power transmission side passive electrode facing the power reception side passive electrode of the power reception device, and an AC voltage applied to the power transmission side active electrode and the power transmission side passive electrode are A power transmission device including a second transformer to be applied and transmitting electric power to the power reception device by electric field coupling;
    The second transformer is
    A third piezoelectric transformer and a fourth piezoelectric transformer having a voltage input electrode, a voltage output electrode, and a reference potential electrode connected to the reference potential of the device;
    The third piezoelectric transformer is
    The voltage output electrode is connected to the power transmission side active electrode, and the voltage input electrode is connected to the voltage input electrode of the fourth piezoelectric transformer,
    The fourth piezoelectric transformer is
    The voltage output electrode is connected to the power transmission side passive electrode,
    The electrostatic capacity generated between the voltage output electrode of the third piezoelectric transformer and the reference potential electrode is C25, and the electrostatic capacity generated between the voltage output electrode of the fourth piezoelectric transformer and the reference potential electrode. When the capacity is represented by C26, C25 ≦ C26.
    Power transmission device.
  11.  受電装置の受電側アクティブ電極に対向する送電側アクティブ電極と、前記受電装置の受電側パッシブ電極に対向する送電側パッシブ電極と、前記送電側アクティブ電極及び前記送電側パッシブ電極に印加する交流電圧が印加される第2トランスとを備え、電界結合により前記受電装置へ電力を伝送する送電装置において、
     前記第2トランスは、
     第1電圧入力電極、第2電圧入力電極、第1電圧出力電極及び第2電圧出力電極を有する第3圧電トランス及び第4圧電トランスを有し、
     前記第3圧電トランスは、
     前記第1電圧出力電極が前記送電側アクティブ電極に接続され、前記第2電圧出力電極が自装置の基準電位に接続された構成であり、
     前記第4圧電トランスは、
     前記第2電圧出力電極が前記送電側パッシブ電極に接続され、前記第1電圧出力電極が、前記第3圧電トランスの前記第2電圧出力電極、及び、自装置の基準電位に接続された構成であり、
     前記第3圧電トランスの前記第1電圧出力電極と前記第2電圧出力電極との間に生じる静電容量をC32、前記第1電圧入力電極及び前記第2電圧入力電極と前記第1電圧出力電極及び前記第2電圧出力電極との間に生じる静電容量をC33で表し、
     前記第4圧電トランスの前記第1電圧出力電極と前記第2電圧出力電極との間に生じる静電容量をC42、前記第1電圧入力電極及び前記第2電圧入力電極と前記第1電圧出力電極及び前記第2電圧出力電極との間に生じる静電容量をC43で表すと、
     C32+C33≦C42+C43である、
     送電装置。
    A power transmission side active electrode facing the power reception side active electrode of the power reception device, a power transmission side passive electrode facing the power reception side passive electrode of the power reception device, and an AC voltage applied to the power transmission side active electrode and the power transmission side passive electrode are A power transmission device including a second transformer to be applied and transmitting electric power to the power reception device by electric field coupling;
    The second transformer is
    A third voltage transformer having a first voltage input electrode, a second voltage input electrode, a first voltage output electrode and a second voltage output electrode, and a fourth piezoelectric transformer;
    The third piezoelectric transformer is
    The first voltage output electrode is connected to the power transmission side active electrode, and the second voltage output electrode is connected to a reference potential of the device itself,
    The fourth piezoelectric transformer is
    The second voltage output electrode is connected to the power transmission side passive electrode, and the first voltage output electrode is connected to the second voltage output electrode of the third piezoelectric transformer and a reference potential of the device itself. Yes,
    The capacitance generated between the first voltage output electrode and the second voltage output electrode of the third piezoelectric transformer is C32, the first voltage input electrode, the second voltage input electrode, and the first voltage output electrode. And a capacitance generated between the second voltage output electrode and the second voltage output electrode is represented by C33,
    The capacitance generated between the first voltage output electrode and the second voltage output electrode of the fourth piezoelectric transformer is C42, the first voltage input electrode, the second voltage input electrode, and the first voltage output electrode. And the capacitance generated between the second voltage output electrode and the second voltage output electrode is represented by C43.
    C32 + C33 ≦ C42 + C43.
    Power transmission device.
  12.  受電装置の受電側アクティブ電極に対向する送電側アクティブ電極と、前記受電装置の受電側パッシブ電極に対向する送電側パッシブ電極と、前記送電側アクティブ電極及び前記送電側パッシブ電極に印加する交流電圧が印加される第2トランスとを備え、電界結合により前記受電装置へ電力を伝送する送電装置において、
     前記第2トランスは、
     第1電圧入力電極、第2電圧入力電極、第1電圧出力電極及び第2電圧出力電極を有する第3圧電トランス及び第4圧電トランスを有し、
     前記第3圧電トランスは、
     前記第1電圧出力電極が前記送電側アクティブ電極に接続された構成であり、
     前記第4圧電トランスは、
     前記第2電圧出力電極が前記送電側パッシブ電極に接続され、前記第1電圧出力電極が、前記第3圧電トランスの前記第2電圧出力電極に接続された構成であり、
     前記第3圧電トランスの前記第1電圧入力電極及び前記第2電圧入力電極と前記第1電圧出力電極及び前記第2電圧出力電極との間に生じる静電容量をC33で表し、
     前記第4圧電トランスの前記第1電圧入力電極及び前記第2電圧入力電極と前記第1電圧出力電極及び前記第2電圧出力電極との間に生じる静電容量をC43で表すと、
     C33≦C43である、
     送電装置。
    A power transmission side active electrode facing the power reception side active electrode of the power reception device, a power transmission side passive electrode facing the power reception side passive electrode of the power reception device, and an AC voltage applied to the power transmission side active electrode and the power transmission side passive electrode are A power transmission device including a second transformer to be applied and transmitting electric power to the power reception device by electric field coupling;
    The second transformer is
    A third voltage transformer having a first voltage input electrode, a second voltage input electrode, a first voltage output electrode and a second voltage output electrode, and a fourth piezoelectric transformer;
    The third piezoelectric transformer is
    The first voltage output electrode is connected to the power transmission side active electrode,
    The fourth piezoelectric transformer is
    The second voltage output electrode is connected to the power transmission side passive electrode, and the first voltage output electrode is connected to the second voltage output electrode of the third piezoelectric transformer,
    A capacitance generated between the first voltage input electrode and the second voltage input electrode of the third piezoelectric transformer and the first voltage output electrode and the second voltage output electrode is represented by C33,
    When the capacitance generated between the first voltage input electrode and the second voltage input electrode of the fourth piezoelectric transformer and the first voltage output electrode and the second voltage output electrode is represented by C43,
    C33 ≦ C43.
    Power transmission device.
  13.  送電側アクティブ電極と、送電側パッシブ電極と、送電側アクティブ電極及び送電側パッシブ電極に交流電圧を印加する送電側トランスを有する送電装置と、
     前記送電側アクティブ電極に対向する受電側アクティブ電極と、前記送電側パッシブ電極に対向する受電側パッシブ電極と、前記受電側アクティブ電極及び前記受電側パッシブ電極の間に生じる電圧が印加される受電側トランスとを有する受電装置と、
     を備え、
     前記受電側トランスは、
     1次コイル及び2次コイルを有し、前記1次コイルの第1端が前記受電側アクティブ電極に接続され、第2端が自装置の基準電位に接続された第1巻線トランスと、
     1次コイル及び2次コイルを有し、前記1次コイルの第1端が前記受電側パッシブ電極に接続され、第2端が自装置の基準電位に接続された第2巻線トランスと、
     を有し、
     前記第1巻線トランスの前記1次コイルのインダクタンスをL11、前記1次コイルの前記第1端と前記第2端との間に生じる第1静電容量をC11、前記第2巻線トランスの1次コイルのインダクタンスをL12、前記1次コイルの前記第1端と前記第2端との間に生じる第1静電容量をC12、電力伝送の動作角周波数をωで表すと、
     1/ωC11<ωL11、1/ωC12<ωL12である場合、C11≦C12であり、
     1/ωC11>ωL11、1/ωC12>ωL12である場合、L11≧L12である、
     ワイヤレス電力伝送システム。
    A power transmission device including a power transmission side active electrode, a power transmission side passive electrode, a power transmission side active electrode, and a power transmission side transformer that applies an AC voltage to the power transmission side passive electrode;
    A power receiving side active electrode facing the power transmitting side active electrode, a power receiving side passive electrode facing the power transmitting side passive electrode, and a power receiving side to which a voltage generated between the power receiving side active electrode and the power receiving side passive electrode is applied. A power receiving device having a transformer;
    With
    The power receiving side transformer is:
    A first winding transformer having a primary coil and a secondary coil, the first end of the primary coil being connected to the power-receiving-side active electrode, and the second end being connected to the reference potential of the device;
    A second winding transformer having a primary coil and a secondary coil, wherein a first end of the primary coil is connected to the power-receiving-side passive electrode, and a second end is connected to a reference potential of the device;
    Have
    The inductance of the primary coil of the first winding transformer is L11, the first capacitance generated between the first end and the second end of the primary coil is C11, and the inductance of the second winding transformer is L12 represents the inductance of the primary coil, C12 represents the first capacitance generated between the first end and the second end of the primary coil, and ω represents the operating angular frequency of power transmission.
    When 1 / ωC11 <ωL11 and 1 / ωC12 <ωL12, C11 ≦ C12,
    When 1 / ωC11> ωL11 and 1 / ωC12> ωL12, L11 ≧ L12.
    Wireless power transmission system.
  14.  送電側アクティブ電極と、送電側パッシブ電極と、送電側アクティブ電極及び送電側パッシブ電極に交流電圧を印加する送電側トランスを有する送電装置と、
     前記送電側アクティブ電極に対向する受電側アクティブ電極と、前記送電側パッシブ電極に対向する受電側パッシブ電極と、前記受電側アクティブ電極及び前記受電側パッシブ電極の間に生じる電圧が印加される受電側トランスとを有する受電装置と、
     を備え、
     前記送電側トランスは、
     1次コイル及び2次コイルを有する第3巻線トランス、及び第4巻線トランスを有し、
     前記第3巻線トランスは、前記2次コイルの第1端が前記送電側アクティブ電極に接続され、第2端が前記第4巻線トランスの前記2次コイルの第1端に接続された構成であり、
     前記第4巻線トランスは、前記1次コイルの第2端が前記送電側パッシブ電極に接続された構成であり、
     前記第3巻線トランスの1次コイル、及び前記2次コイルの間の静電容量をC13、前記第4巻線トランスの1次コイル、及び前記2次コイルの間の静電容量をC14で表すと、C13≦C14である、
     ワイヤレス電力伝送システム。
    A power transmission device including a power transmission side active electrode, a power transmission side passive electrode, a power transmission side active electrode, and a power transmission side transformer that applies an AC voltage to the power transmission side passive electrode;
    A power receiving side active electrode facing the power transmitting side active electrode, a power receiving side passive electrode facing the power transmitting side passive electrode, and a power receiving side to which a voltage generated between the power receiving side active electrode and the power receiving side passive electrode is applied. A power receiving device having a transformer;
    With
    The power transmission side transformer is:
    A third winding transformer having a primary coil and a secondary coil, and a fourth winding transformer;
    The third winding transformer has a configuration in which a first end of the secondary coil is connected to the power transmission side active electrode and a second end is connected to a first end of the secondary coil of the fourth winding transformer. And
    The fourth winding transformer has a configuration in which a second end of the primary coil is connected to the power transmission side passive electrode,
    The capacitance between the primary coil of the third winding transformer and the secondary coil is C13, and the capacitance between the primary coil of the fourth winding transformer and the secondary coil is C14. When expressed, C13 ≦ C14.
    Wireless power transmission system.
  15.  送電側アクティブ電極と、送電側パッシブ電極と、送電側アクティブ電極及び送電側パッシブ電極に交流電圧を印加する送電側トランスを有する送電装置と、
     前記送電側アクティブ電極に対向する受電側アクティブ電極と、前記送電側パッシブ電極に対向する受電側パッシブ電極と、前記受電側アクティブ電極及び前記受電側パッシブ電極の間に生じる電圧が印加される受電側トランスとを有する受電装置と、
     を備え、
     前記受電側トランスは、
     電圧入力電極、電圧出力電極、及び、前記受電装置の基準電位に接続される基準電位用電極を有する第1圧電トランス、第2圧電トランスを有し、
     前記第1圧電トランスは、
     前記電圧入力電極が前記受電側アクティブ電極に接続され、前記電圧出力電極が、前記第2圧電トランスの前記電圧出力電極に接続された構成であり、
     前記第2圧電トランスは、
     前記電圧入力電極が前記受電側パッシブ電極に接続された構成であり、
     前記第1圧電トランスの前記電圧入力電極と前記基準電位用電極との間に生じる静電容量をC15、前記第2圧電トランスの前記電圧入力電極と前記基準電位用電極との間に生じる静電容量をC16で表すと、C15≦C16である、
     ワイヤレス電力伝送システム。
    A power transmission device including a power transmission side active electrode, a power transmission side passive electrode, a power transmission side active electrode, and a power transmission side transformer that applies an AC voltage to the power transmission side passive electrode;
    A power receiving side active electrode facing the power transmitting side active electrode, a power receiving side passive electrode facing the power transmitting side passive electrode, and a power receiving side to which a voltage generated between the power receiving side active electrode and the power receiving side passive electrode is applied. A power receiving device having a transformer;
    With
    The power receiving side transformer is:
    A first piezoelectric transformer having a voltage input electrode, a voltage output electrode, and a reference potential electrode connected to a reference potential of the power receiving device; a second piezoelectric transformer;
    The first piezoelectric transformer is
    The voltage input electrode is connected to the power receiving side active electrode, and the voltage output electrode is connected to the voltage output electrode of the second piezoelectric transformer,
    The second piezoelectric transformer is
    The voltage input electrode is connected to the power receiving side passive electrode,
    The electrostatic capacitance generated between the voltage input electrode of the first piezoelectric transformer and the reference potential electrode is C15, and the electrostatic capacitance generated between the voltage input electrode of the second piezoelectric transformer and the reference potential electrode. When the capacity is represented by C16, C15 ≦ C16.
    Wireless power transmission system.
  16.  前記送電側トランスは、
     電圧入力電極、電圧出力電極、及び、前記送電装置の基準電位に接続される基準電位用電極を有する第3圧電トランス、第4圧電トランスを有し、
     前記第3圧電トランスは、
     前記電圧出力電極が前記送電側アクティブ電極に接続され、前記電圧入力電極が、前記第4圧電トランスの前記電圧入力電極に接続された構成であり、
     前記第4圧電トランスは、
     前記電圧出力電極が前記送電側パッシブ電極に接続された構成であり、
     前記第3圧電トランスの前記電圧出力電極と前記基準電位用電極との間に生じる静電容量をC25、前記第4圧電トランスの前記電圧出力電極と前記基準電位用電極との間に生じる静電容量をC26で表すと、C25≦C26である、
     請求項15に記載のワイヤレス電力伝送システム。
    The power transmission side transformer is:
    A third piezoelectric transformer having a voltage input electrode, a voltage output electrode, and a reference potential electrode connected to a reference potential of the power transmission device; a fourth piezoelectric transformer;
    The third piezoelectric transformer is
    The voltage output electrode is connected to the power transmission side active electrode, and the voltage input electrode is connected to the voltage input electrode of the fourth piezoelectric transformer,
    The fourth piezoelectric transformer is
    The voltage output electrode is connected to the power transmission side passive electrode,
    The electrostatic capacity generated between the voltage output electrode of the third piezoelectric transformer and the reference potential electrode is C25, and the electrostatic capacity generated between the voltage output electrode of the fourth piezoelectric transformer and the reference potential electrode. When the capacity is represented by C26, C25 ≦ C26.
    The wireless power transmission system according to claim 15.
  17.  前記第1圧電トランス及び前記第3圧電トランスは、同一の圧電トランスであり、
     前記第2圧電トランス及び前記第4圧電トランスは、同一の圧電トランスである、
     請求項16に記載のワイヤレス電力伝送システム。
    The first piezoelectric transformer and the third piezoelectric transformer are the same piezoelectric transformer,
    The second piezoelectric transformer and the fourth piezoelectric transformer are the same piezoelectric transformer.
    The wireless power transmission system according to claim 16.
PCT/JP2014/075986 2013-10-03 2014-09-30 Power transmission apparatus, power reception apparatus, and wireless power transmission system WO2015050095A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015540490A JP5935950B2 (en) 2013-10-03 2014-09-30 Power transmission device, power reception device, and wireless power transmission system

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2013-208375 2013-10-03
JP2013208375 2013-10-03
JP2013-241690 2013-11-22
JP2013241690 2013-11-22
JP2014043927 2014-03-06
JP2014-043927 2014-03-06

Publications (1)

Publication Number Publication Date
WO2015050095A1 true WO2015050095A1 (en) 2015-04-09

Family

ID=52778684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075986 WO2015050095A1 (en) 2013-10-03 2014-09-30 Power transmission apparatus, power reception apparatus, and wireless power transmission system

Country Status (2)

Country Link
JP (1) JP5935950B2 (en)
WO (1) WO2015050095A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015118945A1 (en) * 2014-02-07 2017-03-23 株式会社村田製作所 Power transmission system
KR20180040596A (en) * 2015-08-12 2018-04-20 에그트로닉 엔지니어링 에스.알.엘. Method and apparatus for transmitting power and data

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001156356A (en) * 1999-10-20 2001-06-08 Don Il Technology Co Ltd Piezoelectric ceramics transformer and driving circuit for cold cathode ray fluorescent tube using it
WO2012172929A1 (en) * 2011-06-13 2012-12-20 株式会社村田製作所 Power transmission system and power reception device
WO2013054800A1 (en) * 2011-10-12 2013-04-18 株式会社村田製作所 Wireless power transmission system
WO2013073508A1 (en) * 2011-11-14 2013-05-23 株式会社村田製作所 Power transmission system
WO2013080874A1 (en) * 2011-12-01 2013-06-06 株式会社村田製作所 Piezoelectric transformer, module for piezoelectric transformer, and wireless power-transmission system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001156356A (en) * 1999-10-20 2001-06-08 Don Il Technology Co Ltd Piezoelectric ceramics transformer and driving circuit for cold cathode ray fluorescent tube using it
WO2012172929A1 (en) * 2011-06-13 2012-12-20 株式会社村田製作所 Power transmission system and power reception device
WO2013054800A1 (en) * 2011-10-12 2013-04-18 株式会社村田製作所 Wireless power transmission system
WO2013073508A1 (en) * 2011-11-14 2013-05-23 株式会社村田製作所 Power transmission system
WO2013080874A1 (en) * 2011-12-01 2013-06-06 株式会社村田製作所 Piezoelectric transformer, module for piezoelectric transformer, and wireless power-transmission system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015118945A1 (en) * 2014-02-07 2017-03-23 株式会社村田製作所 Power transmission system
KR20180040596A (en) * 2015-08-12 2018-04-20 에그트로닉 엔지니어링 에스.알.엘. Method and apparatus for transmitting power and data
KR102537162B1 (en) 2015-08-12 2023-05-26 에그트로닉 엔지니어링 에스.피.에이. Method and apparatus for transmitting power and data

Also Published As

Publication number Publication date
JPWO2015050095A1 (en) 2017-03-09
JP5935950B2 (en) 2016-06-15

Similar Documents

Publication Publication Date Title
CN109804526B (en) Wireless power transfer system with interleaved rectifiers
US9866038B2 (en) Wireless power transmission system
US9973042B2 (en) Power transmission system
US20170324281A1 (en) Wireless power trnsfer device
US9846183B2 (en) Parameter derivation method
JPWO2015053246A1 (en) Wireless power transmission system
JP5935950B2 (en) Power transmission device, power reception device, and wireless power transmission system
CN112688439A (en) Wireless power transmission device
JP6183243B2 (en) Power transmission system, power receiving device, and power transmitting device
WO2020195276A1 (en) Switching power supply device
JP6308310B2 (en) Contactless power supply
JP7080683B2 (en) Wireless power transmission system and transmission equipment
JP6112222B2 (en) Frequency characteristic measurement method
CN113632361B (en) Switching power supply device
JPWO2017061092A1 (en) Non-contact power supply device and non-contact power supply system
US20140054972A1 (en) Wireless power transmission system
JP5204988B2 (en) Piezoelectric transformer insulation circuit
KR101472448B1 (en) High voltage dc/dc converter
JP2015092545A (en) Piezoelectric transformer, and wireless power transmission system
JP2013165558A (en) Filter for electric field coupling type power supply system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14850165

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015540490

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14850165

Country of ref document: EP

Kind code of ref document: A1