WO2015046852A1 - Sodium secondary battery - Google Patents

Sodium secondary battery Download PDF

Info

Publication number
WO2015046852A1
WO2015046852A1 PCT/KR2014/008815 KR2014008815W WO2015046852A1 WO 2015046852 A1 WO2015046852 A1 WO 2015046852A1 KR 2014008815 W KR2014008815 W KR 2014008815W WO 2015046852 A1 WO2015046852 A1 WO 2015046852A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
sodium
formula
sodium secondary
molten salt
Prior art date
Application number
PCT/KR2014/008815
Other languages
French (fr)
Korean (ko)
Inventor
채제현
김정수
박대인
고원상
이승옥
박효승
이광국
김철우
함진수
Original Assignee
에스케이이노베이션 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이이노베이션 주식회사 filed Critical 에스케이이노베이션 주식회사
Publication of WO2015046852A1 publication Critical patent/WO2015046852A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a sodium secondary battery, and more particularly, to a sodium secondary battery operable at a low temperature including a molten salt electrolyte having a melting point controlled.
  • sodium-based secondary cells such as sodium-sulfur cells or sodium-nickel chloride cells should operate at least 250 ° C in the case of sodium-nickel chloride cells, taking into account the conductivity and melting points of the cell components.
  • Sodium-sulfur cells have the disadvantage of having an operating temperature of at least 300 ° C or higher. Due to these problems, there are many disadvantages in terms of manufacturing or operation economics in order to reinforce the temperature maintenance, airtightness maintenance and safety aspects. In order to solve the above problems, room temperature-based sodium-based batteries have been developed, but the output is very low compared to nickel-hydrogen batteries or lithium batteries is very low.
  • An object of the present invention is to provide a sodium secondary battery that can be operated at a low temperature, and at the same time improved the output efficiency of the battery by employing a molten salt electrolyte that is melted at a low temperature as the melting point is adjusted as an electrolyte.
  • the charging and discharging cycle characteristics are maintained for a long time to prevent deterioration, thereby providing a sodium secondary battery having an improved battery life and improved battery stability.
  • a negative electrode containing sodium according to the present invention A positive electrode containing a transition metal and an alkali metal halide; And a sodium ion conductive solid electrolyte provided between the negative electrode and the positive electrode, and the positive electrode is impregnated into an electrolyte of Formula 1 below.
  • M is a metal or metalloid ion selected from the group of metals and metalloids having a trivalent oxidation number;
  • R 1 , R 2 , R 3 or R 4 independently of one another are hydrogen, halogen, hydroxy, (C 1 -C 10) alkyl, trifluoromethanesulfonate or Wherein at least one of R 1 to R 4 is trifluoromethanesulfonate or R 10 is (C 1 -C 10) alkyl, (C 1 -C 10) haloalkyl or (C 1 -C 10) alkylsilyl;
  • Two R 10 's selected from R 1 , R 2 , R 3 or R 4 may be linked to each other with a (C 2 -C 10) alkylene or (C 2 -C 10) alkyleneoxy bond to form a ring;
  • A is a single bond or -CO-;
  • L 1 and L 2 are independently of each other a single bond or (C 1 -
  • M in Formula 1 may be boron ions, aluminum ions, gallium ions or indium ions.
  • a + b ⁇ 1 in Formula 1 may be satisfied.
  • the electrolyte represented by Formula 1 may be represented by the following Formula 2 to Formula 4.
  • M is a metal or metalloid ion selected from the group of metals and metalloids having a trivalent oxidation number;
  • R 11 , R 12, R 13 and R 14 are each independently hydrogen, (C 1 -C 10) alkyl, (C 1 -C 10) alkoxy, (C 1 -C 10) haloalkyl, (C 1 -C 10) alkoxyalkyl, (C 1- C10) haloalkoxyalkyl, (C1-C10) alkoxyalkoxyalkyl, (C1-C10) alkylsilyl, trifluoromethanesulfonyl or Alkyl, alkoxy, haloalkyl, alkoxyalkyl, haloalkoxyalkyl, alkoxyalkoxyalkyl and alkylsilyl may be further substituted with halogen or (C1-C10) alkyl; A is a single bond or -CO-; Z is Or -CO-;
  • Formula 1 may be selected from the following compounds.
  • the negative electrode may include metal sodium or a sodium compound.
  • the molten salt electrolyte may have a melting point of 200 ° C or less.
  • the molten salt electrolyte may have a viscosity of 0.1 to 10000 cps.
  • the molten salt electrolyte may further include a dissociation inducing agent.
  • the dissociation inducing agent may be a crown ether, Lewis acid or a mixture thereof.
  • the crown ether may be one or a mixture of two or more selected from the following structural formulas.
  • the Lewis acid is aluminum chloride (AlCl 3 ), aluminum iodide (AlI 3 ), zinc chloride (ZnCl 2 ), zinc iodide (ZnI 2 ), or boron chloride (BCl 3 )
  • AlCl 3 aluminum chloride
  • AlI 3 aluminum iodide
  • ZnCl 2 zinc chloride
  • ZnI 2 zinc iodide
  • BCl 3 boron chloride
  • BF 3 boron fluoride
  • TPFPB tris (pentafluorophenyl) borane
  • the molar ratio of the crown ether: Lewis acid of the mixture may be 1: 0.1 to 10.
  • the molten salt electrolyte may include a dissociation inducing agent of 10 M to 1000 mM molar concentration.
  • the melting point of the electrolyte is controlled to enable operation of the battery at a low temperature, and the output efficiency of the battery is significantly improved. It is effective.
  • a sodium secondary battery employing a molten salt electrolyte having a controlled melting point has a stable charge / discharge cycle characteristics for a long time, thereby preventing deterioration, thereby improving battery life and improving battery stability.
  • FIG. 1 is a conceptual diagram schematically showing the structure of a sodium secondary battery according to an embodiment of the present invention.
  • the electrolyte of the sodium secondary battery according to the present invention may be a molten salt electrolyte, specifically, the molten salt electrolyte of the sodium secondary battery according to an embodiment of the present invention is represented by the following [Formula 1].
  • M is a metal or metalloid ion selected from the group of metals and metalloids having a trivalent oxidation number;
  • R 1 , R 2 , R 3 or R 4 are independently of each other hydrogen, halogen, hydroxy, ( C1-C10) alkyl, trifluoromethanesulfonate or Wherein at least one of R 1 to R 4 is trifluoromethanesulfonate or R 10 is (C 1 -C 10) alkyl, (C 1 -C 10) haloalkyl or (C 1 -C 10) alkylsilyl;
  • Two R 10 's selected from R 1 , R 2 , R 3 or R 4 may be linked to each other with a (C 2 -C 10) alkylene or (C 2 -C 10) alkyleneoxy bond to form a ring;
  • A is a single bond or -CO-;
  • L 1 and L 2 are independently of each other a single bond or (C 1 -C
  • the molten salt electrolyte constituting the sodium secondary battery according to the present invention represented by [Formula 1] includes an ether (Ether) structure (-O-), the molecular group around the oxygen (O) atoms of the ether structure It is easy to rotate (rotation) of the melting point and the viscosity of the molten salt electrolyte can be adjusted low.
  • the ether structure means a bond of a 'metal atom-oxygen atom-hydrocarbon molecule' as represented in [Formula 1], and the atom or the center of the oxygen atom in the 'hydrocarbon molecule' according to the embodiment of the present invention.
  • the molecule may further comprise at least one further ether structure bonded to both sides.
  • the molten salt electrolyte of the sodium secondary battery according to the present invention may be composed of sodium ions and monovalent anion molecular groups, more specifically, the molecular weight or molecular structure form of the molten salt electrolyte according to an embodiment of the present invention Can be determined primarily by the size of the anionic molecular group bound to the sodium ions.
  • the anion molecular group may be formed by combining metal ions (M; hereinafter, including metalloid ions) and four functional groups, as shown in [Formula 1].
  • M is one metal ion selected from the group of metals having a trivalent oxidation number, specifically M is preferably a metal or metalloid ion selected from the Group 13 metal group, more preferably aluminum ions, boron ions and gallium Selecting a selected one of the ions may be advantageous to construct the molten salt electrolyte.
  • the molten salt electrolyte according to the present invention is composed of a molten salt selected from sodium-aluminum salt, sodium-boron salt, and sodium-gallium salt according to the selected metal ion, to prevent the explosion of the secondary battery electrolyte and stable melting The state can be guaranteed.
  • R 1 , R 2 , R 3 or R 4 are R 1 , R 2 , R 3 or R 4 , and each functional group is independently of each other hydrogen, halogen, hydroxy, (C 1 -C 10) alkyl.
  • the molten salt electrolyte employed in the sodium secondary battery When represented by, the hydrocarbon molecule may include a straight chain structure and a branched chain structure and the like according to a predetermined condition.
  • A, L 1 , L 2 , a and b for setting the structure of the hydrocarbon molecule determine the chain length of the functional group may be a major factor affecting the size of the molten salt electrolyte.
  • R 10 may be a haloalkyl silyl or (C1 ⁇ C10) alkyl (C1 ⁇ C10) alkyl, (C1 ⁇ C10).
  • A may be a single bond or -CO-.
  • A is -CO-, a protruding portion is formed in the functional group to have an asymmetric structure in the functional group, thereby acting as a factor that further induces rotation of the functional group structure.
  • L 1 and L 2 may be selected independently from each other of a single bond or (C1 ⁇ C10) alkylene. Wherein L 1 and L 2 will determine the overall length of the functional group and thereby can act as a factor directly affecting the molecular weight and molecular size of the functional group. Wherein L 1 and L 2 are independently selected and may be the same or different. In this case, it may be preferable that L 1 and L 2 do not exceed the size of (C10) alkylene. This is because when L 1 and L 2 exceed the size of (C10) alkylene, the chain length of the functional group becomes longer and the molecular weight is excessively increased, which makes it difficult to induce rotation in the functional group. In addition, as the rotation of the functional group is inhibited, it may also be difficult to control the melting point and viscosity of the molten salt electrolyte low.
  • a and b may be selected independently from each other at 0 or 1.
  • a and b are It determines the number of ether structures included in the functional group determined by it can act as a factor affecting the degree of rotation of the functional group.
  • the number of ether structures included in the functional group is not particularly limited, but in the aspect of lowering excessive melting energy by limiting the overall molecular size in the sodium secondary battery of the present invention, the ether structure (-O-) included in one functional group is It may be desirable not to exceed a maximum of three.
  • the maximum of three may mean that the ether structure included in the 'metal atom-oxygen atom-hydrocarbon molecule' and the ether structure when both a and b are 1.
  • a and b may also be desirable for a and b to satisfy the range a + b ⁇ 1. That is, it may be preferable that at least one of a and b is 1. Because, when the molecular weight of the molten salt electrolyte is relatively large, the ether structure included in the 'metal atom-oxygen atom-hydrocarbon molecule' in the functional group alone may be difficult to induce easy rotation. Because it can be induced.
  • R 10 may be (C 1 -C 10) alkyl, (C 1 -C 10) haloalkyl or (C 1 -C 10) alkylsilyl.
  • the size of the R 10 is a non-limiting and, by limiting the overall molecular size in the sodium secondary battery of the present invention carbon atoms contained in R 10 in terms of lowering the melting energy may preferably be up to 10.
  • each functional group may be formed in the same or different structure.
  • the structure of the anion molecular group is in a regular state than when formed in a different structure, so that rotation by the ether structure contained in the anion molecular group is further improved. It may be advantageous to further lower the melting point and viscosity of the molten salt electrolyte employed in the sodium secondary battery according to the present invention, it may be advantageous to predict the degree of reduction of the melting point due to the selected employed structure.
  • two R 10 's selected from four functional groups R 1 , R 2 , R 3, or R 4 connected to the metal ion M may be connected to each other to form a ring.
  • the ends of two R 10 selected from R 1 , R 2 , R 3 or R 4 may form a ring with a (C 2 -C 10) alkylene or (C 2 -C 10) alkyleneoxy bond.
  • the molten salt electrolyte of the sodium secondary battery of the present invention configured as described above may be one or a mixture of two or more selected from the group consisting of the following Chemical Formulas 2 to 4.
  • M is the same as the metal ion (M) described above as a metal or metalloid ion selected from the group of metals and metalloids having a trivalent oxidation number;
  • R 11 , R 12, R 13 and R 14 are each independently hydrogen, (C 1 -C 10) alkyl, (C 1 -C 10) alkoxy, (C 1 -C 10) haloalkyl, (C 1 -C 10) alkoxyalkyl, (C 1- C10) haloalkoxyalkyl, (C1-C10) alkoxyalkoxyalkyl, (C1-C10) alkylsilyl, trifluoromethanesulfonyl or Alkyl, alkoxy, haloalkyl, alkoxyalkyl, haloalkoxyalkyl, alkoxyalkoxyalkyl and alkylsilyl may be further substituted with halogen or (C1-C10) alkyl;
  • A is a single bond
  • Embodiments of the molten salt electrolyte configured according to the above may be selected from the chemical formulas and structural formulas shown in the following [Table 1], but it will be obvious that it can be extended within the range satisfying the present invention.
  • Example 1 NaAl (OCH 2 CH 2 OCH 3 ) 4
  • Example 2 NaAl (OCHCH 3 OCH 3 ) 4
  • Example 3 NaAl (OCH 3 ) 4
  • Example 4 NaAl (OCH 2 CF 3 ) 4
  • Example 5 NaAl (OC (CH 3 ) 3 ) 4
  • Example 6 NaB (OCH 2 CH 2 OCH 3 ) 4
  • Example 7 NaAl (OCH 2 CH 2 OCH 2 CH 3 ) 4
  • Example 8 NaAl (OCH 2 CH 2 OCH 2 CH 2 OCH 3) 4
  • Example 9 NaB (OCH 2 CH 2 OCH 2 CH 3 ) 4
  • Example 10 NaAl (OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 O) 2
  • Example 11 NaAl (OCH 2 CH 2 OCH 2 CH 2 O) 2
  • Example 12 NaAl (OCH 2 CH 2 OCH 2 CF 3 ) 4
  • Example 13 NaB (OCH 2 CH 2 OCH 2 CH 2 OCH
  • Example 1 NaAl (OCH 2 CH 2 OCH 3 ) 4 135
  • Example 7 NaAl (OCH 2 CH 2 OCH 2 CH 3 ) 4 70
  • Example 8 NaAl (OCH 2 CH 2 OCH 2 CH 2 OCH 3 ) 4 Liquid
  • Example 12 NaAl (OCH 2 CH 2 OCH 2 CF 3 ) 4 85
  • Example 13 NaB (OCH 2 CH 2 OCH 2 CH 2 OCH 3 ) 4 Liquid
  • Example 14 NaAl (COOCH 2 OCH 2 CH 2 OCH 3 ) 4 160
  • Example 15 NaAl (COOCH 2 OCH 2 CH 2 OCH 3 ) 2 (OCH 2 CH 2 OCH 3 ) 2 100
  • Example 16 NaAl (OSi (CH 3 ) 3 ) 2 (OCH 2 CH 2 OH 3 ) 2 110
  • Example 18 NaAl (COOCF 3 ) 2 (OCH 2 CH 2 OCH 3 ) 2 130
  • Example 19 NaAl (SO 3 CF 3 ) 2 (
  • the liquid state means that the molten salt electrolyte is in a liquid state at room temperature.
  • the molten salt electrolyte according to the present invention exhibits a low melting point of 200 ° C. or less, thereby confirming the effect of enabling sodium battery operation at low temperatures.
  • the molten salt electrolyte configured as described above may vary depending on conditions such as concentration and purity, but may have a viscosity of 0.1 to 10000 cps. In this case, when the viscosity of the molten salt electrolyte exceeds 10000cps, the melting point may be increased due to excessive viscosity.
  • the sodium secondary battery according to the present invention employing the molten salt electrolyte is configured as described above, it is possible to maintain a stable molten state at the operating temperature and pressure of the secondary battery, it is easy to diffuse the sodium ions introduced through the solid electrolyte It can be very excellent in terms of stability of charge and discharge cycle characteristics and improvement of storage characteristics which can prevent self discharge without causing unwanted side reactions.
  • such a sodium secondary battery may be composed of a positive electrode impregnated in a negative electrode, a solid electrolyte and a molten salt electrolyte.
  • the negative electrode of the sodium secondary battery may include a metal sodium or sodium alloy.
  • the negative electrode of the sodium secondary battery may be a halide of sodium halide or sodium alloy material.
  • the positive electrode of the sodium secondary battery may contain a transition metal and an alkali metal halide.
  • the transition metal may include copper, silver, gold, nickel, palladium, platinum, cobalt, rhodium, iridium, iron, manganese, chromium, vanadium, molybdenum, and the like, preferably nickel (Ni), copper (Cu ) And iron (Fe).
  • fluoride (F), chlorine (Cl), bromine (Br), iodine (I), Astaxin (At) may be all but it may be preferable to employ chlorine (Cl), bromine (Br) and iodine (I).
  • the positive electrode of the sodium secondary battery may be impregnated in the molten salt electrolyte represented by the above [Formula 1].
  • the sodium secondary battery according to the present invention configured as described above may be charged by the following Scheme 1 and discharge may be made by the following Scheme 2.
  • M 1 is a metal selected from one or more of the transition metal group
  • X is a halogen element
  • m is a natural number of 1 to 4.
  • m in Scheme 1 and Scheme 2 may be a natural number corresponding to the valence of the amount of the metal (M 1 ).
  • the solid electrolyte is provided between the positive electrode and the negative electrode, it may be composed of a sodium ion conductive solid electrolyte.
  • the sodium ion conductive solid electrolyte may be a material that physically separates the positive electrode and the negative electrode and has a selective conductivity with respect to sodium ions, and may be a solid electrolyte commonly used in the battery field for selective conduction of sodium ions.
  • the solid electrolyte of the present invention may be a sodium super ionic conductor (NaSICON), ⁇ -alumina or ⁇ ′′ -alumina.
  • sodium superion conductor is Na-Zr-Si-O based composite oxide, Na-Zr-Si-PO based composite oxide, Y doped Na-Zr-Si-PO based composite oxide, Fe doped Na-Zr-Si -PO-based composite oxides or mixtures thereof may be included, and in detail, Na 3 Zr 2 Si 2 PO 12 , Na 1 + x Si x Zr 2 P 3-x O 12 (1.6 ⁇ x ⁇ 2.4 real) ), Y or Fe doped Na 3 Zr 2 Si 2 PO 12 , Y or Fe doped Na 1 + x Si x Zr 2 P 3-x O 12 (real number 1.6 ⁇ x ⁇ 2.4) or mixtures thereof can do.
  • the sodium secondary battery is a flat plate comprising a solid electrolyte of the flat plate shape It may have a tubular battery structure or a tubular battery structure comprising a tubular solid electrolyte of one end sealed.
  • the molten salt electrolyte of the sodium secondary battery may further include a dissociation inducing agent.
  • the dissociation inducing agent may be selected from crown ethers, Lewis acids or mixtures thereof.
  • the crown ether is a crown-shaped complex made of polyether, and an oxyethylene group is formed in the form of-(OCH 2 CH 2 ) n- to form a large ring-shaped polyethylene ether skeleton. It means a compound having a.
  • it may be one or a mixture of two or more selected from the structural formulas shown below.
  • the ionization degree of the molten salt electrolyte can be improved by directly dissociating the molten salt electrolyte by coordinating the oxygen element (O) of the crown ether with sodium ions (Na + ) of the molten salt electrolyte.
  • the sodium-aluminum salt of Example 1 in which the metal ion (M) of the above-described formula (M) is aluminum (Al), is used as a molten salt electrolyte, and glucose, which is a crown ether as a dissociation inducing agent (When C 12 H 24 O 6 ) is added, sodium ions (Na + ) are coordinated to the coordination site of glucose (C 12 H 24 O 6 ), and sodium-aluminate salt (Na Aluminate) according to the reaction of Scheme 3 below. salt) can be dissociated to improve the degree of ionization of the molten salt electrolyte.
  • a separate sodium salt may be further added to the molten salt electrolyte employed in the sodium secondary battery according to the present invention.
  • the dissociation induction agent coordinates the sodium ions of the added sodium salt to the molten salt electrolyte. Can further improve the degree of ionization.
  • the Lewis acid included as the dissociation inducing agent is an electron pair acceptor according to the Lewis definition, specifically, a compound containing an unshared electron pair, aluminum chloride (AlCl 3 ), aluminum iodide (AlI 3 ), zinc chloride (ZnCl 2 ), and iodide Zinc (ZnI 2 ), boron chloride (BCl 3 ), boron fluoride (BF 3 ) and tris (pentafluorophenyl) borane (TPFPB; Tris (pentafluorophenyl) borane).
  • the dissociation inducing agent composed of Lewis acid can improve the ionization degree of the molten salt electrolyte by increasing the amount of free-sodium ion (free-Na + ) in the molten salt electrolyte by attracting anions of the molten salt electrolyte to dissociate the molten salt electrolyte.
  • Example 8 sodium aluminum salt (Na Aluminate salt) in which the metal ion (M) of the above-described formula (M) is aluminum (Al) as a molten salt electrolyte is included and tris (pentafluorophenyl) as a dissociation inducing agent.
  • TPFPB borane
  • sodium ions (Na + ) become free in the molten salt electrolyte according to the reaction of Scheme 4 below to improve the ionization degree of the molten salt electrolyte.
  • a separate sodium salt may be further added to the molten salt electrolyte employed in the sodium secondary battery according to the present invention.
  • the dissociation induction agent attracts anions of the added sodium salt to ionize the molten salt electrolyte. Can be further improved.
  • the electrolyte of the sodium secondary battery according to an embodiment of the present invention may include a mixture of the crown ether and Lewis acid as a dissociation inducing agent. That is, as described above, the crown ether coordinates the cation to dissociate the alkali metal halide of the positive electrode, and Lewis acid dissociates the alkali metal halide of the positive electrode by attracting anions. Therefore, when such a mixture of crown ether and Lewis acid is contained as a dissociation inducing agent, the ionization degree of the molten salt electrolyte can be significantly improved by inducing dissociation of the cation and the anion of the alkali metal halide simultaneously.
  • the dissociation inducing agent contained in the molten salt electrolyte employed in the sodium secondary battery according to the present invention may contain a dissociation inducing agent of 10 ⁇ M to 1000 mM molar concentration.
  • a dissociation inducing agent of 10 ⁇ M to 1000 mM molar concentration.
  • the content of the dissociation inducing agent in the molten salt electrolyte is less than 10 ⁇ M, the effect of improving the conductivity of the ions in the molten salt electrolyte by the dissociating inducing agent may be insignificant, and the conductivity of the ions participating in the electrochemical reaction of the battery, such as sodium ions.
  • the efficiency of the battery may decrease, and the capacity of the battery itself may be too low.
  • the content of the dissociation inducing agent in the molten salt electrolyte is more than 1000mM molar concentration, the ion concentration in the molten salt electrolyte is excessively increased, which may cause a risk of overheating during discharge of the battery, and the number of ions combined with the dissociation inducing agent is relatively high. Too many can lead to a decrease in ionic conductivity as a whole due to the lack of free-ion in the electrolyte.
  • the content of the dissociation inducing agent in the molten salt electrolyte is 10 ⁇ M to 1000mM molar concentration, it is possible to obtain an optimal result that the overheating of the battery does not occur while the conductivity of the ions in the molten salt electrolyte is improved.
  • the mixture may be mixed with a molar ratio of crown ether: Lewis acid of 1: 0.1 to 10. have.
  • the molar ratio of the crown ether: Lewis acid affects the degree of dissociation of the molten salt electrolyte.
  • the molar ratio of Lewis acid to less than 0.1 mol of the molten salt electrolyte is less than 0.1 mol, pre-sodium ions due to dissociation of the molten salt electrolyte (free- The increase of Na + ) is relatively small, and if the molar ratio of Lewis acid to 1 mole of crown ether is more than 10 moles, the increase in free-anion due to dissociation of the molten salt electrolyte is relatively insignificant. can do.
  • conventional sodium-based secondary cells should operate at least 250 ° C in the case of sodium-nickel chloride cells, and at least 300 ° C in the case of sodium-sulfur cells, in consideration of the melting point of the conductivity and cell composition. There was a disadvantage of having an operating temperature.
  • the sodium secondary battery according to the present invention can not only increase the ionic conductivity of the sodium secondary battery by adopting a molten salt electrolyte having a melting point and viscosity controlled due to the limitation of carbon number and structural characteristics, but also at a relatively low temperature. It may be possible to implement a capacity of 50 Wh / kg or more.
  • the operating temperature of the sodium secondary battery according to the present invention may be 200 ° C or less, more specifically 120 ° C to 200 ° C or less.
  • 1 is a sodium secondary battery
  • 10 is a negative electrode
  • 30 is a positive electrode
  • 35 is a positive electrolyte
  • 50 is a solid electrolyte.

Abstract

The present invention relates to a sodium secondary battery which is capable of being operated at a low temperature by comprising a molten salt electrolyte having an adjusted melting point and, particularly, to a sodium secondary battery comprising: an anode which contains sodium; a cathode which contains transition metal and alkali metal halides; and a sodium ionic conducting solid electrolyte provided between the anode and the cathode, wherein the cathode is impregnated in a sodium molten salt electrolyte including an ether structure (-O-).

Description

나트륨 이차전지Sodium secondary battery
본 발명은 나트륨 이차전지에 관한 것으로, 상세하게는 녹는점이 조절 된 용융염 전해질을 포함하여 낮은 온도에서 작동 가능한 나트륨 이차전지에 관한 것이다.The present invention relates to a sodium secondary battery, and more particularly, to a sodium secondary battery operable at a low temperature including a molten salt electrolyte having a melting point controlled.
신재생에너지의 이용이 급격히 증가되면서, 배터리를 이용한 에너지 저장 장치에 대한 필요성이 급격히 증가하고 있다. 이러한 배터리 중에는 납 전지, 니켈/수소 전지, 바나듐 전지 및 리튬 전지가 이용될 수 있다. 그러나 납 전지, 니켈/수소 전지는 에너지 밀도가 매우 작아서 동일한 용량의 에너지를 저장하려면 많은 공간을 필요로하는 문제점이 있다. 또한 바나듐 전지의 경우에는 중금속이 함유된 용액을 사용함으로 인한 환경 오염적 요소와 음극과 양극을 분리하는 멤브레인을 통해 음극과 양극간의 물질이 소량씩 이동함으로 인해 성능이 저하되는 문제점을 가지고 있어서 대규모로 상업화하지 못하는 상태이다. 에너지 밀도 및 출력 특성이 매우 우수한 리튬 전지의 경우에는 기술적으로 매우 유리하나, 리튬 재료의 자원적 희소성으로 인해 대규모 전력저장용 이차전지로 사용하기에는 경제성이 부족한 문제점을 가지고 있다. As the use of renewable energy is increasing rapidly, the need for an energy storage device using a battery is increasing rapidly. Among these batteries, lead batteries, nickel / hydrogen cells, vanadium cells, and lithium batteries can be used. However, lead batteries and nickel / hydrogen batteries have a very small energy density, which requires a lot of space to store energy of the same capacity. In addition, in the case of vanadium battery, there is a problem that the performance is degraded due to the small amount of material between the negative electrode and the positive electrode through the membrane that separates the negative electrode and the positive electrode due to the environmental pollutant caused by using a solution containing heavy metals. It is not commercialized. In the case of a lithium battery having excellent energy density and output characteristics, it is technically very advantageous, but due to resource scarcity of the lithium material, there is a problem in that it is insufficient to be used as a secondary battery for large-scale power storage.
이러한 문제점을 해결하고자 자원적으로 지구상에 풍부한 나트륨을 이차 전지의 재료로 이용하고자 하는 많은 시도가 있었다. 그 중, 미국 공개특허 제20030054255호와 같이, 나트륨 이온에 대한 선택적 전도성을 지닌 베타 알루미나를 이용하고, 음극에는 나트륨을 양극에는 황을 담지한 형태의 나트륨 유황 전지는 현재 대규모 전력 저장 장치로서 사용되고 있다. In order to solve this problem, many attempts have been made to use sodium, which is abundant on the earth, as a material for secondary batteries. Among them, as described in US Patent Publication No. 20030054255, a sodium sulfur battery in which beta alumina having selective conductivity for sodium ions is used, and sodium is supported on the negative electrode and sulfur on the positive electrode is currently used as a large-scale power storage device. .
그러나 나트륨-유황 전지 혹은 나트륨-염화니켈 전지와 같은 기존의 나트륨 기반의 이차 전지는 전도도 및 전지 구성물의 녹는점을 고려하여, 나트륨-염화니켈 전지와 같은 경우에는 최소 250℃ 이상에서 작동해야 하고, 나트륨-유황 전지의 경우에는 최소 300℃ 이상의 작동 온도를 갖는 단점을 갖고 있다. 이러한 문제점으로 인하여, 온도 유지, 기밀성 유지, 안전성 측면을 보강하기 위하여 제작상 혹은 운영상 경제성 측면에서 불리한 점이 많다. 상기와 같은 문제점을 해결하고자 상온(Room temperature)형의 나트륨 기반의 전지가 개발되고 있으나, 출력이 매우 낮아 니켈-수소 전지 혹은 리튬 전지에 비해 경쟁력이 매우 떨어지고 있다.However, conventional sodium-based secondary cells such as sodium-sulfur cells or sodium-nickel chloride cells should operate at least 250 ° C in the case of sodium-nickel chloride cells, taking into account the conductivity and melting points of the cell components. Sodium-sulfur cells have the disadvantage of having an operating temperature of at least 300 ° C or higher. Due to these problems, there are many disadvantages in terms of manufacturing or operation economics in order to reinforce the temperature maintenance, airtightness maintenance and safety aspects. In order to solve the above problems, room temperature-based sodium-based batteries have been developed, but the output is very low compared to nickel-hydrogen batteries or lithium batteries is very low.
본 발명의 목적은 전해질로써 녹는점이 조절되어 낮은 온도에서 용융되는 용융염 전해질을 채용함으로써, 낮은 온도에서 작동 가능하고, 이와 동시에 전지의 출력효율이 향상된 나트륨 이차전지를 제공하기 위한 것이다. 또한, 충방전 사이클 특성이 장기간 동안 안정적으로 유지되어 열화가 방지됨으로써, 향상된 전지 수명을 가지며 전지의 안정성이 향상된 나트륨 이차전지를 제공하기 위한 것이다.An object of the present invention is to provide a sodium secondary battery that can be operated at a low temperature, and at the same time improved the output efficiency of the battery by employing a molten salt electrolyte that is melted at a low temperature as the melting point is adjusted as an electrolyte. In addition, the charging and discharging cycle characteristics are maintained for a long time to prevent deterioration, thereby providing a sodium secondary battery having an improved battery life and improved battery stability.
본 발명에 따른 나트륨을 함유하는 음극; 전이금속과 알칼리금속 할로겐화물을 함유하는 양극; 및 음극과 양극의 사이에 구비되는 나트륨 이온전도성 고체전해질을 포함하며, 양극이 하기 화학식1의 전해질에 함침된다.A negative electrode containing sodium according to the present invention; A positive electrode containing a transition metal and an alkali metal halide; And a sodium ion conductive solid electrolyte provided between the negative electrode and the positive electrode, and the positive electrode is impregnated into an electrolyte of Formula 1 below.
[화학식1][Formula 1]
Figure PCTKR2014008815-appb-I000001
Figure PCTKR2014008815-appb-I000001
화학식1에서, M은 3가의 산화수를 갖는 금속 및 준금속 군에서 선택된 금속 또는 준금속 이온이며; R1, R2, R3 또는 R4는 서로 독립적으로 수소, 할로겐, 하이드록시, (C1~C10)알킬, 트리플루오로메탄술포네이트 또는
Figure PCTKR2014008815-appb-I000002
에서 선택되되, R1 내지 R4 중 적어도 하나는 트리플루오로메탄술포네이트 또는
Figure PCTKR2014008815-appb-I000003
를 가지고, R10은 (C1~C10)알킬, (C1~C10)할로알킬 또는 (C1~C10)알킬실릴이며; R1, R2, R3 또는 R4에서 선택되는 2개의 R10은 (C2~C10)알킬렌 또는 (C2~C10)알킬렌옥시 결합으로 서로 연결되어 고리를 형성할 수 있으며; A는 단일결합 또는 -CO-이며; L1 및 L2는 서로 독립적으로 단일결합 또는 (C1~C10)알킬렌이고, L1 및 L2의 알킬렌은 할로겐 또는 (C1~C10)알킬로 더 치환될 수 있으며; a 및 b는 서로 독립적으로 0 또는 1일 수 있다.
In formula 1, M is a metal or metalloid ion selected from the group of metals and metalloids having a trivalent oxidation number; R 1 , R 2 , R 3 or R 4 independently of one another are hydrogen, halogen, hydroxy, (C 1 -C 10) alkyl, trifluoromethanesulfonate or
Figure PCTKR2014008815-appb-I000002
Wherein at least one of R 1 to R 4 is trifluoromethanesulfonate or
Figure PCTKR2014008815-appb-I000003
R 10 is (C 1 -C 10) alkyl, (C 1 -C 10) haloalkyl or (C 1 -C 10) alkylsilyl; Two R 10 's selected from R 1 , R 2 , R 3 or R 4 may be linked to each other with a (C 2 -C 10) alkylene or (C 2 -C 10) alkyleneoxy bond to form a ring; A is a single bond or -CO-; L 1 and L 2 are independently of each other a single bond or (C 1 -C 10) alkylene, and the alkylene of L 1 and L 2 may be further substituted with halogen or (C 1 -C 10) alkyl; a and b may be 0 or 1 independently of each other.
본 발명의 일 실시예에 따른 나트륨 이차전지에 있어, 화학식1에서 M은 보론이온, 알루미늄 이온, 갈륨이온 또는 인듐이온 일 수 있다.In the sodium secondary battery according to an embodiment of the present invention, M in Formula 1 may be boron ions, aluminum ions, gallium ions or indium ions.
본 발명의 일 실시예에 따른 나트륨 이차전지에 있어, 화학식1에서 a+b ≥ 1을 만족할 수 있다.In the sodium secondary battery according to an embodiment of the present invention, a + b ≧ 1 in Formula 1 may be satisfied.
본 발명의 일 실시예에 따른 나트륨 이차전지에 있어, 화학식1로 표시되는 전해질은 하기 화학식2 내지 화학식4로 표시될 수 있다.In the sodium secondary battery according to an embodiment of the present invention, the electrolyte represented by Formula 1 may be represented by the following Formula 2 to Formula 4.
(화학식2)(Formula 2)
Figure PCTKR2014008815-appb-I000004
Figure PCTKR2014008815-appb-I000004
(화학식3)(Formula 3)
Figure PCTKR2014008815-appb-I000005
Figure PCTKR2014008815-appb-I000005
(화학식4)(Formula 4)
Figure PCTKR2014008815-appb-I000006
Figure PCTKR2014008815-appb-I000006
화학식2 내지 화학식4에서, M은 3가의 산화수를 갖는 금속 및 준금속 군에서 선택된 금속 또는 준금속 이온이며; R11, R12 , R13 및 R14는 서로 독립적으로 수소, (C1~C10)알킬, (C1~C10)알콕시, (C1~C10)할로알킬, (C1~C10)알콕시알킬, (C1~C10)할로알콕시알킬, (C1~C10)알콕시알콕시알킬, (C1~C10)알킬실릴, 트리플루오로메탄술포닐 또는
Figure PCTKR2014008815-appb-I000007
이고, 알킬, 알콕시, 할로알킬, 알콕시알킬, 할로알콕시알킬, 알콕시알콕시알킬 및 알킬실릴은 할로겐 또는 (C1~C10)알킬로 더 치환될 수 있으며; A는 단일결합 또는 -CO-이며; Z는
Figure PCTKR2014008815-appb-I000008
또는 -CO-이며; x는 0 내지 4인 정수이고, y는 1 내지 4인 정수이고, a, b 및 c는 1 내지 5인 정수일 수 있다.
In formulas (2) to (4), M is a metal or metalloid ion selected from the group of metals and metalloids having a trivalent oxidation number; R 11 , R 12, R 13 and R 14 are each independently hydrogen, (C 1 -C 10) alkyl, (C 1 -C 10) alkoxy, (C 1 -C 10) haloalkyl, (C 1 -C 10) alkoxyalkyl, (C 1- C10) haloalkoxyalkyl, (C1-C10) alkoxyalkoxyalkyl, (C1-C10) alkylsilyl, trifluoromethanesulfonyl or
Figure PCTKR2014008815-appb-I000007
Alkyl, alkoxy, haloalkyl, alkoxyalkyl, haloalkoxyalkyl, alkoxyalkoxyalkyl and alkylsilyl may be further substituted with halogen or (C1-C10) alkyl; A is a single bond or -CO-; Z is
Figure PCTKR2014008815-appb-I000008
Or -CO-; x is an integer of 0 to 4, y is an integer of 1 to 4, a, b and c may be an integer of 1 to 5.
본 발명의 일 실시예에 따른 나트륨 이차전지에 있어, 화학식1은 하기 화합물에서 선택될 수 있다.In the sodium secondary battery according to an embodiment of the present invention, Formula 1 may be selected from the following compounds.
Figure PCTKR2014008815-appb-I000009
Figure PCTKR2014008815-appb-I000009
Figure PCTKR2014008815-appb-I000010
Figure PCTKR2014008815-appb-I000010
Figure PCTKR2014008815-appb-I000011
Figure PCTKR2014008815-appb-I000011
Figure PCTKR2014008815-appb-I000012
Figure PCTKR2014008815-appb-I000012
Figure PCTKR2014008815-appb-I000013
Figure PCTKR2014008815-appb-I000013
Figure PCTKR2014008815-appb-I000014
Figure PCTKR2014008815-appb-I000014
Figure PCTKR2014008815-appb-I000015
Figure PCTKR2014008815-appb-I000015
본 발명의 일 실시예에 따른 나트륨 이차전지에 있어, 음극은 금속 나트륨 또는 나트륨화합물을 포함할 수 있다.In the sodium secondary battery according to an embodiment of the present invention, the negative electrode may include metal sodium or a sodium compound.
본 발명의 일 실시예에 따른 나트륨 이차전지에 있어, 용융염 전해질은 200℃ 이하의 녹는점을 갖을 수 있다.In the sodium secondary battery according to an embodiment of the present invention, the molten salt electrolyte may have a melting point of 200 ° C or less.
본 발명의 일 실시예에 따른 나트륨 이차전지에 있어, 용융염 전해질은 0.1 내지 10000 cps의 점도를 갖을 수 있다.In the sodium secondary battery according to an embodiment of the present invention, the molten salt electrolyte may have a viscosity of 0.1 to 10000 cps.
본 발명의 일 실시예에 따른 나트륨 이차전지에 있어, 용융염 전해질은 해리유도제를 더 포함할 수 있다.In the sodium secondary battery according to an embodiment of the present invention, the molten salt electrolyte may further include a dissociation inducing agent.
본 발명의 일 실시예에 따른 나트륨 이차전지에 있어, 해리유도제는 크라운에테르, 루이스산 또는 이들의 혼합물일 수 있다.In the sodium secondary battery according to an embodiment of the present invention, the dissociation inducing agent may be a crown ether, Lewis acid or a mixture thereof.
본 발명의 일 실시예에 따른 나트륨 이차전지에 있어, 크라운에테르는 하기 구조식 중 선택되는 1종 또는 2종 이상의 혼합물일 수 있다.In the sodium secondary battery according to an embodiment of the present invention, the crown ether may be one or a mixture of two or more selected from the following structural formulas.
Figure PCTKR2014008815-appb-I000016
Figure PCTKR2014008815-appb-I000016
Figure PCTKR2014008815-appb-I000017
Figure PCTKR2014008815-appb-I000017
본 발명의 일 실시예에 따른 나트륨 이차전지에 있어, 루이스산은 염화알루미늄(AlCl3), 요오드화알루미늄(AlI3), 염화아연(ZnCl2), 요오드화아연(ZnI2), 염화붕소(BCl3), 불화붕소(BF3) 및 트리스(펜타플로오로페닐)보란(TPFPB) 중 하나 이상 선택될 수 있다.In a sodium secondary battery according to an embodiment of the present invention, the Lewis acid is aluminum chloride (AlCl 3 ), aluminum iodide (AlI 3 ), zinc chloride (ZnCl 2 ), zinc iodide (ZnI 2 ), or boron chloride (BCl 3 ) One or more of boron fluoride (BF 3 ) and tris (pentafluorophenyl) borane (TPFPB).
본 발명의 일 실시예에 따른 나트륨 이차전지에 있어, 혼합물의 크라운에테르 : 루이스산의 몰비는 1 : 0.1 내지 10일 수 있다.In the sodium secondary battery according to an embodiment of the present invention, the molar ratio of the crown ether: Lewis acid of the mixture may be 1: 0.1 to 10.
본 발명의 일 실시예에 따른 나트륨 이차전지에 있어, 용융염 전해질은 10 M 내지 1000mM 몰농도의 해리유도제를 포함할 수 있다.In the sodium secondary battery according to an embodiment of the present invention, the molten salt electrolyte may include a dissociation inducing agent of 10 M to 1000 mM molar concentration.
본 발명에 따른 나트륨 이차전지는, 에테르(Ether)구조(-O-)가 포함되는 전해질이 채용됨으로써, 전해질의 녹는점이 조절되어 낮은 온도에서 전지의 작동이 가능하며, 전지의 출력효율이 현저히 향상되는 효과가 있다.In the sodium secondary battery according to the present invention, by employing an electrolyte containing an ether structure (-O-), the melting point of the electrolyte is controlled to enable operation of the battery at a low temperature, and the output efficiency of the battery is significantly improved. It is effective.
또한, 본 발명에 따라 녹는점이 조절 된 용융염 전해질이 채용된 나트륨 이차전지는 충방전 사이클 특성이 장기간 동안 안정적으로 유지되어 열화가 방지됨으로써, 향상된 전지 수명을 가지며 전지의 안정성이 향상되는 효과가 있다.In addition, according to the present invention, a sodium secondary battery employing a molten salt electrolyte having a controlled melting point has a stable charge / discharge cycle characteristics for a long time, thereby preventing deterioration, thereby improving battery life and improving battery stability. .
도 1은 본 발명의 일 실시예에 따른 나트륨 이차전지의 구조를 개략적으로 나타낸 개념도이다.1 is a conceptual diagram schematically showing the structure of a sodium secondary battery according to an embodiment of the present invention.
이하 첨부한 도면들을 참조하여 본 발명에 따른 나트륨 이차전지를 상세히 설명한다. 다음에 소개되는 도면들은 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서, 본 발명은 이하 제시되는 도면들에 한정되지 않고 다른 형태로 구체화될 수도 있으며, 이하 제시되는 도면들은 본 발명의 사상을 명확히 하기 위해 과장되어 도시될 수 있다. 또한 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다. Hereinafter, a sodium secondary battery according to the present invention will be described in detail with reference to the accompanying drawings. The drawings introduced below are provided by way of example so that the spirit of the invention to those skilled in the art can fully convey. Accordingly, the present invention is not limited to the drawings presented below and may be embodied in other forms, and the drawings presented below may be exaggerated to clarify the spirit of the present invention. Also, like reference numerals denote like elements throughout the specification.
이때, 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명 및 첨부 도면에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다.At this time, if there is no other definition in the technical terms and scientific terms used, it has a meaning commonly understood by those of ordinary skill in the art to which the present invention belongs, the gist of the present invention in the following description and the accompanying drawings Descriptions of well-known functions and configurations that may be unnecessarily blurred are omitted.
본 발명에 따른 나트륨 이차전지의 전해질은 용융염 전해질일 수 있으며, 구체적으로 본 발명의 일 실시예에 따른 나트륨 이차전지의 용융염 전해질은 하기 [화학식1]로 표시된다.The electrolyte of the sodium secondary battery according to the present invention may be a molten salt electrolyte, specifically, the molten salt electrolyte of the sodium secondary battery according to an embodiment of the present invention is represented by the following [Formula 1].
[화학식1][Formula 1]
Figure PCTKR2014008815-appb-I000018
Figure PCTKR2014008815-appb-I000018
(상기 화학식1에서, M은 3가의 산화수를 갖는 금속 및 준금속 군에서 선택된 금속 또는 준금속 이온이며; R1, R2, R3 또는 R4는 서로 독립적으로 수소, 할로겐, 하이드록시, (C1~C10)알킬, 트리플루오로메탄술포네이트 또는 에서 선택되되, R1 내지 R4 중 적어도 하나는 트리플루오로메탄술포네이트 또는
Figure PCTKR2014008815-appb-I000020
를 가지고, R10은 (C1~C10)알킬, (C1~C10)할로알킬 또는 (C1~C10)알킬실릴이며; R1, R2, R3 또는 R4에서 선택되는 2개의 R10은 (C2~C10)알킬렌 또는 (C2~C10)알킬렌옥시 결합으로 서로 연결되어 고리를 형성할 수 있으며; A는 단일결합 또는 -CO-이며; L1 및 L2는 서로 독립적으로 단일결합 또는 (C1~C10)알킬렌이고, L1 및 L2의 알킬렌은 할로겐 또는 (C1~C10)알킬로 더 치환될 수 있으며; a 및 b는 서로 독립적으로 0 또는 1일 수 있다.)
(In Formula 1, M is a metal or metalloid ion selected from the group of metals and metalloids having a trivalent oxidation number; R 1 , R 2 , R 3 or R 4 are independently of each other hydrogen, halogen, hydroxy, ( C1-C10) alkyl, trifluoromethanesulfonate or Wherein at least one of R 1 to R 4 is trifluoromethanesulfonate or
Figure PCTKR2014008815-appb-I000020
R 10 is (C 1 -C 10) alkyl, (C 1 -C 10) haloalkyl or (C 1 -C 10) alkylsilyl; Two R 10 's selected from R 1 , R 2 , R 3 or R 4 may be linked to each other with a (C 2 -C 10) alkylene or (C 2 -C 10) alkyleneoxy bond to form a ring; A is a single bond or -CO-; L 1 and L 2 are independently of each other a single bond or (C 1 -C 10) alkylene, and the alkylene of L 1 and L 2 may be further substituted with halogen or (C 1 -C 10) alkyl; a and b may be 0 or 1 independently of each other.)
이때 [화학식1]로 표현되는 본 발명에 따른 나트륨 이차전지를 구성하는 용융염 전해질에는 에테르(Ether)구조(-O-)가 포함되어 있어, 에테르구조의 산소(O) 원자를 중심으로 분자단의 회전(rotation)이 용이하게 되어 용융염 전해질의 녹는점 및 점도가 낮게 조절될 수 있다. 여기서, 에테르구조는 [화학식1]에 표현된 바와 같이 '금속원자-산소원자-탄화수소 분자'의 결합을 의미하며, 본 발명의 실시예에 따라 상기 '탄화수소 분자' 중에 산소원자를 중심으로 원자 또는 분자가 양측에 결합된 또 다른 에테르구조를 적어도 하나 더 포함할 수 있다. At this time, the molten salt electrolyte constituting the sodium secondary battery according to the present invention represented by [Formula 1] includes an ether (Ether) structure (-O-), the molecular group around the oxygen (O) atoms of the ether structure It is easy to rotate (rotation) of the melting point and the viscosity of the molten salt electrolyte can be adjusted low. Here, the ether structure means a bond of a 'metal atom-oxygen atom-hydrocarbon molecule' as represented in [Formula 1], and the atom or the center of the oxygen atom in the 'hydrocarbon molecule' according to the embodiment of the present invention. The molecule may further comprise at least one further ether structure bonded to both sides.
구체적으로, 본 발명에 따른 나트륨 이차전지의 용융염 전해질은 나트륨이온 및 1가의 음이온 분자단으로 이루어질 수 있는데, 더욱 구체적으로 설명하면 본 발명의 일 실시예에 따른 용융염 전해질의 분자량 또는 분자구조 형태는 주로 나트륨 이온과 결합된 음이온 분자단의 크기에 의해 결정될 수 있다.Specifically, the molten salt electrolyte of the sodium secondary battery according to the present invention may be composed of sodium ions and monovalent anion molecular groups, more specifically, the molecular weight or molecular structure form of the molten salt electrolyte according to an embodiment of the present invention Can be determined primarily by the size of the anionic molecular group bound to the sodium ions.
여기서, 음이온 분자단은 상기 [화학식1]에 표시된 바와 같이 금속이온(M; 이하, 준금속 이온을 포함하는 것으로 함) 및 4개의 작용기가 결합되어 이루어진 것일 수 있다. 이때, M은 3가의 산화수를 갖는 금속 군에서 선택된 하나의 금속 이온으로서, 구체적으로 M은 13족 금속 군에서 선택된 금속 또는 준금속 이온인 것이 바람직하며, 더욱 바람직하게는 알루미늄이온, 보론이온 및 갈륨이온 중 선택된 하나를 선택하는 것이 용융염 전해질을 구성하기에 유리할 수 있다. 즉, 본 발명에 따른 용융염 전해질은 선택된 금속 이온에 따라 나트륨-알루미늄염, 나트륨-보론염 및 나트륨-갈륨염 중 선택된 하나의 용융염으로 구성하는 것이, 이차전지 전해질의 폭발을 방지하고 안정된 용융상태를 보장할 수 있다.Here, the anion molecular group may be formed by combining metal ions (M; hereinafter, including metalloid ions) and four functional groups, as shown in [Formula 1]. At this time, M is one metal ion selected from the group of metals having a trivalent oxidation number, specifically M is preferably a metal or metalloid ion selected from the Group 13 metal group, more preferably aluminum ions, boron ions and gallium Selecting a selected one of the ions may be advantageous to construct the molten salt electrolyte. That is, the molten salt electrolyte according to the present invention is composed of a molten salt selected from sodium-aluminum salt, sodium-boron salt, and sodium-gallium salt according to the selected metal ion, to prevent the explosion of the secondary battery electrolyte and stable melting The state can be guaranteed.
이와 같이 구성되는 금속이온(M)에 결합되는 4개의 작용기는 각각 R1, R2, R3 또는 R4이며, 각각의 작용기는 서로 독립적으로 수소, 할로겐, 하이드록시, (C1~C10)알킬, 트리플루오로메탄술포네이트 또는
Figure PCTKR2014008815-appb-I000021
에서 선택될 수 있다. 즉, 금속이온을 중심으로 산소원자와 상기에서 선택된 작용기 4개가 결합되어 있으며, 이때 금속이온과 작용기 사이 산소원자가 배치되는 구조로 되어 있어, 산소원자를 중심으로 연결된 에테르구조로 인하여 구조적으로 회전이 용이하게 발생되어 용융염 전해질의 녹는점을 낮출 수 있다.
Four functional groups bonded to the metal ion (M) thus constructed are R 1 , R 2 , R 3 or R 4 , and each functional group is independently of each other hydrogen, halogen, hydroxy, (C 1 -C 10) alkyl. , Trifluoromethanesulfonate or
Figure PCTKR2014008815-appb-I000021
Can be selected from. That is, the oxygen atom and the four functional groups selected above are bonded to the metal ion, and the oxygen atom is disposed between the metal ion and the functional group, and the structure is easily rotated due to the ether structure connected to the oxygen atom. Can be generated to lower the melting point of the molten salt electrolyte.
이때, 본 발명의 일 실시예에 따른 나트륨 이차전지에 있어서, 나트륨 이차전지에 채용되는 용융염 전해질이
Figure PCTKR2014008815-appb-I000022
로 표시되는 경우, 상기 탄화수소 분자는 미리 설정된 조건에 따라 직쇄구조 및 가지쇄구조 등을 포함할 수 있다. 이때 탄화수소 분자의 구조를 설정하는 A, L1, L2, a 및 b는 작용기의 사슬길이를 결정하게 되어 용융염 전해질의 크기에 영향을 미치는 주요한 요인일 수 있다. 그리고, A, L1, L2, a 및 b의 설정에 따라 탄화수소 분자 내 에테르구조를 더 포함하도록 구성될 수도 있다. 그리고, R10은 (C1~C10)알킬, (C1~C10)할로알킬 또는 (C1~C10)알킬실릴 일 수 있다.
At this time, in the sodium secondary battery according to an embodiment of the present invention, the molten salt electrolyte employed in the sodium secondary battery
Figure PCTKR2014008815-appb-I000022
When represented by, the hydrocarbon molecule may include a straight chain structure and a branched chain structure and the like according to a predetermined condition. At this time, A, L 1 , L 2 , a and b for setting the structure of the hydrocarbon molecule determine the chain length of the functional group may be a major factor affecting the size of the molten salt electrolyte. And, according to the setting of A, L 1 , L 2 , a and b may be configured to further include an ether structure in a hydrocarbon molecule. And, R 10 may be a haloalkyl silyl or (C1 ~ C10) alkyl (C1 ~ C10) alkyl, (C1 ~ C10).
구체적으로
Figure PCTKR2014008815-appb-I000023
의 A는 단일결합 또는 -CO- 일 수 있다. A가 -CO- 인 경우 작용기에 돌출부분이 형성되어 작용기 내에 비대칭구조를 갖게 함으로서 작용기 구조의 회전(rotation)을 더욱 유발시키는 인자로 작용할 수 있다.
Specifically
Figure PCTKR2014008815-appb-I000023
A may be a single bond or -CO-. When A is -CO-, a protruding portion is formed in the functional group to have an asymmetric structure in the functional group, thereby acting as a factor that further induces rotation of the functional group structure.
또한,
Figure PCTKR2014008815-appb-I000024
의 L1 및 L2는 단일결합 또는 (C1~C10)알킬렌 중 서로 독립적으로 선택될 수 있다. 여기서 L1 및 L2는 전체적인 작용기의 길이를 결정하게 되며 이로써 작용기의 분자량 및 분자크기에 직접적인 영향을 미치는 인자로 작용할 수 있다. 여기서 L1 및 L2는 독립적으로 선택되며 동일 또는 상이 할 수 있다. 이때 L1 및 L2는 (C10)알킬렌의 크기를 넘지 않는 것이 바람직할 수 있다. 왜냐하면, L1 및 L2이 (C10)알킬렌의 크기를 초과하면 작용기의 사슬길이가 길어지면서 분자량이 과도하게 증대되어, 작용기 내 회전(rotation)을 유도하기에 어려울 수 있기 때문이다. 또한, 이와 같이 작용기의 회전(rotation)이 저해됨에 따라 용융염 전해질의 녹는점 및 점도를 낮게 조절하는 것 또한 어려울 수 있다.
Also,
Figure PCTKR2014008815-appb-I000024
L 1 and L 2 may be selected independently from each other of a single bond or (C1 ~ C10) alkylene. Wherein L 1 and L 2 will determine the overall length of the functional group and thereby can act as a factor directly affecting the molecular weight and molecular size of the functional group. Wherein L 1 and L 2 are independently selected and may be the same or different. In this case, it may be preferable that L 1 and L 2 do not exceed the size of (C10) alkylene. This is because when L 1 and L 2 exceed the size of (C10) alkylene, the chain length of the functional group becomes longer and the molecular weight is excessively increased, which makes it difficult to induce rotation in the functional group. In addition, as the rotation of the functional group is inhibited, it may also be difficult to control the melting point and viscosity of the molten salt electrolyte low.
또한,
Figure PCTKR2014008815-appb-I000025
의 a 및 b는 0 또는 1에서 서로 독립적으로 선택될 수 있다. 여기서 a 및 b는
Figure PCTKR2014008815-appb-I000026
으로 결정된 작용기 내 포함되는 에테르구조의 수를 결정하게 되며 이로써 상기 작용기의 회전 정도에 영향을 미치는 인자로 작용할 수 있다. 이때 작용기 내 포함되는 에테르구조의 수는 크게 제한되지 않으나, 본 발명의 나트륨 이차전지에 있어서 전체적인 분자 크기를 제한하여 과도한 용융 에너지를 낮추는 측면에서 하나의 작용기 내에 포함된 에테르구조(-O-)는 최대 3개를 넘지 않는 것이 바람직할 수 있다. 여기서, 최대 3개라 함은 '금속원자-산소원자-탄화수소 분자'에 포함된 에테르구조 및 a와 b가 모두 1인 경우의 에테르구조를 포함하는 것을 의미할 수 있다. 또한, a 및 b는 a+b ≥ 1 인 범위를 만족하는 것이 바람직할 수 있다. 즉, a 및 b 중 적어도 하나는 1인 것이 바람직할 수 있다. 왜냐하면, 용융염 전해질의 분자량이 비교적 큰 경우 작용기 내 '금속원자-산소원자-탄화수소 분자'에 포함된 에테르구조 만으로는 용이한 회전을 유도하기에 어려울 수 있기 때문에 에테르 구조를 추가하여 보다 용이한 회전을 유도할 수 있기 때문이다.
Also,
Figure PCTKR2014008815-appb-I000025
A and b may be selected independently from each other at 0 or 1. Where a and b are
Figure PCTKR2014008815-appb-I000026
It determines the number of ether structures included in the functional group determined by it can act as a factor affecting the degree of rotation of the functional group. In this case, the number of ether structures included in the functional group is not particularly limited, but in the aspect of lowering excessive melting energy by limiting the overall molecular size in the sodium secondary battery of the present invention, the ether structure (-O-) included in one functional group is It may be desirable not to exceed a maximum of three. Here, the maximum of three may mean that the ether structure included in the 'metal atom-oxygen atom-hydrocarbon molecule' and the ether structure when both a and b are 1. It may also be desirable for a and b to satisfy the range a + b ≧ 1. That is, it may be preferable that at least one of a and b is 1. Because, when the molecular weight of the molten salt electrolyte is relatively large, the ether structure included in the 'metal atom-oxygen atom-hydrocarbon molecule' in the functional group alone may be difficult to induce easy rotation. Because it can be induced.
또한,
Figure PCTKR2014008815-appb-I000027
의 R10은 (C1~C10)알킬, (C1~C10)할로알킬 또는 (C1~C10)알킬실릴 일 수 있다. 이때 R10의 크기는 비한정적이나, 본 발명의 나트륨 이차전지에 있어서 전체적인 분자 크기를 제한하여 용융 에너지를 낮추는 측면에서 R10에 포함되는 탄소 수는 최대 10개를 넘지 않는 것이 바람직할 수 있다.
Also,
Figure PCTKR2014008815-appb-I000027
R 10 may be (C 1 -C 10) alkyl, (C 1 -C 10) haloalkyl or (C 1 -C 10) alkylsilyl. The size of the R 10 is a non-limiting and, by limiting the overall molecular size in the sodium secondary battery of the present invention carbon atoms contained in R 10 in terms of lowering the melting energy may preferably be up to 10.
전술된 바와 같이 구성되는 작용기 R1, R2, R3 또는 R4는 4개가 각각 독립적으로 구성되어 하나의 금속이온(M)에 결합됨으로써, 음이온 분자단을 형성한다. 이때 각각의 작용기는 동일 또는 상이한 구조로 형성될 수 있다. 바람직하게는 음이온 분자단을 이루는 4개의 작용기가 동일 구조로 선택 형성된 경우, 상이한 구조로 형성된 경우보다 음이온 분자단의 구조가 규칙적인 상태가 되어, 음이온 분자단 내 포함된 에테르구조에 의한 회전이 더욱 용이하게 일어나 본 발명에 따른 나트륨 이차전지에 채용된 용융염 전해질의 녹는점 및 점도를 더욱 저하시키는 데 유리할 수 있으며, 선택 채용된 구조로 인한 녹는점의 저하 정도를 예상하기에 유리할 수 있다.As described above, four functional groups R 1 , R 2 , R 3, or R 4 are independently configured to be bonded to one metal ion (M), thereby forming an anionic molecular group. In this case, each functional group may be formed in the same or different structure. Preferably, when four functional groups constituting the anion molecular group are selected and formed in the same structure, the structure of the anion molecular group is in a regular state than when formed in a different structure, so that rotation by the ether structure contained in the anion molecular group is further improved. It may be advantageous to further lower the melting point and viscosity of the molten salt electrolyte employed in the sodium secondary battery according to the present invention, it may be advantageous to predict the degree of reduction of the melting point due to the selected employed structure.
한편, 금속이온(M)을 중심으로 하여 각각 연결된 4개의 작용기인 R1, R2, R3 또는 R4에서 선택되는 2개의 R10은 서로 연결되어 고리를 형성할 수 있다. 구체적으로 R1, R2, R3 또는 R4에서 선택되는 2개의 R10의 끝단은 (C2~C10)알킬렌 또는 (C2~C10)알킬렌옥시 결합으로 고리를 형성할 수 있다.Meanwhile, two R 10 's selected from four functional groups R 1 , R 2 , R 3, or R 4 connected to the metal ion M may be connected to each other to form a ring. Specifically, the ends of two R 10 selected from R 1 , R 2 , R 3 or R 4 may form a ring with a (C 2 -C 10) alkylene or (C 2 -C 10) alkyleneoxy bond.
상세하게는, 이와 같이 구성되는 본 발명의 나트륨 이차전지의 용융염 전해질은 하기 (화학식2) 내지 (화학식4)로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 혼합물 일 수 있다.In detail, the molten salt electrolyte of the sodium secondary battery of the present invention configured as described above may be one or a mixture of two or more selected from the group consisting of the following Chemical Formulas 2 to 4.
(화학식2)(Formula 2)
Figure PCTKR2014008815-appb-I000028
Figure PCTKR2014008815-appb-I000028
(화학식3)(Formula 3)
Figure PCTKR2014008815-appb-I000029
Figure PCTKR2014008815-appb-I000029
(화학식4)(Formula 4)
Figure PCTKR2014008815-appb-I000030
Figure PCTKR2014008815-appb-I000030
화학식2 내지 화학식4에서, M은 3가의 산화수를 갖는 금속 및 준금속 군에서 선택된 금속 또는 준금속 이온으로서 전술된 금속이온(M)과 같으며; R11, R12 , R13 및 R14는 서로 독립적으로 수소, (C1~C10)알킬, (C1~C10)알콕시, (C1~C10)할로알킬, (C1~C10)알콕시알킬, (C1~C10)할로알콕시알킬, (C1~C10)알콕시알콕시알킬, (C1~C10)알킬실릴, 트리플루오로메탄술포닐 또는
Figure PCTKR2014008815-appb-I000031
이고, 알킬, 알콕시, 할로알킬, 알콕시알킬, 할로알콕시알킬, 알콕시알콕시알킬 및 알킬실릴은 할로겐 또는 (C1~C10)알킬로 더 치환될 수 있으며; A는 단일결합 또는 -CO-이며; Z는
Figure PCTKR2014008815-appb-I000032
또는 -O- 이며; x는 0 내지 4인 정수이고, y는 1 내지 4인 정수이고, a, b 및 c는 1 내지 5인 정수일 수 있다. 여기서
Figure PCTKR2014008815-appb-I000033
로 표현되는 작용기는 전술된 바에 따라 구성될 수 있다.
In formulas (2) to (4), M is the same as the metal ion (M) described above as a metal or metalloid ion selected from the group of metals and metalloids having a trivalent oxidation number; R 11 , R 12, R 13 and R 14 are each independently hydrogen, (C 1 -C 10) alkyl, (C 1 -C 10) alkoxy, (C 1 -C 10) haloalkyl, (C 1 -C 10) alkoxyalkyl, (C 1- C10) haloalkoxyalkyl, (C1-C10) alkoxyalkoxyalkyl, (C1-C10) alkylsilyl, trifluoromethanesulfonyl or
Figure PCTKR2014008815-appb-I000031
Alkyl, alkoxy, haloalkyl, alkoxyalkyl, haloalkoxyalkyl, alkoxyalkoxyalkyl and alkylsilyl may be further substituted with halogen or (C1-C10) alkyl; A is a single bond or -CO-; Z is
Figure PCTKR2014008815-appb-I000032
Or -O-; x is an integer of 0 to 4, y is an integer of 1 to 4, a, b and c may be an integer of 1 to 5. here
Figure PCTKR2014008815-appb-I000033
The functional group represented by may be configured as described above.
<실시예><Example>
전술된 바에 따라 구성되는 용융염 전해질의 실시예들은 하기 [표 1]에 표시되는 화학식 및 구조식에서 선택되는 것일 수 있으나, 이외 본 발명을 만족하는 범위 내에서 확장 될 수 있음은 당연할 것이다.Embodiments of the molten salt electrolyte configured according to the above may be selected from the chemical formulas and structural formulas shown in the following [Table 1], but it will be obvious that it can be extended within the range satisfying the present invention.
표 1
구분 화학식 구조식
실시예1 NaAl(OCH2CH2OCH3)4
Figure PCTKR2014008815-appb-I000034
실시예2 NaAl(OCHCH3OCH3)4
Figure PCTKR2014008815-appb-I000035
실시예3 NaAl(OCH3)4
Figure PCTKR2014008815-appb-I000036
실시예4 NaAl(OCH2CF3)4
Figure PCTKR2014008815-appb-I000037
실시예5 NaAl(OC(CH3)3)4
Figure PCTKR2014008815-appb-I000038
실시예6 NaB(OCH2CH2OCH3)4
Figure PCTKR2014008815-appb-I000039
실시예7 NaAl(OCH2CH2OCH2CH3)4
Figure PCTKR2014008815-appb-I000040
실시예8 NaAl(OCH2CH2OCH2CH2OCH3)4
Figure PCTKR2014008815-appb-I000041
실시예9 NaB(OCH2CH2OCH2CH3)4
Figure PCTKR2014008815-appb-I000042
실시예10 NaAl(OCH2CH2OCH2CH2OCH2CH2O)2
Figure PCTKR2014008815-appb-I000043
실시예11 NaAl(OCH2CH2OCH2CH2O)2
Figure PCTKR2014008815-appb-I000044
실시예12 NaAl(OCH2CH2OCH2CF3)4
Figure PCTKR2014008815-appb-I000045
실시예13 NaB(OCH2CH2OCH2CH2OCH3)4
Figure PCTKR2014008815-appb-I000046
실시예14 NaAl(COOCH2OCH2CH2OCH3)4
Figure PCTKR2014008815-appb-I000047
실시예15 NaAl(COOCH2OCH2CH2OCH3)2(OCH2CH2OCH3)2
Figure PCTKR2014008815-appb-I000048
실시예16 NaAl(OSi(CH3)3)2(OCH2CH2OH3)2
Figure PCTKR2014008815-appb-I000049
실시예17 NaB(COOCH3)3(OCH2CF3)
Figure PCTKR2014008815-appb-I000050
실시예18 NaAl(COOCF3)2(OCH2CH2OCH3)2
Figure PCTKR2014008815-appb-I000051
실시예19 NaAl(SO3CF3)2(OCH2CH2OCH3)2
Figure PCTKR2014008815-appb-I000052
실시예20 NaAl(SO3CF3)4
Figure PCTKR2014008815-appb-I000053
실시예21 NaAlCl3(OCH2CH2OCH2CH2OCH3)
Figure PCTKR2014008815-appb-I000054
Table 1
division Chemical formula constitutional formula
Example 1 NaAl (OCH 2 CH 2 OCH 3 ) 4
Figure PCTKR2014008815-appb-I000034
Example 2 NaAl (OCHCH 3 OCH 3 ) 4
Figure PCTKR2014008815-appb-I000035
Example 3 NaAl (OCH 3 ) 4
Figure PCTKR2014008815-appb-I000036
Example 4 NaAl (OCH 2 CF 3 ) 4
Figure PCTKR2014008815-appb-I000037
Example 5 NaAl (OC (CH 3 ) 3 ) 4
Figure PCTKR2014008815-appb-I000038
Example 6 NaB (OCH 2 CH 2 OCH 3 ) 4
Figure PCTKR2014008815-appb-I000039
Example 7 NaAl (OCH 2 CH 2 OCH 2 CH 3 ) 4
Figure PCTKR2014008815-appb-I000040
Example 8 NaAl (OCH 2 CH 2 OCH 2 CH 2 OCH 3) 4
Figure PCTKR2014008815-appb-I000041
Example 9 NaB (OCH 2 CH 2 OCH 2 CH 3 ) 4
Figure PCTKR2014008815-appb-I000042
Example 10 NaAl (OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 O) 2
Figure PCTKR2014008815-appb-I000043
Example 11 NaAl (OCH 2 CH 2 OCH 2 CH 2 O) 2
Figure PCTKR2014008815-appb-I000044
Example 12 NaAl (OCH 2 CH 2 OCH 2 CF 3 ) 4
Figure PCTKR2014008815-appb-I000045
Example 13 NaB (OCH 2 CH 2 OCH 2 CH 2 OCH 3 ) 4
Figure PCTKR2014008815-appb-I000046
Example 14 NaAl (COOCH 2 OCH 2 CH 2 OCH 3 ) 4
Figure PCTKR2014008815-appb-I000047
Example 15 NaAl (COOCH 2 OCH 2 CH 2 OCH 3 ) 2 (OCH 2 CH 2 OCH 3 ) 2
Figure PCTKR2014008815-appb-I000048
Example 16 NaAl (OSi (CH 3 ) 3 ) 2 (OCH 2 CH 2 OH 3 ) 2
Figure PCTKR2014008815-appb-I000049
Example 17 NaB (COOCH 3 ) 3 (OCH 2 CF 3 )
Figure PCTKR2014008815-appb-I000050
Example 18 NaAl (COOCF 3) 2 (OCH 2 CH 2 OCH 3) 2
Figure PCTKR2014008815-appb-I000051
Example 19 NaAl (SO 3 CF 3 ) 2 (OCH 2 CH 2 OCH 3 ) 2
Figure PCTKR2014008815-appb-I000052
Example 20 NaAl (SO 3 CF 3 ) 4
Figure PCTKR2014008815-appb-I000053
Example 21 NaAlCl 3 (OCH 2 CH 2 OCH 2 CH 2 OCH 3 )
Figure PCTKR2014008815-appb-I000054
<실험예>Experimental Example
용융염 전해질의 녹는점 측정Melting point measurement of molten salt electrolyte
본 발명에 따른 용융염 전해질의 실시예들의 녹는점을 측정하여 하기 [표 2]에 나타내었다.Melting points of the embodiments of the molten salt electrolyte according to the present invention are shown in Table 2 below.
표 2
구분 화학식 녹는점(Mp; ℃)
실시예1 NaAl(OCH2CH2OCH3)4 135
실시예7 NaAl(OCH2CH2OCH2CH3)4 70
실시예8 NaAl(OCH2CH2OCH2CH2OCH3)4 액상
실시예12 NaAl(OCH2CH2OCH2CF3)4 85
실시예13 NaB(OCH2CH2OCH2CH2OCH3)4 액상
실시예14 NaAl(COOCH2OCH2CH2OCH3)4 160
실시예15 NaAl(COOCH2OCH2CH2OCH3)2(OCH2CH2OCH3)2 100
실시예16 NaAl(OSi(CH3)3)2(OCH2CH2OH3)2 110
실시예18 NaAl(COOCF3)2(OCH2CH2OCH3)2 130
실시예19 NaAl(SO3CF3)2(OCH2CH2OCH3)2 120
TABLE 2
division Chemical formula Melting Point (Mp; ℃)
Example 1 NaAl (OCH 2 CH 2 OCH 3 ) 4 135
Example 7 NaAl (OCH 2 CH 2 OCH 2 CH 3 ) 4 70
Example 8 NaAl (OCH 2 CH 2 OCH 2 CH 2 OCH 3 ) 4 Liquid
Example 12 NaAl (OCH 2 CH 2 OCH 2 CF 3 ) 4 85
Example 13 NaB (OCH 2 CH 2 OCH 2 CH 2 OCH 3 ) 4 Liquid
Example 14 NaAl (COOCH 2 OCH 2 CH 2 OCH 3 ) 4 160
Example 15 NaAl (COOCH 2 OCH 2 CH 2 OCH 3 ) 2 (OCH 2 CH 2 OCH 3 ) 2 100
Example 16 NaAl (OSi (CH 3 ) 3 ) 2 (OCH 2 CH 2 OH 3 ) 2 110
Example 18 NaAl (COOCF 3 ) 2 (OCH 2 CH 2 OCH 3 ) 2 130
Example 19 NaAl (SO 3 CF 3 ) 2 (OCH 2 CH 2 OCH 3 ) 2 120
여기서, 액상이라 함은 상기 용융염 전해질이 상온에서 액체 상태임을 의미한다. Here, the liquid state means that the molten salt electrolyte is in a liquid state at room temperature.
[표 2]를 참조하면, 본 발명에 따른 용융염 전해질은 200℃ 이하의 낮은 녹는점을 나타내며, 이로써 낮은 온도에서의 나트륨 전지 구동을 가능하게 하는 효과가 있음을 확인 할 수 있다.Referring to Table 2, the molten salt electrolyte according to the present invention exhibits a low melting point of 200 ° C. or less, thereby confirming the effect of enabling sodium battery operation at low temperatures.
또한, 이와 같이 구성되는 용융염 전해질은 농도 및 순도 등의 조건에 따라 가변적일 수 있으나, 0.1 내지 10000cps의 점도를 가질 수 있다. 이때 용융염 전해질의 점도가 10000cps 초과하면 점도가 과도하여 녹는점이 높아질 수 있다.In addition, the molten salt electrolyte configured as described above may vary depending on conditions such as concentration and purity, but may have a viscosity of 0.1 to 10000 cps. In this case, when the viscosity of the molten salt electrolyte exceeds 10000cps, the melting point may be increased due to excessive viscosity.
한편, 이와 같이 구성되는 용융염 전해질이 채용된 본 발명에 따른 나트륨 이차전지는, 이차전지의 동작 온도 및 압력에서 안정적으로 용융상태를 유지하며, 고체전해질을 통해 유입되는 나트륨 이온의 확산이 용이하고, 원치 않는 부반응을 일으키지 않으면서, 충방전 사이클 특성의 안정성 및 자가 방전을 방지할 수 있는 보존 특성의 향상 측면에서 매우 우수할 수 있다.On the other hand, the sodium secondary battery according to the present invention employing the molten salt electrolyte is configured as described above, it is possible to maintain a stable molten state at the operating temperature and pressure of the secondary battery, it is easy to diffuse the sodium ions introduced through the solid electrolyte It can be very excellent in terms of stability of charge and discharge cycle characteristics and improvement of storage characteristics which can prevent self discharge without causing unwanted side reactions.
구체적으로, 이러한 나트륨 이차전지는 음극, 고체전해질 및 용융염 전해질에 함침된 양극으로 구성될 수 있다.Specifically, such a sodium secondary battery may be composed of a positive electrode impregnated in a negative electrode, a solid electrolyte and a molten salt electrolyte.
본 발명의 일 실시예에 따른 나트륨 이차전지에 있어, 나트륨 이차전지의 음극은 금속 나트륨 또는 나트륨합금을 포함할 수 있다. 구체적으로 나트륨 이차전지의 음극은 나트륨할로겐화물 또는 나트륨합금물질의 할로겐화물일 수 있다.In the sodium secondary battery according to an embodiment of the present invention, the negative electrode of the sodium secondary battery may include a metal sodium or sodium alloy. Specifically, the negative electrode of the sodium secondary battery may be a halide of sodium halide or sodium alloy material.
그리고, 본 발명의 일 실시예에 따른 나트륨 이차전지에 있어, 나트륨 이차전지의 양극은 전이금속과 알칼리금속 할로겐화물을 함유할 수 있다. 이때, 전이금속은 구리, 은, 금, 니켈, 팔라듐, 백금, 코발트, 로듐, 이리듐, 철, 망간, 크롬, 바나듐, 몰리브덴 등을 포함할 수 있으며, 바람직하게는 니켈(Ni), 구리(Cu) 및 철(Fe) 중 선택된 하나의 금속일 수 있다. 그리고, 알칼리금속 할로겐화물은 나트륨 할로겐화물(NaX; X=halide)이 채용되는 것이 가능하며, 이때 할라이드(X)로서 플루오르(F), 염소(Cl), 브롬(Br), 요오드(I), 아스타틴(At)이 모두 가능하나 이 중 염소(Cl), 브롬(Br) 및 요오드(I)를 채용하는 것이 바람직할 수 있다.In the sodium secondary battery according to an embodiment of the present invention, the positive electrode of the sodium secondary battery may contain a transition metal and an alkali metal halide. At this time, the transition metal may include copper, silver, gold, nickel, palladium, platinum, cobalt, rhodium, iridium, iron, manganese, chromium, vanadium, molybdenum, and the like, preferably nickel (Ni), copper (Cu ) And iron (Fe). In addition, as the alkali metal halide, sodium halide (NaX; X = halide) may be employed, in which case fluoride (F), chlorine (Cl), bromine (Br), iodine (I), Astaxin (At) may be all but it may be preferable to employ chlorine (Cl), bromine (Br) and iodine (I).
본 발명의 일 실시예에 따른 나트륨 이차전지에 있어, 나트륨 이차전지의 양극은 전술된 [화학식1]로 표현되는 용융염 전해질에 함침 될 수 있다.In the sodium secondary battery according to an embodiment of the present invention, the positive electrode of the sodium secondary battery may be impregnated in the molten salt electrolyte represented by the above [Formula 1].
이와 같이 구성되는 본 발명에 따른 나트륨 이차전지는 하기 반응식 1에 의해 충전이 이루어지고 하기 반응식 2에 의해 방전이 이루어질 수 있다. The sodium secondary battery according to the present invention configured as described above may be charged by the following Scheme 1 and discharge may be made by the following Scheme 2.
반응식 1 Scheme 1
mNaX+M1 → mNa+M1XmmNaX + M 1 → mNa + M 1 Xm
반응식 2Scheme 2
mNa+M1Xm → mNaX+M1 mNa + M 1 Xm → mNaX + M 1
반응식 1 및 반응식 2에서 M1은 전이금속 군에서 하나 이상 선택되는 금속이며, X는 할로겐 원소이며, m은 1 내지 4의 자연수이다. 상세하게, 반응식 1 및 반응식 2에서 m은 금속(M1)의 양의 원자가에 해당하는 자연수일 수 있다. In Scheme 1 and Scheme 2, M 1 is a metal selected from one or more of the transition metal group, X is a halogen element, m is a natural number of 1 to 4. Specifically, m in Scheme 1 and Scheme 2 may be a natural number corresponding to the valence of the amount of the metal (M 1 ).
또한, 본 발명의 일 실시예에 따른 나트륨 이차전지를 상술함에 있어, 보다 명확한 이해를 위해, 반응식 1 및 반응식 2의 충방전 반응시의 반응 산물 또는 물질(나트륨 할로겐화물, 전이금속 할로겐화물 등)을 기준으로 하여, 양극 및 충방전 반응을 상술하였다.In addition, in the detailed description of the sodium secondary battery according to an embodiment of the present invention, for a clearer understanding, reaction products or materials (sodium halides, transition metal halides, etc.) during the charge and discharge reactions of Schemes 1 and 2 On the basis of the above, the positive electrode and the charge / discharge reaction were described in detail.
그리고, 본 발명의 일 실시예에 따른 나트륨 이차전지에 있어, 고체전해질은 양극과 음극의 사이에 구비되며, 나트륨 이온전도성 고체전해질로 구성될 수 있다. 이때 나트륨 이온전도성 고체전해질은 양극과 음극을 물리적으로 분리시키며 나트륨 이온에 대해 선택적으로 전도성을 갖는 물질이면 무방하며, 나트륨 이온의 선택적 전도를 위해 전지 분야에서 통상적으로 사용되는 고체전해질이면 족하다. 비한정적인 일 예로, 본 발명의 고체전해질은 나트륨초이온전도체(Na super ionic conductor, NaSICON), β-알루미나 또는 β"-알루미나일 수 있다. 또한, 비한정적인 일 예로, 나트륨초이온전도체(NASICON)는 Na-Zr-Si-O계의 복합산화물, Na-Zr-Si-P-O계의 복합산화물, Y 도핑된 Na-Zr-Si-P-O계의 복합산화물, Fe 도핑된 Na-Zr-Si-P-O계의 복합산화물 또는 이들의 혼합물을 포함할 수 있으며, 상세하게, Na3Zr2Si2PO12, Na1+xSixZr2P3-xO12 (1.6<x<2.4인 실수), Y 또는 Fe가 도핑 Na3Zr2Si2PO12, Y 또는 Fe 도핑된 Na1+xSixZr2P3-xO12 (1.6<x<2.4 인 실수) 또는 이들의 혼합물을 포함할 수 있다. And, in the sodium secondary battery according to an embodiment of the present invention, the solid electrolyte is provided between the positive electrode and the negative electrode, it may be composed of a sodium ion conductive solid electrolyte. At this time, the sodium ion conductive solid electrolyte may be a material that physically separates the positive electrode and the negative electrode and has a selective conductivity with respect to sodium ions, and may be a solid electrolyte commonly used in the battery field for selective conduction of sodium ions. As a non-limiting example, the solid electrolyte of the present invention may be a sodium super ionic conductor (NaSICON), β-alumina or β ″ -alumina. Also, as a non-limiting example, sodium superion conductor ( NASICON) is Na-Zr-Si-O based composite oxide, Na-Zr-Si-PO based composite oxide, Y doped Na-Zr-Si-PO based composite oxide, Fe doped Na-Zr-Si -PO-based composite oxides or mixtures thereof may be included, and in detail, Na 3 Zr 2 Si 2 PO 12 , Na 1 + x Si x Zr 2 P 3-x O 12 (1.6 <x <2.4 real) ), Y or Fe doped Na 3 Zr 2 Si 2 PO 12 , Y or Fe doped Na 1 + x Si x Zr 2 P 3-x O 12 (real number 1.6 <x <2.4) or mixtures thereof can do.
본 발명의 일 실시예에 따른 나트륨 이차전지에 있어, 음극과 양극을 분리하여 음극 공간과 양극 공간을 구획하게 되는 고체전해질의 형상을 기준으로, 나트륨 이차전지는 평판 형상의 고체전해질을 포함하는 평판형 전지 구조 또는 일단이 밀폐된 튜브 형상의 고체전해질을 포함하는 튜브형 전지 구조를 가질 수 있다.In the sodium secondary battery according to an embodiment of the present invention, based on the shape of the solid electrolyte which separates the negative electrode and the positive electrode to partition the negative electrode space and the positive electrode space, the sodium secondary battery is a flat plate comprising a solid electrolyte of the flat plate shape It may have a tubular battery structure or a tubular battery structure comprising a tubular solid electrolyte of one end sealed.
한편, 본 발명의 일 실시예에 따른 나트륨 이차전지에 있어, 나트륨 이차전지의 용융염 전해질에는 해리유도제가 더 포함될 수 있다. 여기서 해리유도제는 크라운에테르, 루이스산 또는 이들의 혼합물 중에 선택될 수 있다.On the other hand, in the sodium secondary battery according to an embodiment of the present invention, the molten salt electrolyte of the sodium secondary battery may further include a dissociation inducing agent. Wherein the dissociation inducing agent may be selected from crown ethers, Lewis acids or mixtures thereof.
구체적으로, 본 발명의 일 실시예에 따른 해리유도제로서 크라운에테르는 폴리에테르로 만들어진 왕관모양의 착화합물로서, 옥시에틸렌기가 -(OCH2CH2)n-의 형태로 이어져 큰 고리 모양의 폴리에틸렌에테르 골격을 갖는 화합물을 의미한다. Specifically, as the dissociation inducing agent according to an embodiment of the present invention, the crown ether is a crown-shaped complex made of polyether, and an oxyethylene group is formed in the form of-(OCH 2 CH 2 ) n- to form a large ring-shaped polyethylene ether skeleton. It means a compound having a.
구체적으로는 하기 표시 된 구조식 중 선택되는 1종 또는 2종 이상의 혼합물일 수 있다. Specifically, it may be one or a mixture of two or more selected from the structural formulas shown below.
Figure PCTKR2014008815-appb-I000055
Figure PCTKR2014008815-appb-I000056
Figure PCTKR2014008815-appb-I000055
Figure PCTKR2014008815-appb-I000056
이와 같은 크라운에테르는 크라운에테르의 산소원소(O)가 용융염 전해질의 나트륨이온(Na+)을 배위 결합하여 용융염 전해질을 직접 해리시킴으로써 용융염 전해질의 이온화도를 향상시킬 수 있다. 일례로, 용융염 전해질로서 전술된 [화학식1]의 금속이온(M)이 알루미늄(Al)인 상기 실시예1의 나트륨-알루미늄 염(Na Aluminate salt)이 포함되고 해리유도제로서 크라운에테르인 포도당(C12H24O6)이 첨가되는 경우, 포도당(C12H24O6)의 배위결합자리에 나트륨이온(Na+)이 배위 결합함으로써 하기 반응식 3의 반응에 따라 나트륨-알루미늄 염(Na Aluminate salt)을 해리시켜 용융염 전해질의 이온화도를 향상시킬 수 있다.In such crown ethers, the ionization degree of the molten salt electrolyte can be improved by directly dissociating the molten salt electrolyte by coordinating the oxygen element (O) of the crown ether with sodium ions (Na + ) of the molten salt electrolyte. For example, the sodium-aluminum salt of Example 1, in which the metal ion (M) of the above-described formula (M) is aluminum (Al), is used as a molten salt electrolyte, and glucose, which is a crown ether as a dissociation inducing agent ( When C 12 H 24 O 6 ) is added, sodium ions (Na + ) are coordinated to the coordination site of glucose (C 12 H 24 O 6 ), and sodium-aluminate salt (Na Aluminate) according to the reaction of Scheme 3 below. salt) can be dissociated to improve the degree of ionization of the molten salt electrolyte.
반응식 3Scheme 3
Figure PCTKR2014008815-appb-I000057
Figure PCTKR2014008815-appb-I000057
이외, 본 발명에 따른 나트륨 이차전지에 채용된 용융염 전해질에는 해리유도제 외에 양극활물질로서 별도의 나트륨염이 더 첨가될 수도 있으며, 이때 해리유도제는 첨가된 나트륨염의 나트륨 이온을 배위결합 하여 용융염 전해질의 이온화도를 더욱 향상시킬 수 있다.In addition, in addition to the dissociation induction agent, a separate sodium salt may be further added to the molten salt electrolyte employed in the sodium secondary battery according to the present invention. In this case, the dissociation induction agent coordinates the sodium ions of the added sodium salt to the molten salt electrolyte. Can further improve the degree of ionization.
또한, 상기 해리유도제로서 포함되는 루이스산은 루이스 정의에 따르는 전자쌍 수용체로서, 구체적으로는 비공유전자쌍을 포함하는 화합물인 염화알루미늄(AlCl3), 요오드화알루미늄(AlI3), 염화아연(ZnCl2), 요오드화아연(ZnI2), 염화붕소(BCl3), 불화붕소(BF3) 및 트리스(펜타플로오로페닐)보란(TPFPB; Tris(pentafluorophenyl)borane) 중 하나 이상 일 수 있다. 이러한 루이스산으로 이루어진 해리유도제는 용융염 전해질의 음이온을 끌어당겨 용융염 전해질을 해리시킴으로써 용융염 전해질 내 프리-나트륨이온(free-Na+)의 양을 증가시켜 용융염 전해질의 이온화도를 향상시킬 수 있다. 일례로, 용융염 전해질로서 전술된 [화학식1]의 금속이온(M)이 알루미늄(Al)인 상기 실시예8 나트륨-알루미늄 염(Na Aluminate salt)이 포함되고 해리유도제로서 트리스(펜타플로오로페닐)보란(TPFPB)이 첨가되는 경우, 하기 반응식 4의 반응에 따라 나트륨이온(Na+)이 용융염 전해질 중에 자유로운 상태가 되어 용융염 전해질의 이온화도를 향상시킬 수 있다.In addition, the Lewis acid included as the dissociation inducing agent is an electron pair acceptor according to the Lewis definition, specifically, a compound containing an unshared electron pair, aluminum chloride (AlCl 3 ), aluminum iodide (AlI 3 ), zinc chloride (ZnCl 2 ), and iodide Zinc (ZnI 2 ), boron chloride (BCl 3 ), boron fluoride (BF 3 ) and tris (pentafluorophenyl) borane (TPFPB; Tris (pentafluorophenyl) borane). The dissociation inducing agent composed of Lewis acid can improve the ionization degree of the molten salt electrolyte by increasing the amount of free-sodium ion (free-Na + ) in the molten salt electrolyte by attracting anions of the molten salt electrolyte to dissociate the molten salt electrolyte. have. For example, Example 8 sodium aluminum salt (Na Aluminate salt) in which the metal ion (M) of the above-described formula (M) is aluminum (Al) as a molten salt electrolyte is included and tris (pentafluorophenyl) as a dissociation inducing agent. When borane (TPFPB) is added, sodium ions (Na + ) become free in the molten salt electrolyte according to the reaction of Scheme 4 below to improve the ionization degree of the molten salt electrolyte.
반응식 4Scheme 4
Figure PCTKR2014008815-appb-I000058
Figure PCTKR2014008815-appb-I000058
이외, 본 발명에 따른 나트륨 이차전지에 채용된 용융염 전해질에는 해리유도제 외에 양극활물질로서 별도의 나트륨염이 더 첨가될 수도 있는데, 이때 해리유도제는 첨가된 나트륨염의 음이온을 끌어당겨 용융염 전해질의 이온화도를 더욱 향상시킬 수 있다.In addition, in addition to the dissociation induction agent, a separate sodium salt may be further added to the molten salt electrolyte employed in the sodium secondary battery according to the present invention. In this case, the dissociation induction agent attracts anions of the added sodium salt to ionize the molten salt electrolyte. Can be further improved.
또는, 본 발명의 일 실시예에 따른 나트륨 이차전지의 전해질에는 상기 크라운에테르와 루이스산의 혼합물이 해리유도제로서 포함될 수 있다. 즉, 전술된 바와 같이 크라운에테르는 양이온을 배위 결합하여 양극의 알칼리금속 할로겐화물을 해리시키는 것이고, 루이스산은 음이온을 끌어당겨 양극의 알칼리금속 할로겐화물을 해리시킬 수 있다. 따라서, 이와 같은 크라운에테르와 루이스산의 혼합물이 해리유도제로서 함유되면, 알칼리금속 할로겐화물의 양이온과 음이온의 해리를 동시에 유도하여 용융염 전해질의 이온화도가 보다 현저히 향상될 수 있다. Alternatively, the electrolyte of the sodium secondary battery according to an embodiment of the present invention may include a mixture of the crown ether and Lewis acid as a dissociation inducing agent. That is, as described above, the crown ether coordinates the cation to dissociate the alkali metal halide of the positive electrode, and Lewis acid dissociates the alkali metal halide of the positive electrode by attracting anions. Therefore, when such a mixture of crown ether and Lewis acid is contained as a dissociation inducing agent, the ionization degree of the molten salt electrolyte can be significantly improved by inducing dissociation of the cation and the anion of the alkali metal halide simultaneously.
이때 본 발명에 따른 나트륨 이차전지에 채용된 용융염 전해질에 포함되는 해리유도제는 10μM 내지 1000mM 몰농도의 해리유도제를 함유할 수 있다. 여기서, 용융염 전해질 내 해리유도제의 함량이 10μM 미만인 경우, 해리유도제에 의한 용융염 전해질 내 이온의 전도도가 향상되는 효과가 미미할 수 있고 나트륨이온과 같이 전지의 전기화학 반응에 참여하는 이온의 전도도가 떨어져 전지의 효율이 감소할 수 있으며, 전지의 용량 자체가 너무 낮을 수 있다. 그리고, 용융염 전해질 내 해리유도제의 함량이 1000mM 몰농도 초과인 경우, 용융염 전해질 내 이온 농도가 과도하게 증가되어 전지의 방전 시 과열의 위험을 초래할 수 있고, 해리유도제와 결합되는 이온수가 상대적으로 너무 많아져서 전체적으로는 전해질 내 프리-이온(free-ion)의 부족으로 인하여 이온 전도도가 감소할 수 있다. 따라서, 용융염 전해질 내 해리유도제의 함량이 10μM 내지 1000mM 몰농도인 경우, 용융염 전해질 내 이온의 전도도가 향상되면서도 전지의 과열이 발생되지 않는 최적의 결과를 도출할 수 있다.At this time, the dissociation inducing agent contained in the molten salt electrolyte employed in the sodium secondary battery according to the present invention may contain a dissociation inducing agent of 10 μM to 1000 mM molar concentration. Herein, when the content of the dissociation inducing agent in the molten salt electrolyte is less than 10 μM, the effect of improving the conductivity of the ions in the molten salt electrolyte by the dissociating inducing agent may be insignificant, and the conductivity of the ions participating in the electrochemical reaction of the battery, such as sodium ions. The efficiency of the battery may decrease, and the capacity of the battery itself may be too low. In addition, when the content of the dissociation inducing agent in the molten salt electrolyte is more than 1000mM molar concentration, the ion concentration in the molten salt electrolyte is excessively increased, which may cause a risk of overheating during discharge of the battery, and the number of ions combined with the dissociation inducing agent is relatively high. Too many can lead to a decrease in ionic conductivity as a whole due to the lack of free-ion in the electrolyte. Therefore, when the content of the dissociation inducing agent in the molten salt electrolyte is 10μM to 1000mM molar concentration, it is possible to obtain an optimal result that the overheating of the battery does not occur while the conductivity of the ions in the molten salt electrolyte is improved.
그리고 본 발명에 따른 나트륨 이차전지에 채용된 용융염 전해질에 해리유도제로서 크라운에테르와 루이스산의 혼합물이 함유되는 경우, 상기 혼합물은 크라운에테르 : 루이스산의 몰비가 1 : 0.1 내지 10로 혼합될 수 있다. 이러한 크라운에테르 : 루이스산의 몰비는 용융염 전해질이 해리되는 정도에 영향을 미치게 되는데, 크라운에테르 1몰 대비 루이스산의 몰비가 0.1몰 미만이면 용융염 전해질의 해리에 의한 프리-나트륨이온(free-Na+)의 증가량이 상대적으로 미미하게 되고, 크라운에테르 1몰 대비 루이스산의 몰비가 10몰 초과이면 용융염 전해질의 해리에 의한 프리-음이온(free-anion)의 증가량이 상대적으로 미미하여 효과가 감소할 수 있다.When the molten salt electrolyte employed in the sodium secondary battery according to the present invention contains a mixture of crown ether and Lewis acid as a dissociation inducing agent, the mixture may be mixed with a molar ratio of crown ether: Lewis acid of 1: 0.1 to 10. have. The molar ratio of the crown ether: Lewis acid affects the degree of dissociation of the molten salt electrolyte. If the molar ratio of Lewis acid to less than 0.1 mol of the molten salt electrolyte is less than 0.1 mol, pre-sodium ions due to dissociation of the molten salt electrolyte (free- The increase of Na + ) is relatively small, and if the molar ratio of Lewis acid to 1 mole of crown ether is more than 10 moles, the increase in free-anion due to dissociation of the molten salt electrolyte is relatively insignificant. can do.
한편, 종래의 나트륨 기반의 이차전지는 전도도 및 전지 구성물의 녹는점을 고려하여, 나트륨-염화니켈 전지와 같은 경우에는 최소 250℃ 이상에서 작동해야 하고, 나트륨-유황 전지의 경우에는 최소 300℃ 이상의 작동 온도를 갖는 단점이 있었다.On the other hand, conventional sodium-based secondary cells should operate at least 250 ° C in the case of sodium-nickel chloride cells, and at least 300 ° C in the case of sodium-sulfur cells, in consideration of the melting point of the conductivity and cell composition. There was a disadvantage of having an operating temperature.
그러나, 본 발명에 따른 나트륨 이차전지는 탄소수의 제한 및 구조적인 특성으로 인하여 녹는점 및 점도가 조절된 용융염 전해질을 채용함으로써 나트륨 이차전지의 이온 전도도를 증가시킬 수 있을 뿐만 아니라 비교적 낮은 온도에서도 전지의 용량을 50Wh/kg 이상 구현하는 것이 가능하게 될 수 있다. 구체적으로, 본 발명에 따른 나트륨 이차전지의 운전온도는 200℃ 이하일 수 있으며, 더욱 구체적으로는 120℃ 내지 200℃ 이하일 수 있다.However, the sodium secondary battery according to the present invention can not only increase the ionic conductivity of the sodium secondary battery by adopting a molten salt electrolyte having a melting point and viscosity controlled due to the limitation of carbon number and structural characteristics, but also at a relatively low temperature. It may be possible to implement a capacity of 50 Wh / kg or more. Specifically, the operating temperature of the sodium secondary battery according to the present invention may be 200 ° C or less, more specifically 120 ° C to 200 ° C or less.
도 1에서 1은 나트륨 이차전지, 10은 음극, 30은 양극, 35는 양극전해질 및 50은 고체전해질이다.1 is a sodium secondary battery, 10 is a negative electrode, 30 is a positive electrode, 35 is a positive electrolyte and 50 is a solid electrolyte.

Claims (14)

  1. 나트륨을 함유하는 음극;Negative electrode containing sodium;
    전이금속과 알칼리금속 할로겐화물을 함유하는 양극; 및A positive electrode containing a transition metal and an alkali metal halide; And
    상기 음극과 양극의 사이에 구비되는 나트륨이온 전도성 고체전해질을 포함하며,It comprises a sodium ion conductive solid electrolyte provided between the cathode and the anode,
    상기 양극이 하기 화학식1의 전해질에 함침된 나트륨 이차전지.Sodium secondary battery is the positive electrode impregnated in the electrolyte of the formula (1).
    [화학식1][Formula 1]
    Figure PCTKR2014008815-appb-I000059
    Figure PCTKR2014008815-appb-I000059
    (상기 화학식1에서, M은 3가의 산화수를 갖는 금속 및 준금속 군에서 선택된 금속 또는 준금속 이온이며; (In Formula 1, M is a metal or metalloid ion selected from the group of metals and metalloids having a trivalent oxidation number;
    상기 R1, R2, R3 또는 R4는 서로 독립적으로 수소, 할로겐, 하이드록시, (C1~C10)알킬, 트리플루오로메탄술포네이트 또는
    Figure PCTKR2014008815-appb-I000060
    에서 선택되되, 상기 R1 내지 R4 중 적어도 하나는 트리플루오로메탄술포네이트 또는
    Figure PCTKR2014008815-appb-I000061
    를 가지고,
    R 1 , R 2 , R 3 or R 4 are independently of each other hydrogen, halogen, hydroxy, (C 1 -C 10) alkyl, trifluoromethanesulfonate or
    Figure PCTKR2014008815-appb-I000060
    Wherein at least one of R 1 to R 4 is trifluoromethanesulfonate or
    Figure PCTKR2014008815-appb-I000061
    Take it,
    상기 R10은 (C1~C10)알킬, (C1~C10)할로알킬 또는 (C1~C10)알킬실릴이며;R 10 is (C 1 -C 10) alkyl, (C 1 -C 10) haloalkyl or (C 1 -C 10) alkylsilyl;
    상기 R1, R2, R3 또는 R4에서 선택되는 2개의 R10은 (C2~C10)알킬렌 또는 (C2~C10)알킬렌옥시 결합으로 서로 연결되어 고리를 형성할 수 있으며;Two R 10 's selected from R 1 , R 2 , R 3, or R 4 may be linked to each other by a (C 2 -C 10) alkylene or (C 2 -C 10) alkyleneoxy bond to form a ring;
    상기 A는 단일결합 또는 -CO-이며;A is a single bond or -CO-;
    상기 L1 및 L2는 서로 독립적으로 단일결합 또는 (C1~C10)알킬렌이고,L 1 and L 2 are each independently a single bond or (C1-C10) alkylene,
    상기 L1 및 L2의 알킬렌은 할로겐 또는 (C1~C10)알킬로 더 치환될 수 있으며;The alkylene of L 1 and L 2 may be further substituted with halogen or (C 1 -C 10) alkyl;
    상기 a 및 b는 서로 독립적으로 0 또는 1이다.)A and b are each independently 0 or 1.)
  2. 제1항에 있어서,The method of claim 1,
    상기 화학식1에서 M은 보론이온, 알루미늄 이온, 갈륨이온 또는 인듐이온인 나트륨 이차전지.In Formula 1, M is a boron ion, aluminum ion, gallium ion or indium ion sodium secondary battery.
  3. 제1항에 있어서,The method of claim 1,
    상기 화학식1에서 a+b ≥ 1을 만족하는 것인 나트륨 이차전지.Sodium secondary battery that satisfies a + b ≥ 1 in the formula (1).
  4. 제1항에 있어서,The method of claim 1,
    상기 화학식1로 표시되는 전해질은 하기 화학식2 내지 화학식4로 표시되는 나트륨 이차전지.The electrolyte represented by Formula 1 is a sodium secondary battery represented by the following Formula 2 to Formula 4.
    (화학식2)(Formula 2)
    Figure PCTKR2014008815-appb-I000062
    Figure PCTKR2014008815-appb-I000062
    (화학식3)(Formula 3)
    Figure PCTKR2014008815-appb-I000063
    Figure PCTKR2014008815-appb-I000063
    (화학식4)(Formula 4)
    Figure PCTKR2014008815-appb-I000064
    Figure PCTKR2014008815-appb-I000064
    (상기 화학식2 내지 화학식4에서, (In Formula 2 to Formula 4,
    상기 M은 3가의 산화수를 갖는 금속 및 준금속 군에서 선택된 금속 또는 준금속 이온이며;M is a metal or metalloid ion selected from the group of metals and metalloids having a trivalent oxidation number;
    상기 R11, R12 , R13 및 R14는 서로 독립적으로 수소, (C1~C10)알킬, (C1~C10)알콕시, (C1~C10)할로알킬, (C1~C10)알콕시알킬, (C1~C10)할로알콕시알킬, (C1~C10)알콕시알콕시알킬, (C1~C10)알킬실릴, 트리플루오로메탄술포닐 또는
    Figure PCTKR2014008815-appb-I000065
    이고,
    R 11 , R 12, R 13 and R 14 are each independently hydrogen, (C 1 -C 10) alkyl, (C 1 -C 10) alkoxy, (C 1 -C 10) haloalkyl, (C 1 -C 10) alkoxyalkyl, (C 1 -C10) haloalkoxyalkyl, (C1-C10) alkoxyalkoxyalkyl, (C1-C10) alkylsilyl, trifluoromethanesulfonyl or
    Figure PCTKR2014008815-appb-I000065
    ego,
    상기 알킬, 알콕시, 할로알킬, 알콕시알킬, 할로알콕시알킬, 알콕시알콕시알킬 및 알킬실릴은 할로겐 또는 (C1~C10)알킬로 더 치환될 수 있으며; The alkyl, alkoxy, haloalkyl, alkoxyalkyl, haloalkoxyalkyl, alkoxyalkoxyalkyl and alkylsilyl may be further substituted with halogen or (C1-C10) alkyl;
    상기 A는 단일결합 또는 -CO-이며;A is a single bond or -CO-;
    상기 Z는
    Figure PCTKR2014008815-appb-I000066
    또는 -O- 이며;
    Z is
    Figure PCTKR2014008815-appb-I000066
    Or -O-;
    상기 x는 0 내지 4인 정수이고, X is an integer of 0 to 4,
    상기 y는 1 내지 4인 정수이고, Y is an integer of 1 to 4,
    상기 a, b 및 c는 1 내지 5인 정수이다.)A, b and c are integers from 1 to 5.)
  5. 제1항에 있어서,The method of claim 1,
    상기 화학식1은 하기 화합물에서 선택되는 나트륨 이차전지.Formula 1 is a sodium secondary battery selected from the following compounds.
    Figure PCTKR2014008815-appb-I000067
    Figure PCTKR2014008815-appb-I000067
    Figure PCTKR2014008815-appb-I000068
    Figure PCTKR2014008815-appb-I000068
    Figure PCTKR2014008815-appb-I000069
    Figure PCTKR2014008815-appb-I000069
    Figure PCTKR2014008815-appb-I000070
    Figure PCTKR2014008815-appb-I000070
    Figure PCTKR2014008815-appb-I000071
    Figure PCTKR2014008815-appb-I000071
    Figure PCTKR2014008815-appb-I000072
    Figure PCTKR2014008815-appb-I000072
    Figure PCTKR2014008815-appb-I000073
    Figure PCTKR2014008815-appb-I000073
  6. 제1항에 있어서,The method of claim 1,
    상기 음극은 금속 나트륨 또는 나트륨화합물을 포함하는 나트륨 이차전지.The negative electrode is a sodium secondary battery containing a metal sodium or sodium compound.
  7. 제1항에 있어서,The method of claim 1,
    상기 용융염 전해질은 200℃ 이하의 녹는점을 갖는 나트륨 이차전지.The molten salt electrolyte has a sodium secondary battery having a melting point of 200 ℃ or less.
  8. 제1항에 있어서,The method of claim 1,
    상기 용융염 전해질은 0.1 내지 10000 cps의 점도를 갖는 나트륨 이차전지.The molten salt electrolyte is a sodium secondary battery having a viscosity of 0.1 to 10000 cps.
  9. 제1항에 있어서,The method of claim 1,
    상기 용융염 전해질은 해리유도제를 더 포함하는 나트륨 이차전지.The molten salt electrolyte further comprises a sodium secondary battery dissociation inducing agent.
  10. 제9항에 있어서, The method of claim 9,
    상기 해리유도제는 크라운에테르, 루이스산 또는 이들의 혼합물인 나트륨 이차전지.The dissociation inducing agent is a sodium secondary battery is a crown ether, Lewis acid or a mixture thereof.
  11. 제 10항에 있어서,The method of claim 10,
    상기 크라운에테르는 하기 구조식 중 선택되는 1종 또는 2종 이상의 혼합물인 나트륨 이차전지.The crown ether is a sodium secondary battery is one or a mixture of two or more selected from the following structural formula.
    Figure PCTKR2014008815-appb-I000074
    Figure PCTKR2014008815-appb-I000074
    Figure PCTKR2014008815-appb-I000075
    Figure PCTKR2014008815-appb-I000075
  12. 제 10항에 있어서,The method of claim 10,
    상기 루이스산은 염화알루미늄(AlCl3), 요오드화알루미늄(AlI3), 염화아연(ZnCl2), 요오드화아연(ZnI2), 염화붕소(BCl3), 불화붕소(BF3) 및 트리스(펜타플로오로페닐)보란(TPFPB) 중 하나 이상 선택되는 나트륨 이차전지.The Lewis acids include aluminum chloride (AlCl 3 ), aluminum iodide (AlI 3 ), zinc chloride (ZnCl 2 ), zinc iodide (ZnI 2 ), boron chloride (BCl 3 ), boron fluoride (BF 3 ) and tris (pentafluoro) Sodium secondary battery selected from one or more of phenyl) borane (TPFPB).
  13. 제 10항에 있어서,The method of claim 10,
    상기 혼합물의 크라운에테르 : 루이스산의 몰비는 1 : 0.1 내지 10인 나트륨 이차전지.Sodium secondary battery of the mixture of crown ether: Lewis acid molar ratio of 1: 0.1 to 10.
  14. 제 9항에 있어서, The method of claim 9,
    상기 용융염 전해질은 10μM 내지 1000mM 몰농도의 상기 해리유도제를 포함하는 나트륨 이차전지.The molten salt electrolyte is a sodium secondary battery comprising the dissociation inducing agent of 10μM to 1000mM molar concentration.
PCT/KR2014/008815 2013-09-25 2014-09-23 Sodium secondary battery WO2015046852A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130113665A KR102203628B1 (en) 2013-09-25 2013-09-25 Sodium Secondary Battery
KR10-2013-0113665 2013-09-25

Publications (1)

Publication Number Publication Date
WO2015046852A1 true WO2015046852A1 (en) 2015-04-02

Family

ID=52743899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/008815 WO2015046852A1 (en) 2013-09-25 2014-09-23 Sodium secondary battery

Country Status (2)

Country Link
KR (1) KR102203628B1 (en)
WO (1) WO2015046852A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114380855A (en) * 2020-10-21 2022-04-22 中国科学院青岛生物能源与过程研究所 Salt for magnesium metal battery and preparation and application thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102339641B1 (en) * 2015-04-17 2021-12-15 필드 업그레이딩 유에스에이, 인코포레이티드 Sodium-Aluminum Battery with Sodium Ion Conductive Ceramic Separator
CA2953163A1 (en) * 2016-12-23 2018-06-23 Sce France Compositions based on an element from the boron family and their uses in electrolyte compositions

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110104526A1 (en) * 2009-11-05 2011-05-05 Chett Boxley Solid-state sodium-based secondary cell having a sodium ion conductive ceramic separator
US20120015256A1 (en) * 2009-03-27 2012-01-19 Tokyo University Of Science Educational Foundation Administrative Organization Sodium ion secondary battery
US20130052525A1 (en) * 2011-08-24 2013-02-28 Sumitomo Chemical Company, Limited Sodium secondary battery
KR20130093945A (en) * 2012-02-15 2013-08-23 에스케이이노베이션 주식회사 Natrium secondary battery
KR20130098236A (en) * 2012-02-27 2013-09-04 에스케이이노베이션 주식회사 Na based secondary battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4076331B2 (en) 2001-09-20 2008-04-16 日本碍子株式会社 Positive electrode current collector and sodium-sulfur battery using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120015256A1 (en) * 2009-03-27 2012-01-19 Tokyo University Of Science Educational Foundation Administrative Organization Sodium ion secondary battery
US20110104526A1 (en) * 2009-11-05 2011-05-05 Chett Boxley Solid-state sodium-based secondary cell having a sodium ion conductive ceramic separator
US20130052525A1 (en) * 2011-08-24 2013-02-28 Sumitomo Chemical Company, Limited Sodium secondary battery
KR20130093945A (en) * 2012-02-15 2013-08-23 에스케이이노베이션 주식회사 Natrium secondary battery
KR20130098236A (en) * 2012-02-27 2013-09-04 에스케이이노베이션 주식회사 Na based secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114380855A (en) * 2020-10-21 2022-04-22 中国科学院青岛生物能源与过程研究所 Salt for magnesium metal battery and preparation and application thereof

Also Published As

Publication number Publication date
KR20150033866A (en) 2015-04-02
KR102203628B1 (en) 2021-01-15

Similar Documents

Publication Publication Date Title
Xiao et al. Recent advances in Li1+ xAlxTi2− x (PO4) 3 solid-state electrolyte for safe lithium batteries
Zhang et al. Towards better Li metal anodes: challenges and strategies
Zhang et al. Enhancing ionic conductivity of solid electrolyte by lithium substitution in halogenated Li-Argyrodite
EP2712468B1 (en) Sulfide solid electrolyte material, method for producing the same, and lithium solid-state battery including the same
Ma et al. Recent achievements on sulfide-type solid electrolytes: crystal structures and electrochemical performance
KR102356583B1 (en) Sodium Secondary Battery
JP5670339B2 (en) Battery and energy system
EP3284134B1 (en) Sodium-aluminum battery with sodium ion conductive ceramic separator
CA2954639A1 (en) Producing lithium
WO2015046852A1 (en) Sodium secondary battery
KR102219487B1 (en) High temperature sodium battery with high energy efficiency
EP3005464B1 (en) Hybrid molten/solid sodium anode for room/intermediate temperature electric vehicle battery
JPWO2014041669A1 (en) Ionic conductor and secondary battery
KR102377944B1 (en) electrolyte for sodium secondary battery and sodium secondary battery using thereof
Li et al. The interfacial engineering of metal electrodes for high-specific-energy and long-lifespan batteries
JP6682427B2 (en) Medium temperature sodium-metal halide battery
KR20150115526A (en) Electrolyte for Sodium Secondary Battery and Sodium Secondary Battery using thereof
CN109467539A (en) A kind of preparation method and purification process of the compound containing at least one cyclic ligand structure
Luo et al. Recent Research Progress of Solid-State Lithium-Sulfur Batteries
WO2023239215A1 (en) Sulfide-based solid electrolyte, method for preparing sulfide-based solid electrolyte, and all-solid battery comprising sulfide-based solid electrolyte
Temeche et al. Solid electrolytes for lithium-sulfur batteries
Negi et al. Theoretical study of defect-mediated ionic transport in Li, Na, and K β and β′′ aluminas
KR20150115528A (en) Electrolyte for Sodium Secondary Battery and Sodium Secondary Battery using thereof
KR20150048061A (en) Sodium Secondary Battery
Xie et al. Cationic Solid-State Electrolytes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14846938

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14846938

Country of ref document: EP

Kind code of ref document: A1