WO2015046907A1 - Transceiving method and apparatus for modulation signal transmission in filter bank multi-carrier communication system - Google Patents

Transceiving method and apparatus for modulation signal transmission in filter bank multi-carrier communication system Download PDF

Info

Publication number
WO2015046907A1
WO2015046907A1 PCT/KR2014/008949 KR2014008949W WO2015046907A1 WO 2015046907 A1 WO2015046907 A1 WO 2015046907A1 KR 2014008949 W KR2014008949 W KR 2014008949W WO 2015046907 A1 WO2015046907 A1 WO 2015046907A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
group
groups
filtering
signals
Prior art date
Application number
PCT/KR2014/008949
Other languages
French (fr)
Korean (ko)
Inventor
남형주
최수용
김찬홍
최문창
김상우
Original Assignee
삼성전자 주식회사
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140127722A external-priority patent/KR102245479B1/en
Application filed by 삼성전자 주식회사, 연세대학교 산학협력단 filed Critical 삼성전자 주식회사
Priority to EP14847714.4A priority Critical patent/EP3051765B1/en
Priority to CN201480053471.7A priority patent/CN105723672B/en
Priority to US15/025,094 priority patent/US10135665B2/en
Publication of WO2015046907A1 publication Critical patent/WO2015046907A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits

Definitions

  • the present invention relates to a transmission and reception method and apparatus capable of transmitting a QAM signal in a filter bank multicarrier (FBMC) communication system, and in particular, to separate filtering between subcarriers having an even index and subcarriers having an odd index.
  • FBMC filter bank multicarrier
  • the present invention provides a transmission and reception method and apparatus for transmitting QAM signals without intrinsic interference by overlapping transmission of separated and filtered subcarriers using orthogonality of a filter.
  • FBMC filter bank multicarrier
  • OFDM orthogonal frequency division multiplexing
  • the conventional FBMC communication system includes (1) a transmission and reception method that applies a polyphase network (PPN) on the time axis after the IFFT, and (2) a frequency spreader and overlap / overlap on the frequency axis before the IFFT. / sum) can be divided into a transmission and reception method applying the structure.
  • Technique (1) implements the convolution operation on the time axis using PPN as a filtering consisting of the sum of weighted sums of length M, and then applies two PPN modules with time difference to offset-QAM. Implement (OQAM).
  • OQAM offset-QAM
  • the technique (2) performs oversampling and filtering by the prototype filter on the frequency axis before the IFFT, and performs the overlapping transmission using the adder and the memory after performing the IFFT of KM length.
  • the receiver uses a frequency axis one-tap equalizer.
  • FIG. 1 is a block diagram showing a transmitting device in a conventional FBMC communication system
  • the transmission signal d (n) is composed of M Offset Quadrature Amplitude Modulation (OQAM) signals d (mM) as shown in FIG. 2.
  • the OQAM signal is converted by a serial-to-parallel (S / P) converter 110, and each converted OQAM signal d i (mM) is represented by a frequency spreader 120, as shown in FIG. As spread out on the frequency axis.
  • the spreader 120 uses a prototype filter to multiply each OQAM signal by 2K-1 frequency axis filter coefficients, thereby spreading the entire OQAM signal into KM signals over the entire frequency band. This is called frequency axis filtering.
  • the filtered signal is subjected to an inverse Fourier transform process by an inverse fast fourier transform (IFFT) 130.
  • IFFT inverse fast fourier transform
  • the IFFT 130 output signal is transmitted through a superposition process by a paralleller-to-serial (P / S) and overlap / sum block 140.
  • the conventional FBMC system in order to perform frequency axis filtering, since spreading results between adjacent QAM signals overlap in a spreading process, interference with each other may cause interference and signal recovery may not be possible. In order to prevent this, the conventional FBMC system uses OQAM, which interposes in-phase and real-phase quadrature components with time-frequency resources.
  • the size of the IFFT 130 must be increased by K times the overlapping factor of the prototype filter compared to the OFDM, the complexity of the entire system is increased. Since the same problem appears in the receiving apparatus, the FFT size in the receiving apparatus must also be increased by a multiple of K, thereby increasing the complexity of the receiving apparatus.
  • FIG. 4 is a block diagram showing a receiving apparatus in a conventional FBMC communication system.
  • the received signal x (n) is converted into a parallel signal by the S / P converter 210 and undergoes a Fourier transform process through a fast fourier transform (FFT) 220.
  • FFT fast fourier transform
  • the signal is equalized through a frequency equalizer 230 and filtered through a frequency de-spreader 240 to recover the frequency axis.
  • the QAM signal is used as described above in the frequency axis filtering process, there is a problem that internal interference cannot be removed.
  • the conventional FBMC communication system in the case of both (1) and (2) techniques, the filtering result between adjacent signals overlaps, so that the QAM signal should not be used and the OQAM signal should be used.
  • the conventional FBMC communication system has a disadvantage that it is not easy to combine with multiple-input and multiple-output (MIMO).
  • the present invention separates filtering of a signal corresponding to an even index subcarrier and an signal corresponding to an odd index subcarrier, and superimposes a filtered signal by using the orthogonality of the filter.
  • the present invention provides a method and apparatus for transmitting a QAM signal in an FBMC communication system.
  • the present invention overcomes the disadvantage that the size of the IFFT and FFT increases by the overlapping factor K in the conventional OQAM-based FBMC communication system, and by using a frequency axis one-tap equalizer in the receiving device, an efficient transmission and reception method with low complexity And an apparatus.
  • a transmission method is a transmission method in a filter bank based multi-carrier (FBMC) communication system, at least two Quadrature Amplitude Modulation (QAM) signal Dividing into a plurality of groups; Performing filtering on the plurality of groups, respectively; And overlapping and transmitting the QAM signals included in the filtered plurality of groups on a time axis.
  • FBMC filter bank based multi-carrier
  • the reception method according to the present invention is a reception method in a filter bank based multi-carrier (FBMC) communication system, comprising: dividing a received signal into a plurality of groups; Performing filtering on the plurality of groups, respectively; And restoring at least two Quadrature Amplitude Modulation (QAM) signals by equalizing the filtered result on the frequency axis.
  • FBMC filter bank based multi-carrier
  • the transmission apparatus is a transmission apparatus in a filter bank based multicarrier (FBMC) communication system, at least two quadrature amplitude modulation (QAM) signal divided into a plurality of groups Filtering unit for performing the respective filtering; An overlapping unit overlapping QAM signals included in the filtered plurality of groups on a time axis; And a communication unit for transmitting the superimposed signal to the outside.
  • FBMC filter bank based multicarrier
  • a filter bank based multi-carrier (Filter Bank Multicarrier (FBMC)) communication device in the receiving device, the communication unit for receiving a signal; A filtering unit dividing the received signal into a plurality of groups and performing filtering respectively; And an equalizer for equalizing the filtered result on the frequency axis to restore at least two Quadrature Amplitude Modulation (QAM) signals.
  • FBMC Filter Bank Multicarrier
  • the transmission and reception method and apparatus for enabling QAM signal transmission according to the present invention can suppress generation of internal interference by filtering separation.
  • the transmission and reception method and apparatus for enabling the transmission of the QAM signal according to the present invention can process a complex signal (complex signal) can be easily combined with the MIMO system while applying the QAM-based technique in the OFDM as it is in the FBMC Has
  • FIG. 1 is a block diagram showing a transmission apparatus in a conventional FBMC communication system.
  • FIG. 2 is a diagram illustrating in detail a signal flow in a transmitting apparatus in a conventional FBMC communication system.
  • FIG. 3 is a diagram illustrating a filtering process on a frequency axis in a conventional FBMC communication system.
  • FIG. 4 is a block diagram showing a receiving apparatus in a conventional FBMC communication system.
  • FIG. 5 is a block diagram showing a transmission apparatus according to the present invention.
  • FIG. 6 is a diagram illustrating a filtering process on a frequency axis in a transmission apparatus according to the present invention.
  • FIG. 7 is a diagram illustrating an example of transforming a convolution operation of a frequency axis into a multiplication operation of a time axis.
  • FIG. 8 is a diagram illustrating an example of transforming a convolution operation of a QAM signal into a multiplication operation of a time axis according to the present invention.
  • FIG. 9 is a diagram illustrating an example of overlapping IFFT output signals in a transmission apparatus according to the present invention.
  • FIG. 10 is a block diagram showing the configuration of a receiving apparatus according to the present invention.
  • FIG. 11 is a view showing in detail the flow of signals in the transmitting apparatus according to the present invention.
  • FIG. 12 is a diagram illustrating an example of overlap & sum of consecutive FBMC symbols.
  • FIG. 13 is a view showing in detail the flow of the signal in the receiving apparatus according to the present invention.
  • FIG. 14 is a flowchart illustrating a transmission method according to the present invention.
  • 15 is a flowchart illustrating a receiving method according to the present invention.
  • Embodiments according to the present invention are described in connection with a transmitting device and a receiving device.
  • the transmitting device and the receiving device are referred to as a system, subscriber unit, subscriber station, mobile station, mobile, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, user device, or user equipment (UE). Can be.
  • the transmitting device and the receiving device may be cellular telephones, personal digital assistants (PDAs), handheld devices with wireless connection capabilities, computing devices or other processing devices connected to a wireless modem.
  • PDAs personal digital assistants
  • FIG. 5 is a block diagram showing the configuration of a transmission apparatus according to the present invention.
  • the transmission apparatus 300 includes a plurality of S / P converters 311 and 312, a plurality of IFFTs 321 and 322, and a plurality of weighted sum blocks 331 and 332. It is composed.
  • the plurality of S / P converters 311 and 312, the plurality of IFFTs 321 and 322, and the plurality of weighted sum blocks 331 and 332 may participate in the filtering operation on the QAM signal. Accordingly, the plurality of S / P converters 311 and 312, the plurality of IFFTs 321 and 322, and the plurality of weighted sum blocks 331 and 332 may be named as filtering units, respectively or in combination.
  • the transmitting apparatus 300 divides the M QAM signals into a first group and a second group, and performs filtering of each group separately.
  • the transmitter 300 may classify the QAM signals so that adjacent QAM signals belong to different groups. For example, the transmitter 300 may divide the M QAM signals into two groups, a signal having an even index and a signal having an odd index. As a result, the transmitter 300 according to the present invention prevents internal interference between adjacent QAM signals as shown in FIG. 6.
  • filters applied to each group may be configured to have a complex relationship with each other.
  • the first group is filtered using the first filter and the second group is filtered using the second filter.
  • the two filters can be configured to have a complex relationship. That is, the filter coefficients of the filter applied to the second group may be composed of complex values of the filter coefficients of the filter applied to the first group.
  • the coefficients of the filter applied to the first group are configured with a real domain
  • the coefficients of the filter applied to the second group may be configured with a complex domain. That is, the first filter applied to the first group If you have a real domain filter coefficient consisting of the second filter applied to the second group It may have a complex domain filter coefficient consisting of.
  • the transmitting apparatus 300 may perform separate filtering by a frequency spreading method before the IFFT, and in one embodiment, convolution on the time axis after the IFFT in order to prevent the complexity from increasing. Filtering can be performed by multiplication rather than by).
  • the existing filtering process using multiplication after spreading on the frequency axis shown in FIG. 6 may be reinterpreted as a convolution of a signal having 0 inserted between QAM signals and filter coefficients for one QAM signal.
  • the filtering process may be reinterpreted by calculating weighted sum of IFFT output data for the M signals and KM time-axis filter coefficients in block units, as shown in FIG. 7. 7 shows an example where K is four.
  • the IFFT output signal has a form in which the IFFT output block of the signal is repeated 2K-1 times, and the size is M / 2.
  • the transmitter 300 may perform filtering by multiplying the IFFT output signal by KM time-axis filter coefficients. In this case, a block that performs a multiplication operation may be called a multiplier.
  • the transmission device 300 performs an overlap / sum operation of a unit of 2K blocks on the time axis through the overlap / sum block 340 and the P / S converter 350.
  • the transmitting apparatus shows an IFFT output block for the first group and the second group in FIG. 6, for example, an IFFT output block for the even signal and the odd signal.
  • the transmission is overlapped as shown.
  • the transmitting device 300 arranges and overlaps any one of the IFFT output signal of the first group and the IFFT output signal of the second group in reverse order.
  • the overlap / sum block 340 may be referred to as an overlap in one example.
  • the QAM signal may be transmitted.
  • the superimposed signal may be transmitted to the receiving device through the communication unit of the transmitting device.
  • FIG. 10 is a block diagram showing the configuration of a receiving apparatus according to the present invention.
  • the receiving device 400 obtains a received signal through a communication unit.
  • the received signal passes through the S / P converter 410, the weighted sum blocks 421 and 422, and the FFT converters 431 and 432, and then through the one-tap equalizer 441 and 442 one on the frequency axis. Tap equalization
  • the received signal is then restored to the final signal via the P / S converters 451 and 452.
  • FIG. 11 is a view showing in detail the flow of signals in the transmitting apparatus according to the present invention.
  • the transmission signal d (n) is composed of M signals.
  • the signal is classified into a first group and a second group. Accordingly, the signals d 1 (n) and d 2 (n) included in each group have a size of M / 2.
  • adjacent signals are classified into different groups. For example, the signal may be classified into a first group consisting of a signal having an even index (hereinafter, even signal) and a second group consisting of a signal having an odd index (hereinafter, an odd signal).
  • Signals included in the first group and the second group are transformed into time axis data as shown in FIG. 6 through separate S / P and IFFT conversion processes, respectively.
  • 6 is a diagram illustrating an example in which filtering is performed by separating the even signal (upper) and the odd signal (lower), respectively. Referring to FIG. 6, when adjacent signals are classified into different groups, the classified signals undergo S / P conversion and IFFT conversion, respectively, so that internal interference as shown in FIG. 3 does not occur.
  • the output signal by the IFFT conversion of FIG. 11 is stored in order from the first memory to the 2K-2nd memory. Thereafter, the signals stored in the memory are superimposed by KM time-axis filter coefficients and M / 2 block unit addition operations and transmitted to the outside via P / S.
  • the time axis filter coefficients may have different values according to K values.
  • FIG. 12 is a diagram illustrating an example of overlap & sum of consecutive FBMC symbols.
  • the horizontal axis means the time axis.
  • One sub block represents a signal to which M / 2-IFFT is applied to M / 2 QAM signals.
  • the M / 2 QAM signals with M / 2-IFFT are extended 2K-1 times and multiplied by the KM time axis filter coefficients.
  • the 2K blocks after multiplication are reordered in reverse order with the sign changed to (-+-+ ). Accordingly, the K FBMC symbols arranged in the same vertical column overlap each other and are finally summed and transmitted to the receiver.
  • FIG. 13 is a view showing in detail the flow of the signal in the receiving apparatus according to the present invention.
  • the signal flow in the receiving apparatus has a structure symmetrical with the transmitting apparatus until it passes through the equalizer.
  • the receiving device stores the received signals of size M in order in the memory. Thereafter, the receiving device performs a block unit multiplication operation between the KM time axis filter coefficients and the signals stored in each memory, and generates an FFT input signal of size M through a block unit add operation. The receiving device then performs an FFT operation of size M / 2 and restores the original signal using a one-tap equalizer on the frequency axis.
  • FIG. 14 is a flowchart illustrating a transmission method according to the present invention.
  • a transmission apparatus divides at least two modulated signals into a plurality of groups (1401).
  • the transmitting apparatus may divide the M modulated signals into a plurality of groups, for example, a first group and a second group.
  • the transmitting device may divide the group such that adjacent modulated signals belong to different groups.
  • the transmitting apparatus may divide a modulated signal into two groups, a modulated signal having an even index and a modulated signal having an odd index.
  • the transmitting apparatus performs filtering on each of the plurality of groups (1403).
  • the transmitting apparatus performs inverse Fourier transform on the modulated signals included in each of the plurality of groups (1405), expands the inverse Fourier transformed output signals to MK (1407), and then expands the MK output signals and the time axis filter. Filtering is performed by multiplying the coefficients (1409).
  • the transmitting apparatus overlaps each of the filtered modulated signals of each group (1411).
  • the transmitting apparatus may sort the modulated signals included in the group in reverse order (1413) for at least one group of the plurality of groups, and overlap the filtered modulated signals included in the plurality of groups. There is (1415).
  • the transmitting device finally transmits the superimposed signal (1417).
  • 15 is a flowchart illustrating a receiving method according to the present invention.
  • a receiving device first receives a signal (1501).
  • the receiving apparatus divides the received signal into a plurality of groups (1503).
  • the receiving device performs inverse filtering on the plurality of divided groups, in operation 1505. That is, the receiving device multiplies the received signals included in each of the plurality of groups by the time axis filter coefficients (1507), and performs a Fourier transform on the output signal multiplied by the filter coefficients (1509).
  • the receiving apparatus processes the Fourier transformed output signal as a restored signal.
  • the transmitting apparatus divides the QAM signal into a plurality of groups to separate the filtering process for each group, and transmits the QAM signal through overlapping transmission utilizing the orthogonality of the filter.
  • the complexity of IFFT and FFT can also be used to implement filtering through weighted sum on the time axis.

Abstract

The present invention relates to a transceiving method and apparatus that enable QAM signal transmission in a filter bank multi-carrier (FMBC) communication system and provides, in particular, a transceiving method and apparatus that enable quadrature amplitude modulation (QAM) signal transmission without intrinsic interference by separating filtering between a sub-carrier having an even index and a sub-carrier having an odd index, and superimposing and transmitting sub-carriers filtered by means of separation. The thus-rendered present invention is a transmission method in the FBMC communication system, the method comprising the steps of: dividing at least two QAM signals into a plurality of groups; performing filtering on each of the plurality of groups; and superimposing and transmitting the QAM signal in the plurality of groups filtered on a time axis. The present invention relates to a transmission method and apparatus, and a corresponding reception method and apparatus.

Description

필터뱅크 기반 다중 반송파 통신 시스템에서 변조 신호 전송을 위한 송수신 방법 및 장치Transmitting / receiving method and apparatus for modulating signal transmission in filterbank based multicarrier communication system
본 발명은 필터뱅크 기반 다중 반송파(Filter Bank Multicarrier; FBMC) 통신 시스템에서 QAM 신호 전송이 가능한 송수신 방법 및 장치에 관한 것으로, 특히 짝수 인덱스를 갖는 서브 캐리어와 홀수 인덱스를 갖는 서브 캐리어 간 필터링을 분리시키고, 분리하여 필터링된 서브 캐리어들을 필터의 직교성을 활용하여 중첩 전송함으로써 내적 간섭(intrinsic interference) 없이 QAM 신호 전송이 가능하게 하는 송수신 방법 및 장치를 제공한다.The present invention relates to a transmission and reception method and apparatus capable of transmitting a QAM signal in a filter bank multicarrier (FBMC) communication system, and in particular, to separate filtering between subcarriers having an even index and subcarriers having an odd index. In addition, the present invention provides a transmission and reception method and apparatus for transmitting QAM signals without intrinsic interference by overlapping transmission of separated and filtered subcarriers using orthogonality of a filter.
최근 고품질의 데이터를 고속으로 전송하기 위해 직교주파수분할(Orthogonal Frequency Division Multiplexing; OFDM) 전송 기술을 대체할 수 있는 차세대 통신 기술로써 필터뱅크 기반 다중 반송파(Filter Bank Multicarrier; FBMC) 통신 시스템에 대한 연구가 활발히 이루어지고 있다. FBMC는 OFDM에 비해 상대적으로 낮은 대역 외 방사(out-of-band radiation)가 발생하여 동일 스펙트럼 마스크(spectrum mask)를 만족시키기 위한 보호 부반송파(guard subcarrier) 수를 OFDM 대비 상대적으로 줄일 수 있으며, CP(cyclic prefix) 없이 신호의 변복조가 가능하여 주파수 효율(spectral efficiency)이 증대되고 주파수 동기 오차에 강한 특성을 지닌다. Recently, a research on a filter bank multicarrier (FBMC) communication system as a next-generation communication technology that can replace orthogonal frequency division multiplexing (OFDM) transmission technology to transmit high quality data at high speed has been conducted. Actively done. FBMCs generate relatively lower out-of-band radiation than OFDM, so that the number of guard subcarriers for satisfying the same spectrum mask can be relatively reduced compared to OFDM. Modulation and demodulation of the signal without cyclic prefix increases the spectral efficiency and has strong characteristics against frequency synchronization error.
종래의 FBMC 통신 시스템은 (1) IFFT 이후 시간 축에서 다 위상 네트워크(polyphase network; PPN)를 적용하는 송수신 방법과 (2) IFFT 이전에 주파수 축에서 주파수 확산기(frequency spreader) 및 중첩/합(overlap/sum) 구조를 적용하는 송수신 방법으로 구분될 수 있다. (1)번 기술은 PPN을 활용하여 시간 축에서의 컨볼루션 연산을 길이 M의 가중치 합(weighted sum)들의 합으로 구성되는 필터링으로 구현한 후 2개의 PPN 모듈을 시간차를 통해 적용함으로써 offset-QAM (OQAM)을 구현한다. 이때, 송신단에서 시간 축 필터링이 수행되므로, 수신단에서는 시간 축에서의 등화기를 사용한다. (2)번 기술은 IFFT 이전에 주파수 축에서 오버샘플링(oversampling) 및 프로토타입 필터에 의한 필터링, KM 길이의 IFFT를 수행한 후 adder와 메모리를 이용한 중첩 전송을 수행한다. 이때, 송신단에서 주파수 축에서의 필터링이 수행되므로 수신단에서는 주파수축 one-tap 등화기를 사용한다.The conventional FBMC communication system includes (1) a transmission and reception method that applies a polyphase network (PPN) on the time axis after the IFFT, and (2) a frequency spreader and overlap / overlap on the frequency axis before the IFFT. / sum) can be divided into a transmission and reception method applying the structure. Technique (1) implements the convolution operation on the time axis using PPN as a filtering consisting of the sum of weighted sums of length M, and then applies two PPN modules with time difference to offset-QAM. Implement (OQAM). At this time, since the time axis filtering is performed at the transmitter, the receiver uses an equalizer on the time axis. The technique (2) performs oversampling and filtering by the prototype filter on the frequency axis before the IFFT, and performs the overlapping transmission using the adder and the memory after performing the IFFT of KM length. At this time, since the filtering is performed on the frequency axis at the transmitter, the receiver uses a frequency axis one-tap equalizer.
상술한 (2)번 기술에 대하여 보다 구체적으로 설명하도록 한다.The above-described technique (2) will be described in more detail.
도 1은 종래의 FBMC 통신 시스템에서의 송신 장치를 나타낸 블록도이고, 도 2는 종래의 FBMC 통신 시스템에서의 송신 장치 내에서 K=4일 때 신호의 흐름을 구체적으로 나타낸 도면이다. FIG. 1 is a block diagram showing a transmitting device in a conventional FBMC communication system, and FIG. 2 is a view showing a signal flow in detail when K = 4 in a transmitting device in a conventional FBMC communication system.
도 1을 참조하면, 전송 신호 d(n)은 도 2에 도시된 바와 같이 M개의 오프셋 직교 진폭 변조(Offset Quadrature Amplitude Modulation; OQAM) 신호 d(mM)로 구성된다. OQAM 신호는 S/P(Serial-to-Parallel) 변환기(110)에 의해 변환되고, 변환된 각각의 OQAM 신호 di(mM)는 확산기(Frequency spreader)(120)에 의해, 도 2에 도시된 바와 같이 주파수 축에서 확산된다. 확산기(120)는 프로토타입 필터(prototype filter)를 이용하여 각각의 OQAM 신호에 2K-1개의 주파수 축 필터 계수를 곱함으로써, 전체 OQAM 신호를 전체 주파수 대역에 KM개의 신호로 확산시킨다. 이를 주파수 축 필터링이라 한다.Referring to FIG. 1, the transmission signal d (n) is composed of M Offset Quadrature Amplitude Modulation (OQAM) signals d (mM) as shown in FIG. 2. The OQAM signal is converted by a serial-to-parallel (S / P) converter 110, and each converted OQAM signal d i (mM) is represented by a frequency spreader 120, as shown in FIG. As spread out on the frequency axis. The spreader 120 uses a prototype filter to multiply each OQAM signal by 2K-1 frequency axis filter coefficients, thereby spreading the entire OQAM signal into KM signals over the entire frequency band. This is called frequency axis filtering.
필터링 된 신호는 역푸리에 변환기(inverse fast fourier transform; IFFT)(130)에 의하여 역푸리에 변환 과정을 거친다. 마지막으로 IFFT(130) 출력 신호는 P/S(Paraller-to-Serial) 및 Overlap/sum 블록(140)에 의한 중첩 과정을 거쳐 송신된다. The filtered signal is subjected to an inverse Fourier transform process by an inverse fast fourier transform (IFFT) 130. Lastly, the IFFT 130 output signal is transmitted through a superposition process by a paralleller-to-serial (P / S) and overlap / sum block 140.
종래의 FBMC 시스템에서 주파수 축 필터링을 수행하려면, 확산 과정에서 인접한 QAM 신호 간 확산 결과가 중첩되기 때문에, 상호 간 간섭을 주게 되어 신호 복원이 불가능해 진다. 이를 방지하기 위해 종래의 FBMC 시스템은 동위상(in-phase, real) 성분과 직교 위상(quadrature-phase,imaginary) 성분을 시간-주파수 자원에 교차하여 배치하는 OQAM을 사용한다. In the conventional FBMC system, in order to perform frequency axis filtering, since spreading results between adjacent QAM signals overlap in a spreading process, interference with each other may cause interference and signal recovery may not be possible. In order to prevent this, the conventional FBMC system uses OQAM, which interposes in-phase and real-phase quadrature components with time-frequency resources.
또한 종래의 FBMC 시스템에서 주파수 축 필터링을 수행하려면, IFFT(130)의 크기가 OFDM 대비 프로토타입 필터의 중첩 계수(overlapping factor)인 K배만큼 증가해야 하기 때문에, 전체 시스템의 복잡도가 증가하게 된다. 이러한 문제는 수신 장치에서도 동일하게 나타나기 때문에, 수신 장치에서의 FFT 크기도 K의 배수만큼 증가 되야 하고, 이에 따라 수신 장치의 복잡도도 증가하게 된다. In addition, in order to perform frequency axis filtering in the conventional FBMC system, since the size of the IFFT 130 must be increased by K times the overlapping factor of the prototype filter compared to the OFDM, the complexity of the entire system is increased. Since the same problem appears in the receiving apparatus, the FFT size in the receiving apparatus must also be increased by a multiple of K, thereby increasing the complexity of the receiving apparatus.
도 4는 종래의 FBMC 통신 시스템에서의 수신 장치를 나타낸 블록도이다. 4 is a block diagram showing a receiving apparatus in a conventional FBMC communication system.
도 4를 참조하면, 수신 신호 x(n)은 S/P 변환기(210)에 의해 병렬 신호로 변환되고, 푸리에 변환기(fast fourier transform; FFT)(220)를 통해 푸리에 변환 과정을 거친다. 다음으로, 신호는 주파수 등화기(Frequency equalizer)(230)를 통해 등화되고, 주파수 역확산기(Frequency de-spreader)(240)를 통해 주파수 축 필터링되어 복원된다. 이러한 주파수 축 필터링 과정에서 상술한 바와 같이 QAM 신호를 사용할 경우, 내적 간섭을 제거할 수 없는 문제가 있다. Referring to FIG. 4, the received signal x (n) is converted into a parallel signal by the S / P converter 210 and undergoes a Fourier transform process through a fast fourier transform (FFT) 220. Next, the signal is equalized through a frequency equalizer 230 and filtered through a frequency de-spreader 240 to recover the frequency axis. When the QAM signal is used as described above in the frequency axis filtering process, there is a problem that internal interference cannot be removed.
상술한 종래의 FBMC 통신 시스템은 (1), (2) 기술 모두의 경우 인접 신호 간의 필터링 결과가 중첩되기 때문에 QAM 신호를 사용하지 못하고 OQAM 신호를 사용해야 한다. 결과적으로, 종래의 FBMC 통신 시스템은 MIMO(multiple-input and multiple-output)와의 결합이 용이하지 못하다는 단점이 있다. In the above-described conventional FBMC communication system, in the case of both (1) and (2) techniques, the filtering result between adjacent signals overlaps, so that the QAM signal should not be used and the OQAM signal should be used. As a result, the conventional FBMC communication system has a disadvantage that it is not easy to combine with multiple-input and multiple-output (MIMO).
특히, (2) 기술의 경우, 주파수 축 필터링으로 인하여 수신 장치에서 one-tap 주파수축 등화기를 사용할 수 있는 장점이 있는 반면에 IFFT 및 FFT의 크기가 K배 만큼 증가함으로써 복잡도가 증가하는 단점이 있다.In particular, in the case of (2), there is an advantage that one-tap frequency axis equalizer can be used in the receiving device due to frequency axis filtering, while complexity increases by increasing the size of IFFT and FFT by K times. .
본 발명은 짝수 인덱스 서브 캐리어(odd sub-carrier)에 대응하는 신호와 홀수 인덱스 서브 캐리어(even sub-carrier)에 대응하는 신호의 필터링을 분리시키고, 필터의 직교성을 활용하여 필터링된 신호를 중첩 전송 함으로써, FBMC 통신 시스템에서 QAM 신호를 전송할 수 있는 방법 및 장치를 제공한다. The present invention separates filtering of a signal corresponding to an even index subcarrier and an signal corresponding to an odd index subcarrier, and superimposes a filtered signal by using the orthogonality of the filter. The present invention provides a method and apparatus for transmitting a QAM signal in an FBMC communication system.
또한 본 발명은 종래의 OQAM 기반 FBMC 통신 시스템에서 IFFT 및 FFT 의 크기가 중첩 계수인 K만큼 증가하는 단점을 극복하고, 수신 장치에서 주파수축 one-tap 등화기를 사용함으로써, 낮은 복잡도를 갖는 효율적인 송수신 방법 및 장치를 제공한다. In addition, the present invention overcomes the disadvantage that the size of the IFFT and FFT increases by the overlapping factor K in the conventional OQAM-based FBMC communication system, and by using a frequency axis one-tap equalizer in the receiving device, an efficient transmission and reception method with low complexity And an apparatus.
상술한 과제를 해결하기 위하여 본 발명에 따른 송신 방법은, 필터뱅크 기반 다중 반송파(Filter Bank Multicarrier; FBMC) 통신 시스템에서의 송신 방법으로, 적어도 두 개의 직교 진폭 변조(Quadrature Amplitude Modulation; QAM) 신호를 복수의 그룹으로 분할하는 단계; 상기 복수의 그룹에 대하여 각각 필터링을 수행하는 단계; 및 상기 필터링 된 상기 복수의 그룹에 포함된 QAM 신호를 시간 축에서 중첩하여 전송하는 단계를 포함하는 것을 특징으로 한다.In order to solve the above problems, a transmission method according to the present invention is a transmission method in a filter bank based multi-carrier (FBMC) communication system, at least two Quadrature Amplitude Modulation (QAM) signal Dividing into a plurality of groups; Performing filtering on the plurality of groups, respectively; And overlapping and transmitting the QAM signals included in the filtered plurality of groups on a time axis.
또한, 본 발명에 따른 수신 방법은, 필터뱅크 기반 다중 반송파(Filter Bank Multicarrier; FBMC) 통신 시스템에서의 수신 방법으로, 수신된 신호를 복수의 그룹으로 분할하는 단계; 상기 복수의 그룹에 대하여 각각 필터링을 수행하는 단계; 및 상기 필터링 된 결과를 주파수 축에서 등화하여 적어도 두 개의 직교 진폭 변조(Quadrature Amplitude Modulation; QAM) 신호를 복원하는 단계를 포함하는 것을 특징으로 한다.In addition, the reception method according to the present invention is a reception method in a filter bank based multi-carrier (FBMC) communication system, comprising: dividing a received signal into a plurality of groups; Performing filtering on the plurality of groups, respectively; And restoring at least two Quadrature Amplitude Modulation (QAM) signals by equalizing the filtered result on the frequency axis.
또한, 본 발명에 따른 송신 장치는, 필터뱅크 기반 다중 반송파(Filter Bank Multicarrier; FBMC) 통신 시스템에서의 송신 장치로, 복수의 그룹으로 분할된 적어도 두 개의 직교 진폭 변조(Quadrature Amplitude Modulation; QAM) 신호를 각각 필터링을 수행하는 필터링부; 상기 필터링 된 상기 복수의 그룹에 포함된 QAM 신호를 시간 축에서 중첩하는 중첩부; 및 상기 중첩된 신호를 외부로 전송하는 통신부를 포함하는 것을 특징으로 한다.In addition, the transmission apparatus according to the present invention is a transmission apparatus in a filter bank based multicarrier (FBMC) communication system, at least two quadrature amplitude modulation (QAM) signal divided into a plurality of groups Filtering unit for performing the respective filtering; An overlapping unit overlapping QAM signals included in the filtered plurality of groups on a time axis; And a communication unit for transmitting the superimposed signal to the outside.
또한, 본 발명에 따른 수신 장치는, 필터뱅크 기반 다중 반송파(Filter Bank Multicarrier; FBMC) 통신 시스템에서의 수신 장치로, 신호를 수신하는 통신부; 상기 수신된 신호를 복수의 그룹으로 분할하여 각각 필터링을 수행하는 필터링부; 상기 필터링 된 결과를 주파수 축에서 등화하여 적어도 두 개의 직교 진폭 변조(Quadrature Amplitude Modulation; QAM) 신호를 복원하는 등화부를 포함하는 것을 특징으로 한다. In addition, the receiving apparatus according to the present invention, a filter bank based multi-carrier (Filter Bank Multicarrier (FBMC)) communication device in the receiving device, the communication unit for receiving a signal; A filtering unit dividing the received signal into a plurality of groups and performing filtering respectively; And an equalizer for equalizing the filtered result on the frequency axis to restore at least two Quadrature Amplitude Modulation (QAM) signals.
본 발명에 따른 QAM 신호 전송이 가능하게 하는 송수신 방법 및 장치는 필터링 분리에 의해 내적 간섭의 발생을 억제할 수 있다. The transmission and reception method and apparatus for enabling QAM signal transmission according to the present invention can suppress generation of internal interference by filtering separation.
또한, 본 발명에 따른 QAM 신호 전송이 가능하게 하는 송수신 방법 및 장치는 복소 신호(complex signal)의 처리가 가능하여 OFDM에서의 QAM 기반 기법을 FBMC에 그대로 적용하면서 MIMO와의 시스템과 결합이 용이한 효과를 갖는다. In addition, the transmission and reception method and apparatus for enabling the transmission of the QAM signal according to the present invention can process a complex signal (complex signal) can be easily combined with the MIMO system while applying the QAM-based technique in the OFDM as it is in the FBMC Has
도 1은 종래의 FBMC 통신 시스템에서의 송신 장치를 나타낸 블록도이다. 1 is a block diagram showing a transmission apparatus in a conventional FBMC communication system.
도 2는 종래의 FBMC 통신 시스템에서의 송신 장치 내에서 신호의 흐름을 구체적으로 나타낸 도면이다. 2 is a diagram illustrating in detail a signal flow in a transmitting apparatus in a conventional FBMC communication system.
도 3은 종래의 FBMC 통신 시스템에서의 필터링 과정을 주파수 축에서 나타낸 도면이다. 3 is a diagram illustrating a filtering process on a frequency axis in a conventional FBMC communication system.
도 4는 종래의 FBMC 통신 시스템에서의 수신 장치를 나타낸 블록도이다. 4 is a block diagram showing a receiving apparatus in a conventional FBMC communication system.
도 5는 본 발명에 따른 송신 장치를 나타낸 블록도이다. 5 is a block diagram showing a transmission apparatus according to the present invention.
도 6은 본 발명에 따른 송신 장치에서의 필터링 과정을 주파수 축에서 나타낸 도면이다.6 is a diagram illustrating a filtering process on a frequency axis in a transmission apparatus according to the present invention.
도 7은 주파수 축의 convolution 연산을 시간 축의 곱셈 연산으로 변형한 예를 나타낸 도면이다. 7 is a diagram illustrating an example of transforming a convolution operation of a frequency axis into a multiplication operation of a time axis.
도 8은 본 발명에 따른 QAM 신호의 convolution 연산을 시간 축의 곱셈 연산으로 변형한 예를 나타낸 도면이다. 8 is a diagram illustrating an example of transforming a convolution operation of a QAM signal into a multiplication operation of a time axis according to the present invention.
도 9는 본 발명에 따른 송신 장치에서 IFFT 출력 신호를 중첩하는 예를 도시한 도면이다. 9 is a diagram illustrating an example of overlapping IFFT output signals in a transmission apparatus according to the present invention.
도 10은 본 발명에 따른 수신 장치의 구성을 나타낸 블록도이다.10 is a block diagram showing the configuration of a receiving apparatus according to the present invention.
도 11은 본 발명에 따른 송신 장치 내에서 신호의 흐름을 구체적으로 나타낸 도면이다. 11 is a view showing in detail the flow of signals in the transmitting apparatus according to the present invention.
도 12는 연속된 FBMC 심볼들의 overlap & sum의 일 예를 나타낸 도면이다.12 is a diagram illustrating an example of overlap & sum of consecutive FBMC symbols.
도 13은 본 발명에 따른 수신 장치 내에서 신호의 흐름을 구체적으로 나타낸 도면이다. 13 is a view showing in detail the flow of the signal in the receiving apparatus according to the present invention.
도 14는 본 발명에 따른 송신 방법을 나타낸 순서도이다.14 is a flowchart illustrating a transmission method according to the present invention.
도 15는 본 발명에 따른 수신 방법을 나타낸 순서도이다.15 is a flowchart illustrating a receiving method according to the present invention.
본 발명에 따른 실시 예들은 송신 장치 및 수신 장치와 연계하여 설명된다. 송신 장치 및 수신 장치는 시스템, 가입자 유닛, 가입자국, 이동국, 모바일, 원격국, 원격 단말, 모바일 디바이스, 사용자 단말, 단말, 무선 통신 디바이스, 사용자 에이전트, 사용자 디바이스, 또는 사용자 장비(UE)로 지칭될 수 있다. 송신 장치 및 수신 장치는 셀룰러 전화, 개인 휴대 단말기(PDA), 무선 접속 능력을 갖는 핸드 헬드 디바이스, 컴퓨팅 디바이스 또는 무선 모뎀에 연결된 다른 처리 디바이스일 수 있다.Embodiments according to the present invention are described in connection with a transmitting device and a receiving device. The transmitting device and the receiving device are referred to as a system, subscriber unit, subscriber station, mobile station, mobile, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, user device, or user equipment (UE). Can be. The transmitting device and the receiving device may be cellular telephones, personal digital assistants (PDAs), handheld devices with wireless connection capabilities, computing devices or other processing devices connected to a wireless modem.
본 명세서에서 사용되는 기술적 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명의 사상을 한정하려는 의도가 아님을 유의해야 한다. 또한, 본 명세서에서 사용되는 기술적 용어는 본 명세서에서 특별히 다른 의미로 정의되지 않는 한, 본 발명이 속하는 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 의미로 해석되어야 하며, 과도하게 포괄적인 의미로 해석되거나, 과도하게 축소된 의미로 해석되지 않아야 한다. It is to be noted that the technical terms used herein are merely used to describe particular embodiments and are not intended to limit the spirit of the present invention. In addition, technical terms used herein should be interpreted as meanings generally understood by those of ordinary skill in the art to which the present invention belongs, unless specifically defined otherwise in the present specification, and excessively comprehensive It should not be construed in meaning or in excessively reduced sense.
또한, 본 명세서에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "구성된다." 또는 "포함한다." 등의 용어는 명세서상에 기재된 여러 구성 요소들, 또는 여러 단계를 반드시 모두 포함하는 것으로 해석되지 않아야 한다. Also, the singular forms used herein include the plural forms unless the context clearly indicates otherwise. In this specification, "configured." Or "includes." And the like should not be construed as including all of the various elements or steps described in the specification.
이하 본 발명의 바람직한 실시 예를 첨부된 도면을 참조하여 설명한다. 그리고, 본 발명을 설명함에 있어서, 관련된 공지기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단된 경우 그 상세한 설명은 생략할 것이다. 또한, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.Hereinafter, exemplary embodiments of the present invention will be described with reference to the accompanying drawings. In the following description of the present invention, detailed descriptions of related well-known functions or configurations will be omitted if it is determined that the detailed description of the present invention may unnecessarily obscure the subject matter of the present invention. In addition, terms to be described below are terms defined in consideration of functions in the present invention, which may vary according to intention or custom of a user or an operator. Therefore, the definition should be made based on the contents throughout the specification.
도 5는 본 발명에 따른 송신 장치의 구성을 나타낸 블록도이다. 5 is a block diagram showing the configuration of a transmission apparatus according to the present invention.
도 5를 참조하면, 본 발명에 따른 송신 장치(300)는 복수 개의 S/P 변환기(311, 312), 복수 개의 IFFT(321, 322) 및 복수 개의 weighted sum 블록(331, 332)를 포함하여 구성된다. 복수 개의 S/P 변환기(311, 312), 복수 개의 IFFT(321, 322) 및 복수 개의 weighted sum 블록(331, 332)은 QAM 신호에 대한 필터링 동작에 관여할 수 있다. 따라서, 복수 개의 S/P 변환기(311, 312), 복수 개의 IFFT(321, 322) 및 복수 개의 weighted sum 블록(331, 332)은 각각 또는 결합하여 필터링부로 명명될 수 있다. Referring to FIG. 5, the transmission apparatus 300 according to the present invention includes a plurality of S / P converters 311 and 312, a plurality of IFFTs 321 and 322, and a plurality of weighted sum blocks 331 and 332. It is composed. The plurality of S / P converters 311 and 312, the plurality of IFFTs 321 and 322, and the plurality of weighted sum blocks 331 and 332 may participate in the filtering operation on the QAM signal. Accordingly, the plurality of S / P converters 311 and 312, the plurality of IFFTs 321 and 322, and the plurality of weighted sum blocks 331 and 332 may be named as filtering units, respectively or in combination.
본 발명에 따른 송신 장치(300)는, 도 5 및 도 6에 도시된 바와 같이, M개의 QAM 신호를 제1 그룹과 제2 그룹으로 나눈 뒤, 각 그룹의 필터링을 별도로 수행한다. 이때, 송신 장치(300)는 인접한 QAM 신호가 서로 다른 그룹에 속하도록 QAM 신호를 분류할 수 있다. 예를 들어, 송신 장치(300)는 M개의 QAM 신호를 짝수 인덱스를 갖는 신호와 홀수 인덱스를 갖는 신호의 두 그룹으로 나눌 수 있다. 이로써, 본원발명에 따른 송신 장치(300)는 도 6과 같이 인접한 QAM 신호 간 내적 간섭이 발생하는 것을 방지한다. As shown in FIG. 5 and FIG. 6, the transmitting apparatus 300 according to the present invention divides the M QAM signals into a first group and a second group, and performs filtering of each group separately. In this case, the transmitter 300 may classify the QAM signals so that adjacent QAM signals belong to different groups. For example, the transmitter 300 may divide the M QAM signals into two groups, a signal having an even index and a signal having an odd index. As a result, the transmitter 300 according to the present invention prevents internal interference between adjacent QAM signals as shown in FIG. 6.
본 발명의 다양한 실시 예에서, 각 그룹의 필터링을 별도로 수행하는 경우, 각 그룹에 적용되는 필터는 서로 복소 관계를 갖도록 구성될 수 있다. 예를 들어, 제1 그룹과 제2 그룹의 필터링을 별도로 수행하는 경우, 제1 그룹은 제1 필터를 이용하여, 제2 그룹은 제2 필터를 이용하여 필터링이 수행되며, 제1 필터와 제2 필터는 복소 관계를 갖도록 구성될 수 있다. 즉, 제2 그룹에 적용되는 필터의 필터 계수들은, 제1 그룹에 적용되는 필터의 필터 계수들에 대한 복소 값으로 구성될 수 있다. 일 실시 예에서, 제1 그룹에 적용되는 필터의 계수들이 실수 도메인(real domain)으로 구성된 경우, 제2 그룹에 적용되는 필터의 계수들은 복소수 도메인(complex domain)으로 구성될 수 있다. 즉, 제1 그룹에 적용되는 제1 필터가
Figure PCTKR2014008949-appb-I000001
로 구성되는 실수 도메인 필터 계수를 갖는 경우, 제2 그룹에 적용되는 제2 필터는
Figure PCTKR2014008949-appb-I000002
로 구성되는 복소수 도메인 필터 계수를 가질 수 있다.
According to various embodiments of the present disclosure, when filtering each group separately, filters applied to each group may be configured to have a complex relationship with each other. For example, when filtering the first group and the second group separately, the first group is filtered using the first filter and the second group is filtered using the second filter. The two filters can be configured to have a complex relationship. That is, the filter coefficients of the filter applied to the second group may be composed of complex values of the filter coefficients of the filter applied to the first group. In one embodiment, when the coefficients of the filter applied to the first group are configured with a real domain, the coefficients of the filter applied to the second group may be configured with a complex domain. That is, the first filter applied to the first group
Figure PCTKR2014008949-appb-I000001
If you have a real domain filter coefficient consisting of the second filter applied to the second group
Figure PCTKR2014008949-appb-I000002
It may have a complex domain filter coefficient consisting of.
또한, 본 발명에 따르면, 송신 장치(300)는 분리된 필터링을 IFFT 이전에서 주파수 확산 방법으로 수행할 수도 있고, 복잡도가 증가하는 것을 방지하기 위해 일 실시 예에서 IFFT 이후 시간 축에서 컨볼루션(convolution)이 아닌 곱셈을 통해 필터링을 수행할 수 있다.이를 구체적으로 설명하면 다음과 같다. In addition, according to the present invention, the transmitting apparatus 300 may perform separate filtering by a frequency spreading method before the IFFT, and in one embodiment, convolution on the time axis after the IFFT in order to prevent the complexity from increasing. Filtering can be performed by multiplication rather than by).
도 6에서 보여지는 주파수 축에서 확산 후 곱셈을 이용한 기존 필터링 과정은 도 7과 같이 QAM 신호 사이에 0이 삽입된 신호와 하나의 QAM 신호에 대한 필터 계수와의 컨볼루션으로 재해석될 수 있다. 이때, 필터링될 원래 QAM 신호들은 신호 사이에 삽입된 0으로 인해 시간 축으로 변형할 경우 원래 신호의 IFFT 출력 신호가 K-1번 반복된 형태를 갖는다. 따라서, 필터링 과정은, 도 7에 도시된 바와 같이, M개의 신호에 대한 IFFT 출력 데이터와, KM개의 시간 축 필터 계수를 블록단위로 weighted sum 연산하는 것으로 재해석할 수 있다. 도 7은 K가 4인 경우의 예를 도시하였다. The existing filtering process using multiplication after spreading on the frequency axis shown in FIG. 6 may be reinterpreted as a convolution of a signal having 0 inserted between QAM signals and filter coefficients for one QAM signal. In this case, when the original QAM signals to be filtered are transformed into the time axis due to zero interpolation between the signals, the IFFT output signal of the original signal is repeated K-1 times. Therefore, the filtering process may be reinterpreted by calculating weighted sum of IFFT output data for the M signals and KM time-axis filter coefficients in block units, as shown in FIG. 7. 7 shows an example where K is four.
도 8을 참조하면, M개의 QAM 신호들을 짝수 인덱스를 갖는 M/2개의 QAM 신호들과 홀수 인덱스를 갖는 M/2개의 QAM 신호들 두 그룹으로 분리할 경우, 도 7에서 신호 사이에 K-1개의 0이 삽입되는 것과 달리, 신호 사이에 2K-1개의 0이 삽입된다. 따라서, IFFT 연산을 컨볼루션 법칙으로 재해석하면, IFFT 출력 신호는 신호의 IFFT 출력 블록이 2K-1번 반복되는 형태를 갖고, 크기는 M/2이 된다. 송신 장치(300)는 IFFT 출력 신호에 KM개의 시간 축 필터 계수를 곱하여 필터링을 수행할 수 있다. 이때, 곱셈 연산을 수행하는 블록을 곱셈기라 명명할 수 있다. Referring to FIG. 8, when M QAM signals are divided into two groups, M / 2 QAM signals having an even index and M / 2 QAM signals having an odd index, K-1 between signals in FIG. 7. Unlike the 0 zeros, 2K-1 zeros are inserted between the signals. Therefore, if the IFFT operation is reinterpreted as the convolution law, the IFFT output signal has a form in which the IFFT output block of the signal is repeated 2K-1 times, and the size is M / 2. The transmitter 300 may perform filtering by multiplying the IFFT output signal by KM time-axis filter coefficients. In this case, a block that performs a multiplication operation may be called a multiplier.
또한, 본원발명에서 송신 장치(300)는 overlap/sum 블록(340) 및 P/S 변환기(350)를 통해 시간 축에서 2K개 블록 단위의 overlap/sum 연산을 수행한다. 도 9를 참조하면, 송신 장치는 도 6에서 제1 그룹 및 제2 그룹에 대한 IFFT 출력 블록, 예를 들어 짝수(even) 신호와 홀수(odd) 신호에 대한 IFFT 출력 블록을 도 9에 도시된 바와 같이 중첩하여 전송한다. 특히 본 발명의 실시 예에서, 송신 장치(300)는 IFFT 출력 신호 중첩 시, 제1 그룹의 IFFT 출력 신호 및 제2 그룹의 IFFT 출력 신호 중 어느 하나를 역순으로 정렬하여 중첩시킨다. overlap/sum 블록(340)은 일 예에서 중첩부로 명명될 수 있다. FBMC 송수신 구조에서 필터 간의 직교성을 활용하여 도 9와 같이 중첩 전송하는 경우 각 짝수 신호와 홀수 신호는 서로 영향을 주지 않기 때문에 QAM 신호를 전송할 수 있다. In addition, in the present invention, the transmission device 300 performs an overlap / sum operation of a unit of 2K blocks on the time axis through the overlap / sum block 340 and the P / S converter 350. Referring to FIG. 9, the transmitting apparatus shows an IFFT output block for the first group and the second group in FIG. 6, for example, an IFFT output block for the even signal and the odd signal. The transmission is overlapped as shown. In particular, in an embodiment of the present invention, when the IFFT output signal overlaps, the transmitting device 300 arranges and overlaps any one of the IFFT output signal of the first group and the IFFT output signal of the second group in reverse order. The overlap / sum block 340 may be referred to as an overlap in one example. In the FBMC transmission / reception scheme, when the overlapping transmission is performed using the orthogonality between the filters as shown in FIG. 9, since the even and odd signals do not affect each other, the QAM signal may be transmitted.
중첩된 신호는 송신 장치의 통신부를 통하여 수신 장치로 전송될 수 있다. The superimposed signal may be transmitted to the receiving device through the communication unit of the transmitting device.
도 10은 본 발명에 따른 수신 장치의 구성을 나타낸 블록도이다.10 is a block diagram showing the configuration of a receiving apparatus according to the present invention.
도 10을 참조하면, 본 발명에 따른 수신 장치(400)는 통신부를 통하여 수신 신호를 획득한다. 수신 신호는 S/P 변환기(410), weighted sum 블록(421, 422) 및 FFT 변환기(431, 432)를 거친 후, one-tap 등화기(equalizer)(441, 442)를 통해 주파수 축에서 one-tap 등화 과정을 거친다. 이후, 수신 신호는 P/S 변환기(451, 452)를 거쳐 최종 신호로 복원된다. Referring to FIG. 10, the receiving device 400 according to the present invention obtains a received signal through a communication unit. The received signal passes through the S / P converter 410, the weighted sum blocks 421 and 422, and the FFT converters 431 and 432, and then through the one- tap equalizer 441 and 442 one on the frequency axis. Tap equalization The received signal is then restored to the final signal via the P / S converters 451 and 452.
이하에서는, 상술한 본 발명에 따른 송신 장치 및 수신 장치 내에서의 구체적인 신호 변환 과정을 설명하도록 한다. Hereinafter, a detailed signal conversion process in the transmitter and the receiver according to the present invention will be described.
도 11은 본 발명에 따른 송신 장치 내에서 신호의 흐름을 구체적으로 나타낸 도면이다. 11 is a view showing in detail the flow of signals in the transmitting apparatus according to the present invention.
도 11을 참조하면, 전송 신호 d(n)은 M개의 신호들로 구성된다. 본 발명에 따르면, 신호는 제1 그룹 및 제2 그룹으로 분류된다. 이에 따라 각 그룹에 포함된 신호 d1(n) 및 d2(n)는 M/2의 크기를 갖는다. 본 발명의 실시 예에서는 신호들 중 인접한 신호를 서로 다른 그룹으로 분류한다. 예를 들어, 신호는 짝수 인덱스를 갖는 신호(이하 even 신호)로 구성된 제1 그룹 및 홀수 인덱스를 갖는 신호(이하 odd 신호)로 구성된 제2 그룹으로 분류될 수 있다. Referring to FIG. 11, the transmission signal d (n) is composed of M signals. According to the invention, the signal is classified into a first group and a second group. Accordingly, the signals d 1 (n) and d 2 (n) included in each group have a size of M / 2. In an embodiment of the present invention, adjacent signals are classified into different groups. For example, the signal may be classified into a first group consisting of a signal having an even index (hereinafter, even signal) and a second group consisting of a signal having an odd index (hereinafter, an odd signal).
제1 그룹 및 제2 그룹에 포함된 신호는 각각 별개의 S/P 변환 및 IFFT 변환 과정을 거쳐, 도 6에서와 같이 시간 축 데이터로 변환된다. 도 6은 각각 even 신호(상)와 odd 신호(하)를 분리하여 필터링을 수행하는 예를 도시한 도면이다. 도 6을 참조하면, 인접한 신호가 서로 다른 그룹으로 분류되는 경우, 분류된 신호는 각각 별개로 S/P 변환 및 IFFT 변환 과정을 거침으로써, 도 3에서와 같은 내적 간섭이 발생하지 않게 된다. Signals included in the first group and the second group are transformed into time axis data as shown in FIG. 6 through separate S / P and IFFT conversion processes, respectively. 6 is a diagram illustrating an example in which filtering is performed by separating the even signal (upper) and the odd signal (lower), respectively. Referring to FIG. 6, when adjacent signals are classified into different groups, the classified signals undergo S / P conversion and IFFT conversion, respectively, so that internal interference as shown in FIG. 3 does not occur.
도 11의 IFFT 변환에 의한 출력 신호는 첫 번째 메모리로부터 2K-2 번째 메모리에 순서대로 저장된다. 이후, 메모리에 저장된 신호는 KM개의 시간 축 필터 계수와 M/2 블록 단위 더하기 연산을 통해 중첩되고, P/S를 거쳐 외부로 송신된다. 본 발명의 실시 예에서, 시간 축 필터 계수는 K값에 따라서 서로 다른 값을 가질 수 있다. The output signal by the IFFT conversion of FIG. 11 is stored in order from the first memory to the 2K-2nd memory. Thereafter, the signals stored in the memory are superimposed by KM time-axis filter coefficients and M / 2 block unit addition operations and transmitted to the outside via P / S. In an embodiment of the present invention, the time axis filter coefficients may have different values according to K values.
도 12는 연속된 FBMC 심볼들의 overlap & sum의 일 예를 나타낸 도면이다.12 is a diagram illustrating an example of overlap & sum of consecutive FBMC symbols.
도 12를 참조하면, 가로 축은 시간 축을 의미하며. 하나의 서브 블록은 M/2개의 QAM 신호에 대하여 M/2-IFFT를 적용한 신호를 나타낸다. M/2-IFFT가 적용된 M/2개의 QAM 신호 2K-1번 확장되어 KM개의 시간 축 필터 계수와 곱해 진다. Odd 신호의 경우, 곱셈 이후의 2K개 블록들은 부호가 (- + - + ...)로 바뀌며 역순으로 재배치된다. 이에 따라 동일한 세로 열에 배치된 K개의 FBMC 심볼이 서로 overlap되고 최종적으로 sum되어 수신 측으로 전송된다.Referring to Figure 12, the horizontal axis means the time axis. One sub block represents a signal to which M / 2-IFFT is applied to M / 2 QAM signals. The M / 2 QAM signals with M / 2-IFFT are extended 2K-1 times and multiplied by the KM time axis filter coefficients. For the Odd signal, the 2K blocks after multiplication are reordered in reverse order with the sign changed to (-+-+ ...). Accordingly, the K FBMC symbols arranged in the same vertical column overlap each other and are finally summed and transmitted to the receiver.
도 13은 본 발명에 따른 수신 장치 내에서 신호의 흐름을 구체적으로 나타낸 도면이다. 13 is a view showing in detail the flow of the signal in the receiving apparatus according to the present invention.
도 13을 참조하면, 본 발명에 따른 수신 장치 내에서의 신호 흐름은 등화기를 거치기 전까지는 송신 장치와 대칭되는 구조를 갖는다. 구체적으로, 수신 장치는 수신된 크기 M의 신호를 순서대로 메모리에 저장한다. 이후 수신 장치는 KM 개의 시간 축 필터계수와 각 메모리에 저장된 신호 간 블록 단위 곱 연산을 수행하고, 블록 단위 더하기 연산을 통하여 크기 M의 FFT 입력 신호를 생성한다. 이후 수신 장치는 크기 M/2의 FFT 연산을 수행하고 주파수 축에서의 one-tap 등화기를 사용하여 원 신호를 복원한다.Referring to FIG. 13, the signal flow in the receiving apparatus according to the present invention has a structure symmetrical with the transmitting apparatus until it passes through the equalizer. Specifically, the receiving device stores the received signals of size M in order in the memory. Thereafter, the receiving device performs a block unit multiplication operation between the KM time axis filter coefficients and the signals stored in each memory, and generates an FFT input signal of size M through a block unit add operation. The receiving device then performs an FFT operation of size M / 2 and restores the original signal using a one-tap equalizer on the frequency axis.
도 14는 본 발명에 따른 송신 방법을 나타낸 순서도이다.14 is a flowchart illustrating a transmission method according to the present invention.
도 14를 참조하면, 먼저 송신 장치는 적어도 두 개의 변조 신호를 복수의 그룹으로 분할한다(1401). 송신 장치는 M개의 변조 신호를 복수의 그룹, 예를 들어 제1 그룹과 제2 그룹으로 나눌 수 있다. 이때, 송신 장치는 인접한 변조 신호가 서로 다른 그룹에 속하도록 그룹을 나눌 수 있다. 일 실시 예에서, 송신 장치는 짝수 인덱스를 갖는 변조 신호와 홀수 인덱스를 갖는 변조 신호의 두 그룹으로 변조 신호를 나눌 수 있다. Referring to FIG. 14, first, a transmission apparatus divides at least two modulated signals into a plurality of groups (1401). The transmitting apparatus may divide the M modulated signals into a plurality of groups, for example, a first group and a second group. In this case, the transmitting device may divide the group such that adjacent modulated signals belong to different groups. According to an embodiment, the transmitting apparatus may divide a modulated signal into two groups, a modulated signal having an even index and a modulated signal having an odd index.
다음으로, 송신 장치는 복수의 그룹에 대하여 각각 필터링을 수행한다(1403). 송신 장치는 복수의 그룹 각각에 포함된 변조 신호에 대하여 역푸리에 변환을 수행하고(1405), 역푸리에 변환된 출력 신호를 MK개로 확장한 후(1407), 확장된 MK개의 출력 신호와 시간 축 필터 계수를 곱함으로써(1409) 필터링을 수행한다. Next, the transmitting apparatus performs filtering on each of the plurality of groups (1403). The transmitting apparatus performs inverse Fourier transform on the modulated signals included in each of the plurality of groups (1405), expands the inverse Fourier transformed output signals to MK (1407), and then expands the MK output signals and the time axis filter. Filtering is performed by multiplying the coefficients (1409).
이후, 송신 장치는 필터링 된 각 그룹의 변조 신호를 서로 중첩한다(1411). 일 실시 예에서, 송신 장치는 복수의 그룹 중 적어도 하나의 그룹에 대하여, 해당 그룹에 포함된 변조 신호를 역순으로 정렬하고(1413), 복수의 그룹에 포함된 필터링 된 변조 신호들을 상호 중첩할 수 있다(1415). Thereafter, the transmitting apparatus overlaps each of the filtered modulated signals of each group (1411). According to an embodiment of the present disclosure, the transmitting apparatus may sort the modulated signals included in the group in reverse order (1413) for at least one group of the plurality of groups, and overlap the filtered modulated signals included in the plurality of groups. There is (1415).
송신 장치는 최종적으로 중첩된 신호를 송신한다(1417). The transmitting device finally transmits the superimposed signal (1417).
도 15는 본 발명에 따른 수신 방법을 나타낸 순서도이다. 15 is a flowchart illustrating a receiving method according to the present invention.
도 15를 참조하면, 먼저 수신 장치는 신호를 수신한다(1501).Referring to FIG. 15, a receiving device first receives a signal (1501).
다음으로 수신 장치는 수신된 신호를 복수의 그룹으로 분할한다(1503). 수신 장치는 분할된 복수의 그룹에 대하여 각각 역 필터링을 수행한다(1505). 즉, 수신 장치는 복수의 그룹 각각에 포함된 수신 신호와 시간 축 필터 계수를 곱하고(1507), 필터 계수가 곱해진 출력 신호에 푸리에 변환을 수행한다(1509). Next, the receiving apparatus divides the received signal into a plurality of groups (1503). The receiving device performs inverse filtering on the plurality of divided groups, in operation 1505. That is, the receiving device multiplies the received signals included in each of the plurality of groups by the time axis filter coefficients (1507), and performs a Fourier transform on the output signal multiplied by the filter coefficients (1509).
상기와 같이 수신 장치는 푸리에 변환된 출력 신호를 복원된 신호로 처리한다. As described above, the receiving apparatus processes the Fourier transformed output signal as a restored signal.
상술한 본 발명의 특징에 따르면, 송신 장치는 QAM 신호를 복수의 그룹으로 분할하여 각 그룹에 대한 필터링 과정을 분리시키고, 필터의 직교성을 활용한 중첩 전송을 통하여 QAM 신호를 전송한다. 또한, IFFT 및 FFT의 반복 특성을 활용하여 시간 축에서 weighted sum을 통해 필터링을 구현함으로써 복잡도를 낮출 수 있다.According to the above-described feature of the present invention, the transmitting apparatus divides the QAM signal into a plurality of groups to separate the filtering process for each group, and transmits the QAM signal through overlapping transmission utilizing the orthogonality of the filter. The complexity of IFFT and FFT can also be used to implement filtering through weighted sum on the time axis.
본 명세서와 도면에 개시된 실시 예들은 본 발명의 내용을 쉽게 설명하고, 이해를 돕기 위해 특정 예를 제시한 것일 뿐이며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 따라서 본 발명의 범위는 여기에 개시된 실시 예들 이외에도 본 발명의 기술적 사상을 바탕으로 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The embodiments disclosed in the specification and the drawings are only specific examples to easily explain the contents of the present invention and assist in understanding, and are not intended to limit the scope of the present invention. Therefore, the scope of the present invention should be construed that all changes or modifications derived based on the technical spirit of the present invention are included in the scope of the present invention in addition to the embodiments disclosed herein.

Claims (32)

  1. 필터뱅크 기반 다중 반송파(Filter Bank Multicarrier; FBMC) 통신 시스템에서의 송신 방법으로, A transmission method in a filter bank multicarrier (FBMC) communication system,
    적어도 두 개의 변조 신호 (modulated signal)를 복수의 그룹으로 분할하는 단계; Dividing at least two modulated signals into a plurality of groups;
    상기 복수의 그룹에 대하여 각각 필터링을 수행하는 단계; 및Performing filtering on the plurality of groups, respectively; And
    상기 필터링 된 상기 복수의 그룹에 포함된 변조 신호를 시간 축에서 중첩하여 전송하는 단계를 포함하는 것을 특징으로 하는 송신 방법.And transmitting the modulated signals included in the filtered plurality of groups overlapping each other on a time axis.
  2. 제1항에 있어서, 상기 복수의 그룹으로 분할하는 단계는,The method of claim 1, wherein the dividing into a plurality of groups comprises:
    인접한 변조 신호가 서로 다른 그룹에 속하도록 분할하는 단계를 포함하는 것을 특징으로 하는 송신 방법.Dividing adjacent modulated signals into different groups.
  3. 제1항에 있어서, 상기 복수의 그룹으로 분할하는 단계는,The method of claim 1, wherein the dividing into a plurality of groups comprises:
    짝수 인덱스를 갖는 변조 신호로 구성되는 제1 그룹 및 홀수 인덱스를 갖는 변조 신호로 구성되는 제2 그룹으로 분할하는 단계를 포함하는 것을 특징으로 하는 송신 방법. And dividing into a first group consisting of a modulated signal having an even index and a second group consisting of a modulating signal having an odd index.
  4. 제1항에 있어서, 상기 필터링을 수행하는 단계는,The method of claim 1, wherein performing the filtering comprises:
    상기 복수의 그룹에 대하여 각각 역푸리에 변환을 수행하는 단계; 및Performing inverse Fourier transform on each of the plurality of groups; And
    상기 역푸리에 변환된 출력 신호와 시간 축 필터 계수를 이용하여 곱셈 연산을 수행하는 단계를 포함하는 것을 특징으로 하는 송신 방법.And performing a multiplication operation using the inverse Fourier transformed output signal and a time axis filter coefficient.
  5. 제4항에 있어서, 상기 곱셈 연산을 수행하는 단계는,The method of claim 4, wherein performing the multiplication operation,
    각각의 그룹에 대한 상기 역푸리에 변환된 출력 신호 M/2개를 M/2*2K개로 확장시키는 단계; 및Expanding M / 2 of the inverse Fourier transformed output signals for each group to M / 2 * 2K; And
    상기 M/2*2K개의 출력 신호에 M/2*2K의 시간 축 필터 계수를 곱하는 단계를 포함하는 것을 특징으로 하는 송신 방법.And multiplying the M / 2 * 2K output signals by a time axis filter coefficient of M / 2 * 2K.
  6. 제5항에 있어서, 상기 확장시키는 단계는,The method of claim 5, wherein the expanding step,
    상기 각각의 그룹에 포함된 M/2개의 변조 신호에 대한 역푸리에 변환 출력 신호를 2K번 반복하여 확장시키는 단계를 포함하는 것을 특징으로 하는 송신 방법.And repeatedly extending the inverse Fourier transform output signal for the M / 2 modulated signals included in each group by 2K times.
  7. 제5항에 있어서, 상기 확장시키는 단계는,The method of claim 5, wherein the expanding step,
    상기 역푸리에 변환된 출력 신호 M/2개 사이에 2K-1개의 0 심볼을 삽입하는 단계를 포함하는 것을 특징으로 하는 송신 방법. And inserting 2K-1 zero symbols between the M / 2 of the inverse Fourier transformed output signals.
  8. 제1항에 있어서, 상기 중첩하여 전송하는 단계는,The method of claim 1, wherein the step of transmitting in a superimposed manner,
    상기 필터링 된 상기 복수의 그룹 중 적어도 하나의 그룹에 포함된 변조 신호를 역순으로 정렬하는 단계; 및Sorting the modulated signals included in at least one of the filtered plurality of groups in reverse order; And
    상기 역순으로 정렬된 적어도 하나의 그룹에 포함된 변조 신호와 나머지 그룹에 포함된 변조 신호를 중첩하는 단계를 포함하는 것을 특징으로 하는 송신 방법.And superposing a modulation signal included in the at least one group arranged in the reverse order and a modulation signal included in the remaining group.
  9. 제1항에 있어서, 상기 변조 신호는,The method of claim 1, wherein the modulated signal,
    직교 진폭 변조(Quadrature Amplitude Modulation; QAM) 신호인 것을 특징으로 하는 송신 방법. Transmission method characterized in that the Quadrature Amplitude Modulation (QAM) signal.
  10. 제1항에 있어서, 상기 복수의 그룹으로 분할하는 단계는,The method of claim 1, wherein the dividing into a plurality of groups comprises:
    상기 적어도 두 개의 변조 신호를 제1 그룹 및 제2 그룹으로 분할하는 단계를 포함하고,Dividing the at least two modulated signals into a first group and a second group,
    상기 필터링을 수행하는 단계는, Performing the filtering,
    제1 필터 및 제2 필터를 이용하여 상기 제1 그룹 및 상기 제2 그룹에 대하여 각각 필터링을 수행하는 단계를 포함하는 것을 특징으로 하는 송신 방법. And performing filtering on the first group and the second group by using a first filter and a second filter, respectively.
  11. 제1항에 있어서, 상기 복수의 그룹은,The method of claim 1, wherein the plurality of groups,
    동일한 수의 변조 신호를 포함하는 것을 특징으로 하는 송신 방법. Transmitting the same number of modulated signals.
  12. 필터뱅크 기반 다중 반송파(Filter Bank Multicarrier; FBMC) 통신 시스템에서의 수신 방법으로, A reception method in a filter bank based multicarrier (FBMC) communication system,
    수신된 신호를 복수의 그룹으로 분할하는 단계;Dividing the received signal into a plurality of groups;
    상기 복수의 그룹에 대하여 각각 필터링을 수행하는 단계; 및Performing filtering on the plurality of groups, respectively; And
    상기 필터링 된 결과를 주파수 축에서 등화하여 적어도 두 개의 변조 신호를 복원하는 단계를 포함하는 것을 특징으로 하는 수신 방법.Recovering at least two modulated signals by equalizing the filtered result on a frequency axis.
  13. 제12항에 있어서, 상기 복수의 그룹으로 분할하는 단계는,The method of claim 12, wherein the dividing into a plurality of groups comprises:
    짝수 인덱스를 갖는 수신 신호로 구성되는 제1 그룹 및 홀수 인덱스를 갖는 수신 신호로 구성되는 제2 그룹으로 분할하는 단계를 포함하는 것을 특징으로 하는 수신 방법. And dividing into a first group consisting of a received signal having an even index and a second group consisting of a received signal having an odd index.
  14. 제12항에 있어서, 상기 필터링을 수행하는 단계는,The method of claim 12, wherein performing the filtering comprises:
    각각의 그룹에 포함된 수신 신호와 시간 축 필터 계수를 이용하여 곱셈 연산을 수행하는 단계; 및Performing a multiplication operation using the received signal and the time axis filter coefficients included in each group; And
    상기 곱셈 연산된 출력 신호를 푸리에 변환하는 단계를 포함하는 것을 특징으로 하는 수신 방법. Fourier transforming the multiplied output signal.
  15. 제12항에 있어서, 상기 변조 신호는,The method of claim 12, wherein the modulated signal,
    직교 진폭 변조(Quadrature Amplitude Modulation; QAM) 신호인 것을 특징으로 하는 수신 방법. Receive method characterized in that the Quadrature Amplitude Modulation (QAM) signal.
  16. 제12항에 있어서, 상기 복수의 그룹은,The method of claim 12, wherein the plurality of groups,
    동일한 수의 변조 신호를 포함하는 것을 특징으로 하는 수신 방법. Receiving method comprising the same number of modulated signals.
  17. 필터뱅크 기반 다중 반송파(Filter Bank Multicarrier; FBMC) 통신 시스템에서의 송신 장치로, A transmission device in a filter bank based multi-carrier (FBMC) communication system,
    복수의 그룹으로 분할된 적어도 두 개의 변조 신호를 각각 필터링을 수행하는 필터링부; A filtering unit for filtering at least two modulated signals divided into a plurality of groups;
    상기 필터링 된 상기 복수의 그룹에 포함된 변조 신호를 시간 축에서 중첩하는 중첩부; 및An overlapping unit overlapping the modulated signals included in the filtered plurality of groups on a time axis; And
    상기 중첩된 신호를 외부로 전송하는 통신부를 포함하는 것을 특징으로 하는 송신 장치.And a communication unit for transmitting the superimposed signal to the outside.
  18. 제17항에 있어서, 상기 적어도 하나의 변조 신호는,The method of claim 17, wherein the at least one modulated signal,
    인접한 변조 신호가 서로 다른 그룹에 속하도록 분할되는 것을 하는 특징으로 하는 송신 장치.And wherein adjacent modulated signals are divided so that they belong to different groups.
  19. 제17항에 있어서, 상기 적어도 하나의 변조 신호는,The method of claim 17, wherein the at least one modulated signal,
    짝수 인덱스를 갖는 변조 신호로 구성되는 제1 그룹 및 홀수 인덱스를 갖는 변조 신호로 구성되는 분할되는 것을 특징으로 하는 송신 장치. And a first group consisting of modulated signals having an even index and a modulating signal having an odd index.
  20. 제17항에 있어서, 상기 필터링부는,The method of claim 17, wherein the filtering unit,
    상기 복수의 그룹에 대하여 각각 역푸리에 변환을 수행하는 역푸리에 변환기; 및An inverse Fourier transformer for performing inverse Fourier transform on each of the plurality of groups; And
    상기 역푸리에 변환부의 출력 신호와 시간 축 필터 계수를 이용하여 곱셈 연산을 수행하는 곱셈기를 포함하는 것을 특징으로 하는 송신 장치. And a multiplier for performing a multiplication operation by using the output signal of the inverse Fourier transform unit and a time axis filter coefficient.
  21. 제20항에 있어서, 상기 곱셈기는, The method of claim 20, wherein the multiplier,
    각각의 그룹에 대한 상기 역푸리에 변환부의 출력 신호 M/2개를 M/2*2K개로 확장시키고, 상기 M/2*2K개의 출력 신호에 M/2*2K개의 시간 축 필터 계수를 곱하는 것을 특징으로 하는 송신 장치.M / 2 output signals of the inverse Fourier transform unit for each group are expanded to M / 2 * 2K, and the M / 2 * 2K output signals are multiplied by M / 2 * 2K time axis filter coefficients. Transmission device.
  22. 제21항에 있어서, 상기 곱셈기는, The method of claim 21, wherein the multiplier,
    상기 각각의 그룹에 포함된 M/2개의 QAM 신호에 대한 역푸리에 변환 출력 신호를 2K번 반복하여 확장시키는 것을 특징으로 하는 송신 장치. And inversely extending an inverse Fourier transform output signal for the M / 2 QAM signals included in each group by 2K times.
  23. 제21항에 있어서, 상기 곱셈기는,The method of claim 21, wherein the multiplier,
    상기 역푸리에 변환된 출력 신호 M/2개 사이에 2K-1개의 0 심볼을 삽입하여 상기 역푸리에 변환부의 출력 신호를 확장하는 것을 특징으로 하는 송신 장치.And a 2K-1 zero symbol is inserted between the M / 2 of the inverse Fourier transformed output signals to expand the output signal of the inverse Fourier transform unit.
  24. 제17항에 있어서, 상기 중첩부는,The method of claim 17, wherein the overlapping portion,
    상기 필터링 된 상기 복수의 그룹 중 적어도 하나의 그룹에 포함된 변조 신호를 역순으로 정렬하고, 상기 역순으로 정렬된 적어도 하나의 그룹에 포함된 변조 신호와 나머지 그룹에 포함된 변조 신호를 중첩하는 것을 특징으로 하는 송신 장치.Modulating signals included in at least one group of the filtered plurality of groups in reverse order, and overlapping modulation signals included in the at least one group arranged in the reverse order and modulation signals included in the remaining groups Transmission device.
  25. 제17항에 있어서, 상기 변조 신호는,The method of claim 17, wherein the modulated signal,
    직교 진폭 변조(Quadrature Amplitude Modulation; QAM) 신호인 것을 특징으로 하는 송신 장치. Transmitter characterized in that the Quadrature Amplitude Modulation (QAM) signal.
  26. 제17항에 있어서, 상기 필터링부는,The method of claim 17, wherein the filtering unit,
    상기 적어도 두 개의 변조 신호를 제1 그룹 및 제2 그룹으로 분할하고, 제1 필터 및 제2 필터를 이용하여 상기 제1 그룹 및 상기 제2 그룹에 대하여 각각 필터링을 수행하는 것을 특징으로 하는 송신 장치. And transmitting the at least two modulated signals into a first group and a second group, and filtering the first group and the second group by using a first filter and a second filter, respectively. .
  27. 제17항에 있어서, 상기 복수의 그룹은,The method of claim 17, wherein the plurality of groups,
    동일한 수의 변조 신호를 포함하는 것을 특징으로 하는 송신 장치. And a transmission device comprising the same number of modulated signals.
  28. 필터뱅크 기반 다중 반송파(Filter Bank Multicarrier; FBMC) 통신 시스템에서의 수신 장치로, A receiver for a filter bank based multi-carrier (FBMC) communication system,
    신호를 수신하는 통신부; Communication unit for receiving a signal;
    상기 수신된 신호를 복수의 그룹으로 분할하여 각각 필터링을 수행하는 필터링부; A filtering unit dividing the received signal into a plurality of groups and performing filtering respectively;
    상기 필터링 된 결과를 주파수 축에서 등화하여 적어도 두 개의 변조 신호를 복원하는 등화부를 포함하는 것을 특징으로 하는 수신 장치.And an equalizer for recovering at least two modulated signals by equalizing the filtered result on the frequency axis.
  29. 제28항에 있어서, 상기 수신 신호는,The method of claim 28, wherein the received signal,
    짝수 인덱스를 갖는 수신 신호로 구성되는 제1 그룹 및 홀수 인덱스를 갖는 수신 신호로 구성되는 제2 그룹으로 분할되는 것을 특징으로 하는 수신 장치. And a second group consisting of a reception signal having an even index and a second group consisting of a reception signal having an odd index.
  30. 제28항에 있어서, 상기 필터링부는,The method of claim 28, wherein the filtering unit,
    각각의 그룹에 포함된 수신 신호와 시간 축 필터 계수를 이용하여 곱셈 연산을 수행하고, 상기 곱셈 연산된 출력 신호를 푸리에 변환하는 것을 특징으로 하는 수신 장치. And performing a multiplication operation using a received signal included in each group and a time axis filter coefficient, and Fourier transforming the multiplied output signal.
  31. 제28항에 있어서, 상기 변조 신호는,The method of claim 28, wherein the modulated signal,
    직교 진폭 변조(Quadrature Amplitude Modulation; QAM) 신호인 것을 특징으로 하는 수신 장치. Receiving device, characterized in that the Quadrature Amplitude Modulation (QAM) signal.
  32. 제28항에 있어서, 상기 복수의 그룹은,The method of claim 28, wherein the plurality of groups,
    동일한 수의 변조 신호를 포함하는 것을 특징으로 하는 수신 장치. A receiving device comprising the same number of modulated signals.
PCT/KR2014/008949 2013-09-27 2014-09-25 Transceiving method and apparatus for modulation signal transmission in filter bank multi-carrier communication system WO2015046907A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14847714.4A EP3051765B1 (en) 2013-09-27 2014-09-25 Transceiving method and apparatus for modulation signal transmission in filter bank multi-carrier communication system
CN201480053471.7A CN105723672B (en) 2013-09-27 2014-09-25 The receiving/transmission method and device of modulated signal transmission in filter bank multi-carrier communication system
US15/025,094 US10135665B2 (en) 2013-09-27 2014-09-25 Transceiving method and apparatus for modulation signal transmission in filter bank multi-carrier communication system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2013-0115649 2013-09-27
KR20130115649 2013-09-27
KR1020140127722A KR102245479B1 (en) 2013-09-27 2014-09-24 Method and apparatus for modulation signal transmission and reception in filter bank multicarrier communication systems
KR10-2014-0127722 2014-09-24

Publications (1)

Publication Number Publication Date
WO2015046907A1 true WO2015046907A1 (en) 2015-04-02

Family

ID=52743937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/008949 WO2015046907A1 (en) 2013-09-27 2014-09-25 Transceiving method and apparatus for modulation signal transmission in filter bank multi-carrier communication system

Country Status (1)

Country Link
WO (1) WO2015046907A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016209045A1 (en) * 2015-06-24 2016-12-29 Samsung Electronics Co., Ltd. Method and apparatus of signal transmission and reception in a filter bank multiple carrier system
WO2017039413A1 (en) * 2015-09-03 2017-03-09 엘지전자 주식회사 Method and apparatus for transmitting and receiving signal using non-orthogonal multiple access in wireless communication system
WO2017152344A1 (en) * 2016-03-07 2017-09-14 华为技术有限公司 Method for processing sent data, and transmitter
CN107294893A (en) * 2016-03-31 2017-10-24 富士通株式会社 Signal supervisory instrument, method and filter bank multi-carrier system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110142152A1 (en) * 2008-09-10 2011-06-16 Conservatoire National Des Arts Et Metiers (Cnam) Multicarrier digital signal transmission system using filter banks and memory preloading for initialization
US20120189036A1 (en) * 2009-10-02 2012-07-26 Conservatoire National Des Arts Et Metiers (Cnam) Systems for the multicarrier transmission of digital data and transmission methods using such systems

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110142152A1 (en) * 2008-09-10 2011-06-16 Conservatoire National Des Arts Et Metiers (Cnam) Multicarrier digital signal transmission system using filter banks and memory preloading for initialization
US20120189036A1 (en) * 2009-10-02 2012-07-26 Conservatoire National Des Arts Et Metiers (Cnam) Systems for the multicarrier transmission of digital data and transmission methods using such systems

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
R. ZAKARIA ET AL.: "A Novel FBMC Scheme for Spatial Multiplexing with Maximum Likelihood Detection", 2010 7TH INTERNATIONAL SYMPOSIUM ON WIRELESS COMMUNICATION SYSTEMS (ISWCS, 22 September 2010 (2010-09-22), pages 461 - 465, XP031792295 *
R. ZAKARIA ET AL.: "On Maximum Likelihood MIMO detection in QAM-FBMC systems", 2010 IEEE 21ST ANNUAL IEEE INTERNATIONAL SYMPOSIUM ON PERSONAL INDOOR AND MOBILE RADIO COMMUNICATIONS (PIMRC, 30 September 2010 (2010-09-30), pages 183 - 187, XP031837903 *
ROHIT DATTA ET AL.: "FBMC and GFDM Interference Cancellation Schemes for Flexible Digital Radio PHY Design", 2011 14TH EUROMICRO CONFERENCE ON DIGITAL SYSTEM DESIGN (DSD, 2 September 2011 (2011-09-02), pages 335 - 339, XP032058647 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016209045A1 (en) * 2015-06-24 2016-12-29 Samsung Electronics Co., Ltd. Method and apparatus of signal transmission and reception in a filter bank multiple carrier system
US9960887B2 (en) 2015-06-24 2018-05-01 Samsung Electronics Co., Ltd. Method and apparatus of signal transmission and reception in a filter bank multiple carrier system
WO2017039413A1 (en) * 2015-09-03 2017-03-09 엘지전자 주식회사 Method and apparatus for transmitting and receiving signal using non-orthogonal multiple access in wireless communication system
US10637606B2 (en) 2015-09-03 2020-04-28 Lg Electronics Inc. Method and apparatus for transmitting and receiving signal using non-orthogonal multiple access in wireless communication system
WO2017152344A1 (en) * 2016-03-07 2017-09-14 华为技术有限公司 Method for processing sent data, and transmitter
CN107294893A (en) * 2016-03-31 2017-10-24 富士通株式会社 Signal supervisory instrument, method and filter bank multi-carrier system

Similar Documents

Publication Publication Date Title
EP3051765B1 (en) Transceiving method and apparatus for modulation signal transmission in filter bank multi-carrier communication system
AU2014403687C1 (en) FBMC signal transmission method, receiving method, transmitter and receiver
US20140192925A1 (en) Method of and apparatus for reducing papr in filter-bank multi-carrier system
WO2016122204A1 (en) Method and device for controlling power in multi-carrier communication system
WO2014175711A1 (en) Method and apparatus for transmitting and receiving data in multicarrier communication system
WO2017131457A1 (en) Method and apparatus for estimating and correcting phase error in wireless communication system
CN105659551B (en) Transmit method and apparatus, method of reseptance and the equipment of complex data symbol block
WO2015046907A1 (en) Transceiving method and apparatus for modulation signal transmission in filter bank multi-carrier communication system
EP3616375A1 (en) Frequency-domain transmitters and receivers which adapt to different subcarrier spacing configurations
CN108809880B (en) Low-complexity MIMO-FBMC system data transceiving method and device
CN108270713A (en) It is a kind of to use scene signals multiple access method and system more
Kaur et al. Survey of Filter Bank Multicarrier (FBMC) as an efficient waveform for 5G
TWI517640B (en) A method for generating an ofdm data signal
KR100375350B1 (en) Data communication apparatus and method based on the Orthogonal Frequency Division Multiple Access
WO2016028077A1 (en) Method for transmitting and receiving qam signal in filter bank-based multicarrier communication system, and apparatus therefor
CN106302294A (en) A kind of signal modulation, demodulation method and device
Nimr et al. Generalized frequency division multiplexing: Unified multicarrier framework
CN102664860A (en) Method and device for modulating and demodulating single side band multi-carrier transmission signal
CN107438041B (en) Method and device for sending signal and receiving signal
CN108650205B (en) Parallel data processing method and device suitable for FBMC transmission
CN1549472A (en) Modulating and demodulating apparatus for orthogonal frequency division multiplexing system
JP2016154296A (en) Radio communication device and radio module, and radio communication system provided with the same
WO2016200095A1 (en) Device and method for transmitting filter bank multi-carrier symbols in wireless communication system
EP3391606A1 (en) Method and apparatus for estimating and correcting phase error in wireless communication system
KR101499250B1 (en) Apparatus and method for improving spectral efficiency of orthogonal frequency division multiplexing access

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14847714

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014847714

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014847714

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15025094

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE