WO2015049807A1 - Server device - Google Patents

Server device Download PDF

Info

Publication number
WO2015049807A1
WO2015049807A1 PCT/JP2013/077186 JP2013077186W WO2015049807A1 WO 2015049807 A1 WO2015049807 A1 WO 2015049807A1 JP 2013077186 W JP2013077186 W JP 2013077186W WO 2015049807 A1 WO2015049807 A1 WO 2015049807A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat generating
circuit board
server
generating member
Prior art date
Application number
PCT/JP2013/077186
Other languages
French (fr)
Japanese (ja)
Inventor
健太郎 佐野
西原 淳夫
加藤 猛
智子 依田
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2013/077186 priority Critical patent/WO2015049807A1/en
Publication of WO2015049807A1 publication Critical patent/WO2015049807A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • H05K1/0204Cooling of mounted components using means for thermal conduction connection in the thickness direction of the substrate
    • H05K1/0206Cooling of mounted components using means for thermal conduction connection in the thickness direction of the substrate by printed thermal vias
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • H05K1/0204Cooling of mounted components using means for thermal conduction connection in the thickness direction of the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • H05K7/20254Cold plates transferring heat from heat source to coolant
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • H05K7/20263Heat dissipaters releasing heat from coolant
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/208Liquid cooling with phase change
    • H05K7/20809Liquid cooling with phase change within server blades for removing heat from heat source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/06Thermal details
    • H05K2201/066Heatsink mounted on the surface of the printed circuit board [PCB]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09818Shape or layout details not covered by a single group of H05K2201/09009 - H05K2201/09809
    • H05K2201/09827Tapered, e.g. tapered hole, via or groove
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10227Other objects, e.g. metallic pieces
    • H05K2201/10378Interposers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10227Other objects, e.g. metallic pieces
    • H05K2201/10416Metallic blocks or heatsinks completely inserted in a PCB
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4602Manufacturing multilayer circuits characterized by a special circuit board as base or central core whereon additional circuit layers are built or additional circuit boards are laminated

Definitions

  • the present invention relates to a server device that can achieve both high-density mounting of heat generating members and high cooling performance for cooling the heat generating members.
  • a rack-mount type server device accommodates a large number of server modules inside a rack cabinet.
  • Each server module has a configuration in which a large number of electronic devices such as a CPU and a memory are mounted on a circuit board.
  • the electronic device serves as a heat generating member that generates heat. Therefore, the server device needs to cool the electronic device.
  • a technique for cooling an electronic device for example, there is a technology in which a circuit board on which an electronic device is mounted is configured as described in (1) to (3) below.
  • the circuit board described in Patent Document 1 is made of glass ceramics, has an insulating substrate having a mounting portion for a heat generating element on its upper surface, a wiring conductor electrically connected to the heat generating element, and mounting And a through conductor for radiating the heat generated by the heat generating element on the lower surface side of the insulating substrate.
  • the through conductor contains copper in a proportion of 85% by volume or more, and is formed by firing simultaneously with the insulating substrate.
  • the heat-generating element constitutes an electronic device that serves as a heat-generating member.
  • this circuit board can obtain a thermal conductivity of 20 W / m ⁇ K or more, which is the same as that of an alumina wiring board, it is possible to efficiently cool the heat-generating element that is a heat-generating member.
  • the circuit board described in Patent Document 2 is made of an insulating material, has an electronic device mounting portion on the surface side, and has an electrically conductive pattern formed at least on the surface side. And a thermal via provided at the mounting position.
  • the thermal via has a configuration in which a thermally conductive material connected to an electronic device is filled in through holes provided in the front surface side and the back surface side of the insulating substrate.
  • the thermal via is formed so that the opening area on the front surface side of the substrate is smaller than the opening area on the back surface side of the substrate.
  • the electronic device is mounted on the surface side of the substrate through a plurality of bumps made of a conductive material. At least one of the bumps is connected to the thermally conductive material at a position corresponding to the opening on the surface side of the thermal via.
  • This circuit board is formed such that the opening area on the front surface side of the thermal via is smaller than the opening area on the back surface side, and the bump for mounting the electronic device on the substrate is connected to the thermal via.
  • This circuit board is formed so that the opening area of the thermal via on the surface side of the board is small. Therefore, this circuit board can arrange a conductor pattern etc. on the surface side of a board with high density. Further, this circuit board is formed with a large opening area of the thermal via on the back side of the board. Therefore, this circuit board can efficiently dissipate heat generated in the electronic device from the back side of the board.
  • the circuit board is mounted with bumps in a state where the electronic device is lifted from the board by each bump. Therefore, this circuit board can stabilize the heat radiation path from the electronic device to the thermal via via each bump.
  • the thermal via improves the heat dissipation of the electronic device and increases the opening area on the surface side of the thermal via as necessary. Since it can be formed small, it is possible to achieve both miniaturization of the entire device and securing of heat dissipation.
  • the circuit board described in Patent Document 3 is composed of a sintered body of a glass ceramic composition containing glass powder and a ceramic filler, and has a substrate having a mounting surface on which a semiconductor element is mounted, and a plurality of substrates
  • the layer is formed by being laminated from the mounting surface to the non-mounting surface opposite to the mounting surface, and includes a thermal via for radiating heat generated in the semiconductor element on the lower surface side of the substrate.
  • the thermal via is formed by laminating layers having different diameters of the opening.
  • the thermal via is formed so that the diameter on the non-mounting surface side is larger than the diameter on the mounting surface side in at least two arbitrary layers in contact with each other among the layers.
  • the semiconductor element constitutes an electronic device serving as a heat generating member.
  • This circuit board can prevent an increase in the heat transfer resistance of the thermal via even when the position of the through hole of each layer is shifted when forming each layer of the thermal via.
  • JP 2004-228410 A JP 2003-338777 A JP 2012-18948 A
  • Patent Documents 1 to 3 provide high cooling performance for mounting the heat generating members at a high density and cooling the heat generating members as described below. There was a problem that it was difficult to achieve both.
  • the server device needs to accommodate the server module within one unit standard of the rack cabinet, the server module is reduced in size and thickness.
  • the server device is required to increase the processing speed and communication speed of the server module, and in order to satisfy this demand, high performance and high density mounting of the electronic device which is a heat generating member is achieved. . As a result, the amount of heat generated inside the server device tends to increase.
  • the liquid cooling type cooling system is a system that cools a space around an electronic device using a cooling liquid.
  • the distance between electronic devices on the circuit board needs to be shortened to be dense when improving the communication speed of the server module.
  • the area of the circuit board is reduced, and as a result, the heat dissipation area of the circuit board is limited.
  • Patent Document 1 and Patent Document 2 uses an air-cooled cooling system via a circuit board.
  • the conventional techniques described in Patent Document 1 and Patent Document 2 are configured to conduct heat from an electronic device, which is a heat generating member, to a refrigerant via a circuit board.
  • Such conventional techniques described in Patent Document 1 and Patent Document 2 have the following problems (1) to (3), for example.
  • the thermal via is formed by laminating layers having different diameters of the opening, so that the diameter of the thermal via on the non-mounting surface side is larger than the diameter on the mounting surface side. Is formed.
  • the prior art described in Patent Document 3 improves the heat dissipation performance of the circuit board.
  • Patent Document 3 in order to form openings having different diameters for each layer to be laminated, a manufacturing process using drills having different diameters for each layer is required, which increases the manufacturing cost. There was a problem to do.
  • the present invention has been made in order to solve the above-described problems, and is a server device capable of achieving both mounting of heat generating members at high density and obtaining high cooling performance for cooling the heat generating members.
  • the main purpose is to provide
  • the first invention is a server device, wherein the heat generating member and the heat radiating member are mounted on one surface and the other surface so as to face each other, and the circuit substrate
  • the circuit board includes a plurality of thermal vias that thermally connect the heat generating member and the heat radiating member, and the heat radiating member includes the airtight container. It is set as the structure immersed in the insulating inert refrigerant
  • the heat generating member and the heat radiating member are separately mounted on one surface and the other surface of the circuit board, the heat generating member can be mounted with high density. Moreover, since this server apparatus mounts a heat radiating member in an empty space on the other surface of the circuit board on which the heat generating member is not mounted, a heat radiating member having a mounting area larger than the mounting area of the heat generating member is mounted on the circuit board. As a result, high cooling performance for cooling the heat generating member can be obtained.
  • this server device since the heat generating member and the heat radiating member are thermally connected to each other by a thermal via and the heat radiating member is immersed in an insulating inert refrigerant in a liquid phase state, this server device also provides high cooling. Performance can be obtained.
  • the second invention is a server device, wherein a circuit board in which two or more layers of a resin substrate and an insulating substrate are laminated, a heat generating member mounted on one surface of the circuit board, and the other of the circuit boards A heat dissipating member mounted at a position facing the heat generating member on the surface of the surface, and a plurality of thermal vias formed inside the circuit board and thermally connecting the heat generating member and the heat dissipating member,
  • the thermal via is connected to the heat generating member and the heat dissipating member through a heat transfer member disposed inside the circuit board so that N> M, where N> M (where N and M are both An integer), and between the heat generating member and the thermal via and between the heat radiating member and the thermal via, respectively, are connected by a solder material, and between the heat radiating member and the thermal via,
  • the solder material for connecting the Than solder material for connecting between the heat member and the thermal via a configuration that has a larger diameter.
  • the heat generating member and the heat radiating member are separately mounted on one surface and the other surface of the circuit board, the heat generating member can be mounted with high density. Moreover, since this server apparatus mounts a heat radiating member in an empty space on the other surface of the circuit board on which the heat generating member is not mounted, a heat radiating member having a mounting area larger than the mounting area of the heat generating member is mounted on the circuit board. As a result, high cooling performance for cooling the heat generating member can be obtained.
  • the solder material connecting the heat radiating member and the thermal via is formed to have a larger diameter than the solder material connecting the heat generating member and the thermal via. While efficiently dissipating the heat radiating member having a larger mounting area than the mounting area of the member on the circuit board, the heat transfer efficiency can be increased, and as a result, high cooling performance can be obtained. Other means will be described later.
  • the present invention it is possible to provide a server device that can achieve both high-density mounting of heat-generating members and high cooling performance for cooling the heat-generating members.
  • FIG. 1 is a diagram illustrating a schematic configuration of a server device and a cooling system used for cooling the server device according to the first embodiment.
  • 2A and 2B are diagrams illustrating a schematic configuration of a 1U server that configures the server device according to the first embodiment, and FIG. 2A is a top view of the 1U server.
  • b) is a perspective view of the 1U server with the guide rail removed.
  • FIG. 3 is a perspective view illustrating a schematic configuration of a server module incorporated in the server apparatus according to the first embodiment.
  • FIG. 4 is a perspective cross-sectional view illustrating a schematic configuration of the server module according to the first embodiment.
  • FIG. 5 is a diagram illustrating a state of the server module during operation of the server apparatus according to the first embodiment.
  • FIG. 6 is a diagram (1) illustrating an example of a method of manufacturing a circuit board incorporated in the server module according to the first embodiment.
  • FIG. 7 is a diagram (2) illustrating an example of a method of manufacturing a circuit board incorporated in the server module according to the first embodiment.
  • FIG. 8 is a diagram illustrating a schematic configuration of a server module according to the second embodiment.
  • FIG. 9 is a diagram illustrating an example of a method of manufacturing a circuit board incorporated in the server module according to the second embodiment.
  • FIG. 10 is a diagram illustrating an example of a method for manufacturing a circuit board incorporated in a server module according to a modification of the second embodiment.
  • FIG. 11 is a diagram illustrating a schematic configuration of a server module according to the third embodiment.
  • FIG. 12 is a diagram illustrating a schematic configuration of a server module according to the fourth embodiment.
  • FIG. 13 is a perspective view showing a schematic configuration of the first modification.
  • FIG. 14 is a cross-section
  • the present embodiment an embodiment of the present invention (hereinafter referred to as “the present embodiment”) will be described in detail with reference to the drawings.
  • Each figure is only schematically shown so that the present invention can be fully understood. Therefore, the present invention is not limited to the illustrated example.
  • symbol is attached
  • the figure which shows each manufacturing method has shown the cut surface of the cross section of the principal part of the structure obtained at each process step.
  • FIG. 1 is a diagram illustrating a schematic configuration of a server device 1 according to the first embodiment and a cooling system 160 used for cooling the server device 1.
  • the server device 1 according to the first embodiment is configured as a rack mount server.
  • the server device 1 includes a plurality of 1U servers 3 and is configured to accommodate each 1U server 3 in a rack cabinet 110.
  • the 1U server 3 is a device on which a plurality of server modules 10 having server functions are mounted. The configurations of the 1U server 3 and the server module 10 will be described later.
  • the rack cabinet 110 includes columns 111 and 112, guide rails 113, a backplane 121, a coolant circulation path 161, a coolant supply buffer tank 162, and a coolant discharge buffer tank 163. .
  • the support 111 is a vertical support that constitutes the rack cabinet 110.
  • the column 112 is a horizontal column that constitutes the rack cabinet 110.
  • the guide rail 113 is a member that slidably holds the 1U server 3 in the arrow A1 direction or the arrow A2 direction.
  • the backplane 121 is a part that houses equipment such as a power connector and an optical cable.
  • the coolant circulation path 161 is a pipe that circulates the coolant 2 between each server module 10 and a chiller 164 described later.
  • the coolant supply buffer tank 162 is a tank that temporarily stores the coolant 2 supplied to each server module 10.
  • the coolant discharge buffer tank 163 is a tank that temporarily stores the coolant 2 discharged from each server module 10.
  • the rack cabinet 110 is configured such that the backplane 121 is disposed in the center and the 1U server 3 is accommodated on each of the front side and the back side of the page.
  • the server apparatus 1 uses the rack cabinet 110 in which the backplane 121 is arranged in the center, so that the server module 10 on the front side of the page is detached in the direction of arrow A1, and the server module 10 on the back side of the page is detached in the direction of arrow A2. Can be realized simultaneously.
  • the rack cabinet 110 includes a plurality of 1U servers 3 on the front side and the back side of the paper. It is configured to be accommodated in each.
  • only one rack cabinet 110 is provided, but a plurality of rack cabinets 110 may be provided.
  • the rack cabinet 110 constitutes a cooling system 160 that cools electronic devices mounted on each server module 10 by using the coolant 2 together with a chiller 164 installed outside (for example, outside the building).
  • the chiller 164 is a cooling device that cools the coolant 2.
  • the chiller 164 supplies the coolant 2 to each server module 10 via the coolant circulation path 161, collects the coolant 2 discharged from each server module 10, and cools the coolant 2.
  • the coolant 2 may be a refrigerant other than water.
  • the coolant circulation path 161 includes coolant supply pipes 161Aa and 161Ab and coolant discharge pipes 161Ba and 161Bb.
  • the coolant supply pipes 161 ⁇ / b> Aa and 161 ⁇ / b> Ab are pipes for sending the coolant 2 from the coolant supply buffer tank 162 to each server module 10.
  • the coolant supply pipe 161Aa is provided so as to pass through the backplane 121.
  • the coolant supply pipe 161Ab is provided so as to pass through the guide rail 113.
  • the cooling liquid discharge pipes 161Ba and 161Bb are pipes for sending the cooling liquid 2 from the server modules 10 to the cooling liquid discharge buffer tank 163, respectively.
  • the coolant discharge pipe 161Ba is provided so as to pass through the backplane 121.
  • the coolant discharge pipe 161Bb is provided so as to pass through the guide rail 113.
  • FIG. 2 is a diagram illustrating a schematic configuration of the 1U server 3.
  • FIG. 2A shows the configuration of the 1U server 3 in a state cut along the cutting plane CT1 shown in FIG.
  • FIG. 2B shows the configuration of the 1U server 3 with the guide rail 113 removed.
  • the 1U server 3 includes a wiring unit 5, a server module 10, and a guide rail 113.
  • the 1U server 3 includes eight server modules 10 and two guide rails 113.
  • Four server modules 10 are arranged on both sides of the wiring section 5.
  • Two guide rails 113 are arranged on the right side and the left side of the 1U server 3 one by one.
  • the wiring unit 5 is a part that accommodates communication cables and power lines.
  • the communication cable communicatably connects each server module 10 including the server module 10 housed in another rack cabinet 110 (not shown) and an electronic device (not shown). Note that the communication cable may have a function of performing communication using not only an electric signal but also an optical signal.
  • the two guide rails 113 each include a cooling liquid supply pipe 161Ab and a cooling liquid discharge pipe 161Bb that constitute the cooling liquid circulation path 161 therein.
  • the coolant supply pipe 161Ab is connected to the coolant supply pipe 161Aa (see FIG. 1), and the other end is provided in each server module 10 by the connection portion 114a. 5)) is connected to the supply hole 4a.
  • the coolant discharge pipe 161Bb has one end connected to the coolant discharge pipe 161Ba (see FIG. 1) and the other end provided to each server module 10 by the connection portion 114b. And the discharge hole 4b of FIG. 5). Therefore, the two guide rails 113 have a function of forming a coolant circulation path 161 (see FIG. 1) by being connected to the backplane 121 (see FIG. 1) and each server module 10.
  • the supply hole 4a and the connection part 114a are preferably formed at a higher position than the discharge hole 4b and the connection part 114b. The reason is that the potential energy of the coolant 2 can be used to efficiently send the coolant 2 to the inside of the cooling jacket 12 (see FIGS. 4 and 5) described later.
  • each server module 10 is kept in a hermetically sealed state other than the surface provided with the supply hole 4a and the discharge hole 4b (hereinafter referred to as “connection surface”).
  • FIG. 3 is a perspective view illustrating a schematic configuration of the server module 10.
  • FIG. 4 is a perspective sectional view showing a schematic configuration of the server module 10.
  • FIG. 5 is a diagram illustrating a state of the server module 10 when the server apparatus 1 is in operation.
  • the server module 10 includes a housing 11 and a cooling jacket 12.
  • the housing 11 is configured as a sealed container that houses a circuit board 21 (see FIG. 4) on which electronic devices such as a CPU and a memory are mounted.
  • the housing 11 is referred to as “sealed container 11”.
  • the cooling jacket 12 is a member that allows the coolant 2 to flow around the electronic device.
  • the cooling jacket 12 includes a flow path 13 for the cooling liquid 2 including a cooling liquid supply path 13a and a cooling liquid discharge path 13b.
  • the flow path 13 has a configuration in which a plurality of folds are made inside the cooling jacket 12, and as a result, has a configuration shown in FIG.
  • the cooling jacket 12 is in direct contact with the circuit board 21 (see FIG. 4) accommodated in the sealed container 11, or the vapor of the coolant 2, the heat transfer sheet, and other heat conduction. You may comprise so that the heat which generate
  • the server module 10 is preferably provided with a positioning guide 19.
  • the positioning guide 19 is a member that positions the server module 10 in the 1U server 3.
  • the positioning guide 19 is provided in the upper part of the cooling jacket 12 and the lower part of the sealed container 11, and is configured to position the server module 10 in the horizontal direction in the 1U server 3. ing.
  • FIG. 4 shows the configuration of the server module 10 in a state cut along the cutting plane CT2 shown in FIG.
  • the server module 10 includes a condensation fin 15, a support member 18, and a circuit board 21 inside.
  • the condensing fin 15 is a member that cools and condenses the inert refrigerant 31 (see FIG. 5) that is vaporized by heat generated by the heat generating member 22 (mainly the high heat generating member 22a) described later.
  • the support member 18 is a member that supports the circuit board 21 in the horizontal direction inside the sealed container 11.
  • the circuit board 21 is a member on which electronic devices such as a CPU and a memory are mounted.
  • the condensation fins 15 are provided at the lower part of the cooling jacket 12 and are provided so as to protrude from the cooling jacket 12 to a cooling unit 17 described later.
  • the condensation fins 15 are thermally connected to the flow path 13 provided inside the cooling jacket 12.
  • the condensing fin 15 forms the condensing part 14 which cools and condenses the inert refrigerant 31 evaporated by boiling together with the flow path 13.
  • the cooling unit 17 is a space provided inside the hermetic container 11 in order to immerse a heat radiating member 23 described later in an insulating inert refrigerant 31 (see FIG. 5) in a liquid phase state.
  • the cooling unit 17 has an upper surface sealed by the cooling jacket 12, a side surface sealed by the side wall of the sealed container 11, and a lower surface sealed by the support member 18 and the circuit board 21.
  • the inside of the cooling unit 17 contains an inert refrigerant 31 (see FIG. 5).
  • an inert refrigerant 31 (see FIG. 5).
  • HFE7000 registered trademark
  • 3M 3M
  • the liquid-phase inert refrigerant 31 has a liquid surface height position that is at least higher than the position of the boiling heat transfer surface 24 of the heat radiating member 23 described later, and the lower end of the condensing fin 15. It demonstrates as what is put in the inside of the cooling part 17 so that it may become lower than this position.
  • the circuit board 21 has one surface (the lower surface in the example shown in FIG. 5) as a mounting surface for the high heat generating member 22a and the low heat generating member 22b, and the other surface (the upper surface in the example shown in FIG. 5). This is the mounting surface of the heat dissipation member 23.
  • the high heat generating member 22a is, for example, an electronic device such as a CPU.
  • the low heat generating member 22b is, for example, an electronic device such as a memory.
  • the high heat generating member 22a and the low heat generating member 22b are collectively referred to as “heat generating member 22”.
  • the heat radiating member 23 is a member that conducts heat generated by the heat generating member 22 (mainly, the high heat generating member 22a) to the liquid state inert refrigerant 31 (see FIG. 5) to dissipate heat.
  • the heat radiating member 23 has a boiling heat transfer surface 24 on the upper surface for efficiently conducting heat to the liquid state inert refrigerant 31 and boiling the inert refrigerant 31.
  • the heat dissipating member 23 is configured such that the mounting area is larger than the mounting area of the high heat generating member 22 a connected to the heat dissipating member 23.
  • the circuit board 21 includes a thermal via 25 inside.
  • the thermal via 25 is a via that thermally connects the heat generating member 22 (mainly the high heat generating member 22 a) and the heat radiating member 23.
  • the thermal via 25 is a material having high thermal conductivity (for example, copper or the like) by insulating the inside of the hole having the same shape as the conductive vias 217a and 217b (see FIG. 7C) for conducting the circuit board 21.
  • the metal material is filled.
  • the server module 10 when the server device 1 operates, the server module 10 generates heat generated by the heat generating member 22 (mainly the high heat generating member 22 a) mounted on the lower surface via the thermal via 25. Conducted to the heat dissipating member 23 mounted on. Then, the heat radiating member 23 conducts heat to the inert refrigerant 31 in a liquid phase state on the boiling heat transfer surface 24, and causes the inert refrigerant 31 to boil.
  • the heat generating member 22 mainly the high heat generating member 22 a
  • the inert refrigerant 31 evaporates by boiling (that is, changes to a gas phase state) and rises as a vapor. As a result, the vaporized inert refrigerant 31 comes into contact with the condensation fins 15.
  • the condensation fins 15 are cooled to a certain temperature or less by the coolant 2 flowing inside the flow path 3. Therefore, the vaporized inert refrigerant 31 is cooled by the condensation fins 15. As a result, the inert refrigerant 31 is liquefied by cooling (that is, changed to a liquid phase state), becomes a liquid, and descends.
  • the condensation fin 15 absorbs heat when cooling the inert refrigerant 31 and conducts the heat to the coolant 2 flowing inside the flow path 13. As a result, the server module 10 releases the heat generated by the heat generating member 22 (mainly the high heat generating member 22a) to the outside.
  • the heat generating member 22 (mainly the high heat generating member 22a) is cooled. High cooling performance can be obtained.
  • FIGS. 6 and 7 are diagrams showing an example of a method for manufacturing the circuit board 21.
  • FIG. 6 shows a manufacturing process until a substrate 219 (see FIG. 6 (i)) in the lower portion of the circuit board 21 is formed.
  • FIG. 7 shows a manufacturing process from the formation of the substrate 231 (see FIG. 7A) in the upper portion of the circuit board 21 to the formation of the final circuit board 21 (see FIG. 7C). ing.
  • the lower portion of the substrate 219 is a substrate (interposer) in which an electrode is formed on an insulating layer.
  • the substrate 219 in the lower part is referred to as an “interposer 219”.
  • the upper portion substrate 231 is a substrate formed by laminating a resin material layer and a copper layer.
  • the upper substrate 231 is referred to as a “resin substrate 231”.
  • the interposer 219 is formed as a glass interposer by using the silicon glass paste 211 (see FIG. 6A)
  • the interposer 219 may be formed using a hard and insulating material (for example, a material such as ceramic) other than the silicon glass paste 211.
  • a silicon glass paste 211 constituting an insulating layer is prepared, and a resist 213 is applied to the surface of the silicon glass paste 211 as shown in FIG. 6B.
  • a mask (not shown) formed in a circuit shape is formed on the resist 213, and ultraviolet rays are irradiated onto the resist 213 through the mask.
  • the resist 213a in the region irradiated with ultraviolet light is cured, while the resist 213b in the region not irradiated with ultraviolet light is not cured.
  • the resist 213a is referred to as “cured resist 213a” and the resist 213b is referred to as “non-cured resist 213b”.
  • the “non-cured resist 213b” functions as a mask pattern when a circuit is formed by the copper plating 215 in the step shown in FIG.
  • the cured resist 213a is selectively removed using a developer, and a mask pattern is formed by the remaining non-cured resist 213b.
  • a copper plating 215 is applied to the substrate through the non-cured resist 213b to form a circuit, and then a solvent is used as shown in FIG. 6F.
  • the uncured resist 213b is removed.
  • an insulating substrate 216 having a circuit formed on the surface is formed.
  • a plurality of insulating substrates 216 are formed by repeating the same steps as in FIGS. 6A to 6F.
  • FIG. 6G a plurality of insulating substrates 216 formed by repeating the same steps as in FIGS. 6A to 6F are stacked and baked. As a result, the laminated substrate 218 constituting the basic portion of the interposer 219 is formed.
  • conductive vias 217a and thermal vias 25a penetrating part or all of the multilayer substrate 218 are formed, and copper is filled in the conductive vias 217a and thermal vias 25a. Thereby, an interposer 219 is formed. Note that the number N of thermal vias 25a (where N is an integer) is larger than the number M (where M is an integer) of thermal vias 25b (see FIG. 7A) described later.
  • the heat generating member 22 (22 a, 22 b) is mounted on the interposer 219.
  • mounting is performed using a solder bump pad (hereinafter simply referred to as “solder bump”) 221 a having a relatively high melting point.
  • solder bump hereinafter simply referred to as “solder bump” 221 a having a relatively high melting point.
  • the high heat generating member 22a is bonded to the conductive via 217a and the thermal via 25a with the solder bump 221a
  • the low heat generating member 22b is bonded to the conductive via 217a with the solder bump 221a.
  • the solder bump 221a is formed to have a diameter smaller than the diameter of a solder bump 221b (see FIG. 7B) described later.
  • the description will be made assuming that the joining of the members using the solder material including the solder bumps 221a is performed by passing the substrate through a reflow furnace (not shown) (hereinafter the same).
  • an intermediate layer 235 having a heat transfer member 233 made of a metal material such as copper is formed on the lower surface of the resin substrate 231.
  • the heat transfer member 233 is a copper plate
  • the heat transfer member 233 may be referred to as a “copper plate 233”.
  • the position of the copper plate 233 is a position facing the heat dissipation member 23 on the lower surface side of the resin substrate 231. The reason for forming the intermediate layer 235 will be described later.
  • conductive vias 217b and thermal vias 25b penetrating part or all of the resin substrate 231 are formed, and the conductive vias 217b and thermal vias 25b are filled with copper.
  • the thermal via 25 b is connected to the copper plate 233.
  • the thermal via 25b is formed to have a larger diameter than the thermal via 25a in accordance with the diameter of the solder bumps 221a and 221b.
  • the heat radiating member 23 is mounted on the resin substrate 231.
  • the solder bumps 221b having a relatively high melting point are used for mounting.
  • the heat radiating member 23 is joined to the thermal via 25b with the solder bump 221b.
  • the manufacturing process of the resin substrate 231 (the process of FIGS. 7A to 7B) is performed before the manufacturing process of the interposer 219 (the process of FIGS. 6A to 6I). It doesn't matter. Further, the manufacturing process of the resin substrate 231 (the process of FIGS. 7A to 7B) is not necessarily separate from the manufacturing process of the interposer 219 (the process of FIGS. 6A to 6I). It is not necessary to carry out in a line and a separate process, and it may be carried out simultaneously on the same line.
  • the interposer 219 formed in the step of FIG. 6 (i) and the resin substrate 231 formed in the step of FIG. 7 (b) are joined.
  • the interposer 219 is disposed so as to be inverted in the vertical direction, and the resin substrate 231 is bonded thereon. Thereby, the circuit board 21 is formed.
  • the bonding between the interposer 219 and the resin substrate 231 is performed using a solder bump 221c having a relatively low melting point.
  • the interposer 219 is arranged upside down, and the thermal via 25a formed in the interposer 219 and the copper plate 233 formed in the resin substrate 231 are joined by a solder bump 221c having a relatively low melting point.
  • the interposer 219 and the resin substrate 231 are preferably joined by passing the circuit board 21 through a line in which the temperature of the reflow furnace is adjusted to a temperature at which only the solder bumps 221c having a relatively low melting point are melted. good.
  • solder bump 211 among the solder bumps 211a, 211b, and 221c (hereinafter collectively referred to as “solder bump 211”), only the solder bump 221c having a relatively low melting point is melted, and the solder bump having a relatively high melting point is melted. Since 221a and 211b are not melted, the interposer 219 and the resin substrate 231 can be bonded while the bonded state of the heat generating member 22 and the heat radiating member 23 is maintained.
  • the circuit board 21 is required to mount heat generating members 22 such as a CPU and a memory on the interposer 219 with high density.
  • the circuit board 21 preferably forms the thermal vias 25 a of the interposer 219 with a smaller diameter and a smaller pitch than the thermal vias 25 b of the resin substrate 231.
  • the thermal via 25a of the interposer 219 and the thermal via 25b of the resin substrate 231 are formed in sizes having different diameters and minimum pitches.
  • the circuit board 21 is difficult to bond the thermal via 25a and the thermal via 25b, and it is difficult to conduct heat between the thermal vias 25a and 25b.
  • the circuit board 21 has an intermediate layer 235 having a copper plate 233 as a heat transfer member formed on the lower surface of the resin substrate 231.
  • the circuit board 21 facilitates the bonding between the thermal via 25a and the thermal via 25b so that heat can be efficiently conducted between the thermal vias 25a and 25b.
  • the server device 1 is connected to a plurality of server modules 10, a rack cabinet 110 that houses the plurality of server modules 10 therein, and a chiller 164 that cools the coolant 2.
  • a coolant circulation path 161 that circulates the liquid 2 between the plurality of server modules 10 and the chiller 164 is provided.
  • the coolant circulation path 161 is disposed so as to be connected in parallel to each of the plurality of server modules 10 through the back plane 121 disposed in the center of the rack cabinet 110.
  • the coolant circulation path 161 is a portion (that is, the coolant supply pipe 161Aa and the coolant that is connected to the server module 10 (that is, the coolant supply pipe 161Ab and the coolant discharge pipe 161Bb) passes through the backplane 121.
  • the discharge pipe 161Ba) is configured so as to be contactable and separable.
  • the coolant supply pipe 161 ⁇ / b> Ab and the coolant discharge pipe 161 ⁇ / b> Bb provided in the guide rail 113 are connected to the supply hole 4 a and the discharge hole 4 b provided in the connection surface of each server module 10.
  • the coolant 2 can be supplied to and discharged from each server module 10 while keeping the sealed state inside each server module 10.
  • the server device 1 is mounted on one surface and the other surface so that the heat generating member 22 (mainly the high heat generating member 22a) and the heat radiating member 23 face each other.
  • a server module 10 having a circuit board 21 and a sealed container 11 that accommodates the circuit board 21 therein is used.
  • the circuit board 21 includes a plurality of thermal vias 25 that thermally connect the high heat generating member 22a and the heat radiating member 23 inside.
  • the heat radiating member 23 is immersed in an insulating inert refrigerant 31 in a liquid phase state inside the sealed container 11.
  • the high heat generating member 22 a and the heat radiating member 23 are separately mounted on one surface and the other surface of the circuit board 21, the high heat generating member 22 a is mounted with high density. Can do. Further, since the server device 1 mounts the heat radiating member 23 in an empty space on the other surface of the circuit board 21 where the high heat generating member 22a is not mounted, the heat radiating member having a larger mounting area than the mounting area of the high heat generating member 22a. 23 can be mounted on the circuit board 21, and as a result, a high cooling performance for cooling the high heat generating member 22a can be obtained.
  • server device 1 thermally connects the high heat generating member 22a and the heat radiating member 23 with the thermal via 25, and the heat radiating member 23 is immersed in the insulating inert refrigerant 31 in a liquid phase state, Also by this, high cooling performance can be obtained.
  • the server device 1 conducts the heat generated by the heat generating member 22 (mainly the high heat generating member 22a) to the heat radiating member 23 through the thermal via 25, and the conducted heat is transferred from the heat radiating member 23 to the liquid phase state. Conducted to the inert refrigerant 31. Then, the server device 1 causes the condensation fins 15 to absorb the heat of the inert refrigerant 31, and conducts the absorbed heat from the condensation fins 15 to the coolant 2 flowing inside the flow passage 13. Such a server device 1 uses the heat of vaporization and the heat of condensation caused by the phase change of the inert refrigerant 31 to release heat to the outside, so that the heat generating member 22 (mainly the high heat generating member 22a) is cooled. High cooling performance can be obtained.
  • the server device 1 can mount the heat generating member 22 with high density. Further, since the server device 1 can mount the heat dissipating member 23 having a relatively large mounting area (for example, the heat dissipating member 23 having a mounting area wider than the mounting area of the high heat generating member 22a), high cooling performance can be obtained. Can do. Therefore, the server device 1 can achieve both mounting the heat generating members at high density and obtaining a high cooling performance for cooling the heat generating members 22 (mainly the high heat generating members 22a).
  • the heat radiating member 23 conducts heat generated by the high heat generating member 22 a to the inert refrigerant 31 to boil the inert refrigerant 31. 24.
  • the circuit board 21 is housed inside the sealed container 11 with the one surface on which the high heat generating member 22a is mounted as the lower surface and the other surface on which the heat dissipation member 23 is mounted as the upper surface.
  • the sealed container 11 includes a condensing unit 14 that is thermally connected to the outside and cools and condenses the inert refrigerant 31 vaporized by boiling above the circuit board 21.
  • the condensing unit 14 cools the inert refrigerant 31 where the vaporized inert refrigerant 31 flows, the inert refrigerant 31 can be efficiently cooled and condensed.
  • the heat dissipating member 23 is configured such that the mounting area is larger than the mounting area of the high heat generating member 22 a connected to the heat dissipating member 23.
  • the heat generated by the high heat generating member 22a can be efficiently released, and the heat generating member 22 (mainly High cooling performance for cooling the high heat generating member 22a) can be obtained.
  • the condensing unit 14 is configured by a cooling jacket 12 that includes therein a flow path 13 through which the coolant 2 flows.
  • the condensing unit 14 includes a condensing fin 15 that is thermally connected to the flow path 13 and cools and condenses the inert refrigerant 31 vaporized by boiling.
  • the condensation fins 15 are provided so as to protrude from the cooling jacket 12 into a space (cooling part) 17 in which the heat radiating member 23 inside the sealed container 11 is immersed in the inert refrigerant 31.
  • Such a server device 1 can efficiently condense the inert refrigerant 31 vaporized by boiling with the condensation fins 15. Thereby, the server apparatus 1 can obtain the high condensation performance of the inert refrigerant 31, and thus can obtain high cooling performance for cooling the heat generating member 22 (mainly the high heat generating member 22a).
  • the server device 1 includes a circuit board 21 in which two or more layers of a resin substrate 231 and an insulating substrate are stacked, and high heat generation mounted on one surface of the circuit board 21.
  • the member 22a, the heat dissipating member 23 mounted on the other surface of the circuit board 21 facing the high heat generating member 22a, and the heat generating member 22a and the heat dissipating member 23 formed in the circuit board 21 are thermally
  • the server module 10 having a plurality of thermal vias 25 connected to is used.
  • the thermal via 25 connects the high heat generating member 22a and the heat radiating member 23 through the heat transfer member (copper plate) 233 disposed inside the circuit board 21 to an N to M relationship (N> M) ( However, N and M are both integers). Further, the high heat generating member 22a and the thermal via 25 and the heat radiating member 23 and the thermal via 25 are joined by solder materials (solder bumps 221a and 221b), respectively. Also, the solder material (solder bump 221b) that joins between the heat dissipation member 23 and the thermal via 25 has a larger diameter than the solder material (solder bump 221a) that joins between the high heat generating member 22a and the thermal via 25. Is formed.
  • the server device 1 has the following configuration.
  • the circuit board 21 and the high heat generating member 22a are joined by a solder material (solder bump 221a).
  • the circuit board 21 and the heat radiating member 23 are joined by a solder material (solder bump 221b) having a diameter different from that of the one surface on which the high heat generating member 22a is mounted.
  • the server device 1 includes a plurality of solder materials (solders) each having a thermal via 25 formed on one surface of the circuit board 21 via a heat transfer member (copper plate) 233 disposed inside the circuit board 21.
  • solder bump 221b In addition to being connected to the bump 221a), it is connected to one large solder material (solder bump 221b) formed on the other surface of the circuit board 21, and heat generated on one surface of the circuit board 21 is generated. The heat can be conducted to the heat radiating member 23 mounted on the other surface of the circuit board 21 and discharged from the heat radiating member 23.
  • the server device 1 mounts the high heat generating member 22a and the heat radiating member 23 separately on one surface and the other surface of the circuit board 21, so that the high heat generating member 22a is mounted with high density. be able to. Further, since the server device 1 mounts the heat radiating member 23 in the empty space on the other surface of the circuit board 21 on which the high heat generating member 22a is not mounted, the heat radiating member having a larger mounting area than the mounting area of the high heat generating member 22a. 23 can be mounted on the circuit board 21, and as a result, a high cooling performance for cooling the heat generating member 22 (mainly the high heat generating member 22a) can be obtained.
  • the solder bump 221 b that joins between the heat dissipation member 23 and the thermal via 25 b is formed to have a larger diameter than the solder bump 221 a that joins between the high heat generating member 22 a and the thermal via 25 a. For this reason, the heat dissipation member 23 having a larger mounting area than the mounting area of the high heat generating member 22a can be efficiently mounted on the circuit board 21 and the heat conduction efficiency can be increased. As a result, high cooling performance can be obtained. be able to.
  • the thermal via 25b connected to the heat radiating member 23 and the thermal via 25a connected to the high heat generating member 22a are connected to the heat radiating member 23 in accordance with the diameter of the solder material (solder bumps 221a, 221b) to be connected.
  • the connected thermal via 25b is formed with a larger diameter than the thermal via 25a connected to the high heat generating member 22a.
  • the circuit board 21 includes an intermediate layer 235 that connects the thermal via 25 connected to the high heat generating member 22 a and the thermal via 25 connected to the heat radiating member 23 inside.
  • the server device 1 has different diameters because the intermediate layer 235 is interposed between the thermal via 25a having a small diameter connected to the high heat generating member 22a and the thermal via 25b having a large diameter connected to the heat radiating member 23.
  • the thermal vias 25a and 25b can be connected to each other.
  • the heat generating member 22 is mounted with high density and the heat generating member 22 (mainly the high heat generating member 22a) is cooled. It is possible to achieve both high cooling performance for achieving the above.
  • Embodiment 2 Next, Embodiment 2 will be described.
  • the high heat generating member 22a and the heat radiating member 23 are connected by a plurality of relatively small diameter thermal vias 25 (see FIG. 5).
  • the second embodiment provides a server module 10A having a configuration in which some or all of the plurality of thermal vias 25 are integrated into a single high heat transfer member 26 (see FIG. 8).
  • FIG. 8 is a diagram illustrating a schematic configuration of a server module 10A according to the second embodiment.
  • the server module 10 ⁇ / b> A according to the second embodiment is compared with the server module 10 according to the first embodiment (see FIG. 5), instead of the plurality of thermal vias 25 in the circuit board 21.
  • the difference is that a single member having high thermal conductivity (hereinafter referred to as a “high heat transfer member”) is provided.
  • the high heat transfer member 26 is a member having high thermal conductivity.
  • the high heat transfer member 26 is made of a metal material such as copper, for example.
  • the high heat transfer member 26 has a larger diameter than the thermal via 25 of the server module 10 according to the first embodiment.
  • the server module 10A according to the second embodiment performs heat conduction between the high heat generating member 22a and the heat radiating member 23 by the high heat transfer member 26 having a larger diameter (that is, wider cross-sectional area) than the thermal via 25. Therefore, the server module 10A can ensure a larger heat conduction area than the server module 10 according to the first embodiment. Thereby, the server module 10A can obtain higher cooling performance than the server module 10 according to the first embodiment.
  • the high heat transfer member 26 has a configuration in which the cross-sectional area gradually increases along the thickness direction of the resin substrate 231 from the high heat generation member 22 a side toward the heat dissipation member 23 side. ing. That is, the high heat transfer member 26 is formed so that the cross-sectional area on the heat radiating member 23 side is wider than the cross-sectional area on the high heat generating member 22a side.
  • the server module 10A can mount the heat radiating member 23 having a surface area larger than the mounting area of the high heat generating member 22a.
  • the server module 10 ⁇ / b> A can ensure a relatively wide heat conduction area between the high heat generating member 22 a and the heat radiating member 23.
  • the server module 10A can obtain higher cooling performance.
  • the signal lines of the high heat generating member 22a are arranged densely in the outer frame portion of the mounting region of the high heat generating member 22a, and the circuit board 21 tends not to be arranged in the central portion of the mounting region of the high heat generating member 22a. It is in. Therefore, the circuit board 21 can secure a free space in the central portion of the mounting region of the high heat generating member 22a relatively easily. Therefore, the server module 10 ⁇ / b> A according to the second embodiment may be configured such that the high heat transfer member 26 is disposed near the central portion of the mounting area of the circuit board 21 using the characteristics of the circuit board 21. In this case, since the server module 10A can ensure a relatively wide heat conduction area, it is possible to obtain higher cooling performance.
  • the server module 10A may be configured such that the signal line of the high heat generating member 22a is connected to the heat radiating member 23 after the insulation process is performed on the signal line of the high heat generating member 22a.
  • the server module 10 ⁇ / b> A can use the signal line of the high heat generating member 22 a as a pseudo thermal via, and therefore can obtain higher cooling performance.
  • the server module 10A may be configured such that the GND line of the power line of the high heat generating member 22a is connected to the heat radiating member 23. In this case, since the server module 10A can use the GND line as a pseudo thermal via, it is possible to obtain higher cooling performance.
  • FIG. 9 is a diagram illustrating an example of a method for manufacturing the circuit board 21A according to the second embodiment.
  • the interposer 219 (the interposer 219 in a state where the heat generating member 22 is mounted) is formed by the steps shown in FIGS. 6A to 6I, and the step shown in FIG. Therefore, it is assumed that the resin substrate 231 (the resin substrate 231 in a state where the heat dissipation member 23 is not mounted) is formed.
  • the opening 238 is penetrated from the upper surface to the lower surface of the resin substrate 231 using a punching machine or the like. Form.
  • the opening 238 is formed to be inclined in the oblique direction with respect to the upper surface of the resin substrate 231. That is, the opening 238 is formed so that the cross-sectional area gradually increases along the thickness direction of the resin substrate 231 from the lower surface side (high heat generating member 22a side) to the upper surface side (heat radiating member 23 side). ing.
  • the insulating material 241 is disposed along the slope of the opening 238, and the high heat transfer member 26 is filled in the opening 238.
  • a mask (not shown) is formed on the resin substrate 231, and fixing processing 239 such as plating is performed on the resin substrate 231. Thereby, the high heat transfer member 26 is fixed to the resin substrate 231.
  • the insulating material 241 is disposed is that the opening 238 is formed to be inclined by a punch or the like, and the signal line may be short-circuited on the inclined surface of the opening 238 (particularly in the vicinity of the heat dissipation member 23). There is to prevent it.
  • the solder 222a having a relatively high melting point and a relatively large amount is disposed on the high heat transfer member 26 of the resin substrate 231. Then, the resin substrate 231 is passed through a reflow furnace. Thus, the heat radiating member 23 is joined to the high heat transfer member 26 of the resin substrate 231 by the solder 222a.
  • a solder bump 221c having a relatively low melting point is disposed on the conductive via 217a of the interposer 219, and a solder 222b having a relatively low melting point and less than the solder 222a is disposed on the thermal via 25a of the interposer 219. Further, the resin substrate 231 is disposed on the interposer 219. Then, the resin substrate 231 and the interposer 219 are passed through a reflow furnace.
  • the conductive via 217b, the interposer 219, and the conductive via 217a of the resin substrate 231 are joined by the solder bump 221c, and the high heat transfer member 26 of the resin substrate 231 is bonded by the solder 222b.
  • the interposer 219 and the thermal via 25a are joined. As a result, the circuit board 21A is formed.
  • the server module 10A including the circuit board 21A formed in this way can ensure a relatively wide heat conduction area between the high heat generating member 22a and the heat radiating member 23, the server module according to the first embodiment. Cooling performance higher than 10 can be obtained.
  • the high heat transfer member 26 can be configured to have the same cross-sectional area with respect to the thickness direction of the resin substrate 231 as shown in FIG.
  • FIG. 10 is a diagram illustrating an example of a method for manufacturing the circuit board 21Aa according to the modification of the second embodiment.
  • the opening 238a is penetrated from the upper surface to the lower surface of the resin substrate 231 using a punching machine or the like. Form.
  • the opening 238a is formed in the vertical direction with respect to the upper surface of the resin substrate 231. That is, the opening 238 is formed to have the same cross-sectional area with respect to the thickness direction of the resin substrate 231.
  • the high heat transfer member 26 is filled in the opening 238.
  • the insulating material 241 may be disposed along the side wall surface of the opening 238a, and the high heat transfer member 26 may be filled in the opening 238.
  • a mask (not shown) is formed on the resin substrate 231, and fixing processing 239 such as plating is performed on the resin substrate 231. Thereby, the high heat transfer member 26 is fixed to the resin substrate 231.
  • the same processing as the circuit board 21A of the server module 10A is performed. That is, the solder 222a having a relatively high melting point and a relatively large amount is disposed on the high heat transfer member 26 of the resin substrate 231, and the resin substrate 231 is passed through a reflow furnace. Next, the solder bump 221c is disposed on the conductive via 217a of the interposer 219, the solder 222b is disposed on the thermal via 25a of the interposer 219, and the resin substrate 231 is disposed on the interposer 219. The resin substrate 231 and the interposer 219 are passed through a reflow furnace. As a result, the circuit board 21Aa is formed.
  • the circuit board 21Aa thus formed is not as high as the circuit board 21A, but as with the circuit board 21A, a relatively wide heat conduction area is ensured between the high heat generating member 22a and the heat radiating member 23. Therefore, higher cooling performance than the server module 10 according to the first embodiment can be obtained.
  • the heat generating member 22 is mounted at a high density and the heat generating member 22 (mainly the high heat generating member 22a) as in the first embodiment. It is possible to achieve both high cooling performance for cooling the battery. Moreover, according to the second embodiment, a higher cooling performance than that of the first embodiment can be obtained.
  • the heat generated in the high heat generating member 22a is conducted to the inert refrigerant 31 by immersing the heat radiating member 23 in the inert refrigerant 31 (see FIG. 5).
  • the third embodiment provides a server module 10B that conducts heat generated in the high heat generating member 22a into the air (see FIG. 11).
  • FIG. 11 is a diagram illustrating a schematic configuration of a server module 10B according to the third embodiment.
  • the server module 10 ⁇ / b> B according to the third embodiment includes a heat radiating member 23 ⁇ / b> B instead of the heat radiating member 23 compared to the server module 10 according to the first embodiment (see FIG. 5), and
  • the heat dissipating member 23B is different from the air disposing member 23B in the air.
  • the heat dissipating member 23B is a member that conducts heat generated in the high heat generating member 22a from the surface exposed to the outside (hereinafter simply referred to as “exposed surface”) to the air.
  • the heat radiating member 23B is thermally connected to the high heat generating member 22a by the thermal via 25.
  • the server module 10B can obtain high cooling performance for cooling the heat generating member 22 (mainly the high heat generating member 22a).
  • the heat dissipating member 23B may conduct heat into the air by natural convection. Further, for example, as shown in FIG. 11, the heat dissipating member 23 ⁇ / b> B may be configured to include fins 43 (or portions that increase the surface area similar to the fins 43) on the exposed surface. In this case, since the heat dissipation member 23B increases the heat dissipation area, the heat dissipation performance can be improved.
  • the server module 10 ⁇ / b> B may include a blower 41 that supplies air, an inert refrigerant 31, or the like as cooling air 44 to the heat radiating member 23 ⁇ / b> B.
  • the server module 10B since the server module 10B conducts heat into the air by forced convection, the server module 10B can obtain higher heat dissipation performance than when heat is conducted into the air by natural convection.
  • the server module 10B is provided with an opening 42 for allowing the cooling air 44 to flow. The cooling air 44 passes through the opening 42 and is discharged to the outside of the server module 10B.
  • the heat generating member 22 is mounted with high density and the heat generating member 22 (mainly the high heat generating member 22a). It is possible to achieve both high cooling performance for cooling the battery.
  • the heat generated in the high heat generating member 22a is conducted to the inert refrigerant 31 by immersing the heat radiating member 23 in the inert refrigerant 31 (see FIG. 5).
  • the server module 10C that conducts the heat generated in the high heat generating member 22a to the coolant 2 by bringing the heat dissipation member 23C into contact with or close to the piping through which the coolant 2 flows. Provided (see FIG. 12).
  • FIG. 12 is a diagram illustrating a schematic configuration of a server module 10C according to the fourth embodiment.
  • the server module 10 ⁇ / b> C according to the fourth embodiment includes a coolant pipe 311 through which the coolant 2 flows, as compared with the server module 10 according to the first embodiment (see FIG. 5). And a point that a heat radiating member 23 ⁇ / b> C is provided instead of the heat radiating member 23.
  • the coolant pipe 311 is adjacent to or embedded in the heat dissipation member 23C.
  • the heat radiating member 23 ⁇ / b> C is in contact with or close to the wall surface of the coolant pipe 311.
  • the server apparatus 1 sends the coolant 2 from the outside to the inside of the server module 10C through the coolant pipe 311 by a pump (not shown).
  • the coolant 2 is introduced into the server module 10 ⁇ / b> C from a pipe inlet 312 provided in the coolant pipe 311, flows inside the coolant pipe 311, and is a pipe outlet provided in the coolant pipe 311. It is discharged from 313 to the outside of the server module 10C.
  • the coolant pipe 311 conducts heat from the heat radiating member 23C to the coolant 2 through the wall surface, and discharges heat to the outside of the server module 10C through the coolant 2.
  • the server module 10C can efficiently discharge the heat generated by the high heat generating member 22a to the outside.
  • the piping 311 for cooling fluid may be configured such that the heat radiation member 314 for piping is provided on a part or the entire surface thereof.
  • the heat dissipating member 314 for piping is a part that enlarges the surface area of fins or the like.
  • the coolant pipe 311 absorbs heat from the surrounding space via the pipe heat dissipating member 314 and conducts it to the coolant 2, so that the cooling performance can be improved.
  • the heat generating member 22 is mounted with high density and the heat generating member 22 (mainly the high heat generating member 22a) as in the first embodiment. It is possible to achieve both high cooling performance for cooling the battery.
  • the present invention is not limited to the above-described embodiment, and includes various modifications.
  • the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described.
  • a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment.
  • FIG. 13 is a perspective view showing a schematic configuration of the first modification.
  • the first modification has a configuration in which the high heat generating member 22 a and the low heat generating member 22 b are mounted on the upper surface of the circuit board 21 together with the heat radiating member 23.
  • the high heat generating member 22a and the low heat generating member 22b mounted on the upper surface of the circuit board 21 are immersed in an inert refrigerant 31 (see FIG. 5) in a liquid phase together with the heat radiating member 23.
  • the first modification can effectively use the unmounted portion of the heat dissipation member 23 on the upper surface of the circuit board 21. Therefore, in the first modification, the heat generating member 22 can be mounted at a higher density than the server module 10 according to the first embodiment.
  • FIG. 14 is a cross-sectional view showing a schematic configuration of the second modification.
  • the second modification has a configuration in which the circuit board 21 ⁇ / b> D is disposed between the circuit board 21 and the condensing unit 14.
  • a high heat generating member 22a, a low heat generating member 22b, and a heat radiating member 23 are mounted on the circuit board 21D.
  • the high heat generating member 22a and the low heat generating member 22b are mounted on the upper surface of the circuit board 21D
  • the heat radiating member 23 is mounted on the lower surface of the circuit board 21D.
  • the entire circuit board 21D is immersed in an inert refrigerant 31 in a liquid phase state.
  • the circuit board 21D is provided with an opening 401 so as not to hinder the flow of the inert refrigerant 31 boiled and vaporized.
  • the second modification can effectively use the space between the circuit board 21 and the condensing unit 14. Therefore, in the second modification, the heat generating member 22 can be mounted at a higher density than the server module 10 according to the first embodiment.
  • the low heat generating member 22b and the heat radiating member 23 are connected by the thermal via 25, and the heat generated by the low heat generating member 22b is dissipated. It is also possible to adopt a configuration that conducts to 23 and conducts to the inert refrigerant 31.
  • the server module 10 immerses the high heat generating member 22a in the inert refrigerant 31 in the liquid phase state, so that the heat generated in the high heat generating member 22a is not transmitted from the surface of the high heat generating member 22a. You may make it the structure made to conduct to the active refrigerant
  • the server module 10 immerses the low heat generating member 22b in the liquid state inert refrigerant 31 in the same manner as the high heat generating member 22a, and generates heat generated in the low heat generating member 22b. You may make it the structure directly conducted to the inert refrigerant
  • the server module 10 eliminates the cooling unit 17 and the condensation fins 15 and directly contacts the heat generating member 22 (particularly, the high heat generating member 22a) with the cooling jacket 12, thereby generating the heat generating member.
  • the heat generated at 22 may be conducted to the coolant 2 flowing inside the flow path 13.
  • the thermal via 25 of the server module 10 according to the first embodiment may be formed by embedding a metal block having high thermal conductivity in the circuit board 21.
  • the inert refrigerant 31 is provided in the cooling unit 17 so that the height position of the liquid level of the inert refrigerant 31 is lower than the position of the lower end portion of the condensation fin 15. It is put inside. That is, the server module 10 is configured so that a space can be formed on the inert refrigerant 31 inside the cooling unit 17. As a result, the server module 10 obtains high cooling performance by releasing heat to the outside using the heat of vaporization and the heat of condensation caused by the phase change of the inert refrigerant 31.
  • the phase change of the inert refrigerant 31 may be influenced by the surrounding environment such as atmospheric pressure and temperature.
  • the server module 10 may fill the inside of the cooling unit 17 with the inert refrigerant 31 when it is desired to obtain reliable cooling performance without being affected by atmospheric pressure or the like. In this case, since the server module 10 can increase the heat capacity of the inert refrigerant 31, it is possible to obtain highly reliable heat radiation efficiency without being affected by atmospheric pressure or the like.
  • the server module 10 may fill the cooling unit 17 with a material having thermal conductivity other than the inert refrigerant 31.
  • the interposer 219 constituting the circuit board 21 according to the first embodiment is formed as a glass interposer.
  • the interposer 219 may be formed using a hard and insulating material (for example, a material such as ceramic) other than the silicon glass paste 211.
  • the server device 1 according to the first embodiment may be configured to supply the cooling liquid 2 to a cooling target other than the electronic device such as the server module 10.
  • the server apparatus 1 according to the first embodiment may appropriately change the arrangement of the coolant supply pipes 161Aa and 161Ab and the coolant discharge pipes 161Ba and 161Bb.
  • the coolant supply buffer tank 162 and the coolant discharge buffer tank 163 of the server device 1 according to the first embodiment are provided with a space for storing air therein, and when the coolant 2 is introduced from the outside. You may make it the structure which accumulate
  • the coolant discharge pipe buffer tank 162 and the coolant discharge buffer tank 163 of the server device 1 according to the first embodiment may be deleted from the rack cabinet 110 and arranged outside the building.
  • the server device 1 can reduce the weight of the rack cabinet 110.
  • the rack cabinet 110 of the server device 1 according to the first embodiment may be configured to allow the 1U server 3 to be vertically inserted.
  • the guide rail 113 of the server device 1 according to the first embodiment does not need to be fixed to one or both of the rack cabinet 110 and the 1U server 3 and is prepared and attached as an individual component. good.
  • the guide rail 113 of the server device 1 according to the first embodiment is partially or entirely replaced with a flow path of the coolant 2 made of a material that is not corroded by the coolant 2 such as a resin. May be.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

[Problem] To provide a server device which is capable of both mounting heating members in high density and achieving high cooling performance. [Solution] The server device comprises a circuit board (21) on which heating members (22b) and a heat-radiating member (23) are mounted on one surface and another surface, respectively, so as to face each other; and a sealed container (11) housing the circuit board in the interior thereof. The circuit board is provided in the interior with a plurality of thermal vias (25) thermally connecting the heating members and the heat-radiating member, and the heat-radiating member is immersed, in the interior of the sealed container, in an insulating inert refrigerant (31) in a liquid phase state.

Description

サーバ装置Server device
 本発明は、発熱部材を高密度に実装することと発熱部材を冷却するための高い冷却性能を得ることとを両立させることができるサーバ装置に関する。 The present invention relates to a server device that can achieve both high-density mounting of heat generating members and high cooling performance for cooling the heat generating members.
 例えば、ラックマウント型のサーバ装置は、ラックキャビネットの内部に、多数のサーバモジュールを収容している。各サーバモジュールは、CPUやメモリ等の多数の電子機器を回路基板上に実装された構成になっている。電子機器は、熱を発生する発熱部材となる。そのため、サーバ装置は、電子機器を冷却する必要がある。電子機器を冷却する技術としては、例えば、電子機器を実装する回路基板を以下の(1)~(3)のように構成した技術がある。 For example, a rack-mount type server device accommodates a large number of server modules inside a rack cabinet. Each server module has a configuration in which a large number of electronic devices such as a CPU and a memory are mounted on a circuit board. The electronic device serves as a heat generating member that generates heat. Therefore, the server device needs to cool the electronic device. As a technique for cooling an electronic device, for example, there is a technology in which a circuit board on which an electronic device is mounted is configured as described in (1) to (3) below.
 (1)例えば、特許文献1に記載された回路基板は、ガラスセラミックスから成り、発熱性素子の搭載部を上面に有する絶縁基板と、発熱性素子に電気的に接続される配線導体と、搭載部から搭載部の反対側の下面にかけて形成され、発熱性素子で発生した熱を絶縁基板の下面側で放熱するための貫通導体とを備える構成となっている。貫通導体は、銅を85体積%以上の割合で含有しており、絶縁基板と同時に焼成されることによって形成されている。係る構成において、発熱性素子は、発熱部材となる電子機器を構成している。 (1) For example, the circuit board described in Patent Document 1 is made of glass ceramics, has an insulating substrate having a mounting portion for a heat generating element on its upper surface, a wiring conductor electrically connected to the heat generating element, and mounting And a through conductor for radiating the heat generated by the heat generating element on the lower surface side of the insulating substrate. The through conductor contains copper in a proportion of 85% by volume or more, and is formed by firing simultaneously with the insulating substrate. In such a configuration, the heat-generating element constitutes an electronic device that serves as a heat-generating member.
 この回路基板は、アルミナ配線基板並みの20W/m・K又はそれ以上の熱伝導率を得ることができるため、発熱部材である発熱性素子を効率よく冷却することができる。 Since this circuit board can obtain a thermal conductivity of 20 W / m · K or more, which is the same as that of an alumina wiring board, it is possible to efficiently cool the heat-generating element that is a heat-generating member.
 (2)例えば、特許文献2に記載された回路基板は、絶縁性材料から成り、電子機器の搭載部を表面側に有し、導体パターンが少なくとも表面側に形成された絶縁基板と、電子機器の実装位置に設けられたサーマルビアとを備える構成となっている。サーマルビアは、電子機器に接続される熱伝導性物質が、絶縁基板の表面側と裏面側とに開口して設けられたスルーホールの内部に充填された構成になっている。サーマルビアは、基板の表面側の開口面積が基板の裏面側の開口面積よりも小さく形成されている。電子機器は、導電性材料からなる複数個のバンプを介して基板の表面側に実装されている。各バンプのうち、少なくとも1個のバンプは、サーマルビアの表面側の開口に対応した位置で熱伝導性物質と接続している。 (2) For example, the circuit board described in Patent Document 2 is made of an insulating material, has an electronic device mounting portion on the surface side, and has an electrically conductive pattern formed at least on the surface side. And a thermal via provided at the mounting position. The thermal via has a configuration in which a thermally conductive material connected to an electronic device is filled in through holes provided in the front surface side and the back surface side of the insulating substrate. The thermal via is formed so that the opening area on the front surface side of the substrate is smaller than the opening area on the back surface side of the substrate. The electronic device is mounted on the surface side of the substrate through a plurality of bumps made of a conductive material. At least one of the bumps is connected to the thermally conductive material at a position corresponding to the opening on the surface side of the thermal via.
 この回路基板は、サーマルビアの表面側の開口面積が裏面側の開口面積よりも小さく形成されており、電子機器を基板に実装するバンプがサーマルビアと接続している。この回路基板は、基板の表面側のサーマルビアの開口面積が小さく形成される。そのため、この回路基板は、導体パターン等を高い密度で基板の表面側に配置することができる。また、この回路基板は、基板の裏面側のサーマルビアの開口面積が大きく形成されている。そのため、この回路基板は、基板の裏面側から、電子機器で発生する熱を効率よく放熱することができる。また、この回路基板は、各バンプによって基板から電子機器を浮かせた状態でバンプ実装している。そのため、この回路基板は、各バンプを介して電子機器からサーマルビアに至る放熱経路を安定させることができる。 This circuit board is formed such that the opening area on the front surface side of the thermal via is smaller than the opening area on the back surface side, and the bump for mounting the electronic device on the substrate is connected to the thermal via. This circuit board is formed so that the opening area of the thermal via on the surface side of the board is small. Therefore, this circuit board can arrange a conductor pattern etc. on the surface side of a board with high density. Further, this circuit board is formed with a large opening area of the thermal via on the back side of the board. Therefore, this circuit board can efficiently dissipate heat generated in the electronic device from the back side of the board. The circuit board is mounted with bumps in a state where the electronic device is lifted from the board by each bump. Therefore, this circuit board can stabilize the heat radiation path from the electronic device to the thermal via via each bump.
 この回路基板は、例えば、発熱部材である電子機器に大きな電力を供給する場合であっても、サーマルビアによって電子機器の放熱性を高めつつ、サーマルビアの表面側の開口面積を必要に応じて小さく形成することができるため、装置全体の小型化と放熱性の確保とを両立させることができる。 For example, even if this circuit board supplies a large amount of power to an electronic device that is a heat-generating member, the thermal via improves the heat dissipation of the electronic device and increases the opening area on the surface side of the thermal via as necessary. Since it can be formed small, it is possible to achieve both miniaturization of the entire device and securing of heat dissipation.
 (3)例えば、特許文献3に記載された回路基板は、ガラス粉末とセラミックスフィラーとを含むガラスセラミックス組成物の焼結体から成り、半導体素子が搭載される搭載面を有する基板と、複数の層が搭載面から搭載面の反対側の非搭載面にかけて積層されて形成され、半導体素子で発生した熱を基板の下面側で放熱するためのサーマルビアとを備える構成となっている。サーマルビアは、開口部の径の異なる層を積層することによって形成されている。サーマルビアは、各層のうち、互いに接する少なくとも任意の二層において、非搭載面側の径が搭載面側の径よりも大きく形成されている。係る構成において、半導体素子は、発熱部材となる電子機器を構成している。 (3) For example, the circuit board described in Patent Document 3 is composed of a sintered body of a glass ceramic composition containing glass powder and a ceramic filler, and has a substrate having a mounting surface on which a semiconductor element is mounted, and a plurality of substrates The layer is formed by being laminated from the mounting surface to the non-mounting surface opposite to the mounting surface, and includes a thermal via for radiating heat generated in the semiconductor element on the lower surface side of the substrate. The thermal via is formed by laminating layers having different diameters of the opening. The thermal via is formed so that the diameter on the non-mounting surface side is larger than the diameter on the mounting surface side in at least two arbitrary layers in contact with each other among the layers. In such a configuration, the semiconductor element constitutes an electronic device serving as a heat generating member.
 この回路基板は、サーマルビアの各層を形成する際に、各層の貫通孔の位置がずれたときも、サーマルビアの伝熱抵抗の増大を防止することができる。 This circuit board can prevent an increase in the heat transfer resistance of the thermal via even when the position of the through hole of each layer is shifted when forming each layer of the thermal via.
特開2004-228410号公報JP 2004-228410 A 特開2003-338577号公報JP 2003-338777 A 特開2012-18948号公報JP 2012-18948 A
 しかしながら、特許文献1~特許文献3に記載された従来技術は、いずれも、以下に説明するように、発熱部材を高密度に実装することと発熱部材を冷却するための高い冷却性能を得ることとを両立させ難い、という課題があった。 However, all of the conventional techniques described in Patent Documents 1 to 3 provide high cooling performance for mounting the heat generating members at a high density and cooling the heat generating members as described below. There was a problem that it was difficult to achieve both.
 例えば、サーバ装置は、サーバモジュールをラックキャビネットの1ユニット規格内に収める必要があるため、サーバモジュールの小型化及び薄型化が図られている。また、サーバ装置は、サーバモジュールの処理速度や通信速度の高速化が要望されており、この要望を満たすために、発熱部材である電子機器の高性能化及び高密度実装化が図られている。これにより、サーバ装置は、内部で発生する熱量が増大する傾向にある。 For example, since the server device needs to accommodate the server module within one unit standard of the rack cabinet, the server module is reduced in size and thickness. In addition, the server device is required to increase the processing speed and communication speed of the server module, and in order to satisfy this demand, high performance and high density mounting of the electronic device which is a heat generating member is achieved. . As a result, the amount of heat generated inside the server device tends to increase.
 このようなサーバ装置は、省スペースでかつ高い冷却性能を有する冷却システムが必要である。そのため、多くのサーバ装置では、液冷方式の冷却システムが用いられている。液冷方式の冷却システムは、冷却液を用いて電子機器の周囲の空間を冷却するシステムである。 Such a server device requires a cooling system that saves space and has high cooling performance. Therefore, a liquid cooling system cooling system is used in many server devices. The liquid cooling type cooling system is a system that cools a space around an electronic device using a cooling liquid.
 特許文献1~特許文献3に記載された従来技術は、サーバモジュールの通信速度を向上させる場合に、回路基板上の電子機器間の距離を短くして密集させる必要があるため、これに伴って、回路基板の面積が減少し、その結果、回路基板の放熱面積が限定される。 According to the conventional techniques described in Patent Documents 1 to 3, the distance between electronic devices on the circuit board needs to be shortened to be dense when improving the communication speed of the server module. The area of the circuit board is reduced, and as a result, the heat dissipation area of the circuit board is limited.
 しかしながら、特許文献1及び特許文献2に記載された従来技術は、回路基板を介した空冷方式の冷却システムを用いている。例えば、特許文献1及び特許文献2に記載された従来技術は、回路基板を経由して熱を発熱部材である電子機器から冷媒に伝導する構成になっている。このような特許文献1及び特許文献2に記載された従来技術は、例えば、以下の(1)~(3)の課題があった。 However, the prior art described in Patent Document 1 and Patent Document 2 uses an air-cooled cooling system via a circuit board. For example, the conventional techniques described in Patent Document 1 and Patent Document 2 are configured to conduct heat from an electronic device, which is a heat generating member, to a refrigerant via a circuit board. Such conventional techniques described in Patent Document 1 and Patent Document 2 have the following problems (1) to (3), for example.
 (1)特許文献1及び特許文献2に記載された従来技術は、十分な放熱面積を確保することができないため、冷却性能が不足する。
 (2)特許文献1及び特許文献2に記載された従来技術は、仮に、十分な冷却面積を確保しようとしても、広い放熱面が必要となるため、多数の電子機器を配置するためのスペースが不足する。
 (3)広い放熱面は、熱が十分に拡散しない。そのため、特許文献1及び特許文献2に記載された従来技術は、仮に、十分な冷却面積を確保しようとしても、放熱面の性能を全て引き出すことが難しく、確保した面積に対して低い冷却性能しか得ることができない。
(1) Since the prior art described in Patent Document 1 and Patent Document 2 cannot secure a sufficient heat radiation area, the cooling performance is insufficient.
(2) Since the conventional techniques described in Patent Document 1 and Patent Document 2 require a large heat dissipation surface even if a sufficient cooling area is to be ensured, there is a space for arranging a large number of electronic devices. Run short.
(3) Heat is not diffused sufficiently on the wide heat dissipation surface. For this reason, the conventional techniques described in Patent Document 1 and Patent Document 2 are difficult to bring out all the performance of the heat dissipation surface even if it is intended to secure a sufficient cooling area, and only a low cooling performance with respect to the secured area. Can't get.
 また、特許文献3に記載された従来技術は、開口部の径の異なる層を積層してサーマルビアを形成することによって、サーマルビアの非搭載面側の径が搭載面側の径よりも大きく形成されている。これにより、特許文献3に記載された従来技術は、回路基板の放熱性能を向上させている。 Further, in the conventional technique described in Patent Document 3, the thermal via is formed by laminating layers having different diameters of the opening, so that the diameter of the thermal via on the non-mounting surface side is larger than the diameter on the mounting surface side. Is formed. Thereby, the prior art described in Patent Document 3 improves the heat dissipation performance of the circuit board.
 しかしながら、特許文献3に記載された従来技術は、積層する層毎に径の異なる開口部を形成するためには、各層に応じて径の異なるドリルを用いる製造プロセスが必要となり、製造コストが増大する、という課題があった。 However, in the prior art described in Patent Document 3, in order to form openings having different diameters for each layer to be laminated, a manufacturing process using drills having different diameters for each layer is required, which increases the manufacturing cost. There was a problem to do.
 本発明は、前記した課題を解決するためになされたものであり、発熱部材を高密度に実装することと発熱部材を冷却するための高い冷却性能を得ることとを両立させることができるサーバ装置を提供することを主な目的とする。 The present invention has been made in order to solve the above-described problems, and is a server device capable of achieving both mounting of heat generating members at high density and obtaining high cooling performance for cooling the heat generating members. The main purpose is to provide
 前記目的を達成するため、第1発明は、サーバ装置であって、発熱部材と放熱部材とが互いに対向するように一方の面と他方の面とに実装されている回路基板と、前記回路基板を内部に収容する密閉容器とを有し、前記回路基板は、前記発熱部材と前記放熱部材とを熱的に接続する複数のサーマルビアを内部に備えており、前記放熱部材は、前記密閉容器の内部で、液相状態の絶縁性の不活性冷媒に浸漬されている構成とする。 In order to achieve the above object, the first invention is a server device, wherein the heat generating member and the heat radiating member are mounted on one surface and the other surface so as to face each other, and the circuit substrate The circuit board includes a plurality of thermal vias that thermally connect the heat generating member and the heat radiating member, and the heat radiating member includes the airtight container. It is set as the structure immersed in the insulating inert refrigerant | coolant of a liquid phase state inside.
 このサーバ装置は、発熱部材と放熱部材とを回路基板の一方の面と他方の面とに分けて実装しているため、発熱部材を高密度に実装することができる。また、このサーバ装置は、発熱部材が実装されていない回路基板の他方の面の空きスペースに放熱部材を実装するため、発熱部材の実装面積よりも大きな実装面積の放熱部材を回路基板に実装することができ、その結果、発熱部材を冷却するための高い冷却性能を得ることができる。しかも、このサーバ装置は、発熱部材と放熱部材とをサーマルビアで熱的に接続して、放熱部材を液相状態の絶縁性の不活性冷媒に浸漬させているため、これによっても、高い冷却性能を得ることができる。 In this server device, since the heat generating member and the heat radiating member are separately mounted on one surface and the other surface of the circuit board, the heat generating member can be mounted with high density. Moreover, since this server apparatus mounts a heat radiating member in an empty space on the other surface of the circuit board on which the heat generating member is not mounted, a heat radiating member having a mounting area larger than the mounting area of the heat generating member is mounted on the circuit board. As a result, high cooling performance for cooling the heat generating member can be obtained. In addition, since the heat generating member and the heat radiating member are thermally connected to each other by a thermal via and the heat radiating member is immersed in an insulating inert refrigerant in a liquid phase state, this server device also provides high cooling. Performance can be obtained.
 また、第2発明は、サーバ装置であって、樹脂基板と絶縁基板とが2層以上積層された回路基板と、前記回路基板の一方の面に実装された発熱部材と、前記回路基板の他方の面の前記発熱部材と対向する位置に実装された放熱部材と、前記回路基板の内部に形成され、前記発熱部材と前記放熱部材とを熱的に接続する複数のサーマルビアとを有し、前記サーマルビアは、前記回路基板の内部に配置された伝熱部材を介して、前記発熱部材と前記放熱部材とを、N>Mとなる、N対Mの関係(ただし、NとMはともに整数)で接続しており、前記発熱部材と前記サーマルビアとの間及び前記放熱部材と前記サーマルビアとの間は、それぞれ、半田材によって接続されており、前記放熱部材と前記サーマルビアとの間を接続する半田材は、前記発熱部材と前記サーマルビアとの間を接続する半田材よりも大径に形成されている構成とする。 The second invention is a server device, wherein a circuit board in which two or more layers of a resin substrate and an insulating substrate are laminated, a heat generating member mounted on one surface of the circuit board, and the other of the circuit boards A heat dissipating member mounted at a position facing the heat generating member on the surface of the surface, and a plurality of thermal vias formed inside the circuit board and thermally connecting the heat generating member and the heat dissipating member, The thermal via is connected to the heat generating member and the heat dissipating member through a heat transfer member disposed inside the circuit board so that N> M, where N> M (where N and M are both An integer), and between the heat generating member and the thermal via and between the heat radiating member and the thermal via, respectively, are connected by a solder material, and between the heat radiating member and the thermal via, The solder material for connecting the Than solder material for connecting between the heat member and the thermal via a configuration that has a larger diameter.
 このサーバ装置は、発熱部材と放熱部材とを回路基板の一方の面と他方の面とに分けて実装しているため、発熱部材を高密度に実装することができる。また、このサーバ装置は、発熱部材が実装されていない回路基板の他方の面の空きスペースに放熱部材を実装するため、発熱部材の実装面積よりも大きな実装面積の放熱部材を回路基板に実装することができ、その結果、発熱部材を冷却するための高い冷却性能を得ることができる。また、このサーバ装置は、放熱部材とサーマルビアとの間を接続する半田材が発熱部材とサーマルビアとの間を接続する半田材よりも大径に形成されているため、これによっても、発熱部材の実装面積よりも大きな実装面積の放熱部材を回路基板に効率よく実装するとともに、伝熱効率を高めることができ、その結果、高い冷却性能を得ることができる。
 その他の手段は、後記する。
In this server device, since the heat generating member and the heat radiating member are separately mounted on one surface and the other surface of the circuit board, the heat generating member can be mounted with high density. Moreover, since this server apparatus mounts a heat radiating member in an empty space on the other surface of the circuit board on which the heat generating member is not mounted, a heat radiating member having a mounting area larger than the mounting area of the heat generating member is mounted on the circuit board. As a result, high cooling performance for cooling the heat generating member can be obtained. In this server device, the solder material connecting the heat radiating member and the thermal via is formed to have a larger diameter than the solder material connecting the heat generating member and the thermal via. While efficiently dissipating the heat radiating member having a larger mounting area than the mounting area of the member on the circuit board, the heat transfer efficiency can be increased, and as a result, high cooling performance can be obtained.
Other means will be described later.
 本発明によれば、発熱部材を高密度に実装することと発熱部材を冷却するための高い冷却性能を得ることとを両立させることができるサーバ装置を提供することができる。 According to the present invention, it is possible to provide a server device that can achieve both high-density mounting of heat-generating members and high cooling performance for cooling the heat-generating members.
図1は、実施形態1に係るサーバ装置及びその冷却に用いる冷却システムの概略構成を示す図である。FIG. 1 is a diagram illustrating a schematic configuration of a server device and a cooling system used for cooling the server device according to the first embodiment. 図2(a),(b)は、実施形態1に係るサーバ装置を構成する1Uサーバの概略構成を示す図であり、図2(a)は、1Uサーバの上面図であり、図2(b)は、ガイドレールを取り外した状態の1Uサーバの斜視図である。2A and 2B are diagrams illustrating a schematic configuration of a 1U server that configures the server device according to the first embodiment, and FIG. 2A is a top view of the 1U server. b) is a perspective view of the 1U server with the guide rail removed. 図3は、実施形態1に係るサーバ装置に組み込まれたサーバモジュールの概略構成を示す斜視図である。FIG. 3 is a perspective view illustrating a schematic configuration of a server module incorporated in the server apparatus according to the first embodiment. 図4は、実施形態1に係るサーバモジュールの概略構成を示す斜視断面図である。FIG. 4 is a perspective cross-sectional view illustrating a schematic configuration of the server module according to the first embodiment. 図5は、実施形態1に係るサーバ装置の稼動時のサーバモジュールの状態を示す図である。FIG. 5 is a diagram illustrating a state of the server module during operation of the server apparatus according to the first embodiment. 図6は、実施形態1に係るサーバモジュールに組み込まれる回路基板の製造方法の一例を示す図(1)である。FIG. 6 is a diagram (1) illustrating an example of a method of manufacturing a circuit board incorporated in the server module according to the first embodiment. 図7は、実施形態1に係るサーバモジュールに組み込まれる回路基板の製造方法の一例を示す図(2)である。FIG. 7 is a diagram (2) illustrating an example of a method of manufacturing a circuit board incorporated in the server module according to the first embodiment. 図8は、実施形態2に係るサーバモジュールの概略構成を示す図である。FIG. 8 is a diagram illustrating a schematic configuration of a server module according to the second embodiment. 図9は、実施形態2に係るサーバモジュールに組み込まれる回路基板の製造方法の一例を示す図である。FIG. 9 is a diagram illustrating an example of a method of manufacturing a circuit board incorporated in the server module according to the second embodiment. 図10は、実施形態2の変形例に係るサーバモジュールに組み込まれる回路基板の製造方法の一例を示す図である。FIG. 10 is a diagram illustrating an example of a method for manufacturing a circuit board incorporated in a server module according to a modification of the second embodiment. 図11は、実施形態3に係るサーバモジュールの概略構成を示す図である。FIG. 11 is a diagram illustrating a schematic configuration of a server module according to the third embodiment. 図12は、実施形態4に係るサーバモジュールの概略構成を示す図である。FIG. 12 is a diagram illustrating a schematic configuration of a server module according to the fourth embodiment. 図13は、第1変形例の概略構成を示す斜視図である。FIG. 13 is a perspective view showing a schematic configuration of the first modification. 図14は、第2変形例の概略構成を示す断面図である。FIG. 14 is a cross-sectional view showing a schematic configuration of the second modification.
 以下、図面を参照して、本発明の実施の形態(以下、「本実施形態」と称する)につき詳細に説明する。なお、各図は、本発明を十分に理解できる程度に、概略的に示してあるに過ぎない。よって、本発明は、図示例のみに限定されるものではない。また、各図において、共通する構成要素や同様な構成要素については、同一の符号を付し、それらの重複する説明を省略する。また、各製造方法を示す図は、各工程段階で得られた構造体の要部の断面の切り口を示している。 Hereinafter, an embodiment of the present invention (hereinafter referred to as “the present embodiment”) will be described in detail with reference to the drawings. Each figure is only schematically shown so that the present invention can be fully understood. Therefore, the present invention is not limited to the illustrated example. Moreover, in each figure, the same code | symbol is attached | subjected about the common component and the same component, and those overlapping description is abbreviate | omitted. Moreover, the figure which shows each manufacturing method has shown the cut surface of the cross section of the principal part of the structure obtained at each process step.
 [実施形態1]
 <サーバ装置及び冷却システムの構成>
 以下、図1を参照して、本実施形態1に係るサーバ装置1及びその冷却に用いる冷却システム160の構成につき説明する。図1は、実施形態1に係るサーバ装置1及びその冷却に用いる冷却システム160の概略構成を示す図である。ここでは、本実施形態1に係るサーバ装置1がラックマウント方式のサーバとして構成されている場合を想定して説明する。
[Embodiment 1]
<Configuration of server device and cooling system>
Hereinafter, the configuration of the server device 1 according to the first embodiment and the cooling system 160 used for cooling the server device 1 will be described with reference to FIG. FIG. 1 is a diagram illustrating a schematic configuration of a server device 1 according to the first embodiment and a cooling system 160 used for cooling the server device 1. Here, a description will be given assuming that the server device 1 according to the first embodiment is configured as a rack mount server.
 図1に示すように、本実施形態1に係るサーバ装置1は、複数の1Uサーバ3を有しており、各1Uサーバ3をラックキャビネット110の内部に収容する構成になっている。1Uサーバ3は、サーバ機能を有する複数のサーバモジュール10が実装された装置である。1Uサーバ3及びサーバモジュール10の構成については、後記する。 As illustrated in FIG. 1, the server device 1 according to the first embodiment includes a plurality of 1U servers 3 and is configured to accommodate each 1U server 3 in a rack cabinet 110. The 1U server 3 is a device on which a plurality of server modules 10 having server functions are mounted. The configurations of the 1U server 3 and the server module 10 will be described later.
 ラックキャビネット110は、支柱111,112と、ガイドレール113と、バックプレーン121と、冷却液循環路161と、冷却液供給用バッファタンク162と、冷却液排出用バッファタンク163とを有している。 The rack cabinet 110 includes columns 111 and 112, guide rails 113, a backplane 121, a coolant circulation path 161, a coolant supply buffer tank 162, and a coolant discharge buffer tank 163. .
 支柱111は、ラックキャビネット110を構成する鉛直方向の支柱である。
 支柱112は、ラックキャビネット110を構成する水平方向の支柱である。
 ガイドレール113は、1Uサーバ3を矢印A1方向又は矢印A2方向に摺動自在に保持する部材である。
 バックプレーン121は、電源コネクタや光ケーブル等の設備を収容する部位である。
The support 111 is a vertical support that constitutes the rack cabinet 110.
The column 112 is a horizontal column that constitutes the rack cabinet 110.
The guide rail 113 is a member that slidably holds the 1U server 3 in the arrow A1 direction or the arrow A2 direction.
The backplane 121 is a part that houses equipment such as a power connector and an optical cable.
 冷却液循環路161は、冷却液2を各サーバモジュール10と後記するチラー164との間で循環させる配管である。
 冷却液供給用バッファタンク162は、各サーバモジュール10に供給する冷却液2を一時的に貯蔵するタンクである。
 冷却液排出用バッファタンク163は、各サーバモジュール10から排出された冷却液2を一時的に貯蔵するタンクである。
The coolant circulation path 161 is a pipe that circulates the coolant 2 between each server module 10 and a chiller 164 described later.
The coolant supply buffer tank 162 is a tank that temporarily stores the coolant 2 supplied to each server module 10.
The coolant discharge buffer tank 163 is a tank that temporarily stores the coolant 2 discharged from each server module 10.
 図1に示す例では、ラックキャビネット110は、バックプレーン121が中央に配置されており、紙面手前側と紙面奥側とのそれぞれに、1Uサーバ3を収容する構成になっている。サーバ装置1は、バックプレーン121が中央に配置されたラックキャビネット110を用いることによって、紙面手前側のサーバモジュール10の矢印A1方向の脱着と紙面奥側のサーバモジュール10の矢印A2方向の脱着とを同時に実現することができる。 In the example shown in FIG. 1, the rack cabinet 110 is configured such that the backplane 121 is disposed in the center and the 1U server 3 is accommodated on each of the front side and the back side of the page. The server apparatus 1 uses the rack cabinet 110 in which the backplane 121 is arranged in the center, so that the server module 10 on the front side of the page is detached in the direction of arrow A1, and the server module 10 on the back side of the page is detached in the direction of arrow A2. Can be realized simultaneously.
 なお、図1に示す例では、1Uサーバ3が紙面手前側と紙面奥側とに1個ずつしか示されていないが、ラックキャビネット110は、複数の1Uサーバ3を紙面手前側と紙面奥側とのそれぞれに収容する構成になっている。また、図1に示す例では、ラックキャビネット110は、1台しか設けられていないが、複数設けられていても良い。 In the example shown in FIG. 1, only one 1U server 3 is shown on the front side and the back side of the paper, but the rack cabinet 110 includes a plurality of 1U servers 3 on the front side and the back side of the paper. It is configured to be accommodated in each. In the example shown in FIG. 1, only one rack cabinet 110 is provided, but a plurality of rack cabinets 110 may be provided.
 ラックキャビネット110は、外部(例えば、建屋外)に設置されたチラー164とともに、冷却液2を用いて、各サーバモジュール10に実装された電子機器を冷却する冷却システム160を構成している。 The rack cabinet 110 constitutes a cooling system 160 that cools electronic devices mounted on each server module 10 by using the coolant 2 together with a chiller 164 installed outside (for example, outside the building).
 チラー164は、冷却液2を冷却する冷却装置である。チラー164は、冷却液循環路161を介して、冷却液2を各サーバモジュール10に供給したり、各サーバモジュール10から排出された冷却液2を回収して冷却液2を冷却したりする。ここでは、冷却液2が水である場合を想定して説明する。ただし、冷却液2は、水以外の冷媒であっても良い。 The chiller 164 is a cooling device that cools the coolant 2. The chiller 164 supplies the coolant 2 to each server module 10 via the coolant circulation path 161, collects the coolant 2 discharged from each server module 10, and cools the coolant 2. Here, the case where the coolant 2 is water will be described. However, the coolant 2 may be a refrigerant other than water.
 図1に示す例では、冷却液循環路161は、冷却液供給管161Aa,161Abと、冷却液排出管161Ba,161Bbとを含む構成になっている。 In the example shown in FIG. 1, the coolant circulation path 161 includes coolant supply pipes 161Aa and 161Ab and coolant discharge pipes 161Ba and 161Bb.
 冷却液供給管161Aa,161Abは、それぞれ、冷却液2を冷却液供給用バッファタンク162から各サーバモジュール10に送るための配管である。冷却液供給管161Aaは、バックプレーン121内を通るように設けられている。冷却液供給管161Abは、ガイドレール113内を通るように設けられている。 The coolant supply pipes 161 </ b> Aa and 161 </ b> Ab are pipes for sending the coolant 2 from the coolant supply buffer tank 162 to each server module 10. The coolant supply pipe 161Aa is provided so as to pass through the backplane 121. The coolant supply pipe 161Ab is provided so as to pass through the guide rail 113.
 冷却液排出管161Ba,161Bbは、それぞれ、冷却液2を各サーバモジュール10から冷却液排出用バッファタンク163に送るための配管である。冷却液排出管161Baは、バックプレーン121内を通るように設けられている。冷却液排出管161Bbは、ガイドレール113内を通るように設けられている。 The cooling liquid discharge pipes 161Ba and 161Bb are pipes for sending the cooling liquid 2 from the server modules 10 to the cooling liquid discharge buffer tank 163, respectively. The coolant discharge pipe 161Ba is provided so as to pass through the backplane 121. The coolant discharge pipe 161Bb is provided so as to pass through the guide rail 113.
 <1Uサーバの構成>
 以下、図2を参照して、1Uサーバ3の構成につき説明する。図2は、1Uサーバ3の概略構成を示す図である。図2(a)は、図1に示す切断面CT1に沿って切断した状態の1Uサーバ3の構成を示している。図2(b)は、ガイドレール113を取り外した状態の1Uサーバ3の構成を示している。
<Configuration of 1U server>
Hereinafter, the configuration of the 1U server 3 will be described with reference to FIG. FIG. 2 is a diagram illustrating a schematic configuration of the 1U server 3. FIG. 2A shows the configuration of the 1U server 3 in a state cut along the cutting plane CT1 shown in FIG. FIG. 2B shows the configuration of the 1U server 3 with the guide rail 113 removed.
 図2(a)に示すように、1Uサーバ3は、配線部5と、サーバモジュール10と、ガイドレール113とを備える構成になっている。図2(a)に示す例では、1Uサーバ3は、8個のサーバモジュール10と、2本のガイドレール113とを備えている。8個のサーバモジュール10は、配線部5の両横に4個ずつ配置されている。また、2本のガイドレール113は、1Uサーバ3の右側と左側とに1本ずつ配置されている。 As shown in FIG. 2A, the 1U server 3 includes a wiring unit 5, a server module 10, and a guide rail 113. In the example illustrated in FIG. 2A, the 1U server 3 includes eight server modules 10 and two guide rails 113. Four server modules 10 are arranged on both sides of the wiring section 5. Two guide rails 113 are arranged on the right side and the left side of the 1U server 3 one by one.
 配線部5は、通信用ケーブルや電源線を収容する部位である。通信用ケーブルは、図示せぬ他のラックキャビネット110に収容されたサーバモジュール10を含む、各サーバモジュール10や、図示せぬ電子機器の間を通信可能に接続している。なお、通信用ケーブルは、電気信号だけでなく、光信号により通信を行う機能を持たせるようにしても良い。 The wiring unit 5 is a part that accommodates communication cables and power lines. The communication cable communicatably connects each server module 10 including the server module 10 housed in another rack cabinet 110 (not shown) and an electronic device (not shown). Note that the communication cable may have a function of performing communication using not only an electric signal but also an optical signal.
 図2(b)に示すように、2本のガイドレール113は、それぞれ、内部に、冷却液循環路161を構成する冷却液供給管161Abと冷却液排出管161Bbとを備えている。 As shown in FIG. 2B, the two guide rails 113 each include a cooling liquid supply pipe 161Ab and a cooling liquid discharge pipe 161Bb that constitute the cooling liquid circulation path 161 therein.
 冷却液供給管161Abは、一端が冷却液供給管161Aa(図1参照)に接続されるとともに、他端が接続部114aによって各サーバモジュール10に設けられた後記する冷却ジャケット12(図4及び図5参照)の供給孔4aに接続される。また、冷却液排出管161Bbは、一端が冷却液排出管161Ba(図1参照)に接続されるとともに、他端が接続部114bによって各サーバモジュール10に設けられた後記する冷却ジャケット12(図4及び図5参照)の排出孔4bと接続される。したがって、2本のガイドレール113は、バックプレーン121(図1参照)及び各サーバモジュール10と接続されることによって、冷却液循環路161(図1参照)を形成する機能を有する。 One end of the coolant supply pipe 161Ab is connected to the coolant supply pipe 161Aa (see FIG. 1), and the other end is provided in each server module 10 by the connection portion 114a. 5)) is connected to the supply hole 4a. The coolant discharge pipe 161Bb has one end connected to the coolant discharge pipe 161Ba (see FIG. 1) and the other end provided to each server module 10 by the connection portion 114b. And the discharge hole 4b of FIG. 5). Therefore, the two guide rails 113 have a function of forming a coolant circulation path 161 (see FIG. 1) by being connected to the backplane 121 (see FIG. 1) and each server module 10.
 ここで、供給孔4a及び接続部114aは、好ましくは、排出孔4b及び接続部114bよりも高い位置に形成されていると良い。その理由は、冷却液2の位置エネルギーを利用して、冷却液2を後記する冷却ジャケット12(図4及び図5参照)の内部に効率よく送ることができるからである。 Here, the supply hole 4a and the connection part 114a are preferably formed at a higher position than the discharge hole 4b and the connection part 114b. The reason is that the potential energy of the coolant 2 can be used to efficiently send the coolant 2 to the inside of the cooling jacket 12 (see FIGS. 4 and 5) described later.
 なお、各サーバモジュール10の内部は、供給孔4a及び排出孔4bが設けられている面(以下、「接続面」と称する)以外の面の密閉状態が保たれている。 It should be noted that the inside of each server module 10 is kept in a hermetically sealed state other than the surface provided with the supply hole 4a and the discharge hole 4b (hereinafter referred to as “connection surface”).
 <サーバモジュールの構成>
 以下、図3~図5を参照して、サーバモジュール10の構成につき説明する。図3は、サーバモジュール10の概略構成を示す斜視図である。図4は、サーバモジュール10の概略構成を示す斜視断面図である。図5は、サーバ装置1の稼動時のサーバモジュール10の状態を示す図である。
<Configuration of server module>
Hereinafter, the configuration of the server module 10 will be described with reference to FIGS. FIG. 3 is a perspective view illustrating a schematic configuration of the server module 10. FIG. 4 is a perspective sectional view showing a schematic configuration of the server module 10. FIG. 5 is a diagram illustrating a state of the server module 10 when the server apparatus 1 is in operation.
 まず、図3を参照してサーバモジュール10の外部構成につき説明する。
 図3に示すように、サーバモジュール10は、筐体11と、冷却ジャケット12とを備えている。
First, the external configuration of the server module 10 will be described with reference to FIG.
As shown in FIG. 3, the server module 10 includes a housing 11 and a cooling jacket 12.
 筐体11は、CPUやメモリ等の電子機器が実装された回路基板21(図4参照)を収容する密閉容器として構成されている。以下、筐体11を「密閉容器11」と称する。 The housing 11 is configured as a sealed container that houses a circuit board 21 (see FIG. 4) on which electronic devices such as a CPU and a memory are mounted. Hereinafter, the housing 11 is referred to as “sealed container 11”.
 冷却ジャケット12は、電子機器の周囲で冷却液2を流動させる部材である。冷却ジャケット12は、冷却液供給路13aと冷却液排出路13bとからなる冷却液2の流路13を備えている。流路13は、冷却ジャケット12の内部で複数回折り返された構成になっており、その結果、図4に示す構成になっている。 The cooling jacket 12 is a member that allows the coolant 2 to flow around the electronic device. The cooling jacket 12 includes a flow path 13 for the cooling liquid 2 including a cooling liquid supply path 13a and a cooling liquid discharge path 13b. The flow path 13 has a configuration in which a plurality of folds are made inside the cooling jacket 12, and as a result, has a configuration shown in FIG.
 冷却ジャケット12は、密閉容器11の内部に収容された回路基板21(図4参照)に対して、直接的に接することにより、又は、冷却液2の蒸気や、伝熱シート、その他の熱伝導手段を介して、間接的に接することにより、回路基板21に実装された電子機器で発生する熱を冷却液2に伝導するように構成しても良い。 The cooling jacket 12 is in direct contact with the circuit board 21 (see FIG. 4) accommodated in the sealed container 11, or the vapor of the coolant 2, the heat transfer sheet, and other heat conduction. You may comprise so that the heat which generate | occur | produces with the electronic device mounted in the circuit board 21 may be conducted to the cooling fluid 2 by contacting indirectly through a means.
 サーバモジュール10は、図3に示すように、好ましくは、位置決めガイド19を備える構成にすると良い。位置決めガイド19は、1Uサーバ3内でのサーバモジュール10の位置決めを行う部材である。図3に示す例では、位置決めガイド19は、冷却ジャケット12の上部と密閉容器11の下部とに設けられており、1Uサーバ3内でのサーバモジュール10の水平方向の位置決めを行うように構成されている。 As shown in FIG. 3, the server module 10 is preferably provided with a positioning guide 19. The positioning guide 19 is a member that positions the server module 10 in the 1U server 3. In the example shown in FIG. 3, the positioning guide 19 is provided in the upper part of the cooling jacket 12 and the lower part of the sealed container 11, and is configured to position the server module 10 in the horizontal direction in the 1U server 3. ing.
 次に、図4を参照して、サーバモジュール10の内部構成につき説明する。図4は、図3に示す切断面CT2に沿って切断した状態のサーバモジュール10の構成を示している。 Next, the internal configuration of the server module 10 will be described with reference to FIG. FIG. 4 shows the configuration of the server module 10 in a state cut along the cutting plane CT2 shown in FIG.
 図4に示すように、サーバモジュール10は、内部に、凝縮フィン15と、支持部材18と、回路基板21とを有している。 As shown in FIG. 4, the server module 10 includes a condensation fin 15, a support member 18, and a circuit board 21 inside.
 凝縮フィン15は、後記する発熱部材22(主に、高発熱部材22a)で発生した熱によって気化した不活性冷媒31(図5参照)を冷却して凝縮させる部材である。
 支持部材18は、密閉容器11の内部で回路基板21を水平方向に支持する部材である。
 回路基板21は、CPUやメモリ等の電子機器が実装された部材である。
The condensing fin 15 is a member that cools and condenses the inert refrigerant 31 (see FIG. 5) that is vaporized by heat generated by the heat generating member 22 (mainly the high heat generating member 22a) described later.
The support member 18 is a member that supports the circuit board 21 in the horizontal direction inside the sealed container 11.
The circuit board 21 is a member on which electronic devices such as a CPU and a memory are mounted.
 凝縮フィン15は、冷却ジャケット12の下部に設けられており、冷却ジャケット12から、後記する冷却部17に突出するように設けられている。凝縮フィン15は、冷却ジャケット12の内部に設けられた流路13と熱的に接続されている。凝縮フィン15は、流路13とともに、沸騰により気化した不活性冷媒31を冷却して凝縮させる凝縮部14を形成している。 The condensation fins 15 are provided at the lower part of the cooling jacket 12 and are provided so as to protrude from the cooling jacket 12 to a cooling unit 17 described later. The condensation fins 15 are thermally connected to the flow path 13 provided inside the cooling jacket 12. The condensing fin 15 forms the condensing part 14 which cools and condenses the inert refrigerant 31 evaporated by boiling together with the flow path 13.
 冷却部17は、後記する放熱部材23を液相状態の絶縁性の不活性冷媒31(図5参照)に浸漬させるために、密閉容器11の内部に設けられた空間である。冷却部17は、上面が冷却ジャケット12によって、また、側面が密閉容器11の側壁によって、また、下面が支持部材18と回路基板21とによって、密閉されている。 The cooling unit 17 is a space provided inside the hermetic container 11 in order to immerse a heat radiating member 23 described later in an insulating inert refrigerant 31 (see FIG. 5) in a liquid phase state. The cooling unit 17 has an upper surface sealed by the cooling jacket 12, a side surface sealed by the side wall of the sealed container 11, and a lower surface sealed by the support member 18 and the circuit board 21.
 冷却部17の内部には、不活性冷媒31(図5参照)が入っている。本実施形態では、不活性冷媒31として、例えば、3M社製のHFE7000(登録商標)を用いるものとして説明する。本実施形態では、液相状態の不活性冷媒31は、液面の高さ位置が、少なくとも後記する放熱部材23の沸騰伝熱面24の位置よりも高くなり、かつ、凝縮フィン15の下端部の位置よりも低くなるように、冷却部17の内部に入れられているものとして説明する。 The inside of the cooling unit 17 contains an inert refrigerant 31 (see FIG. 5). In the present embodiment, description will be made assuming that, for example, HFE7000 (registered trademark) manufactured by 3M is used as the inert refrigerant 31. In the present embodiment, the liquid-phase inert refrigerant 31 has a liquid surface height position that is at least higher than the position of the boiling heat transfer surface 24 of the heat radiating member 23 described later, and the lower end of the condensing fin 15. It demonstrates as what is put in the inside of the cooling part 17 so that it may become lower than this position.
 回路基板21は、一方の面(図5に示す例では、下面)が高発熱部材22a及び低発熱部材22bの実装面となっており、他方の面(図5に示す例では、上面)が放熱部材23の実装面となっている。 The circuit board 21 has one surface (the lower surface in the example shown in FIG. 5) as a mounting surface for the high heat generating member 22a and the low heat generating member 22b, and the other surface (the upper surface in the example shown in FIG. 5). This is the mounting surface of the heat dissipation member 23.
 高発熱部材22aは、例えば、CPU等の電子機器である。低発熱部材22bは、例えば、メモリ等の電子機器である。以下、高発熱部材22aと低発熱部材22bとを総称する場合に、「発熱部材22」と称する。 The high heat generating member 22a is, for example, an electronic device such as a CPU. The low heat generating member 22b is, for example, an electronic device such as a memory. Hereinafter, the high heat generating member 22a and the low heat generating member 22b are collectively referred to as “heat generating member 22”.
 放熱部材23は、発熱部材22(主に、高発熱部材22a)で発生した熱を液相状態の不活性冷媒31(図5参照)に伝導して放熱する部材である。放熱部材23は、熱を液相状態の不活性冷媒31に効率よく伝導して、不活性冷媒31を沸騰させるための沸騰伝熱面24を上面に備えている。 The heat radiating member 23 is a member that conducts heat generated by the heat generating member 22 (mainly, the high heat generating member 22a) to the liquid state inert refrigerant 31 (see FIG. 5) to dissipate heat. The heat radiating member 23 has a boiling heat transfer surface 24 on the upper surface for efficiently conducting heat to the liquid state inert refrigerant 31 and boiling the inert refrigerant 31.
 放熱部材23は、発熱部材22(主に、高発熱部材22a)と対向するように、回路基板21の、発熱部材22の実装面(図5に示す例では、下面)とは反対側の面(図5に示す例では、上面)に実装されている。放熱部材23は、実装面積が放熱部材23に接続されている高発熱部材22aの実装面積よりも広くなるように構成されている。 The surface of the circuit board 21 opposite to the mounting surface (the lower surface in the example shown in FIG. 5) of the circuit board 21 so that the heat radiating member 23 faces the heat generating member 22 (mainly the high heat generating member 22a). (In the example shown in FIG. 5, it is mounted on the upper surface). The heat dissipating member 23 is configured such that the mounting area is larger than the mounting area of the high heat generating member 22 a connected to the heat dissipating member 23.
 回路基板21は、内部に、サーマルビア25を備えている。サーマルビア25は、発熱部材22(主に、高発熱部材22a)と放熱部材23とを熱的に接続するビアである。サーマルビア25は、回路基板21を導通させるための導通ビア217a,217b(図7(c)参照)と同形状の孔の内部に絶縁を施し、高い熱伝導性を有する材料(例えば、銅等の金属材)を充填することによって形成される。 The circuit board 21 includes a thermal via 25 inside. The thermal via 25 is a via that thermally connects the heat generating member 22 (mainly the high heat generating member 22 a) and the heat radiating member 23. The thermal via 25 is a material having high thermal conductivity (for example, copper or the like) by insulating the inside of the hole having the same shape as the conductive vias 217a and 217b (see FIG. 7C) for conducting the circuit board 21. The metal material) is filled.
 <サーバ装置の稼動時のサーバモジュールの状態>
 次に、図5を参照して、サーバ装置1の稼動時のサーバモジュール10の状態につき説明する。
<Status of server module when server device is running>
Next, the state of the server module 10 when the server apparatus 1 is in operation will be described with reference to FIG.
 図5に示すように、サーバモジュール10は、サーバ装置1が稼動すると、下面に実装された発熱部材22(主に、高発熱部材22a)で発生した熱が、サーマルビア25を介して、上に実装された放熱部材23に伝導される。すると、放熱部材23は、沸騰伝熱面24で熱を液相状態の不活性冷媒31に伝導して、不活性冷媒31を沸騰させる。 As shown in FIG. 5, when the server device 1 operates, the server module 10 generates heat generated by the heat generating member 22 (mainly the high heat generating member 22 a) mounted on the lower surface via the thermal via 25. Conducted to the heat dissipating member 23 mounted on. Then, the heat radiating member 23 conducts heat to the inert refrigerant 31 in a liquid phase state on the boiling heat transfer surface 24, and causes the inert refrigerant 31 to boil.
 不活性冷媒31は、沸騰によって気化し(すなわち、気相状態に変化し)、蒸気になって上昇する。その結果、気化した不活性冷媒31は、凝縮フィン15と接触する。 The inert refrigerant 31 evaporates by boiling (that is, changes to a gas phase state) and rises as a vapor. As a result, the vaporized inert refrigerant 31 comes into contact with the condensation fins 15.
 凝縮フィン15は、冷却液2が流路3の内部を流動することにより、一定の温度以下に冷却されている。そのため、気化した不活性冷媒31は、凝縮フィン15によって冷却される。その結果、不活性冷媒31は、冷却によって液化し(すなわち、液相状態に変化し)、液体になって下降する。 The condensation fins 15 are cooled to a certain temperature or less by the coolant 2 flowing inside the flow path 3. Therefore, the vaporized inert refrigerant 31 is cooled by the condensation fins 15. As a result, the inert refrigerant 31 is liquefied by cooling (that is, changed to a liquid phase state), becomes a liquid, and descends.
 凝縮フィン15は、不活性冷媒31を冷却する際に、吸熱して、熱を流路13の内部を流れる冷却液2に伝導する。その結果、サーバモジュール10は、発熱部材22(主に、高発熱部材22a)で発生した熱を外部に放出する。 The condensation fin 15 absorbs heat when cooling the inert refrigerant 31 and conducts the heat to the coolant 2 flowing inside the flow path 13. As a result, the server module 10 releases the heat generated by the heat generating member 22 (mainly the high heat generating member 22a) to the outside.
 このようなサーバモジュール10は、不活性冷媒31の相変化による気化熱と凝縮熱とを利用して熱を外部に放出するため、発熱部材22(主に、高発熱部材22a)を冷却するための高い冷却性能を得ることができる。 Since such a server module 10 uses the heat of vaporization and the heat of condensation caused by the phase change of the inert refrigerant 31 to release heat to the outside, the heat generating member 22 (mainly the high heat generating member 22a) is cooled. High cooling performance can be obtained.
 <回路基板の製造方法>
 以下、図6及び図7を参照して、回路基板21の製造方法につき説明する。図6及び図7は、それぞれ、回路基板21の製造方法の一例を示す図である。
<Circuit board manufacturing method>
Hereinafter, a method for manufacturing the circuit board 21 will be described with reference to FIGS. 6 and 7 are diagrams showing an example of a method for manufacturing the circuit board 21.
 図6は、回路基板21の下側部分の基板219(図6(i)参照)を形成するまでの製造工程を示している。図7は、回路基板21の上側部分の基板231(図7(a)参照)を形成してから、最終的な回路基板21(図7(c)参照)を形成するまでの製造工程を示している。 FIG. 6 shows a manufacturing process until a substrate 219 (see FIG. 6 (i)) in the lower portion of the circuit board 21 is formed. FIG. 7 shows a manufacturing process from the formation of the substrate 231 (see FIG. 7A) in the upper portion of the circuit board 21 to the formation of the final circuit board 21 (see FIG. 7C). ing.
 本実施形態1では、下側部分の基板219(図6(i)参照)は、絶縁層の上に電極が形成された基板(インターポーザ)となっている。以下、下側部分の基板219を「インターポーザ219」と称する。また、上側部分の基板231(図7(a)参照)は、樹脂材の層と銅の層とが積層されて形成された基板となっている。以下、上側部分の基板231を「樹脂基板231」と称する。 In the first embodiment, the lower portion of the substrate 219 (see FIG. 6 (i)) is a substrate (interposer) in which an electrode is formed on an insulating layer. Hereinafter, the substrate 219 in the lower part is referred to as an “interposer 219”. The upper portion substrate 231 (see FIG. 7A) is a substrate formed by laminating a resin material layer and a copper layer. Hereinafter, the upper substrate 231 is referred to as a “resin substrate 231”.
 なお、ここでは、インターポーザ219が、シリコンガラスペースト211(図6(a)参照)を用いて形成されることによって、ガラスインターポーザとして形成される場合を想定して説明する。しかしながら、インターポーザ219は、シリコンガラスペースト211以外の硬質かつ絶縁性を有する材料(例えば、セラミック等の材料)を用いて形成されても良い。 Here, the case where the interposer 219 is formed as a glass interposer by using the silicon glass paste 211 (see FIG. 6A) will be described. However, the interposer 219 may be formed using a hard and insulating material (for example, a material such as ceramic) other than the silicon glass paste 211.
 まず、図6(a)に示すように、絶縁層を構成するシリコンガラスペースト211を用意し、図6(b)に示すように、レジスト213をシリコンガラスペースト211の表面に塗布する。 First, as shown in FIG. 6A, a silicon glass paste 211 constituting an insulating layer is prepared, and a resist 213 is applied to the surface of the silicon glass paste 211 as shown in FIG. 6B.
 次に、図6(c)に示すように、回路形状に形成したマスク(図示せず)をレジスト213の上に形成し、マスクを通じて紫外線をレジスト213の上に照射する。これにより、紫外線が照射された領域のレジスト213aは硬化し、一方、紫外線が照射されていない領域のレジスト213bは硬化していない状態となる。 Next, as shown in FIG. 6C, a mask (not shown) formed in a circuit shape is formed on the resist 213, and ultraviolet rays are irradiated onto the resist 213 through the mask. As a result, the resist 213a in the region irradiated with ultraviolet light is cured, while the resist 213b in the region not irradiated with ultraviolet light is not cured.
 以下、レジスト213aを「硬化レジスト213a」と称し、レジスト213bを「非硬化レジスト213b」と称する。「非硬化レジスト213b」は、図6(e)に示す工程で銅メッキ215によって回路を形成する際のマスクパターンとして機能する。 Hereinafter, the resist 213a is referred to as “cured resist 213a” and the resist 213b is referred to as “non-cured resist 213b”. The “non-cured resist 213b” functions as a mask pattern when a circuit is formed by the copper plating 215 in the step shown in FIG.
 次に、図6(d)に示すように、現像剤を用いて硬化レジスト213aを選択的に除去し、残された非硬化レジスト213bによってマスクパターンを形成する。 Next, as shown in FIG. 6D, the cured resist 213a is selectively removed using a developer, and a mask pattern is formed by the remaining non-cured resist 213b.
 次に、図6(e)に示すように、非硬化レジスト213bを介して基板に銅メッキ215を施して回路を形成し、その後に、図6(f)に示すように、溶剤を用いて非硬化レジスト213bを除去する。これによって、表面に回路が形成された絶縁基板216を形成する。 Next, as shown in FIG. 6E, a copper plating 215 is applied to the substrate through the non-cured resist 213b to form a circuit, and then a solvent is used as shown in FIG. 6F. The uncured resist 213b is removed. Thus, an insulating substrate 216 having a circuit formed on the surface is formed.
 その後、図6(a)~図6(f)と同様の工程を繰り返すことによって、複数の絶縁基板216を形成する。 Thereafter, a plurality of insulating substrates 216 are formed by repeating the same steps as in FIGS. 6A to 6F.
 次に、図6(g)に示すように、図6(a)~図6(f)と同様の工程を繰り返すことによって形成された複数の絶縁基板216を積層して、焼成する。これによって、インターポーザ219の基礎部分を構成する積層基板218を形成する。 Next, as shown in FIG. 6G, a plurality of insulating substrates 216 formed by repeating the same steps as in FIGS. 6A to 6F are stacked and baked. As a result, the laminated substrate 218 constituting the basic portion of the interposer 219 is formed.
 次に、図6(h)に示すように、積層基板218の一部又は全てを貫通する導通ビア217aとサーマルビア25aとを形成し、導通ビア217aとサーマルビア25aとに銅を充填する。これによって、インターポーザ219を形成する。なお、サーマルビア25aの本数N(ただし、Nは整数)は、後記するサーマルビア25b(図7(a)参照)の本数M(ただし、Mは整数)よりも多い。 Next, as shown in FIG. 6H, conductive vias 217a and thermal vias 25a penetrating part or all of the multilayer substrate 218 are formed, and copper is filled in the conductive vias 217a and thermal vias 25a. Thereby, an interposer 219 is formed. Note that the number N of thermal vias 25a (where N is an integer) is larger than the number M (where M is an integer) of thermal vias 25b (see FIG. 7A) described later.
 次に、図6(i)に示すように、発熱部材22(22a,22b)をインターポーザ219の上に実装する。このとき、融点の比較的高い半田バンプのパッド(以下、単に「半田バンプ」と称する)221aを用いて実装する。例えば、半田バンプ221aで高発熱部材22aを導通ビア217aとサーマルビア25aとに接合し、半田バンプ221aで低発熱部材22bを導通ビア217aに接合する。 Next, as shown in FIG. 6 (i), the heat generating member 22 (22 a, 22 b) is mounted on the interposer 219. At this time, mounting is performed using a solder bump pad (hereinafter simply referred to as “solder bump”) 221 a having a relatively high melting point. For example, the high heat generating member 22a is bonded to the conductive via 217a and the thermal via 25a with the solder bump 221a, and the low heat generating member 22b is bonded to the conductive via 217a with the solder bump 221a.
 半田バンプ221aは、後記する半田バンプ221b(図7(b)参照)の径よりも小径に形成されている。なお、ここでは、半田バンプ221aを含む半田材による部材の接合は、図示せぬリフロー炉に基板を通すことによって行われるものとして説明する(以下、同様)。 The solder bump 221a is formed to have a diameter smaller than the diameter of a solder bump 221b (see FIG. 7B) described later. Here, the description will be made assuming that the joining of the members using the solder material including the solder bumps 221a is performed by passing the substrate through a reflow furnace (not shown) (hereinafter the same).
 図6(i)に示す工程の後、シリコンガラスペースト211の代わりに樹脂を用いて、インターポーザ219を形成する場合と同様に、図6(a)~図6(h)と同様の工程を行うことによって、図7(a)に示すように、樹脂基板231を形成する。 After the step shown in FIG. 6 (i), the same steps as in FIG. 6 (a) to FIG. 6 (h) are performed as in the case of forming the interposer 219 using a resin instead of the silicon glass paste 211. As a result, a resin substrate 231 is formed as shown in FIG.
 ただし、本実施形態1では、その際に、例えば、銅等の金属材で構成された伝熱部材233を有する中間層235を樹脂基板231の下面に形成する。ここでは、伝熱部材233が銅板である場合を想定して説明する。以下、伝熱部材233を「銅板233」と称する場合がある。銅板233の位置は、樹脂基板231の下面側の、放熱部材23と対向する位置である。なお、中間層235を形成する理由については、後記する。 However, in the first embodiment, at that time, for example, an intermediate layer 235 having a heat transfer member 233 made of a metal material such as copper is formed on the lower surface of the resin substrate 231. Here, the case where the heat transfer member 233 is a copper plate will be described. Hereinafter, the heat transfer member 233 may be referred to as a “copper plate 233”. The position of the copper plate 233 is a position facing the heat dissipation member 23 on the lower surface side of the resin substrate 231. The reason for forming the intermediate layer 235 will be described later.
 この後、樹脂基板231の一部又は全てを貫通する導通ビア217bとサーマルビア25bとを形成し、導通ビア217bとサーマルビア25bとに銅を充填する。サーマルビア25bは、銅板233に接続されている。なお、本実施形態では、サーマルビア25bは、半田バンプ221a,221bの径に合わせて、サーマルビア25aよりも大径に形成されている。 Thereafter, conductive vias 217b and thermal vias 25b penetrating part or all of the resin substrate 231 are formed, and the conductive vias 217b and thermal vias 25b are filled with copper. The thermal via 25 b is connected to the copper plate 233. In the present embodiment, the thermal via 25b is formed to have a larger diameter than the thermal via 25a in accordance with the diameter of the solder bumps 221a and 221b.
 次に、図7(b)に示すように、放熱部材23を樹脂基板231の上に実装する。このとき、融点の比較的高い半田バンプ221bを用いて実装する。例えば、半田バンプ221bで放熱部材23をサーマルビア25bに接合する。 Next, as shown in FIG. 7B, the heat radiating member 23 is mounted on the resin substrate 231. At this time, the solder bumps 221b having a relatively high melting point are used for mounting. For example, the heat radiating member 23 is joined to the thermal via 25b with the solder bump 221b.
 なお、樹脂基板231の製造工程(図7(a)~図7(b)の工程)は、インターポーザ219の製造工程(図6(a)~図6(i)の工程)よりも先に行っても構わない。また、樹脂基板231の製造工程(図7(a)~図7(b)の工程)は、必ずしも、インターポーザ219の製造工程(図6(a)~図6(i)の工程)と別個のライン及び別個のプロセスで行う必要が無く、同一のライン上で同時に行っても構わない。 Note that the manufacturing process of the resin substrate 231 (the process of FIGS. 7A to 7B) is performed before the manufacturing process of the interposer 219 (the process of FIGS. 6A to 6I). It doesn't matter. Further, the manufacturing process of the resin substrate 231 (the process of FIGS. 7A to 7B) is not necessarily separate from the manufacturing process of the interposer 219 (the process of FIGS. 6A to 6I). It is not necessary to carry out in a line and a separate process, and it may be carried out simultaneously on the same line.
 次に、図7(c)に示すように、図6(i)の工程で形成されたインターポーザ219と図7(b)の工程で形成された樹脂基板231とを接合する。インターポーザ219は、図7(c)に示すように、上下方向に反転して配置されて、その上に樹脂基板231が接合される。これによって、回路基板21を形成する。 Next, as shown in FIG. 7 (c), the interposer 219 formed in the step of FIG. 6 (i) and the resin substrate 231 formed in the step of FIG. 7 (b) are joined. As shown in FIG. 7C, the interposer 219 is disposed so as to be inverted in the vertical direction, and the resin substrate 231 is bonded thereon. Thereby, the circuit board 21 is formed.
 インターポーザ219と樹脂基板231との接合は、融点の比較的低い半田バンプ221cを用いて行う。例えば、インターポーザ219を上下方向に反転させて配置し、融点の比較的低い半田バンプ221cでインターポーザ219に形成されたサーマルビア25aと樹脂基板231に形成された銅板233とを接合する。 The bonding between the interposer 219 and the resin substrate 231 is performed using a solder bump 221c having a relatively low melting point. For example, the interposer 219 is arranged upside down, and the thermal via 25a formed in the interposer 219 and the copper plate 233 formed in the resin substrate 231 are joined by a solder bump 221c having a relatively low melting point.
 また、インターポーザ219と樹脂基板231との接合は、好ましくは、リフロー炉の温度が融点の比較的低い半田バンプ221cのみを融解する温度に調整されたラインに、回路基板21を通すことによって行うと良い。これにより、半田バンプ211a,211b,221c(以下、総称する場合に、「半田バンプ211」と称する)の中で、融点の比較的低い半田バンプ221cのみが溶融し、融点の比較的高い半田バンプ221a,211bが溶融しないため、発熱部材22及び放熱部材23の接合状態を保ちつつ、インターポーザ219と樹脂基板231とを接合することができる。 The interposer 219 and the resin substrate 231 are preferably joined by passing the circuit board 21 through a line in which the temperature of the reflow furnace is adjusted to a temperature at which only the solder bumps 221c having a relatively low melting point are melted. good. As a result, among the solder bumps 211a, 211b, and 221c (hereinafter collectively referred to as “solder bump 211”), only the solder bump 221c having a relatively low melting point is melted, and the solder bump having a relatively high melting point is melted. Since 221a and 211b are not melted, the interposer 219 and the resin substrate 231 can be bonded while the bonded state of the heat generating member 22 and the heat radiating member 23 is maintained.
 ここで、図7(a)に示す工程で、中間層235を形成する理由につき説明する。
 例えば、回路基板21は、CPUやメモリ等の発熱部材22をインターポーザ219上に高密度に実装することが要望される。この要望を満たすには、回路基板21は、インターポーザ219のサーマルビア25aを、樹脂基板231のサーマルビア25bよりも、小径かつ小ピッチで形成することが好ましい。そのため、インターポーザ219のサーマルビア25aと樹脂基板231のサーマルビア25bとは、径及び最小ピッチが異なるサイズに形成される。これによって、回路基板21は、サーマルビア25aとサーマルビア25bとの接合がし難くなり、サーマルビア25a,25b間での熱の伝導がし難くなる。
Here, the reason why the intermediate layer 235 is formed in the step shown in FIG.
For example, the circuit board 21 is required to mount heat generating members 22 such as a CPU and a memory on the interposer 219 with high density. In order to satisfy this demand, the circuit board 21 preferably forms the thermal vias 25 a of the interposer 219 with a smaller diameter and a smaller pitch than the thermal vias 25 b of the resin substrate 231. For this reason, the thermal via 25a of the interposer 219 and the thermal via 25b of the resin substrate 231 are formed in sizes having different diameters and minimum pitches. As a result, the circuit board 21 is difficult to bond the thermal via 25a and the thermal via 25b, and it is difficult to conduct heat between the thermal vias 25a and 25b.
 そこで、本実施形態1では、回路基板21は、伝熱部材としての銅板233を有する中間層235を樹脂基板231の下面に形成している。これにより、回路基板21は、サーマルビア25aとサーマルビア25bとの接合をし易くして、サーマルビア25a,25b間での熱の伝導を効率よく行えるようにしている。 Therefore, in the first embodiment, the circuit board 21 has an intermediate layer 235 having a copper plate 233 as a heat transfer member formed on the lower surface of the resin substrate 231. As a result, the circuit board 21 facilitates the bonding between the thermal via 25a and the thermal via 25b so that heat can be efficiently conducted between the thermal vias 25a and 25b.
 <サーバ装置及びサーバモジュールの主な特徴>
 以下、本実施形態1に係るサーバ装置1の主な特徴につき説明する。
 (1)図1に示すように、サーバ装置1は、複数のサーバモジュール10と、複数のサーバモジュール10を内部に収容するラックキャビネット110と、冷却液2を冷却するチラー164に接続され、冷却液2を複数のサーバモジュール10とチラー164との間で循環させる冷却液循環路161とを有している。
<Main features of server device and server module>
Hereinafter, main features of the server device 1 according to the first embodiment will be described.
(1) As shown in FIG. 1, the server device 1 is connected to a plurality of server modules 10, a rack cabinet 110 that houses the plurality of server modules 10 therein, and a chiller 164 that cools the coolant 2. A coolant circulation path 161 that circulates the liquid 2 between the plurality of server modules 10 and the chiller 164 is provided.
 冷却液循環路161は、ラックキャビネット110の中央に配置されたバックプレーン121を通って、複数のサーバモジュール10のそれぞれに並列に接続されるように、配置されている。そして、冷却液循環路161は、サーバモジュール10に接続された部位(すなわち、冷却液供給管161Ab及び冷却液排出管161Bb)がバックプレーン121を通る部位(すなわち、冷却液供給管161Aa及び冷却液排出管161Ba)に対して接離自在に構成されている。 The coolant circulation path 161 is disposed so as to be connected in parallel to each of the plurality of server modules 10 through the back plane 121 disposed in the center of the rack cabinet 110. The coolant circulation path 161 is a portion (that is, the coolant supply pipe 161Aa and the coolant that is connected to the server module 10 (that is, the coolant supply pipe 161Ab and the coolant discharge pipe 161Bb) passes through the backplane 121. The discharge pipe 161Ba) is configured so as to be contactable and separable.
 このようなサーバ装置1は、ガイドレール113の内部に設けられた冷却液供給管161Ab及び冷却液排出管161Bbと各サーバモジュール10の接続面に設けられた供給孔4a及び排出孔4bとを接続することによって、各サーバモジュール10の内部の密閉状態を保ちつつ、各サーバモジュール10との間で冷却液2の供給及び排出を行うことができる。 In such a server device 1, the coolant supply pipe 161 </ b> Ab and the coolant discharge pipe 161 </ b> Bb provided in the guide rail 113 are connected to the supply hole 4 a and the discharge hole 4 b provided in the connection surface of each server module 10. By doing so, the coolant 2 can be supplied to and discharged from each server module 10 while keeping the sealed state inside each server module 10.
 (2)図5に示すように、サーバ装置1は、発熱部材22(主に、高発熱部材22a)と放熱部材23とが互いに対向するように一方の面と他方の面とに実装されている回路基板21と、回路基板21を内部に収容する密閉容器11とを有するサーバモジュール10を用いている。そして、回路基板21は、高発熱部材22aと放熱部材23とを熱的に接続する複数のサーマルビア25を内部に備えている。また、放熱部材23は、密閉容器11の内部で、液相状態の絶縁性の不活性冷媒31に浸漬されている。 (2) As shown in FIG. 5, the server device 1 is mounted on one surface and the other surface so that the heat generating member 22 (mainly the high heat generating member 22a) and the heat radiating member 23 face each other. A server module 10 having a circuit board 21 and a sealed container 11 that accommodates the circuit board 21 therein is used. The circuit board 21 includes a plurality of thermal vias 25 that thermally connect the high heat generating member 22a and the heat radiating member 23 inside. Further, the heat radiating member 23 is immersed in an insulating inert refrigerant 31 in a liquid phase state inside the sealed container 11.
 このようなサーバ装置1は、高発熱部材22aと放熱部材23とを回路基板21の一方の面と他方の面とに分けて実装しているため、高発熱部材22aを高密度に実装することができる。また、サーバ装置1は、高発熱部材22aが実装されていない回路基板21の他方の面の空きスペースに放熱部材23を実装するため、高発熱部材22aの実装面積よりも大きな実装面積の放熱部材23を回路基板21に実装することができ、その結果、高発熱部材22aを冷却するための高い冷却性能を得ることができる。しかも、サーバ装置1は、高発熱部材22aと放熱部材23とをサーマルビア25で熱的に接続して、放熱部材23を液相状態の絶縁性の不活性冷媒31に浸漬させているため、これによっても、高い冷却性能を得ることができる。 In such a server device 1, since the high heat generating member 22 a and the heat radiating member 23 are separately mounted on one surface and the other surface of the circuit board 21, the high heat generating member 22 a is mounted with high density. Can do. Further, since the server device 1 mounts the heat radiating member 23 in an empty space on the other surface of the circuit board 21 where the high heat generating member 22a is not mounted, the heat radiating member having a larger mounting area than the mounting area of the high heat generating member 22a. 23 can be mounted on the circuit board 21, and as a result, a high cooling performance for cooling the high heat generating member 22a can be obtained. Moreover, since the server device 1 thermally connects the high heat generating member 22a and the heat radiating member 23 with the thermal via 25, and the heat radiating member 23 is immersed in the insulating inert refrigerant 31 in a liquid phase state, Also by this, high cooling performance can be obtained.
 つまり、サーバ装置1は、サーマルビア25を介して、発熱部材22(主に、高発熱部材22a)で発生した熱を放熱部材23に伝導し、伝導された熱を放熱部材23から液相状態の不活性冷媒31に伝導する。そして、サーバ装置1は、不活性冷媒31の熱を凝縮フィン15に吸熱させて、吸熱された熱を凝縮フィン15から流路流路13の内部を流れる冷却液2に伝導する。このようなサーバ装置1は、不活性冷媒31の相変化による気化熱と凝縮熱とを利用して熱を外部に放出するため、発熱部材22(主に、高発熱部材22a)を冷却するための高い冷却性能を得ることができる。 That is, the server device 1 conducts the heat generated by the heat generating member 22 (mainly the high heat generating member 22a) to the heat radiating member 23 through the thermal via 25, and the conducted heat is transferred from the heat radiating member 23 to the liquid phase state. Conducted to the inert refrigerant 31. Then, the server device 1 causes the condensation fins 15 to absorb the heat of the inert refrigerant 31, and conducts the absorbed heat from the condensation fins 15 to the coolant 2 flowing inside the flow passage 13. Such a server device 1 uses the heat of vaporization and the heat of condensation caused by the phase change of the inert refrigerant 31 to release heat to the outside, so that the heat generating member 22 (mainly the high heat generating member 22a) is cooled. High cooling performance can be obtained.
 しかも、サーバ装置1は、発熱部材22と放熱部材23とを回路基板21の異なる面に実装させているため、発熱部材22を高密度に実装させることができる。また、サーバ装置1は、比較的広い実装面積の放熱部材23(例えば、高発熱部材22aの実装面積よりも広い実装面積の放熱部材23)を実装させることができるため、高い冷却性能を得ることができる。したがって、サーバ装置1は、発熱部材を高密度に実装することと発熱部材22(主に、高発熱部材22a)を冷却するための高い冷却性能を得ることとを両立させることができる。 In addition, since the heat generating member 22 and the heat radiating member 23 are mounted on different surfaces of the circuit board 21, the server device 1 can mount the heat generating member 22 with high density. Further, since the server device 1 can mount the heat dissipating member 23 having a relatively large mounting area (for example, the heat dissipating member 23 having a mounting area wider than the mounting area of the high heat generating member 22a), high cooling performance can be obtained. Can do. Therefore, the server device 1 can achieve both mounting the heat generating members at high density and obtaining a high cooling performance for cooling the heat generating members 22 (mainly the high heat generating members 22a).
 (3)図5に示すように、本実施形態1では、放熱部材23は、高発熱部材22aで発生した熱を不活性冷媒31に伝導して、不活性冷媒31を沸騰させる沸騰伝熱面24を備えている。そして、回路基板21は、高発熱部材22aが実装されている一方の面を下面とし、放熱部材23が実装されている他方の面を上面として、密閉容器11の内部に収容されている。また、密閉容器11は、外部と熱的に接続され、沸騰により気化した不活性冷媒31を冷却して凝縮させる凝縮部14を回路基板21の上方に備えている。 (3) As shown in FIG. 5, in the first embodiment, the heat radiating member 23 conducts heat generated by the high heat generating member 22 a to the inert refrigerant 31 to boil the inert refrigerant 31. 24. The circuit board 21 is housed inside the sealed container 11 with the one surface on which the high heat generating member 22a is mounted as the lower surface and the other surface on which the heat dissipation member 23 is mounted as the upper surface. The sealed container 11 includes a condensing unit 14 that is thermally connected to the outside and cools and condenses the inert refrigerant 31 vaporized by boiling above the circuit board 21.
 このようなサーバ装置1は、気化した不活性冷媒31が流動する場所で、凝縮部14が不活性冷媒31を冷却するため、不活性冷媒31を効率よく冷却して凝縮させることができる。 In such a server device 1, since the condensing unit 14 cools the inert refrigerant 31 where the vaporized inert refrigerant 31 flows, the inert refrigerant 31 can be efficiently cooled and condensed.
 (4)図5に示すように、放熱部材23は、実装面積が放熱部材23に接続されている高発熱部材22aの実装面積よりも広くなるように構成されている。
 このようなサーバ装置1は、放熱部材23の実装面積が高発熱部材22aの実装面積よりも広いため、高発熱部材22aで発生した熱を効率よく放出することができ、発熱部材22(主に、高発熱部材22a)を冷却するための高い冷却性能を得ることができる。
(4) As shown in FIG. 5, the heat dissipating member 23 is configured such that the mounting area is larger than the mounting area of the high heat generating member 22 a connected to the heat dissipating member 23.
In such a server device 1, since the mounting area of the heat radiating member 23 is larger than the mounting area of the high heat generating member 22a, the heat generated by the high heat generating member 22a can be efficiently released, and the heat generating member 22 (mainly High cooling performance for cooling the high heat generating member 22a) can be obtained.
 (5)図5に示すように、本実施形態1では、凝縮部14は、冷却液2が流動する流路13を内部に備える冷却ジャケット12によって構成されている。凝縮部14は、流路13と熱的に接続され、沸騰により気化した不活性冷媒31を冷却して凝縮させる凝縮フィン15を備えている。凝縮フィン15は、冷却ジャケット12から、密閉容器11の内部の放熱部材23を不活性冷媒31に浸漬させている空間(冷却部)17に、突出して設けられている。 (5) As shown in FIG. 5, in the first embodiment, the condensing unit 14 is configured by a cooling jacket 12 that includes therein a flow path 13 through which the coolant 2 flows. The condensing unit 14 includes a condensing fin 15 that is thermally connected to the flow path 13 and cools and condenses the inert refrigerant 31 vaporized by boiling. The condensation fins 15 are provided so as to protrude from the cooling jacket 12 into a space (cooling part) 17 in which the heat radiating member 23 inside the sealed container 11 is immersed in the inert refrigerant 31.
 このようなサーバ装置1は、凝縮フィン15で沸騰により気化した不活性冷媒31を効率よく凝縮させることができる。これにより、サーバ装置1は、不活性冷媒31の高い凝縮性能を得ることができ、もって、発熱部材22(主に、高発熱部材22a)を冷却するための高い冷却性能を得ることができる。 Such a server device 1 can efficiently condense the inert refrigerant 31 vaporized by boiling with the condensation fins 15. Thereby, the server apparatus 1 can obtain the high condensation performance of the inert refrigerant 31, and thus can obtain high cooling performance for cooling the heat generating member 22 (mainly the high heat generating member 22a).
 (6)図6及び図7に示すように、サーバ装置1は、樹脂基板231と絶縁基板とが2層以上積層された回路基板21と、回路基板21の一方の面に実装された高発熱部材22aと、回路基板21の他方の面の高発熱部材22aと対向する位置に実装された放熱部材23と、回路基板21の内部に形成され、高発熱部材22aと放熱部材23とを熱的に接続する複数のサーマルビア25とを有するサーバモジュール10を用いてしている。 (6) As shown in FIGS. 6 and 7, the server device 1 includes a circuit board 21 in which two or more layers of a resin substrate 231 and an insulating substrate are stacked, and high heat generation mounted on one surface of the circuit board 21. The member 22a, the heat dissipating member 23 mounted on the other surface of the circuit board 21 facing the high heat generating member 22a, and the heat generating member 22a and the heat dissipating member 23 formed in the circuit board 21 are thermally The server module 10 having a plurality of thermal vias 25 connected to is used.
 そして、サーマルビア25は、回路基板21の内部に配置された伝熱部材(銅板)233を介して、高発熱部材22aと放熱部材23とを、N>Mとなる、N対Mの関係(ただし、NとMはともに整数)で接続している。また、高発熱部材22aとサーマルビア25との間及び放熱部材23とサーマルビア25との間は、それぞれ、半田材(半田バンプ221a,221b)によって接合されている。また、放熱部材23とサーマルビア25との間を接合する半田材(半田バンプ221b)は、高発熱部材22aとサーマルビア25との間を接合する半田材(半田バンプ221a)よりも大径に形成されている。 The thermal via 25 connects the high heat generating member 22a and the heat radiating member 23 through the heat transfer member (copper plate) 233 disposed inside the circuit board 21 to an N to M relationship (N> M) ( However, N and M are both integers). Further, the high heat generating member 22a and the thermal via 25 and the heat radiating member 23 and the thermal via 25 are joined by solder materials (solder bumps 221a and 221b), respectively. Also, the solder material (solder bump 221b) that joins between the heat dissipation member 23 and the thermal via 25 has a larger diameter than the solder material (solder bump 221a) that joins between the high heat generating member 22a and the thermal via 25. Is formed.
 換言すれば、サーバ装置1は、以下の構成になっている。
 回路基板21と高発熱部材22aとは、半田材(半田バンプ221a)によって接合されている。回路基板21と放熱部材23とは、高発熱部材22aが実装されている一方の面とは異なる径の半田材(半田バンプ221b)によって接合されている。サーバ装置1は、サーマルビア25が、回路基板21の内部に配置された伝熱部材(銅板)233を介して、回路基板21の一方の面に形成された径の小さな複数の半田材(半田バンプ221a)に接続されるとともに、回路基板21の他方の面に形成された径の大きな1つの半田材(半田バンプ221b)に接続されており、回路基板21の一方の面で生じた熱を回路基板21の他方の面に実装された放熱部材23に伝導して、放熱部材23から放出することができる。
In other words, the server device 1 has the following configuration.
The circuit board 21 and the high heat generating member 22a are joined by a solder material (solder bump 221a). The circuit board 21 and the heat radiating member 23 are joined by a solder material (solder bump 221b) having a diameter different from that of the one surface on which the high heat generating member 22a is mounted. The server device 1 includes a plurality of solder materials (solders) each having a thermal via 25 formed on one surface of the circuit board 21 via a heat transfer member (copper plate) 233 disposed inside the circuit board 21. In addition to being connected to the bump 221a), it is connected to one large solder material (solder bump 221b) formed on the other surface of the circuit board 21, and heat generated on one surface of the circuit board 21 is generated. The heat can be conducted to the heat radiating member 23 mounted on the other surface of the circuit board 21 and discharged from the heat radiating member 23.
 係る構成において、サーバ装置1は、高発熱部材22aと放熱部材23とを回路基板21の一方の面と他方の面とに分けて実装しているため、高発熱部材22aを高密度に実装することができる。また、サーバ装置1は、高発熱部材22aが実装されていない回路基板21の他方の面の空きスペースに放熱部材23を実装するため、高発熱部材22aの実装面積よりも大きな実装面積の放熱部材23を回路基板21に実装することができ、その結果、発熱部材22(主に、高発熱部材22a)を冷却するための高い冷却性能を得ることができる。また、サーバ装置1は、放熱部材23とサーマルビア25bとの間を接合する半田バンプ221bが高発熱部材22aとサーマルビア25aとの間を接合する半田バンプ221aよりも大径に形成されているため、これによっても、高発熱部材22aの実装面積よりも大きな実装面積の放熱部材23を回路基板21に効率よく実装するとともに、熱伝導効率を高めることができ、その結果、高い冷却性能を得ることができる。 In such a configuration, the server device 1 mounts the high heat generating member 22a and the heat radiating member 23 separately on one surface and the other surface of the circuit board 21, so that the high heat generating member 22a is mounted with high density. be able to. Further, since the server device 1 mounts the heat radiating member 23 in the empty space on the other surface of the circuit board 21 on which the high heat generating member 22a is not mounted, the heat radiating member having a larger mounting area than the mounting area of the high heat generating member 22a. 23 can be mounted on the circuit board 21, and as a result, a high cooling performance for cooling the heat generating member 22 (mainly the high heat generating member 22a) can be obtained. In the server device 1, the solder bump 221 b that joins between the heat dissipation member 23 and the thermal via 25 b is formed to have a larger diameter than the solder bump 221 a that joins between the high heat generating member 22 a and the thermal via 25 a. For this reason, the heat dissipation member 23 having a larger mounting area than the mounting area of the high heat generating member 22a can be efficiently mounted on the circuit board 21 and the heat conduction efficiency can be increased. As a result, high cooling performance can be obtained. be able to.
 (7)放熱部材23に接続されたサーマルビア25bと高発熱部材22aに接続されたサーマルビア25aとは、接続される半田材(半田バンプ221a,221b)の径に合わせて、放熱部材23に接続されたサーマルビア25bが高発熱部材22aに接続されたサーマルビア25aよりも大径に形成されている。また、回路基板21は、内部に、高発熱部材22aに接続されたサーマルビア25と放熱部材23に接続されたサーマルビア25とを接続する中間層235を備えている。 (7) The thermal via 25b connected to the heat radiating member 23 and the thermal via 25a connected to the high heat generating member 22a are connected to the heat radiating member 23 in accordance with the diameter of the solder material ( solder bumps 221a, 221b) to be connected. The connected thermal via 25b is formed with a larger diameter than the thermal via 25a connected to the high heat generating member 22a. The circuit board 21 includes an intermediate layer 235 that connects the thermal via 25 connected to the high heat generating member 22 a and the thermal via 25 connected to the heat radiating member 23 inside.
 サーバ装置1は、中間層235が、高発熱部材22aに接続された径の小さなサーマルビア25aと放熱部材23に接続された径の大きなサーマルビア25bとの間に介在することによって、径の異なるサーマルビア25a,25b同士を接続することができる。 The server device 1 has different diameters because the intermediate layer 235 is interposed between the thermal via 25a having a small diameter connected to the high heat generating member 22a and the thermal via 25b having a large diameter connected to the heat radiating member 23. The thermal vias 25a and 25b can be connected to each other.
 以上の通り、本実施形態1に係るサーバ装置1によれば、サーバモジュール10を用いることにより、発熱部材22を高密度に実装することと発熱部材22(主に、高発熱部材22a)を冷却するための高い冷却性能を得ることとを両立させることができる。 As described above, according to the server device 1 according to the first embodiment, by using the server module 10, the heat generating member 22 is mounted with high density and the heat generating member 22 (mainly the high heat generating member 22a) is cooled. It is possible to achieve both high cooling performance for achieving the above.
 [実施形態2]
 次に、実施形態2を説明する。前記実施形態1に係るサーバモジュール10は、比較的小径の複数のサーマルビア25によって高発熱部材22aと放熱部材23とを接続している(図5参照)。
[Embodiment 2]
Next, Embodiment 2 will be described. In the server module 10 according to the first embodiment, the high heat generating member 22a and the heat radiating member 23 are connected by a plurality of relatively small diameter thermal vias 25 (see FIG. 5).
 これに対して、本実施形態2は、複数のサーマルビア25の一部又は全体を、単体の高伝熱部材26として、1つに統合した構成になっているサーバモジュール10Aを提供する(図8参照)。 In contrast, the second embodiment provides a server module 10A having a configuration in which some or all of the plurality of thermal vias 25 are integrated into a single high heat transfer member 26 (see FIG. 8).
 以下、図8を参照して、本実施形態2に係るサーバモジュール10Aの構成につき説明する。図8は、本実施形態2に係るサーバモジュール10Aの概略構成を示す図である。 Hereinafter, the configuration of the server module 10A according to the second embodiment will be described with reference to FIG. FIG. 8 is a diagram illustrating a schematic configuration of a server module 10A according to the second embodiment.
 図8に示すように、本実施形態2に係るサーバモジュール10Aは、実施形態1に係るサーバモジュール10(図5参照)と比較すると、回路基板21内に、複数のサーマルビア25の代わりに、単体の高い熱伝導性を有する部材(以下、「高伝熱部材」と称する)を備える点で相違している。 As shown in FIG. 8, the server module 10 </ b> A according to the second embodiment is compared with the server module 10 according to the first embodiment (see FIG. 5), instead of the plurality of thermal vias 25 in the circuit board 21. The difference is that a single member having high thermal conductivity (hereinafter referred to as a “high heat transfer member”) is provided.
 高伝熱部材26は、高い熱伝導性を有する部材である。高伝熱部材26は、例えば、銅等の金属材によって構成されている。高伝熱部材26は、実施形態1に係るサーバモジュール10のサーマルビア25よりも大径に形成されている。 The high heat transfer member 26 is a member having high thermal conductivity. The high heat transfer member 26 is made of a metal material such as copper, for example. The high heat transfer member 26 has a larger diameter than the thermal via 25 of the server module 10 according to the first embodiment.
 本実施形態2に係るサーバモジュール10Aは、高発熱部材22aと放熱部材23との間の熱の伝導をサーマルビア25よりも大径(すなわち、広い断面積)の高伝熱部材26で行う。そのため、サーバモジュール10Aは、実施形態1に係るサーバモジュール10よりも広い熱伝導面積を確保することができる。これにより、サーバモジュール10Aは、実施形態1に係るサーバモジュール10よりも高い冷却性能を得ることができる。 The server module 10A according to the second embodiment performs heat conduction between the high heat generating member 22a and the heat radiating member 23 by the high heat transfer member 26 having a larger diameter (that is, wider cross-sectional area) than the thermal via 25. Therefore, the server module 10A can ensure a larger heat conduction area than the server module 10 according to the first embodiment. Thereby, the server module 10A can obtain higher cooling performance than the server module 10 according to the first embodiment.
 なお、図8に示す例では、高伝熱部材26は、高発熱部材22a側から放熱部材23側に向けて、樹脂基板231の厚さ方向に沿って徐々に断面積が拡大する構成になっている。つまり、高伝熱部材26は、放熱部材23側の断面積が高発熱部材22a側の断面積よりも広くなるように形成されている。これにより、サーバモジュール10Aは、高発熱部材22aの実装面積よりも広い表面積の放熱部材23を実装することができる。その結果、サーバモジュール10Aは、高発熱部材22aと放熱部材23との間に比較的広い熱伝導面積を確保することができる。これによって、サーバモジュール10Aは、さらに高い冷却性能を得ることができる。 In the example shown in FIG. 8, the high heat transfer member 26 has a configuration in which the cross-sectional area gradually increases along the thickness direction of the resin substrate 231 from the high heat generation member 22 a side toward the heat dissipation member 23 side. ing. That is, the high heat transfer member 26 is formed so that the cross-sectional area on the heat radiating member 23 side is wider than the cross-sectional area on the high heat generating member 22a side. Thereby, the server module 10A can mount the heat radiating member 23 having a surface area larger than the mounting area of the high heat generating member 22a. As a result, the server module 10 </ b> A can ensure a relatively wide heat conduction area between the high heat generating member 22 a and the heat radiating member 23. As a result, the server module 10A can obtain higher cooling performance.
 また、一般に、回路基板21は、高発熱部材22aの信号線が、高発熱部材22aの実装領域の外枠部分に密集して配置され、高発熱部材22aの実装領域の中心部分に配置されない傾向にある。そのため、回路基板21は、比較的容易に高発熱部材22aの実装領域の中心部分に空きスペースを確保することができる。そこで、本実施形態2に係るサーバモジュール10Aは、この回路基板21の特性を利用して、回路基板21の実装領域の中心部分付近に高伝熱部材26を配置するようにしても良い。この場合に、サーバモジュール10Aは、比較的広い熱伝導面積を確保することができるため、さらに高い冷却性能を得ることができる。 In general, in the circuit board 21, the signal lines of the high heat generating member 22a are arranged densely in the outer frame portion of the mounting region of the high heat generating member 22a, and the circuit board 21 tends not to be arranged in the central portion of the mounting region of the high heat generating member 22a. It is in. Therefore, the circuit board 21 can secure a free space in the central portion of the mounting region of the high heat generating member 22a relatively easily. Therefore, the server module 10 </ b> A according to the second embodiment may be configured such that the high heat transfer member 26 is disposed near the central portion of the mounting area of the circuit board 21 using the characteristics of the circuit board 21. In this case, since the server module 10A can ensure a relatively wide heat conduction area, it is possible to obtain higher cooling performance.
 また、サーバモジュール10Aは、絶縁処理を高発熱部材22aの信号線に施した上で、高発熱部材22aの信号線を放熱部材23と接続させた構成にしても良い。この場合に、サーバモジュール10Aは、高発熱部材22aの信号線を疑似的なサーマルビアとして利用することができるため、さらに高い冷却性能を得ることができる。 Further, the server module 10A may be configured such that the signal line of the high heat generating member 22a is connected to the heat radiating member 23 after the insulation process is performed on the signal line of the high heat generating member 22a. In this case, the server module 10 </ b> A can use the signal line of the high heat generating member 22 a as a pseudo thermal via, and therefore can obtain higher cooling performance.
 また、サーバモジュール10Aは、高発熱部材22aの電源線のGND線を放熱部材23と接続させた構成にしても良い。この場合に、サーバモジュール10Aは、GND線を疑似的なサーマルビアとして利用することができるため、さらに高い冷却性能を得ることができる。 Further, the server module 10A may be configured such that the GND line of the power line of the high heat generating member 22a is connected to the heat radiating member 23. In this case, since the server module 10A can use the GND line as a pseudo thermal via, it is possible to obtain higher cooling performance.
 <回路基板の製造方法>
 以下、図9を参照して、サーバモジュール10Aに組み込まれる回路基板21Aの製造方法につき説明する。図9は、実施形態2に係る回路基板21Aの製造方法の一例を示す図である。
<Circuit board manufacturing method>
Hereinafter, a method for manufacturing the circuit board 21A incorporated in the server module 10A will be described with reference to FIG. FIG. 9 is a diagram illustrating an example of a method for manufacturing the circuit board 21A according to the second embodiment.
 ここでは、図6(a)~図6(i)に示す工程によってインターポーザ219(発熱部材22を実装している状態のインターポーザ219)が形成されており、また、図7(a)に示す工程によって樹脂基板231(放熱部材23を実装していない状態の樹脂基板231)が形成されているものとして説明する。 Here, the interposer 219 (the interposer 219 in a state where the heat generating member 22 is mounted) is formed by the steps shown in FIGS. 6A to 6I, and the step shown in FIG. Therefore, it is assumed that the resin substrate 231 (the resin substrate 231 in a state where the heat dissipation member 23 is not mounted) is formed.
 図7(a)の工程によって樹脂基板231を形成した後、図9(a)に示すように、穴開け機等を用いて、開口部238を樹脂基板231の上面から下面に貫通するように形成する。 After the resin substrate 231 is formed by the process of FIG. 7A, as shown in FIG. 9A, the opening 238 is penetrated from the upper surface to the lower surface of the resin substrate 231 using a punching machine or the like. Form.
 図9(a)に示す例では、開口部238は、樹脂基板231の上面に対して斜め方向に傾斜して形成されている。すなわち、開口部238は、下面側(高発熱部材22a側)から上面側(放熱部材23側)に向けて、樹脂基板231の厚さ方向に沿って徐々に断面積が拡大するように形成されている。 In the example shown in FIG. 9A, the opening 238 is formed to be inclined in the oblique direction with respect to the upper surface of the resin substrate 231. That is, the opening 238 is formed so that the cross-sectional area gradually increases along the thickness direction of the resin substrate 231 from the lower surface side (high heat generating member 22a side) to the upper surface side (heat radiating member 23 side). ing.
 次に、絶縁材241を開口部238の斜面に沿って配置し、高伝熱部材26を開口部238の内部に充填する。そして、高伝熱部材26を樹脂基板231に固定させるために、マスク(図示せず)を樹脂基板231の上に形成して、メッキ等の固定用加工239を樹脂基板231に対して行う。これにより、高伝熱部材26を樹脂基板231に固定させる。 Next, the insulating material 241 is disposed along the slope of the opening 238, and the high heat transfer member 26 is filled in the opening 238. In order to fix the high heat transfer member 26 to the resin substrate 231, a mask (not shown) is formed on the resin substrate 231, and fixing processing 239 such as plating is performed on the resin substrate 231. Thereby, the high heat transfer member 26 is fixed to the resin substrate 231.
 なお、絶縁材241を配置する理由は、開口部238が穴開け機等によって傾斜して形成されており、信号線が開口部238の斜面(特に、放熱部材23の近傍)で短絡する可能性があり、それを防止するためである。 The reason why the insulating material 241 is disposed is that the opening 238 is formed to be inclined by a punch or the like, and the signal line may be short-circuited on the inclined surface of the opening 238 (particularly in the vicinity of the heat dissipation member 23). There is to prevent it.
 次に、融点が比較的高く、かつ、比較的量の多い半田222aを樹脂基板231の高伝熱部材26の上に配置する。そして、樹脂基板231をリフロー炉に通す。これによって、半田222aで放熱部材23を樹脂基板231の高伝熱部材26に接合させる。 Next, the solder 222a having a relatively high melting point and a relatively large amount is disposed on the high heat transfer member 26 of the resin substrate 231. Then, the resin substrate 231 is passed through a reflow furnace. Thus, the heat radiating member 23 is joined to the high heat transfer member 26 of the resin substrate 231 by the solder 222a.
 次に、融点の比較的低い半田バンプ221cをインターポーザ219の導通ビア217aの上に配置するとともに、融点が比較的低く、かつ、半田222aよりも少ない量の半田222bをインターポーザ219のサーマルビア25aの上に配置し、さらに、樹脂基板231をインターポーザ219の上に配置する。そして、樹脂基板231とインターポーザ219とをリフロー炉に通す。 Next, a solder bump 221c having a relatively low melting point is disposed on the conductive via 217a of the interposer 219, and a solder 222b having a relatively low melting point and less than the solder 222a is disposed on the thermal via 25a of the interposer 219. Further, the resin substrate 231 is disposed on the interposer 219. Then, the resin substrate 231 and the interposer 219 are passed through a reflow furnace.
 これによって、図9(b)に示すように、半田バンプ221cで樹脂基板231の導通ビア217bとインターポーザ219と導通ビア217aとを接合させるとともに、半田222bで樹脂基板231の高伝熱部材26とインターポーザ219とサーマルビア25aとを接合させる。その結果、回路基板21Aが形成される。 9B, the conductive via 217b, the interposer 219, and the conductive via 217a of the resin substrate 231 are joined by the solder bump 221c, and the high heat transfer member 26 of the resin substrate 231 is bonded by the solder 222b. The interposer 219 and the thermal via 25a are joined. As a result, the circuit board 21A is formed.
 このようにして形成された回路基板21Aを備えるサーバモジュール10Aは、高発熱部材22aと放熱部材23との間に比較的広い熱伝導面積を確保することができるため、実施形態1に係るサーバモジュール10よりも高い冷却性能を得ることができる。 Since the server module 10A including the circuit board 21A formed in this way can ensure a relatively wide heat conduction area between the high heat generating member 22a and the heat radiating member 23, the server module according to the first embodiment. Cooling performance higher than 10 can be obtained.
 なお、高伝熱部材26は、図10に示すように、樹脂基板231の厚さ方向に対して同じ断面積になるように構成することが可能である。以下、図10を参照して、このように構成された高伝熱部材26を備える回路基板21Aaの製造方法につき説明する。図10は、実施形態2の変形例に係る回路基板21Aaの製造方法の一例を示す図である。 The high heat transfer member 26 can be configured to have the same cross-sectional area with respect to the thickness direction of the resin substrate 231 as shown in FIG. Hereinafter, a method for manufacturing the circuit board 21Aa including the high heat transfer member 26 configured as described above will be described with reference to FIG. FIG. 10 is a diagram illustrating an example of a method for manufacturing the circuit board 21Aa according to the modification of the second embodiment.
 図7(a)の工程によって樹脂基板231を形成した後、図10(a)に示すように、穴開け機等を用いて、開口部238aを樹脂基板231の上面から下面に貫通するように形成する。 After the resin substrate 231 is formed by the process of FIG. 7A, as shown in FIG. 10A, the opening 238a is penetrated from the upper surface to the lower surface of the resin substrate 231 using a punching machine or the like. Form.
 図10(a)に示す例では、開口部238aは、樹脂基板231の上面に対して鉛直方向に形成されている。すなわち、開口部238は、樹脂基板231の厚さ方向に対して同じ断面積になるように形成されている。 In the example shown in FIG. 10A, the opening 238a is formed in the vertical direction with respect to the upper surface of the resin substrate 231. That is, the opening 238 is formed to have the same cross-sectional area with respect to the thickness direction of the resin substrate 231.
 次に、高伝熱部材26を開口部238の内部に充填する。このとき、サーバモジュール10Aの回路基板21Aと同様に、絶縁材241を開口部238aの側壁面に沿って配置し、高伝熱部材26を開口部238の内部に充填するようにしても良い。そして、高伝熱部材26を樹脂基板231に固定させるために、マスク(図示せず)を樹脂基板231の上に形成して、メッキ等の固定用加工239を樹脂基板231に対して行う。これにより、高伝熱部材26を樹脂基板231に固定させる。 Next, the high heat transfer member 26 is filled in the opening 238. At this time, similarly to the circuit board 21A of the server module 10A, the insulating material 241 may be disposed along the side wall surface of the opening 238a, and the high heat transfer member 26 may be filled in the opening 238. In order to fix the high heat transfer member 26 to the resin substrate 231, a mask (not shown) is formed on the resin substrate 231, and fixing processing 239 such as plating is performed on the resin substrate 231. Thereby, the high heat transfer member 26 is fixed to the resin substrate 231.
 以下、サーバモジュール10Aの回路基板21Aと同様の処理を行う。すなわち、融点が比較的高く、かつ、比較的量の多い半田222aを樹脂基板231の高伝熱部材26の上に配置して、樹脂基板231をリフロー炉に通す。次に、半田バンプ221cをインターポーザ219の導通ビア217aの上に配置するとともに、半田222bをインターポーザ219のサーマルビア25aの上に配置し、さらに、樹脂基板231をインターポーザ219の上に配置して、樹脂基板231とインターポーザ219とをリフロー炉に通す。その結果、回路基板21Aaが形成される。 Hereinafter, the same processing as the circuit board 21A of the server module 10A is performed. That is, the solder 222a having a relatively high melting point and a relatively large amount is disposed on the high heat transfer member 26 of the resin substrate 231, and the resin substrate 231 is passed through a reflow furnace. Next, the solder bump 221c is disposed on the conductive via 217a of the interposer 219, the solder 222b is disposed on the thermal via 25a of the interposer 219, and the resin substrate 231 is disposed on the interposer 219. The resin substrate 231 and the interposer 219 are passed through a reflow furnace. As a result, the circuit board 21Aa is formed.
 このようにして形成された回路基板21Aaは、回路基板21Aほど高くはないが、回路基板21Aと同様に、高発熱部材22aと放熱部材23との間に比較的広い熱伝導面積を確保することができるため、実施形態1に係るサーバモジュール10よりも高い冷却性能を得ることができる。 The circuit board 21Aa thus formed is not as high as the circuit board 21A, but as with the circuit board 21A, a relatively wide heat conduction area is ensured between the high heat generating member 22a and the heat radiating member 23. Therefore, higher cooling performance than the server module 10 according to the first embodiment can be obtained.
 以上の通り、本実施形態2によれば、サーバモジュール10Aを用いることにより、実施形態1と同様に、発熱部材22を高密度に実装することと発熱部材22(主に、高発熱部材22a)を冷却するための高い冷却性能を得ることとを両立させることができる。
 しかも、本実施形態2によれば、実施形態1よりも高い冷却性能を得ることができる。
As described above, according to the second embodiment, by using the server module 10A, the heat generating member 22 is mounted at a high density and the heat generating member 22 (mainly the high heat generating member 22a) as in the first embodiment. It is possible to achieve both high cooling performance for cooling the battery.
Moreover, according to the second embodiment, a higher cooling performance than that of the first embodiment can be obtained.
 [実施形態3]
 次に、実施形態3を説明する。前記実施形態1に係るサーバモジュール10は、放熱部材23を不活性冷媒31に浸漬させることによって、高発熱部材22aで発生した熱を不活性冷媒31に伝導させている(図5参照)。
[Embodiment 3]
Next, Embodiment 3 will be described. In the server module 10 according to the first embodiment, the heat generated in the high heat generating member 22a is conducted to the inert refrigerant 31 by immersing the heat radiating member 23 in the inert refrigerant 31 (see FIG. 5).
 これに対して、本実施形態3は、高発熱部材22aで発生した熱を空気中に伝導させるサーバモジュール10Bを提供する(図11参照)。 In contrast, the third embodiment provides a server module 10B that conducts heat generated in the high heat generating member 22a into the air (see FIG. 11).
 以下、図11を参照して、本実施形態3に係るサーバモジュール10Bの構成につき説明する。図11は、本実施形態3に係るサーバモジュール10Bの概略構成を示す図である。 Hereinafter, the configuration of the server module 10B according to the third embodiment will be described with reference to FIG. FIG. 11 is a diagram illustrating a schematic configuration of a server module 10B according to the third embodiment.
 図11に示すように、本実施形態3に係るサーバモジュール10Bは、実施形態1に係るサーバモジュール10(図5参照)と比較すると、放熱部材23の代わりに、放熱部材23Bを備える点、及び、放熱部材23Bを空気中に配置している点で相違している。 As shown in FIG. 11, the server module 10 </ b> B according to the third embodiment includes a heat radiating member 23 </ b> B instead of the heat radiating member 23 compared to the server module 10 according to the first embodiment (see FIG. 5), and The heat dissipating member 23B is different from the air disposing member 23B in the air.
 放熱部材23Bは、高発熱部材22aで発生した熱を外部に露出している面(以下、単に「露出面」と称する)から空気中に伝導させる部材である。放熱部材23Bは、サーマルビア25によって高発熱部材22aと熱的に接続されている。 The heat dissipating member 23B is a member that conducts heat generated in the high heat generating member 22a from the surface exposed to the outside (hereinafter simply referred to as “exposed surface”) to the air. The heat radiating member 23B is thermally connected to the high heat generating member 22a by the thermal via 25.
 高発熱部材22aは、熱が発生すると、サーマルビア25を介して、熱を放熱部材23Bに伝導する。放熱部材23Bは、伝導された熱を露出面から空気中に伝導させる。これにより、サーバモジュール10Bは、発熱部材22(主に、高発熱部材22a)を冷却するための高い冷却性能を得ることができる。 When the heat is generated, the high heat generating member 22a conducts the heat to the heat radiating member 23B through the thermal via 25. The heat radiating member 23B conducts the conducted heat from the exposed surface to the air. Thereby, the server module 10B can obtain high cooling performance for cooling the heat generating member 22 (mainly the high heat generating member 22a).
 放熱部材23Bは、熱を自然対流によって空気中に伝導させるようにしても良い。
 また、放熱部材23Bは、例えば、図11に示すように、フィン43(又はそれに類する表面積を拡大する部位)を露出面に備える構成にしても良い。この場合に、放熱部材23Bは、放熱面積が増加するため、放熱性能を向上させることができる。
The heat dissipating member 23B may conduct heat into the air by natural convection.
Further, for example, as shown in FIG. 11, the heat dissipating member 23 </ b> B may be configured to include fins 43 (or portions that increase the surface area similar to the fins 43) on the exposed surface. In this case, since the heat dissipation member 23B increases the heat dissipation area, the heat dissipation performance can be improved.
 また、サーバモジュール10Bは、例えば、図11に示すように、空気や不活性冷媒31等を冷却風44として放熱部材23Bに供給する送風部41を備える構成にしても良い。この場合に、サーバモジュール10Bは、熱を強制対流によって空気中に伝導させるため、熱を自然対流によって空気中に伝導させる場合よりも高い放熱性能を得ることができる。なお、サーバモジュール10Bは、冷却風44を流動させるための開口部42が設けられている。冷却風44は、開口部42を通ってサーバモジュール10Bの外部に排出される。 Further, for example, as shown in FIG. 11, the server module 10 </ b> B may include a blower 41 that supplies air, an inert refrigerant 31, or the like as cooling air 44 to the heat radiating member 23 </ b> B. In this case, since the server module 10B conducts heat into the air by forced convection, the server module 10B can obtain higher heat dissipation performance than when heat is conducted into the air by natural convection. The server module 10B is provided with an opening 42 for allowing the cooling air 44 to flow. The cooling air 44 passes through the opening 42 and is discharged to the outside of the server module 10B.
 以上の通り、本実施形態3によれば、サーバモジュール10Bを用いることにより、実施形態1と同様に、発熱部材22を高密度に実装することと発熱部材22(主に、高発熱部材22a)を冷却するための高い冷却性能を得ることとを両立させることができる。 As described above, according to the third embodiment, by using the server module 10B, similarly to the first embodiment, the heat generating member 22 is mounted with high density and the heat generating member 22 (mainly the high heat generating member 22a). It is possible to achieve both high cooling performance for cooling the battery.
 [実施形態4]
 次に、実施形態4を説明する。前記実施形態1に係るサーバモジュール10は、放熱部材23を不活性冷媒31に浸漬させることによって、高発熱部材22aで発生した熱を不活性冷媒31に伝導させている(図5参照)。
[Embodiment 4]
Next, a fourth embodiment will be described. In the server module 10 according to the first embodiment, the heat generated in the high heat generating member 22a is conducted to the inert refrigerant 31 by immersing the heat radiating member 23 in the inert refrigerant 31 (see FIG. 5).
 これに対して、本実施形態4は、冷却液2が流動する配管に放熱部材23Cを当接又は近接させることによって、高発熱部材22aで発生した熱を冷却液2に伝導させるサーバモジュール10Cを提供する(図12参照)。 On the other hand, in the fourth embodiment, the server module 10C that conducts the heat generated in the high heat generating member 22a to the coolant 2 by bringing the heat dissipation member 23C into contact with or close to the piping through which the coolant 2 flows. Provided (see FIG. 12).
 以下、図12を参照して、本実施形態4に係るサーバモジュール10Cの構成につき説明する。図12は、実施形態4に係るサーバモジュール10Cの概略構成を示す図である。 Hereinafter, the configuration of the server module 10C according to the fourth embodiment will be described with reference to FIG. FIG. 12 is a diagram illustrating a schematic configuration of a server module 10C according to the fourth embodiment.
 図12に示すように、本実施形態4に係るサーバモジュール10Cは、実施形態1に係るサーバモジュール10(図5参照)と比較すると、冷却液2が内部を流動する冷却液用配管311を備えている点、及び、放熱部材23の代わりに、放熱部材23Cを備える点で相違している。 As shown in FIG. 12, the server module 10 </ b> C according to the fourth embodiment includes a coolant pipe 311 through which the coolant 2 flows, as compared with the server module 10 according to the first embodiment (see FIG. 5). And a point that a heat radiating member 23 </ b> C is provided instead of the heat radiating member 23.
 冷却液用配管311は、放熱部材23Cに近傍に隣接又は埋設されている。
 放熱部材23Cは、冷却液用配管311の壁面に当接又は近接した状態になっている。
The coolant pipe 311 is adjacent to or embedded in the heat dissipation member 23C.
The heat radiating member 23 </ b> C is in contact with or close to the wall surface of the coolant pipe 311.
 サーバ装置1は、図示せぬポンプによって、冷却液用配管311を介して、冷却液2をサーバモジュール10Cの外部から内部に送り込む。冷却液2は、冷却液用配管311に設けられた配管入口312からサーバモジュール10Cの内部に導入され、冷却液用配管311の内部を流動して、冷却液用配管311に設けられた配管出口313からサーバモジュール10Cの外部に排出される。 The server apparatus 1 sends the coolant 2 from the outside to the inside of the server module 10C through the coolant pipe 311 by a pump (not shown). The coolant 2 is introduced into the server module 10 </ b> C from a pipe inlet 312 provided in the coolant pipe 311, flows inside the coolant pipe 311, and is a pipe outlet provided in the coolant pipe 311. It is discharged from 313 to the outside of the server module 10C.
 その際に、冷却液用配管311は、壁面を介して熱を放熱部材23Cから冷却液2に伝導し、冷却液2を介して熱をサーバモジュール10Cの外部に排出する。これによって、サーバモジュール10Cは、高発熱部材22aで発生した熱を効率よく外部に排出することができる。 At that time, the coolant pipe 311 conducts heat from the heat radiating member 23C to the coolant 2 through the wall surface, and discharges heat to the outside of the server module 10C through the coolant 2. As a result, the server module 10C can efficiently discharge the heat generated by the high heat generating member 22a to the outside.
 なお、冷却液用配管311は、図12に示すように、配管用放熱部材314がその一部又は全面に備える構成にしても良い。配管用放熱部材314は、フィン又はそれに類する表面積を拡大する部位である。この場合に、冷却液用配管311は、配管用放熱部材314を介して周囲の空間から熱を吸熱して冷却液2に伝導するため、冷却性能を向上させることができる。 In addition, as shown in FIG. 12, the piping 311 for cooling fluid may be configured such that the heat radiation member 314 for piping is provided on a part or the entire surface thereof. The heat dissipating member 314 for piping is a part that enlarges the surface area of fins or the like. In this case, the coolant pipe 311 absorbs heat from the surrounding space via the pipe heat dissipating member 314 and conducts it to the coolant 2, so that the cooling performance can be improved.
 以上の通り、本実施形態4によれば、サーバモジュール10Cを用いることにより、実施形態1と同様に、発熱部材22を高密度に実装することと発熱部材22(主に、高発熱部材22a)を冷却するための高い冷却性能を得ることとを両立させることができる。 As described above, according to the fourth embodiment, by using the server module 10C, the heat generating member 22 is mounted with high density and the heat generating member 22 (mainly the high heat generating member 22a) as in the first embodiment. It is possible to achieve both high cooling performance for cooling the battery.
 [変形例]
 本発明は、前記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、前記した実施形態は、本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
[Modification]
The present invention is not limited to the above-described embodiment, and includes various modifications. For example, the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described. Further, a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment. In addition, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
 例えば、実施形態1に係るサーバモジュール10は、図13に示すように、変形することができる。図13は、第1変形例の概略構成を示す斜視図である。図13に示すように、第1変形例は、高発熱部材22a及び低発熱部材22bが、放熱部材23とともに、回路基板21の上面に実装された構成になっている。なお、回路基板21の上面に実装された高発熱部材22a及び低発熱部材22bは、放熱部材23とともに、液相状態の不活性冷媒31(図5参照)に浸漬される。第1変形例は、回路基板21の上面の、放熱部材23の未実装部分を有効に利用することができる。そのため、第1変形例は、実施形態1に係るサーバモジュール10よりもさらに高密度に発熱部材22を実装することができる。 For example, the server module 10 according to the first embodiment can be modified as shown in FIG. FIG. 13 is a perspective view showing a schematic configuration of the first modification. As shown in FIG. 13, the first modification has a configuration in which the high heat generating member 22 a and the low heat generating member 22 b are mounted on the upper surface of the circuit board 21 together with the heat radiating member 23. The high heat generating member 22a and the low heat generating member 22b mounted on the upper surface of the circuit board 21 are immersed in an inert refrigerant 31 (see FIG. 5) in a liquid phase together with the heat radiating member 23. The first modification can effectively use the unmounted portion of the heat dissipation member 23 on the upper surface of the circuit board 21. Therefore, in the first modification, the heat generating member 22 can be mounted at a higher density than the server module 10 according to the first embodiment.
 また、例えば、実施形態1に係るサーバモジュール10は、図14に示すように、変形することができる。図14は、第2変形例の概略構成を示す断面図である。図14に示すように、第2変形例は、回路基板21Dが回路基板21と凝縮部14との間に配置された構成になっている。回路基板21Dには、高発熱部材22aや低発熱部材22b、放熱部材23が実装されている。図14に示す例では、高発熱部材22aや低発熱部材22bが回路基板21Dの上面に実装されており、放熱部材23が回路基板21Dの下面に実装されている。回路基板21Dは、全体が液相状態の不活性冷媒31に浸漬されている。回路基板21Dは、沸騰して気化した不活性冷媒31の流動を阻害しないように、開口部401が設けられている。第2変形例は、回路基板21と凝縮部14との間の空間を有効に利用することができる。そのため、第2変形例は、実施形態1に係るサーバモジュール10よりもさらに高密度に発熱部材22を実装することができる。 For example, the server module 10 according to the first embodiment can be modified as shown in FIG. FIG. 14 is a cross-sectional view showing a schematic configuration of the second modification. As shown in FIG. 14, the second modification has a configuration in which the circuit board 21 </ b> D is disposed between the circuit board 21 and the condensing unit 14. A high heat generating member 22a, a low heat generating member 22b, and a heat radiating member 23 are mounted on the circuit board 21D. In the example shown in FIG. 14, the high heat generating member 22a and the low heat generating member 22b are mounted on the upper surface of the circuit board 21D, and the heat radiating member 23 is mounted on the lower surface of the circuit board 21D. The entire circuit board 21D is immersed in an inert refrigerant 31 in a liquid phase state. The circuit board 21D is provided with an opening 401 so as not to hinder the flow of the inert refrigerant 31 boiled and vaporized. The second modification can effectively use the space between the circuit board 21 and the condensing unit 14. Therefore, in the second modification, the heat generating member 22 can be mounted at a higher density than the server module 10 according to the first embodiment.
 また、例えば、実施形態1に係るサーバモジュール10は、高発熱部材22aと同様に、低発熱部材22bと放熱部材23とをサーマルビア25によって接続し、低発熱部材22bで発生した熱を放熱部材23に伝導して、不活性冷媒31に伝導させる構成にしても良い。 Further, for example, in the server module 10 according to the first embodiment, similarly to the high heat generating member 22a, the low heat generating member 22b and the heat radiating member 23 are connected by the thermal via 25, and the heat generated by the low heat generating member 22b is dissipated. It is also possible to adopt a configuration that conducts to 23 and conducts to the inert refrigerant 31.
 また、例えば、実施形態1に係るサーバモジュール10は、高発熱部材22aを液相状態の不活性冷媒31に浸漬させて、高発熱部材22aで発生した熱を、高発熱部材22aの表面から不活性冷媒31に直接伝導させる構成にしても良い。 Further, for example, the server module 10 according to the first embodiment immerses the high heat generating member 22a in the inert refrigerant 31 in the liquid phase state, so that the heat generated in the high heat generating member 22a is not transmitted from the surface of the high heat generating member 22a. You may make it the structure made to conduct to the active refrigerant | coolant 31 directly.
 また、例えば、実施形態1に係るサーバモジュール10は、高発熱部材22aと同様に、低発熱部材22bを液相状態の不活性冷媒31に浸漬させて、低発熱部材22bで発生した熱を、低発熱部材22bの表面から不活性冷媒31に直接伝導させる構成にしても良い。 Further, for example, the server module 10 according to the first embodiment immerses the low heat generating member 22b in the liquid state inert refrigerant 31 in the same manner as the high heat generating member 22a, and generates heat generated in the low heat generating member 22b. You may make it the structure directly conducted to the inert refrigerant | coolant 31 from the surface of the low heat generating member 22b.
 また、例えば、実施形態1に係るサーバモジュール10は、冷却部17と凝縮フィン15とを削除し、発熱部材22(特に、高発熱部材22a)を冷却ジャケット12に直接接触させることによって、発熱部材22で発生した熱を流路13の内部を流れる冷却液2に伝導する構成にしても良い。 Further, for example, the server module 10 according to the first embodiment eliminates the cooling unit 17 and the condensation fins 15 and directly contacts the heat generating member 22 (particularly, the high heat generating member 22a) with the cooling jacket 12, thereby generating the heat generating member. The heat generated at 22 may be conducted to the coolant 2 flowing inside the flow path 13.
 また、例えば、実施形態1に係るサーバモジュール10のサーマルビア25は、高い熱伝導性を有する金属塊を回路基板21に埋め込むことによって形成しても良い。 Further, for example, the thermal via 25 of the server module 10 according to the first embodiment may be formed by embedding a metal block having high thermal conductivity in the circuit board 21.
 また、例えば、実施形態1に係るサーバモジュール10は、不活性冷媒31の液面の高さ位置が凝縮フィン15の下端部の位置よりも低くなるように、不活性冷媒31が冷却部17の内部に入れられている。すなわち、サーバモジュール10は、冷却部17の内部で、空間が不活性冷媒31の上にできるようにしている。これにより、サーバモジュール10は、不活性冷媒31の相変化による気化熱と凝縮熱とを利用して熱を外部に放出して、高い冷却性能を得ている。しかしながら、不活性冷媒31の相変化は、気圧や気温等の周囲の環境の影響を受ける可能性がある。サーバモジュール10は、気圧等の影響を受けずに、確実な冷却性能を得ることが要望される場合に、不活性冷媒31で冷却部17の内部を満たすようにしても良い。この場合に、サーバモジュール10は、不活性冷媒31の熱容量を増やすことができるため、気圧等の影響を受けることなく、確実性の高い放熱効率を得ることができる。また、サーバモジュール10は、不活性冷媒31以外の熱伝導性を有する材料で冷却部17を満たすようにしても良い。 In addition, for example, in the server module 10 according to the first embodiment, the inert refrigerant 31 is provided in the cooling unit 17 so that the height position of the liquid level of the inert refrigerant 31 is lower than the position of the lower end portion of the condensation fin 15. It is put inside. That is, the server module 10 is configured so that a space can be formed on the inert refrigerant 31 inside the cooling unit 17. As a result, the server module 10 obtains high cooling performance by releasing heat to the outside using the heat of vaporization and the heat of condensation caused by the phase change of the inert refrigerant 31. However, the phase change of the inert refrigerant 31 may be influenced by the surrounding environment such as atmospheric pressure and temperature. The server module 10 may fill the inside of the cooling unit 17 with the inert refrigerant 31 when it is desired to obtain reliable cooling performance without being affected by atmospheric pressure or the like. In this case, since the server module 10 can increase the heat capacity of the inert refrigerant 31, it is possible to obtain highly reliable heat radiation efficiency without being affected by atmospheric pressure or the like. The server module 10 may fill the cooling unit 17 with a material having thermal conductivity other than the inert refrigerant 31.
 また、例えば、実施形態1に係る回路基板21を構成するインターポーザ219は、ガラスインターポーザとして形成されている。しかしながら、インターポーザ219は、シリコンガラスペースト211以外の硬質かつ絶縁性を有する材料(例えば、セラミック等の材料)を用いて形成しても良い。 For example, the interposer 219 constituting the circuit board 21 according to the first embodiment is formed as a glass interposer. However, the interposer 219 may be formed using a hard and insulating material (for example, a material such as ceramic) other than the silicon glass paste 211.
 また、例えば、実施形態1に係るサーバ装置1は、サーバモジュール10等の電子機器以外を冷却対象として、冷却液2を供給する構成にしても良い。
 また、例えば、実施形態1に係るサーバ装置1は、冷却液供給管161Aa,161Ab及び冷却液排出管161Ba,161Bbの配置を適宜変更しても良い。
In addition, for example, the server device 1 according to the first embodiment may be configured to supply the cooling liquid 2 to a cooling target other than the electronic device such as the server module 10.
For example, the server apparatus 1 according to the first embodiment may appropriately change the arrangement of the coolant supply pipes 161Aa and 161Ab and the coolant discharge pipes 161Ba and 161Bb.
 また、例えば、実施形態1に係るサーバ装置1の冷却液供給用バッファタンク162及び冷却液排出用バッファタンク163は、内部に空気を蓄積するスペースを設けて、冷却液2の外部からの導入時に内部に混入した空気をそのスペースに蓄積する構成にしても良い。 In addition, for example, the coolant supply buffer tank 162 and the coolant discharge buffer tank 163 of the server device 1 according to the first embodiment are provided with a space for storing air therein, and when the coolant 2 is introduced from the outside. You may make it the structure which accumulate | stores the air mixed in the inside in the space.
 また、例えば、実施形態1に係るサーバ装置1の冷却液排出管用バッファタンク162及び冷却液排出用バッファタンク163は、ラックキャビネット110から削除して、建屋外に配置するようにしても良い。この場合に、サーバ装置1はラックキャビネット110の重量を軽減することができる。 Further, for example, the coolant discharge pipe buffer tank 162 and the coolant discharge buffer tank 163 of the server device 1 according to the first embodiment may be deleted from the rack cabinet 110 and arranged outside the building. In this case, the server device 1 can reduce the weight of the rack cabinet 110.
 また、例えば、実施形態1に係るサーバ装置1のラックキャビネット110は、1Uサーバ3の縦差しを可能とする構成にしても良い。
 また、例えば、実施形態1に係るサーバ装置1のガイドレール113は、ラックキャビネット110及び1Uサーバ3のいずれか一方又は双方と固定する必要が無く、個別の部品として用意して取り付ける構成にしても良い。
Further, for example, the rack cabinet 110 of the server device 1 according to the first embodiment may be configured to allow the 1U server 3 to be vertically inserted.
In addition, for example, the guide rail 113 of the server device 1 according to the first embodiment does not need to be fixed to one or both of the rack cabinet 110 and the 1U server 3 and is prepared and attached as an individual component. good.
 また、例えば、実施形態1に係るサーバ装置1のガイドレール113は、その一部又は全てを、樹脂等の冷却液2に腐食されない材質によって構成された冷却液2の流路で代替するようにしても良い。 In addition, for example, the guide rail 113 of the server device 1 according to the first embodiment is partially or entirely replaced with a flow path of the coolant 2 made of a material that is not corroded by the coolant 2 such as a resin. May be.
 1  サーバ装置
 2  冷却液
 3  1Uサーバ
 4a  供給孔
 4b  排出孔
 5  配線部
 10,10A,10B,10C  サーバモジュール
 11  筐体(密閉容器)
 12  冷却ジャケット
 13  流路
 13a  冷却液供給路
 13b  冷却液排出路
 14  凝縮部
 15  凝縮フィン
 17  冷却部
 18  支持部材
 19  位置決めガイド
 21,21A,21Aa,21D  回路基板
 22  発熱部材(電子機器)
 22a  高発熱部材
 22b  低発熱部材
 23,23B,23C  放熱部材
 24  沸騰伝熱面
 25,25a,25b  サーマルビア
 26  高伝熱部材
 31  不活性冷媒
 41  送風部
 42,238,238a,401  開口部
 43  フィン
 44  冷却風
 110  ラックキャビネット
 111,112  支柱
 113  ガイドレール
 114a,114b  接続部
 121  バックプレーン
 160  冷却システム
 161  冷却液循環路
 161Aa,161Ab  冷却液供給管
 161Ba,161Bb  冷却液排出管
 162  冷却液供給用バッファタンク
 163  冷却液排出用バッファタンク
 164  チラー(冷却装置)
 211  シリコンガラスペースト(絶縁層)
 213  レジスト
 213a  硬化レジスト
 213b  非硬化レジスト(マスクパターン)
 215  銅メッキ
 216  絶縁基板
 217,217a,217b  導通ビア
 218  積層基板
 219  インターポーザ
 221,221a,221b,221c  半田バンプ
 222,222a,222b  半田(伝熱部材)
 231  樹脂基板
 233  銅板(伝熱部材)
 235  中間層
 239  固定用加工
 241  絶縁材
 311  冷却液用配管
 312  配管入口
 313  配管出口
 314  配管用放熱部材
 CT1  切断面
 CT2  切断面
DESCRIPTION OF SYMBOLS 1 Server apparatus 2 Coolant 3 1U server 4a Supply hole 4b Discharge hole 5 Wiring part 10, 10A, 10B, 10C Server module 11 Case (sealed container)
DESCRIPTION OF SYMBOLS 12 Cooling jacket 13 Flow path 13a Coolant supply path 13b Coolant discharge path 14 Condensing part 15 Condensing fin 17 Cooling part 18 Support member 19 Positioning guide 21, 21A, 21Aa, 21D Circuit board 22 Heat generating member (electronic device)
22a High heat generating member 22b Low heat generating member 23, 23B, 23C Heat radiating member 24 Boiling heat transfer surface 25, 25a, 25b Thermal via 26 High heat transfer member 31 Inactive refrigerant 41 Blowing section 42, 238, 238a, 401 Opening 43 Fin 44 Cooling air 110 Rack cabinet 111, 112 Prop 113 Guide rail 114a, 114b Connection part 121 Backplane 160 Cooling system 161 Cooling liquid circulation path 161Aa, 161Ab Cooling liquid supply pipe 161Ba, 161Bb Cooling liquid discharge pipe 162 Cooling liquid supply buffer tank 163 Buffer tank for cooling liquid discharge 164 Chiller (cooling device)
211 Silicone glass paste (insulating layer)
213 Resist 213a Cured resist 213b Non-cured resist (mask pattern)
215 Copper plating 216 Insulating substrate 217, 217a, 217b Conductive via 218 Laminated substrate 219 Interposer 221, 221a, 221b, 221c Solder bump 222, 222a, 222b Solder (heat transfer member)
231 Resin substrate 233 Copper plate (Heat transfer member)
235 Intermediate layer 239 Fixing process 241 Insulating material 311 Piping for cooling liquid 312 Piping inlet 313 Piping outlet 314 Piping heat dissipation member CT1 Cutting plane CT2 Cutting plane

Claims (15)

  1.  発熱部材と放熱部材とが互いに対向するように一方の面と他方の面とに実装されている回路基板と、
     前記回路基板を内部に収容する密閉容器とを有し、
     前記回路基板は、前記発熱部材と前記放熱部材とを熱的に接続する複数のサーマルビアを内部に備えており、
     前記放熱部材は、前記密閉容器の内部で、液相状態の絶縁性の不活性冷媒に浸漬されている
    ことを特徴とするサーバ装置。
    A circuit board mounted on one surface and the other surface so that the heat generating member and the heat radiating member face each other;
    A sealed container for accommodating the circuit board therein;
    The circuit board includes a plurality of thermal vias that thermally connect the heat generating member and the heat radiating member,
    The server device, wherein the heat radiating member is immersed in an insulating inert refrigerant in a liquid phase inside the sealed container.
  2.  請求項1に記載のサーバ装置において、
     前記放熱部材は、前記発熱部材で発生した熱を前記不活性冷媒に伝導して、前記不活性冷媒を沸騰させる沸騰伝熱面を備えており、
     前記回路基板は、前記発熱部材が実装されている前記一方の面を下面とし、前記放熱部材が実装されている前記他方の面を上面として、前記密閉容器の内部に収容されており、
     前記密閉容器は、外部と熱的に接続され、沸騰により気化した前記不活性冷媒を冷却して凝縮させる凝縮部を前記回路基板の上方に備えている
    ことを特徴とするサーバ装置。
    The server device according to claim 1,
    The heat dissipating member includes a boiling heat transfer surface that conducts heat generated by the heat generating member to the inert refrigerant to boil the inert refrigerant,
    The circuit board is housed inside the sealed container with the one surface on which the heat generating member is mounted as a lower surface and the other surface on which the heat dissipation member is mounted as an upper surface,
    The server apparatus, wherein the sealed container is provided with a condensing unit that is thermally connected to the outside and cools and condenses the inert refrigerant vaporized by boiling.
  3.  請求項2に記載のサーバ装置において、
     前記凝縮部は、冷却液が流動する流路を内部に備える冷却ジャケットによって構成されているとともに、前記流路と熱的に接続され、沸騰により気化した前記不活性冷媒を冷却して凝縮させる凝縮フィンを備えており、
     前記凝縮フィンは、前記冷却ジャケットから、前記密閉容器の内部の前記放熱部材を前記不活性冷媒に浸漬させている空間に、突出して設けられている
    ことを特徴とするサーバ装置。
    The server device according to claim 2,
    The condensing part is constituted by a cooling jacket having a flow path through which a cooling liquid flows, and is condensed to cool and condense the inert refrigerant that is thermally connected to the flow path and vaporized by boiling. With fins,
    The server device according to claim 1, wherein the condensing fins are provided so as to protrude from the cooling jacket into a space where the heat radiating member inside the sealed container is immersed in the inert refrigerant.
  4.  請求項1に記載のサーバ装置において、
     前記放熱部材の実装面積は、当該放熱部材に接続されている前記発熱部材の実装面積よりも広い
    ことを特徴とするサーバ装置。
    The server device according to claim 1,
    The server device, wherein a mounting area of the heat radiating member is larger than a mounting area of the heat generating member connected to the heat radiating member.
  5.  請求項1に記載のサーバ装置において、
     前記サーマルビアは、前記回路基板の内部に配置された伝熱部材を介して、前記発熱部材と前記放熱部材とを、N>Mとなる、N対Mの関係(ただし、NとMはともに整数)で接続しており、
     前記発熱部材と前記サーマルビアとの間及び前記放熱部材と前記サーマルビアとの間は、それぞれ、半田材によって接続されており、
     前記放熱部材と前記サーマルビアとの間を接続する半田材は、前記発熱部材と前記サーマルビアとの間を接続する半田材よりも大径に形成されている
    ことを特徴とするサーバ装置。
    The server device according to claim 1,
    The thermal via is connected to the heat generating member and the heat dissipating member through a heat transfer member disposed inside the circuit board so that N> M, where N> M (where N and M are both Integer)
    Between the heat generating member and the thermal via and between the heat dissipation member and the thermal via, respectively, are connected by a solder material,
    The server apparatus according to claim 1, wherein the solder material connecting the heat radiating member and the thermal via is formed to have a larger diameter than the solder material connecting the heat generating member and the thermal via.
  6.  請求項1に記載のサーバ装置において、
     前記複数のサーマルビアの一部又は全体が、1つに統合されて、単体の伝熱部材として構成されている
    ことを特徴とするサーバ装置。
    The server device according to claim 1,
    A server apparatus, wherein a part or all of the plurality of thermal vias are integrated into a single heat transfer member.
  7.  請求項6に記載のサーバ装置において、
     前記単体の伝熱部材は、前記放熱部材側の断面積が前記発熱部材側の断面積よりも広くなるように形成されている
    ことを特徴とするサーバ装置。
    The server device according to claim 6,
    The server device, wherein the single heat transfer member is formed such that a cross-sectional area on the heat radiating member side is wider than a cross-sectional area on the heat generating member side.
  8.  請求項1に記載のサーバ装置において、
     前記密閉容器とともに前記回路基板を内蔵する複数のサーバモジュールと、
     前記複数のサーバモジュールを内部に収容するラックキャビネットと、
     冷却液を冷却する冷却装置に接続され、前記冷却液を前記複数のサーバモジュールと前記冷却装置との間で循環させる冷却液循環路とを有し、
     前記冷却液循環路は、前記ラックキャビネットの中央に配置されたバックプレーンを通って、前記複数のサーバモジュールのそれぞれに並列に接続されるように、配置されており、かつ、前記サーバモジュールに接続された部位が前記バックプレーンを通る部位に対して接離自在に構成されている
    ことを特徴とするサーバ装置。
    The server device according to claim 1,
    A plurality of server modules containing the circuit board together with the sealed container;
    A rack cabinet that houses the plurality of server modules;
    A cooling liquid circulation path that is connected to a cooling device that cools the cooling liquid and circulates the cooling liquid between the plurality of server modules and the cooling device;
    The coolant circulation path is arranged so as to be connected in parallel to each of the plurality of server modules through a backplane arranged in the center of the rack cabinet, and connected to the server module. A server device, wherein the portion that is made is configured to be movable toward and away from a portion that passes through the backplane.
  9.  樹脂基板と絶縁基板とが2層以上積層された回路基板と、
     前記回路基板の一方の面に実装された発熱部材と、
     前記回路基板の他方の面の前記発熱部材と対向する位置に実装された放熱部材と、
     前記回路基板の内部に形成され、前記発熱部材と前記放熱部材とを熱的に接続する複数のサーマルビアとを有し、
     前記サーマルビアは、前記回路基板の内部に配置された伝熱部材を介して、前記発熱部材と前記放熱部材とを、N>Mとなる、N対Mの関係(ただし、NとMはともに整数)で接続しており、
     前記発熱部材と前記サーマルビアとの間及び前記放熱部材と前記サーマルビアとの間は、それぞれ、半田材によって接続されており、
     前記放熱部材と前記サーマルビアとの間を接続する半田材は、前記発熱部材と前記サーマルビアとの間を接続する半田材よりも大径に形成されている
    ことを特徴とするサーバ装置。
    A circuit board in which two or more layers of a resin substrate and an insulating substrate are laminated;
    A heating member mounted on one surface of the circuit board;
    A heat dissipating member mounted at a position facing the heat generating member on the other surface of the circuit board;
    A plurality of thermal vias formed inside the circuit board and thermally connecting the heat generating member and the heat radiating member;
    The thermal via is connected to the heat generating member and the heat dissipating member through a heat transfer member disposed inside the circuit board so that N> M, where N> M (where N and M are both Integer)
    Between the heat generating member and the thermal via and between the heat dissipation member and the thermal via, respectively, are connected by a solder material,
    The server apparatus according to claim 1, wherein the solder material connecting the heat radiating member and the thermal via is formed to have a larger diameter than the solder material connecting the heat generating member and the thermal via.
  10.  請求項9に記載のサーバ装置において、
     前記放熱部材に接続された前記サーマルビアと前記発熱部材に接続された前記サーマルビアとは、接続される前記半田材の径に合わせて、前記放熱部材に接続された前記サーマルビアが前記発熱部材に接続された前記サーマルビアよりも大径に形成されており、
     前記回路基板は、内部に、前記発熱部材に接続された前記サーマルビアと前記放熱部材に接続された前記サーマルビアとを接続する中間層を備えている
    ことを特徴とするサーバ装置。
    The server device according to claim 9, wherein
    The thermal via connected to the heat radiating member and the thermal via connected to the heat generating member match the diameter of the solder material to be connected, and the thermal via connected to the heat radiating member is the heat generating member. It is formed in a larger diameter than the thermal via connected to the
    The circuit board includes an intermediate layer for connecting the thermal via connected to the heat generating member and the thermal via connected to the heat radiating member inside.
  11.  請求項9に記載のサーバ装置において、
     前記回路基板を内蔵する複数のサーバモジュールと、
     前記複数のサーバモジュールを内部に収容するラックキャビネットと、
     冷却液を冷却する冷却装置に接続され、前記冷却液を前記複数のサーバモジュールと前記冷却装置との間で循環させる冷却液循環路とを有し、
     前記冷却液循環路は、前記ラックキャビネットの中央に配置されたバックプレーンを通って、前記複数のサーバモジュールのそれぞれに並列に接続されるように、配置されており、かつ、前記サーバモジュールに接続された部位が前記バックプレーンを通る部位に対して接離自在に構成されている
    ことを特徴とするサーバ装置。
    The server device according to claim 9, wherein
    A plurality of server modules containing the circuit board;
    A rack cabinet that houses the plurality of server modules;
    A cooling liquid circulation path that is connected to a cooling device that cools the cooling liquid and circulates the cooling liquid between the plurality of server modules and the cooling device;
    The coolant circulation path is arranged so as to be connected in parallel to each of the plurality of server modules through a backplane arranged in the center of the rack cabinet, and connected to the server module. A server device, wherein the portion that is made is configured to be movable toward and away from a portion that passes through the backplane.
  12.  請求項9に記載のサーバ装置において、
     前記放熱部材は、表面積を拡大する部位を備えている
    ことを特徴とするサーバ装置。
    The server device according to claim 9, wherein
    The server device according to claim 1, wherein the heat dissipating member includes a portion that increases a surface area.
  13.  請求項12に記載のサーバ装置において、
     さらに、前記放熱部材に対して送風する送風部を有する
    ことを特徴とするサーバ装置。
    The server device according to claim 12, wherein
    Furthermore, it has a ventilation part which ventilates with respect to the said heat radiating member, The server apparatus characterized by the above-mentioned.
  14.  請求項9に記載のサーバ装置において、
     さらに、冷却液が流動する冷却液用配管を前記放熱部材の近傍に有する
    ことを特徴とするサーバ装置。
    The server device according to claim 9, wherein
    The server device further includes a coolant pipe through which the coolant flows, in the vicinity of the heat radiating member.
  15.  請求項9に記載のサーバ装置において、
     前記複数のサーマルビアの一部又は全体が、1つに統合されて、単体の伝熱部材として構成されている
    ことを特徴とするサーバ装置。
    The server device according to claim 9, wherein
    A server apparatus, wherein a part or all of the plurality of thermal vias are integrated into a single heat transfer member.
PCT/JP2013/077186 2013-10-04 2013-10-04 Server device WO2015049807A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/077186 WO2015049807A1 (en) 2013-10-04 2013-10-04 Server device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/077186 WO2015049807A1 (en) 2013-10-04 2013-10-04 Server device

Publications (1)

Publication Number Publication Date
WO2015049807A1 true WO2015049807A1 (en) 2015-04-09

Family

ID=52778414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077186 WO2015049807A1 (en) 2013-10-04 2013-10-04 Server device

Country Status (1)

Country Link
WO (1) WO2015049807A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170112018A1 (en) * 2015-10-20 2017-04-20 General Electric Company Heat transfer chassis and method for forming the same
GB2558204A (en) * 2016-11-25 2018-07-11 Iceotope Ltd I/O Circuit board for immersion-cooled electronics
FR3065113A1 (en) * 2017-04-11 2018-10-12 Valeo Systemes De Controle Moteur ELECTRONIC UNIT AND ELECTRICAL DEVICE COMPRISING SAID ELECTRONIC UNIT
CN109154845A (en) * 2016-05-16 2019-01-04 株式会社ExaScaler Liquid boshing but uses electronic equipment
US20220095492A1 (en) * 2020-09-24 2022-03-24 Baidu Usa Llc Cooling loops for buffering cooling capacity variations
CN118283981A (en) * 2024-06-03 2024-07-02 浙江艺景建设集团有限公司 Municipal facility information technology management storage device and method
JP7523117B2 (en) 2020-09-01 2024-07-26 国立研究開発法人産業技術総合研究所 3D laminated structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0677281U (en) * 1993-03-31 1994-10-28 ファナック株式会社 Multilayer printed circuit board
JP2003338577A (en) * 2002-05-21 2003-11-28 Murata Mfg Co Ltd Circuit board device
JP2008227150A (en) * 2007-03-13 2008-09-25 Toyota Industries Corp Electronic apparatus
JP2009015869A (en) * 2008-10-03 2009-01-22 Hitachi Ltd Electronic device
JP2010080572A (en) * 2008-09-25 2010-04-08 Denso Corp Electronic equipment
WO2010084717A1 (en) * 2009-01-23 2010-07-29 日本電気株式会社 Cooling device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0677281U (en) * 1993-03-31 1994-10-28 ファナック株式会社 Multilayer printed circuit board
JP2003338577A (en) * 2002-05-21 2003-11-28 Murata Mfg Co Ltd Circuit board device
JP2008227150A (en) * 2007-03-13 2008-09-25 Toyota Industries Corp Electronic apparatus
JP2010080572A (en) * 2008-09-25 2010-04-08 Denso Corp Electronic equipment
JP2009015869A (en) * 2008-10-03 2009-01-22 Hitachi Ltd Electronic device
WO2010084717A1 (en) * 2009-01-23 2010-07-29 日本電気株式会社 Cooling device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170112018A1 (en) * 2015-10-20 2017-04-20 General Electric Company Heat transfer chassis and method for forming the same
US10383261B2 (en) * 2015-10-20 2019-08-13 Ge Global Sourcing Llc Heat transfer chassis and method for forming the same
CN109154845A (en) * 2016-05-16 2019-01-04 株式会社ExaScaler Liquid boshing but uses electronic equipment
GB2558204A (en) * 2016-11-25 2018-07-11 Iceotope Ltd I/O Circuit board for immersion-cooled electronics
CN109997421A (en) * 2016-11-25 2019-07-09 爱思欧托普有限公司 For immersing the I/O circuit board of cooled electronic device
CN109997421B (en) * 2016-11-25 2020-11-13 爱思欧托普集团有限公司 I/O circuit board for immersion cooled electronic devices
FR3065113A1 (en) * 2017-04-11 2018-10-12 Valeo Systemes De Controle Moteur ELECTRONIC UNIT AND ELECTRICAL DEVICE COMPRISING SAID ELECTRONIC UNIT
FR3065112A1 (en) * 2017-04-11 2018-10-12 Valeo Systemes De Controle Moteur ELECTRONIC UNIT AND ELECTRICAL DEVICE COMPRISING SAID ELECTRONIC UNIT
JP7523117B2 (en) 2020-09-01 2024-07-26 国立研究開発法人産業技術総合研究所 3D laminated structure
US20220095492A1 (en) * 2020-09-24 2022-03-24 Baidu Usa Llc Cooling loops for buffering cooling capacity variations
US11445635B2 (en) * 2020-09-24 2022-09-13 Baidu Usa Llc Cooling loops for buffering cooling capacity variations
CN118283981A (en) * 2024-06-03 2024-07-02 浙江艺景建设集团有限公司 Municipal facility information technology management storage device and method

Similar Documents

Publication Publication Date Title
WO2015049807A1 (en) Server device
US7215547B2 (en) Integrated cooling system for electronic devices
US7561425B2 (en) Encapsulated multi-phase electronics heat-sink
US7492594B2 (en) Electronic circuit modules cooling
US7738249B2 (en) Circuitized substrate with internal cooling structure and electrical assembly utilizing same
JP5372472B2 (en) Conductive cooling circuit board structure
KR20160038293A (en) Circuit board
WO2010050087A1 (en) Layered semiconductor device and manufacturing method therefor
US20220406682A1 (en) Electronic module comprising a pulsating heat pipe
JPWO2009011419A1 (en) Electronic component mounting apparatus and manufacturing method thereof
KR20160038304A (en) Circuit board
JP2008153400A (en) Circuit board, its manufacturing method, and semiconductor device
JP7176615B2 (en) Electronics
JP6119111B2 (en) Circuit board, circuit board manufacturing method, electronic device, and electronic device manufacturing method
JP2006202975A (en) Electronic device with cooling structure for high-density mounting
JP6587795B2 (en) Circuit module
CN112088429A (en) Vapor chamber and method for manufacturing same
JP6251420B1 (en) Electronic module and method for manufacturing electronic module
JP2010003718A (en) Heat-dissipating substrate and its manufacturing method, and module using heat-dissipating substrate
CN115151023A (en) Circuit board and electronic equipment
JP2009206398A (en) Cooling module and composite mounting substrate
JP6633151B2 (en) Circuit module
JP2013131680A (en) Electronic apparatus and manufacturing method of the same
KR101018794B1 (en) Printed circuit board and method of manufacturing the same
JP2016076510A (en) Circuit module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13894971

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13894971

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP