WO2015050009A1 - Insulated piezoelectric transformer - Google Patents

Insulated piezoelectric transformer Download PDF

Info

Publication number
WO2015050009A1
WO2015050009A1 PCT/JP2014/074925 JP2014074925W WO2015050009A1 WO 2015050009 A1 WO2015050009 A1 WO 2015050009A1 JP 2014074925 W JP2014074925 W JP 2014074925W WO 2015050009 A1 WO2015050009 A1 WO 2015050009A1
Authority
WO
WIPO (PCT)
Prior art keywords
high voltage
electrode
polarization
voltage electrode
piezoelectric transformer
Prior art date
Application number
PCT/JP2014/074925
Other languages
French (fr)
Japanese (ja)
Inventor
宏志 浅野
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2015540453A priority Critical patent/JP6172286B2/en
Publication of WO2015050009A1 publication Critical patent/WO2015050009A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/79Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for data transfer in combination with power transfer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/40Piezoelectric or electrostrictive devices with electrical input and electrical output, e.g. functioning as transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/05Circuit arrangements or systems for wireless supply or distribution of electric power using capacitive coupling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/20Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
    • H04B5/22Capacitive coupling

Definitions

  • the present invention relates to an insulation type piezoelectric transformer.
  • Patent Document 1 discloses an insulating piezoelectric transformer that can insulate an input-side circuit from an output-side circuit.
  • Patent Document 1 discloses a technique for providing an unpolarized region between a polarization region that constitutes an input region and a polarization region that constitutes an output region, thereby improving the insulation between the input region and the output region. ing.
  • the insulation-type piezoelectric transformer described in Patent Document 1 has an unpolarized region, and thus becomes large.
  • the present invention provides an insulation type piezoelectric transformer capable of improving insulation while suppressing an increase in size.
  • the insulated piezoelectric transformer of the present invention is an insulated piezoelectric transformer that uses a longitudinal vibration mode of order n (n is an integer of 3 or more).
  • the insulated piezoelectric transformer includes a piezoelectric body having a length of n ⁇ / 2 where ⁇ is a wavelength at a resonance frequency.
  • the piezoelectric body has a first high voltage portion, a low voltage portion, and a second high voltage portion in order along the length direction.
  • the low voltage portion has an integer number of polarization regions having a length of ⁇ / 2 along the length direction of the piezoelectric body.
  • Each of the first high voltage part and the second high voltage part has an integral number of polarization regions having a length of ⁇ / 2 along the length direction of the piezoelectric body.
  • the polarization direction of the polarization region constituting the low voltage part is parallel to the thickness direction of the piezoelectric element body and the number of polarization regions constituting the low voltage part is two or more, the length of the piezoelectric element body
  • the odd-numbered and even-numbered ones are set so as to be in the same direction from one end side in the direction, and the odd-numbered and even-numbered polarized regions are set in opposite directions.
  • the polarization directions of the polarization regions constituting the first high-voltage part and the second high-voltage part are parallel to the length direction of the piezoelectric body and odd-numbered from one end side in the length direction of the piezoelectric body.
  • the even numbers are set to have the same direction, and the odd numbered polarization region and the even numbered polarization region are set to be in opposite directions.
  • Low voltage electrodes are respectively provided at a pair of end portions in the thickness direction of the piezoelectric body of the low voltage portion.
  • High-voltage electrodes are respectively provided at a pair of end portions in the length direction of the piezoelectric body. The low voltage electrode and the high voltage electrode are physically separated.
  • the insulating piezoelectric transformer of the present invention is provided, the power receiving electrode is connected to the high voltage electrode of the insulating piezoelectric transformer, and the input of the power receiving circuit is connected to the low voltage electrode of the insulating piezoelectric transformer.
  • a power receiving device for a wireless power transmission system is provided.
  • the insulation type piezoelectric transformer of the present invention is provided, the output of the power transmission circuit is connected to the low voltage electrode of the insulation type piezoelectric transformer, and the power transmission electrode is connected to the high voltage electrode of the insulation type piezoelectric transformer.
  • a power transmission device for a wireless power transmission system is provided.
  • the low voltage electrode and the high voltage electrode are physically separated without providing an unpolarized region. Therefore, it is possible to improve insulation while suppressing an increase in size in the insulation type piezoelectric transformer.
  • FIG. 1 is a diagram illustrating a configuration of an insulating piezoelectric transformer according to a first embodiment.
  • FIG. 5 is a diagram illustrating a configuration of an insulating piezoelectric transformer according to a second embodiment.
  • FIG. 5 is a diagram illustrating a configuration of an insulating piezoelectric transformer according to a third embodiment.
  • FIG. 1 is a diagram illustrating a configuration of an insulating piezoelectric transformer according to a first embodiment.
  • FIG. 5 is a diagram illustrating a configuration of an insulating piezoelectric transformer according to a second embodiment.
  • FIG. 5 is a diagram illustrating a configuration of an insulating piezoelectric transformer according to a third embodiment.
  • FIG. 6 is a diagram illustrating a configuration of an insulating piezoelectric transformer according to a fourth embodiment.
  • FIG. 5 is a perspective view showing one end side of an insulation type piezoelectric transformer of Embodiments 1 to 4.
  • FIG. 6 is a perspective view of an insulation type piezoelectric transformer according to a modification of the first embodiment.
  • 10 is a perspective view of an insulation type piezoelectric transformer of a modification of the second embodiment.
  • FIG. FIG. 10 is a perspective view of an insulation type piezoelectric transformer of a modification of the third embodiment.
  • FIG. 10 is a perspective view of an insulation type piezoelectric transformer according to a modification of the fourth embodiment. It is a figure which shows an example of the attachment state of the insulation type piezoelectric transformer shown in FIG.
  • FIG. 9 is a diagram illustrating a configuration of an insulating piezoelectric transformer according to a fifth embodiment.
  • FIG. 10 is a diagram illustrating a configuration of an insulating piezoelectric transformer according to a sixth embodiment. It is a figure which shows the structure of the electric field coupling type
  • the power transmission device In a wireless power transmission system such as an electric field coupling type wireless power transmission system, for the purpose of improving power transmission efficiency, the power transmission device is provided with a step-up transformer that boosts a transmission voltage applied between a pair of power transmission electrodes. In some cases, a step-down transformer is provided to step down the voltage induced between the pair of power receiving electrodes.
  • a winding transformer is used as the step-up transformer and the step-down transformer, for example, the power transmission device and the power reception device are increased in size.
  • the power receiving device is, for example, a smartphone or a tablet terminal, but these power receiving devices are required to be downsized. In order to reduce the size, for example, it is conceivable to use a piezoelectric transformer that is smaller than a wound transformer.
  • the circuit on the input side and the output side are insulated as a piezoelectric transformer. It is desirable to use an insulation type piezoelectric transformer that can insulate the circuit on the input side and the output side instead of a Rosen type piezoelectric transformer or the like that cannot be used.
  • an insulation type piezoelectric transformer there exists a thing of the above-mentioned patent document 1, for example.
  • Patent Document 1 discloses a technique for improving insulation between an input region and an output region by providing an unpolarized region between a polarization region constituting an input region and a polarization region constituting an output region. Is disclosed. However, when an unpolarized region is provided in order to improve insulation as in the piezoelectric transformer described in Patent Document 1, there is a problem that the piezoelectric transformer becomes large. The present invention provides a technique that can cope with this problem.
  • FIG. 1 is a diagram showing a configuration of an electric field coupled wireless power transmission system to which an insulation type piezoelectric transformer of the present invention is applied.
  • FIG. 1 from the viewpoint of simplifying the illustration, the positions and number of electrodes (each high voltage electrode and each low voltage electrode) of the step-down transformer Tr are different from actual ones.
  • the electric field coupling type wireless power transmission system includes a power transmission device 100 and a power reception device 200.
  • the power transmission device 100 includes a power transmission circuit 110 and a pair of power transmission electrodes Eta and Etp (hereinafter, referred to as “power transmission side active electrode Eta” and “power transmission side passive electrode Etp” as appropriate).
  • the power transmission circuit 110 generates an alternating voltage having a predetermined frequency and applies it between the pair of power transmission electrodes Eta and Etp.
  • the pair of power transmission electrodes Eta and Etp constitute a capacitor C1.
  • the power receiving apparatus 200 receives a pair of power receiving electrodes Era and Erp (hereinafter referred to as “power receiving side active electrode Era” and “power receiving side passive electrode Erp” as appropriate) and an AC voltage induced between the pair of power receiving electrodes Era and Erp. It has a step-down transformer Tr that steps down and a load circuit 210 that receives the stepped-down AC voltage.
  • the load circuit 210 receives a reduced AC voltage and executes a predetermined function.
  • FIG. 2 is a diagram illustrating an example of a specific configuration of the power receiving device 200 illustrated in FIG.
  • the power receiving device 200 of this example includes the pair of power receiving electrodes Era and Erp, the step-down transformer Tr, and the load circuit 210 described above.
  • a coupling capacitance Caa occurs between the power transmission side active electrode Eta and the power reception side active electrode Era, and the power transmission side passive electrode Etp and the power reception side
  • a coupling capacitance Cpp is generated between the passive electrode Erp.
  • an alternating voltage is applied between the pair of power transmission electrodes Eta and Etp of the power transmission device 100, whereby the pair of power reception electrodes Era of the power reception device 200.
  • An AC voltage is induced between Erp.
  • electric power can be transmitted from the power transmission device 100 to the power reception device 200 in a state where the power transmission electrodes Eta and Etp and the power reception electrodes Era and Erp are not in contact with each other.
  • the pair of power receiving electrodes Era and Erp constitute a capacitor C2 which is a capacitance generated between the power receiving electrodes.
  • the step-down transformer Tr is composed of an insulating piezoelectric transformer. Details will be described later. In the following description, the step-down transformer Tr is referred to as an insulating piezoelectric transformer Tr.
  • the load circuit 210 includes a rectifier circuit REC, a regulator REG, and a load LD.
  • the rectifier circuit REC includes a plurality of diodes D1, D2, D3, D4, an inductor L3, and a capacitor C3.
  • the rectifier circuit REC converts an AC voltage applied between a pair of input terminals into a DC voltage, and between the input terminals of the regulator REG. Apply.
  • the regulator REG converts the DC voltage output from the rectifier circuit REC into a predetermined DC voltage and outputs it.
  • the load LD performs a predetermined function such as charging of the rechargeable battery using the DC voltage output from the regulator REG.
  • FIG. 3 is a diagram illustrating a configuration of the insulating piezoelectric transformer Tr according to the first embodiment.
  • This insulation type piezoelectric transformer Tr is a piezoelectric transformer configured using a longitudinal vibration mode of order 3, where the wavelength at the resonance frequency is ⁇ , and the length is 3 ⁇ / 2 (the length in the horizontal direction in FIG. 3). And a piezoelectric body PB having a width of less than ⁇ / 2 (length in the direction perpendicular to the paper surface in FIG. 3) and a thickness of less than ⁇ / 2 (length in the vertical direction of the paper surface in FIG. 3). .
  • the piezoelectric element body PB is formed using piezoelectric ceramics.
  • the piezoelectric body PB has a first high voltage part Hv1, a low voltage part Lv1, and a second high voltage part Hv2 in order along the length direction.
  • the low voltage part Lv1 has one polarization region Lv11.
  • the first high voltage part Hv1 has one polarization region Hv11.
  • the second high voltage part Hv2 has one polarization region Hv21.
  • the polarization region Hv11 of the first high voltage part Hv1, the polarization region Lv11 of the low voltage part Lv1, and the polarization region Hv21 of the second high voltage part Hv2 each have a length of ⁇ / 2. Accordingly, the lengths of the first high voltage part Hv1 and the second high voltage part Hv2 are ⁇ / 2, which are equal to each other.
  • a first low voltage electrode EL1 and a second low voltage electrode EL2 are provided at a pair of ends in the thickness direction of the piezoelectric body PB in the polarization region Lv11 of the low voltage portion Lv1.
  • a first high-voltage electrode EH1 and a second high-voltage electrode EH2 are provided at a pair of end portions in the length direction of the piezoelectric body PB.
  • the arrows shown in the blocks indicating the polarization region Lv11 of the low voltage portion Lv1, the polarization region Hv11 of the first high voltage portion Hv1, and the polarization region Hv21 of the second high voltage portion Hv2 are the polarization directions of the polarization regions. Indicates.
  • the insulation type piezoelectric transformer Tr of the present invention is a piezoelectric transformer configured using a longitudinal vibration mode of order n, and has a length of n ⁇ / 2, where ⁇ is a wavelength at a resonance frequency.
  • a piezoelectric body PB is provided.
  • the piezoelectric body PB has n polarization regions along the length direction. Each of the n polarization regions has a length of ⁇ / 2.
  • each polarization region expands and contracts in the length direction of the piezoelectric body PB according to changes in the magnitude and direction of the electric field applied to the piezoelectric body PB.
  • the polarization direction is set so that the expansion / contraction state of the n polarization regions is reversed between the even-numbered polarization region and the odd-numbered polarization region from one end side in the length direction of the piezoelectric body PB.
  • the first polarization region is “extended state”
  • the second polarization region is “contracted”
  • the third polarization region is “extended state”.
  • the polarization direction is set so that the “extended state” and the “contracted state” appear alternately in the fourth polarization region, such as “contracted state”.
  • each polarization region when an electric field is applied to the piezoelectric body PB (see FIG. 3.
  • the stress is shown as a sine wave, but when the sine wave in FIG. 3 is positive
  • the even-numbered polarization region and the odd-numbered polarization from one end side in the length direction of the piezoelectric body PB when negative, for example, leftward stress is generated), the even-numbered polarization region and the odd-numbered polarization from one end side in the length direction of the piezoelectric body PB.
  • the polarization direction of each polarization region is set so as to be opposite to the region (opposite direction).
  • the shape of the cross section perpendicular to the length direction of the piezoelectric body PB is a rectangle, but this shape is easy to manufacture and suitable for the appearance of the longitudinal vibration mode.
  • the cross-sectional shape of the piezoelectric body PB is not limited to this.
  • the cross-sectional shape of the piezoelectric body PB may be a circle, a triangle, or a pentagon or more polygon as long as vibration can be generated in the longitudinal vibration mode in the length direction of the piezoelectric body PB.
  • it can suppress that an unnecessary vibration mode arises by making the width
  • the polarization direction of the polarization region constituting the high-voltage part is parallel to the length direction of the piezoelectric body PB and the length direction of the piezoelectric body PB.
  • the polarization direction of the even-numbered polarization region and the polarization direction of the odd-numbered polarization region from one end side are set to be opposite to each other. Accordingly, the polarization directions of adjacent polarization regions are opposite to each other.
  • the polarization direction of the polarization region constituting the high voltage part is: (1) In the odd-numbered polarization region from one end side in the length direction of the piezoelectric body PB, they are in the same direction. (2) In the even-numbered polarization region from one end side in the length direction of the piezoelectric body PB, they are in the same direction, and (3) The odd-numbered polarization regions according to (1) and the even-numbered polarization regions according to (2) are set to be opposite to each other.
  • the polarization direction of the polarization region constituting the low voltage portion is parallel to the thickness direction of the piezoelectric body PB, and when there are two or more polarization regions, the length direction of the piezoelectric body PB
  • the even-numbered polarization region and the odd-numbered polarization region are set in opposite directions from one end side. This is due to the following reason. That is, the expansion / contraction state in the length direction of the piezoelectric body PB is reversed between adjacent polarization regions of the piezoelectric body PB, and the expansion / contraction state in the thickness direction of the piezoelectric body PB is also reversed. is there.
  • the polarization directions of adjacent polarization regions are opposite to each other in the thickness direction of the piezoelectric body PB so that the voltages generated by the piezoelectric effect in the thickness direction have the same phase. Is set.
  • the polarization direction of the polarization region constituting the low voltage part is (when two or more polarization regions exist) (1) In the odd-numbered polarization region from one end side in the length direction of the piezoelectric body PB, they are in the same direction. (2) In the even-numbered polarization region from one end side in the length direction of the piezoelectric body PB, they are in the same direction, and (3) The odd-numbered polarization region according to (1) and the even-numbered polarization region according to (2) are set to be opposite to each other.
  • the polarization direction of the polarization region Lv11 constituting the low voltage portion Lv1 is parallel to the thickness direction of the piezoelectric body PB.
  • the polarization directions of the polarization region Hv11 constituting the first high voltage part Hv1 and the polarization region Hv21 constituting the second high voltage part Hv2 are parallel to the length direction of the piezoelectric body PB. Further, the polarization region Hv11 constituting the first high voltage part Hv1 and the polarization region Hv21 constituting the second high voltage part Hv2 are first and third from one end side (left end side) in the length direction of the piezoelectric body PB. In other words, both are odd-numbered polarization regions. Therefore, the polarization direction of the polarization region Hv11 and the polarization direction of the polarization region Hv21 are set to the same direction.
  • the reduced AC voltage V2 is supplied to the first high-voltage electrode EH1. It is output between the first low voltage electrode EL1 and the second low voltage electrode EL2.
  • the low voltage electrode EL1, the second low voltage electrode EL2, and the high voltage electrode EH1 are physically separated without providing an unpolarized region. Therefore, it is possible to improve the insulation while suppressing the increase in size of the insulating piezoelectric transformer Tr.
  • applying an AC voltage between the first high-voltage electrode EH1 and the second high-voltage electrode EH2 that are not grounded applies a voltage of + V to the first high-voltage electrode EH1, (2) A voltage of ⁇ V is applied to the high voltage electrode EH2. Since the first low-voltage electrode EL1 and the second low-voltage electrode EL2 are floating electrodes insulated from the first high-voltage electrode EH1 and the second high-voltage electrode EH2, the first high-voltage electrode EL2 When an AC voltage is applied between the EH1 and the second high voltage electrode EH2, the low voltage portion Lv1 is bypassed via the first low voltage electrode EL1 and the second low voltage electrode EL2 (see FIG.
  • the electric field E ⁇ b> 1 in the same direction is generated in the first high voltage part Hv ⁇ b> 1 and the second high voltage part Hv ⁇ b> 2.
  • the direction of the electric field E1 changes according to the periodic change of the AC voltage applied between the first high voltage electrode EH1 and the second high voltage electrode EH2
  • the first high voltage portion Hv1 (polarization region Hv11).
  • the second high voltage portion Hv2 (polarization region Hv21) expand and contract in the length direction according to the periodic change of the AC voltage
  • the first low voltage portion Lv1 (polarization region Lv11) also extends in the length direction along with the expansion and contraction. It is forcibly expanded and contracted.
  • the first low voltage part Lv1 (polarization region Lv11) is forcibly expanded and contracted in the thickness direction, and the first low voltage part Lv1 (polarization region Lv11) is generated by the piezoelectric effect due to the expansion and contraction in the thickness direction.
  • AC voltage is generated in the thickness direction, and the generated AC voltage is output between the first low voltage electrode EL1 and the second low voltage electrode EL2.
  • the length of the first high voltage portion Hv1 and the length of the second high voltage portion Hv2 are equal to each other, an alternating current is generated between the first high voltage electrode EH1 and the second high voltage electrode EH2.
  • the input AC voltage V1 is reduced in the low voltage portion Lv1 located between the first high voltage portion Hv1 and the second high voltage portion Hv2, that is, in the longitudinal center of the piezoelectric body PB.
  • the potential induced by the electric field E1 is 0 (zero). Therefore, the insulation between the input and output of the insulation type piezoelectric transformer Tr can be improved without providing an unpolarized region.
  • the piezoelectric transformer of the present embodiment does not have an unpolarized region that does not contribute to power conversion. For this reason, the coupling coefficient and the power conversion efficiency are unlikely to decrease.
  • the high voltage portion and the low voltage portion are arranged alternately, that is, dispersedly in the length direction of the piezoelectric body PB. Further, about half of the plurality of polarization regions constituting the piezoelectric body PB is a polarization region constituting the high voltage portion.
  • the piezoelectric transformer of this embodiment is an insulating piezoelectric transformer in which the high-voltage electrode and the low-voltage electrode are physically separated as described above. Therefore, it is possible to suppress transmission of noise such as fluctuations in the reference potential between the primary side and the secondary side.
  • the insulated piezoelectric transformer Tr of this embodiment is an insulated piezoelectric transformer that uses a longitudinal vibration mode of order n (n is an integer of 3 or more).
  • the insulated piezoelectric transformer Tr includes a piezoelectric body PB having a length of n ⁇ / 2 where ⁇ is a wavelength at a resonance frequency.
  • the order n of the longitudinal vibration mode is 3, and the piezoelectric body PB sequentially passes the first high voltage part Hv1, the low voltage part Lv1, and the second high voltage part Hv2 along the length direction.
  • the low voltage portion Lv1 has a polarization region Lv11 having a length of ⁇ / 2, and the first high voltage portion Hv1 and the second high voltage portion Hv2 are each a polarization region Hv11 having a length of ⁇ / 2, Hv21.
  • the polarization direction of the polarization region Lv11 constituting the low voltage part Lv1 is a direction parallel to the thickness direction of the piezoelectric body PB.
  • the polarization directions of the polarization regions Hv11 and Hv12 constituting the first high voltage part Hv1 and the second high voltage part Hv2 are parallel to the length direction of the piezoelectric body PB and are the same direction.
  • a first low voltage electrode EL1 and a second low voltage electrode EL2 are provided at a pair of end portions in the thickness direction of the piezoelectric body PB of the low voltage portion Lv1.
  • a first high-voltage electrode EH1 and a second high-voltage electrode EH2 are provided at a pair of ends in the length direction of the piezoelectric body PB.
  • the first low voltage electrode EL1 and the second low voltage electrode EL2, and the first high voltage electrode EH1 and the second high voltage electrode EH2 are physically separated.
  • the insulation type piezoelectric transformer Tr of the present embodiment an unpolarized region is not provided, and the first low voltage electrode EL1, the second low voltage electrode EL2, the first high voltage electrode EH1, and the second high voltage electrode EH2. Are physically separated. Therefore, it is possible to improve insulation while suppressing the increase in size of the insulation-type piezoelectric transformer.
  • the number of polarization regions constituting the first high voltage part Hv1 and the number of polarization regions constituting the second high voltage part Hv2 are the same, and the length of the first high voltage part Hv1 and the second high voltage part Hv1 are the same.
  • the length of the voltage part Hv2 is equal.
  • the piezoelectric body PB has a width of less than ⁇ / 2 and a thickness of less than ⁇ / 2. Thereby, it can suppress by generating an unnecessary vibration mode.
  • the piezoelectric transformer is applied to an electric field coupling type power receiving device. Accordingly, the electric field coupling type power receiving device can be reduced in size and height.
  • the insulation type piezoelectric transformer Tr is configured using a longitudinal vibration mode of order 4.
  • FIG. 4 is a diagram illustrating a configuration of an insulating piezoelectric transformer according to the second embodiment.
  • the insulated piezoelectric transformer Tr includes a piezoelectric body PB having a length of 4 ⁇ / 2, a width of less than ⁇ / 2, and a thickness of less than ⁇ / 2, where ⁇ is a wavelength at a resonance frequency.
  • the piezoelectric element body PB is formed using piezoelectric ceramics.
  • the piezoelectric body PB has a first high voltage part Hv1, a low voltage part Lv1, and a second high voltage part Hv2 in order along the length direction.
  • the low voltage portion Lv1 has two polarization regions Lv11 and Lv12 arranged along the length direction of the piezoelectric body PB.
  • the first high voltage part Hv1 has one polarization region Hv11.
  • the second high voltage part Hv2 has one polarization region Hv21.
  • the polarization region Hv11 of the first high voltage part Hv1, the polarization region Lv11 of the low voltage part Lv1, the polarization region Lv12 of the low voltage part Lv1, and the polarization region Hv21 of the second high voltage part Hv2 each have a length of ⁇ / 2.
  • the lengths of the first high voltage part Hv1 and the second high voltage part Hv2 are ⁇ / 2, which are equal to each other.
  • the polarization directions of the polarization region Lv11 and the polarization region Lv12 of the low voltage part Lv1 are parallel to the thickness direction of the piezoelectric body PB.
  • the polarization region Lv11 is the second or even-numbered polarization region from one end side (left end side) in the length direction of the piezoelectric body PB
  • the polarization region Lv12 is the length direction of the piezoelectric body PB. Since it is the third or odd-numbered polarization region from one end side, the polarization region Lv11 and the polarization region Lv12 are polarized in opposite directions.
  • the polarization directions of the polarization region Hv11 of the first high voltage part Hv1 and the polarization region Hv21 of the second high voltage part Hv2 are parallel to the length direction of the piezoelectric body PB.
  • the polarization region Hv11 of the first high-voltage part Hv1 is the first or odd-numbered polarization region from one end side (left end side) in the length direction of the piezoelectric body PB
  • the first polarization region Hv21 is the fourth or even-numbered polarization region from the one end side in the length direction of the piezoelectric body PB. Therefore, the polarization region Hv11 of the first high voltage part Hv1 and the polarization region Hv21 of the second high voltage part Hv2 are polarized in opposite directions.
  • a first low voltage electrode EL1 and a second low voltage electrode EL2 are provided at a pair of ends in the thickness direction of the piezoelectric body PB, respectively. ing.
  • the first low voltage electrode EL1 in the polarization region Lv11 and the first low voltage electrode EL1 in the polarization region Lv12 are electrically connected to each other, and the second low voltage electrode EL2 in the polarization region Lv11 and the second low voltage electrode EL2 in the polarization region Lv12.
  • the low voltage electrode EL2 is electrically connected to each other.
  • the first low voltage electrode EL1 in the polarization region Lv11 and the first low voltage electrode EL1 in the polarization region Lv12, and the second low voltage electrode EL2 in the polarization region Lv11 and the second low voltage electrode EL2 in the polarization region Lv12 Are arranged so as to be electrically connected in a mounted state on a substrate, for example.
  • the first low voltage electrode EL1 and the second low voltage electrode EL2 are provided, and the electrical connection is made afterwards. This is because the polarization process can be performed so that the polarization directions are individually opposite to the polarization region Lv11 and the polarization region Lv12.
  • a first high-voltage electrode EH1 and a second high-voltage electrode EH2 are provided at a pair of lengthwise ends of the piezoelectric body PB.
  • the reduced AC voltage V2 is reduced to a low voltage.
  • the first low voltage electrode EL1 and the second low voltage electrode EL2 in the polarization region Lv11 of the portion Lv1 and between the first low voltage electrode EL1 and the second low voltage electrode EL2 in the polarization region Lv12. Will be output.
  • the first low voltage electrode EL1 and the second low voltage electrode EL2 are physically connected to the first high voltage electrode EH1 and the second high voltage electrode EH2. Separated floating electrodes. Therefore, as in the first embodiment, it is possible to ensure insulation while suppressing the increase in size of the insulating piezoelectric transformer. Further, since the length of the first high voltage part Hv1 and the length of the second high voltage part Hv2 are equal to each other, the insulation between the input and output can be improved for the same reason as in the first embodiment.
  • the order n of the longitudinal vibration mode is 4, and the low voltage portion Lv1 is two regions Lv11 arranged along the length direction of the piezoelectric body PB. , Lv12, and the two regions Lv11 and Lv12 each have a length of ⁇ / 2, and the first low voltage electrode EL1 and the second low voltage electrode EL2 include two regions Lv11 and Lv12. Of each. Therefore, it is possible to increase the interelectrode capacitance as the entire low voltage portion Lv1 and increase the output power.
  • the insulation type piezoelectric transformer Tr is configured using a longitudinal vibration mode of order 5.
  • FIG. 5 is a diagram illustrating a configuration of the insulating piezoelectric transformer Tr according to the third embodiment.
  • the insulated piezoelectric transformer Tr of this embodiment includes a piezoelectric body PB having a length of 5 ⁇ / 2, a width of less than ⁇ / 2, and a thickness of less than ⁇ / 2, where ⁇ is a wavelength at a resonance frequency.
  • the piezoelectric element body PB is formed using piezoelectric ceramics.
  • the piezoelectric body PB has a first high voltage part Hv1, a low voltage part Lv1, and a second high voltage part Hv2 in order along the length direction.
  • the low voltage part Lv1 has a polarization region Lv11.
  • the first high voltage part Hv1 has two polarization regions Hv11 and Hv12 arranged along the length direction of the piezoelectric body PB.
  • the second high voltage unit Hv2 has two polarization regions Hv21 and Hv22 arranged along the length direction of the piezoelectric body PB.
  • the polarization regions Hv11 and Hv12 of the first high voltage portion Hv1, the polarization region Lv11 of the low voltage portion Lv1, and the polarization regions Hv21 and Hv22 of the second high voltage portion Hv2 each have a length of ⁇ / 2. Accordingly, the lengths of the first high voltage part Hv1 and the second high voltage part Hv2 are ⁇ / 2, which are equal to each other.
  • the polarization direction of the polarization region Lv11 of the low voltage part Lv1 is a direction parallel to the thickness direction of the piezoelectric body PB.
  • the polarization directions of the polarization regions Hv11 and Hv12 of the first high voltage portion Hv1 and the polarization regions Hv21 and Hv22 of the second high voltage portion Hv2 are parallel to the length direction of the piezoelectric body PB.
  • the polarization region Hv11 of the first high voltage part Hv1 and the polarization region Hv22 of the second high voltage part Hv2 are the first and fifth from the one end side (left end side) in the length direction of the piezoelectric body PB, respectively. That is, it is an odd-numbered polarization region and is polarized in the same direction.
  • the polarization region Hv12 of the first high-voltage part Hv1 and the polarization region Hv21 of the second high-voltage part Hv2 are the second and fourth, that is, even-numbered polarization regions from the one end side in the length direction of the piezoelectric body PB. Yes, they are polarized in the same direction.
  • the polarization region Hv11 of the first high voltage unit Hv1 and the polarization region Hv22 of the second high voltage unit Hv2 and the polarization region Hv12 of the first high voltage unit Hv1 and the polarization region Hv21 of the second high voltage unit Hv2 are odd numbers. Since they are in the relationship between the number and the even number, they are polarized in opposite directions.
  • a first low voltage electrode EL1 and a second low voltage electrode EL2 are provided at a pair of ends in the thickness direction of the piezoelectric body PB in the polarization region Lv11 of the low voltage portion Lv1.
  • a first high-voltage electrode EH1 is provided on one end surface (on the first high voltage portion Hv1 side) in the length direction of the piezoelectric body PB, and the other end (second height in the length direction of the piezoelectric body PB).
  • a second high voltage electrode EH2 is provided on the end face of the voltage part Hv2 side.
  • the third high voltage electrode EH3 is provided between the polarization region Hv11 and the polarization region Hv12 of the first high voltage part Hv1, and the polarization region Hv21 and the polarization region of the second high voltage part Hv2 are provided.
  • a fourth high-voltage electrode EH4 is provided between the Hv22.
  • the third high-voltage electrode EH3 is an electrode used when performing polarization treatment on the polarization region Hv11 and the polarization region Hv12 of the first high-voltage part Hv1 when the insulating piezoelectric transformer Tr is manufactured.
  • the fourth high-voltage electrode EH4 is an electrode that is used when performing polarization treatment on the polarization region Hv21 and the polarization region Hv22 of the second high-voltage part Hv2 when the insulating piezoelectric transformer Tr is manufactured.
  • the first low-voltage electrode EL1 and Via the second low-voltage electrode EL2 bypassing the low-voltage part Lv1 (shown as “short through” in FIG. 5)
  • the electric field in the same direction is applied to the first high-voltage part Hv1 and the second high-voltage part Hv2. Is generated.
  • the stepped-down AC voltage V2 is output between the first low voltage electrode EL1 and the second low voltage electrode EL2.
  • the first low voltage electrode EL1 and the second low voltage electrode EL2 are physically connected to the first high voltage electrode EH1 and the second high voltage electrode EH2. Separated floating electrodes. Therefore, as in the first embodiment, it is possible to ensure insulation while suppressing the increase in size of the insulating piezoelectric transformer. Further, since the length of the first high voltage part Hv1 and the length of the second high voltage part Hv2 are equal to each other, the insulation between the input and output can be improved for the same reason as in the first embodiment.
  • the order n of the longitudinal vibration mode is 5, and the first high voltage portion Hv1 has two regions Hv11 and Hv12 arranged along the length direction.
  • the second high voltage unit Hv2 includes two regions Hv21 and Hv22 arranged along the length direction.
  • the regions Hv11, Hv12, Hv21, and Hv22 each have a length of ⁇ / 2.
  • the insulating piezoelectric transformer Tr is configured using a longitudinal vibration mode of order 6.
  • FIG. 6 is a diagram illustrating a configuration of an insulating piezoelectric transformer Tr according to the fourth embodiment.
  • the insulated piezoelectric transformer Tr of this embodiment includes a piezoelectric body PB having a length of 6 ⁇ / 2, a width of less than ⁇ / 2, and a thickness of less than ⁇ / 2, where ⁇ is a wavelength at a resonance frequency.
  • the piezoelectric element body PB is formed using piezoelectric ceramics.
  • the piezoelectric body PB has a first high voltage part Hv1, a low voltage part Lv1, and a second high voltage part Hv2 in order along the length direction.
  • the low voltage part Lv1 has two polarization regions Lv11 and Lv12 arranged along the length direction of the piezoelectric body PB.
  • the first high voltage part Hv1 has two polarization regions Hv11 and Hv12 arranged along the length direction of the piezoelectric body PB.
  • the second high voltage unit Hv2 has two polarization regions Hv21 and Hv22 arranged along the length direction of the piezoelectric body PB.
  • the polarization region Hv1 of the first high voltage part Hv1, the polarization regions Lv11 and Lv12 of the low voltage part Lv1, and the polarization regions Hv21 and Hv22 of the second high voltage part Hv2 each have a length of ⁇ / 2. Therefore, the lengths of the first high voltage part Hv1 and the second high voltage part Hv2 are 2 ⁇ / 2, which are equal to each other.
  • the polarization directions of the polarization regions Lv11 and Lv12 of the low voltage part Lv1 are parallel to the thickness direction of the piezoelectric body PB.
  • the polarization region Lv11 is the third or odd-numbered polarization region from one end side (left end side) in the length direction of the piezoelectric body PB
  • the polarization region Lv12 is the length direction of the piezoelectric body PB. Since it is the fourth or even-numbered polarization region from one end side, the polarization region Lv11 and the polarization region Lv12 are polarized in opposite directions.
  • the polarization directions of the polarization regions Hv11 and Hv12 of the first high voltage portion Hv1 and the polarization regions Hv21 and Hv22 of the second high voltage portion Hv2 are parallel to the length direction of the piezoelectric body PB.
  • the polarization region Hv11 of the first high voltage part Hv1 and the polarization region Hv21 of the second high voltage part Hv2 are the first and fifth from the one end side (left end side) in the length direction of the piezoelectric body PB, respectively. That is, it is an odd-numbered polarization region and is polarized in the same direction.
  • the polarization region Hv12 of the first high-voltage part Hv1 and the polarization region Hv22 of the second high-voltage part Hv2 are the second and sixth, that is, even-numbered polarization regions from the one end side in the length direction of the piezoelectric body PB. Yes, they are polarized in the same direction.
  • the polarization region Hv11 of the first high voltage unit Hv1 and the polarization region Hv21 of the second high voltage unit Hv2 and the polarization region Hv12 of the first high voltage unit Hv1 and the polarization region Hv22 of the second high voltage unit Hv2 are odd numbers. Since they are in the relationship between the number and the even number, they are polarized in opposite directions.
  • a first low voltage electrode EL1 and a second low voltage electrode EL2 are provided at a pair of ends in the thickness direction of the piezoelectric body PB, respectively. ing.
  • the first low voltage electrode EL1 in the polarization region Lv11 and the first low voltage electrode EL1 in the polarization region Lv12 are electrically connected to each other, and the second low voltage electrode EL2 in the polarization region Lv11 and the second low voltage electrode EL2 in the polarization region Lv12.
  • the low voltage electrode EL2 is electrically connected to each other.
  • the first low voltage electrode EL1 in the polarization region Lv11 and the first low voltage electrode EL1 in the polarization region Lv12, and the second low voltage electrode EL2 in the polarization region Lv11 and the second low voltage electrode EL2 in the polarization region Lv12 are arranged so as to be electrically connected in a mounted state on a substrate, for example.
  • the first low voltage electrode EL1 and the second low voltage electrode EL2 are provided, and the electrical connection is made afterwards. This is because the polarization process can be performed so that the polarization directions are individually opposite to the polarization region Lv11 and the polarization region Lv12.
  • a first high-voltage electrode EH1 is provided on one end surface (on the first high voltage portion Hv1 side) in the length direction of the piezoelectric body PB, and the other end (second height in the length direction of the piezoelectric body PB).
  • a second high voltage electrode EH2 is provided on the end face of the voltage part Hv2 side.
  • the length of the first high voltage part Hv1 and the length of the second high voltage part Hv2 are 2 ⁇ / 2, which are equal to each other.
  • the third high voltage electrode EH3 is provided between the polarization region Hv11 and the polarization region Hv12 of the first high voltage portion Hv1, and the polarization region Hv21 and the polarization region of the second high voltage portion Hv2 are provided.
  • a fourth high-voltage electrode EH4 is provided between the Hv22.
  • the third high-voltage electrode EH3 is an electrode used when performing polarization treatment on the polarization region Hv11 and the polarization region Hv12 of the first high-voltage part Hv1 when the insulating piezoelectric transformer Tr is manufactured.
  • the fourth high-voltage electrode EH4 is an electrode used when performing polarization treatment on the polarization region Hv21 and the polarization region Hv22 of the second high-voltage part Hv2 when manufacturing the insulating piezoelectric transformer Tr.
  • the insulation-type piezoelectric transformer Tr of the present embodiment when an AC voltage is input (applied) between the first high-voltage electrode EH1 and the second high-voltage electrode EH2, the first low-voltage electrode EL1. And the second low voltage electrode EL2 (bypassing the low voltage portion Lv1 (shown as “short-circuit penetration” in FIG. 6)), the first high voltage portion Hv1 and the second high voltage portion Hv2 are arranged in the same direction. An electric field is generated.
  • the stepped-down AC voltage V2 is output between the first low voltage electrode EL1 and the second low voltage electrode EL2.
  • the reduced AC voltage V2 is applied.
  • the first low-voltage electrode EL1 and the second low-voltage electrode EL2 are between the first low-voltage electrode EL1 and the second low-voltage electrode EL2 in the polarization region Lv11 of the low-voltage part Lv1, and the first low-voltage electrode EL1 and the second low-voltage electrode in the polarization region Lv12. It is output between EL2.
  • the stretched state (stress direction) of the polarization region Lv11 and the stretched state (stress direction) of the polarization region Lv12 are opposite to each other.
  • the polarization direction of the polarization region Lv11 and the polarization direction of the polarization region Lv12 are opposite to each other. Therefore, as a result, the phase of the AC voltage output between the first low-voltage electrode EL1 and the second low-voltage electrode EL2 in the polarization region Lv11 and each first low-voltage electrode in the polarization region Lv12
  • the phase of the AC voltage output between EL1 and the second low-voltage electrode EL2 matches.
  • the first low voltage electrode EL1 and the second low voltage electrode EL2 are physically connected to the first high voltage electrode EH1 and the second high voltage electrode EH2. Separated floating electrodes. Therefore, as in the first embodiment, it is possible to ensure insulation while suppressing the increase in size of the insulating piezoelectric transformer. Further, since the length of the first high voltage portion Hv1 and the length of the second high voltage portion Hv2 are equal to each other, the effect that the input / output can be insulated without providing an unpolarized region is obtained as in the first embodiment. .
  • the order n of the longitudinal vibration mode is 6, and the low voltage portion Lv1 is two regions Lv11 arranged along the length direction of the piezoelectric body PB. , Lv12, and the two regions Lv11 and Lv12 each have a length of ⁇ / 2, and the first low voltage electrode EL1 and the second low voltage electrode EL2 include two regions Lv11 and Lv12. Of each. Therefore, it is possible to increase the interelectrode capacitance as the entire low voltage portion Lv1 and increase the output power.
  • the order n of the longitudinal vibration mode is 6, and the first high voltage portion Hv1 has two regions Hv11 and Hv12 arranged along the length direction.
  • the second high voltage unit Hv2 includes two regions Hv21 and Hv22 arranged along the length direction.
  • the regions Hv11, Hv12, Hv21, and Hv22 each have a length of ⁇ / 2.
  • the first high-voltage electrode EH1 and the second high-voltage electrode EH2 are the end portions in the length direction of the piezoelectric body PB (the end surface on the first high-voltage portion Hv1 side and the second high-voltage portion).
  • the first high voltage electrode EH1 and the second high voltage electrode EH2 are the first high voltage portion Hv1 and the second high voltage portion Hv2. Is provided on the side surface.
  • FIG. 7 is a diagram showing an electrode structure of an insulating piezoelectric transformer Tr according to a modification of the first embodiment.
  • FIG. 7 shows an example in the case of the second high voltage electrode EH2.
  • the high voltage electrode is formed in a laminated form inside the piezoelectric body PB, and is drawn out and exposed to the side surface of the piezoelectric transformer Tr.
  • a plurality of sheet-like electrodes EHb are disposed at the end in the length direction of the piezoelectric body PB. Embedded in the width direction at predetermined intervals. Both end portions in the thickness direction of the piezoelectric element body PB in these sheet-like electrodes EHb reach a pair of opposing end faces (side faces) of the piezoelectric element body PB, and these sheet-like electrodes EHb are formed on the side faces.
  • a surface electrode EHa is formed to connect the two end portions.
  • FIG. 8 is a perspective view of an insulating piezoelectric transformer according to a modification of the first embodiment. That is, FIG. 8 is a perspective view of an insulating piezoelectric transformer obtained by applying the electrode structure shown in FIG. 7 to the insulating piezoelectric transformer of the first embodiment.
  • FIG. 8A shows a state where the surface electrode EHa is not formed
  • FIG. 8B shows a state after the surface electrode EHa is formed.
  • the first high-voltage electrode EH1 and the second high-voltage electrode EH2 are respectively provided at the end portions in the length direction of the piezoelectric body PB.
  • a plurality of sheet-like electrodes EHb are embedded and formed at predetermined intervals in the width direction of the piezoelectric body PB, and surface electrodes EHa are formed on the side surfaces of the portions to connect between both ends of the sheet-like electrodes EHb. ing.
  • the first low-voltage electrode EL1 and the second low-voltage electrode EL2 of the low-voltage part Lv1 also adopt a structure different from that of the first embodiment.
  • the first low-voltage electrode EL1 of the low-voltage part Lv1 includes a surface electrode ELa1 formed on the end surface (side surface) in the thickness direction of the piezoelectric body PB,
  • the low voltage portion Lv1 has a plurality of sheet-like electrodes ELb1 embedded and formed at predetermined intervals in the width direction of the piezoelectric body PB and having one end connected to the surface electrode ELa1.
  • the second low voltage electrode EL2 of the low voltage portion Lv1 includes a surface electrode ELa2 formed on an end face (side surface) facing the surface electrode ELa1, and a width direction of the piezoelectric body PB inside the low voltage portion Lv1. And a plurality of sheet-like electrodes ELb2 having one end connected to the surface electrode ELa2. With such a configuration, it is possible to increase the capacity between the first low-voltage electrode EL1 and the second low-voltage electrode EL2 and increase the power that can be extracted.
  • the surface electrode EHa constituting the first high voltage electrode EH1 and the second high voltage electrode EH2 is formed on the same side surface as the side surface on which the first low voltage electrode EL1 and the second low voltage electrode EL2 are provided. Yes.
  • FIG. 9 is a perspective view of an insulating piezoelectric transformer according to a modification of the second embodiment.
  • 9 is a perspective view of an insulating piezoelectric transformer obtained by applying the electrode structure shown in FIG. 7 to the insulating piezoelectric transformer of the second embodiment.
  • the structures of the first high-voltage electrode EH1, the second high-voltage electrode EH2, the first low-voltage electrode EL1, and the second low-voltage electrode EL2 are the same as in the modification of the first embodiment, and the description thereof is omitted. .
  • FIG. 10 is a perspective view of an insulating piezoelectric transformer according to a modification of the third embodiment. That is, FIG. 10 is a perspective view of an insulating piezoelectric transformer obtained by applying the electrode structure shown in FIG. 7 to the insulating piezoelectric transformer of the third embodiment.
  • the structure of the first high-voltage electrode EH1, the second high-voltage electrode EH2, the first low-voltage electrode EL1, and the second low-voltage electrode EL2 is the same as that of the modification of the first embodiment.
  • the structure of the third high voltage electrode EH3 and the fourth high voltage electrode EH4 is the same as the structure of the first high voltage electrode EH1 (second high voltage electrode EH2).
  • FIG. 11 is a perspective view of an insulating piezoelectric transformer according to a modification of the fourth embodiment. That is, FIG. 11 is a perspective view of an insulating piezoelectric transformer obtained by applying the electrode structure shown in FIG. 7 to the insulating piezoelectric transformer of the fourth embodiment.
  • the structure of the first high-voltage electrode EH1, the second high-voltage electrode EH2, the first low-voltage electrode EL1, and the second low-voltage electrode EL2 is the same as that of the modification of the first embodiment.
  • the structure of the third high voltage electrode EH3 and the fourth high voltage electrode EH4 is the same as the structure of the first high voltage electrode EH1 (second high voltage electrode EH2).
  • FIG. 12 is a diagram illustrating a mounting example of an insulation type piezoelectric transformer according to a modification of the third embodiment illustrated in FIG. 10.
  • the insulating piezoelectric transformer Tr is connected to the fixed frame B1 via the flexible substrate F1.
  • the fixing frame B1 is provided with a mounting hole Bh into which the insulating piezoelectric transformer Tr can be fitted.
  • the flexible substrate F1 is disposed along the longitudinal edge of the attachment hole Bh.
  • the insulated piezoelectric transformer is disposed in the mounting hole Bh of the fixed frame B1, and in this state, the surface electrode EHa and the first low voltage electrode EL1 of the first high voltage electrode EH1 and the second high voltage electrode EH2 As shown in FIG. 13, the surface electrodes ELa1 and ELa2 of the second low-voltage electrode EL2 are respectively joined to the conductive pattern (not shown) formed on the flexible substrate F1 by the solder X1. In place of the solder X1, a conductive adhesive may be used.
  • the same mounting structure as the mounting example of the insulating piezoelectric transformer of the modification of the third embodiment described above can be applied to the insulating piezoelectric transformer of the modification of the first, second, and fourth embodiments.
  • the insulation type piezoelectric transformer Tr is configured using a longitudinal vibration mode of order 4.
  • FIG. 14 is a diagram illustrating a configuration of an insulating piezoelectric transformer Tr according to the fifth embodiment.
  • the insulated piezoelectric transformer Tr of this embodiment includes a piezoelectric body PB having a length of 4 ⁇ / 2, a width of less than ⁇ / 2, and a thickness of less than ⁇ / 2, where ⁇ is a wavelength at a resonance frequency.
  • the piezoelectric element body PB is formed using piezoelectric ceramics.
  • the piezoelectric body PB has a first high voltage part Hv1, a low voltage part Lv1, and a second high voltage part Hv2 in order along the length direction.
  • the low voltage part Lv1 has one polarization region Lv11.
  • the first high voltage unit Hv1 has two polarization regions Hv11 and Hv12 arranged along the length direction of the piezoelectric body PB.
  • the second high voltage part Hv2 has one polarization region Hv21.
  • the polarization regions Hv11 and Hv12 of the first high voltage portion Hv1, the polarization region Lv11 of the low voltage portion Lv1, and the polarization region Hv21 of the second high voltage portion Hv2 each have a length of ⁇ / 2.
  • the polarization direction of the polarization region Lv11 of the low voltage part Lv1 is a direction parallel to the thickness direction of the piezoelectric body PB.
  • the polarization directions of the polarization regions Hv11 and Hv12 of the first high voltage portion Hv1 and the polarization region Hv21 of the second high voltage portion Hv2 are parallel to the length direction of the piezoelectric body PB.
  • the polarization region Hv11 of the first high-voltage part Hv1 is the first, that is, odd-numbered polarization region from one end side (left end side) in the length direction of the piezoelectric body PB.
  • the polarization region Hv12 of the first high voltage part Hv1 and the polarization region Hv21 of the second high voltage part Hv2 are second and fourth from the one end side in the length direction of the piezoelectric body PB, that is, even numbers.
  • the polarization region Hv12 of the first high voltage part Hv1 and the polarization region Hv21 of the second high voltage part Hv2 are polarized in the same direction.
  • these regions and the polarization region Hv11 of the first high voltage part Hv1 are polarized in the opposite directions.
  • a first low voltage electrode EL1 and a second low voltage electrode EL2 are provided at a pair of ends in the thickness direction of the piezoelectric body PB in the polarization region Lv11 of the low voltage portion Lv1.
  • a first high-voltage electrode EH1 and a second high-voltage electrode EH2 are provided at a pair of end portions in the length direction of the piezoelectric body PB.
  • the third high voltage electrode EH3 is provided between the polarization region Hv11 and the polarization region Hv12 of the first high voltage unit Hv1.
  • the third high-voltage electrode EH3 is an electrode used when performing polarization treatment on the polarization region Hv11 and the polarization region Hv12 of the first high-voltage part Hv1 when the insulating piezoelectric transformer Tr is manufactured.
  • the reduced AC voltage V2 is reduced to the first low voltage.
  • the voltage is output between the voltage electrode EL1 and the second low voltage electrode EL2.
  • the first low voltage electrode EL1 and the second low voltage electrode EL2 are physically connected to the first high voltage electrode EH1 and the second high voltage electrode EH2. Separated floating electrodes. Therefore, as in the first embodiment, it is possible to ensure insulation while suppressing the increase in size of the insulating piezoelectric transformer.
  • the first low voltage electrode EL1 and the second low voltage electrode EL2 are different from the first to fourth embodiments. In this case, a fluctuation due to a high voltage component input between the first high voltage electrode EH1 and the second high voltage electrode EH2 appears. However, the high voltage component appearing on the first low voltage electrode EL1 and the high voltage component appearing on the second low voltage electrode EL2 have the same magnitude.
  • a potential difference due to the high voltage component does not occur between the first low voltage electrode EL1 and the second low voltage electrode EL2, and only the voltage generated by the piezoelectric effect in the polarization region Lv11 of the low voltage portion Lv1 is the first voltage.
  • the signal is output from between the first low voltage electrode EL1 and the second low voltage electrode EL2.
  • the insulating piezoelectric transformer Tr is configured using a longitudinal vibration mode of order 7.
  • FIG. 15 is a diagram illustrating a configuration of an insulating piezoelectric transformer Tr according to the sixth embodiment.
  • the insulated piezoelectric transformer Tr of this embodiment includes a piezoelectric body PB having a length of 7 ⁇ / 2, a width of less than ⁇ / 2, and a thickness of less than ⁇ / 2, where ⁇ is a wavelength at a resonance frequency.
  • the piezoelectric element body PB is formed using piezoelectric ceramics.
  • the piezoelectric body PB has a first high voltage part Hv1, a low voltage part Lv1, and a second high voltage part Hv2 in this order along the length direction.
  • the low voltage portion Lv1 has three polarization regions Lv11, Lv12, and Lv13 arranged along the length direction of the piezoelectric body PB.
  • the first high voltage part Hv1 has three polarization regions Hv11, Hv12, and Hv13 arranged along the length direction of the piezoelectric body PB.
  • the second high voltage part Hv2 has one polarization region Hv21.
  • the polarization regions Hv11, Hv12, Hv13 of the first high voltage portion Hv1, the polarization regions Lv11, Lv12, Lv13 of the low voltage portion Lv1, and the polarization region Hv21 of the second high voltage portion Hv2 each have a length of ⁇ / 2. .
  • the polarization direction of the polarization regions Lv11, Lv12, Lv13 of the low voltage part Lv1 is a direction parallel to the thickness direction of the piezoelectric body PB.
  • the polarization regions Lv11 and Lv13 are the fourth and sixth, that is, even-numbered polarization regions from one end side (left end side) in the length direction of the piezoelectric body PB, and the polarization region Lv12 is the piezoelectric body PB.
  • the fifth or odd-numbered polarization region from the one end side in the length direction For this reason, the polarization region Lv11 and the polarization region Lv13 are polarized in the same direction, but the polarization region Lv12 is polarized in the opposite direction.
  • the polarization directions of the polarization regions Hv11, Hv12, Hv13 of the first high voltage part Hv1 and the polarization region Hv21 of the second high voltage part Hv2 are parallel to the length direction of the piezoelectric body PB.
  • the polarization regions Hv11 and Hv13 of the first high voltage part Hv1 and the polarization region Hv21 of the second high voltage part Hv2 are first to third from the one end side (left end side) in the length direction of the piezoelectric body PB.
  • the seventh that is, odd-numbered polarization region.
  • the polarization region Hv12 of the first high voltage part Hv1 is the second, ie, even-numbered polarization region from the one end side in the length direction of the piezoelectric body PB. Therefore, although the polarization region Hv11, the polarization region Hv13, and the polarization region Hv21 of the second high voltage portion Hv2 of the first high voltage portion Hv1 are polarized in the same direction, these regions and the first high voltage portion Hv1 The polarization region Hv12 is polarized in the opposite direction.
  • a pair of ends in the thickness direction of the piezoelectric body PB are respectively provided with a first low voltage electrode EL1 and a second low voltage electrode.
  • An electrode EL2 is provided.
  • a first high-voltage electrode EH1 and a second high-voltage electrode EH2 are provided at a pair of end portions in the length direction of the piezoelectric body PB.
  • the third high voltage electrode EH3 and the fourth high voltage electrode are provided between the polarization region Hv11 and the polarization region Hv12 of the first high voltage unit Hv1 and between the polarization region Hv12 and the polarization region Hv13.
  • An electrode EH4 is provided.
  • the third high voltage electrode EH3 and the fourth high voltage electrode EH4 are used to polarize the polarization region Hv11, the polarization region Hv12, and the polarization region Hv13 of the first high voltage portion Hv1 when the insulating piezoelectric transformer Tr is manufactured. It is an electrode used when performing.
  • the insulation-type piezoelectric transformer Tr of the present embodiment when an AC voltage is input (applied) between the first high-voltage electrode EH1 and the second high-voltage electrode EH2, the first low-voltage electrode EL1. And the second low voltage electrode EL2 (bypassing the low voltage portion Lv1 (shown as “short-circuit penetration” in FIG. 6)), the first high voltage portion Hv1 and the second high voltage portion Hv2 are arranged in the same direction. An electric field is generated.
  • the stepped-down AC voltage V2 is output between the first low voltage electrode EL1 and the second low voltage electrode EL2.
  • the reduced AC voltage V2 is applied.
  • the first low-voltage electrode EL1 and the second low-voltage electrode EL2 are between the first low-voltage electrode EL1 and the second low-voltage electrode EL2 in the polarization region Lv11 of the low-voltage part Lv1, and between the first low-voltage electrode EL1 and the second low-voltage electrode EL2 in the polarization region Lv12.
  • the first low voltage electrode EL1 and the second low voltage electrode EL2 in the polarization region Lv13.
  • the phase of the AC voltage output between the first low voltage electrode EL1 and the second low voltage electrode EL2 in the polarization region Lv11, and the polarization region The phase of the alternating voltage output between each first low voltage electrode EL1 and second low voltage electrode EL2 of Lv12, and each first low voltage electrode EL1 and second low voltage electrode of polarization region Lv13 The phase of the alternating voltage output between EL2 will be in agreement.
  • the first low voltage electrode EL1 and the second low voltage electrode EL2 are physically connected to the first high voltage electrode EH1 and the second high voltage electrode EH2. Separated floating electrodes. Therefore, as in the first embodiment, it is possible to ensure insulation while suppressing the increase in size of the insulating piezoelectric transformer.
  • the first low voltage electrode EL1 and the second low voltage electrode EL2 are used. Between the first low-voltage electrode EL1 and the second low-voltage electrode EL2, only the voltage generated by the piezoelectric effect in the polarization region Lv11 of the low-voltage portion Lv1 does not occur. Will be output.
  • each of the above embodiments the case where the insulating piezoelectric transformer Tr is configured using the longitudinal vibration mode of the order 3 to 7 has been described. However, the technical idea of the present invention can also be applied when the order is 8 or more.
  • the case where the low voltage unit, the first high voltage unit, and the second high voltage unit have only one region or two regions has been described.
  • each of the low voltage part, the first high voltage part, and the second high voltage part may have three or more regions.
  • each of the plurality of regions has a length of ⁇ / 2, and the polarization direction of each region may be set based on the above-described concept of setting the polarization direction.
  • the insulating piezoelectric transformer Tr of each embodiment according to the present invention can also be used as a step-up transformer. That is, an AC voltage is input between the first low voltage electrode EL1 and the second low voltage electrode EL2, and the AC voltage is boosted from between the first high voltage electrode EH1 and the second high voltage electrode EH2. Output voltage.
  • Insulating piezoelectric transformers Tr according to the embodiments of the present invention for example, make the interelectrode capacitance of a pair of low voltage electrodes equal to the interelectrode capacitance of a pair of high voltage electrodes without transforming the voltage.
  • the insulation type piezoelectric transformer according to the present invention can be configured as a transformer for the purpose of insulation only. That is, In the insulated piezoelectric transformer of the present invention, The interelectrode capacity of the pair of low voltage electrodes and the interelectrode capacity of the pair of high voltage electrodes are set equal, When an AC voltage is input between any one of the pair of low voltage electrodes and between the pair of high voltage electrodes, the AC voltage input between the one electrode and the other electrode. AC voltage of the same magnitude as is output.
  • FIG. 16 shows an example in which the step-up transformer of this embodiment is applied to the power transmission device 100 of the electric field coupling type wireless power transmission device.
  • the AC voltage generated by the power transmission circuit 110 is boosted by the step-up transformer Tr1 and applied between the pair of power transmission electrodes Eta and Etp.
  • the power transmission device 100 can be made smaller than when a winding transformer is used.
  • the insulating piezoelectric transformer of the present invention is also applied to a power receiving device and a power transmitting device of a magnetic power coupling type (electromagnetic coupling type, magnetic coupling type) or magnetic field resonance type (electromagnetic resonance type, magnetic resonance type) wireless power transmission system.
  • the power transmission electrode in the present invention is a power transmission coil (inductor)
  • the power reception electrode in the present invention is a power reception coil (inductor).
  • the power transmission coil is connected to the high voltage electrode of the insulation type piezoelectric transformer.
  • the power transmission coil is connected between a pair of high voltage electrodes of an insulating piezoelectric transformer.
  • the power receiving coil is connected to the high voltage electrode of the insulating piezoelectric transformer. More specifically, the power receiving coil is connected between a pair of high voltage electrodes of an insulating piezoelectric transformer.
  • the insulated piezoelectric transformer according to the present invention can be widely used in various electronic devices and electrical devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Signal Processing (AREA)
  • Dc-Dc Converters (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

An insulated piezoelectric transformer (Tr) uses a third order vertical oscillation mode. The insulated piezoelectric transformer (Tr) comprises a piezoelectric body (PB) having a length of 3λ/2, where the wavelength of a resonant frequency is λ. The piezoelectric body (PB) has, in the following order following the length direction, a first high voltage section (Hv1), a low voltage section (Lv1), and a second high voltage section (Hv2). A first low voltage electrode (EL1) and a second low voltage electrode (EL2) are provided to a pair of ends of the first low voltage section (Lv1) in the thickness direction of the piezoelectric body (PB). A first high voltage electrode (EH1) and a second high voltage electrode (EH2) are provided to a pair of ends in the length direction of the piezoelectric body (PB). The first low voltage electrode (EL1) and the second low voltage electrode (EL2) are physically separated from the first high voltage electrode (EH1) and the second high voltage electrode (EH2).

Description

絶縁型圧電トランスInsulation type piezoelectric transformer
 本発明は、絶縁型圧電トランスに関する。 The present invention relates to an insulation type piezoelectric transformer.
 入力側と出力側の回路を絶縁可能な絶縁型圧電トランスとして、例えば特許文献1に記載のものがある。特許文献1は、入力領域を構成する分極領域と出力領域を構成する分極領域との間に未分極領域を設け、これにより入力領域と出力領域との間の絶縁性を向上させる技術を開示している。 For example, Patent Document 1 discloses an insulating piezoelectric transformer that can insulate an input-side circuit from an output-side circuit. Patent Document 1 discloses a technique for providing an unpolarized region between a polarization region that constitutes an input region and a polarization region that constitutes an output region, thereby improving the insulation between the input region and the output region. ing.
特開2003-8098号公報JP 2003-8098 A
 特許文献1に記載の絶縁型圧電トランスは、未分極領域を有しているので大型化する。 The insulation-type piezoelectric transformer described in Patent Document 1 has an unpolarized region, and thus becomes large.
 本発明は、大型化を抑制しつつ絶縁性を向上可能な絶縁型圧電トランスを提供する。 The present invention provides an insulation type piezoelectric transformer capable of improving insulation while suppressing an increase in size.
 本発明の絶縁型圧電トランスは、次数n(nは3以上の整数)の縦振動モードを利用する絶縁型圧電トランスである。絶縁型圧電トランスは、共振周波数での波長をλとして、nλ/2の長さを有する圧電体素体を備える。圧電体素体は、長さ方向に沿って第1高電圧部、低電圧部、及び第2高電圧部を順に有する。低電圧部は、圧電体素体の長さ方向に沿って、λ/2の長さを有する整数個の分極領域を有する。第1高電圧部及び第2高電圧部は、それぞれ、圧電体素体の長さ方向に沿って、λ/2の長さを有する整数個の分極領域を有する。低電圧部を構成する分極領域の分極方向は、圧電体素体の厚み方向に平行で、かつ低電圧部を構成する分極領域の数が2以上であるときは、圧電体素体の長さ方向の一端側から奇数番目どうしおよび偶数番目どうしは同じ向きとなるように設定され、また、奇数番目の分極領域と偶数番目の分極領域とで逆向きとなるように設定される。第1高電圧部及び第2高電圧部を構成する分極領域の分極方向は、圧電体素体の長さ方向に平行で、かつ圧電体素体の長さ方向の一端側から奇数番目どうしおよび偶数番目どうしは同じ向きとなるように設定され、また、奇数番目の分極領域と偶数番目の分極領域とで逆向きとなるように設定される。低電圧部の圧電体素体の厚み方向の一対の端部にそれぞれ低電圧用電極が設けられている。圧電体素体の長さ方向の一対の端部にそれぞれ高電圧用電極が設けられている。低電圧用電極と高電圧用電極とは物理的に分離されている。 The insulated piezoelectric transformer of the present invention is an insulated piezoelectric transformer that uses a longitudinal vibration mode of order n (n is an integer of 3 or more). The insulated piezoelectric transformer includes a piezoelectric body having a length of nλ / 2 where λ is a wavelength at a resonance frequency. The piezoelectric body has a first high voltage portion, a low voltage portion, and a second high voltage portion in order along the length direction. The low voltage portion has an integer number of polarization regions having a length of λ / 2 along the length direction of the piezoelectric body. Each of the first high voltage part and the second high voltage part has an integral number of polarization regions having a length of λ / 2 along the length direction of the piezoelectric body. When the polarization direction of the polarization region constituting the low voltage part is parallel to the thickness direction of the piezoelectric element body and the number of polarization regions constituting the low voltage part is two or more, the length of the piezoelectric element body The odd-numbered and even-numbered ones are set so as to be in the same direction from one end side in the direction, and the odd-numbered and even-numbered polarized regions are set in opposite directions. The polarization directions of the polarization regions constituting the first high-voltage part and the second high-voltage part are parallel to the length direction of the piezoelectric body and odd-numbered from one end side in the length direction of the piezoelectric body. The even numbers are set to have the same direction, and the odd numbered polarization region and the even numbered polarization region are set to be in opposite directions. Low voltage electrodes are respectively provided at a pair of end portions in the thickness direction of the piezoelectric body of the low voltage portion. High-voltage electrodes are respectively provided at a pair of end portions in the length direction of the piezoelectric body. The low voltage electrode and the high voltage electrode are physically separated.
 本発明において、本発明の絶縁型圧電トランスを備え、絶縁型圧電トランスの高電圧用電極に受電電極が接続され、絶縁型圧電トランスの低電圧用電極に受電回路の入力が接続されている、ワイヤレス電力伝送システム用の受電装置が提供される。 In the present invention, the insulating piezoelectric transformer of the present invention is provided, the power receiving electrode is connected to the high voltage electrode of the insulating piezoelectric transformer, and the input of the power receiving circuit is connected to the low voltage electrode of the insulating piezoelectric transformer. A power receiving device for a wireless power transmission system is provided.
 本発明において、本発明の絶縁型圧電トランスを備え、絶縁型圧電トランスの低電圧用電極に送電回路の出力が接続され、絶縁型圧電トランスの高電圧用電極に送電電極が接続されている、ワイヤレス電力伝送システム用の送電装置が提供される。 In the present invention, the insulation type piezoelectric transformer of the present invention is provided, the output of the power transmission circuit is connected to the low voltage electrode of the insulation type piezoelectric transformer, and the power transmission electrode is connected to the high voltage electrode of the insulation type piezoelectric transformer. A power transmission device for a wireless power transmission system is provided.
 本発明の絶縁型圧電トランスでは、未分極領域を設けず、低電圧用電極と高電圧用電極とを物理的に分離している。そのため、絶縁型圧電トランスにおいて大型化を抑制しつつ絶縁性を向上させることができる。 In the insulated piezoelectric transformer of the present invention, the low voltage electrode and the high voltage electrode are physically separated without providing an unpolarized region. Therefore, it is possible to improve insulation while suppressing an increase in size in the insulation type piezoelectric transformer.
本発明に係る絶縁型圧電トランスが受電装置に適用された電界結合型ワイヤレス電力伝送システムの構成を示す図である。It is a figure which shows the structure of the electric field coupling type | mold wireless power transmission system with which the insulation type piezoelectric transformer which concerns on this invention was applied to the power receiving apparatus. 実施形態1の電界結合型ワイヤレス電力伝送システムを構成する受電装置の具体的構成の一例を示す図である。It is a figure which shows an example of the specific structure of the power receiving apparatus which comprises the electric field coupling type wireless power transmission system of Embodiment 1. 実施形態1の絶縁型圧電トランスの構成を示す図である。1 is a diagram illustrating a configuration of an insulating piezoelectric transformer according to a first embodiment. 実施形態2の絶縁型圧電トランスの構成を示す図である。FIG. 5 is a diagram illustrating a configuration of an insulating piezoelectric transformer according to a second embodiment. 実施形態3の絶縁型圧電トランスの構成を示す図である。FIG. 5 is a diagram illustrating a configuration of an insulating piezoelectric transformer according to a third embodiment. 実施形態4の絶縁型圧電トランスの構成を示す図である。FIG. 6 is a diagram illustrating a configuration of an insulating piezoelectric transformer according to a fourth embodiment. 実施形態1~4の絶縁型圧電トランスの一端部側を示した斜視図である。FIG. 5 is a perspective view showing one end side of an insulation type piezoelectric transformer of Embodiments 1 to 4. 実施形態1の変形例の絶縁型圧電トランスの斜視図である。FIG. 6 is a perspective view of an insulation type piezoelectric transformer according to a modification of the first embodiment. 実施形態2の変形例の絶縁型圧電トランスの斜視図である。10 is a perspective view of an insulation type piezoelectric transformer of a modification of the second embodiment. FIG. 実施形態3の変形例の絶縁型圧電トランスの斜視図である。FIG. 10 is a perspective view of an insulation type piezoelectric transformer of a modification of the third embodiment. 実施形態4の変形例の絶縁型圧電トランスの斜視図である。FIG. 10 is a perspective view of an insulation type piezoelectric transformer according to a modification of the fourth embodiment. 図10に示す絶縁型圧電トランスの取り付け状態の一例を示す図である。It is a figure which shows an example of the attachment state of the insulation type piezoelectric transformer shown in FIG. 絶縁型圧電トランスの第1高電圧用電極及び第2高電圧用電極の面電極及び第1低電圧用電極及び第2低電圧用電極を、板状電極に半田により結合した例を示す図である。The figure which shows the example which couple | bonded the surface electrode of the electrode for 1st high voltage of the insulation type piezoelectric transformer and the electrode for 2nd high voltage, the electrode for 1st low voltage, and the electrode for 2nd low voltage with the plate-shaped electrode with solder. is there. 実施形態5の絶縁型圧電トランスの構成を示す図である。FIG. 9 is a diagram illustrating a configuration of an insulating piezoelectric transformer according to a fifth embodiment. 実施形態6の絶縁型圧電トランスの構成を示す図である。FIG. 10 is a diagram illustrating a configuration of an insulating piezoelectric transformer according to a sixth embodiment. 本発明に係る絶縁型圧電トランスが送電装置及び受電装置に適用された電界結合型ワイヤレス電力伝送システムの構成を示す図である。It is a figure which shows the structure of the electric field coupling type | mold wireless power transmission system with which the insulation type piezoelectric transformer which concerns on this invention was applied to the power transmission apparatus and the power receiving apparatus.
(発明の背景)
 電界結合型ワイヤレス電力伝送システム等のワイヤレス電力伝送システムにおいては、電力伝送効率の向上を目的として、送電装置に、一対の送電電極間に印加する送電電圧を昇圧する昇圧トランスを設けるとともに、受電装置に、一対の受電電極間に誘起された電圧を降圧する降圧トランスを設ける場合がある。しかし、昇圧トランス及び降圧トランスとして例えば巻線型のトランスを用いると、送電装置及び受電装置が大型化する。受電装置は、例えばスマートフォンやタブレット端末等であるが、これらの受電装置は小型化が要求されている。小型化のためには、例えば巻線型トランスよりも小型の圧電トランスを用いることが考えられる。
(Background of the Invention)
In a wireless power transmission system such as an electric field coupling type wireless power transmission system, for the purpose of improving power transmission efficiency, the power transmission device is provided with a step-up transformer that boosts a transmission voltage applied between a pair of power transmission electrodes. In some cases, a step-down transformer is provided to step down the voltage induced between the pair of power receiving electrodes. However, when a winding transformer is used as the step-up transformer and the step-down transformer, for example, the power transmission device and the power reception device are increased in size. The power receiving device is, for example, a smartphone or a tablet terminal, but these power receiving devices are required to be downsized. In order to reduce the size, for example, it is conceivable to use a piezoelectric transformer that is smaller than a wound transformer.
 圧電トランスを降圧トランスとして利用する受電装置において、受電装置側の基準電位(グランド電位とほぼ等しい)を安定化させるためには、圧電トランスとして、構造上入力側と出力側の回路を絶縁することが不可能なローゼン型圧電トランス等ではなく、入力側と出力側の回路を絶縁可能な絶縁型の圧電トランスを用いることが望ましい。絶縁型圧電トランスとしては、例えば前述の特許文献1に記載のものがある。特許文献1は、前述のように、入力領域を構成する分極領域と出力領域を構成する分極領域との間に未分極領域を設けて入力領域と出力領域との間の絶縁性を向上させる技術を開示している。しかし、特許文献1に記載の圧電トランスのように絶縁性を向上させるために未分極領域を設けると、圧電トランスが大型化するという課題がある。本発明は、この課題に対処可能な技術を提供する。 In a power receiving device that uses a piezoelectric transformer as a step-down transformer, in order to stabilize the reference potential (substantially equal to the ground potential) on the power receiving device side, the circuit on the input side and the output side are insulated as a piezoelectric transformer. It is desirable to use an insulation type piezoelectric transformer that can insulate the circuit on the input side and the output side instead of a Rosen type piezoelectric transformer or the like that cannot be used. As an insulation type piezoelectric transformer, there exists a thing of the above-mentioned patent document 1, for example. As described above, Patent Document 1 discloses a technique for improving insulation between an input region and an output region by providing an unpolarized region between a polarization region constituting an input region and a polarization region constituting an output region. Is disclosed. However, when an unpolarized region is provided in order to improve insulation as in the piezoelectric transformer described in Patent Document 1, there is a problem that the piezoelectric transformer becomes large. The present invention provides a technique that can cope with this problem.
(実施形態1)
1.構成
1-1.電界結合型ワイヤレス電力伝送システムの構成
 図1は、本発明の絶縁型圧電トランスが適用された電界結合型ワイヤレス電力伝送システムの構成を示す図である。なお、図1においては、図示を簡略化する観点から降圧トランスTrの電極(各高電圧用電極、各低電圧用電極)の位置や数は実際とは異なる。
(Embodiment 1)
1. Configuration 1-1. Configuration of Electric Field Coupled Wireless Power Transmission System FIG. 1 is a diagram showing a configuration of an electric field coupled wireless power transmission system to which an insulation type piezoelectric transformer of the present invention is applied. In FIG. 1, from the viewpoint of simplifying the illustration, the positions and number of electrodes (each high voltage electrode and each low voltage electrode) of the step-down transformer Tr are different from actual ones.
 電界結合型ワイヤレス電力伝送システムは、送電装置100と、受電装置200とを有する。 The electric field coupling type wireless power transmission system includes a power transmission device 100 and a power reception device 200.
 送電装置100は、送電回路110と、一対の送電電極Eta、Etp(以下、適宜「送電側アクティブ電極Eta」、「送電側パッシブ電極Etp」という)とを有する。送電回路110は、所定周波数の交流電圧を発生し、一対の送電電極Eta、Etp間に印加する。一対の送電電極Eta、EtpはキャパシタC1を構成する。 The power transmission device 100 includes a power transmission circuit 110 and a pair of power transmission electrodes Eta and Etp (hereinafter, referred to as “power transmission side active electrode Eta” and “power transmission side passive electrode Etp” as appropriate). The power transmission circuit 110 generates an alternating voltage having a predetermined frequency and applies it between the pair of power transmission electrodes Eta and Etp. The pair of power transmission electrodes Eta and Etp constitute a capacitor C1.
 受電装置200は、一対の受電電極Era、Erp(以下、適宜「受電側アクティブ電極Era」、「受電側パッシブ電極Erp」という)と、一対の受電電極Era、Erp間に誘起された交流電圧を降圧する降圧トランスTrと、降圧された交流電圧が入力される負荷回路210とを有する。負荷回路210は、降圧された交流電圧を入力して所定の機能を実行する。 The power receiving apparatus 200 receives a pair of power receiving electrodes Era and Erp (hereinafter referred to as “power receiving side active electrode Era” and “power receiving side passive electrode Erp” as appropriate) and an AC voltage induced between the pair of power receiving electrodes Era and Erp. It has a step-down transformer Tr that steps down and a load circuit 210 that receives the stepped-down AC voltage. The load circuit 210 receives a reduced AC voltage and executes a predetermined function.
 図2は、図1で示した受電装置200の具体的構成の一例を示す図である。本例の受電装置200は、前述した、一対の受電電極Era、Erp、降圧トランスTr、及び負荷回路210を有する。 FIG. 2 is a diagram illustrating an example of a specific configuration of the power receiving device 200 illustrated in FIG. The power receiving device 200 of this example includes the pair of power receiving electrodes Era and Erp, the step-down transformer Tr, and the load circuit 210 described above.
 送電側アクティブ電極Etaと受電側アクティブ電極Eraとが対向状態にあるとき、送電側アクティブ電極Etaと受電側アクティブ電極Eraとの間には、結合容量Caaが生じ、送電側パッシブ電極Etpと受電側パッシブ電極Erpとの間には、結合容量Cppが生じる。送電側アクティブ電極Etaと受電側アクティブ電極Eraとが対向状態にあるとき、送電装置100の一対の送電電極Eta、Etp間に交流電圧が印加されることにより、受電装置200の一対の受電電極Era、Erp間に交流電圧が誘起される。これにより、送電装置100から受電装置200に送電電極Eta、Etpおよび受電電極Era、Erpが非接触の状態で電力を伝送することができる。 When the power transmission side active electrode Eta and the power reception side active electrode Era are in an opposing state, a coupling capacitance Caa occurs between the power transmission side active electrode Eta and the power reception side active electrode Era, and the power transmission side passive electrode Etp and the power reception side A coupling capacitance Cpp is generated between the passive electrode Erp. When the power transmission side active electrode Eta and the power reception side active electrode Era are in an opposing state, an alternating voltage is applied between the pair of power transmission electrodes Eta and Etp of the power transmission device 100, whereby the pair of power reception electrodes Era of the power reception device 200. , An AC voltage is induced between Erp. Thereby, electric power can be transmitted from the power transmission device 100 to the power reception device 200 in a state where the power transmission electrodes Eta and Etp and the power reception electrodes Era and Erp are not in contact with each other.
 一対の受電電極Era、Erpはそれら受電電極間に発生する静電容量であるキャパシタC2を構成する。 The pair of power receiving electrodes Era and Erp constitute a capacitor C2 which is a capacitance generated between the power receiving electrodes.
 降圧トランスTrは、絶縁型の圧電トランスにより構成されている。詳細については後述する。なお、以後の説明においては、降圧トランスTrを絶縁型圧電トランスTrと称する。 The step-down transformer Tr is composed of an insulating piezoelectric transformer. Details will be described later. In the following description, the step-down transformer Tr is referred to as an insulating piezoelectric transformer Tr.
 負荷回路210は、整流回路REC、レギュレータREG、及び負荷LDを有する。 The load circuit 210 includes a rectifier circuit REC, a regulator REG, and a load LD.
 整流回路RECは、複数のダイオードD1、D2、D3、D4、インダクタL3、及びキャパシタC3を含み、一対の入力端子間に印加された交流電圧を直流電圧に変換し、レギュレータREGの入力端子間に印加する。 The rectifier circuit REC includes a plurality of diodes D1, D2, D3, D4, an inductor L3, and a capacitor C3. The rectifier circuit REC converts an AC voltage applied between a pair of input terminals into a DC voltage, and between the input terminals of the regulator REG. Apply.
 レギュレータREGは、整流回路RECから出力される直流電圧を所定の直流電圧に変換して出力する。 The regulator REG converts the DC voltage output from the rectifier circuit REC into a predetermined DC voltage and outputs it.
 負荷LDは、レギュレータREGから出力される直流電圧を用いて充電池への充電等の所定の機能を実行する。 The load LD performs a predetermined function such as charging of the rechargeable battery using the DC voltage output from the regulator REG.
1-2.絶縁型圧電トランスの構成
 図3は、実施形態1の絶縁型圧電トランスTrの構成を示す図である。
1-2. Configuration of Insulating Piezoelectric Transformer FIG. 3 is a diagram illustrating a configuration of the insulating piezoelectric transformer Tr according to the first embodiment.
 この絶縁型圧電トランスTrは、次数3の縦振動モードを利用して構成された圧電トランスであり、共振周波数での波長をλとして、3λ/2の長さ(図3において紙面左右方向の長さ)、λ/2未満の幅(図3において紙面に垂直な方向の長さ)、及びλ/2未満の厚み(図3において紙面上下方向の長さ)を有する圧電体素体PBを備える。 This insulation type piezoelectric transformer Tr is a piezoelectric transformer configured using a longitudinal vibration mode of order 3, where the wavelength at the resonance frequency is λ, and the length is 3λ / 2 (the length in the horizontal direction in FIG. 3). And a piezoelectric body PB having a width of less than λ / 2 (length in the direction perpendicular to the paper surface in FIG. 3) and a thickness of less than λ / 2 (length in the vertical direction of the paper surface in FIG. 3). .
 圧電体素体PBは、圧電セラミックスを用いて形成されている。圧電体素体PBは、長さ方向に沿って順に、第1高電圧部Hv1、低電圧部Lv1、及び第2高電圧部Hv2を有する。 The piezoelectric element body PB is formed using piezoelectric ceramics. The piezoelectric body PB has a first high voltage part Hv1, a low voltage part Lv1, and a second high voltage part Hv2 in order along the length direction.
 低電圧部Lv1は、1個の分極領域Lv11を有する。 The low voltage part Lv1 has one polarization region Lv11.
 第1高電圧部Hv1は、1個の分極領域Hv11を有する。第2高電圧部Hv2は、1個の分極領域Hv21を有する。 The first high voltage part Hv1 has one polarization region Hv11. The second high voltage part Hv2 has one polarization region Hv21.
 第1高電圧部Hv1の分極領域Hv11、低電圧部Lv1の分極領域Lv11、及び第2高電圧部Hv2の分極領域Hv21は、それぞれλ/2の長さを有する。したがって、第1高電圧部Hv1及び第2高電圧部Hv2の長さは、それぞれλ/2であり、互いに等しい。 The polarization region Hv11 of the first high voltage part Hv1, the polarization region Lv11 of the low voltage part Lv1, and the polarization region Hv21 of the second high voltage part Hv2 each have a length of λ / 2. Accordingly, the lengths of the first high voltage part Hv1 and the second high voltage part Hv2 are λ / 2, which are equal to each other.
 低電圧部Lv1の分極領域Lv11における、圧電体素体PBの厚み方向の一対の端部には、第1低電圧用電極EL1及び第2低電圧用電極EL2が設けられている。 A first low voltage electrode EL1 and a second low voltage electrode EL2 are provided at a pair of ends in the thickness direction of the piezoelectric body PB in the polarization region Lv11 of the low voltage portion Lv1.
 圧電体素体PBの長さ方向の一対の端部には第1高電圧用電極EH1及び第2高電圧用電極EH2が設けられている。 A first high-voltage electrode EH1 and a second high-voltage electrode EH2 are provided at a pair of end portions in the length direction of the piezoelectric body PB.
 図3において低電圧部Lv1の分極領域Lv11、第1高電圧部Hv1の分極領域Hv11、および第2高電圧部Hv2の分極領域Hv21を示す各ブロック内に示した矢印は各分極領域の分極方向を示す。 In FIG. 3, the arrows shown in the blocks indicating the polarization region Lv11 of the low voltage portion Lv1, the polarization region Hv11 of the first high voltage portion Hv1, and the polarization region Hv21 of the second high voltage portion Hv2 are the polarization directions of the polarization regions. Indicates.
 ここで、本発明の各実施形態に係る絶縁型圧電トランスを構成する各分極領域の分極方向の設定に関する考え方について説明する。 Here, the concept regarding the setting of the polarization direction of each polarization region constituting the insulated piezoelectric transformer according to each embodiment of the present invention will be described.
 本発明の絶縁型圧電トランスTrは、前述のように、次数nの縦振動モードを利用して構成された圧電トランスであり、共振周波数での波長をλとして、nλ/2の長さを有する圧電体素体PBを備える。圧電体素体PBは、長さ方向に沿って、n個の分極領域を有する。n個の分極領域は、それぞれλ/2の長さを有する。縦振動モードでは、各分極領域は、圧電体素体PBに加えられている電界の大きさ及び方向の変化に応じて、圧電体素体PBの長さ方向に伸縮する。本発明では、n個の分極領域の伸縮状態が圧電体素体PBの長さ方向の一端側から偶数番目の分極領域と奇数番目の分極領域とで逆の状態となるように、分極方向が設定されている。例えば、n個の分極領域を有する圧電体素体PBの長さ方向において1番目の分極領域は「伸び状態」、2番目の分極領域は「縮み状態」、3番目の分極領域は「伸び状態」、4番目の分極領域は「縮み状態」…というように、「伸び状態」と「縮み状態」とが交互に出現するように分極方向が設定される。換言すれば、圧電体素体PBに電界を印加したときの各分極領域における応力の向き(図3参照。図3では応力を正弦波状に示しているが、図3の正弦波において正のときに図上で例えば右向きの応力が生じ、負のときに例えば左向きの応力が生じることを示す)が、圧電体素体PBの長さ方向の一端側から偶数番目の分極領域と奇数番目の分極領域とで逆向き(反対方向)となるように、各分極領域の分極方向が設定される。
 なお、本実施形態において、圧電体素体PBの長さ方向に垂直な断面の形状は矩形であるが、本形状は、製作し易く、かつ縦振動モードが現れるのに適した形状である。しかし、圧電体素体PBの断面形状はこれに限定されない。圧電体素体PBの断面形状は、圧電体素体PBの長さ方向に縦振動モードで振動を生じさせることができれば、円形や、三角形や、五角形以上の多角形であってもよい。また、圧電体素体PBの幅及び厚みをそれぞれλ/2未満にすることで、不要な振動モードが生じることを抑制することができる。後述する各実施形態において同様である。
As described above, the insulation type piezoelectric transformer Tr of the present invention is a piezoelectric transformer configured using a longitudinal vibration mode of order n, and has a length of nλ / 2, where λ is a wavelength at a resonance frequency. A piezoelectric body PB is provided. The piezoelectric body PB has n polarization regions along the length direction. Each of the n polarization regions has a length of λ / 2. In the longitudinal vibration mode, each polarization region expands and contracts in the length direction of the piezoelectric body PB according to changes in the magnitude and direction of the electric field applied to the piezoelectric body PB. In the present invention, the polarization direction is set so that the expansion / contraction state of the n polarization regions is reversed between the even-numbered polarization region and the odd-numbered polarization region from one end side in the length direction of the piezoelectric body PB. Is set. For example, in the length direction of the piezoelectric body PB having n polarization regions, the first polarization region is “extended state”, the second polarization region is “contracted”, and the third polarization region is “extended state”. The polarization direction is set so that the “extended state” and the “contracted state” appear alternately in the fourth polarization region, such as “contracted state”. In other words, the direction of stress in each polarization region when an electric field is applied to the piezoelectric body PB (see FIG. 3. In FIG. 3, the stress is shown as a sine wave, but when the sine wave in FIG. 3 is positive In the figure, for example, rightward stress is generated, and when negative, for example, leftward stress is generated), the even-numbered polarization region and the odd-numbered polarization from one end side in the length direction of the piezoelectric body PB. The polarization direction of each polarization region is set so as to be opposite to the region (opposite direction).
In the present embodiment, the shape of the cross section perpendicular to the length direction of the piezoelectric body PB is a rectangle, but this shape is easy to manufacture and suitable for the appearance of the longitudinal vibration mode. However, the cross-sectional shape of the piezoelectric body PB is not limited to this. The cross-sectional shape of the piezoelectric body PB may be a circle, a triangle, or a pentagon or more polygon as long as vibration can be generated in the longitudinal vibration mode in the length direction of the piezoelectric body PB. Moreover, it can suppress that an unnecessary vibration mode arises by making the width | variety and thickness of the piezoelectric body PB into less than (lambda) / 2, respectively. The same applies to each embodiment described later.
 より具体的には、高電圧部においては、当該高電圧部を構成する分極領域の分極方向は、圧電体素体PBの長さ方向に平行で、かつ圧電体素体PBの長さ方向の一端側から偶数番目の分極領域の分極方向と奇数番目の分極領域の分極方向とが逆向きとなるように設定される。したがって、互いに隣接する分極領域の分極方向は互いに逆向きとなる。 More specifically, in the high-voltage part, the polarization direction of the polarization region constituting the high-voltage part is parallel to the length direction of the piezoelectric body PB and the length direction of the piezoelectric body PB. The polarization direction of the even-numbered polarization region and the polarization direction of the odd-numbered polarization region from one end side are set to be opposite to each other. Accordingly, the polarization directions of adjacent polarization regions are opposite to each other.
 より具体的には、高電圧部を構成する分極領域の分極方向は、
(1)圧電体素体PBの長さ方向の一端側から奇数番目の分極領域において互いに同じ向きとなり、
(2)圧電体素体PBの長さ方向の一端側から偶数番目の分極領域において互いに同じ向きとなり、かつ、
(3)(1)に係る奇数番目の分極領域と、(2)に係る偶数番目の分極領域とにおいて互いに逆向きとなるにように設定される。
More specifically, the polarization direction of the polarization region constituting the high voltage part is:
(1) In the odd-numbered polarization region from one end side in the length direction of the piezoelectric body PB, they are in the same direction.
(2) In the even-numbered polarization region from one end side in the length direction of the piezoelectric body PB, they are in the same direction, and
(3) The odd-numbered polarization regions according to (1) and the even-numbered polarization regions according to (2) are set to be opposite to each other.
 これに対し、低電圧部を構成する分極領域の分極方向は圧電体素体PBの厚み方向に平行で、かつ分極領域が2個以上存在するときは、圧電体素体PBの長さ方向の一端側から偶数番目の分極領域と奇数番目の分極領域とで逆向きとなるように設定される。これは以下の理由による。すなわち、圧電体素体PBの隣接する分極領域間において圧電体素体PBの長さ方向の伸縮状態が逆となることは、圧電体素体PBの厚み方向の伸縮状態も逆となることである。これを考慮して、低電圧部においては、厚み方向の圧電効果により生じる電圧が同位相となるように、隣接する分極領域同士の分極方向を、圧電体素体PBの厚み方向において互いに逆向きに設定している。 On the other hand, the polarization direction of the polarization region constituting the low voltage portion is parallel to the thickness direction of the piezoelectric body PB, and when there are two or more polarization regions, the length direction of the piezoelectric body PB The even-numbered polarization region and the odd-numbered polarization region are set in opposite directions from one end side. This is due to the following reason. That is, the expansion / contraction state in the length direction of the piezoelectric body PB is reversed between adjacent polarization regions of the piezoelectric body PB, and the expansion / contraction state in the thickness direction of the piezoelectric body PB is also reversed. is there. Considering this, in the low voltage part, the polarization directions of adjacent polarization regions are opposite to each other in the thickness direction of the piezoelectric body PB so that the voltages generated by the piezoelectric effect in the thickness direction have the same phase. Is set.
 より具体的には、低電圧部を構成する分極領域の分極方向は(分極領域が2個以上存在するとき)、
(1)圧電体素体PBの長さ方向の一端側から奇数番目の分極領域において互いに同じ向きとなり、
(2)圧電体素体PBの長さ方向の一端側から偶数番目の分極領域において互いに同じ向きとなり、かつ、
(3)(1)に係る奇数番目の分極領域と、(2)に係る偶数番目の分極領域とにおいて互いに逆向きとなるように設定される。
More specifically, the polarization direction of the polarization region constituting the low voltage part is (when two or more polarization regions exist)
(1) In the odd-numbered polarization region from one end side in the length direction of the piezoelectric body PB, they are in the same direction.
(2) In the even-numbered polarization region from one end side in the length direction of the piezoelectric body PB, they are in the same direction, and
(3) The odd-numbered polarization region according to (1) and the even-numbered polarization region according to (2) are set to be opposite to each other.
 上記構成の圧電トランスTrによれば、高電圧用電極EH1間に交流電圧を入力(印加)すると、各高電圧部を構成する各分極領域に逆圧電効果により伸縮(応力)が生じ、この伸縮(応力)により、各低電圧部を構成する各分極領域に伸縮(応力)が生じ、この伸縮(応力)による圧電効果により、低電圧用電極間に、降圧された交流電圧が出力される。 According to the piezoelectric transformer Tr having the above-described configuration, when an AC voltage is input (applied) between the high-voltage electrodes EH1, expansion / contraction (stress) is generated in each polarization region constituting each high-voltage portion due to the inverse piezoelectric effect. Due to (stress), expansion and contraction (stress) occurs in each polarization region constituting each low-voltage part, and a reduced AC voltage is output between the low-voltage electrodes by the piezoelectric effect due to the expansion and contraction (stress).
 上記分極方向設定の考え方に基づき、本実施形態では、低電圧部Lv1を構成する分極領域Lv11の分極方向は圧電体素体PBの厚み方向に平行な方向としている。 Based on the concept of setting the polarization direction, in the present embodiment, the polarization direction of the polarization region Lv11 constituting the low voltage portion Lv1 is parallel to the thickness direction of the piezoelectric body PB.
 また、第1高電圧部Hv1を構成する分極領域Hv11および第2高電圧部Hv2を構成する分極領域Hv21の分極方向は圧電体素体PBの長さ方向に平行な方向である。また、第1高電圧部Hv1を構成する分極領域Hv11および第2高電圧部Hv2を構成する分極領域Hv21は、圧電体素体PBの長さ方向の一端側(左端側)から1番目及び3番目、つまりいずれも奇数番目の分極領域である。そのため、分極領域Hv11の分極方向と分極領域Hv21の分極方向とは同じ向きに設定されている。 Further, the polarization directions of the polarization region Hv11 constituting the first high voltage part Hv1 and the polarization region Hv21 constituting the second high voltage part Hv2 are parallel to the length direction of the piezoelectric body PB. Further, the polarization region Hv11 constituting the first high voltage part Hv1 and the polarization region Hv21 constituting the second high voltage part Hv2 are first and third from one end side (left end side) in the length direction of the piezoelectric body PB. In other words, both are odd-numbered polarization regions. Therefore, the polarization direction of the polarization region Hv11 and the polarization direction of the polarization region Hv21 are set to the same direction.
 上記のような構成の絶縁型圧電トランスTrにおいて、第1高電圧用電極EH1と第2高電圧用電極EH2との間に交流電圧V1を入力(印加)すると、降圧された交流電圧V2が第1低電圧用電極EL1と第2低電圧用電極EL2との間に出力されることとなる。 In the insulated piezoelectric transformer Tr configured as described above, when the AC voltage V1 is input (applied) between the first high-voltage electrode EH1 and the second high-voltage electrode EH2, the reduced AC voltage V2 is supplied to the first high-voltage electrode EH1. It is output between the first low voltage electrode EL1 and the second low voltage electrode EL2.
 本実施形態の絶縁型圧電トランスTrにおいては、未分極領域を設けず、低電圧用電極EL1及び第2低電圧用電極EL2と高電圧用電極EH1とを物理的に分離している。そのため、絶縁型圧電トランスTrの大型化を抑制しつつ絶縁性を向上させることができる。 In the insulated piezoelectric transformer Tr of the present embodiment, the low voltage electrode EL1, the second low voltage electrode EL2, and the high voltage electrode EH1 are physically separated without providing an unpolarized region. Therefore, it is possible to improve the insulation while suppressing the increase in size of the insulating piezoelectric transformer Tr.
 ここで、接地されていない第1高電圧用電極EH1と第2高電圧用電極EH2との間に交流電圧を印加することは、第1高電圧用電極EH1に+Vの電圧を印加し、第2高電圧用電極EH2に-Vの電圧を印加することである。第1低電圧用電極EL1及び第2低電圧用電極EL2は、第1高電圧用電極EH1及び第2高電圧用電極EH2に対して絶縁された浮き電極であるので、第1高電圧用電極EH1と第2高電圧用電極EH2との間に交流電圧が印加されると、第1低電圧用電極EL1及び第2低電圧用電極EL2を介して(低電圧部Lv1を迂回して(図3において「ショート貫通」と示す))、第1高電圧部Hv1及び第2高電圧部Hv2に同一方向の電界E1が生成される。電界E1の方向が、第1高電圧用電極EH1と第2高電圧用電極EH2との間に印加される交流電圧の周期的変化に応じて変化すると、第1高電圧部Hv1(分極領域Hv11)及び第2高電圧部Hv2(分極領域Hv21)は交流電圧の周期的変化に応じて長さ方向に伸縮し、この伸縮に伴って第1低電圧部Lv1(分極領域Lv11)も長さ方向に強制的に伸縮される。この長さ方向への伸縮により、第1低電圧部Lv1(分極領域Lv11)は厚み方向に強制的に伸縮され、この厚み方向の伸縮による圧電効果により第1低電圧部Lv1(分極領域Lv11)の厚み方向に交流電圧が発生し、発生した交流電圧が第1低電圧用電極EL1と第2低電圧用電極EL2との間から出力される。 Here, applying an AC voltage between the first high-voltage electrode EH1 and the second high-voltage electrode EH2 that are not grounded applies a voltage of + V to the first high-voltage electrode EH1, (2) A voltage of −V is applied to the high voltage electrode EH2. Since the first low-voltage electrode EL1 and the second low-voltage electrode EL2 are floating electrodes insulated from the first high-voltage electrode EH1 and the second high-voltage electrode EH2, the first high-voltage electrode EL2 When an AC voltage is applied between the EH1 and the second high voltage electrode EH2, the low voltage portion Lv1 is bypassed via the first low voltage electrode EL1 and the second low voltage electrode EL2 (see FIG. 3, the electric field E <b> 1 in the same direction is generated in the first high voltage part Hv <b> 1 and the second high voltage part Hv <b> 2. When the direction of the electric field E1 changes according to the periodic change of the AC voltage applied between the first high voltage electrode EH1 and the second high voltage electrode EH2, the first high voltage portion Hv1 (polarization region Hv11). ) And the second high voltage portion Hv2 (polarization region Hv21) expand and contract in the length direction according to the periodic change of the AC voltage, and the first low voltage portion Lv1 (polarization region Lv11) also extends in the length direction along with the expansion and contraction. It is forcibly expanded and contracted. By the expansion and contraction in the length direction, the first low voltage part Lv1 (polarization region Lv11) is forcibly expanded and contracted in the thickness direction, and the first low voltage part Lv1 (polarization region Lv11) is generated by the piezoelectric effect due to the expansion and contraction in the thickness direction. AC voltage is generated in the thickness direction, and the generated AC voltage is output between the first low voltage electrode EL1 and the second low voltage electrode EL2.
 また、本実施形態では、第1高電圧部Hv1の長さと第2高電圧部Hv2の長さとが互いに等しいので、第1高電圧用電極EH1と第2高電圧用電極EH2との間に交流電圧V1を印加した場合、第1高電圧部Hv1と第2高電圧部Hv2との間、つまり圧電体素体PBの長手方向中央に位置する低電圧部Lv1においては当該入力交流電圧V1の前記電界E1により誘起される電位は0(ゼロ)となる。したがって、未分極領域を設けることなく、絶縁型圧電トランスTrの入出力間の絶縁性を向上させることができる。また、圧電体素体PBの圧電振動によって低電圧部Lv1に生じた電圧だけが、第1低電圧用電極EL1と第2低電圧用電極EL2との間から出力されることとなる。このように、本実施形態によれば、絶縁性を向上させた圧電トランスTrを提供することができる。 In the present embodiment, since the length of the first high voltage portion Hv1 and the length of the second high voltage portion Hv2 are equal to each other, an alternating current is generated between the first high voltage electrode EH1 and the second high voltage electrode EH2. When the voltage V1 is applied, the input AC voltage V1 is reduced in the low voltage portion Lv1 located between the first high voltage portion Hv1 and the second high voltage portion Hv2, that is, in the longitudinal center of the piezoelectric body PB. The potential induced by the electric field E1 is 0 (zero). Therefore, the insulation between the input and output of the insulation type piezoelectric transformer Tr can be improved without providing an unpolarized region. Further, only the voltage generated in the low voltage portion Lv1 due to the piezoelectric vibration of the piezoelectric body PB is output between the first low voltage electrode EL1 and the second low voltage electrode EL2. Thus, according to this embodiment, it is possible to provide the piezoelectric transformer Tr with improved insulation.
 また、本実施形態では、電力変換に寄与しない未分極領域を設けないので、結合係数の低下や電力変換効率の低下が生じにくい。 In this embodiment, since an unpolarized region that does not contribute to power conversion is not provided, a reduction in coupling coefficient and a reduction in power conversion efficiency are unlikely to occur.
 本実施形態の圧電トランスでは、以下の(1)~(3)に示す効果も得られる。 In the piezoelectric transformer of this embodiment, the following effects (1) to (3) can also be obtained.
(1)本実施形態の圧電トランスは、電力変換に寄与しない未分極領域を有していない。そのため、結合係数の低下や電力変換効率の低下が生じにくい。 (1) The piezoelectric transformer of the present embodiment does not have an unpolarized region that does not contribute to power conversion. For this reason, the coupling coefficient and the power conversion efficiency are unlikely to decrease.
(2)本実施形態の圧電トランスでは、高電圧部と低電圧部とが圧電体素体PBの長さ方向において交互に、つまり分散して配置されている。また、圧電体素体PBを構成する複数の分極領域のうちの約半分が高電圧部を構成する分極領域となっている。これにより、高電圧部間に所定次数(本実施形態では3次)の縦振動を起こさせるための所定周波数の交流電圧を印加したときに、圧電体素体PBの長さ方向における振動が所定次数の縦振動で拘束されやすくなる。したがって、所定次数に近いその他の次数の縦振動が発生しにくい。そのため、効率的に電力変換を行うことができる。 (2) In the piezoelectric transformer of the present embodiment, the high voltage portion and the low voltage portion are arranged alternately, that is, dispersedly in the length direction of the piezoelectric body PB. Further, about half of the plurality of polarization regions constituting the piezoelectric body PB is a polarization region constituting the high voltage portion. As a result, when an AC voltage having a predetermined frequency for causing longitudinal vibration of a predetermined order (third order in the present embodiment) is applied between the high voltage parts, vibration in the length direction of the piezoelectric body PB is predetermined. It becomes easy to be restrained by the longitudinal vibration of the order. Therefore, longitudinal vibrations of other orders close to a predetermined order are unlikely to occur. Therefore, power conversion can be performed efficiently.
(3)本実施形態の圧電トランスは、前述したように、高圧用電極と低圧用電極とが物理的に分離された絶縁型の圧電トランスである。そのため、基準電位の変動等の雑音が、一次側と二次側の間で伝達されるのを抑制できる。 (3) The piezoelectric transformer of this embodiment is an insulating piezoelectric transformer in which the high-voltage electrode and the low-voltage electrode are physically separated as described above. Therefore, it is possible to suppress transmission of noise such as fluctuations in the reference potential between the primary side and the secondary side.
 なお、(1)~(3)の効果は、後述する各実施形態においても奏される。 It should be noted that the effects (1) to (3) are also exhibited in each embodiment described later.
2.まとめ
 本実施形態の絶縁型圧電トランスTrは、次数n(nは3以上の整数)の縦振動モードを利用する絶縁型圧電トランスである。絶縁型圧電トランスTrは、共振周波数での波長をλとして、nλ/2の長さを有する圧電体素体PBを備える。本実施形態では、縦振動モードの次数nは3であり、圧電体素体PBは、長さ方向に沿って第1高電圧部Hv1、低電圧部Lv1、及び第2高電圧部Hv2を順に有する。低電圧部Lv1は、λ/2の長さを有する分極領域Lv11を有し、第1高電圧部Hv1および第2高電圧部Hv2は、それぞれ、λ/2の長さを有する分極領域Hv11、Hv21を有する。低電圧部Lv1を構成する分極領域Lv11の分極方向は、圧電体素体PBの厚み方向に平行な方向である。第1高電圧部Hv1および第2高電圧部Hv2を構成する分極領域Hv11、Hv12の分極方向は、圧電体素体PBの長さ方向に平行な方向あり、かつ同じ向きである。低電圧部Lv1の圧電体素体PBの厚み方向の一対の端部に第1低電圧用電極EL1及び第2低電圧用電極EL2が設けられている。圧電体素体PBの長さ方向の一対の端部に第1高電圧用電極EH1及び第2高電圧用電極EH2が設けられている。第1低電圧用電極EL1及び第2低電圧用電極EL2と第1高電圧用電極EH1及び第2高電圧用電極EH2とは物理的に分離されている。
2. Summary The insulated piezoelectric transformer Tr of this embodiment is an insulated piezoelectric transformer that uses a longitudinal vibration mode of order n (n is an integer of 3 or more). The insulated piezoelectric transformer Tr includes a piezoelectric body PB having a length of nλ / 2 where λ is a wavelength at a resonance frequency. In the present embodiment, the order n of the longitudinal vibration mode is 3, and the piezoelectric body PB sequentially passes the first high voltage part Hv1, the low voltage part Lv1, and the second high voltage part Hv2 along the length direction. Have. The low voltage portion Lv1 has a polarization region Lv11 having a length of λ / 2, and the first high voltage portion Hv1 and the second high voltage portion Hv2 are each a polarization region Hv11 having a length of λ / 2, Hv21. The polarization direction of the polarization region Lv11 constituting the low voltage part Lv1 is a direction parallel to the thickness direction of the piezoelectric body PB. The polarization directions of the polarization regions Hv11 and Hv12 constituting the first high voltage part Hv1 and the second high voltage part Hv2 are parallel to the length direction of the piezoelectric body PB and are the same direction. A first low voltage electrode EL1 and a second low voltage electrode EL2 are provided at a pair of end portions in the thickness direction of the piezoelectric body PB of the low voltage portion Lv1. A first high-voltage electrode EH1 and a second high-voltage electrode EH2 are provided at a pair of ends in the length direction of the piezoelectric body PB. The first low voltage electrode EL1 and the second low voltage electrode EL2, and the first high voltage electrode EH1 and the second high voltage electrode EH2 are physically separated.
 本実施形態の絶縁型圧電トランスTrでは、未分極領域を設けず、第1低電圧用電極EL1及び第2低電圧用電極EL2と第1高電圧用電極EH1及び第2高電圧用電極EH2とは物理的に分離されている。そのため、絶縁型圧電トランスの大型化を抑制しつつ絶縁性を向上させることができる。 In the insulation type piezoelectric transformer Tr of the present embodiment, an unpolarized region is not provided, and the first low voltage electrode EL1, the second low voltage electrode EL2, the first high voltage electrode EH1, and the second high voltage electrode EH2. Are physically separated. Therefore, it is possible to improve insulation while suppressing the increase in size of the insulation-type piezoelectric transformer.
 本実施形態において、第1高電圧部Hv1を構成する分極領域の数と第2高電圧部Hv2を構成する分極領域の数とが同じであり、第1高電圧部Hv1の長さと第2高電圧部Hv2の長さとは等しい。 In the present embodiment, the number of polarization regions constituting the first high voltage part Hv1 and the number of polarization regions constituting the second high voltage part Hv2 are the same, and the length of the first high voltage part Hv1 and the second high voltage part Hv1 are the same. The length of the voltage part Hv2 is equal.
 これにより、第1高電圧用電極EH1と第2高電圧用電極EH2との間に交流電圧を印加した場合、第1高電圧部Hv1と第2高電圧部Hv2との間、つまり圧電体素体PBの長手方向中央に位置する低電圧部Lv1においては当該交流電圧による電位は0(ゼロ)となる。したがって、絶縁型圧電トランスTrの入出力間の絶縁を向上させることができる。 As a result, when an AC voltage is applied between the first high voltage electrode EH1 and the second high voltage electrode EH2, it is between the first high voltage part Hv1 and the second high voltage part Hv2, that is, the piezoelectric element. In the low voltage part Lv1 located in the center in the longitudinal direction of the body PB, the potential due to the AC voltage is 0 (zero). Therefore, the insulation between the input and output of the insulation type piezoelectric transformer Tr can be improved.
 本実施形態において、圧電体素体PBは、λ/2未満の幅、及びλ/2未満の厚みを有する。これにより、不要な振動モードが生じることを抑えることでできる。 In the present embodiment, the piezoelectric body PB has a width of less than λ / 2 and a thickness of less than λ / 2. Thereby, it can suppress by generating an unnecessary vibration mode.
 本実施形態では、圧電トランスを、電界結合型の受電装置に適用した。これにより、電界結合型の受電装置を小型化及び低背化することができる。 In this embodiment, the piezoelectric transformer is applied to an electric field coupling type power receiving device. Accordingly, the electric field coupling type power receiving device can be reduced in size and height.
(実施形態2)
 実施形態2では、絶縁型圧電トランスTrが、次数4の縦振動モードを利用して構成されている。
(Embodiment 2)
In the second embodiment, the insulation type piezoelectric transformer Tr is configured using a longitudinal vibration mode of order 4.
 図4は、実施形態2の絶縁型圧電トランスの構成を示す図である。 FIG. 4 is a diagram illustrating a configuration of an insulating piezoelectric transformer according to the second embodiment.
 絶縁型圧電トランスTrは、共振周波数での波長をλとして、4λ/2の長さ、λ/2未満の幅、及びλ/2未満の厚みを有する圧電体素体PBを備える。 The insulated piezoelectric transformer Tr includes a piezoelectric body PB having a length of 4λ / 2, a width of less than λ / 2, and a thickness of less than λ / 2, where λ is a wavelength at a resonance frequency.
 圧電体素体PBは、圧電セラミックスを用いて形成されている。圧電体素体PBは、長さ方向に沿って順に、第1高電圧部Hv1、低電圧部Lv1、及び第2高電圧部Hv2を有する。 The piezoelectric element body PB is formed using piezoelectric ceramics. The piezoelectric body PB has a first high voltage part Hv1, a low voltage part Lv1, and a second high voltage part Hv2 in order along the length direction.
 低電圧部Lv1は、圧電体素体PBの長さ方向に沿って配置された2個の分極領域Lv11、分極領域Lv12を有する。 The low voltage portion Lv1 has two polarization regions Lv11 and Lv12 arranged along the length direction of the piezoelectric body PB.
 第1高電圧部Hv1は、1個の分極領域Hv11を有する。第2高電圧部Hv2は、1個の分極領域Hv21を有する。 The first high voltage part Hv1 has one polarization region Hv11. The second high voltage part Hv2 has one polarization region Hv21.
 第1高電圧部Hv1の分極領域Hv11、低電圧部Lv1の分極領域Lv11、低電圧部Lv1の分極領域Lv12、及び第2高電圧部Hv2の分極領域Hv21は、それぞれλ/2の長さを有する。したがって、第1高電圧部Hv1及び第2高電圧部Hv2の長さは、それぞれλ/2であり、互いに等しい。 The polarization region Hv11 of the first high voltage part Hv1, the polarization region Lv11 of the low voltage part Lv1, the polarization region Lv12 of the low voltage part Lv1, and the polarization region Hv21 of the second high voltage part Hv2 each have a length of λ / 2. Have. Accordingly, the lengths of the first high voltage part Hv1 and the second high voltage part Hv2 are λ / 2, which are equal to each other.
 低電圧部Lv1の分極領域Lv11及び分極領域Lv12の分極方向は圧電体素体PBの厚み方向に平行な方向である。なお、分極領域Lv11は、圧電体素体PBの長さ方向の一端側(左端側)から2番目つまり偶数番目の分極領域であり、分極領域Lv12は圧電体素体PBの長さ方向の前記一端側から3番目つまり奇数番目の分極領域であるので、分極領域Lv11と分極領域Lv12とは互いに逆向きに分極される。 The polarization directions of the polarization region Lv11 and the polarization region Lv12 of the low voltage part Lv1 are parallel to the thickness direction of the piezoelectric body PB. The polarization region Lv11 is the second or even-numbered polarization region from one end side (left end side) in the length direction of the piezoelectric body PB, and the polarization region Lv12 is the length direction of the piezoelectric body PB. Since it is the third or odd-numbered polarization region from one end side, the polarization region Lv11 and the polarization region Lv12 are polarized in opposite directions.
 第1高電圧部Hv1の分極領域Hv11及び第2高電圧部Hv2の分極領域Hv21の分極方向は圧電体素体PBの長さ方向に平行な方向である。ここで、第1高電圧部Hv1の分極領域Hv11は、圧電体素体PBの長さ方向の一端側(左端側)から1番目つまり奇数番目の分極領域であり、第2高電圧部Hv2の第1の分極領域Hv21は、圧電体素体PBの長さ方向の前記一端側から4番目つまり偶数番目の分極領域である。そのため、第1高電圧部Hv1の分極領域Hv11と第2高電圧部Hv2の分極領域Hv21とは互いに逆向きに分極される。 The polarization directions of the polarization region Hv11 of the first high voltage part Hv1 and the polarization region Hv21 of the second high voltage part Hv2 are parallel to the length direction of the piezoelectric body PB. Here, the polarization region Hv11 of the first high-voltage part Hv1 is the first or odd-numbered polarization region from one end side (left end side) in the length direction of the piezoelectric body PB, and the second high-voltage part Hv2 The first polarization region Hv21 is the fourth or even-numbered polarization region from the one end side in the length direction of the piezoelectric body PB. Therefore, the polarization region Hv11 of the first high voltage part Hv1 and the polarization region Hv21 of the second high voltage part Hv2 are polarized in opposite directions.
 低電圧部Lv1の分極領域Lv11及び分極領域Lv12には、それぞれ、圧電体素体PBの厚み方向における一対の端部に、第1低電圧用電極EL1及び第2低電圧用電極EL2が設けられている。 In the polarization region Lv11 and the polarization region Lv12 of the low voltage portion Lv1, a first low voltage electrode EL1 and a second low voltage electrode EL2 are provided at a pair of ends in the thickness direction of the piezoelectric body PB, respectively. ing.
 分極領域Lv11の第1低電圧用電極EL1と分極領域Lv12の第1低電圧用電極EL1とは互いに電気的に接続され、分極領域Lv11の第2低電圧用電極EL2と分極領域Lv12の第2低電圧用電極EL2とは互いに電気的に接続される。分極領域Lv11の第1低電圧用電極EL1と分極領域Lv12の第1低電圧用電極EL1、および、分極領域Lv11の第2低電圧用電極EL2と分極領域Lv12の第2低電圧用電極EL2とは、例えば基板等への実装状態で電気的接続がなされるように配置される。なお、低電圧部Lv1の分極領域Lv11及び分極領域Lv12のそれぞれにおいて、第1低電圧用電極EL1及び第2低電圧用電極EL2を設け、事後的に電気的接続をすることとしているのは、分極領域Lv11と分極領域Lv12とに対して個別に分極方向が逆向きになるように分極処理を行うことを可能とするためである。 The first low voltage electrode EL1 in the polarization region Lv11 and the first low voltage electrode EL1 in the polarization region Lv12 are electrically connected to each other, and the second low voltage electrode EL2 in the polarization region Lv11 and the second low voltage electrode EL2 in the polarization region Lv12. The low voltage electrode EL2 is electrically connected to each other. The first low voltage electrode EL1 in the polarization region Lv11 and the first low voltage electrode EL1 in the polarization region Lv12, and the second low voltage electrode EL2 in the polarization region Lv11 and the second low voltage electrode EL2 in the polarization region Lv12 Are arranged so as to be electrically connected in a mounted state on a substrate, for example. In addition, in each of the polarization region Lv11 and the polarization region Lv12 of the low voltage portion Lv1, the first low voltage electrode EL1 and the second low voltage electrode EL2 are provided, and the electrical connection is made afterwards. This is because the polarization process can be performed so that the polarization directions are individually opposite to the polarization region Lv11 and the polarization region Lv12.
 圧電体素体PBにおける長さ方向の一対の端部には第1高電圧用電極EH1及び第2高電圧用電極EH2が設けられている。 A first high-voltage electrode EH1 and a second high-voltage electrode EH2 are provided at a pair of lengthwise ends of the piezoelectric body PB.
 本実施形態の絶縁型圧電トランスTrにおいて、第1高電圧用電極EH1と第2高電圧用電極EH2との間に交流電圧V1を入力(印加)すると、降圧された交流電圧V2が、低電圧部Lv1の分極領域Lv11の第1低電圧用電極EL1と第2低電圧用電極EL2との間、及び分極領域Lv12の第1低電圧用電極EL1と第2低電圧用電極EL2との間に出力されることとなる。その場合において、低電圧部Lv1の分極領域Lv11と分極領域Lv12とは互いに隣接しているので、分極領域Lv11の伸縮状態(応力の向き)と分極領域Lv12の伸縮状態(応力の向き)とは逆となるが、分極領域Lv11の分極方向と分極領域Lv12の分極方向とは互いに逆向きである。そのため、結果的には、分極領域Lv11の第1低電圧用電極EL1と第2低電圧用電極EL2との間に出力される交流電圧の位相と、分極領域Lv12の第1低電圧用電極EL1と第2低電圧用電極EL2との間に出力される交流電圧の位相とは、一致することとなる。 In the insulated piezoelectric transformer Tr of this embodiment, when the AC voltage V1 is input (applied) between the first high-voltage electrode EH1 and the second high-voltage electrode EH2, the reduced AC voltage V2 is reduced to a low voltage. Between the first low voltage electrode EL1 and the second low voltage electrode EL2 in the polarization region Lv11 of the portion Lv1, and between the first low voltage electrode EL1 and the second low voltage electrode EL2 in the polarization region Lv12. Will be output. In this case, since the polarization region Lv11 and the polarization region Lv12 of the low voltage part Lv1 are adjacent to each other, the expansion state (stress direction) of the polarization region Lv11 and the expansion state (stress direction) of the polarization region Lv12 Conversely, the polarization direction of the polarization region Lv11 and the polarization direction of the polarization region Lv12 are opposite to each other. Therefore, as a result, the phase of the alternating voltage output between the first low-voltage electrode EL1 and the second low-voltage electrode EL2 in the polarization region Lv11 and the first low-voltage electrode EL1 in the polarization region Lv12. And the phase of the AC voltage output between the second low voltage electrode EL2 and the second low voltage electrode EL2.
 ここで、本実施形態では、実施形態1同様に、第1低電圧用電極EL1及び第2低電圧用電極EL2は、第1高電圧用電極EH1及び第2高電圧用電極EH2に対して物理的に分離された浮き電極である。そのため、実施形態1同様、絶縁型圧電トランスの大型化を抑制しつつ絶縁性を確保することができる。また第1高電圧部Hv1の長さと第2高電圧部Hv2の長さとが互いに等しいので、実施形態1と同様の理由により、入出力間の絶縁性を向上させることができる。 Here, in the present embodiment, like the first embodiment, the first low voltage electrode EL1 and the second low voltage electrode EL2 are physically connected to the first high voltage electrode EH1 and the second high voltage electrode EH2. Separated floating electrodes. Therefore, as in the first embodiment, it is possible to ensure insulation while suppressing the increase in size of the insulating piezoelectric transformer. Further, since the length of the first high voltage part Hv1 and the length of the second high voltage part Hv2 are equal to each other, the insulation between the input and output can be improved for the same reason as in the first embodiment.
 特に、本実施形態の絶縁型圧電トランスTrでは、縦振動モードの次数nは4であり、低電圧部Lv1は、圧電体素体PBの長さ方向に沿って配置された2個の領域Lv11、Lv12で構成され、2個の領域Lv11、Lv12は、それぞれλ/2の長さを有し、第1低電圧用電極EL1及び第2低電圧用電極EL2は、2個の領域Lv11、Lv12のそれぞれに設けられている。したがって、低電圧部Lv1全体としての電極間容量を増加させ、出力電力を増加させることができる。 In particular, in the insulation type piezoelectric transformer Tr of the present embodiment, the order n of the longitudinal vibration mode is 4, and the low voltage portion Lv1 is two regions Lv11 arranged along the length direction of the piezoelectric body PB. , Lv12, and the two regions Lv11 and Lv12 each have a length of λ / 2, and the first low voltage electrode EL1 and the second low voltage electrode EL2 include two regions Lv11 and Lv12. Of each. Therefore, it is possible to increase the interelectrode capacitance as the entire low voltage portion Lv1 and increase the output power.
(実施形態3)
 実施形態3では、絶縁型圧電トランスTrが、次数5の縦振動モードを利用して構成されている。
(Embodiment 3)
In the third embodiment, the insulation type piezoelectric transformer Tr is configured using a longitudinal vibration mode of order 5.
 図5は、実施形態3の絶縁型圧電トランスTrの構成を示す図である。 FIG. 5 is a diagram illustrating a configuration of the insulating piezoelectric transformer Tr according to the third embodiment.
 本実施形態の絶縁型圧電トランスTrは共振周波数での波長をλとして、5λ/2の長さ、λ/2未満の幅、及びλ/2未満の厚みを有する圧電体素体PBを備える。 The insulated piezoelectric transformer Tr of this embodiment includes a piezoelectric body PB having a length of 5λ / 2, a width of less than λ / 2, and a thickness of less than λ / 2, where λ is a wavelength at a resonance frequency.
 圧電体素体PBは、圧電セラミックスを用いて形成されている。圧電体素体PBは、長さ方向に沿って順に、第1高電圧部Hv1、低電圧部Lv1、及び第2高電圧部Hv2を有する。 The piezoelectric element body PB is formed using piezoelectric ceramics. The piezoelectric body PB has a first high voltage part Hv1, a low voltage part Lv1, and a second high voltage part Hv2 in order along the length direction.
 低電圧部Lv1は、分極領域Lv11を有する。 The low voltage part Lv1 has a polarization region Lv11.
 第1高電圧部Hv1は、圧電体素体PBの長さ方向に沿って配置された2個の分極領域Hv11、Hv12を有する。第2高電圧部Hv2は、圧電体素体PBの長さ方向に沿って配置された2個の分極領域Hv21、Hv22を有する。 The first high voltage part Hv1 has two polarization regions Hv11 and Hv12 arranged along the length direction of the piezoelectric body PB. The second high voltage unit Hv2 has two polarization regions Hv21 and Hv22 arranged along the length direction of the piezoelectric body PB.
 第1高電圧部Hv1の分極領域Hv11、Hv12、低電圧部Lv1の分極領域Lv11、第2高電圧部Hv2の分極領域Hv21、Hv22は、それぞれλ/2の長さを有する。したがって、第1高電圧部Hv1及び第2高電圧部Hv2の長さは、それぞれλ/2であり、互いに等しい。 The polarization regions Hv11 and Hv12 of the first high voltage portion Hv1, the polarization region Lv11 of the low voltage portion Lv1, and the polarization regions Hv21 and Hv22 of the second high voltage portion Hv2 each have a length of λ / 2. Accordingly, the lengths of the first high voltage part Hv1 and the second high voltage part Hv2 are λ / 2, which are equal to each other.
 低電圧部Lv1の分極領域Lv11の分極方向は圧電体素体PBの厚み方向に平行な方向である。 The polarization direction of the polarization region Lv11 of the low voltage part Lv1 is a direction parallel to the thickness direction of the piezoelectric body PB.
 第1高電圧部Hv1の分極領域Hv11、Hv12、第2高電圧部Hv2の分極領域Hv21、Hv22の分極方向は圧電体素体PBの長さ方向に平行な方向である。ここで、第1高電圧部Hv1の分極領域Hv11及び第2高電圧部Hv2の分極領域Hv22は、圧電体素体PBの長さ方向の一端側(左端側)からそれぞれ1番目及び5番目、すなわち奇数番目の分極領域であり、互いに同じ向きに分極されている。第1高電圧部Hv1の分極領域Hv12及び第2高電圧部Hv2の分極領域Hv21は、圧電体素体PBの長さ方向の前記一端側から2番目及び4番目、すなわち偶数番目の分極領域であり、互いに同じ向きに分極されている。しかし、第1高電圧部Hv1の分極領域Hv11及び第2高電圧部Hv2の分極領域Hv22と、第1高電圧部Hv1の分極領域Hv12及び第2高電圧部Hv2の分極領域Hv21とは、奇数番目と偶数番目との関係にあるので、互いに逆向きに分極される。 The polarization directions of the polarization regions Hv11 and Hv12 of the first high voltage portion Hv1 and the polarization regions Hv21 and Hv22 of the second high voltage portion Hv2 are parallel to the length direction of the piezoelectric body PB. Here, the polarization region Hv11 of the first high voltage part Hv1 and the polarization region Hv22 of the second high voltage part Hv2 are the first and fifth from the one end side (left end side) in the length direction of the piezoelectric body PB, respectively. That is, it is an odd-numbered polarization region and is polarized in the same direction. The polarization region Hv12 of the first high-voltage part Hv1 and the polarization region Hv21 of the second high-voltage part Hv2 are the second and fourth, that is, even-numbered polarization regions from the one end side in the length direction of the piezoelectric body PB. Yes, they are polarized in the same direction. However, the polarization region Hv11 of the first high voltage unit Hv1 and the polarization region Hv22 of the second high voltage unit Hv2, and the polarization region Hv12 of the first high voltage unit Hv1 and the polarization region Hv21 of the second high voltage unit Hv2 are odd numbers. Since they are in the relationship between the number and the even number, they are polarized in opposite directions.
 低電圧部Lv1の分極領域Lv11における、圧電体素体PBの厚み方向の一対の端部には、第1低電圧用電極EL1及び第2低電圧用電極EL2が設けられている。 A first low voltage electrode EL1 and a second low voltage electrode EL2 are provided at a pair of ends in the thickness direction of the piezoelectric body PB in the polarization region Lv11 of the low voltage portion Lv1.
 圧電体素体PBの長さ方向の一方(第1高電圧部Hv1側)の端面には第1高電圧用電極EH1が設けられ、圧電体素体PBの長さ方向の他方(第2高電圧部Hv2側)の端面には第2高電圧用電極EH2が設けられている。なお、本実施形態では、第1高電圧部Hv1の分極領域Hv11と分極領域Hv12との間に第3高電圧用電極EH3が設けられ、かつ第2高電圧部Hv2の分極領域Hv21と分極領域Hv22との間に第4高電圧用電極EH4が設けられている。第3高電圧用電極EH3は、絶縁型圧電トランスTrを製造する際に、第1高電圧部Hv1の分極領域Hv11及び分極領域Hv12の分極処理を行う際に用いる電極である。第4高電圧用電極EH4は、絶縁型圧電トランスTrを製造する際に、第2高電圧部Hv2の分極領域Hv21及び分極領域Hv22の分極処理を行う際に用いる電極である。 A first high-voltage electrode EH1 is provided on one end surface (on the first high voltage portion Hv1 side) in the length direction of the piezoelectric body PB, and the other end (second height in the length direction of the piezoelectric body PB). A second high voltage electrode EH2 is provided on the end face of the voltage part Hv2 side. In the present embodiment, the third high voltage electrode EH3 is provided between the polarization region Hv11 and the polarization region Hv12 of the first high voltage part Hv1, and the polarization region Hv21 and the polarization region of the second high voltage part Hv2 are provided. A fourth high-voltage electrode EH4 is provided between the Hv22. The third high-voltage electrode EH3 is an electrode used when performing polarization treatment on the polarization region Hv11 and the polarization region Hv12 of the first high-voltage part Hv1 when the insulating piezoelectric transformer Tr is manufactured. The fourth high-voltage electrode EH4 is an electrode that is used when performing polarization treatment on the polarization region Hv21 and the polarization region Hv22 of the second high-voltage part Hv2 when the insulating piezoelectric transformer Tr is manufactured.
 本実施形態の絶縁型圧電トランスTrにおいては、第1高電圧用電極EH1と第2高電圧用電極EH2との間に交流電圧が入力(印加)されると、第1低電圧用電極EL1及び第2低電圧用電極EL2を介して(低電圧部Lv1を迂回して(図5において「ショート貫通」と示す))、第1高電圧部Hv1及び第2高電圧部Hv2に同一方向の電界が生成される。 In the insulated piezoelectric transformer Tr of this embodiment, when an AC voltage is input (applied) between the first high-voltage electrode EH1 and the second high-voltage electrode EH2, the first low-voltage electrode EL1 and Via the second low-voltage electrode EL2 (bypassing the low-voltage part Lv1 (shown as “short through” in FIG. 5)), the electric field in the same direction is applied to the first high-voltage part Hv1 and the second high-voltage part Hv2. Is generated.
 そして、実施形態1で説明したのと同様の原理により、第1低電圧用電極EL1と第2低電圧用電極EL2との間に降圧された交流電圧V2が出力されることとなる。 Then, on the basis of the same principle as described in the first embodiment, the stepped-down AC voltage V2 is output between the first low voltage electrode EL1 and the second low voltage electrode EL2.
 ここで、本実施形態では、実施形態1同様に、第1低電圧用電極EL1及び第2低電圧用電極EL2は、第1高電圧用電極EH1及び第2高電圧用電極EH2に対して物理的に分離された浮き電極である。そのため、実施形態1同様、絶縁型圧電トランスの大型化を抑制しつつ絶縁性を確保することができる。また第1高電圧部Hv1の長さと第2高電圧部Hv2の長さとが互いに等しいので、実施形態1と同様の理由により、入出力間の絶縁性を向上させることができる。 Here, in the present embodiment, like the first embodiment, the first low voltage electrode EL1 and the second low voltage electrode EL2 are physically connected to the first high voltage electrode EH1 and the second high voltage electrode EH2. Separated floating electrodes. Therefore, as in the first embodiment, it is possible to ensure insulation while suppressing the increase in size of the insulating piezoelectric transformer. Further, since the length of the first high voltage part Hv1 and the length of the second high voltage part Hv2 are equal to each other, the insulation between the input and output can be improved for the same reason as in the first embodiment.
 特に、本実施形態の絶縁型圧電トランスTrでは、縦振動モードの次数nは5であり、第1高電圧部Hv1は、長さ方向に沿って配置された2個の領域Hv11、Hv12を有し、第2高電圧部Hv2は、長さ方向に沿って配置された2個の領域Hv21、Hv22を有する。また領域Hv11、Hv12、Hv21、Hv22は、それぞれ、λ/2の長さを有する。これにより、第1低電圧用電極EL1及び第2低電圧用電極EL2と、第1高電圧用電極EH1及び第2高電圧用電極EH2との間の絶縁距離を大きくすることがで
きる。したがって、絶縁型圧電トランスTrの絶縁性能(耐圧)が向上する。
In particular, in the insulation type piezoelectric transformer Tr of the present embodiment, the order n of the longitudinal vibration mode is 5, and the first high voltage portion Hv1 has two regions Hv11 and Hv12 arranged along the length direction. The second high voltage unit Hv2 includes two regions Hv21 and Hv22 arranged along the length direction. The regions Hv11, Hv12, Hv21, and Hv22 each have a length of λ / 2. Thereby, the insulation distance between the first low-voltage electrode EL1 and the second low-voltage electrode EL2 and the first high-voltage electrode EH1 and the second high-voltage electrode EH2 can be increased. Therefore, the insulation performance (withstand voltage) of the insulation type piezoelectric transformer Tr is improved.
(実施形態4)
 実施形態4では、絶縁型圧電トランスTrが、次数6の縦振動モードを利用して構成されている。
(Embodiment 4)
In the fourth embodiment, the insulating piezoelectric transformer Tr is configured using a longitudinal vibration mode of order 6.
 図6は、実施形態4の絶縁型圧電トランスTrの構成を示す図である。 FIG. 6 is a diagram illustrating a configuration of an insulating piezoelectric transformer Tr according to the fourth embodiment.
 本実施形態の絶縁型圧電トランスTrは共振周波数での波長をλとして、6λ/2の長さ、λ/2未満の幅、及びλ/2未満の厚みを有する圧電体素体PBを備える。 The insulated piezoelectric transformer Tr of this embodiment includes a piezoelectric body PB having a length of 6λ / 2, a width of less than λ / 2, and a thickness of less than λ / 2, where λ is a wavelength at a resonance frequency.
 圧電体素体PBは、圧電セラミックスを用いて形成されている。圧電体素体PBは、長さ方向に沿って順に、第1高電圧部Hv1、低電圧部Lv1、及び第2高電圧部Hv2を有する。 The piezoelectric element body PB is formed using piezoelectric ceramics. The piezoelectric body PB has a first high voltage part Hv1, a low voltage part Lv1, and a second high voltage part Hv2 in order along the length direction.
 低電圧部Lv1は、圧電体素体PBの長さ方向に沿って配置された2個の分極領域Lv11、Lv12を有する。 The low voltage part Lv1 has two polarization regions Lv11 and Lv12 arranged along the length direction of the piezoelectric body PB.
 第1高電圧部Hv1は、圧電体素体PBの長さ方向に沿って配置された2個の分極領域Hv11、Hv12を有する。第2高電圧部Hv2は、圧電体素体PBの長さ方向に沿って配置された2個の分極領域Hv21、Hv22を有する。 The first high voltage part Hv1 has two polarization regions Hv11 and Hv12 arranged along the length direction of the piezoelectric body PB. The second high voltage unit Hv2 has two polarization regions Hv21 and Hv22 arranged along the length direction of the piezoelectric body PB.
 第1高電圧部Hv1の分極領域、Hv12、低電圧部Lv1の分極領域Lv11、Lv12、第2高電圧部Hv2の分極領域Hv21、Hv22は、それぞれλ/2の長さを有する。したがって、第1高電圧部Hv1及び第2高電圧部Hv2の長さは、それぞれ2λ/2であり、互いに等しい。 The polarization region Hv1 of the first high voltage part Hv1, the polarization regions Lv11 and Lv12 of the low voltage part Lv1, and the polarization regions Hv21 and Hv22 of the second high voltage part Hv2 each have a length of λ / 2. Therefore, the lengths of the first high voltage part Hv1 and the second high voltage part Hv2 are 2λ / 2, which are equal to each other.
 低電圧部Lv1の分極領域Lv11、Lv12の分極方向は圧電体素体PBの厚み方向に平行な方向である。なお、分極領域Lv11は、圧電体素体PBの長さ方向の一端側(左端側)から3番目つまり奇数番目の分極領域であり、分極領域Lv12は圧電体素体PBの長さ方向の前記一端側から4番目つまり偶数番目の分極領域であるので、分極領域Lv11と分極領域Lv12とは互いに逆向きに分極されている。 The polarization directions of the polarization regions Lv11 and Lv12 of the low voltage part Lv1 are parallel to the thickness direction of the piezoelectric body PB. The polarization region Lv11 is the third or odd-numbered polarization region from one end side (left end side) in the length direction of the piezoelectric body PB, and the polarization region Lv12 is the length direction of the piezoelectric body PB. Since it is the fourth or even-numbered polarization region from one end side, the polarization region Lv11 and the polarization region Lv12 are polarized in opposite directions.
 第1高電圧部Hv1の分極領域Hv11、Hv12、及び第2高電圧部Hv2の分極領域Hv21、Hv22の分極方向は圧電体素体PBの長さ方向に平行な方向である。ここで、第1高電圧部Hv1の分極領域Hv11及び第2高電圧部Hv2の分極領域Hv21は、圧電体素体PBの長さ方向の一端側(左端側)からそれぞれ1番目及び5番目、すなわち奇数番目の分極領域であり、互いに同じ向きに分極されている。第1高電圧部Hv1の分極領域Hv12及び第2高電圧部Hv2の分極領域Hv22は、圧電体素体PBの長さ方向の前記一端側から2番目及び6番目、すなわち偶数番目の分極領域であり、互いに同じ向きに分極されている。しかし、第1高電圧部Hv1の分極領域Hv11及び第2高電圧部Hv2の分極領域Hv21と、第1高電圧部Hv1の分極領域Hv12及び第2高電圧部Hv2の分極領域Hv22とは、奇数番目と偶数番目との関係にあるので、互いに逆向きに分極される。 The polarization directions of the polarization regions Hv11 and Hv12 of the first high voltage portion Hv1 and the polarization regions Hv21 and Hv22 of the second high voltage portion Hv2 are parallel to the length direction of the piezoelectric body PB. Here, the polarization region Hv11 of the first high voltage part Hv1 and the polarization region Hv21 of the second high voltage part Hv2 are the first and fifth from the one end side (left end side) in the length direction of the piezoelectric body PB, respectively. That is, it is an odd-numbered polarization region and is polarized in the same direction. The polarization region Hv12 of the first high-voltage part Hv1 and the polarization region Hv22 of the second high-voltage part Hv2 are the second and sixth, that is, even-numbered polarization regions from the one end side in the length direction of the piezoelectric body PB. Yes, they are polarized in the same direction. However, the polarization region Hv11 of the first high voltage unit Hv1 and the polarization region Hv21 of the second high voltage unit Hv2, and the polarization region Hv12 of the first high voltage unit Hv1 and the polarization region Hv22 of the second high voltage unit Hv2 are odd numbers. Since they are in the relationship between the number and the even number, they are polarized in opposite directions.
 低電圧部Lv1の分極領域Lv11及び分極領域Lv12には、それぞれ、圧電体素体PBの厚み方向における一対の端部に、第1低電圧用電極EL1及び第2低電圧用電極EL2が設けられている。分極領域Lv11の第1低電圧用電極EL1と分極領域Lv12の第1低電圧用電極EL1とは互いに電気的に接続され、分極領域Lv11の第2低電圧用電極EL2と分極領域Lv12の第2低電圧用電極EL2とは互いに電気的に接続される。分極領域Lv11の第1低電圧用電極EL1と分極領域Lv12の第1低電圧用電極EL1、および、分極領域Lv11の第2低電圧用電極EL2と分極領域Lv12の第2低電圧用電極EL2とは、例えば基板等への実装状態で電気的接続がなされるように配置される。なお、低電圧部Lv1の分極領域Lv11及び分極領域Lv12のそれぞれにおいて、第1低電圧用電極EL1及び第2低電圧用電極EL2を設け、事後的に電気的接続をすることとしているのは、分極領域Lv11と分極領域Lv12とに対して個別に分極方向が反対方向になるように分極処理を行うことを可能とするためである。 In the polarization region Lv11 and the polarization region Lv12 of the low voltage portion Lv1, a first low voltage electrode EL1 and a second low voltage electrode EL2 are provided at a pair of ends in the thickness direction of the piezoelectric body PB, respectively. ing. The first low voltage electrode EL1 in the polarization region Lv11 and the first low voltage electrode EL1 in the polarization region Lv12 are electrically connected to each other, and the second low voltage electrode EL2 in the polarization region Lv11 and the second low voltage electrode EL2 in the polarization region Lv12. The low voltage electrode EL2 is electrically connected to each other. The first low voltage electrode EL1 in the polarization region Lv11 and the first low voltage electrode EL1 in the polarization region Lv12, and the second low voltage electrode EL2 in the polarization region Lv11 and the second low voltage electrode EL2 in the polarization region Lv12 Are arranged so as to be electrically connected in a mounted state on a substrate, for example. In addition, in each of the polarization region Lv11 and the polarization region Lv12 of the low voltage portion Lv1, the first low voltage electrode EL1 and the second low voltage electrode EL2 are provided, and the electrical connection is made afterwards. This is because the polarization process can be performed so that the polarization directions are individually opposite to the polarization region Lv11 and the polarization region Lv12.
 圧電体素体PBの長さ方向の一方(第1高電圧部Hv1側)の端面には第1高電圧用電極EH1が設けられ、圧電体素体PBの長さ方向の他方(第2高電圧部Hv2側)の端面には第2高電圧用電極EH2が設けられている。第1高電圧部Hv1の長さと第2高電圧部Hv2の長さは、それぞれ2λ/2であり、互いに等しい。なお、本実施形態では、第1高電圧部Hv1の分極領域Hv11と分極領域Hv12との間に第3高電圧用電極EH3が設けられ、かつ第2高電圧部Hv2の分極領域Hv21と分極領域Hv22との間に第4高電圧用電極EH4が設けられている。第3高電圧用電極EH3は、絶縁型圧電トランスTrを製造する際に、第1高電圧部Hv1の分極領域Hv11及び分極領域Hv12の分極処理を行う際に用いる電極である。第4高電圧用電極EH4は、絶縁型圧電トランスTrを製造する際に、第2高電圧部Hv2の分極領域Hv21及び分極領域Hv22の分極処理を行う際に用いる電極である A first high-voltage electrode EH1 is provided on one end surface (on the first high voltage portion Hv1 side) in the length direction of the piezoelectric body PB, and the other end (second height in the length direction of the piezoelectric body PB). A second high voltage electrode EH2 is provided on the end face of the voltage part Hv2 side. The length of the first high voltage part Hv1 and the length of the second high voltage part Hv2 are 2λ / 2, which are equal to each other. In the present embodiment, the third high voltage electrode EH3 is provided between the polarization region Hv11 and the polarization region Hv12 of the first high voltage portion Hv1, and the polarization region Hv21 and the polarization region of the second high voltage portion Hv2 are provided. A fourth high-voltage electrode EH4 is provided between the Hv22. The third high-voltage electrode EH3 is an electrode used when performing polarization treatment on the polarization region Hv11 and the polarization region Hv12 of the first high-voltage part Hv1 when the insulating piezoelectric transformer Tr is manufactured. The fourth high-voltage electrode EH4 is an electrode used when performing polarization treatment on the polarization region Hv21 and the polarization region Hv22 of the second high-voltage part Hv2 when manufacturing the insulating piezoelectric transformer Tr.
 本実施形態の絶縁型圧電トランスTrにおいては、第1高電圧用電極EH1と第2高電圧用電極EH2との間に交流電圧が入力(印加)されたときに、第1低電圧用電極EL1及び第2低電圧用電極EL2を介して(低電圧部Lv1を迂回して(図6において「ショート貫通」と示す))、第1高電圧部Hv1及び第2高電圧部Hv2に同一方向の電界が生成される。 In the insulation-type piezoelectric transformer Tr of the present embodiment, when an AC voltage is input (applied) between the first high-voltage electrode EH1 and the second high-voltage electrode EH2, the first low-voltage electrode EL1. And the second low voltage electrode EL2 (bypassing the low voltage portion Lv1 (shown as “short-circuit penetration” in FIG. 6)), the first high voltage portion Hv1 and the second high voltage portion Hv2 are arranged in the same direction. An electric field is generated.
 そして、実施形態1で説明したのと同様の原理により、第1低電圧用電極EL1と第2低電圧用電極EL2との間に降圧された交流電圧V2が出力されることとなる。 Then, on the basis of the same principle as described in the first embodiment, the stepped-down AC voltage V2 is output between the first low voltage electrode EL1 and the second low voltage electrode EL2.
 また、本実施形態の絶縁型圧電トランスTrにおいて、第1高電圧用電極EH1と第2高電圧用電極EH2との間に交流電圧V1が入力(印加)されると、降圧された交流電圧V2が、低電圧部Lv1の分極領域Lv11の第1低電圧用電極EL1と第2低電圧用電極EL2との間、及び分極領域Lv12の各第1低電圧用電極EL1と第2低電圧用電極EL2との間に出力されることとなる。その場合において、分極領域Lv11と分極領域Lv12とは互いに隣接しているので、分極領域Lv11の伸縮状態(応力の向き)と分極領域Lv12との伸縮状態(応力の向き)とは逆の状態となるが、分極領域Lv11の分極方向と分極領域Lv12の分極方向とは互いに逆向きである。そのため、結果的には、分極領域Lv11の第1低電圧用電極EL1と第2低電圧用電極EL2との間に出力される交流電圧の位相と、分極領域Lv12の各第1低電圧用電極EL1と第2低電圧用電極EL2との間に出力される交流電圧の位相とは、一致することとなる。 In the insulated piezoelectric transformer Tr of this embodiment, when the AC voltage V1 is input (applied) between the first high voltage electrode EH1 and the second high voltage electrode EH2, the reduced AC voltage V2 is applied. Are between the first low-voltage electrode EL1 and the second low-voltage electrode EL2 in the polarization region Lv11 of the low-voltage part Lv1, and the first low-voltage electrode EL1 and the second low-voltage electrode in the polarization region Lv12. It is output between EL2. In this case, since the polarization region Lv11 and the polarization region Lv12 are adjacent to each other, the stretched state (stress direction) of the polarization region Lv11 and the stretched state (stress direction) of the polarization region Lv12 are opposite to each other. However, the polarization direction of the polarization region Lv11 and the polarization direction of the polarization region Lv12 are opposite to each other. Therefore, as a result, the phase of the AC voltage output between the first low-voltage electrode EL1 and the second low-voltage electrode EL2 in the polarization region Lv11 and each first low-voltage electrode in the polarization region Lv12 The phase of the AC voltage output between EL1 and the second low-voltage electrode EL2 matches.
 ここで、本実施形態では、実施形態1同様に、第1低電圧用電極EL1及び第2低電圧用電極EL2は、第1高電圧用電極EH1及び第2高電圧用電極EH2に対して物理的に分離された浮き電極である。そのため、実施形態1同様、絶縁型圧電トランスの大型化を抑制しつつ絶縁性を確保することができる。また第1高電圧部Hv1の長さと第2高電圧部Hv2の長さとが互いに等しいので、実施形態1同様、未分極領域を設けることなく入出力を絶縁することができる等の効果が得られる。 Here, in the present embodiment, like the first embodiment, the first low voltage electrode EL1 and the second low voltage electrode EL2 are physically connected to the first high voltage electrode EH1 and the second high voltage electrode EH2. Separated floating electrodes. Therefore, as in the first embodiment, it is possible to ensure insulation while suppressing the increase in size of the insulating piezoelectric transformer. Further, since the length of the first high voltage portion Hv1 and the length of the second high voltage portion Hv2 are equal to each other, the effect that the input / output can be insulated without providing an unpolarized region is obtained as in the first embodiment. .
 特に、本実施形態の絶縁型圧電トランスTrでは、縦振動モードの次数nは6であり、低電圧部Lv1は、圧電体素体PBの長さ方向に沿って配置された2個の領域Lv11、Lv12で構成され、2個の領域Lv11、Lv12は、それぞれλ/2の長さを有し、第1低電圧用電極EL1及び第2低電圧用電極EL2は、2個の領域Lv11、Lv12のそれぞれに設けられている。したがって、低電圧部Lv1全体としての電極間容量を増加させ、出力電力を増加させることができる。 In particular, in the insulation type piezoelectric transformer Tr of the present embodiment, the order n of the longitudinal vibration mode is 6, and the low voltage portion Lv1 is two regions Lv11 arranged along the length direction of the piezoelectric body PB. , Lv12, and the two regions Lv11 and Lv12 each have a length of λ / 2, and the first low voltage electrode EL1 and the second low voltage electrode EL2 include two regions Lv11 and Lv12. Of each. Therefore, it is possible to increase the interelectrode capacitance as the entire low voltage portion Lv1 and increase the output power.
 また、本実施形態の絶縁型圧電トランスTrでは、縦振動モードの次数nは6であり、第1高電圧部Hv1は、長さ方向に沿って配置された2個の領域Hv11、Hv12を有し、第2高電圧部Hv2は、長さ方向に沿って配置された2個の領域Hv21、Hv22を有する。また領域Hv11、Hv12、Hv21、Hv22は、それぞれ、λ/2の長さを有する。これにより、第1低電圧用電極EL1及び第2低電圧用電極EL2と、第1高電圧用電極EH1及び第2高電圧用電極EH2との間の絶縁距離を大きくすることができる。したがって、絶縁型圧電トランスTrの絶縁性能(耐圧)が向上する。 Further, in the insulation type piezoelectric transformer Tr of the present embodiment, the order n of the longitudinal vibration mode is 6, and the first high voltage portion Hv1 has two regions Hv11 and Hv12 arranged along the length direction. The second high voltage unit Hv2 includes two regions Hv21 and Hv22 arranged along the length direction. The regions Hv11, Hv12, Hv21, and Hv22 each have a length of λ / 2. Thereby, the insulation distance between the first low-voltage electrode EL1 and the second low-voltage electrode EL2 and the first high-voltage electrode EH1 and the second high-voltage electrode EH2 can be increased. Therefore, the insulation performance (withstand voltage) of the insulation type piezoelectric transformer Tr is improved.
(実施形態1の変形例)
 実施形態1では、第1高電圧用電極EH1及び第2高電圧用電極EH2は、圧電体素体PBの長さ方向の端部(第1高電圧部Hv1側の端面及び第2高電圧部Hv2側の端面)に設けられているが、本実施形態の電極構造では、第1高電圧用電極EH1及び第2高電圧用電極EH2は、第1高電圧部Hv1及び第2高電圧部Hv2における側面に設けられている。
(Modification of Embodiment 1)
In the first embodiment, the first high-voltage electrode EH1 and the second high-voltage electrode EH2 are the end portions in the length direction of the piezoelectric body PB (the end surface on the first high-voltage portion Hv1 side and the second high-voltage portion). In the electrode structure of the present embodiment, the first high voltage electrode EH1 and the second high voltage electrode EH2 are the first high voltage portion Hv1 and the second high voltage portion Hv2. Is provided on the side surface.
 図7は、実施形態1の変形例の絶縁型圧電トランスTrの電極構造を示す図である。図7は、第2高電圧用電極EH2の場合の例を示す。 FIG. 7 is a diagram showing an electrode structure of an insulating piezoelectric transformer Tr according to a modification of the first embodiment. FIG. 7 shows an example in the case of the second high voltage electrode EH2.
 本変形例では、高電圧用電極は、圧電体素体PBの内部に積層状に構成され、かつ圧電トランスTrの側面に引き出されて露出している。具体的に、本変形例の第2高電圧用電極EH2では、図7に示すように、圧電体素体PBの長さ方向の端部に、複数のシート状電極EHbが圧電体素体PBの幅方向に所定の間隔で埋め込み形成されている。これらのシート状電極EHbにおける圧電体素体PBの厚み方向の両端部は、圧電体素体PBの対向する一対の端面(側面)にまで達しており、当該側面に、これらのシート状電極EHbの両端部間を接続する面電極EHaが形成されている。 In the present modification, the high voltage electrode is formed in a laminated form inside the piezoelectric body PB, and is drawn out and exposed to the side surface of the piezoelectric transformer Tr. Specifically, in the second high-voltage electrode EH2 of the present modification, as shown in FIG. 7, a plurality of sheet-like electrodes EHb are disposed at the end in the length direction of the piezoelectric body PB. Embedded in the width direction at predetermined intervals. Both end portions in the thickness direction of the piezoelectric element body PB in these sheet-like electrodes EHb reach a pair of opposing end faces (side faces) of the piezoelectric element body PB, and these sheet-like electrodes EHb are formed on the side faces. A surface electrode EHa is formed to connect the two end portions.
 図8は、実施形態1の変形例の絶縁型圧電トランスの斜視図である。つまり、図8は、実施形態1の絶縁型圧電トランスに図7で示した電極構造を適用して得られる絶縁型圧電トランスの斜視図である。図8(a)は面電極EHaを未形成の状態を示し、図8(b)は面電極EHaを形成後の状態を示す。図8(a)、(b)、(c)に示すように、第1高電圧用電極EH1及び第2高電圧用電極EH2は、圧電体素体PBの長さ方向の端部のそれぞれにおいて、複数のシート状電極EHbが圧電体素体PBの幅方向に所定の間隔で埋め込み形成され、当該部位の側面に、これらのシート状電極EHbの両端部間を接続する面電極EHaが形成されている。 FIG. 8 is a perspective view of an insulating piezoelectric transformer according to a modification of the first embodiment. That is, FIG. 8 is a perspective view of an insulating piezoelectric transformer obtained by applying the electrode structure shown in FIG. 7 to the insulating piezoelectric transformer of the first embodiment. FIG. 8A shows a state where the surface electrode EHa is not formed, and FIG. 8B shows a state after the surface electrode EHa is formed. As shown in FIGS. 8A, 8B, and 8C, the first high-voltage electrode EH1 and the second high-voltage electrode EH2 are respectively provided at the end portions in the length direction of the piezoelectric body PB. A plurality of sheet-like electrodes EHb are embedded and formed at predetermined intervals in the width direction of the piezoelectric body PB, and surface electrodes EHa are formed on the side surfaces of the portions to connect between both ends of the sheet-like electrodes EHb. ing.
 なお、本変形例においては、低電圧部Lv1の第1低電圧用電極EL1及び第2低電圧用電極EL2に関しても、実施形態1とは異なる構造を採用している。具体的に、図8(d)に示すように、低電圧部Lv1の第1低電圧用電極EL1は、圧電体素体PBの厚み方向の端面(側面)に形成された面電極ELa1と、低電圧部Lv1の内部に圧電体素体PBの幅方向に所定の間隔で埋め込み形成され、一端が面電極ELa1に接続された複数のシート状電極ELb1を有する。また、低電圧部Lv1の第2低電圧用電極EL2は、面電極ELa1に対向する端面(側面)に形成された面電極ELa2と、低電圧部Lv1の内部に圧電体素体PBの幅方向に所定の間隔で埋め込み形成され、一端が面電極ELa2に接続された複数のシート状電極ELb2を有する。このような構成とすることにより、第1低電圧用電極EL1と第2低電圧用電極EL2との間の容量を大きくして、取り出せる電力を大きくすることができる。 In this modification, the first low-voltage electrode EL1 and the second low-voltage electrode EL2 of the low-voltage part Lv1 also adopt a structure different from that of the first embodiment. Specifically, as shown in FIG. 8D, the first low-voltage electrode EL1 of the low-voltage part Lv1 includes a surface electrode ELa1 formed on the end surface (side surface) in the thickness direction of the piezoelectric body PB, The low voltage portion Lv1 has a plurality of sheet-like electrodes ELb1 embedded and formed at predetermined intervals in the width direction of the piezoelectric body PB and having one end connected to the surface electrode ELa1. The second low voltage electrode EL2 of the low voltage portion Lv1 includes a surface electrode ELa2 formed on an end face (side surface) facing the surface electrode ELa1, and a width direction of the piezoelectric body PB inside the low voltage portion Lv1. And a plurality of sheet-like electrodes ELb2 having one end connected to the surface electrode ELa2. With such a configuration, it is possible to increase the capacity between the first low-voltage electrode EL1 and the second low-voltage electrode EL2 and increase the power that can be extracted.
 第1高電圧用電極EH1及び第2高電圧用電極EH2を構成する面電極EHaは、第1低電圧用電極EL1及び第2低電圧用電極EL2が設けられた側面と同じ側面に形成されている。 The surface electrode EHa constituting the first high voltage electrode EH1 and the second high voltage electrode EH2 is formed on the same side surface as the side surface on which the first low voltage electrode EL1 and the second low voltage electrode EL2 are provided. Yes.
(実施形態2の変形例)
 図9は、実施形態2の変形例の絶縁型圧電トランスの斜視図である。つまり、図9は、実施形態2の絶縁型圧電トランスに図7で示した電極構造を適用して得られる絶縁型圧電トランスの斜視図である。第1高電圧用電極EH1、第2高電圧用電極EH2、第1低電圧用電極EL1、及び第2低電圧用電極EL2の構造は実施形態1の変形例と同じであり、説明を省略する。
(Modification of Embodiment 2)
FIG. 9 is a perspective view of an insulating piezoelectric transformer according to a modification of the second embodiment. 9 is a perspective view of an insulating piezoelectric transformer obtained by applying the electrode structure shown in FIG. 7 to the insulating piezoelectric transformer of the second embodiment. The structures of the first high-voltage electrode EH1, the second high-voltage electrode EH2, the first low-voltage electrode EL1, and the second low-voltage electrode EL2 are the same as in the modification of the first embodiment, and the description thereof is omitted. .
(実施形態3の変形例)
 図10は、実施形態3の変形例の絶縁型圧電トランスの斜視図である。つまり、図10は、実施形態3の絶縁型圧電トランスに図7で示した電極構造を適用して得られる絶縁型圧電トランスの斜視図である。第1高電圧用電極EH1、第2高電圧用電極EH2、第1低電圧用電極EL1、及び第2低電圧用電極EL2の構造は実施形態1の変形例と同じである。第3高電圧用電極EH3、第4高電圧用電極EH4の構造は、第1高電圧用電極EH1(第2高電圧用電極EH2)の構造と同一である。
(Modification of Embodiment 3)
FIG. 10 is a perspective view of an insulating piezoelectric transformer according to a modification of the third embodiment. That is, FIG. 10 is a perspective view of an insulating piezoelectric transformer obtained by applying the electrode structure shown in FIG. 7 to the insulating piezoelectric transformer of the third embodiment. The structure of the first high-voltage electrode EH1, the second high-voltage electrode EH2, the first low-voltage electrode EL1, and the second low-voltage electrode EL2 is the same as that of the modification of the first embodiment. The structure of the third high voltage electrode EH3 and the fourth high voltage electrode EH4 is the same as the structure of the first high voltage electrode EH1 (second high voltage electrode EH2).
(実施形態4の変形例)
 図11は、実施形態4の変形例の絶縁型圧電トランスの斜視図である。つまり、図11は、実施形態4の絶縁型圧電トランスに図7で示した電極構造を適用して得られる絶縁型圧電トランスの斜視図である。第1高電圧用電極EH1、第2高電圧用電極EH2、第1低電圧用電極EL1、及び第2低電圧用電極EL2の構造は実施形態1の変形例と同じである。第3高電圧用電極EH3、第4高電圧用電極EH4の構造は、第1高電圧用電極EH1(第2高電圧用電極EH2)の構造と同一である。
(Modification of Embodiment 4)
FIG. 11 is a perspective view of an insulating piezoelectric transformer according to a modification of the fourth embodiment. That is, FIG. 11 is a perspective view of an insulating piezoelectric transformer obtained by applying the electrode structure shown in FIG. 7 to the insulating piezoelectric transformer of the fourth embodiment. The structure of the first high-voltage electrode EH1, the second high-voltage electrode EH2, the first low-voltage electrode EL1, and the second low-voltage electrode EL2 is the same as that of the modification of the first embodiment. The structure of the third high voltage electrode EH3 and the fourth high voltage electrode EH4 is the same as the structure of the first high voltage electrode EH1 (second high voltage electrode EH2).
(実施形態3の変形例の絶縁型圧電トランスの実装例)
 図12は、図10で示した実施形態3の変形例の絶縁型圧電トランスの実装例を示す図である。本例では、絶縁型圧電トランスTrは、固定枠B1にフレキシブル基板F1を介して接続される。具体的に、固定枠B1には、絶縁型圧電トランスTrを嵌め込み可能な取付孔Bhが設けられている。フレキシブル基板F1は、取付孔Bhの長手方向縁部に沿って配置される。絶縁型圧電トランスは、固定枠B1の取付孔Bh内に配置され、その状態において、第1高電圧用電極EH1及び第2高電圧用電極EH2の面電極EHa及び第1低電圧用電極EL1及び第2低電圧用電極EL2の面電極ELa1、ELa2が、図13にも示すように、フレキシブル基板F1に形成された導電パターン(図示せず)に半田X1によりそれぞれ接合される。なお、半田X1に代えて、導電性接着剤を利用してもよい。なお、実施形態1、2、4の変形例の絶縁型圧電トランスにおいても、上述した実施形態3の変形例の絶縁型圧電トランスの実装例と同様の実装構造を適用可能である。
(Mounting example of insulation type piezoelectric transformer of modification of embodiment 3)
FIG. 12 is a diagram illustrating a mounting example of an insulation type piezoelectric transformer according to a modification of the third embodiment illustrated in FIG. 10. In this example, the insulating piezoelectric transformer Tr is connected to the fixed frame B1 via the flexible substrate F1. Specifically, the fixing frame B1 is provided with a mounting hole Bh into which the insulating piezoelectric transformer Tr can be fitted. The flexible substrate F1 is disposed along the longitudinal edge of the attachment hole Bh. The insulated piezoelectric transformer is disposed in the mounting hole Bh of the fixed frame B1, and in this state, the surface electrode EHa and the first low voltage electrode EL1 of the first high voltage electrode EH1 and the second high voltage electrode EH2 As shown in FIG. 13, the surface electrodes ELa1 and ELa2 of the second low-voltage electrode EL2 are respectively joined to the conductive pattern (not shown) formed on the flexible substrate F1 by the solder X1. In place of the solder X1, a conductive adhesive may be used. In addition, the same mounting structure as the mounting example of the insulating piezoelectric transformer of the modification of the third embodiment described above can be applied to the insulating piezoelectric transformer of the modification of the first, second, and fourth embodiments.
(実施形態5)
 実施形態1~4では、第1高電圧部Hv1を構成する分極領域の数と第2高電圧部Hv2を構成する分極領域の数とが等しい場合について説明した。しかし、本発明は、第1高電圧部Hv1を構成する分極領域の数と第2高電圧部Hv2を構成する分極領域の数とが等しくない場合にも適用可能である。以下、実施形態5及び6において、第1高電圧部Hv1を構成する分極領域の数と第2高電圧部Hv2を構成する分極領域の数とが等しくない場合について説明する。
(Embodiment 5)
In the first to fourth embodiments, the case where the number of polarization regions constituting the first high voltage part Hv1 is equal to the number of polarization regions constituting the second high voltage part Hv2 has been described. However, the present invention is also applicable when the number of polarization regions constituting the first high voltage part Hv1 is not equal to the number of polarization regions constituting the second high voltage part Hv2. Hereinafter, in Embodiments 5 and 6, the case where the number of polarization regions constituting the first high voltage part Hv1 is not equal to the number of polarization regions constituting the second high voltage part Hv2 will be described.
 実施形態5では、絶縁型圧電トランスTrが、次数4の縦振動モードを利用して構成されている。 In the fifth embodiment, the insulation type piezoelectric transformer Tr is configured using a longitudinal vibration mode of order 4.
 図14は、実施形態5の絶縁型圧電トランスTrの構成を示す図である。 FIG. 14 is a diagram illustrating a configuration of an insulating piezoelectric transformer Tr according to the fifth embodiment.
 本実施形態の絶縁型圧電トランスTrは共振周波数での波長をλとして、4λ/2の長さ、λ/2未満の幅、及びλ/2未満の厚みを有する圧電体素体PBを備える。 The insulated piezoelectric transformer Tr of this embodiment includes a piezoelectric body PB having a length of 4λ / 2, a width of less than λ / 2, and a thickness of less than λ / 2, where λ is a wavelength at a resonance frequency.
 圧電体素体PBは、圧電セラミックスを用いて形成されている。圧電体素体PBは、長さ方向に沿って順に、第1高電圧部Hv1、低電圧部Lv1、及び第2高電圧部Hv2を有する。 The piezoelectric element body PB is formed using piezoelectric ceramics. The piezoelectric body PB has a first high voltage part Hv1, a low voltage part Lv1, and a second high voltage part Hv2 in order along the length direction.
 低電圧部Lv1は、1個の分極領域Lv11を有する。 The low voltage part Lv1 has one polarization region Lv11.
 第1高電圧部Hv1は、圧電体素体PBの長さ方向に沿って配置された2個の分極領域
Hv11、Hv12を有する。第2高電圧部Hv2は、1個の分極領域Hv21を有する
The first high voltage unit Hv1 has two polarization regions Hv11 and Hv12 arranged along the length direction of the piezoelectric body PB. The second high voltage part Hv2 has one polarization region Hv21.
 第1高電圧部Hv1の分極領域Hv11、Hv12、低電圧部Lv1の分極領域Lv11、及び第2高電圧部Hv2の分極領域Hv21は、それぞれλ/2の長さを有する。 The polarization regions Hv11 and Hv12 of the first high voltage portion Hv1, the polarization region Lv11 of the low voltage portion Lv1, and the polarization region Hv21 of the second high voltage portion Hv2 each have a length of λ / 2.
 低電圧部Lv1の分極領域Lv11の分極方向は圧電体素体PBの厚み方向に平行な方向である。 The polarization direction of the polarization region Lv11 of the low voltage part Lv1 is a direction parallel to the thickness direction of the piezoelectric body PB.
 第1高電圧部Hv1の分極領域Hv11、Hv12、及び第2高電圧部Hv2の分極領域Hv21の分極方向は圧電体素体PBの長さ方向に平行な方向である。なお、第1高電圧部Hv1の分極領域Hv11は、圧電体素体PBの長さ方向の一端側(左端側)から1番目、すなわち奇数番目の分極領域である。これに対し、第1高電圧部Hv1の分極領域Hv12及び第2高電圧部Hv2の分極領域Hv21は、圧電体素体PBの長さ方向の前記一端側から2番目及び4番目、すなわち偶数番目の分極領域である。したがって、第1高電圧部Hv1の分極領域Hv12と第2高電圧部Hv2の分極領域Hv21とは同じ向きに分極される。しかし、これらの領域と第1高電圧部Hv1の分極領域Hv11とは、逆向きに分極される。 The polarization directions of the polarization regions Hv11 and Hv12 of the first high voltage portion Hv1 and the polarization region Hv21 of the second high voltage portion Hv2 are parallel to the length direction of the piezoelectric body PB. Note that the polarization region Hv11 of the first high-voltage part Hv1 is the first, that is, odd-numbered polarization region from one end side (left end side) in the length direction of the piezoelectric body PB. On the other hand, the polarization region Hv12 of the first high voltage part Hv1 and the polarization region Hv21 of the second high voltage part Hv2 are second and fourth from the one end side in the length direction of the piezoelectric body PB, that is, even numbers. This is the polarization region. Therefore, the polarization region Hv12 of the first high voltage part Hv1 and the polarization region Hv21 of the second high voltage part Hv2 are polarized in the same direction. However, these regions and the polarization region Hv11 of the first high voltage part Hv1 are polarized in the opposite directions.
 低電圧部Lv1の分極領域Lv11における、圧電体素体PBの厚み方向の一対の端部には、第1低電圧用電極EL1及び第2低電圧用電極EL2が設けられている。 A first low voltage electrode EL1 and a second low voltage electrode EL2 are provided at a pair of ends in the thickness direction of the piezoelectric body PB in the polarization region Lv11 of the low voltage portion Lv1.
 圧電体素体PBの長さ方向の一対の端部には第1高電圧用電極EH1及び第2高電圧用電極EH2が設けられている。なお、本実施形態では、第1高電圧部Hv1の分極領域Hv11と分極領域Hv12との間に第3高電圧用電極EH3が設けられている。第3高電圧用電極EH3は、絶縁型圧電トランスTrを製造する際に、第1高電圧部Hv1の分極領域Hv11及び分極領域Hv12の分極処理を行う際に用いる電極である。 A first high-voltage electrode EH1 and a second high-voltage electrode EH2 are provided at a pair of end portions in the length direction of the piezoelectric body PB. In the present embodiment, the third high voltage electrode EH3 is provided between the polarization region Hv11 and the polarization region Hv12 of the first high voltage unit Hv1. The third high-voltage electrode EH3 is an electrode used when performing polarization treatment on the polarization region Hv11 and the polarization region Hv12 of the first high-voltage part Hv1 when the insulating piezoelectric transformer Tr is manufactured.
 本実施形態の絶縁型圧電トランスTrにおいて、第1高電圧用電極EH1と第2高電圧用電極EH2との間に交流電圧V1を入力(印加)すると、降圧された交流電圧V2が第1低電圧用電極EL1と第2低電圧用電極EL2との間に出力されることとなる。 In the insulated piezoelectric transformer Tr of the present embodiment, when the AC voltage V1 is input (applied) between the first high voltage electrode EH1 and the second high voltage electrode EH2, the reduced AC voltage V2 is reduced to the first low voltage. The voltage is output between the voltage electrode EL1 and the second low voltage electrode EL2.
 ここで、本実施形態では、実施形態1同様に、第1低電圧用電極EL1及び第2低電圧用電極EL2は、第1高電圧用電極EH1及び第2高電圧用電極EH2に対して物理的に分離された浮き電極である。そのため、実施形態1同様、絶縁型圧電トランスの大型化を抑制しつつ絶縁性を確保することができる。 Here, in the present embodiment, like the first embodiment, the first low voltage electrode EL1 and the second low voltage electrode EL2 are physically connected to the first high voltage electrode EH1 and the second high voltage electrode EH2. Separated floating electrodes. Therefore, as in the first embodiment, it is possible to ensure insulation while suppressing the increase in size of the insulating piezoelectric transformer.
 なお、第1高電圧部Hv1の長さと第2高電圧部Hv2の長さとが異なっているため、実施形態1~4とは異なり、第1低電圧用電極EL1及び第2低電圧用電極EL2には、第1高電圧用電極EH1と第2高電圧用電極EH2との間に入力された高電圧成分による変動が現れる。しかし、第1低電圧用電極EL1に現れる高電圧成分と第2低電圧用電極EL2とに現れる高電圧成分とは、同じ大きさである。したがって、第1低電圧用電極EL1と第2低電圧用電極EL2との間には高電圧成分による電位差は発生せず、低電圧部Lv1の分極領域Lv11において圧電効果により生じた電圧のみが第1低電圧用電極EL1と第2低電圧用電極EL2との間から出力されることとなる。 Since the length of the first high voltage portion Hv1 and the length of the second high voltage portion Hv2 are different, the first low voltage electrode EL1 and the second low voltage electrode EL2 are different from the first to fourth embodiments. In this case, a fluctuation due to a high voltage component input between the first high voltage electrode EH1 and the second high voltage electrode EH2 appears. However, the high voltage component appearing on the first low voltage electrode EL1 and the high voltage component appearing on the second low voltage electrode EL2 have the same magnitude. Therefore, a potential difference due to the high voltage component does not occur between the first low voltage electrode EL1 and the second low voltage electrode EL2, and only the voltage generated by the piezoelectric effect in the polarization region Lv11 of the low voltage portion Lv1 is the first voltage. The signal is output from between the first low voltage electrode EL1 and the second low voltage electrode EL2.
(実施形態6)
 実施形態6では、絶縁型圧電トランスTrが、次数7の縦振動モードを利用して構成されている。
(Embodiment 6)
In the sixth embodiment, the insulating piezoelectric transformer Tr is configured using a longitudinal vibration mode of order 7.
 図15は、実施形態6の絶縁型圧電トランスTrの構成を示す図である。 FIG. 15 is a diagram illustrating a configuration of an insulating piezoelectric transformer Tr according to the sixth embodiment.
 本実施形態の絶縁型圧電トランスTrは共振周波数での波長をλとして、7λ/2の長さ、λ/2未満の幅、及びλ/2未満の厚みを有する圧電体素体PBを備える。 The insulated piezoelectric transformer Tr of this embodiment includes a piezoelectric body PB having a length of 7λ / 2, a width of less than λ / 2, and a thickness of less than λ / 2, where λ is a wavelength at a resonance frequency.
 圧電体素体PBは、圧電セラミックスを用いて形成されている。圧電体素体PBは、長さ方向に沿って、第1高電圧部Hv1、低電圧部Lv1、及び第2高電圧部Hv2を順に有する。 The piezoelectric element body PB is formed using piezoelectric ceramics. The piezoelectric body PB has a first high voltage part Hv1, a low voltage part Lv1, and a second high voltage part Hv2 in this order along the length direction.
 低電圧部Lv1は、圧電体素体PBの長さ方向に沿って配置された3個の分極領域Lv11、Lv12、Lv13を有する。 The low voltage portion Lv1 has three polarization regions Lv11, Lv12, and Lv13 arranged along the length direction of the piezoelectric body PB.
 第1高電圧部Hv1は、圧電体素体PBの長さ方向に沿って配置された3個の分極領域Hv11、Hv12、Hv13を有する。第2高電圧部Hv2は、1個の分極領域Hv21を有する。 The first high voltage part Hv1 has three polarization regions Hv11, Hv12, and Hv13 arranged along the length direction of the piezoelectric body PB. The second high voltage part Hv2 has one polarization region Hv21.
 第1高電圧部Hv1の分極領域Hv11、Hv12、Hv13、低電圧部Lv1の分極
領域Lv11、Lv12、Lv13、及び第2高電圧部Hv2の分極領域Hv21は、そ
れぞれλ/2の長さを有する。
The polarization regions Hv11, Hv12, Hv13 of the first high voltage portion Hv1, the polarization regions Lv11, Lv12, Lv13 of the low voltage portion Lv1, and the polarization region Hv21 of the second high voltage portion Hv2 each have a length of λ / 2. .
 低電圧部Lv1の分極領域Lv11、Lv12、Lv13の分極方向は圧電体素体PBの厚み方向に平行な方向である。なお、分極領域Lv11、Lv13は、圧電体素体PBの長さ方向の一端側(左端側)から4番目及び6番目、つまり偶数番目の分極領域であり、分極領域Lv12は圧電体素体PBの長さ方向の前記一端側から5番目つまり奇数番目の分極領域である。そのため、分極領域Lv11と分極領域Lv13とは互いに同じ向きに分極されるが、分極領域Lv12は両者に対して逆向きに分極される。 The polarization direction of the polarization regions Lv11, Lv12, Lv13 of the low voltage part Lv1 is a direction parallel to the thickness direction of the piezoelectric body PB. The polarization regions Lv11 and Lv13 are the fourth and sixth, that is, even-numbered polarization regions from one end side (left end side) in the length direction of the piezoelectric body PB, and the polarization region Lv12 is the piezoelectric body PB. The fifth or odd-numbered polarization region from the one end side in the length direction. For this reason, the polarization region Lv11 and the polarization region Lv13 are polarized in the same direction, but the polarization region Lv12 is polarized in the opposite direction.
 第1高電圧部Hv1の分極領域Hv11、Hv12、Hv13、及び第2高電圧部Hv2の分極領域Hv21の分極方向は圧電体素体PBの長さ方向に平行な方向である。なお、第1高電圧部Hv1の分極領域Hv11、Hv13、及び第2高電圧部Hv2の分極領域Hv21は、圧電体素体PBの長さ方向の一端側(左端側)から1番目、3番目、及び7番目、すなわち奇数番目の分極領域である。これに対し、第1高電圧部Hv1の分極領域Hv12は、圧電体素体PBの長さ方向の前記一端側から2番目、すなわち偶数番目の分極領域である。したがって、第1高電圧部Hv1の分極領域Hv11と、分極領域Hv13と、第2高電圧部Hv2の分極領域Hv21とは同じ向きに分極されるが、これらの領域と第1高電圧部Hv1の分極領域Hv12とは、逆向きに分極される。 The polarization directions of the polarization regions Hv11, Hv12, Hv13 of the first high voltage part Hv1 and the polarization region Hv21 of the second high voltage part Hv2 are parallel to the length direction of the piezoelectric body PB. The polarization regions Hv11 and Hv13 of the first high voltage part Hv1 and the polarization region Hv21 of the second high voltage part Hv2 are first to third from the one end side (left end side) in the length direction of the piezoelectric body PB. And the seventh, that is, odd-numbered polarization region. On the other hand, the polarization region Hv12 of the first high voltage part Hv1 is the second, ie, even-numbered polarization region from the one end side in the length direction of the piezoelectric body PB. Therefore, although the polarization region Hv11, the polarization region Hv13, and the polarization region Hv21 of the second high voltage portion Hv2 of the first high voltage portion Hv1 are polarized in the same direction, these regions and the first high voltage portion Hv1 The polarization region Hv12 is polarized in the opposite direction.
 低電圧部Lv1の分極領域Lv11、分極領域Lv12、及び分極領域Lv13における、圧電体素体PBの厚み方向の一対の端部には、それぞれ、第1低電圧用電極EL1及び第2低電圧用電極EL2が設けられている。 In the polarization region Lv11, the polarization region Lv12, and the polarization region Lv13 of the low voltage portion Lv1, a pair of ends in the thickness direction of the piezoelectric body PB are respectively provided with a first low voltage electrode EL1 and a second low voltage electrode. An electrode EL2 is provided.
 圧電体素体PBの長さ方向の一対の端部には第1高電圧用電極EH1及び第2高電圧用電極EH2が設けられている。なお、本実施形態では、第1高電圧部Hv1の分極領域Hv11と分極領域Hv12との間、分極領域Hv12と分極領域Hv13との間に、第3高電圧用電極EH3、第4高電圧用電極EH4が設けられている。第3高電圧用電極EH3及び第4高電圧用電極EH4は、絶縁型圧電トランスTrを製造する際に、第1高電圧部Hv1の分極領域Hv11、分極領域Hv12、及び分極領域Hv13の分極処理を行う際に用いる電極である。 A first high-voltage electrode EH1 and a second high-voltage electrode EH2 are provided at a pair of end portions in the length direction of the piezoelectric body PB. In the present embodiment, the third high voltage electrode EH3 and the fourth high voltage electrode are provided between the polarization region Hv11 and the polarization region Hv12 of the first high voltage unit Hv1 and between the polarization region Hv12 and the polarization region Hv13. An electrode EH4 is provided. The third high voltage electrode EH3 and the fourth high voltage electrode EH4 are used to polarize the polarization region Hv11, the polarization region Hv12, and the polarization region Hv13 of the first high voltage portion Hv1 when the insulating piezoelectric transformer Tr is manufactured. It is an electrode used when performing.
 本実施形態の絶縁型圧電トランスTrにおいては、第1高電圧用電極EH1と第2高電圧用電極EH2との間に交流電圧が入力(印加)されたときに、第1低電圧用電極EL1及び第2低電圧用電極EL2を介して(低電圧部Lv1を迂回して(図6において「ショート貫通」と示す))、第1高電圧部Hv1及び第2高電圧部Hv2に同一方向の電界が生成される。 In the insulation-type piezoelectric transformer Tr of the present embodiment, when an AC voltage is input (applied) between the first high-voltage electrode EH1 and the second high-voltage electrode EH2, the first low-voltage electrode EL1. And the second low voltage electrode EL2 (bypassing the low voltage portion Lv1 (shown as “short-circuit penetration” in FIG. 6)), the first high voltage portion Hv1 and the second high voltage portion Hv2 are arranged in the same direction. An electric field is generated.
 そして、実施形態1で説明したのと同様の原理により、第1低電圧用電極EL1と第2低電圧用電極EL2との間に降圧された交流電圧V2が出力されることとなる。 Then, on the basis of the same principle as described in the first embodiment, the stepped-down AC voltage V2 is output between the first low voltage electrode EL1 and the second low voltage electrode EL2.
 また、本実施形態の絶縁型圧電トランスTrにおいて、第1高電圧用電極EH1と第2高電圧用電極EH2との間に交流電圧V1が入力(印加)されると、降圧された交流電圧V2が、低電圧部Lv1の分極領域Lv11の第1低電圧用電極EL1と第2低電圧用電極EL2との間、分極領域Lv12の第1低電圧用電極EL1と第2低電圧用電極EL2との間、及び分極領域Lv13の第1低電圧用電極EL1と第2低電圧用電極EL2との間に出力されることとなる。このとき、実施形態2で説明したのと同様の理由により、分極領域Lv11の第1低電圧用電極EL1と第2低電圧用電極EL2との間に出力される交流電圧の位相と、分極領域Lv12の各第1低電圧用電極EL1と第2低電圧用電極EL2との間に出力される交流電圧の位相と、分極領域Lv13の各第1低電圧用電極EL1と第2低電圧用電極EL2との間に出力される交流電圧の位相とは、一致することとなる。 In the insulated piezoelectric transformer Tr of this embodiment, when the AC voltage V1 is input (applied) between the first high voltage electrode EH1 and the second high voltage electrode EH2, the reduced AC voltage V2 is applied. Are between the first low-voltage electrode EL1 and the second low-voltage electrode EL2 in the polarization region Lv11 of the low-voltage part Lv1, and between the first low-voltage electrode EL1 and the second low-voltage electrode EL2 in the polarization region Lv12. And between the first low voltage electrode EL1 and the second low voltage electrode EL2 in the polarization region Lv13. At this time, for the same reason as described in the second embodiment, the phase of the AC voltage output between the first low voltage electrode EL1 and the second low voltage electrode EL2 in the polarization region Lv11, and the polarization region The phase of the alternating voltage output between each first low voltage electrode EL1 and second low voltage electrode EL2 of Lv12, and each first low voltage electrode EL1 and second low voltage electrode of polarization region Lv13 The phase of the alternating voltage output between EL2 will be in agreement.
 ここで、本実施形態では、実施形態1同様に、第1低電圧用電極EL1及び第2低電圧用電極EL2は、第1高電圧用電極EH1及び第2高電圧用電極EH2に対して物理的に分離された浮き電極である。そのため、実施形態1同様、絶縁型圧電トランスの大型化を抑制しつつ絶縁性を確保することができる。 Here, in the present embodiment, like the first embodiment, the first low voltage electrode EL1 and the second low voltage electrode EL2 are physically connected to the first high voltage electrode EH1 and the second high voltage electrode EH2. Separated floating electrodes. Therefore, as in the first embodiment, it is possible to ensure insulation while suppressing the increase in size of the insulating piezoelectric transformer.
 なお、第1高電圧部Hv1の長さと第2高電圧部Hv2の長さとが異なっているが、実施形態5で説明したように、第1低電圧用電極EL1と第2低電圧用電極EL2との間には、高電圧成分による電位差は生じず、低電圧部Lv1の分極領域Lv11において圧電効果により生じた電圧のみが第1低電圧用電極EL1と第2低電圧用電極EL2との間から出力されることとなる。 Although the length of the first high voltage portion Hv1 and the length of the second high voltage portion Hv2 are different, as described in the fifth embodiment, the first low voltage electrode EL1 and the second low voltage electrode EL2 are used. Between the first low-voltage electrode EL1 and the second low-voltage electrode EL2, only the voltage generated by the piezoelectric effect in the polarization region Lv11 of the low-voltage portion Lv1 does not occur. Will be output.
(その他の実施の形態)
 前記各実施形態では、絶縁型圧電トランスTrを、次数3~7の縦振動モードを利用して構成した場合について説明した。しかし、本発明の技術思想は、次数が8以上の場合にも適用可能である。また、前記各実施形態では、低電圧部、第1高電圧部、及び第2高電圧部が1つの領域のみ、または2つの領域を有する場合について説明した。しかし、低電圧部、第1高電圧部、及び第2高電圧部は、それぞれ3個以上の領域を有していてもよい。その場合、複数の領域はそれぞれλ/2の長さを有し、各領域の分極方向が前述の分極方向設定の考え方に基づいて設定されていればよい。
(Other embodiments)
In each of the above embodiments, the case where the insulating piezoelectric transformer Tr is configured using the longitudinal vibration mode of the order 3 to 7 has been described. However, the technical idea of the present invention can also be applied when the order is 8 or more. In each of the above embodiments, the case where the low voltage unit, the first high voltage unit, and the second high voltage unit have only one region or two regions has been described. However, each of the low voltage part, the first high voltage part, and the second high voltage part may have three or more regions. In this case, each of the plurality of regions has a length of λ / 2, and the polarization direction of each region may be set based on the above-described concept of setting the polarization direction.
 前記各実施形態では、絶縁型圧電トランスTrを、降圧トランスとして利用した場合について説明した。しかし、本発明に係る各実施形態の絶縁型圧電トランスTrは、昇圧トランスとしても利用することができる。すなわち、第1低電圧用電極EL1と第2低電圧用電極EL2との間に交流電圧を入力し、第1高電圧用電極EH1と第2高電圧用電極EH2との間から昇圧された交流電圧を出力させる。なお、本発明に係る各実施形態の絶縁型圧電トランスTrは、例えば一対の低電圧電極の電極間容量と一対の高電圧電極の電極間容量とを等しくすることで、電圧を変圧させずに絶縁することが可能な絶縁トランスとして構成することができる。つまり、本発明に係る絶縁型圧電トランスは、絶縁だけを目的としたトランスとして構成することもできる。
 すなわち、
 本発明の絶縁型圧電トランスにおいて、
 前記一対の低電圧電極の電極間容量と一対の高電圧電極の電極間容量とが等しく設定され、
 前記一対の低電圧電極間と前記一対の高電圧電極間とのいずれか一方の電極間に交流電圧が入力されたときに、他方の電極間に、前記一方の電極間に入力された交流電圧と同じ大きさの交流電圧が出力される。
In each of the above embodiments, the case where the insulating piezoelectric transformer Tr is used as a step-down transformer has been described. However, the insulating piezoelectric transformer Tr of each embodiment according to the present invention can also be used as a step-up transformer. That is, an AC voltage is input between the first low voltage electrode EL1 and the second low voltage electrode EL2, and the AC voltage is boosted from between the first high voltage electrode EH1 and the second high voltage electrode EH2. Output voltage. Insulating piezoelectric transformers Tr according to the embodiments of the present invention, for example, make the interelectrode capacitance of a pair of low voltage electrodes equal to the interelectrode capacitance of a pair of high voltage electrodes without transforming the voltage. It can be configured as an insulating transformer that can be insulated. That is, the insulation type piezoelectric transformer according to the present invention can be configured as a transformer for the purpose of insulation only.
That is,
In the insulated piezoelectric transformer of the present invention,
The interelectrode capacity of the pair of low voltage electrodes and the interelectrode capacity of the pair of high voltage electrodes are set equal,
When an AC voltage is input between any one of the pair of low voltage electrodes and between the pair of high voltage electrodes, the AC voltage input between the one electrode and the other electrode. AC voltage of the same magnitude as is output.
 図16は、電界結合型ワイヤレス電力伝送装置の送電装置100に本実施形態の昇圧トランスを適用した例を示す。図16の送電装置100では、送電回路110が発生した交流電圧を昇圧トランスTr1により昇圧し、一対の送電電極Eta、Etp間に印加する。図16のように、昇圧トランスとして、圧電トランスを用いることにより、巻線トランスを用いる場合よりも、送電装置100を小型化することができる。 FIG. 16 shows an example in which the step-up transformer of this embodiment is applied to the power transmission device 100 of the electric field coupling type wireless power transmission device. In the power transmission device 100 of FIG. 16, the AC voltage generated by the power transmission circuit 110 is boosted by the step-up transformer Tr1 and applied between the pair of power transmission electrodes Eta and Etp. As shown in FIG. 16, by using a piezoelectric transformer as a step-up transformer, the power transmission device 100 can be made smaller than when a winding transformer is used.
 前記各実施形態では、本発明の絶縁型圧電トランスを電界結合型ワイヤレス電力伝送システムに適用した場合について説明した。しかし、本発明の絶縁型圧電トランスは、磁界結合型(電磁結合型、磁気結合型)や磁界共鳴型(電磁共鳴型、磁気共鳴型)のワイヤレス電力伝送システムの受電装置や送電装置にも適用可能である。すなわち、本発明における送電電極は送電コイル(インダクタ)であり、本発明における受電電極は受電コイル(インダクタ)である。送電コイルは、絶縁型圧電トランスの高電圧用電極に接続される。より詳しくは、送電コイルは、絶縁型圧電トランスの一対の高電圧用電極間に接続される。また、受電コイルは、絶縁型圧電トランスの高電圧用電極に接続される。より詳しくは、受電コイルは、絶縁型圧電トランスの一対の高電圧用電極間に接続される。これにより、磁界結合型や磁界共鳴型のワイヤレス電力伝送システムの受電装置や送電装置を小型化及び低背化することができる。 In each of the above embodiments, the case where the insulating piezoelectric transformer of the present invention is applied to an electric field coupling type wireless power transmission system has been described. However, the insulating piezoelectric transformer of the present invention is also applied to a power receiving device and a power transmitting device of a magnetic power coupling type (electromagnetic coupling type, magnetic coupling type) or magnetic field resonance type (electromagnetic resonance type, magnetic resonance type) wireless power transmission system. Is possible. That is, the power transmission electrode in the present invention is a power transmission coil (inductor), and the power reception electrode in the present invention is a power reception coil (inductor). The power transmission coil is connected to the high voltage electrode of the insulation type piezoelectric transformer. More specifically, the power transmission coil is connected between a pair of high voltage electrodes of an insulating piezoelectric transformer. The power receiving coil is connected to the high voltage electrode of the insulating piezoelectric transformer. More specifically, the power receiving coil is connected between a pair of high voltage electrodes of an insulating piezoelectric transformer. As a result, the power receiving device and power transmitting device of the magnetic field coupling type and magnetic field resonance type wireless power transmission system can be reduced in size and height.
 本発明に係る絶縁型圧電トランスは、種々の電子機器、電気機器において広く利用可能である。 The insulated piezoelectric transformer according to the present invention can be widely used in various electronic devices and electrical devices.
100 送電装置
200 受電装置
110 送電回路
210 負荷回路
B1 固定枠
Bh 取付孔
Era 受電電極(受電側アクティブ電極)
Erp 受電電極(受電側パッシブ電極)
Eta 送電電極(送電側アクティブ電極)
Etp 送電電極(送電側パッシブ電極)
EL1 第1低電圧用電極
EL2 第2低電圧用電極
EH1 第1高電圧用電極
EH2 第2高電圧用電極
EH3 第3高電圧用電極
EH4 第4高電圧用電極
F1 フレキシブル基板
Hv1 第1高電圧部
Hv11 分極領域
Hv12 分極領域
Hv13 分極領域
Hv2 第2高電圧部
Hv21 分極領域
Hv22 分極領域
Lv1 低電圧部
Lv11 分極領域
Lv12 分極領域
Lv13 分極領域
PB 圧電体素体
Tr 降圧トランス(絶縁型圧電トランス)
X1 半田
DESCRIPTION OF SYMBOLS 100 Power transmission apparatus 200 Power receiving apparatus 110 Power transmission circuit 210 Load circuit B1 Fixed frame Bh Mounting hole Era Power receiving electrode (Power receiving side active electrode)
Erp power receiving electrode (power-receiving-side passive electrode)
Eta power transmission electrode (power transmission side active electrode)
Etp power transmission electrode (power transmission side passive electrode)
EL1 first low voltage electrode EL2 second low voltage electrode EH1 first high voltage electrode EH2 second high voltage electrode EH3 third high voltage electrode EH4 fourth high voltage electrode F1 flexible substrate Hv1 first high voltage Part Hv11 Polarization region Hv12 Polarization region Hv13 Polarization region Hv2 Second high voltage part Hv21 Polarization region Hv22 Polarization region Lv1 Low voltage part Lv11 Polarization region Lv12 Polarization region Lv13 Polarization region PB Piezoelectric element Tr Step-down transformer (insulating piezoelectric transformer)
X1 solder

Claims (7)

  1.  次数n(nは3以上の整数)の縦振動モードを利用する絶縁型圧電トランスであって、
     共振周波数での波長をλとして、nλ/2の長さを有する圧電体素体を備え、
     前記圧電体素体は、長さ方向に沿って第1高電圧部、低電圧部、及び第2高電圧部を順に有し、
     前記低電圧部は、前記圧電体素体の長さ方向に沿って、λ/2の長さを有する整数個の分極領域を有し、
     前記第1高電圧部及び前記第2高電圧部は、それぞれ、前記圧電体素体の長さ方向に沿って、λ/2の長さを有する整数個の分極領域を有し、
     前記低電圧部を構成する分極領域の分極方向は、
      前記圧電体素体の厚み方向に平行で、
      かつ前記低電圧部を構成する分極領域の数が2以上であるときは、前記圧電体素体の長さ方向の一端側から奇数番目どうしおよび偶数番目どうしは同じ向きとなるように設定され、また、奇数番目の分極領域と偶数番目の分極領域とで逆向きとなるように設定され、
     前記第1高電圧部及び前記第2高電圧部を構成する分極領域の分極方向は、
      前記圧電体素体の長さ方向に平行で、
      かつ前記圧電体素体の長さ方向の一端側から奇数番目どうしおよび偶数番目どうしは同じ向きとなるように設定され、また、奇数番目の分極領域と偶数番目の分極領域とで逆向きとなるように設定され、
     前記低電圧部の前記圧電体素体の厚み方向の一対の端部にそれぞれ低電圧用電極が設けられ、
     前記圧電体素体の長さ方向の一対の端部にそれぞれ高電圧用電極が設けられ、
     前記低電圧用電極と前記高電圧用電極とは物理的に分離されている、
    絶縁型圧電トランス。
    An insulating piezoelectric transformer using a longitudinal vibration mode of order n (n is an integer of 3 or more),
    Provided with a piezoelectric body having a length of nλ / 2, where λ is the wavelength at the resonance frequency,
    The piezoelectric body has a first high voltage part, a low voltage part, and a second high voltage part in order along the length direction,
    The low voltage part has an integer number of polarization regions having a length of λ / 2 along the length direction of the piezoelectric body.
    Each of the first high voltage part and the second high voltage part has an integral number of polarization regions having a length of λ / 2 along the length direction of the piezoelectric element body,
    The polarization direction of the polarization region constituting the low voltage part is:
    Parallel to the thickness direction of the piezoelectric body,
    And when the number of polarization regions constituting the low-voltage part is 2 or more, the odd-numbered and even-numbered ones from one end side in the length direction of the piezoelectric element body are set to be in the same direction, In addition, the odd-numbered polarization region and the even-numbered polarization region are set to be in opposite directions,
    The polarization directions of the polarization regions constituting the first high voltage part and the second high voltage part are:
    Parallel to the length direction of the piezoelectric body,
    And the odd-numbered and even-numbered ones are set to be in the same direction from one end side in the length direction of the piezoelectric body, and the odd-numbered and even-numbered polarized regions are in opposite directions. Is set to
    Low voltage electrodes are respectively provided at a pair of end portions in the thickness direction of the piezoelectric body of the low voltage portion,
    High-voltage electrodes are respectively provided at a pair of end portions in the length direction of the piezoelectric body,
    The low voltage electrode and the high voltage electrode are physically separated,
    Insulation type piezoelectric transformer.
  2.  前記第1高電圧部を構成する分極領域の数と前記第2高電圧部を構成する分極領域の数とが同じであり、
     前記第1高電圧部の長さと前記第2高電圧部の長さとが等しい、
    請求項1に記載の絶縁型圧電トランス。
    The number of polarization regions constituting the first high voltage part and the number of polarization regions constituting the second high voltage part are the same,
    The length of the first high voltage part is equal to the length of the second high voltage part,
    The insulated piezoelectric transformer according to claim 1.
  3.  前記高電圧用電極に交流電圧が入力され、前記低電圧用電極から降圧された交流電圧が出力される、
    請求項1または2に記載の絶縁型圧電トランス。
    An AC voltage is input to the high voltage electrode, and an AC voltage stepped down from the low voltage electrode is output.
    The insulated piezoelectric transformer according to claim 1 or 2.
  4.  前記低電圧用電極に交流電圧が入力され、前記高電圧用電極から昇圧された交流電圧が出力される、
    請求項1または2に記載の絶縁型圧電トランス。
    An AC voltage is input to the low voltage electrode, and a boosted AC voltage is output from the high voltage electrode.
    The insulated piezoelectric transformer according to claim 1 or 2.
  5.  前記圧電体素体は、λ/2未満の幅、及びλ/2未満の厚みを有する、
    請求項1から4のいずれか1項に記載の絶縁型圧電トランス。
    The piezoelectric body has a width of less than λ / 2 and a thickness of less than λ / 2.
    The insulation type piezoelectric transformer according to any one of claims 1 to 4.
  6.  請求項4に記載の絶縁型圧電トランスを備え、
     前記絶縁型圧電トランスの前記高電圧用電極に受電電極が接続され、
     前記絶縁型圧電トランスの前記低電圧用電極に受電回路の入力が接続されている、
    ワイヤレス電力伝送システム用の受電装置。
    An insulating piezoelectric transformer according to claim 4,
    A receiving electrode is connected to the high voltage electrode of the insulating piezoelectric transformer,
    An input of a power receiving circuit is connected to the low voltage electrode of the insulation type piezoelectric transformer.
    A power receiving device for a wireless power transmission system.
  7.  請求項5に記載の絶縁型圧電トランスを備え、
     前記絶縁型圧電トランスの前記低電圧用電極に送電回路の出力が接続され、
     前記絶縁型圧電トランスの前記高電圧用電極に送電電極が接続されている、
    ワイヤレス電力伝送システム用の送電装置。
    An insulating piezoelectric transformer according to claim 5 is provided,
    An output of a power transmission circuit is connected to the low voltage electrode of the insulation type piezoelectric transformer,
    A power transmission electrode is connected to the high voltage electrode of the insulating piezoelectric transformer.
    A power transmission device for a wireless power transmission system.
PCT/JP2014/074925 2013-10-03 2014-09-19 Insulated piezoelectric transformer WO2015050009A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015540453A JP6172286B2 (en) 2013-10-03 2014-09-19 Power receiving device and power transmitting device for wireless power transmission system

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2013208375 2013-10-03
JP2013-208375 2013-10-03
JP2014-030669 2014-02-20
JP2014030669 2014-02-20
JP2014099434 2014-05-13
JP2014-099434 2014-05-13

Publications (1)

Publication Number Publication Date
WO2015050009A1 true WO2015050009A1 (en) 2015-04-09

Family

ID=52778602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074925 WO2015050009A1 (en) 2013-10-03 2014-09-19 Insulated piezoelectric transformer

Country Status (2)

Country Link
JP (1) JP6172286B2 (en)
WO (1) WO2015050009A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004055718A (en) * 2002-07-18 2004-02-19 Toko Inc Piezoelectric transformer
WO2013080874A1 (en) * 2011-12-01 2013-06-06 株式会社村田製作所 Piezoelectric transformer, module for piezoelectric transformer, and wireless power-transmission system
JP2013529048A (en) * 2011-05-13 2013-07-11 株式会社村田製作所 POWER TRANSMISSION DEVICE, POWER RECEIVING DEVICE, AND POWER TRANSMISSION SYSTEM

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08213666A (en) * 1995-01-31 1996-08-20 晃 ▲徳▼島 Piezoelectric resonator
JP4297388B2 (en) * 1998-04-24 2009-07-15 Necトーキン株式会社 Piezoelectric transformer
JP3186046B2 (en) * 1998-09-25 2001-07-11 日本電気株式会社 Piezoelectric ceramic transformer and driving method thereof
JP3457899B2 (en) * 1998-11-18 2003-10-20 太陽誘電株式会社 Piezoelectric transformer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004055718A (en) * 2002-07-18 2004-02-19 Toko Inc Piezoelectric transformer
JP2013529048A (en) * 2011-05-13 2013-07-11 株式会社村田製作所 POWER TRANSMISSION DEVICE, POWER RECEIVING DEVICE, AND POWER TRANSMISSION SYSTEM
WO2013080874A1 (en) * 2011-12-01 2013-06-06 株式会社村田製作所 Piezoelectric transformer, module for piezoelectric transformer, and wireless power-transmission system

Also Published As

Publication number Publication date
JP6172286B2 (en) 2017-08-02
JPWO2015050009A1 (en) 2017-03-09

Similar Documents

Publication Publication Date Title
CN102893493A (en) Power transmitting device, power receiving device, and power transmission system
JP6032366B2 (en) Wireless power transmission system
JP6183243B2 (en) Power transmission system, power receiving device, and power transmitting device
JP6577667B2 (en) Piezoelectric transformer
KR20200097288A (en) 3-port voltage converter transformer, 3-port voltage converter, and electrical energy transfer method
JP6172286B2 (en) Power receiving device and power transmitting device for wireless power transmission system
JP2008159817A (en) Reactor and power supply device using it
US20140265624A1 (en) Piezoelectric transformer, piezoelectric transformer module, and wireless power transmission system
JP6132066B2 (en) Power transmission system
US11094874B2 (en) Piezoelectric vibration device
JP5867663B1 (en) Piezoelectric transformer
US20140265623A1 (en) Step-down circuit and power receiving device using step-down circuit
JP2019009851A (en) Dielectric elastomer transducer and dielectric elastomer driving device
US9379308B2 (en) Piezoelectric component
JP2001068752A (en) Piezoelectric transformer
JP2015092545A (en) Piezoelectric transformer, and wireless power transmission system
JP2001196655A (en) Piezoelectric transformer circuit
JP2014175484A (en) Piezoelectric transformer, mounting structure of piezoelectric transformer, and wireless power transmission system
JP2017084857A (en) Piezoelectric transformer and piezoelectric transformer device
JP2003008098A (en) Laminated piezoelectric transformer
JP4743935B2 (en) Piezoelectric transformer and AD converter
JP2013131589A (en) Winding for transformer, transformer, and power converter
JP2001135875A (en) Piezoelectric transformer
JP2020021868A (en) Piezoelectric transformer and electronic device having the same
JP2019169690A (en) Transformer and LLC resonant circuit using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14850631

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015540453

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14850631

Country of ref document: EP

Kind code of ref document: A1