WO2015047058A1 - 유기 화합물 및 이를 포함하는 유기 전계 발광 소자 - Google Patents
유기 화합물 및 이를 포함하는 유기 전계 발광 소자 Download PDFInfo
- Publication number
- WO2015047058A1 WO2015047058A1 PCT/KR2014/009243 KR2014009243W WO2015047058A1 WO 2015047058 A1 WO2015047058 A1 WO 2015047058A1 KR 2014009243 W KR2014009243 W KR 2014009243W WO 2015047058 A1 WO2015047058 A1 WO 2015047058A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- substituted
- unsubstituted
- aryl
- alkyl
- Prior art date
Links
- KUCZRQYDTDTVKF-UHFFFAOYSA-N Clc1nc(-c2c(cccc3)c3ccc2)c(cc[s]2)c2n1 Chemical compound Clc1nc(-c2c(cccc3)c3ccc2)c(cc[s]2)c2n1 KUCZRQYDTDTVKF-UHFFFAOYSA-N 0.000 description 2
- 0 *c1cccc2c1cccc2 Chemical compound *c1cccc2c1cccc2 0.000 description 1
- UYEYMPQBVZKNLO-UHFFFAOYSA-N Clc1nc(-c(cc2)ccc2-c2ccccc2)c(cc[s]2)c2n1 Chemical compound Clc1nc(-c(cc2)ccc2-c2ccccc2)c(cc[s]2)c2n1 UYEYMPQBVZKNLO-UHFFFAOYSA-N 0.000 description 1
- NCAFMEVBOUZPGB-UHFFFAOYSA-N Clc1nc(-c2cccc3c2cccc3)c(cc[o]2)c2n1 Chemical compound Clc1nc(-c2cccc3c2cccc3)c(cc[o]2)c2n1 NCAFMEVBOUZPGB-UHFFFAOYSA-N 0.000 description 1
- GAEKOGNLACJPBP-UHFFFAOYSA-N Clc1nc(Cl)nc2c1cc[n]2-c1ccccc1 Chemical compound Clc1nc(Cl)nc2c1cc[n]2-c1ccccc1 GAEKOGNLACJPBP-UHFFFAOYSA-N 0.000 description 1
- RJHMENBSHWUDOO-UHFFFAOYSA-N Clc1nc(Cl)nc2c1cc[o]2 Chemical compound Clc1nc(Cl)nc2c1cc[o]2 RJHMENBSHWUDOO-UHFFFAOYSA-N 0.000 description 1
- WOXUDROIIRMKAW-UHFFFAOYSA-N O=C(c(cc1)c(N2)[n]1-c1ccccc1)NC2=O Chemical compound O=C(c(cc1)c(N2)[n]1-c1ccccc1)NC2=O WOXUDROIIRMKAW-UHFFFAOYSA-N 0.000 description 1
- UGFOTZLGPPWNPY-UHFFFAOYSA-N c(cc1)cc2c1[nH]c1c2c2ccccc2cc1 Chemical compound c(cc1)cc2c1[nH]c1c2c2ccccc2cc1 UGFOTZLGPPWNPY-UHFFFAOYSA-N 0.000 description 1
- UJOBWOGCFQCDNV-UHFFFAOYSA-N c(cc1)cc2c1[nH]c1c2cccc1 Chemical compound c(cc1)cc2c1[nH]c1c2cccc1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 description 1
- GKTLHQFSIDFAJH-UHFFFAOYSA-N c(cc1)ccc1-[n](c(cccc1)c1c1c2)c1ccc2-c(cc1)cc2c1[nH]c1ccccc21 Chemical compound c(cc1)ccc1-[n](c(cccc1)c1c1c2)c1ccc2-c(cc1)cc2c1[nH]c1ccccc21 GKTLHQFSIDFAJH-UHFFFAOYSA-N 0.000 description 1
- FOVQQGUHLLVFHQ-UHFFFAOYSA-N c1c[s]c2c1c(-c(cc1)ccc1-c1ccccc1)nc(-[n]1c(cccc3)c3c3c1cccc3)n2 Chemical compound c1c[s]c2c1c(-c(cc1)ccc1-c1ccccc1)nc(-[n]1c(cccc3)c3c3c1cccc3)n2 FOVQQGUHLLVFHQ-UHFFFAOYSA-N 0.000 description 1
- XATXCTYFUNQLFN-UHFFFAOYSA-N c1c[s]c2c1c(-c1cccc3c1cccc3)nc(-[n]1c3ccc(cccc4)c4c3c3c1cccc3)n2 Chemical compound c1c[s]c2c1c(-c1cccc3c1cccc3)nc(-[n]1c3ccc(cccc4)c4c3c3c1cccc3)n2 XATXCTYFUNQLFN-UHFFFAOYSA-N 0.000 description 1
- GETCQCJNOYLJQD-UHFFFAOYSA-N c1c[s]c2nc(-[n]3c(ccc(-c(cc4c5c6cccc5)ccc4[n]6-c4ccccc4)c4)c4c4c3cccc4)nc(-c3c(cccc4)c4ccc3)c12 Chemical compound c1c[s]c2nc(-[n]3c(ccc(-c(cc4c5c6cccc5)ccc4[n]6-c4ccccc4)c4)c4c4c3cccc4)nc(-c3c(cccc4)c4ccc3)c12 GETCQCJNOYLJQD-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/631—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D487/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
- C07D487/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
- C07D487/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D495/00—Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
- C07D495/02—Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
- C07D495/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
- H10K50/15—Hole transporting layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/17—Carrier injection layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/656—Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6572—Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1059—Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1059—Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
- C09K2211/1062—Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms with oxygen
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1059—Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
- C09K2211/1066—Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms with sulfur
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1074—Heterocyclic compounds characterised by ligands containing more than three nitrogen atoms as heteroatoms
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2101/00—Properties of the organic materials covered by group H10K85/00
- H10K2101/10—Triplet emission
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
- H10K85/321—Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
- H10K85/324—Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
- H10K85/341—Transition metal complexes, e.g. Ru(II)polypyridine complexes
- H10K85/342—Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
Definitions
- the present invention relates to a novel organic compound and an organic electroluminescent device comprising the same, more specifically, a novel compound having excellent hole injection ability, hole transporting ability, light emission ability, etc. and the compound as a material of an organic material layer,
- the present invention relates to an organic EL device having improved characteristics such as driving voltage and lifetime.
- the organic electroluminescent device when a voltage is applied between two electrodes, holes are injected into the organic material layer from the anode and electrons from the cathode. When the injected holes and electrons meet, excitons are formed, and when the excitons fall to the ground, they shine.
- the material used as the organic material layer may be classified into a light emitting material, a hole injection material, a hole transport material, an electron transport material, an electron injection material and the like according to its function.
- the light emitting material may be classified into blue, green, and red light emitting materials according to light emission colors. In addition, it can be divided into yellow and orange light emitting materials required to achieve a better natural color. In addition, a host / dopant system may be used as the light emitting material in order to increase the light emission efficiency through increase in color purity and energy transfer.
- the dopant material may be divided into a fluorescent dopant using an organic material and a phosphorescent dopant using a metal complex compound containing heavy atoms such as Ir and Pt. Since the development of phosphorescent materials can theoretically improve luminous efficiency up to four times compared to fluorescence, attention is being paid not only to phosphorescent dopants but also to phosphorescent host materials.
- NPB hole blocking layer
- BCP hole blocking layer
- Alq 3 and the like represented by the following formulas
- anthracene derivatives have been reported as fluorescent dopant / host materials as light emitting materials.
- phosphorescent materials having great advantages in terms of efficiency improvement among light emitting materials include metal complex compounds including Ir such as Firpic, Ir (ppy) 3 , and (acac) Ir (btp) 2 , which are blue and green. It is used as a red dopant material.
- CBP has shown excellent properties as a phosphorescent host material.
- the conventional light emitting materials are good in terms of light emission characteristics, but the thermal stability is not very good because the glass transition temperature is low, and thus the light emitting materials are not satisfactory in terms of the lifespan of the organic EL device. Therefore, there is a demand for development of a light emitting material having excellent performance.
- An object of the present invention is to provide a novel compound that can be used as a light emitting layer material, a hole transporting layer material and a hole injection layer material with excellent light emitting ability, hole transporting ability and hole injection ability.
- Another object of the present invention is to provide an organic electroluminescent device including the novel compound having a low driving voltage, high luminous efficiency, and an improved lifetime.
- the present invention provides a compound represented by Formula 1:
- A is a substituted or unsubstituted 5 membered aromatic ring or a substituted or unsubstituted heteroaromatic ring;
- L is selected from the group consisting of a single bond, a substituted or unsubstituted C 6 -C 60 arylene group, and a substituted or unsubstituted heteroarylene group having 5 to 60 nuclear atoms;
- Ar 1 is hydrogen, deuterium, halogen, cyano group, substituted or unsubstituted C 1 to C 40 alkyl group, substituted or unsubstituted C 3 to C 40 cycloalkyl group, substituted or unsubstituted nuclear atom 3 to 40 Heterocycloalkyl group, substituted or unsubstituted C 6 ⁇ C 60 aryl group, substituted or unsubstituted heteroaryl group having 5 to 60 nuclear atoms, substituted or unsubstituted C 1 ⁇ C 40 alkyloxy group, Substituted or unsubstituted C 6 -C 60 aryloxy group, substituted or unsubstituted C 3 -C 40 alkylsilyl group, substituted or unsubstituted C 6 -C 60 arylsilyl group, substituted or unsubstituted C 1 ⁇ C 40 alkyl boron group, substituted or unsubstituted C 6 ⁇ C
- R 1 to R 6 are the same as or different from each other, and each independently hydrogen, deuterium, halogen, cyano group, substituted or unsubstituted C 1 to C 40 alkyl group, substituted or unsubstituted C 3 to C 40 cycloalkyl group , Substituted or unsubstituted heterocycloalkyl group having 3 to 40 nuclear atoms, substituted or unsubstituted C 6 to C 60 aryl group, substituted or unsubstituted heteroaryl group having 5 to 60 nuclear atoms, substituted or unsubstituted A substituted C 1 to C 40 alkyloxy group, a substituted or unsubstituted C 6 to C 60 aryloxy group, a substituted or unsubstituted C 3 to C 40 alkylsilyl group, a substituted or unsubstituted C 6 to C 60 arylsilyl group, substituted or unsubstituted C 1 ⁇ C 40 alky
- An alkyl boron group, an aryl boron group, an aryl phosphine group, an aryl phosphine oxide group and an arylamine group are each independently deuterium, halogen, cyano group, C 1 -C 40 alkyl group, C 3 -C 40 cycloalkyl group, nuclear atoms of 3 to 40 heterocycloalkyl group, C 6 ⁇ C 60 aryl group, a nuclear atoms of 5 to 60 heteroaryl group, C 1 ⁇ alkyloxy group of C 40 of the, aryloxy of C 6 ⁇ C 60
- the present invention is an organic electroluminescent device comprising an anode, a cathode and at least one organic layer interposed between the anode and the cathode, at least one of the at least one organic layer is a compound represented by the formula (1) It provides an organic electroluminescent device comprising a.
- At least one organic layer including the compound represented by Formula 1 is selected from the group consisting of a hole transport layer, a hole injection layer and a light emitting layer, preferably a hole transport layer and / or a light emitting layer, more preferably a light emitting layer.
- the compound represented by Formula 1 is a phosphorescent host material of the light emitting layer.
- the novel organic compound according to the present invention is a cynopyrimidine moiety, a furopyrimidine moiety, or the like directly bonded to a indole moiety (single bond), or a cyanopyri It is connected to the midine moiety and the indole moiety through an arylene group and a heteroarylene group to form a basic skeleton, and a structure in which various substituents are bonded to the basic skeleton is represented by Chemical Formula 1.
- Compound represented by the formula (1) has a higher molecular weight than the conventional organic EL device material [for example, 4,4-dicarbazolybiphenyl (hereinafter referred to as 'CBP')] has a high glass transition temperature, and also excellent thermal stability, It has excellent hole injecting ability, hole transporting ability and light emitting ability. Therefore, when the organic electroluminescent device includes the compound of Formula 1, the driving voltage, efficiency, lifespan, etc. of the device are improved.
- the conventional organic EL device material for example, 4,4-dicarbazolybiphenyl (hereinafter referred to as 'CBP')
- 'CBP' 4,4-dicarbazolybiphenyl
- the host material should have a triplet energy gap of the host higher than the dopant. That is, in order to effectively provide phosphorescence from the dopant, the lowest excited state of the host must be higher in energy than the lowest emitted state of the dopant.
- the compound represented by Chemical Formula 1 is used as a host material because a specific substituent is introduced into a condensed indole derivative having a wide singlet energy level and a high triplet energy level, so that the energy level can be controlled higher than the dopant.
- the compound of Formula 1 has a structure in which an electron withdrawal group (EWG) having high electron absorption is coupled, and thus the whole molecule has a bipolar characteristic, thereby increasing the binding force between the hole and the electron. Therefore, the compound of Formula 1 can exhibit excellent luminescence properties, and is usefully applied as a blue, green or red phosphorescent layer material of an organic EL device.
- EWG electron withdrawal group
- the compound represented by Chemical Formula 1 may improve phosphorescence characteristics of the organic EL device, and may also improve hole injection / transport ability, emission efficiency, driving voltage, lifetime characteristics, and the like. This also improves the electron transport capacity.
- the compound of formula 1 according to the present invention is preferably an organic material layer material of an organic electroluminescent device, preferably a light emitting layer material (blue, green and / or red phosphorescent host material), a hole transport layer material and a hole injection layer material, more preferably Is used as a phosphorescent layer material.
- the compound of Formula 1 has a variety of substituents, especially aryl groups and / or heteroaryl groups introduced into the basic skeleton significantly increases the molecular weight of the compound, thereby improving the glass transition temperature, thereby improving the conventional light emitting material ( For example, it has higher thermal stability than CBP).
- the compound represented by the formula (1) is effective in suppressing the crystallization of the organic material layer. Therefore, the organic electroluminescent device including the compound of Formula 1 according to the present invention has greatly improved performance and lifespan characteristics. As such, the organic EL device having improved performance and lifespan characteristics maximizes the performance of the full color organic light emitting panel.
- L is preferably a single bond or phenylene.
- Ar 1 is preferably a substituted or unsubstituted C 6 ⁇ C 40 aryl group, or a substituted or unsubstituted heteroaryl group having 5 to 60 nuclear atoms.
- the compound represented by Formula 1 according to the present invention is embodied by any one of the following Formulas A-1 to A-12.
- R 11 to R 14 are the same as or different from each other, and each independently hydrogen, deuterium, halogen, cyano group, substituted or unsubstituted C 1 to C 40 alkyl group, substituted or unsubstituted C 3 to C 40 cycloalkyl group , Substituted or unsubstituted heterocycloalkyl group having 3 to 40 nuclear atoms, substituted or unsubstituted C 6 to C 60 aryl group, substituted or unsubstituted heteroaryl group having 5 to 60 nuclear atoms, substituted or unsubstituted Or a substituted C 1 to C 40 alkyloxy group, a substituted or unsubstituted C 6 to C 60 aryloxy group, or a substituted or unsubstituted C 6 to C 60 arylamine group, Can combine to form a condensed ring,
- the alkyl group, cycloalkyl group, heterocycloalkyl group, aryl group, heteroaryl group, alkyloxy group, aryloxy group and arylamine group of R 11 to R 14 are each independently deuterium, halogen, cyano, C 1 to C 40 alkyl group, C 3 ⁇ C 40 cycloalkyl group, the number of nuclear atoms of 3 to 40 hetero cycloalkyl, heteroaryl of C 6 ⁇ C 60 aryl group, the number of nuclear atoms of 5 to 60 aryl group, C 1 ⁇ C 40 alkyloxy group, C 6 ⁇ aryloxy C 60, C 1 ⁇ C 40 alkyl silyl group, an aryl boronic of C 6 ⁇ C aryl silyl group of 60, C 1 ⁇ C 40 group of an alkyl boron, C 6 ⁇ C 60 group, C 6 ⁇ C 60 aryl phosphine group, C 6 ⁇ aryl phos
- n is an integer of 0-2.
- the moiety may be selected from Formulas B-1 to B-10, but is not limited thereto.
- R 1 to R 6 are the same as defined in Formula 1, respectively.
- R 21 and R 22 are the same as or different from each other, and each independently hydrogen, deuterium, halogen, cyano group, substituted or unsubstituted C 1 to C 40 alkyl group, substituted or unsubstituted C 3 to C 40 cycloalkyl group , Substituted or unsubstituted heterocycloalkyl group having 3 to 40 nuclear atoms, substituted or unsubstituted C 6 to C 60 aryl group, substituted or unsubstituted heteroaryl group having 5 to 60 nuclear atoms, substituted or unsubstituted Selected from the group consisting of a substituted C 1 to C 40 alkyloxy group, a substituted or unsubstituted C 6 to C 60 aryloxy group, and a substituted or unsubstituted C 6 to C 60 arylamine group; Combine to form a condensed ring, where R 21 is plural, they are the same or different from each other,
- the alkyl group, cycloalkyl group, heterocycloalkyl group, aryl group, heteroaryl group, alkyloxy group, aryloxy group and arylamine group of R 21 and R 22 are each independently deuterium, halogen, cyano group, C 1 to C 40 alkyl group, C 3 ⁇ C 40 cycloalkyl group, the number of nuclear atoms of 3 to 40 hetero cycloalkyl, heteroaryl of C 6 ⁇ C 60 aryl group, the number of nuclear atoms of 5 to 60 aryl group, C 1 ⁇ C 40 alkyloxy group, C 6 ⁇ aryloxy C 60, C 1 ⁇ C 40 alkyl silyl group, an aryl boronic of C 6 ⁇ C aryl silyl group of 60, C 1 ⁇ C 40 group of an alkyl boron, C 6 ⁇ C 60 group, C 6 ⁇ C 60 aryl phosphine group, C 6 ⁇ aryl pho
- n is an integer of 0-4.
- the compound of the present invention is more specifically represented by the following formula, but is not limited thereto.
- alkyl refers to a monovalent functional group obtained by removing a hydrogen atom from a straight or branched chain saturated hydrocarbon of 1 to 40 carbon atoms, non-limiting examples of which are methyl, ethyl, propyl, isobutyl, sec -Butyl, pentyl, iso-amyl, hexyl and the like.
- alkenyl means a monovalent functional group obtained by removing a hydrogen atom from a straight or branched chain unsaturated hydrocarbon having 2 to 40 carbon atoms having at least one carbon-carbon double bond.
- Non-limiting examples thereof include vinyl, allyl, isopropenyl, 2-butenyl and the like.
- alkynyl refers to a monovalent functional group obtained by removing a hydrogen atom from a straight or branched chain unsaturated hydrocarbon having 2 to 40 carbon atoms having at least one carbon-carbon triple bond. Non-limiting examples thereof include ethynyl, 2-propynyl and the like.
- cycloalkyl means a monovalent functional group obtained by removing a hydrogen atom from a monocyclic or polycyclic non-aromatic hydrocarbon having 3 to 40 carbon atoms (saturated cyclic hydrocarbon). Non-limiting examples thereof include cyclopropyl, cyclopentyl, cyclohexyl, norbornyl, adamantine and the like.
- Heterocycloalkyl as used herein means a monovalent functional group obtained by removing a hydrogen atom from a non-aromatic hydrocarbon (saturated cyclic hydrocarbon) having 3 to 40 nuclear atoms, and preferably at least one carbon in the ring, preferably Is one to three carbons substituted with hetero atoms such as N, O or S.
- Non-limiting examples thereof include morpholine, piperazine and the like.
- aryl means a monovalent functional group obtained by removing a hydrogen atom from an aromatic hydrocarbon having 6 to 40 carbon atoms, alone or in combination of two or more rings. In this case, the two or more rings may be attached in a simple or condensed form with each other. Non-limiting examples thereof include phenyl, biphenyl, terphenyl, naphthyl, phenanthryl, anthryl and the like.
- heteroaryl is a monovalent functional group obtained by removing a hydrogen atom from a monoheterocyclic or polyheterocyclic aromatic hydrocarbon having 5 to 40 nuclear atoms, and at least one carbon in the ring, preferably 1 To 3 carbons are substituted with heteroatoms such as nitrogen (N), oxygen (O), sulfur (S) or selenium (Se).
- heteroaryl may be attached in a form in which two or more rings are simply attached or condensed with each other, and may also include a condensed form with an aryl group.
- heteroaryls include six-membered monocyclic rings such as pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, triazinyl; Polycyclics such as phenoxathienyl, indolinzinyl, indolyl, purinyl, quinolyl, benzothiazole, carbazolyl ring; And 2-furanyl, N-imidazolyl, 2-isoxazolyl, 2-pyridinyl, 2-pyrimidinyl, and the like.
- alkyloxy refers to a monovalent functional group represented by RO-, wherein R is alkyl having 1 to 40 carbon atoms, and has a linear, branched or cyclic structure. It may include. Non-limiting examples of such alkyloxy include methoxy, ethoxy, n-propoxy, 1-propoxy, t-butoxy, n-butoxy, pentoxy and the like.
- aryloxy means a monovalent functional group represented by R'O-, wherein R 'is aryl having 6 to 40 carbon atoms.
- R ' is aryl having 6 to 40 carbon atoms.
- Non-limiting examples of such aryloxy include phenyloxy, naphthyloxy, diphenyloxy and the like.
- alkylsilyl means silyl substituted with alkyl having 1 to 40 carbon atoms
- arylsilyl means silyl substituted with aryl having 6 to 40 carbon atoms
- arylamine is aryl having 6 to 40 carbon atoms. It means an amine substituted with.
- condensed ring means a condensed aliphatic ring, a condensed aromatic ring, a condensed heteroaliphatic ring, a condensed heteroaromatic ring, or a combination thereof.
- the present invention provides an organic electroluminescent device comprising a compound represented by the formula (1).
- the present invention is an organic electroluminescent device comprising an anode, a cathode, and at least one organic layer interposed between the anode and the cathode, wherein at least one of the at least one organic layer It includes a compound represented by the formula (1).
- the compound represented by the formula (1) is used alone or mixed two or more.
- the at least one organic material layer may be at least one of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer, and at least one of the organic material layers may include a compound represented by Chemical Formula 1.
- the organic material layer including the compound of Formula 1 is a phosphorescent layer.
- the light emitting layer of the organic electroluminescent device includes a host material, wherein the host material includes a compound represented by the formula (1).
- the host material includes a compound represented by the formula (1).
- the compound represented by Chemical Formula 1 is included as a light emitting layer material of the organic electroluminescent device, preferably a green phosphorescent host, the binding force between the holes and the electrons in the light emitting layer is increased. Efficiency and power efficiency), lifetime, brightness and driving voltage are improved.
- the structure of the organic electroluminescent device according to the present invention described above is not particularly limited.
- the substrate, the anode, the hole injection layer, the hole transport layer, the light emitting layer, the electron transport layer, and the cathode are sequentially stacked.
- at least one of the hole injection layer, the hole transport layer, the light emitting layer, the electron transport layer and the electron injection layer includes a compound represented by the formula (1), preferably the light emitting layer comprises a compound represented by the formula (1).
- the compound of the present invention is used as a phosphorescent host of the light emitting layer.
- An electron injection layer is further stacked on the electron transport layer.
- the structure of the organic electroluminescent device of the present invention is a structure in which an anode, one or more organic material layers, and a cathode are sequentially stacked, and an insulating layer or an adhesive layer is inserted at an interface between the electrode and the organic material layer.
- the organic electroluminescent device of the present invention may be formed using other materials and methods known in the art, except that at least one of the organic material layers (eg, the light emitting layer) is formed to include the compound represented by Chemical Formula 1. It is manufactured by forming an organic material layer and an electrode.
- the organic material layer is formed by a vacuum deposition method or a solution coating method.
- the solution coating method include, but are not limited to, spin coating, dip coating, doctor blading, inkjet printing, or thermal transfer.
- the substrate usable in the present invention is not particularly limited, and silicon wafers, quartz, glass plates, metal plates, plastic films, sheets, and the like are used.
- examples of the anode material include metals such as vanadium, chromium, copper, zinc and gold or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO); Combinations of metals and oxides such as ZnO: Al or SnO 2 : Sb; Conductive polymers such as polythiophene, poly (3-methylthiophene), poly [3,4- (ethylene-1,2-dioxy) thiophene] (PEDT), polypyrrole or polyaniline; And carbon black, but are not limited thereto.
- metals such as vanadium, chromium, copper, zinc and gold or alloys thereof.
- Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO); Combinations of metals and oxides such as ZnO: Al or SnO 2 : Sb
- Conductive polymers such as polythiophene, poly (3-methylthiophene
- the negative electrode material may be a metal such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, or lead or an alloy thereof; And multilayer structure materials such as LiF / Al or LiO 2 / Al, and the like.
- 2,4-dichlorothieno [2,3-d] pyrimidine (4.2 g, 20.5 mmol), phenylboronic acid (2.5 g, 20.5 mmol), Pd (PPh 3 ) 4 (1.2 g, 5 mol%) and potassium under nitrogen stream carbonate (8.5 g, 61.5 mmol) and toluene / H 2 O / ethanol (80 ml / 40 ml / 40 ml) were added and stirred at 110 ° C. for 4 hours.
- TP-2 (3.5 g, 11.9 mmol, yield 58%) was prepared by the same procedure as in ⁇ Step 2> of Preparation Example 1. Got it.
- TP-3 (3.9g, 12.1mmol, 59% yield) was carried out in the same manner as in ⁇ Step 2> of Preparation Example 1. Got it.
- 2,4-dichlorothieno [2,3-d] pyrimidine (4.0 g, 19.5 mmol), phenylboronic acid (2.4 g, 19.5 mmol), Pd (PPh 3 ) 4 (1.1 g, 5 mol%) and potassium carbonate under nitrogen stream (8.1g, 58.5mmol) and toluene / H 2 O / ethanol (80ml / 40ml / 40ml) were added and stirred at 110 ° C for 4 hours.
- TP-5 (3.3 g, 11.1 mmol, yield 57%) was prepared by the same procedure as in ⁇ Step 2> of Preparation Example 4. Got it.
- TP-6 (3.8g, 11.9mmol, 61% yield) was carried out in the same manner as in ⁇ Step 2> of Preparation Example 4. Got it.
- 2,4-dichlorothieno [3,2-d] pyrimidine (4.2 g, 20.5 mmol), phenylboronic acid (2.5 g, 20.5 mmol), Pd (PPh 3 ) 4 (1.2 g, 5 mol%) and potassium carbonate under nitrogen stream (8.5g, 61.5 mmol) and toluene / H 2 O / ethanol (80ml / 40ml / 40ml) were added and stirred at 110 ° C for 4 hours.
- TP-8 (3.5 g, 11.7 mmol, yield 57%) was prepared by the same procedure as in ⁇ Step 2> of Preparation Example 7. Got it.
- TP-9 (3.9g, 12.1mmol, 59% yield) was carried out in the same manner as in ⁇ Step 2> of Preparation Example 7. Got it.
- TP-11 (3.7 g, 10.5 mmol, yield 60%) was prepared by the same procedure as in ⁇ Step 2> of Preparation Example 10. Got it.
- TP-12 (3.8 g, 10.0 mmol, yield 57%) was prepared by the same procedure as in ⁇ Step 2> of Preparation Example 10. Got it.
- 2,4-dichlorofuro [2,3-d] pyrimidine (3.7 g, 19.5 mmol), phenylboronic acid (2.4 g, 19.5 mmol), Pd (PPh 3 ) 4 (1.1 g, 5 mol%) and potassium carbonate under nitrogen stream (8.1 g, 58.5 mmol) and toluene / H 2 O / ethanol (80 ml / 40 ml / 40 ml) were added and stirred at 110 ° C. for 3 hours.
- TP-14 (3.7 g, 13.1 mmol, yield 67%) was prepared by the same procedure as in ⁇ Step 2> of Preparation Example 13. Got it.
- TP-15 (3.8g, 12.5mmol, 64% yield) was prepared by the same procedure as in ⁇ Step 2> of Preparation Example 13. Got it.
- 2,4-dichlorofuro [2,3-d] pyrimidine (4.5 g, 21.0 mmol), phenylboronic acid (2.6 g, 21.0 mmol), Pd (PPh 3 ) 4 (1.2 g, 5 mol%) and potassium under nitrogen stream carbonate (8.7g, 63.0 mmol) and toluene / H 2 O / ethanol (80ml / 40ml / 40ml) were added and stirred at 110 ° C for 3 hours.
- TP-17 (4.2g, 13.7mmol, 65% yield) was prepared by the same procedure as in ⁇ Step 2> of Preparation Example 16. Got it.
- TP-18 (4.5g, 13.4mmol, 64% yield) was carried out in the same manner as in ⁇ Step 2> of Preparation Example 16 Got it.
- TP-1 (3.0g, 12.3mmol), 3-phenyl-3,10-dihydropyrrolo [3,2-a] carbazole (3.8g, 13.5mmol), Pd 2 (dba) 3 (0.6g, 5mol) under nitrogen stream %), tri- tert -butylphosphine (0.1 g, 0.6 mmol), sodium tert-butoxide (3.6 g, 36.9 mmol) and toluene (60 ml) were added and stirred at 110 ° C. for 3 hours.
- TP-2 (3.5 g, 11.9 mmol), 3-phenyl-3,10-dihydropyrrolo [3,2-a] carbazole (3.7 g, 13.1 mmol), Pd 2 (dba) 3 (0.6 g, 5) mol%), tri- tert -butylphosphine ( 0.1g, 0.6mmol) and sodium tert-butoxide (3.4g, 35.7mmol ) and put the toluene (70ml), was stirred at 110 °C for 4 hours.
- TP-3 (3.9 g, 12.1 mmol), 3-phenyl-3,10-dihydropyrrolo [3,2-a] carbazole (3.8 g, 13.3 mmol), Pd 2 (dba) 3 (0.6 g, 5) mol%), tri- tert -butylphosphine (0.1 g, 0.6 mmol), sodium tert-butoxide (3.5 g, 36.3 mmol) and toluene (80 ml) were added and stirred at 110 ° C. for 4 hours.
- TP-4 (3.0 g, 12.1 mmol), 3-phenyl-3,10-dihydropyrrolo [3,2-a] carbazole (3.8 g, 13.3 mmol), Pd 2 (dba) 3 (0.6 g, 5 mol) under nitrogen stream %), tri- tert -butylphosphine (0.1 g, 0.6 mmol), sodium tert-butoxide (3.5 g, 36.3 mmol) and toluene (60 ml) were added and stirred at 110 ° C. for 3 hours.
- TP-5 (3.3 g, 11.1 mmol), 3-phenyl-3,10-dihydropyrrolo [3,2-a] carbazole (3.5 g, 12.2 mmol), Pd 2 (dba) 3 (0.5 g, 5 mol) under nitrogen stream %), tri- tert -butylphosphine (0.1 g, 0.6 mmol), sodium tert-butoxide (3.2 g, 33.3 mmol) and toluene (70 ml) were added and stirred at 110 ° C. for 3 hours.
- TP-6 (3.8 g, 11.9 mmol), 3-phenyl-3,10-dihydropyrrolo [3,2-a] carbazole (3.7 g, 13.1 mmol), Pd 2 (dba) 3 (0.6 g, 5) mol%), tri- tert -butylphosphine ( 0.1g, 0.6mmol) and sodium tert-butoxide (3.4g, 35.7mmol ) and put the toluene (80ml), was stirred at 110 °C for 3 hours.
- TP-7 (3.2g, 13.1mmol), 3-phenyl-3,10-dihydropyrrolo [3,2-a] carbazole (4.1g, 14.4mmol), Pd 2 (dba) 3 (0.6g, 5mol) under nitrogen stream %), tri- tert -butylphosphine (0.1 g, 0.7 mmol), sodium tert-butoxide (3.8 g, 39.4 mmol) and toluene (70 ml) were added and stirred at 110 ° C. for 2 hours.
- TP-8 (3.2 g, 11.7 mmol), 3-phenyl-3,10-dihydropyrrolo [3,2-a] carbazole (3.6 g, 12.9 mmol), Pd 2 (dba) 3 (0.6 g, 5) mol%), tri- tert- butylphosphine (0.1 g, 0.6 mmol), sodium tert-butoxide (3.4 g, 35.1 mmol) and toluene (70 ml) were added and stirred at 110 ° C. for 2 hours.
- TP-9 (3.9g, 12.1mmol), 3-phenyl-3,10-dihydropyrrolo [3,2-a] carbazole (3.8g, 13.3mmol), Pd 2 (dba) 3 (0.6g, 5mol) under nitrogen stream %), tri- tert- butylphosphine (0.1 g, 0.6 mmol), sodium tert-butoxide (3.4 g, 36.3 mmol) and toluene (80 ml) were added thereto, and the mixture was stirred at 110 ° C. for 3 hours.
- TP-10 (3.3 g, 10.9 mmol), 3-phenyl-3,10-dihydropyrrolo [3,2-a] carbazole (3.4 g, 11.9 mmol), Pd 2 (dba) 3 (0.5 g, 5 mol) under nitrogen stream %), tri- tert -butylphosphine (0.1 g, 0.5 mmol), sodium tert-butoxide (3.1 g, 32.6 mmol) and toluene (70 ml) were added and stirred at 110 ° C. for 3 hours.
- TP-11 (3.7 g, 10.5 mmol), 3-phenyl-3,10-dihydropyrrolo [3,2-a] carbazole (3.3 g, 11.6 mmol), Pd 2 (dba) 3 (0.5 g, 5) mol%), tri- tert -butylphosphine (0.1 g, 0.5 mmol), sodium tert-butoxide (3.1 g, 31.5 mmol) and toluene (70 ml) were added and stirred at 110 ° C. for 4 hours.
- TP-12 (3.8g, 10.0mmol), 3-phenyl-3,10-dihydropyrrolo [3,2-a] carbazole (3.1g, 11.0mmol), Pd 2 (dba) 3 (0.5g, 5mol) under nitrogen stream %), tri- tert -butylphosphine (0.1g , 0.5mmol) and sodium tert-butoxide (2.9g, 30.0mmol ) and put the toluene (70ml), was stirred at 110 °C for 3 hours.
- TP-13 (2.9g, 12.7mmol) , 3-phenyl-3,10-dihydropyrrolo [3,2-a] carbazole (3.9g, 13.9mmol), Pd 2 (dba) 3 (0.6g, 5mol %), tri- tert -butylphosphine (0.1 g, 0.6 mmol), sodium tert-butoxide (3.7 g, 38.0 mmol) and toluene (60 ml) were added and stirred at 110 ° C. for 3 hours.
- TP-14 (3.7 g, 13.1 mmol), 3-phenyl-3,10-dihydropyrrolo [3,2-a] carbazole (4.1 g, 14.4 mmol), Pd 2 (dba) 3 (0.6 g, 5 mol) under nitrogen stream %), tri- tert- butylphosphine (0.1 g, 0.7 mmol), sodium tert-butoxide (3.8 g, 39.2 mmol) and toluene (70 ml) were added and stirred at 110 ° C. for 3 hours.
- TP-15 (3.8g, 12.5mmol), 3-phenyl-3,10-dihydropyrrolo [3,2-a] carbazole (3.9g, 13.7mmol), Pd 2 (dba) 3 (0.6g, 5mol) under nitrogen stream %), tri- tert -butylphosphine (0.1 g, 0.6 mmol), sodium tert-butoxide (3.7 g, 37.4 mmol) and toluene (80 ml) were added and stirred at 110 ° C. for 3 hours.
- TP-16 (3.6 g, 13.9 mmol), 3-phenyl-3,10-dihydropyrrolo [3,2-a] carbazole (4.3 g, 15.2 mmol), Pd 2 (dba) 3 (0.7 g, 5 mol) under nitrogen stream %), tri- tert- butylphosphine (0.1 g, 0.7 mmol), sodium tert-butoxide (4.0 g, 41.6 mmol) and toluene (80 ml) were added thereto, and the mixture was stirred at 110 ° C. for 3 hours.
- TP-17 (4.2g, 13.7mmol), 3-phenyl-3,10-dihydropyrrolo [3,2-a] carbazole (4.2g, 15.0mmol), Pd 2 (dba) 3 (0.7g, 5mol) under nitrogen stream %), tri- tert -butylphosphine (0.1g , 0.7mmol) and Sodium tert-butoxide (3.9g, 41.0mmol ) and put the toluene (80ml), was stirred at 110 °C for 3 hours.
- TP-18 (4.5g, 13.4mmol), 3-phenyl-3,10-dihydropyrrolo [3,2-a] carbazole (4.1g, 14.8 mmol), Pd 2 (dba) 3 (0.6g, 5mol) under nitrogen stream %), tri- tert -butylphosphine (0.1g , 0.7mmol) and sodium tert-butoxide (3.9g, 40.3mmol ) and put the toluene (90ml), was stirred at 110 °C for 3 hours.
- the glass substrate coated with ITO Indium tin oxide
- ITO Indium tin oxide
- a solvent such as isopropyl alcohol, acetone, methanol, etc.
- UV OZONE cleaner Power sonic 405, Hwasin Tech
- a red organic EL device was manufactured in the same manner as in Example 1, except that CBP was used instead of the compound R1 as a light emitting host material in forming the emission layer.
- the structure of CBP used is as follows.
- Example 1 Sample Host Driving voltage (V) EL peak (nm) Current efficiency (cd / A)
- Example 1 R1 4.2 621 12.5
- Example 2 R2 4.3 621 12.1
- Example 3 R3 4.2 621 12.3
- Example 4 R15 4.1 621 12.2
- Example 5 R16 4.2 621 12.2
- Example 6 R17 4.2 620 12.1
- Example 7 R29 4.3 620 12.3
- Example 8 R30 4.3 621 12.1
- Example 9 R31 4.3 621 12.0
- Example 10 R43 4.3 621 12.1
- Example 11 R44 4.3 621 12.2
- Example 12 R45 4.3 621 12.1
- Example 13 R57 4.3 621 12.2
- Example 14 R58 4.3 620 12.1
- Example 15 R59 4.1 621 12.4
- Example 16 R113 4.3 621 12.3
- Example 17 R114 4.2 621 12.1
- Example 18 R115 4.2 621 12.2
- Example 19 R169 4.1 621 1
- the glass substrate coated with ITO Indium tin oxide
- ITO Indium tin oxide
- a solvent such as isopropyl alcohol, acetone, methanol, etc.
- UV OZONE cleaner Power sonic 405, Hwasin Tech
- M-MTDATA 60nm) / TCTA (80nm) / R336 ⁇ R338, R504 ⁇ R506 each compound + 10% (piq) 2 Ir (acac) (300nm) / BCP (10nm) / Alq on the thus prepared ITO transparent electrode
- An organic electroluminescent device was manufactured by stacking 3 (30 nm) / LiF (1 nm) / Al (200 nm) in this order.
- a green organic electroluminescent device was manufactured in the same manner as in Example 22, except that CBP was used instead of Compound R336 of Synthesis 22 as a light emitting host material when forming the emission layer.
- Example 2 when the compound according to the present invention is used as the material of the light emitting layer of the green organic electroluminescent device (Examples 22 to 27), the green organic electroluminescent device using the conventional CBP as the material of the light emitting layer (comparatively) Compared with Example 2, it can be seen that they show excellent performance in terms of current efficiency and driving voltage.
- the compound according to the present invention is excellent in heat resistance, hole injecting ability, hole transporting ability, light emitting ability and the like, it is used as an organic material layer material, preferably a hole injection layer material, a hole transporting layer material or a light emitting layer material of an organic electroluminescent device.
- the organic electroluminescent device including the compound according to the present invention in the hole injection layer, the hole transport layer and / or the light emitting layer can greatly improve aspects of light emission performance, driving voltage, lifetime, efficiency, and the like, and thus, a full color display panel. Effectively applied to the back.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Optics & Photonics (AREA)
- Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
본 발명은 신규 화합물 및 이를 포함하는 유기 전계 발광 소자에 관한 것으로서, 본 발명에 따른 화합물은 유기 전계 발광 소자의 유기물층, 바람직하게는 발광층에 사용됨에 따라 유기 전계 발광 소자의 발광효율, 구동 전압, 수명 등을 향상시킬 수 있다.
Description
본 발명은 신규 유기 화합물 및 이를 포함하는 유기 전계 발광 소자에 관한 것으로, 보다 구체적으로는 정공 주입능, 정공 수송능, 발광능 등이 우수한 신규 화합물 및 상기 화합물을 유기물층의 재료로서 포함하여 발광 효율, 구동 전압, 수명 등의 특성이 향상된 유기 전계 발광 소자에 관한 것이다.
1950년대 Bernanose의 유기 박막 발광 관측을 시점으로 하여, 1965년 안트라센 단결정을 이용한 청색 전기발광으로 유기 전계 발광(electroluminescent, EL) 소자 (이하, 간단히 '유기 EL 소자'로 칭함)에 대한 연구가 이어져 오다가, 1987년 탕(Tang)에 의하여 정공층과 발광층의 기능층으로 나눈 적층구조의 유기 EL 소자가 제시되었다. 이후, 유기 EL 소자의 효율 및 수명을 향상시키기 위하여, 소자 내 특징적인 유기물층을 도입하는 형태로 발전하여 왔으며, 또한 이에 사용되는 특화된 물질의 개발로 이어졌다.
유기 전계 발광 소자는 두 전극 사이에 전압을 걸어 주면 양극에서는 정공이, 음극에서는 전자가 각각 유기물층으로 주입된다. 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 바닥 상태로 떨어질 때 빛이 나게 된다. 유기물층으로 사용되는 물질은 그 기능에 따라 발광 물질, 정공 주입 물질, 정공 수송 물질, 전자 수송 물질, 전자 주입 물질 등으로 분류될 수 있다.
발광 물질은 발광색에 따라 청색, 녹색, 적색 발광 물질로 구분될 수 있다. 그밖에, 보다 나은 천연색을 구현하기 위해 필요한 노란색 및 주황색 발광 물질로 구분될 수 있다. 또한, 색순도의 증가와 에너지 전이를 통한 발광 효율을 증가시키기 위하여, 발광 물질로서 호스트/도펀트 계를 사용할 수 있다.
도판트 물질은 유기 물질을 사용하는 형광 도판트와 Ir, Pt 등의 중원자(heavy atoms)가 포함된 금속 착체 화합물을 사용하는 인광 도판트로 나눌 수 있다. 인광 재료의 개발은 이론적으로 형광에 비해 4배까지의 발광 효율을 향상시킬 수 있기 때문에, 인광 도판트 뿐만 아니라 인광 호스트 재료들에 대해서도 관심이 집중되고 있다.
현재까지 정공 주입층, 정공 수송층. 정공 차단층, 전자 수송층으로사용되는 물질로는, 하기 화학식으로 표시되는 NPB, BCP, Alq3 등이 널리 알려져 있고, 발광 물질로는 안트라센 유도체들이 형광 도판트/호스트 재료로서 보고되고 있다. 특히, 발광 물질 중 효율 향상 측면에서 큰 장점을 가지고 있는 인광 재료로는 Firpic, Ir(ppy)3, (acac)Ir(btp)2 등과 같은 Ir을 포함하는 금속 착체 화합물이 있고, 이들은 청색, 녹색, 적색 도판트 재료로 사용되고 있다. 현재까지는 CBP가 인광 호스트 재료로 우수한 특성을 나타내고 있다.
그러나, 종래 발광 물질들은 발광 특성 측면에서 양호하나, 유리 전이온도가 낮아 열적 안정성이 매우 좋지 않기 때문에, 유기 전계 발광 소자의 수명 측면에서 만족할만한 수준이 되지 못하고 있다. 따라서, 우수한 성능을 가지는 발광 물질의 개발이 요구되고 있다.
본 발명은 발광능, 정공 수송능 및 정공 주입능 등이 우수하여 발광층 재료, 정공 수송층 재료 및 정공 주입층 재료로 사용될 수 있는 신규 화합물을 제공하는 것을 목적으로 한다.
또, 본 발명은 상기 신규 화합물을 포함하여 구동 전압이 낮고, 발광 효율이 높으며, 수명이 향상된 유기 전계 발광 소자를 제공하는 것도 목적으로 한다.
본 발명은 하기 화학식 1로 표시되는 화합물을 제공한다:
상기 화학식 1에서,
A는 치환 혹은 비치환된 5원의 방향족환 또는 치환 혹은 비치환된 헤테로방향족환이고;
L은 단일 결합, 치환 혹은 비치환된 C6~C60의 아릴렌기 및 치환 혹은 비치환된 핵원자수 5 내지 60의 헤테로아릴렌기로 이루어진 군으로부터 선택되고;
Ar1은 수소, 중수소, 할로겐, 시아노기, 치환 혹은 비치환된 C1~C40의 알킬기, 치환 혹은 비치환된 C3~C40의 시클로알킬기, 치환 혹은 비치환된 핵원자수 3 내지 40의 헤테로시클로알킬기, 치환 혹은 비치환된 C6~C60의 아릴기, 치환 혹은 비치환된 핵원자수 5 내지 60의 헤테로아릴기, 치환 혹은 비치환된 C1~C40의 알킬옥시기, 치환 혹은 비치환된 C6~C60의 아릴옥시기, 치환 혹은 비치환된 C3~C40의 알킬실릴기, 치환 혹은 비치환된 C6~C60의 아릴실릴기, 치환 혹은 비치환된 C1~C40의 알킬보론기, 치환 혹은 비치환된 C6~C60의 아릴보론기, 치환 혹은 비치환된 C6~C60의 아릴포스핀기, 치환 혹은 비치환된 C6~C60의 아릴포스핀옥사이드기 및 치환 혹은 비치환된 C6~C60의 아릴아민기로 이루어진 군으로부터 선택되고;
R1 내지 R6은 서로 동일하거나 상이하며, 각각 독립적으로 수소, 중수소, 할로겐, 시아노기, 치환 혹은 비치환된 C1~C40의 알킬기, 치환 혹은 비치환된 C3~C40의 시클로알킬기, 치환 혹은 비치환된 핵원자수 3 내지 40의 헤테로시클로알킬기, 치환 혹은 비치환된 C6~C60의 아릴기, 치환 혹은 비치환된 핵원자수 5 내지 60의 헤테로아릴기, 치환 혹은 비치환된 C1~C40의 알킬옥시기, 치환 혹은 비치환된 C6~C60의 아릴옥시기, 치환 혹은 비치환된 C3~C40의 알킬실릴기, 치환 혹은 비치환된 C6~C60의 아릴실릴기, 치환 혹은 비치환된 C1~C40의 알킬보론기, 치환 혹은 비치환된 C6~C60의 아릴보론기, 치환 혹은 비치환된 C6~C60의 아릴포스핀기, 치환 혹은 비치환된 C6~C60의 아릴포스핀옥사이드기 및 치환 혹은 비치환된 C6~C60의 아릴아민기로 이루어진 군으로부터 선택되거나, 이들은 인접한 기와 결합하여 축합 방향족 고리 또는 축합 헤테로방향족 고리를 형성하며,
L의 아릴렌기 및 헤테로아릴렌기와, Ar1 및 R1 내지 R6의 알킬기, 시클로알킬기, 헤테로시클로알킬기, 아릴기, 헤테로아릴기, 알킬옥시기, 아릴옥시기, 알킬실릴기, 아릴실릴기, 알킬보론기, 아릴보론기, 아릴포스핀기, 아릴포스핀옥사이드기 및 아릴아민기는, 각각 독립적으로 중수소, 할로겐, 시아노기, C1~C40의 알킬기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택된 1종 이상의 치환기로 치환되며, 이때 상기 치환기가 복수인 경우, 이들은 서로 동일하거나 상이하다.
또한, 본 발명은 양극, 음극 및 상기 양극과 음극 사이에 개재(介在)된 1층 이상의 유기물층을 포함하는 유기 전계 발광 소자로서, 상기 1층 이상의 유기물층 중 적어도 하나는 전술한 화학식 1로 표시되는 화합물을 포함하는 유기 전계 발광 소자를 제공한다.
상기 화학식 1로 표시되는 화합물을 포함하는 1층 이상의 유기물층은 정공 수송층, 정공 주입층 및 발광층으로 이루어진 군에서 선택되며, 바람직하게는 정공 수송층 및/또는 발광층이며, 보다 바람직하게는 발광층이다.
상기 화학식 1로 표시되는 화합물은 발광층의 인광 호스트 재료이다.
이하, 본 발명에 대해 설명한다.
1. 신규 화합물
본 발명에 따른 신규 유기 화합물은 싸이아노피리미딘 모이어티(thianopyrimidine moiety), 퓨로피리미딘 모이어티(furopyrimidine moiety) 등이 인돌 모이어티(indole moiety)와 직접 결합(단일 결합)되거나, 또는 싸이아노피리미딘 모이어티와 인돌 모이어티에 아릴렌기, 헤테로아릴렌기를 통해 연결되어 기본 골격을 이루며, 이러한 기본 골격에 다양한 치환체가 결합된 구조로서, 상기 화학식 1로 표시되는 것을 특징으로 한다.
이러한 화학식 1로 표시되는 화합물은 종래 유기 EL 소자용 재료 [예: 4,4-dicarbazolybiphenyl (이하, 'CBP'라 함)] 보다 높은 분자량을 가져 유리 전이온도가 높으며, 또한 열적 안정성이 우수하고, 정공 주입능, 정공 수송능, 발광능 등이 우수하다. 따라서, 상기 화학식 1의 화합물을 유기 전계 발광 소자가 포함할 경우, 소자의 구동 전압, 효율, 수명 등이 향상된다.
한편, 유기 전계 발광 소자의 인광 발광층에서, 호스트 물질은 호스트의 삼중항 에너지 갭이 도펀트보다 높아야 한다. 즉, 도펀트로부터 효과적으로 인광 발광을 제공하기 위해서는 호스트의 가장 낮은 여기 상태가 도펀트의 가장 낮은 방출 상태보다 에너지가 더 높아야 한다. 상기 화학식 1로 표시되는 화합물은 넓은 일중항 에너지 준위와 높은 삼중항 에너지 준위를 가지는 축합된 인돌 유도체에 특정의 치환기가 도입됨으로써, 에너지 준위가 도펀트 보다 높게 조절될 수 있어 호스트 물질로 사용된다.
또한, 상기 화학식 1의 화합물은 전자 흡수성이 큰 전자 끌개기(EWG)가 결합된 구조를 가짐으로써, 분자 전체가 바이폴라(bipolar) 특성을 갖기 때문에, 정공과 전자의 결합력을 높인다. 따라서, 화학식 1의 화합물은 우수한 발광 특성을 나타낼 수 있어, 유기 전계 발광 소자의 청색, 녹색 혹은 적색의 인광 발광층 재료로 유용하게 적용한다.
이와 같이, 상기 화학식 1로 표시되는 화합물은 유기 전계 발광 소자의 인광 특성을 향상시킴과 동시에, 정공 주입/수송 능력, 발광 효율, 구동 전압, 수명 특성 등을 향상시킬 수 있고, 도입되는 치환체의 종류에 따라 전자 수송 능력 등도 향상시킨다. 따라서, 본 발명에 따른 화학식 1의 화합물은 유기 전계 발광 소자의 유기물층 재료, 바람직하게는 발광층 재료(청색, 녹색 및/또는 적색의 인광 호스트 재료), 정공 수송층 재료 및 정공 주입층 재료, 더 바람직하게는 인광 발광층 재료로 사용된다.
또한, 상기 화학식 1의 화합물은 상기 기본 골격에 다양한 치환체, 특히 아릴기 및/또는 헤테로아릴기가 도입되어 화합물의 분자량이 유의적으로 증대됨으로써, 유리 전이온도가 향상되고, 이로 인해 종래의 발광 재료(예를 들어, CBP)보다 높은 열적 안정성을 가진다. 또한, 상기 화학식 1로 표시되는 화합물은 유기물층의 결정화 억제에도 효과가 있다. 따라서, 본 발명에 따른 화학식 1의 화합물을 포함하는 유기 전계 발광 소자는 성능 및 수명 특성이 크게 향상된다. 이와 같이 성능 및 수명 특성이 향상된 유기 전계 발광 소자는 결과적으로 풀 칼라 유기 발광 패널의 성능을 극대화시킨다.
상기 화학식 1로 표시되는 화합물에서, L은 단일 결합이거나 페닐렌인 것이 바람직하다.
또한, 상기 Ar1은 치환 또는 비치환된 C6~C40의 아릴기, 또는 치환 또는 비치환된 핵원자수 5 내지 60의 헤테로아릴기인 것이 바람직하다.
본 발명에 따른 화학식 1로 표시되는 화합물은 하기 화학식 A-1 내지 A-12 중 어느 하나로 구체화된다.
상기 화학식 A-1 내지 A-12에서,
L, Ar1 및 R1 내지 R6는 각각 상기 화학식 1에서 정의한 바와 동일하고,
R11 내지 R14는 서로 동일하거나 상이하며, 각각 독립적으로 수소, 중수소, 할로겐, 시아노기, 치환 혹은 비치환된 C1~C40의 알킬기, 치환 혹은 비치환된 C3~C40의 시클로알킬기, 치환 혹은 비치환된 핵원자수 3 내지 40의 헤테로시클로알킬기, 치환 혹은 비치환된 C6~C60의 아릴기, 치환 혹은 비치환된 핵원자수 5 내지 60의 헤테로아릴기, 치환 혹은 비치환된 C1~C40의 알킬옥시기, 치환 혹은 비치환된 C6~C60의 아릴옥시기 및 치환 혹은 비치환된 C6~C60의 아릴아민기로 이루어진 군으로부터 선택되거나, 이들은 인접한 기와 결합하여 축합 고리를 형성할 수 있으며,
R11 내지 R14의 알킬기, 시클로알킬기, 헤테로시클로알킬기, 아릴기, 헤테로아릴기, 알킬옥시기, 아릴옥시기 및 아릴아민기는, 각각 독립적으로 중수소, 할로겐, 시아노, C1~C40의 알킬기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택된 1종 이상의 치환기로 치환되며, 이때 상기 치환기가 복수인 경우, 이들은 서로 동일하거나 상이할 수 있으며,
n은 0 내지 2의 정수이다.
상기 화학식 B-1 내지 B-10에서,
R1 내지 R6은 각각 상기 화학식 1에서 정의한 바와 동일하고,
R21 및 R22는 서로 동일하거나 상이하며, 각각 독립적으로 수소, 중수소, 할로겐, 시아노기, 치환 혹은 비치환된 C1~C40의 알킬기, 치환 혹은 비치환된 C3~C40의 시클로알킬기, 치환 혹은 비치환된 핵원자수 3 내지 40의 헤테로시클로알킬기, 치환 혹은 비치환된 C6~C60의 아릴기, 치환 혹은 비치환된 핵원자수 5 내지 60의 헤테로아릴기, 치환 혹은 비치환된 C1~C40의 알킬옥시기, 치환 혹은 비치환된 C6~C60의 아릴옥시기 및 치환 혹은 비치환된 C6~C60의 아릴아민기로 이루어진 군으로부터 선택거나, 이들은 인접한 기와 결합하여 축합 고리를 형성하며, 이때, R21이 복수인 경우, 이들은 서로 동일하거나 상이하며,
R21 및 R22 의 알킬기, 시클로알킬기, 헤테로시클로알킬기, 아릴기, 헤테로아릴기, 알킬옥시기, 아릴옥시기 및 아릴아민기는, 각각 독립적으로 중수소, 할로겐, 시아노기, C1~C40의 알킬기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택된 1종 이상의 치환기로 치환되며, 이때 상기 치환기가 복수인 경우, 이들은 서로 동일하거나 상이하며,
m은 0 내지 4의 정수이다.
본 발명의 화합물은 보다 구체적으로 하기 화학식으로 나타내며, 이에 한정되는 것은 아니다.
본 발명에서 사용되는 "알킬"은 탄소수 1 내지 40의 직쇄 또는 측쇄의 포화 탄화수소로부터 수소 원자를 제거하여 얻어지는 1가의 작용기를 의미하며, 이의 비제한적인 예로는 메틸, 에틸, 프로필, 이소부틸, sec-부틸, 펜틸, iso-아밀, 헥실 등이 있다.
본 발명에서 사용되는 "알케닐(alkenyl)"은 탄소-탄소 이중 결합을 1개 이상 가진, 탄소수 2 내지 40의 직쇄 또는 측쇄의 불포화 탄화수소로부터 수소 원자를 제거하여 얻어지는 1가의 작용기를 의미한다. 이의 비제한적인 예로는 비닐(vinyl), 알릴(allyl), 이소프로펜일(isopropenyl), 2-부텐일(2-butenyl) 등이 있다.
본 발명에서 사용되는 "알키닐(alkynyl)"은 탄소-탄소 삼중 결합을 1개 이상 가진, 탄소수 2 내지 40의 직쇄 또는 측쇄의 불포화 탄화수소로부터 수소 원자를 제거하여 얻어지는 1가의 작용기를 의미한다. 이의 비제한적인 예로는 에타인일(ethynyl), 2-프로파인일(2-propynyl) 등이 있다.
본 발명에서 사용되는 "시클로알킬"은 탄소수 3 내지 40의 모노사이클릭 또는 폴리사이클릭 비-방향족 탄화수소(포화 고리형 탄화수소)로부터 수소 원자를 제거하여 얻어지는 1가의 작용기를 의미한다. 이의 비제한적인 예로는 시클로프로필, 시클로펜틸, 시클로헥실, 노르보닐(norbornyl), 아다만틴(adamantine)등이 있다.
본 발명에서 사용되는 "헤테로시클로알킬"은 핵원자수 3 내지 40의 비-방향족 탄화수소(포화 고리형 탄화수소)로부터 수소 원자를 제거하여 얻어지는 1가의 작용기를 의미하며, 고리 중 하나 이상의 탄소, 바람직하게는 1 내지 3개의 탄소가 N, O 또는 S와 같은 헤테로 원자로 치환된다. 이의 비제한적인 예로는 모르폴린, 피페라진 등이 있다.
본 발명에서 사용되는 "아릴"은 단독 고리 또는 2 이상의 고리가 조합된, 탄소수 6 내지 40의 방향족 탄화수소로부터 수소 원자를 제거하여 얻어지는 1가의 작용기를 의미한다. 이때, 2 이상의 고리는 서로 단순 부착되거나 축합된 형태로 부착될 수 있다. 이의 비제한적인 예로는 페닐, 비페닐, 터페닐(terphenyl), 나프틸, 페난트릴, 안트릴 등이 있다.
본 발명에서 사용되는 "헤테로아릴"은 핵원자수 5 내지 40의 모노헤테로사이클릭 또는 폴리헤테로사이클릭 방향족 탄화수소로부터 수소 원자를 제거하여 얻어지는 1가의 작용기로서, 고리 중 하나 이상의 탄소, 바람직하게는 1 내지 3개의 탄소가 질소(N), 산소(O), 황(S) 또는 셀레늄(Se)과 같은 헤테로원자로 치환된다. 이때, 헤테로아릴은 2 이상의 고리가 서로 단순 부착되거나 축합된 형태로 부착될 수 있고, 나아가 아릴기와의 축합된 형태도 포함할 수 있다. 이러한 헤테로아릴의 비제한적인 예로는 피리딜, 피라지닐, 피리미디닐, 피리다지닐, 트리아지닐과 같은 6원 모노사이클릭 고리; 페녹사티에닐(phenoxathienyl), 인돌리지닐(indolizinyl), 인돌릴(indolyl), 퓨리닐(purinyl), 퀴놀릴(quinolyl), 벤조티아졸(benzothiazole), 카바졸릴(carbazolyl)과 같은 폴리사이클릭 고리; 및 2-퓨라닐, N-이미다졸릴, 2-이속사졸릴, 2-피리디닐, 2-피리미디닐 등을 들 수 있다.
본 발명에서 사용되는 "알킬옥시"는 RO-로 표시되는 1가의 작용기를 의미하며, 상기 R은 탄소수 1 내지 40개의 알킬로서, 직쇄(linear), 측쇄(branched) 또는 사이클릭(cyclic) 구조를 포함할 수 있다. 이러한 알킬옥시의 비제한적인 예로는 메톡시, 에톡시, n-프로폭시, 1-프로폭시, t-부톡시, n-부톡시, 펜톡시 등을 들 수 있다.
본 발명에서 사용되는 "아릴옥시"는 R'O-로 표시되는 1가의 작용기를 의미하며, 상기 R'는 탄소수 6 내지 40의 아릴이다. 이러한 아릴옥시의 비제한적인 예로는 페닐옥시, 나프틸옥시, 디페닐옥시 등이 있다.
본 발명에서 사용되는 "알킬실릴"은 탄소수 1 내지 40의 알킬로 치환된 실릴을 의미하며, 아릴실릴은 탄소수 6 내지 40의 아릴로 치환된 실릴을 의미하고, 아릴아민은 탄소수 6 내지 40의 아릴로 치환된 아민을 의미한다.
본 발명에서 사용되는 "축합 고리"는 축합 지방족 고리, 축합 방향족 고리, 축합 헤테로지방족 고리, 축합 헤테로방향족 고리 또는 이들의 조합된 형태를 의미한다.
본 발명의 화합물에 대한 상세한 합성 과정은 후술하는 합성예에서 구체적으로 기술하도록 한다.
2. 유기 전계 발광 소자
한편, 본 발명은 전술한 화학식 1로 표시되는 화합물을 포함하는 유기 전계 발광 소자를 제공한다.
구체적으로, 본 발명은 양극(anode), 음극(cathode), 및 상기 양극과 음극 사이에 개재(介在)된 1층 이상의 유기물층을 포함하는 유기 전계 발광 소자로서, 상기 1층 이상의 유기물층 중 적어도 하나는 상기 화학식 1로 표시되는 화합물을 포함한다. 이때, 상기 화학식 1로 표시되는 화합물은 단독 또는 2 이상 혼합되어 사용된다.
상기 1층 이상의 유기물층은 정공 주입층, 정공 수송층, 발광층, 전자 수송층 및 전자 주입층 중 어느 하나 이상이고, 이 중에서 적어도 하나의 유기물층이 상기 화학식 1로 표시되는 화합물을 포함한다. 바람직하게는 상기 화학식 1의 화합물을 포함하는 유기물층은 인광 발광층이다.
본 발명의 일례에 따르면, 유기 전계 발광 소자의 발광층은 호스트 재료를 포함하는데, 이때 호스트 재료로서 상기 화학식 1로 표시되는 화합물을 포함한다. 이와 같이, 상기 화학식 1로 표시되는 화합물을 유기 전계 발광 소자의 발광층 재료, 바람직하게는 녹색의 인광 호스트로 포함할 경우, 발광층에서 정공과 전자의 결합력이 높아지기 때문에, 유기 전계 발광 소자의 효율(발광 효율 및 전력효율), 수명, 휘도 및 구동 전압 등이 향상된다.
전술한 본 발명에 따른 유기 전계 발광 소자의 구조는 특별히 한정되지 않으며, 예컨대 기판, 양극, 정공 주입층, 정공 수송층, 발광층, 전자 수송층 및 음극이 순차적으로 적층된 구조이다. 이때, 상기 정공 주입층, 정공 수송층, 발광층, 전자 수송층 및 전자 주입층 중 하나 이상은 상기 화학식 1로 표시되는 화합물을 포함하고, 바람직하게는 발광층이 상기 화학식 1로 표시되는 화합물을 포함한다. 이때, 본 발명의 화합물은 발광층의 인광 호스트로 이용된다. 상기 전자 수송층 위에는 전자 주입층이 추가로 적층된다.
또한, 본 발명의 유기 전계 발광 소자의 구조는 양극, 1층 이상의 유기물층 및 음극이 순차적으로 적층될 뿐만 아니라, 전극과 유기물층 계면에 절연층 또는 접착층이 삽입된 구조이다.
본 발명의 유기 전계 발광 소자는 상기 유기물층 중 적어도 하나 이상(예컨대, 발광층)이 상기 화학식 1로 표시되는 화합물을 포함하도록 형성하는 것을 제외하고는, 당 기술 분야에 알려져 있는 재료 및 방법을 이용하여 다른 유기물층 및 전극을 형성하여 제조된다.
상기 유기물층은 진공 증착법이나 용액 도포법에 의하여 형성된다. 상기 용액 도포법의 예로는 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯 프린팅 또는 열 전사법 등이 있으나, 이에 한정되지 않는다.
본 발명에서 사용 가능한 기판으로는 특별히 한정되지 않으며, 실리콘 웨이퍼, 석영, 유리판, 금속판, 플라스틱 필름 및 시트 등이 사용된다.
또, 양극 물질로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연산화물, 인듐산화물, 인듐 주석 산화물(ITO), 인듐 아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO2:Sb와 같은 금속과 산화물의 조합; 폴리티오펜, 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDT), 폴리피롤 또는 폴리아닐린과 같은 전도성 고분자; 및 카본블랙 등이 있으나, 이에 한정되지는 않는다.
또한, 음극 물질로는 마그네슘, 칼슘, 나트륨, 칼륨, 타이타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석, 또는 납과 같은 금속 또는 이들의 합금; 및 LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이에 한정되지는 않는다.
이하 본 발명을 실시예를 통하여 상세히 설명하면 다음과 같다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.
[준비예 1] TP-1의 합성
<단계 1> 2,4-Dichlorothieno[2,3-d]pyrimidine의 합성
질소 기류 하에서 thieno[2,3-d]pyrimidine-2,4(1H,3H)-dione(8.4g, 50.0mmol)와 phosphoryl chloride(170ml)를 넣고, 106℃에서 3시간 동안 교반하였다. 반응 종료 후, 에틸아세테이트를 이용하여 유기층을 분리하고 MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후 컬럼크로마토그래피로 정제하여 목적 화합물인 2,4-dichlorothieno[2,3-d]pyrimidine(4.2g, 20.5 mmol, 수율 41%)을 얻었다.
GC-Mass (이론치: 205.06g/mol, 측정치: 205g/mol)
<단계 2> TP-1의 합성
질소 기류 하에서 2,4-dichlorothieno[2,3-d]pyrimidine(4.2g, 20.5mmol), phenylboronic acid(2.5g, 20.5mmol), Pd(PPh3)4(1.2g, 5 mol%) 및 potassium carbonate(8.5g, 61.5mmol)와 toluene/H2O/ethanol(80ml/40ml/40ml)를 넣고, 110℃에서 4시간 동안 교반하였다.
반응 종료 후, 메틸렌클로라이드를 이용하여 유기층을 분리하고 MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후 컬럼크로마토그래피로 정제하여 목적 화합물인 TP-1(3.0g, 12.3mmol, 수율 60%)을 얻었다.
GC-Mass (이론치: 246.72g/mol, 측정치: 246g/mol)
[준비예 2] TP-2의 합성
Phenylboronic acid 대신 1-naphthylboronic acid(3.5g, 20.5mmol)를 사용한 것을 제외하고는, 준비예 1의 <단계 2>와 동일한 과정을 수행하여 TP-2(3.5g, 11.9mmol, 수율 58%)을 얻었다.
GC-Mass (이론치: 299.67g/mol, 측정치: 299g/mol)
[준비예 3] TP-3의 합성
Phenylboronic acid 대신 4-biphenylboronic acid(4.1g, 20.5mmol)을 사용한 것을 제외하고는, 준비예 1의 <단계 2>과 동일한 과정을 수행하여 TP-3(3.9g, 12.1mmol, 수율 59%)을 얻었다.
GC-Mass (이론치: 322.81g/mol, 측정치: 322g/mol)
[준비예 4] TP-4의 합성
<단계 1> 2,4-Dichlorothieno[3,4-d]pyrimidine의 합성
질소 기류 하에서 thieno[3,4-d]pyrimidine-2,4(1H,3H)-dione(8.41g, 50.0mmol)와 phosphoryl chloride(170ml)를 넣고, 106℃에서 3시간 동안 교반하였다. 반응 종료 후, 에틸아세테이트를 이용하여 유기층을 분리하고 MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후 컬럼크로마토그래피로 정제하여 목적 화합물인 2,4-dichlorothieno[3,4-d]pyrimidine(4.0g, 19.5mmol, 수율 39%)을 얻었다.
GC-Mass (이론치: 205.06g/mol, 측정치: 205g/mol)
<단계 2> TP-4의 합성
질소 기류 하에서 2,4-dichlorothieno[2,3-d]pyrimidine(4.0g, 19.5mmol), phenylboronic acid(2.4g, 19.5mmol), Pd(PPh3)4(1.1g, 5mol%) 및 potassium carbonate(8.1g, 58.5mmol)와 toluene/H2O/ethanol(80ml/40ml/40ml)를 넣고, 110℃에서 4시간 동안 교반하였다.
반응 종료 후, 메틸렌클로라이드를 이용하여 유기층을 분리하고 MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후 컬럼크로마토그래피로 정제하여 목적 화합물인 TP-4(3.0g, 12.1mmol, 수율 62%)을 얻었다.
GC-Mass (이론치: 246.72 g/mol, 측정치: 246 g/mol)
[준비예 5] TP-5의 합성
Phenylboronic acid 대신 1-naphthylboronic acid(4.0g, 19.5mmol)를 사용한 것을 제외하고는, 준비예 4의 <단계 2>와 동일한 과정을 수행하여 TP-5(3.3g, 11.1mmol, 수율 57%)을 얻었다.
GC-Mass (이론치: 299.67g/mol, 측정치: 299g/mol)
[준비예 6] TP-6의 합성
Phenylboronic acid 대신 4-biphenylboronic acid(4.0g, 19.5mmol)를 사용한 것을 제외하고는, 준비예 4의 <단계 2>과 동일한 과정을 수행하여 TP-6(3.8g, 11.9mmol, 수율 61%)을 얻었다.
GC-Mass (이론치: 322.81g/mol, 측정치: 322g/mol)
[준비예 7] TP-7의 합성
<단계 1> 2,4-dichlorothieno[3,2-d]pyrimidine의 합성
질소 기류 하에서 thieno[3,2-d]pyrimidine-2,4(1H, 3H)-dione(8.41g, 50.0mmol)와 phosphoryl chloride(170ml)를 넣고, 106℃에서 3시간 동안 교반하였다. 반응 종료 후, 에틸아세테이트를 이용하여 유기층을 분리하고 MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후 컬럼크로마토그래피로 정제하여 목적 화합물인 2,4-dichlorothieno[3,2-d]pyrimidine(4.2g, 20.5mmol, 수율 41%)을 얻었다.
GC-Mass (이론치: 205.06 g/mol, 측정치: 205 g/mol)
<단계 2> TP-7의 합성
질소 기류 하에서 2,4-dichlorothieno[3,2-d]pyrimidine(4.2g, 20.5mmol), phenylboronic acid(2.5g, 20.5mmol), Pd(PPh3)4(1.2g, 5mol%) 및 potassium carbonate(8.5g, 61.5 mmol)와 toluene/H2O/ethanol(80ml/40ml/40ml)를 넣고, 110℃에서 4시간 동안 교반하였다.
반응 종료 후, 메틸렌클로라이드를 이용하여 유기층을 분리하고 MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후 컬럼크로마토그래피로 정제하여 목적 화합물인 TP-7(3.2g, 13.1mmol, 수율 64%)을 얻었다.
GC-Mass (이론치: 246.72g/mol, 측정치: 246g/mol)
[준비예 8] TP-8의 합성
Phenylboronic acid 대신 1-naphthylboronic acid(3.5g, 20.5mmol)를 사용한 것을 제외하고는, 준비예 7의 <단계 2>와 동일한 과정을 수행하여 TP-8(3.5g, 11.7mmol, 수율 57%)을 얻었다.
GC-Mass (이론치: 299.67g/mol, 측정치: 299g/mol)
[준비예 9] TP-9의 합성
Phenylboronic acid 대신 4-biphenylboronic acid(4.1g, 20.5mmol)를 사용한 것을 제외하고는, 준비예 7의 <단계 2>과 동일한 과정을 수행하여 TP-9(3.9g, 12.1mmol, 수율 59%)을 얻었다.
GC-Mass (이론치: 322.81g/mol, 측정치: 322g/mol)
[준비예 10] TP-10의 합성
<단계 1> 2,4-Dichloro-7-phenyl-7H-pyrrolo[2,3-d]pyrimidine의 합성
질소 기류 하에서 7-phenyl-1H-pyrrolo[2,3-d]pyrimidine-2,4(3H, 7H)-dione(11.4g, 50.0mmol)와 phosphoryl chloride(250ml)를 넣고, 106℃에서 5시간 동안 교반하였다. 반응 종료 후, 에틸아세테이트를 이용하여 유기층을 분리하고 MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후 컬럼크로마토그래피로 정제하여 목적 화합물인 2,4-dichloro-7-phenyl-7H-pyrrolo[2,3-d]pyrimidine(4.6g, 17.5mmol, 수율 35%)을 얻었다.
GC-Mass (이론치: 264.11g/mol, 측정치: 264g/mol)
<단계 2> TP-10의 합성
질소 기류 하에서 2,4-dichloro-7-phenyl-7H-pyrrolo[2,3-d]pyrimidine(4.6g, 17.5mmol), phenylboronic acid(2.1g, 17.5mmol), Pd(PPh3)4(1.0g, 5mol%) 및 potassium carbonate(7.3g, 52.5mmol)와 toluene/H2O/ethanol(80ml/40ml/40ml)를 넣고, 110℃에서 5시간 동안 교반하였다.
반응 종료 후, 메틸렌클로라이드를 이용하여 유기층을 분리하고 MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후 컬럼크로마토그래피로 정제하여 목적 화합물인 TP-10(3.3g, 10.9mmol, 수율 62%)을 얻었다.
GC-Mass (이론치: 305.76g/mol, 측정치: 305g/mol)
[준비예 11] TP-11의 합성
Phenylboronic acid 대신 1-naphthylboronic acid(3.0g, 17.5mmol)를 사용한 것을 제외하고는, 준비예 10의 <단계 2>와 동일한 과정을 수행하여 TP-11(3.7g, 10.5mmol, 수율 60%)을 얻었다.
GC-Mass (이론치: 355.82g/mol, 측정치: 355g/mol)
[준비예 12] TP-12의 합성
Phenylboronic acid 대신 4-biphenylboronic acid(3.5g, 17.5mmol)를 사용한 것을 제외하고는, 준비예 10의 <단계 2>과 동일한 과정을 수행하여 TP-12(3.8g, 10.0mmol, 수율 57%)을 얻었다.
GC-Mass (이론치: 381.86g/mol, 측정치: 381g/mol)
[준비예 13] TP-13의 합성
<단계 1> 2,4-ichlorofuro[2,3-d]pyrimidine의 합성
질소 기류 하에서 furo[2,3-d]pyrimidine-2,4(1H, 3H)-dione(7.6g, 50.0mmol)와 phosphoryl chloride(250ml)를 넣고, 106℃에서 3시간 동안 교반하였다. 반응 종료 후, 에틸아세테이트를 이용하여 유기층을 분리하고 MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후 컬럼크로마토그래피로 정제하여 목적 화합물인 2,4-dichlorofuro[2,3-d]pyrimidine(3.7g, 19.5mmol, 수율 39%)을 얻었다.
GC-Mass (이론치: 189.00g/mol, 측정치: 189g/mol)
<단계 2> TP-13의 합성
질소 기류 하에서 2,4-dichlorofuro[2,3-d]pyrimidine(3.7g, 19.5mmol), phenylboronic acid(2.4g, 19.5 mmol), Pd(PPh3)4(1.1g, 5mol%) 및 potassium carbonate(8.1g, 58.5mmol)와 toluene/H2O/ethanol(80ml/40ml/40ml)를 넣고, 110℃에서 3시간 동안 교반하였다.
반응 종료 후, 메틸렌클로라이드를 이용하여 유기층을 분리하고 MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후 컬럼크로마토그래피로 정제하여 목적 화합물인 TP-13(2.9g, 12.7mmol, 수율 65%)을 얻었다.
GC-Mass (이론치: 230.65g/mol, 측정치: 230g/mol)
[준비예 14] TP-14의 합성
Phenylboronic acid 대신 1-naphthylboronic acid(3.4g, 19.5mmol)를 사용한 것을 제외하고는, 준비예 13의 <단계 2>와 동일한 과정을 수행하여 TP-14(3.7g, 13.1mmol, 수율 67%)을 얻었다.
GC-Mass (이론치: 280.71g/mol, 측정치: 280g/mol)
[준비예 15] TP-15의 합성
Phenylboronic acid 대신 4-biphenylboronic acid(3.9g, 19.5mmol)를 사용한 것을 제외하고는, 준비예 13의 <단계 2>과 동일한 과정을 수행하여 TP-15(3.8g, 12.5mmol, 수율 64%)을 얻었다.
GC-Mass (이론치: 306.75g/mol, 측정치: 306g/mol)
[준비예 16] TP-16의 합성
<단계 1> 2,4-Dichloro-7,7-dimethyl-7H-cyclopenta[d]pyrimidine의 합성
질소 기류 하에서 7,7-dimethyl-1H-cyclopenta[d]pyrimidine-2,4(3H, 7H)-dione(8.9g, 50.0mmol)와 phosphoryl chloride(200ml)를 넣고, 106℃에서 4시간 동안 교반하였다. 반응 종료 후, 에틸아세테이트를 이용하여 유기층을 분리하고 MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후 컬럼크로마토그래피로 정제하여 목적 화합물인 2,4-dichloro-7,7-dimethyl-7H-cyclopenta[d]pyrimidine(4.5g, 21.0mmol, 수율 42%)을 얻었다.
GC-Mass (이론치: 215.08 g/mol, 측정치: 215 g/mol)
<단계 2> TP-16의 합성
질소 기류 하에서 2,4-dichlorofuro[2,3-d]pyrimidine(4.5g, 21.0mmol), phenylboronic acid(2.6g, 21.0mmol), Pd(PPh3)4(1.2g, 5 mol%) 및 potassium carbonate(8.7g, 63.0 mmol)와 toluene/H2O/ethanol(80ml/40ml/40ml)를 넣고, 110℃에서 3시간 동안 교반하였다.
반응 종료 후, 메틸렌클로라이드를 이용하여 유기층을 분리하고 MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후 컬럼크로마토그래피로 정제하여 목적 화합물인 TP-16(3.6g, 13.9mmol, 수율 66%)을 얻었다.
GC-Mass (이론치: 256.73g/mol, 측정치: 256g/mol)
[준비예 17] TP-17의 합성
Phenylboronic acid 대신 1-naphthylboronic acid(3.5g, 21.0mmol)를 사용한 것을 제외하고는, 준비예 16의 <단계 2>와 동일한 과정을 수행하여 TP-17(4.2g, 13.7mmol, 수율 65%)을 얻었다.
GC-Mass (이론치: 306.79g/mol, 측정치: 306g/mol)
[준비예 18] TP-18의 합성
Phenylboronic acid 대신 4-biphenylboronic acid(4.2g, 21.0mmol)를 사용한 것을 제외하고는, 준비예 16의 <단계 2>과 동일한 과정을 수행하여 TP-18(4.5g, 13.4mmol, 수율 64%)을 얻었다.
GC-Mass (이론치: 332.83g/mol, 측정치: 332g/mol)
[합성예 1] R1의 합성
질소 기류 하에서 TP-1(3.0g, 12.3mmol), 3-phenyl-3,10-dihydropyrrolo[3,2-a]carbazole(3.8g, 13.5mmol), Pd2(dba)3(0.6g, 5mol%), tri-tert-butylphosphine(0.1g, 0.6mmol) 및 sodium tert-butoxide(3.6g, 36.9mmol)와 toluene(60ml)를 넣고, 110℃에서 3시간 동안 교반하였다.
반응이 종결된 후 메틸렌클로라이드로 유기층을 분리한 다음 MgSO4를 사용하여 물을 제거하였다. 컬럼크로마토그래피로 정제하여 목적 화합물인 R1(3.1g, 6.3mmol, 수율 51%)을 얻었다.
GC-Mass (이론치: 492.59g/mol, 측정치: 492g/mol)
[합성예 2] R2의 합성
질소 기류 하에서 TP-2(3.5g, 11.9mmol), 3-phenyl-3,10-dihydropyrrolo[3,2-a]carbazole(3.7g, 13.1mmol), Pd2(dba)3(0.6g, 5 mol%), tri-tert-butylphosphine(0.1g, 0.6mmol) 및 sodium tert-butoxide(3.4g, 35.7mmol)와 toluene(70ml)를 넣고, 110℃에서 4시간 동안 교반하였다.
반응이 종결된 후 메틸렌클로라이드로 유기층을 분리한 다음 MgSO4를 사용하여 물을 제거하였다. 컬럼크로마토그래피로 정제하여 목적 화합물인 R2(3.3g, 6.1mmol, 수율 51%)을 얻었다.
GC-Mass (이론치: 542.65g/mol, 측정치: 542g/mol)
[합성예 3] R3의 합성
질소 기류 하에서 TP-3(3.9g, 12.1mmol), 3-phenyl-3,10-dihydropyrrolo[3,2-a]carbazole(3.8g, 13.3mmol), Pd2(dba)3(0.6g, 5 mol%), tri-tert-butylphosphine(0.1g, 0.6mmol) 및 sodium tert-butoxide(3.5g, 36.3mmol)와 toluene(80ml)를 넣고, 110℃에서 4시간 동안 교반하였다.
반응이 종결된 후 메틸렌클로라이드로 유기층을 분리한 다음 MgSO4를 사용하여 물을 제거하였다. 컬럼크로마토그래피로 정제하여 목적 화합물인 R3(3.6g, 6.4mmol, 수율 53%)을 얻었다.
GC-Mass (이론치: 568.69g/mol, 측정치: 568g/mol)
[합성예 4] R15의 합성
3-Phenyl-3,10-dihydropyrrolo[3,2-a]carbazole 대신 9H-carbazole(2.3g, 13.5mmol)을 사용하는 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물인 R15(2.5g, 6.6mmol, 수율 54%)을 얻었다.
GC-Mass (이론치: 377.46g/mol, 측정치: 377g/mol)
[합성예 5] R16의 합성
3-Phenyl-3,10-dihydropyrrolo[3,2-a]carbazole 대신 9H-carbazole(2.2g, 13.1mmol)을 사용하는 것을 제외하고는 [합성예 2]와 동일한 과정을 수행하여 목적 화합물인 R16(3.3g, 5.9mmol, 수율 50%)을 얻었다.
GC-Mass (이론치: 427.52g/mol, 측정치: 427g/mol)
[합성예 6] R17의 합성
3-Phenyl-3,10-dihydropyrrolo[3,2-a]carbazole 대신 4-(biphenyl-4-yl)-2-chlorothieno[2,3-d]pyrimidine(4.3g, 13.3mmol)을 사용하는 것을 제외하고는 [합성예 3]과 동일한 과정을 수행하여 목적 화합물인 R17(3.0g, 6.7mmol, 수율 55%)을 얻었다.
GC-Mass (이론치: 453.56g/mol, 측정치: 453g/mol)
[합성예 7] R29의 합성
3-Phenyl-3,10-dihydropyrrolo[3,2-a]carbazole 대신 7H-benzo[c]carbazole(3.0, 13.5mmol)을 사용하는 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물인 R29(3.0g, 7.0mmol, 수율 57%)을 얻었다.
GC-Mass (이론치: 427.52g/mol, 측정치: 427g/mol)
[합성예 8] R30의 합성
3-Phenyl-3,10-dihydropyrrolo[3,2-a]carbazole 대신 7H-benzo[c]carbazole(3.9, 13.1mmol)을 사용하는 것을 제외하고는 [합성예 2]와 동일한 과정을 수행하여 목적 화합물인 R30(3.0g, 6.2mmol, 수율 52%)을 얻었다.
GC-Mass (이론치: 477.58g/mol, 측정치: 477g/mol)
[합성예 9] R31의 합성
3-Phenyl-3,10-dihydropyrrolo[3,2-a]carbazole 대신 7H-benzo[c]carbazole(4.3, 13.3mmol)을 사용하는 것을 제외하고는 [합성예 3]과 동일한 과정을 수행하여 목적 화합물인 R31(3.4g, 6.7mmol, 수율 55%)을 얻었다.
GC-Mass (이론치: 503.62g/mol, 측정치: 503g/mol)
[합성예 10] R43의 합성
3-Phenyl-3,10-dihydropyrrolo[3,2-a]carbazole 대신 9-phenyl-9H,9'H-3,3'-bicarbazole(5.5g, 13.5mmol)을 사용하는 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물인 R43(3.7g, 6.0mmol, 수율 49%)을 얻었다.
GC-Mass (이론치: 618.75g/mol, 측정치: 618g/mol)
[합성예 11] R44의 합성
3-Phenyl-3,10-dihydropyrrolo[3,2-a]carbazole 대신 9-phenyl-9H,9'H-3,3'-bicarbazole(5.3g, 13.1 mmol)을 사용하는 것을 제외하고는 [합성예 2]와 동일한 과정을 수행하여 목적 화합물인 R44(4.1g, 6.1mmol, 수율 51%)을 얻었다.
GC-Mass (이론치: 668.81g/mol, 측정치: 668g/mol)
[합성예 12] R45의 합성
3-Phenyl-3,10-dihydropyrrolo[3,2-a]carbazole 대신 9-phenyl-9H,9'H-3,3'-bicarbazole(5.4g, 13.3mmol)을 사용하는 것을 제외하고는 [합성예 3]과 동일한 과정을 수행하여 목적 화합물인 R45(4.1g, 5.9mmol, 수율 49%)을 얻었다.
GC-Mass (이론치: 694.84g/mol, 측정치: 694g/mol)
[합성예 13] R57의 합성
질소 기류 하에서 TP-4(3.0g, 12.1mmol), 3-phenyl-3,10-dihydropyrrolo[3,2-a]carbazole(3.8g, 13.3mmol), Pd2(dba)3(0.6g, 5mol%), tri-tert-butylphosphine(0.1g, 0.6mmol) 및 sodium tert-butoxide(3.5g, 36.3mmol)와 toluene(60ml)를 넣고, 110℃에서 3시간 동안 교반하였다.
반응이 종결된 후 메틸렌클로라이드로 유기층을 분리한 다음 MgSO4를 사용하여 물을 제거하였다. 컬럼크로마토그래피로 정제하여 목적 화합물인 R57(3.2g, 6.4mmol, 수율 53%)을 얻었다.
GC-Mass (이론치: 492.59g/mol, 측정치: 492g/mol)
[합성예 14] R58의 합성
질소 기류 하에서 TP-5(3.3g, 11.1mmol), 3-phenyl-3,10-dihydropyrrolo[3,2-a]carbazole(3.5g, 12.2mmol), Pd2(dba)3(0.5g, 5mol%), tri-tert-butylphosphine(0.1g, 0.6mmol) 및 sodium tert-butoxide(3.2g, 33.3mmol)와 toluene(70ml)를 넣고, 110℃에서 3시간 동안 교반하였다.
반응이 종결된 후 메틸렌클로라이드로 유기층을 분리한 다음 MgSO4를 사용하여 물을 제거하였다. 컬럼크로마토그래피로 정제하여 목적 화합물인 R58(3.1g, 5.7mmol, 수율 51%)을 얻었다.
GC-Mass (이론치: 542.65g/mol, 측정치: 542g/mol)
[합성예 15] R59의 합성
질소 기류 하에서 TP-6(3.8g, 11.9mmol), 3-phenyl-3,10-dihydropyrrolo[3,2-a]carbazole(3.7g, 13.1mmol), Pd2(dba)3(0.6g, 5 mol%), tri-tert-butylphosphine(0.1g, 0.6mmol) 및 sodium tert-butoxide(3.4g, 35.7mmol)와 toluene(80ml)를 넣고, 110℃에서 3시간 동안 교반하였다.
반응이 종결된 후 메틸렌클로라이드로 유기층을 분리한 다음 MgSO4를 사용하여 물을 제거하였다. 컬럼크로마토그래피로 정제하여 목적 화합물인 R59(3.4g, 5.9mmol, 수율 50%)을 얻었다.
GC-Mass (이론치: 568.69g/mol, 측정치: 568g/mol)
[합성예 16] R113의 합성
질소 기류 하에서 TP-7(3.2g, 13.1mmol), 3-phenyl-3,10-dihydropyrrolo[3,2-a]carbazole(4.1g, 14.4mmol), Pd2(dba)3(0.6g, 5mol%), tri-tert-butylphosphine(0.1g, 0.7mmol) 및 sodium tert-butoxide(3.8g, 39.4mmol)와 toluene(70ml)를 넣고, 110℃에서 2시간 동안 교반하였다.
반응이 종결된 후 메틸렌클로라이드로 유기층을 분리한 다음 MgSO4를 사용하여 물을 제거하였다. 컬럼크로마토그래피로 정제하여 목적 화합물인 R113(3.6g, 7.2mmol, 수율 55%)을 얻었다.
GC-Mass (이론치: 492.59g/mol, 측정치: 492g/mol)
[합성예 17] R114의 합성
질소 기류 하에서 TP-8(3.2g, 11.7mmol), 3-phenyl-3,10-dihydropyrrolo[3,2-a]carbazole(3.6g, 12.9mmol), Pd2(dba)3(0.6g, 5 mol%), tri-tert-butylphosphine(0.1g, 0.6mmol) 및 sodium tert-butoxide(3.4g, 35.1mmol)와 toluene(70ml)를 넣고, 110℃에서 2시간 동안 교반하였다.
반응이 종결된 후 메틸렌클로라이드로 유기층을 분리한 다음 MgSO4를 사용하여 물을 제거하였다. 컬럼크로마토그래피로 정제하여 목적 화합물인 R114(3.4g, 6.2mmol, 수율 53%)을 얻었다.
GC-Mass (이론치: 542.65g/mol, 측정치: 542g/mol)
[합성예 18] R115의 합성
질소 기류 하에서 TP-9(3.9g, 12.1mmol), 3-phenyl-3,10-dihydropyrrolo[3,2-a]carbazole(3.8g, 13.3mmol), Pd2(dba)3(0.6g, 5mol%), tri-tert-butylphosphine(0.1g, 0.6mmol) 및 sodium tert-butoxide(3.4g, 36.3mmol)와 toluene(80ml)를 넣고, 110℃에서 3시간 동안 교반하였다.
반응이 종결된 후 메틸렌클로라이드로 유기층을 분리한 다음 MgSO4를 사용하여 물을 제거하였다. 컬럼크로마토그래피로 정제하여 목적 화합물인 R115(3.6g, 6.4mmol, 수율 53%)을 얻었다.
GC-Mass (이론치: 568.69g/mol, 측정치: 568g/mol)
[합성예 19] R169의 합성
질소 기류 하에서 TP-10(3.3g, 10.9mmol), 3-phenyl-3,10-dihydropyrrolo[3,2-a]carbazole(3.4g, 11.9mmol), Pd2(dba)3(0.5g, 5mol%), tri-tert-butylphosphine(0.1g, 0.5mmol) 및 sodium tert-butoxide(3.1g, 32.6mmol)와 toluene(70ml)를 넣고, 110℃에서 3시간 동안 교반하였다.
반응이 종결된 후 메틸렌클로라이드로 유기층을 분리한 다음 MgSO4를 사용하여 물을 제거하였다. 컬럼크로마토그래피로 정제하여 목적 화합물인 R169(3.4g, 6.1mmol, 수율 56%)을 얻었다.
GC-Mass (이론치: 551.64g/mol, 측정치: 551g/mol)
[합성예 20] R170의 합성
질소 기류 하에서 TP-11(3.7g, 10.5mmol), 3-phenyl-3,10-dihydropyrrolo[3,2-a]carbazole(3.3g, 11.6mmol), Pd2(dba)3(0.5g, 5 mol%), tri-tert-butylphosphine(0.1g, 0.5mmol) 및 sodium tert-butoxide(3.1g, 31.5mmol)와 toluene(70ml)를 넣고, 110℃에서 4시간 동안 교반하였다.
반응이 종결된 후 메틸렌클로라이드로 유기층을 분리한 다음 MgSO4를 사용하여 물을 제거하였다. 컬럼크로마토그래피로 정제하여 목적 화합물인 R170(3.7g, 6.1mmol, 수율 58%)을 얻었다.
GC-Mass (이론치: 601.70g/mol, 측정치: 601g/mol)
[합성예 21] R171의 합성
질소 기류 하에서 TP-12(3.8g, 10.0mmol), 3-phenyl-3,10-dihydropyrrolo[3,2-a]carbazole(3.1g, 11.0mmol), Pd2(dba)3(0.5g, 5mol%), tri-tert-butylphosphine(0.1g, 0.5mmol) 및 sodium tert-butoxide(2.9g, 30.0mmol)와 toluene(70ml)를 넣고, 110℃에서 3시간 동안 교반하였다.
반응이 종결된 후 메틸렌클로라이드로 유기층을 분리한 다음 MgSO4를 사용하여 물을 제거하였다. 컬럼크로마토그래피로 정제하여 목적 화합물인 R171(3.4g, 5.5mmol, 수율 55%)을 얻었다.
GC-Mass (이론치: 627.73g/mol, 측정치: 627g/mol)
[합성예 22] R336의 합성
질소 기류 하에서 TP-13(2.9g, 12.7mmol), 3-phenyl-3,10-dihydropyrrolo[3,2-a]carbazole(3.9g, 13.9mmol), Pd2(dba)3(0.6g, 5mol%), tri-tert-butylphosphine(0.1g, 0.6mmol) 및 sodium tert-butoxide(3.7g, 38.0mmol)와 toluene(60ml)를 넣고, 110℃에서 3시간 동안 교반하였다.
반응이 종결된 후 메틸렌클로라이드로 유기층을 분리한 다음 MgSO4를 사용하여 물을 제거하였다. 컬럼크로마토그래피로 정제하여 목적 화합물인 R336(3.3g, 7.0mmol, 수율 55%)을 얻었다.
GC-Mass (이론치: 476.53g/mol, 측정치: 476g/mol)
[합성예 23] R337의 합성
질소 기류 하에서 TP-14(3.7g, 13.1mmol), 3-phenyl-3,10-dihydropyrrolo[3,2-a]carbazole(4.1g, 14.4mmol), Pd2(dba)3(0.6g, 5mol%), tri-tert-butylphosphine(0.1g, 0.7mmol) 및 sodium tert-butoxide(3.8g, 39.2mmol)와 toluene(70ml)를 넣고, 110℃에서 3시간 동안 교반하였다.
반응이 종결된 후 메틸렌클로라이드로 유기층을 분리한 다음 MgSO4를 사용하여 물을 제거하였다. 컬럼크로마토그래피로 정제하여 목적 화합물인 R337(3.6g, 6.8mmol, 수율 52%)을 얻었다.
GC-Mass (이론치: 526.59g/mol, 측정치: 526g/mol)
[합성예 24] R338의 합성
질소 기류 하에서 TP-15(3.8g, 12.5mmol), 3-phenyl-3,10-dihydropyrrolo[3,2-a]carbazole(3.9g, 13.7mmol), Pd2(dba)3(0.6g, 5mol%), tri-tert-butylphosphine(0.1g, 0.6mmol) 및 sodium tert-butoxide(3.7g, 37.4mmol)와 toluene(80ml)를 넣고, 110℃에서 3시간 동안 교반하였다.
반응이 종결된 후 메틸렌클로라이드로 유기층을 분리한 다음 MgSO4를 사용하여 물을 제거하였다. 컬럼크로마토그래피로 정제하여 목적 화합물인 R338(3.7g, 6.8mmol, 수율 53%)을 얻었다.
GC-Mass (이론치: 552.62g/mol, 측정치: 552g/mol)
[합성예 25] R504의 합성
질소 기류 하에서 TP-16(3.6g, 13.9mmol), 3-phenyl-3,10-dihydropyrrolo[3,2-a]carbazole(4.3g, 15.2mmol), Pd2(dba)3(0.7g, 5mol%), tri-tert-butylphosphine(0.1g, 0.7mmol) 및 sodium tert-butoxide(4.0g, 41.6mmol)와 toluene(80ml)를 넣고, 110℃에서 3시간 동안 교반하였다.
반응이 종결된 후 메틸렌클로라이드로 유기층을 분리한 다음 MgSO4를 사용하여 물을 제거하였다. 컬럼크로마토그래피로 정제하여 목적 화합물인 R504(4.0g, 7.9mmol, 수율 53%)을 얻었다.
GC-Mass (이론치: 502.61g/mol, 측정치: 502g/mol)
[합성예 26] R505의 합성
질소 기류 하에서 TP-17(4.2g, 13.7mmol), 3-phenyl-3,10-dihydropyrrolo[3,2-a]carbazole(4.2g, 15.0mmol), Pd2(dba)3(0.7g, 5mol%), tri-tert-butylphosphine(0.1g, 0.7mmol) 및 Sodium tert-butoxide(3.9g, 41.0mmol)와 toluene(80ml)를 넣고, 110℃에서 3시간 동안 교반하였다.
반응이 종결된 후 메틸렌클로라이드로 유기층을 분리한 다음 MgSO4를 사용하여 물을 제거하였다. 컬럼크로마토그래피로 정제하여 목적 화합물인 R505(4.2g, 7.6mmol, 수율 56%)을 얻었다.
GC-Mass (이론치: 552.62g/mol, 측정치: 552g/mol)
[합성예 27] R506의 합성
질소 기류 하에서 TP-18(4.5g, 13.4mmol), 3-phenyl-3,10-dihydropyrrolo[3,2-a]carbazole(4.1g, 14.8 mmol), Pd2(dba)3(0.6g, 5mol%), tri-tert-butylphosphine(0.1g, 0.7mmol) 및 sodium tert-butoxide(3.9g, 40.3mmol)와 toluene(90ml)를 넣고, 110℃에서 3시간 동안 교반하였다.
반응이 종결된 후 메틸렌클로라이드로 유기층을 분리한 다음 MgSO4를 사용하여 물을 제거하였다. 컬럼크로마토그래피로 정제하여 목적 화합물인 R506(3.9g, 7.8mmol, 수율 58%)을 얻었다.
GC-Mass (이론치: 502.61g/mol, 측정치: 502g/mol)
[실시예 1 ~ 21] 적색 유기 EL 소자의 제작
합성예 1 내지 21에서 각각 합성된 화합물 R1 ~ R3, R15 ~ R17, R29 ~ R31, R43 ~ R45, R57 ~ R59, R113 ~ R115, R169 ~ R171를 통상적으로 알려진 방법으로 고순도 승화정제를 한 후, 아래의 과정에 따라 적색 유기 전계 발광 소자를 제작하였다.
먼저, ITO(Indium tin oxide)가 1500Å 두께로 박막 코팅된 유리 기판을 증류수 초음파로 세척하였다. 증류수 세척이 끝나면 이소프로필 알코올, 아세톤, 메탄올 등의 용제로 초음파 세척을 하고 건조시킨 후 UV OZONE 세정기 (Power sonic 405, 화신테크)로 이송시킨 다음 UV를 이용하여 상기 기판을 5분간 세정하고 진공 증착기로 기판을 이송하였다.
이렇게 준비된 ITO 투명 전극 위에 m-MTDATA (60nm)/TCTA (80nm)/ R1 ~ R3, R15 ~ R17, R29 ~ R31, R43 ~ R45, R57 ~ R59, R113 ~ R115, R169 ~ R171의 각각의 화합물 + 10% Ir(ppy)3 (300nm)/BCP (10nm)/Alq3 (30nm)/LiF (1nm)/Al (200nm) 순으로 적층하여 유기 EL 소자를 제작하였다.
사용된 m-MTDATA, TCTA, Ir(ppy)3 및 BCP의 구조는 하기와 같다.
[비교예 1] 적색 유기 EL 소자의 제작
발광층 형성시 발광 호스트 물질로서 화합물 R1 대신 CBP를 사용하는 것을 제외하고는 실시예 1과 동일한 과정으로 적색 유기 EL 소자를 제작하였다.
사용된 CBP의 구조는 하기와 같다.
[평가예 1]
실시예 1 ~ 21 및 비교예 1에서 각각 제작된 적색 유기 EL 소자에 대하여 전류 밀도 10mA/㎠에서의 구동 전압, 전류효율 및 발광 피크를 측정하고, 그 결과를 하기 표 1에 나타내었다.
표 1
샘플 | 호스트 | 구동 전압 (V) | EL 피크 (nm) | 전류 효율 (cd/A) |
실시예 1 | R1 | 4.2 | 621 | 12.5 |
실시예 2 | R2 | 4.3 | 621 | 12.1 |
실시예 3 | R3 | 4.2 | 621 | 12.3 |
실시예 4 | R15 | 4.1 | 621 | 12.2 |
실시예 5 | R16 | 4.2 | 621 | 12.2 |
실시예 6 | R17 | 4.2 | 620 | 12.1 |
실시예 7 | R29 | 4.3 | 620 | 12.3 |
실시예 8 | R30 | 4.3 | 621 | 12.1 |
실시예 9 | R31 | 4.3 | 621 | 12.0 |
실시예 10 | R43 | 4.3 | 621 | 12.1 |
실시예 11 | R44 | 4.3 | 621 | 12.2 |
실시예 12 | R45 | 4.3 | 621 | 12.1 |
실시예 13 | R57 | 4.3 | 621 | 12.2 |
실시예 14 | R58 | 4.3 | 620 | 12.1 |
실시예 15 | R59 | 4.1 | 621 | 12.4 |
실시예 16 | R113 | 4.3 | 621 | 12.3 |
실시예 17 | R114 | 4.2 | 621 | 12.1 |
실시예 18 | R115 | 4.2 | 621 | 12.2 |
실시예 19 | R169 | 4.1 | 621 | 12.1 |
실시예 20 | R170 | 4.2 | 620 | 12.0 |
실시예 21 | R171 | 4.2 | 621 | 12.2 |
비교예1 | CBP | 5.2 | 620 | 8.1 |
상기 표1에 나타낸 바와 같이, 본 발명에 따른 화합물을 적색 유기 EL 소자의 발광층으로 사용하였을 경우(실시예 1 ~ 21), 종래 CBP를 사용한 적색 유기 EL 소자(비교예1)와 비교해 볼 때 전류 효율 및 구동 전압 면에서 보다 우수한 성능을 나타내는 것을 알 수 있다.
[실시예 22 ~ 27] 녹색 유기 EL 소자의 제조
합성예 22 내지 27에서 각각 합성된 화합물 R336 ~ R338, R504 ~ R506을 통상적으로 알려진 방법으로 고순도 승화정제를 한 후 아래의 과정에 따라 녹색 유기 전계 발광 소자를 제작하였다.
먼저, ITO(Indium tin oxide)가 1500Å 두께로 박막 코팅된 유리 기판을 증류수 초음파로 세척하였다. 증류수 세척이 끝나면 이소프로필 알코올, 아세톤, 메탄올 등의 용제로 초음파 세척을 하고 건조시킨 후 UV OZONE 세정기 (Power sonic 405, 화신테크)로 이송시킨 다음 UV를 이용하여 상기 기판을 5분간 세정하고 진공 증착기로 기판을 이송하였다.
이렇게 준비된 ITO 투명 전극 위에 m-MTDATA (60nm)/TCTA (80nm)/ R336 ~ R338, R504 ~ R506의 각각의 화합물 + 10% (piq)2Ir(acac) (300nm)/BCP (10nm)/Alq3 (30nm)/LiF (1nm)/Al (200nm) 순으로 적층하여 유기 전계 발광 소자를 제작하였다.
사용된 m-MTDATA, TCTA 및 BCP의 구조는 실시예 1과 같고, (piq)2Ir(acac)의 구조는 하기와 같다.
[비교예 2] 녹색 유기 EL 소자의 제작
발광층 형성시 발광 호스트 물질로서 상기 합성예 22의 화합물 R336 대신 CBP를 사용하는 것을 제외하고는, 상기 실시예 22와 동일한 과정으로 녹색 유기 전계 발광 소자를 제작하였다.
사용된 CBP의 구조는 상기 비교예 1과 같다.
[평가예 2]
실시예 22 ~ 27 및 비교예 2 에서 제작한 각각의 유기 전계 발광 소자에 대하여 전류 밀도 10 mA/㎠에서의 구동 전압 및 전류 효율을 측정하고, 그 결과를 하기 표 2에 나타내었다.
표 2
샘플 | 호스트 | 구동 전압 (V) | EL 피크 | 전류 효율 (cd/A) |
실시예 22 | R336 | 6.7 | 515 | 41.2 |
실시예 23 | R337 | 6.8 | 516 | 40.5 |
실시예 24 | R338 | 6.5 | 517 | 42.2 |
실시예 25 | R504 | 6.6 | 515 | 41.7 |
실시예 26 | R505 | 6.8 | 515 | 41.5 |
실시예 27 | R506 | 6.8 | 515 | 41.5 |
비교예 2 | CBP | 7.1 | 516 | 37.1 |
상기 표 2에 나타낸 바와 같이, 본 발명에 따른 화합물을 녹색 유기 전계 발광 소자의 발광층의 재료로 사용하였을 경우(실시예 22 ~ 27), 종래 CBP를 발광층의 재료로 사용한 녹색 유기 전계 발광 소자(비교예2)와 비교해 볼 때 전류 효율 및 구동 전압 면에서 우수한 성능을 나타내는 것을 알 수 있다.
본 발명에 따른 화합물은 내열성, 정공 주입능, 정공 수송능, 발광능 등이 우수하기 때문에, 유기 전계 발광 소자의 유기물층 재료, 바람직하게는 정공 주입층 재료, 정공 수송층 재료 또는 발광층 재료로 사용된다.
또한, 본 발명에 따른 화합물을 정공 주입층, 정공 수송층 및/또는 발광층에 포함하는 유기 전계 발광 소자는 발광성능, 구동전압, 수명, 효율 등의 측면이 크게 향상될 수 있고, 따라서 풀 칼라 디스플레이 패널 등에 효과적으로 적용된다.
Claims (8)
- 하기 화학식 1로 표시되는 화합물:[화학식 1]상기 화학식 1에서,A는 치환 혹은 비치환된 5원의 방향족환 또는 치환 혹은 비치환된 헤테로방향족환이고;L은 단일 결합, 치환 혹은 비치환된 C6~C60의 아릴렌기 및 치환 혹은 비치환된 핵원자수 5 내지 60의 헤테로아릴렌기로 이루어진 군으로부터 선택되고;Ar1은 수소, 중수소, 할로겐, 시아노기, 치환 혹은 비치환된 C1~C40의 알킬기, 치환 혹은 비치환된 C3~C40의 시클로알킬기, 치환 혹은 비치환된 핵원자수 3 내지 40의 헤테로시클로알킬기, 치환 혹은 비치환된 C6~C60의 아릴기, 치환 혹은 비치환된 핵원자수 5 내지 60의 헤테로아릴기, 치환 혹은 비치환된 C1~C40의 알킬옥시기, 치환 혹은 비치환된 C6~C60의 아릴옥시기, 치환 혹은 비치환된 C3~C40의 알킬실릴기, 치환 혹은 비치환된 C6~C60의 아릴실릴기, 치환 혹은 비치환된 C1~C40의 알킬보론기, 치환 혹은 비치환된 C6~C60의 아릴보론기, 치환 혹은 비치환된 C6~C60의 아릴포스핀기, 치환 혹은 비치환된 C6~C60의 아릴포스핀옥사이드기 및 치환 혹은 비치환된 C6~C60의 아릴아민기로 이루어진 군으로부터 선택되고;R1 내지 R6은 서로 동일하거나 상이하며, 각각 독립적으로 수소, 중수소, 할로겐, 시아노기, 치환 혹은 비치환된 C1~C40의 알킬기, 치환 혹은 비치환된 C3~C40의 시클로알킬기, 치환 혹은 비치환된 핵원자수 3 내지 40의 헤테로시클로알킬기, 치환 혹은 비치환된 C6~C60의 아릴기, 치환 혹은 비치환된 핵원자수 5 내지 60의 헤테로아릴기, 치환 혹은 비치환된 C1~C40의 알킬옥시기, 치환 혹은 비치환된 C6~C60의 아릴옥시기, 치환 혹은 비치환된 C3~C40의 알킬실릴기, 치환 혹은 비치환된 C6~C60의 아릴실릴기, 치환 혹은 비치환된 C1~C40의 알킬보론기, 치환 혹은 비치환된 C6~C60의 아릴보론기, 치환 혹은 비치환된 C6~C60의 아릴포스핀기, 치환 혹은 비치환된 C6~C60의 아릴포스핀옥사이드기 및 치환 혹은 비치환된 C6~C60의 아릴아민기로 이루어진 군으로부터 선택되거나, 이들은 인접한 기와 결합하여 축합 방향족 고리 또는 축합 헤테로방향족 고리를 형성하며,L의 아릴렌기 및 헤테로아릴렌기와, Ar1 및 R1 내지 R6의 알킬기, 시클로알킬기, 헤테로시클로알킬기, 아릴기, 헤테로아릴기, 알킬옥시기, 아릴옥시기, 알킬실릴기, 아릴실릴기, 알킬보론기, 아릴보론기, 아릴포스핀기, 아릴포스핀옥사이드기 및 아릴아민기는, 각각 독립적으로 중수소, 할로겐, 시아노기, C1~C40의 알킬기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택된 1종 이상의 치환기로 치환될 수 있으며, 이때 상기 치환기가 복수인 경우, 이들은 서로 동일하거나 상이하다.
- 제1항에 있어서,상기 화학식 1 표시되는 화합물은 하기 화학식 A-1 내지 A-12에서 선택되는 화학식으로 표시되는 화합물:상기 화학식 A-1 내지 A-12에서,L, Ar1 및 R1 내지 R6는 각각 제1항에서 정의한 바와 동일하고,R11 내지 R14는 서로 동일하거나 상이하며, 각각 독립적으로 수소, 중수소, 할로겐, 시아노기, 치환 혹은 비치환된 C1~C40의 알킬기, 치환 혹은 비치환된 C3~C40의 시클로알킬기, 치환 혹은 비치환된 핵원자수 3 내지 40의 헤테로시클로알킬기, 치환 혹은 비치환된 C6~C60의 아릴기, 치환 혹은 비치환된 핵원자수 5 내지 60의 헤테로아릴기, 치환 혹은 비치환된 C1~C40의 알킬옥시기, 치환 혹은 비치환된 C6~C60의 아릴옥시기 및 치환 혹은 비치환된 C6~C60의 아릴아민기로 이루어진 군으로부터 선택되거나, 이들은 인접한 기와 결합하여 축합 고리를 형성하며,R11 내지 R14의 알킬기, 시클로알킬기, 헤테로시클로알킬기, 아릴기, 헤테로아릴기, 알킬옥시기, 아릴옥시기 및 아릴아민기는, 각각 독립적으로 중수소, 할로겐, 시아노, C1~C40의 알킬기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택된 1종 이상의 치환기로 치환될 수 있으며, 이때 상기 치환기가 복수인 경우, 이들은 서로 동일하거나 상이할 수 있으며,n은 0 내지 2의 정수이다.
- 제1항에 있어서,상기 화학식 B-1 내지 B-10에서,R1 내지 R6은 제1항에서 정의한 바와 동일하고,R21 및 R22는 서로 동일하거나 상이하며, 각각 독립적으로 수소, 중수소, 할로겐, 시아노기, 치환 혹은 비치환된 C1~C40의 알킬기, 치환 혹은 비치환된 C3~C40의 시클로알킬기, 치환 혹은 비치환된 핵원자수 3 내지 40의 헤테로시클로알킬기, 치환 혹은 비치환된 C6~C60의 아릴기, 치환 혹은 비치환된 핵원자수 5 내지 60의 헤테로아릴기, 치환 혹은 비치환된 C1~C40의 알킬옥시기, 치환 혹은 비치환된 C6~C60의 아릴옥시기 및 치환 혹은 비치환된 C6~C60의 아릴아민기로 이루어진 군으로부터 선택되거나, 이들은 인접한 기와 결합하여 축합 고리를 형성하며, 이때, R21이 복수인 경우, 이들은 서로 동일하거나 상이하며,R21 및 R22의 알킬기, 시클로알킬기, 헤테로시클로알킬기, 아릴기, 헤테로아릴기, 알킬옥시기, 아릴옥시기 및 아릴아민기는, 각각 독립적으로 중수소, 할로겐, 시아노기, C1~C40의 알킬기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택된 1종 이상의 치환기로 치환되며, 이때 상기 치환기가 복수인 경우, 이들은 서로 동일하거나 상이하며,m은 0 내지 4의 정수이다.
- 제1항에 있어서,상기 L은 단일 결합 또는 페닐렌인 화합물.
- 제1항에 있어서,상기 Ar1은 치환 또는 비치환된 C6~C60의 아릴기, 또는 치환 또는 비치환된 핵원자수 5 내지 60의 헤테로아릴기인 화합물.
- 양극, 음극 및 상기 양극과 음극 사이에 개재(介在)된 1층 이상의 유기물층을 포함하는 유기 전계 발광 소자로서,상기 1층 이상의 유기물층 중에서 적어도 하나는 제1항 내지 제5항 중 어느 한 항에 기재된 화합물을 포함하는 유기 전계 발광 소자.
- 제6항에 있어서,상기 화합물을 포함하는 1층 이상의 유기물층은 정공 주입층, 정공 수송층 및 발광층으로 이루어진 군에서 선택되는 유기 전계 발광 소자.
- 제6항에 있어서,상기 화합물을 포함하는 유기물층은 인광 발광층인 유기 전계 발광 소자.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020130116098A KR101577113B1 (ko) | 2013-09-30 | 2013-09-30 | 유기 화합물 및 이를 포함하는 유기 전계 발광 소자 |
KR10-2013-0116098 | 2013-09-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015047058A1 true WO2015047058A1 (ko) | 2015-04-02 |
Family
ID=52744057
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2014/009243 WO2015047058A1 (ko) | 2013-09-30 | 2014-09-30 | 유기 화합물 및 이를 포함하는 유기 전계 발광 소자 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101577113B1 (ko) |
WO (1) | WO2015047058A1 (ko) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102592185B1 (ko) * | 2016-04-06 | 2023-10-20 | 솔루스첨단소재 주식회사 | 유기 화합물 및 이를 포함하는 유기 전계 발광 소자 |
EP3960737B1 (en) * | 2017-03-27 | 2023-08-09 | Lg Chem, Ltd. | Benzocarbazole-based compounds and organic light-emitting device comprising them |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090091240A1 (en) * | 2004-11-04 | 2009-04-09 | Idemitsu Kosan Co., Ltd. | Compound containing fused ring and organic electroluminescent element employing the same |
KR20110015836A (ko) * | 2009-08-10 | 2011-02-17 | 다우어드밴스드디스플레이머티리얼 유한회사 | 신규한 유기 발광 화합물 및 이를 포함하는 유기 전계 발광 소자 |
KR20120080508A (ko) * | 2011-01-07 | 2012-07-17 | (주)씨에스엘쏠라 | 유기 광화합물 및 이를 구비한 유기 광소자 |
WO2013108997A1 (ko) * | 2012-01-18 | 2013-07-25 | 덕산하이메탈(주) | 유기전기소자용 화합물, 이를 포함하는 유기전기소자 및 그 전자 장치 |
KR20130092939A (ko) * | 2012-08-13 | 2013-08-21 | 덕산하이메탈(주) | 오원자 헤테로 고리를 포함하는 유기전기소자용 화합물, 이를 포함하는 유기전기소자 및 그 전자 장치 |
-
2013
- 2013-09-30 KR KR1020130116098A patent/KR101577113B1/ko active IP Right Grant
-
2014
- 2014-09-30 WO PCT/KR2014/009243 patent/WO2015047058A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090091240A1 (en) * | 2004-11-04 | 2009-04-09 | Idemitsu Kosan Co., Ltd. | Compound containing fused ring and organic electroluminescent element employing the same |
KR20110015836A (ko) * | 2009-08-10 | 2011-02-17 | 다우어드밴스드디스플레이머티리얼 유한회사 | 신규한 유기 발광 화합물 및 이를 포함하는 유기 전계 발광 소자 |
KR20120080508A (ko) * | 2011-01-07 | 2012-07-17 | (주)씨에스엘쏠라 | 유기 광화합물 및 이를 구비한 유기 광소자 |
WO2013108997A1 (ko) * | 2012-01-18 | 2013-07-25 | 덕산하이메탈(주) | 유기전기소자용 화합물, 이를 포함하는 유기전기소자 및 그 전자 장치 |
KR20130092939A (ko) * | 2012-08-13 | 2013-08-21 | 덕산하이메탈(주) | 오원자 헤테로 고리를 포함하는 유기전기소자용 화합물, 이를 포함하는 유기전기소자 및 그 전자 장치 |
Also Published As
Publication number | Publication date |
---|---|
KR20150036982A (ko) | 2015-04-08 |
KR101577113B1 (ko) | 2015-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017188597A1 (ko) | 유기 화합물 및 이를 포함하는 유기 전계 발광 소자 | |
WO2016105161A2 (ko) | 유기 화합물 및 이를 포함하는 유기 전계 발광 소자 | |
WO2020159019A1 (ko) | 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자 | |
WO2018080068A1 (ko) | 유기 화합물 및 이를 포함하는 유기 전계 발광 소자 | |
WO2018230782A1 (ko) | 유기 화합물 및 이를 포함하는 유기 전계 발광 소자 | |
WO2015122711A1 (ko) | 유기 화합물 및 이를 포함하는 유기 전계 발광 소자 | |
WO2017111544A1 (ko) | 유기 화합물 및 이를 포함하는 유기 전계 발광 소자 | |
WO2017111543A1 (ko) | 유기 화합물 및 이를 포함하는 유기 전계 발광 소자 | |
WO2016105123A2 (ko) | 유기 화합물 및 이를 포함하는 유기 전계 발광 소자 | |
WO2017209488A1 (ko) | 유기 화합물 및 이를 포함하는 유기 전계 발광 소자 | |
WO2019103397A1 (ko) | 유기 화합물 및 이를 포함하는 유기 전계 발광 소자 | |
WO2015111864A1 (ko) | 유기 화합물 및 이를 포함하는 유기 전계 발광 소자 | |
WO2014098447A1 (ko) | 유기 화합물 및 이를 포함하는 유기 전계 발광 소자 | |
WO2015133804A1 (ko) | 유기 화합물 및 이를 포함하는 유기 전계 발광 소자 | |
WO2013100497A1 (ko) | 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자 | |
WO2013168927A2 (ko) | 신규 화합물 및 이를 포함하는 유기 전계 발광 소자 | |
WO2015111943A1 (ko) | 유기 화합물 및 이를 포함하는 유기 전계 발광 소자 | |
WO2020116881A1 (ko) | 유기 화합물 및 이를 포함하는 유기 전계 발광 소자 | |
WO2017111389A1 (ko) | 유기 화합물 및 이를 포함하는 유기 전계 발광 소자 | |
WO2015060635A1 (ko) | 유기 화합물 및 이를 포함하는 유기 전계 발광 소자 | |
WO2020218680A1 (ko) | 유기 화합물 및 이를 이용한 유기 전계 발광 소자 | |
WO2016013894A2 (ko) | 유기 화합물 및 이를 포함하는 유기 전계 발광 소자 | |
WO2018186551A1 (ko) | 유기 화합물 및 이를 포함하는 유기 전계 발광 소자 | |
WO2015099477A2 (ko) | 유기 화합물 및 이를 이용한 유기 전계 발광 소자 | |
WO2015046982A2 (ko) | 유기 화합물 및 이를 포함하는 유기 전계 발광 소자 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14847678 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06/07/2016) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14847678 Country of ref document: EP Kind code of ref document: A1 |