WO2015046191A1 - Binder for nonaqueous secondary batteries, resin composition for nonaqueous secondary batteries, nonaqueous secondary battery separator, nonaqueous secondary battery electrode, and nonaqueous secondary battery - Google Patents

Binder for nonaqueous secondary batteries, resin composition for nonaqueous secondary batteries, nonaqueous secondary battery separator, nonaqueous secondary battery electrode, and nonaqueous secondary battery Download PDF

Info

Publication number
WO2015046191A1
WO2015046191A1 PCT/JP2014/075176 JP2014075176W WO2015046191A1 WO 2015046191 A1 WO2015046191 A1 WO 2015046191A1 JP 2014075176 W JP2014075176 W JP 2014075176W WO 2015046191 A1 WO2015046191 A1 WO 2015046191A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
monomer
aqueous secondary
protective layer
separator
Prior art date
Application number
PCT/JP2014/075176
Other languages
French (fr)
Japanese (ja)
Inventor
和也 木村
由照 大島
北本 剛
Original Assignee
東洋インキScホールディングス株式会社
トーヨーケム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋インキScホールディングス株式会社, トーヨーケム株式会社 filed Critical 東洋インキScホールディングス株式会社
Priority to KR1020167004735A priority Critical patent/KR101868240B1/en
Priority to CN201480050595.XA priority patent/CN105531854B/en
Publication of WO2015046191A1 publication Critical patent/WO2015046191A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a binder for a non-aqueous secondary battery that can be used to form a protective layer for an electrode of a non-aqueous secondary battery such as a lithium ion secondary battery and a protective layer for a separator.
  • the present invention also provides a resin composition for non-aqueous secondary batteries containing such a binder for non-aqueous secondary batteries, and a non-aqueous secondary battery separator provided with a protective layer formed from the resin composition for non-aqueous secondary batteries.
  • a non-aqueous secondary battery electrode, and a non-aqueous secondary battery including at least one of the non-aqueous secondary battery separator and the non-aqueous secondary battery electrode.
  • LIB lithium ion secondary batteries
  • mobile applications such as laptop computers and smartphones because they can obtain high output.
  • LIB has also begun to be used in automotive applications in recent years.
  • LIB includes, for example, a separator made of polyolefin in order to avoid electrical contact between the positive electrode and the negative electrode and allow ions in the electrolyte to pass through.
  • the separator is generally provided with a protective layer formed mainly of an inorganic filler.
  • Patent Document 1 discloses a protective layer using a rubbery polymer containing acrylonitrile as a binder for the protective layer.
  • Patent Document 2 discloses a protective layer in which core-shell polymer particles synthesized using acrylonitrile as one of raw materials are used as a binder for the protective layer.
  • acrylonitrile used to synthesize protective layer binders is highly toxic and difficult to handle. For this reason, the development of a protective layer binder that does not use acrylonitrile as a raw material has been required in consideration of the safety and health hazards of workers who produce the protective layer binder.
  • a protective layer binder that is excellent in durability hereinafter referred to as “electrolytic solution resistance” that is not easily deteriorated by an electrolytic solution and that can satisfy high adhesion to an electrode and a separator (particularly, a polyolefin layer) has not been obtained. There is a problem.
  • an object of the present invention is to provide a non-aqueous solution that is excellent in electrolytic solution resistance, has good adhesion to electrodes and separators (particularly, a polyolefin layer), is excellent in safety during production, and hardly causes health damage. It is to provide a binder for a secondary battery.
  • Another object of the present invention is to provide a nonaqueous secondary battery resin composition containing such a nonaqueous secondary battery binder, and a nonaqueous secondary battery comprising a protective layer formed from the nonaqueous secondary battery resin composition.
  • Another object of the present invention is to provide a battery separator and a non-aqueous secondary battery electrode, and a non-aqueous secondary battery including at least one of these non-aqueous secondary battery separator and non-aqueous secondary battery electrode.
  • the binder for a non-aqueous secondary battery of the present invention includes a plurality of particles composed of a polymer, and the polymer includes a first monomer containing an acidic functional group, a second monomer containing an amide group, It is characterized in that it is obtained by copolymerizing a first monomer, a second monomer, and a third monomer different from (meth) acrylonitrile, and has a glass transition temperature of ⁇ 60 ° C. to 60 ° C.
  • a polymer (a binder for a non-aqueous secondary battery) having a glass transition temperature (hereinafter referred to as “Tg”) in a predetermined range obtained by using a second monomer containing an amide group is used.
  • Tg glass transition temperature
  • the protective layer formed from the resin composition for non-aqueous secondary batteries containing such a polymer is excellent in durability (electrolytic solution resistance) that is not easily deteriorated by the electrolytic solution, and is provided with electrodes and separators (particularly polyolefins). Good adhesion to the separator formed) is obtained.
  • the binder (polymer) for non-aqueous secondary batteries of the present invention is produced (synthesized) without using (meth) acrylonitrile as a raw material. For this reason, the safety
  • FIG. 1 is a longitudinal sectional view showing an embodiment of the LIB of the present invention.
  • the binder for a non-aqueous secondary battery is excellent in electrolytic solution resistance and has good adhesion to electrodes and separators (especially polyolefin layers), and is excellent in safety during production and hardly causes health hazards. Can be provided.
  • the binder for non-aqueous secondary battery the resin composition for non-aqueous secondary battery, the non-aqueous secondary battery separator, the non-aqueous secondary battery electrode and the non-aqueous secondary battery according to the present invention will be described in detail.
  • the binder for non-aqueous secondary batteries of the present invention includes a plurality of particles composed of a polymer having a Tg of ⁇ 60 ° C. to 60 ° C. (hereinafter sometimes referred to as “polymer particles”).
  • this polymer includes a first monomer containing an acidic functional group (hereinafter simply referred to as “first monomer”) and a second monomer containing an amide group (hereinafter simply referred to as “second monomer”).
  • first monomer containing an acidic functional group
  • second monomer a second monomer containing an amide group
  • third monomer different from (meth) acrylonitrile (hereinafter, simply referred to as “third monomer”), and obtained by copolymerization of the first monomer, the second monomer, and (meth) acrylonitrile. It is characterized by.
  • the method for copolymerizing these monomers is not particularly limited, but in general, emulsion polymerization or suspension polymerization is preferable. Thereby, a particulate polymer can be obtained more reliably.
  • a mixture of the first monomer, the second monomer, and the third monomer may be referred to as a “monomer mixture”.
  • the binder for a non-aqueous secondary battery of the present invention is preferably used as a protective layer for an electrode of a non-aqueous secondary battery and a separator, and more preferably used as a protective layer for a separator.
  • a non-aqueous secondary battery is a secondary battery which does not use water for electrolyte solution, for example, a lithium ion secondary battery (LIB), a sodium ion secondary battery, a magnesium secondary battery etc. are mentioned.
  • LIB is described as an example of a non-aqueous secondary battery.
  • the non-aqueous secondary battery of the present invention includes a non-aqueous secondary battery, a non-aqueous secondary battery other than LIB.
  • a resin composition for a secondary battery, a non-aqueous secondary battery separator, and a non-aqueous secondary battery electrode can be applied.
  • the non-aqueous secondary battery resin composition of the present invention can be obtained by blending the non-aqueous secondary battery binder of the present invention with an inorganic filler.
  • the protective layer which uses the said resin composition for non-aqueous secondary batteries can be formed on the compound-material layer of the electrode mentioned later.
  • the protective layer which uses the said resin composition for non-aqueous secondary batteries can be formed on a separator (for example, polyolefin layer).
  • the binder for a non-aqueous secondary battery of the present invention includes a plurality of polymer particles composed of a polymer obtained by copolymerizing a monomer mixture. These polymer particles are blended with an inorganic filler to produce a resin composition for a non-aqueous secondary battery, and then applied to an electrode and a separator (for example, a polyolefin layer). Functions to adhere. Therefore, it is important that the binder for non-aqueous secondary batteries is particles. On the other hand, when forming a protective layer using a linear polymer, there exists a possibility of filling the clearance gap between inorganic fillers.
  • the polymer particles are polymers having a Tg of ⁇ 60 ° C. to 60 ° C. obtained by copolymerizing a monomer mixture containing a first monomer, a second monomer, and a third monomer. Composed.
  • the polymer particles have improved electrolyte resistance due to the presence of the amide group, and further improved affinity with the inorganic filler, thereby improving the solution stability of the resin composition for non-aqueous secondary batteries containing them.
  • the inorganic filler since the inorganic filler has good affinity with the polymer particles, it is uniformly dispersed in the non-aqueous secondary battery resin composition.
  • (meth) acrylonitrile (acrylonitrile and methacrylonitrile) is not used as a raw material, so that the worker can work in a safer environment and is healthy. Damage is less likely to occur.
  • the Tg of the polymer is ⁇ 60 ° C. to 60 ° C.
  • the electrolyte solution resistance of the binder for non-aqueous secondary battery is improved, and the electrode and separator Adhesiveness with (especially polyolefin layer) improves.
  • the Tg of the polymer may be ⁇ 60 ° C. to 60 ° C., preferably ⁇ 45 ° C. to 45 ° C., more preferably ⁇ 30 ° C. to 30 ° C. Tg can be measured using DSC (differential scanning calorimeter, manufactured by TA Instruments).
  • the first monomer contains an acidic functional group.
  • this acidic functional group a carboxyl group, a sulfonic acid group, a phosphoric acid group and the like are preferable.
  • these acidic functional groups in addition to improving adhesion to the electrode and the separator (particularly, the polyolefin layer), stability during polymerization is improved. Furthermore, the solution stability of the resin composition for non-aqueous secondary batteries is improved.
  • Examples of the first monomer containing a carboxyl group include acrylic acid, methacrylic acid, itaconic acid, maleic acid, 2-methacryloylpropionic acid and the like.
  • Examples of the first monomer containing a sulfonic acid group include styrene sulfonic acid, sodium styrene sulfonate, ammonium styrene sulfonate, 2-acrylamido 2-methylpropane sulfonic acid, sodium 2-acrylamido 2-methylpropanoate, Ryl sulfonic acid, sodium methallyl sulfonate, ammonium methallyl sulfonate, allyl sulfonic acid, sodium allyl sulfonate, ammonium allyl sulfonate, vinyl sulfonic acid, sodium vinyl sulfonate, ammonium vinyl sulfonate, allyloxybenzene sulfonic acid, Examples include sodium allyloxybenzene sulfonate and ammonium allyloxybenzene sulfonate.
  • Examples of the first monomer containing a phosphoric acid group include 2-methacryloyloxyethyl acid phosphate, 2-acryloyloxyethyl acid phosphate, diphenyl-2-acryloyloxyethyl phosphate, diphenyl-2-methacryloyloxyethyl phosphate, dibutyl -2-acryloyloxyethyl phosphate, polypropylene glycol monomethacrylate acid phosphate, (2-hydroxyethyl) methacrylate acid phosphate, and the like.
  • the second monomer contains an amide group but preferably does not contain an acidic functional group.
  • the polymer particles containing the second monomer may have improved resistance to the electrolytic solution depending on the type of the electrolytic solution, and may further improve the affinity with the inorganic filler depending on the type of the inorganic filler. is there. For this reason, the solution stability of the resin composition for non-aqueous secondary batteries containing these may increase more.
  • an acidic functional group the acidic functional group similar to what was described with the 1st monomer mentioned above is mentioned, for example.
  • Examples of such second monomer include acrylamide, methacrylamide, diacetone acrylamide, N-methyl acrylamide, N-methyl methacrylamide, N-dimethyl acrylamide, N-ethyl acrylamide, N-diethyl acrylamide, N-isopropyl.
  • Examples include acrylamide, N-butylacrylamide, and hydroxyethylacrylamide.
  • the third monomer is a monomer different from the first monomer, the second monomer, and (meth) acrylonitrile.
  • the third monomer various monomers can be used. Specifically, (meth) acrylic acid alkyl ester, hydroxyl group-containing monomer, glycidyl group-containing monomer, polyoxyalkylene group-containing monomer, crosslinkable monomer (Monomers having two or more vinyl groups), alkoxysilyl group-containing monomers, and vinyl monomers (monomers having one vinyl group) are preferred.
  • the third monomer may contain (meth) acrylic acid alkyl ester as a main component (essential component) and include at least one of a polyoxyalkylene group-containing monomer, a crosslinkable monomer, and an alkoxysilyl group-containing monomer. preferable.
  • Each of the first to third monomers can be used alone or in combination of two or more.
  • Examples of the (meth) acrylic acid alkyl ester include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, tertiary butyl (meth) acrylate, pentyl (meth) acrylate, Hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, octyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, undel (meth) acrylate, dodecyl (meth) acrylate, tridecyl (meth) acrylate, Tetradecyl (meth) acrylate, hexadecyl (meth) acrylate, octadecyl (meth) acrylate, cyclohexyl (meth) acrylate, is
  • hydroxyl group-containing monomer examples include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, glycerol mono (meth) acrylate, allyl alcohol, and the like.
  • the internal cross-linking of the polymer particles is promoted, so that the cohesive force is increased, and the electrolytic solution resistance and the adhesion with the electrode and the separator (particularly, the polyolefin layer) are further improved.
  • Examples of the glycidyl group-containing monomer include glycidyl (meth) acrylate and 4-hydroxybutyl (meth) acrylate glycidyl ether.
  • the internal crosslinking of the polymer particles is promoted, so that the cohesive force is increased, and the resistance to the electrolyte and the adhesion to the electrode and the separator (particularly, the polyolefin layer) are further improved.
  • polyoxyalkylene group-containing monomer examples include diethylene glycol mono (meth) acrylate, polyethylene glycol mono (meth) acrylate, polyethylene glycol / polypropylene glycol mono (meth) acrylate, methoxydiethylene glycol mono (meth) acrylate, methoxypolyethylene glycol mono ( Examples include meth) acrylate, phenoxydiethylene glycol mono (meth) acrylate, and phenoxypolyethylene glycol mono (meth) acrylate.
  • the ionic conductivity of the protective layer is further improved, so that battery performance is further improved.
  • methoxypolyethylene glycol mono (meth) acrylate is used, such an effect becomes more remarkable.
  • the compounding amount of the polyoxyalkylene group-containing monomer is preferably 0.01 to 5% by weight, more preferably 0.05 to 3% by weight with respect to 100% by weight of the monomer mixture. Thereby, the above effect is further improved.
  • crosslinkable monomers examples include allyl (meth) acrylate, vinyl (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, 1,10-decanediol di (meth) acrylate, neopentyl Glycol di (meth) acrylate, glycerin di (meth) acrylate, dimethylol tricyclodecane di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate Over DOO, pentaerythrito
  • the blending amount of the crosslinkable monomer is preferably 0.01 to 5% by weight and more preferably 0.05 to 3% by weight with respect to 100% by weight of the monomer mixture. Thereby, the above effect is further improved.
  • alkoxysilyl group-containing monomer examples include ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -methacryloxypropyltriethoxysilane, ⁇ -methacryloxypropyltributoxysilane, ⁇ -methacryloxypropylmethyldimethoxysilane, and ⁇ -methacryloxy.
  • the internal crosslinking of the polymer particles is promoted, so that the cohesive force is increased and the electrolyte resistance is further improved.
  • ⁇ -methacryloxypropyltrimethoxysilane is used, such an effect becomes more remarkable.
  • the compounding amount of the alkoxysilyl group-containing monomer is preferably 0.01 to 5% by weight, more preferably 0.05 to 3% by weight, based on 100% by weight of the monomer mixture. Thereby, the above effect is further improved.
  • the alkoxysilyl group-containing monomer is more preferable because it can improve the cohesion with a small amount, and can achieve both a high level of electrolytic solution resistance and adhesion.
  • vinyl monomers examples include styrene, ⁇ -methylstyrene, vinyl acetate and the like.
  • the amount of the vinyl monomer used is preferably 0.1 to 50% by weight, for example, 0.1 to 30% by weight with respect to 100% by weight of the total of the first to third monomers (monomer mixture). More preferred is 0.1 to 10% by weight. Thereby, the above effect is further improved.
  • a polymer (binder for non-aqueous secondary battery) with further improved electrolyte resistance can be obtained.
  • the proportions of the first to third monomers used for copolymerization are 0.1 to 5% by weight for the first monomer and 0.1% for the second monomer with respect to 100% by weight of the monomer mixture. It is preferred that 1-5% by weight and the third monomer is 90-99.8% by weight.
  • a resin for a non-aqueous secondary battery obtained by mixing an inorganic filler with a polymer (a binder for a non-aqueous secondary battery) obtained by copolymerizing the first to third monomers at these ratios (blending ratio).
  • the composition further improves its electrolyte resistance and solution stability.
  • Such copolymerization of the monomer is preferably performed in the presence of at least one of a surfactant and a protective colloid.
  • the ionic species of the surfactant includes anions, cations and nonions, with anions and nonions being preferred.
  • a reactive surfactant having at least one unsaturated double bond (vinyl group, (meth) acryloyl group) capable of radical polymerization in the molecule can also be used.
  • the anionic surfactant preferably has a main skeleton of sulfosuccinate, alkyl ether, alkylphenyl ether, alkylphenyl ester, (meth) acrylate sulfate, or phosphate.
  • anionic surfactants include higher fatty acid salts such as sodium oleate, alkylaryl sulfonates such as dodecylbenzene sulfonic acid, alkyl sulfate esters such as sodium lauryl sulfate, polyoxyethylene lauryl ether sodium sulfate, etc.
  • the nonionic surfactant is preferably an alkyl ether, an alkylphenyl ether, or an alkylphenyl ester as a main skeleton.
  • nonionic surfactants include polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether and polyoxyethylene stearyl ether, polyoxyethylene alkylphenyls such as polyoxyethylene octylphenyl ether and polyoxyethylene nonylphenyl ether.
  • Sorbitan higher fatty acid esters such as ether, sorbitan monolaurate, sorbitan monostearate, sorbitan trioleate, polyoxyethylene sorbitan higher fatty acid esters such as polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monostearate, polyoxyethylene Polyoxyethylene higher fatty acid esters such as monolaurate and polyoxyethylene monostearate, oleic acid Noguriseraido, glycerin higher fatty acid esters such as stearic acid monoglyceride, polyoxyethylene polyoxypropylene block copolymers, polyoxyethylene distyrenated phenyl ether and the like.
  • the surfactant can be used as a non-reactive surfactant, but is preferably used as a reactive surfactant.
  • the reactive surfactant is a surfactant having at least one unsaturated double bond (vinyl group, (meth) acryloyl group) capable of radical polymerization in the molecule.
  • unsaturated double bond vinyl group, (meth) acryloyl group
  • compounds in which an unsaturated double bond capable of radical polymerization is bonded to the above-described surfactant preferably anionic surfactant or nonionic surfactant
  • the surfactant is preferably used in an amount of 0.1 to 5 parts by weight with respect to 100 parts by weight of the monomer mixture.
  • the copolymerization of the monomer can also be performed in the presence of a radical polymerization initiator (hereinafter referred to as “polymerization initiator”).
  • a radical polymerization initiator hereinafter referred to as “polymerization initiator”.
  • the polymerization initiator known oil-soluble polymerization initiators and water-soluble polymerization initiators can be used, but it is preferable to use water-soluble polymerization initiators.
  • oil-soluble polymerization initiator examples include benzoyl peroxide, tertiary butyloxybenzoate, tertiary butyl hydroperoxide, tertiary butyl peroxy-2-ethylhexanoate, tertiary butyl peroxy-3,5, 5, organic peroxides such as trimethylhexanoate, ditertiary butyl peroxide, cumene hydroperoxide, p-menthane hydroperoxide, 2,2'-azobisisobutyronitrile, 2,2'-azobis- Examples include azobis compounds such as 2,4-dimethylvaleronitrile, 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), 1,1′-azobis-cyclohexane-1-carbonitrile.
  • water-soluble polymerization initiator examples include ammonium persulfate, sodium persulfate, potassium persulfate, hydrogen peroxide, 2,2'-azobis (2-methylpropionamidine) dihydrochloride, and the like.
  • a reducing agent can be used in combination with a polymerization initiator. Thereby, the polymerization reaction can be promoted.
  • Such reducing agents include reducing organic compounds such as metal salts such as ascorbic acid, erythorbic acid, tartaric acid, citric acid, glucose, formaldehyde sulfoxylate, sodium sulfite, sodium bisulfite, sodium metabisulfite (SMBS) And reducing inorganic compounds such as sodium hyposulfite, ferrous chloride, Rongalite and the like.
  • the reducing agent is preferably used in an amount of 0.01 to 2.5 parts by weight with respect to 100 parts by weight of the monomer mixture.
  • a buffer when copolymerizing monomers, a buffer, a chain transfer agent, a basic compound, etc. can be used as necessary.
  • Examples of the buffer include sodium acetate, sodium citrate, and sodium bicarbonate.
  • chain transfer agent examples include octyl mercaptan, tertiary decyl mercaptan, lauryl mercaptan, stearyl mercaptan, 2-ethylhexyl mercaptoacetate, octyl mercaptoacetate, 2-ethylhexyl mercaptopropionate, octyl mercaptopropionate, and the like.
  • Basic compounds are compounds used for neutralization.
  • Examples of the basic compound include alkylamines such as trimethylamine, triethylamine, and butylamine, alcohol amines such as 2-dimethylaminoethanol, diethylaminoethanol, diethanolamine, triethanolamine, and aminomethylpropanol, morpholine, and ammonia.
  • the average particle diameter of the polymer particles is preferably 50 to 500 nm, more preferably 100 to 300 nm.
  • polymer particles having an average particle diameter of 50 to 500 nm the adhesion between the protective layer and the electrode and separator (particularly, the polyolefin layer) is further improved.
  • the solution stability of the resin composition for non-aqueous secondary batteries obtained by mixing such polymer particles (binder for non-aqueous secondary batteries) and an inorganic filler is further improved.
  • an average particle diameter is D50 average particle diameter which used the dynamic light scattering measuring method.
  • the measurement can be performed with Nanotrac (manufactured by Nikkiso Co., Ltd.) by preparing a diluted solution obtained by diluting an aqueous dispersion of polymer particles 500 times with water and using about 5 mL of the diluted solution.
  • the resin composition for non-aqueous secondary batteries of the present invention preferably contains a binder (polymer particles) for non-aqueous secondary batteries and an inorganic filler. It is preferable that the said inorganic filler is comprised with the inorganic compound which does not change in the electrolyte solution of a non-aqueous secondary battery.
  • the inorganic compound include aluminum oxide, zirconium oxide, titanium oxide, silica, and ion conductive glass.
  • the average particle size of the inorganic filler is preferably 0.01 to 10 ⁇ m.
  • the protective layer can achieve both higher coating strength and lithium ion conductivity.
  • the polymer particles are preferably used in an amount of 0.1 to 10 parts by weight, more preferably 0.1 to 5 parts by weight with respect to 100 parts by weight of the inorganic filler.
  • 0.1 to 10 parts by weight of polymer particles with respect to 100 parts by weight of the inorganic filler the adhesion between the inorganic fillers and the excellent adhesion and flexibility to the electrode and separator of the protective layer can be achieved. While maintaining, the lithium ion conductivity of the protective layer can be further improved.
  • a leveling agent examples include silicon, fluorine, metal, and succinic acid.
  • the dispersant examples include an anionic compound, a nonionic compound, and a polymer compound.
  • water is preferably used, but a water-soluble solvent can also be used as necessary.
  • the water-soluble solvent include alcohol, glycol, cellosolve, amino alcohol, amine, ketones, carboxylic acid amide, phosphoric acid amide, sulfoxide, carboxylic acid ester, phosphoric acid ester, ether, and nitrile.
  • the production of the resin composition for a non-aqueous secondary battery of the present invention can be performed using a known mixing device.
  • the mixing apparatus include a disper, a homomixer, a planetary mixer, a ball mill, a sand mill, an attritor, a pearl mill, a jet mill, and a roll mill.
  • the LIB includes at least a battery body including a positive electrode, a negative electrode, and a separator provided between the positive electrode and the negative electrode, and an electrolyte solution impregnated in the battery body.
  • FIG. 1 is a longitudinal sectional view showing an embodiment of a LIB.
  • the LIB 100 shown in FIG. 1 is a button-type non-aqueous secondary battery having a disk shape as a whole.
  • the LIB 100 includes a battery container 10, a battery main body 1 accommodated in the battery container 10, and an electrolyte solution filled (supplied) in the battery container 10.
  • the battery container 10 includes a positive electrode case 11, a negative electrode case 12, and a sealing material 13 that seals between the positive electrode case 11 and the negative electrode case 12 in a liquid-tight manner.
  • the battery body 1 is housed in a space defined by the positive electrode case 11, the negative electrode case 12 and the sealing material 13.
  • the battery body 1 is in contact with the positive electrode case 11 and the negative electrode case 12 while being housed in the battery container 10.
  • the battery body 1 includes a positive electrode 2 and a negative electrode 3 (hereinafter, collectively referred to as “electrode”), and a separator 4 provided between the positive electrode 2 and the negative electrode 3.
  • the battery body 1 is housed in the battery container 10 and the electrolyte solution is loaded (impregnated) in the battery body 1 (separator 4) by filling (supplying) the electrolyte in the space in the battery container 10. .
  • the positive electrode 2 and the negative electrode 3 were formed using current collectors 21 and 31 and a composite composition provided on the separator 4 side of the current collectors 21 and 31 and including an electrode active material as an essential component.
  • the composite material layers 22 and 32 are included.
  • the resin composition for a non-aqueous secondary battery of the present invention is further used for the positive electrode 2 and the negative electrode 3 on the surface opposite to the current collectors 21 and 31 of the composite material layers 22 and 32.
  • the protective layer 5 is formed. With this protective layer 5, when lithium dendrite-like particles are produced, a short circuit occurs between the two electrodes, and the risk of explosion of the nonaqueous secondary battery can be reduced.
  • the positive electrode 2 and the negative electrode 3 on which the protective layer 5 is formed constitute the non-aqueous secondary battery electrode (electrode with protective layer) of the present invention.
  • Metal compounds such as a metal oxide and metal sulfide which can dope or intercalate lithium ion, a conductive polymer, etc. can be used.
  • the metal oxide or metal compound include oxides of transition metals such as Fe, Co, Ni, and Mn, complex oxides with lithium, and inorganic compounds such as transition metal sulfides.
  • Specific examples of the metal oxide or metal compound include transition metal oxide powders such as MnO, V 2 O 5 , V 6 O 13 , TiO 2 , layered lithium nickelate, lithium cobaltate, lithium manganate, spinel.
  • lithium and transition metals such as lithium manganate having a structure, lithium iron phosphate materials which are lithium acid compounds having an olivine structure, and transition metal sulfide powders such as TiS 2 and FeS.
  • transition metal sulfide powders such as TiS 2 and FeS.
  • these can be used 1 type or in combination of 2 or more types.
  • the negative electrode active material is not particularly limited as long as it can be doped or intercalated with lithium ions.
  • the negative electrode active material include metal Li, alloys containing metal Li (for example, tin alloy, silicon alloy, lead alloy), metal oxides such as lithium titanate, lithium vanadate, lithium siliconate, polyacetylene, poly- Conductive polymer such as p-phenylene, soft carbon, amorphous carbon material of hard carbon, artificial graphite such as highly graphitized carbon material, carbonaceous powder such as natural graphite, carbon black, mesophase carbon black, resin-fired carbon material And carbon materials such as vapor-grown carbon fiber and carbon fiber.
  • these can be used 1 type or in combination of 2 or more types.
  • current collectors 21 and 31 current collectors applicable to various secondary batteries can be appropriately selected.
  • the material of the current collectors 21 and 31 include metals such as aluminum, copper, nickel, titanium, and stainless steel, alloys thereof, and the like.
  • LIB it is preferable to use a current collector 21 made of aluminum for the positive electrode 2 and a current collector 31 made of copper for the negative electrode 3.
  • the thickness of the current collectors 21 and 31 is preferably 5 to 50 ⁇ m.
  • the method for forming the composite layers 22 and 32 and the protective layer 5 is preferably coating.
  • the coating method include die coating method, dip coating method, roll coating method, doctor coating method, knife coating method, spray coating method, gravure coating method, screen printing method, electrostatic coating method and the like. It is also preferable to dry the solvent during coating. Specifically, known drying methods such as hot air drying, infrared drying, and far infrared radiation can be used.
  • the thickness of the composite material layers 22 and 32 is preferably 30 to 300 ⁇ m.
  • the protective layer 5 formed from the resin composition for non-aqueous secondary batteries of the present invention is provided on the surface of the mixture layers 22 and 32 opposite to the current collectors 21 and 31.
  • the thickness of the protective layer 5 is preferably 0.5 to 50 ⁇ m, more preferably 1 to 30 ⁇ m. By setting the thickness of the protective layer 5 to 0.5 to 50 ⁇ m, the protective layer 5 ensures sufficient strength as a film and obtains an electrode (non-aqueous secondary battery) that exhibits excellent battery performance. Can do.
  • a separator 4 is provided between the positive electrode 2 with a protective layer and the negative electrode 3 with a protective layer as described above.
  • the separator 4 is a porous sheet or non-woven fabric having fine pores through which ions can pass.
  • the separator 4 can be configured using a known material such as polyolefin such as polyethylene or polypropylene, cellulose, or aromatic polyamide.
  • protective layers 5 are formed on both sides of the separator 4.
  • This protective layer 5 improves the heat resistance of the separator 4, and when the non-aqueous secondary battery is overheated, a short circuit occurs between the two electrodes, thereby reducing the risk of the non-aqueous secondary battery exploding. it can.
  • the protective layer 5 is preferably formed on both sides of the separator 4, but may be on one side. When the protective layer 5 is formed on one side of the separator 4, it is preferable to dispose the separator 4 with the protective layer 5 facing the negative electrode 3 side on which dendritic particles tend to be preferentially generated.
  • the protective layer 5 can be formed in the same manner as the protective layer 5 described in the above electrode, and can have the same thickness.
  • the protective layer 5 has particularly good adhesion to the separator 4 using a polyolefin sheet that is generally difficult to adhere.
  • a sheet, a film, and a layer have the same meaning content.
  • the separator 4 on which the protective layer 5 is formed constitutes the nonaqueous secondary battery separator (separator with protective layer) of the present invention.
  • the protective layer 5 of the present embodiment includes a resin composition for a non-aqueous secondary battery including polymer particles 51 (a binder for a non-aqueous secondary battery) and an inorganic filler 52. It is formed of things.
  • the polymer particles 51 are point-bonded to the inorganic fillers 52. Thereby, a sufficiently large gap can be secured between the inorganic fillers 52. For this reason, the protective layer 5 has excellent ionic conductivity. As a result, the battery characteristics of the LIB 100 including the protective layer 5 are further improved.
  • the separator 4 is impregnated (held) with an electrolytic solution.
  • This electrolytic solution is a liquid in which an electrolyte containing lithium is dissolved in a non-aqueous solvent.
  • Specific examples of the electrolyte for example, LiBF 4, LiClO 4, LiPF 6, LiAsF 6, LiSbF 6, LiCF 3 SO 3, Li (CF 3 SO 2) 2 N, LiC 4 F 9 SO 3, Li (CF 3 SO 2) 3 C, LiI, LiBr, LiCl, LiAlCl, LiHF 2, LiSCN, LiBPh 4 , and the like.
  • non-aqueous solvent examples include carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate, and lactones such as ⁇ -butyl lactone, ⁇ -valerolactone, and ⁇ -octanoic lactone.
  • Tetrahydrofuran 2-methyltetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, 1,2-methoxyethane, 1,2-ethoxyethane, 1,2-dibutoxyethane and the like, methyl
  • esters such as formate, methyl acetate and methyl propionate
  • sulfoxides such as dimethyl sulfoxide and sulfolane
  • nitriles such as acetonitrile.
  • the electrolytic solution as a polymer electrolyte that is gelled by being held in a polymer matrix.
  • the material for the polymer matrix include an acrylic resin having a polyalkylene oxide segment, a polyphosphazene resin having a polyalkylene oxide segment, and a polysiloxane resin having a polyalkylene oxide segment.
  • the button-type LIB has been described as the non-aqueous secondary battery.
  • the non-aqueous secondary battery of the present invention is not limited to this, and may be a cylindrical type, a square type, a coin type, a pack type, a sheet type, or the like.
  • the battery body 1 may be wound into a cylindrical shape or a rectangular tube shape and stored in the battery container 10.
  • the inorganic filler 52 has good affinity with the polymer particles 51 and is uniformly dispersed in the resin composition for non-aqueous secondary batteries. For this reason, even when the battery body 1 is wound into a cylindrical shape or a rectangular tube shape, the protective layer 5 is not easily cracked, and the inorganic filler 52 is not easily detached from the protective layer 5.
  • the non-aqueous secondary battery using the above members is excellent in safety and battery characteristics.
  • the nonaqueous secondary battery of the present invention can be used for industrial use, in-vehicle use, and mobile use.
  • the binder for a non-aqueous secondary battery As described above, the binder for a non-aqueous secondary battery, the resin composition for a non-aqueous secondary battery, the non-aqueous secondary battery separator, the non-aqueous secondary battery electrode and the non-aqueous secondary battery of the present invention are based on the preferred embodiments. explained. However, the present invention is not limited to this. Each component can be replaced with any component that can exhibit the same function, or can be added with any component.
  • the protective layer 5 may be provided on all of the positive electrode 2, the negative electrode 3, and the separator 4, or may be provided on only one of them. Further, the protective layer 5 may be provided in direct contact with the electrode and the separator 4, but between the protective layer 5 and the electrode or separator 4, an arbitrary purpose (for example, improvement in adhesion, smoothness) One or more layers may be provided in order to improve the property.
  • a part means a weight part and% means weight%, respectively.
  • Eleminol CLS-20 manufactured by Sanyo Chemical Industries
  • a 2 L four-necked flask equipped with a reflux condenser, a stirrer, a thermometer, a nitrogen inlet tube, and a raw material inlet was prepared as a reaction vessel, and 89.4 parts of ion-exchanged water was charged into the reaction vessel. .
  • nitrogen was introduced into the reaction vessel, and the solution was heated to 60 ° C. while stirring the ion exchange water.
  • 0.2 part of Eleminol CLS-20 which is an anionic surfactant, was added to the reaction vessel, and the monomer pre-emulsion was continuously dropped over 5 hours from the dropping tank.
  • emulsion polymerization was continued for 3 hours by using 0.3 part of ammonium persulfate while maintaining the liquid temperature at about 60 ° C. Thereafter, the solution in the reaction vessel was cooled to 50 ° C., and this solution was filtered through a 180 mesh polyester filter cloth to obtain a binder dispersion. There was no aggregate remaining on the filter cloth, and the polymerization stability was good.
  • the obtained binder dispersion had a nonvolatile content of 40% and an acid value of 13 mgKOH / g.
  • the obtained binder dispersion was poured into a mold set so that the thickness after drying was 500 ⁇ m, and dried at 40 ° C. for 72 hours to prepare a resin film.
  • the obtained resin film was cut into a size of 10 mm long ⁇ 10 mm wide to prepare a sample.
  • the sample was immersed in an electrolytic solution at 80 ° C. for 24 hours. Thereafter, the electrolyte solution was washed away with diethyl carbonate at room temperature, and the sample weight after drying at 150 ° C. for 30 minutes was measured to obtain the sample weight after immersion. And the weight reduction rate was calculated on the basis of the sample weight before immersion, and the electrolyte solution tolerance of the binder was evaluated.
  • the electrolytic solution a solution obtained by dissolving LiPF 6 at a concentration of 1 mol / L in a mixed solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1 was used.
  • Synthesis of Binder Synthesis was performed in the same manner as in Synthesis Example 1 except that the blending composition shown in Table 1 was changed, so that binder dispersions of Synthesis Examples 2 to 18 were obtained.
  • ⁇ Formulation Example 1> Preparation of Resin Composition for Nonaqueous Secondary Battery Inorganic particles (alumina, volume average particle diameter 0.5 ⁇ m) and the binder dispersion obtained in Synthesis Example 1 are in a non-volatile content ratio of 100: 3. It mixed so that it might become. Further, water, a polymer type dispersant, and a leveling agent were added to the binder dispersion containing the inorganic particles, and the mixture was prepared so that the non-volatile content was 20%. . Next, this mixed solution was put into a bead mill and dispersed to obtain a resin composition for a non-aqueous secondary battery.
  • alumina volume average particle diameter 0.5 ⁇ m
  • the obtained resin composition for non-aqueous secondary batteries was stored at 25 ° C., and the stability of the solution was evaluated according to the following evaluation criteria by visually observing the presence / absence of aggregation, sedimentation and separation.
  • C Some abnormality was observed in the resin composition for nonaqueous secondary batteries within one week from the start of storage. (Usage prohibited)
  • Example 1 ⁇ Preparation of positive electrode with protective layer> 5 parts of acetylene black (Denka Black HS-100) as a carbon material, 100 parts of LiFePO 4 as a positive electrode active material, 1 part of carboxymethylcellulose as a dispersant, and polytetrafluoroethylene 30-J (Mitsui / Dupont Fluoro) as a binder (Chemical Co., 60% water dispersion) 8 parts and water 60 parts were mixed with a planetary mixer to prepare a positive electrode mixture composition.
  • acetylene black Denka Black HS-100
  • LiFePO 4 LiFePO 4
  • carboxymethylcellulose as a dispersant
  • polytetrafluoroethylene 30-J Mitsubishi Co., 60% water dispersion
  • the obtained positive electrode mixture composition was applied onto an aluminum foil (thickness 20 ⁇ m) as a current collector so that the thickness after drying was 80 ⁇ m using a doctor blade. Then, heat drying was performed under reduced pressure, and further a rolling process by a roll press was performed to produce a 65 ⁇ m-thick composite material layer to obtain a positive electrode.
  • the protective layer was formed by applying the resin composition for non-aqueous secondary batteries of Formulation Example 1 on the mixture layer of the positive electrode using a doctor blade so that the thickness after drying was 5 ⁇ m. Then, the positive electrode with a protective layer (positive electrode for LIB) was produced by heat-drying under pressure reduction.
  • the flexibility of the protective layer was evaluated by the following method.
  • the obtained positive electrode with a protective layer was cut into a size of width 10 mm ⁇ length 50 mm to prepare a sample.
  • the sample was wound around a metal rod having a diameter of 1.5 mm so that the current collector was in contact. In this state, the surface state of the protective layer was visually observed, and the flexibility was evaluated according to the following evaluation criteria.
  • B A change was observed in a part of the surface of the protective layer.
  • Practiceal problem-free level C: Cracks were observed on a part of the surface of the protective layer.
  • D Cracks were observed on the entire surface of the protective layer. (Usage prohibited)
  • ⁇ Production of negative electrode 1 part of acetylene black (Denka Black HS-100) as a carbon material, 100 parts of artificial graphite as a negative electrode active material, 1 part of carboxymethylcellulose as a dispersant, 8 parts of polytetrafluoroethylene 30-J as a binder, and water 70 Were mixed with a planetary mixer to produce a negative electrode mixture composition.
  • acetylene black Denka Black HS-100
  • water 70 Were mixed with a planetary mixer to produce a negative electrode mixture composition.
  • the obtained negative electrode mixture composition was applied onto a copper foil (thickness 20 ⁇ m) as a current collector so that the thickness after drying was 80 ⁇ m using a doctor blade. Then, it heat-dried under reduced pressure, the 65-micrometer-thick composite material layer was produced by performing the rolling process by a roll press, and the negative electrode (negative electrode for LIB) was produced.
  • the positive electrode with a protective layer was punched into a disk shape having a diameter of 15.9 mm, and the negative electrode was punched into a disk shape having a diameter of 16.1 mm.
  • the separator was formed by punching a porous polypropylene film into a circle having a diameter of 23 mm.
  • the positive electrode with the protective layer and the negative electrode were opposed to each other with the separator interposed between them and housed in a battery container, and a coin-type battery was produced by filling with an electrolyte.
  • the coin-type battery was produced in a glove box substituted with argon.
  • the obtained coin-type battery was subjected to charge / discharge measurement as follows using a charge / discharge device (SM-8 manufactured by Hokuto Denko).
  • the constant current charging was continued up to a charging end voltage of 4.2 V at a charging current of 1.2 mA.
  • constant current discharge was performed at a discharge current of 1.2 mA until the discharge end voltage of 2.0 V was reached.
  • These charge / discharge cycles are defined as one cycle, and 5 cycles of charge / discharge are repeated, and the discharge capacity at the fifth cycle is defined as the initial discharge capacity.
  • the case where the initial discharge capacity was maintained was set to 100%.
  • the coin-type battery was stored in a 60 ° C. constant temperature bath for 100 hours and then discharged at a constant discharge current of 1.2 mA until reaching a final discharge voltage of 2.0V.
  • the discharge capacity maintenance rate was calculated. In addition, it shows that a battery characteristic is so favorable that a maintenance factor is near 100%.
  • Examples 2 to 5, 23 [Comparative Examples 1 to 5] Except having used the resin composition for non-aqueous secondary batteries shown in Table 2, the positive electrode with a protective layer was produced like Example 1 and LIB was assembled, and the coin-type battery was obtained. The obtained positive electrode with a protective layer and coin-type battery were evaluated in the same manner as in Example 1.
  • Example 6 ⁇ Preparation of negative electrode with protective layer>
  • the protective layer was applied by applying the nonaqueous secondary battery resin composition of Formulation Example 1 using a doctor blade so that the thickness after drying was 5 ⁇ m.
  • a negative electrode with a protective layer (LIB negative electrode) was obtained by heating and drying under reduced pressure.
  • a coin-type battery was obtained in the same manner as in Example 1 except that the produced negative electrode with a protective layer and the positive electrode without a protective layer were used.
  • the obtained negative electrode with a protective layer and coin-type battery were evaluated in the same manner as in Example 1.
  • Example 7 to 10 [Comparative Examples 6 to 10] Except having used the resin composition for non-aqueous secondary batteries shown in Table 2, the negative electrode with a protective layer was produced similarly to Example 6, the LIB was assembled, and the coin-type battery was obtained. The obtained negative electrode with protective layer and coin-type battery were evaluated in the same manner as in Example 1.
  • Example 11 ⁇ Preparation of separator with protective layer> On one side of the separator used in Example 1 (surface on the negative electrode side of the separator), the non-aqueous secondary battery resin composition of Formulation Example 1 was applied using a doctor blade so that the thickness after drying was 5 ⁇ m. Then, a protective layer was formed, and then heat-dried under reduced pressure to obtain a separator with a protective layer (LIB separator).
  • LIB separator a separator with a protective layer
  • a coin-type battery was obtained in the same manner as in Example 1 except that the manufactured separator with a protective layer and the positive electrode not forming the protective layer were used. In addition, the separator with a protective layer was installed with the protective layer facing the negative electrode.
  • Example 2 Evaluation was performed in the same manner as in Example 1 for the obtained separator with a protective layer and coin-type battery.
  • Example 12 to 22, 24 [Comparative Examples 11 to 15] Except having used the resin composition for non-aqueous secondary batteries shown in Table 2, it carried out similarly to Example 11, produced the separator with a protective layer, assembled LIB, and obtained the coin-type battery. The obtained separator with a protective layer and coin-type battery were evaluated in the same manner as in Example 1.
  • Examples 1 to 4, Examples 6 to 8, Examples 11 to 17 and Examples using polymers (binders) obtained by copolymerizing the first to third monomers at a predetermined ratio (blending ratio) In 23 and Example 24, the evaluation results of the characteristics were particularly good.
  • the binder for a non-aqueous secondary battery of the present invention includes a plurality of particles composed of a polymer, and the polymer includes a first monomer containing an acidic functional group, a second monomer containing an amide group, The first monomer, the second monomer, and a third monomer different from (meth) acrylonitrile are copolymerized, and the glass transition temperature is ⁇ 60 ° C. to 60 ° C.
  • the binder for non-aqueous secondary batteries of the present invention is produced without using (meth) acrylonitrile as a raw material. For this reason, the safety

Abstract

This binder for nonaqueous secondary batteries contains a plurality of particles that are configured from a polymer, and is characterized in that the polymer is obtained by copolymerizing a first monomer containing an acidic functional group, a second monomer containing an amide group and a third monomer that is different from the first monomer, the second monomer and (meth)acrylonitrile, and has a glass transition temperature of from -60°C to 60°C. In addition, it is preferable that the polymer is obtained by copolymerizing 0.1-5% by weight of the first monomer, 0.1-5% by weight of the second monomer and 90-99.8% by weight of the third monomer relative to 100% by weight of the first to third monomers in total. Consequently, the present invention is able to provide a binder for nonaqueous secondary batteries, which has excellent safety during the production procedure and does not easily create health hazards, while having excellent electrolyte solution resistance and good adhesion to an electrode and a separator (especially, to a polyolefin layer).

Description

非水二次電池用バインダー、非水二次電池用樹脂組成物、非水二次電池セパレータ、非水二次電池電極および非水二次電池Nonaqueous secondary battery binder, nonaqueous secondary battery resin composition, nonaqueous secondary battery separator, nonaqueous secondary battery electrode and nonaqueous secondary battery
 本発明は、リチウムイオン二次電池等の非水二次電池の電極の保護層、およびセパレータの保護層を形成するのに使用することができる非水二次電池用バインダーに関する。また、本発明は、かかる非水二次電池用バインダーを含む非水二次電池用樹脂組成物、非水二次電池用樹脂組成物から形成してなる保護層を備える非水二次電池セパレータおよび非水二次電池電極、ならびに、これらの非水二次電池セパレータおよび非水二次電池電極のうちの少なくとも一方を備える非水二次電池に関する。 The present invention relates to a binder for a non-aqueous secondary battery that can be used to form a protective layer for an electrode of a non-aqueous secondary battery such as a lithium ion secondary battery and a protective layer for a separator. The present invention also provides a resin composition for non-aqueous secondary batteries containing such a binder for non-aqueous secondary batteries, and a non-aqueous secondary battery separator provided with a protective layer formed from the resin composition for non-aqueous secondary batteries. And a non-aqueous secondary battery electrode, and a non-aqueous secondary battery including at least one of the non-aqueous secondary battery separator and the non-aqueous secondary battery electrode.
 非水二次電池の中でもリチウムイオン二次電池(以下、「LIB」という)は、高出力を得ることができるため、ノートパソコン、スマートフォン等のモバイル用途で盛んに使用されている。また、LIBは、近年では自動車用途でも使用され始めている。 Among non-aqueous secondary batteries, lithium ion secondary batteries (hereinafter referred to as “LIB”) can be used in mobile applications such as laptop computers and smartphones because they can obtain high output. LIB has also begun to be used in automotive applications in recent years.
 LIBは、正極および負極の電気的接触を回避し、電解液中のイオンを通過させるために、例えば、ポリオレフィン製のセパレータを備えている。しかしながら、LIB(電池)が高温になったときにポリオレフィン製のセパレータが溶融することで、両電極が短絡し、LIB(電池)が爆発等する場合がある。そこで、前記短絡を防止するために、セパレータには、無機フィラーを主体として形成された保護層を設けることが一般的である。 LIB includes, for example, a separator made of polyolefin in order to avoid electrical contact between the positive electrode and the negative electrode and allow ions in the electrolyte to pass through. However, when the LIB (battery) becomes high temperature, the polyolefin separator melts, so that both electrodes are short-circuited, and the LIB (battery) may explode. Therefore, in order to prevent the short circuit, the separator is generally provided with a protective layer formed mainly of an inorganic filler.
 特許文献1では、アクリロニトリルを含むゴム状高分子を保護層用バインダーとして使用した保護層が開示されている。 Patent Document 1 discloses a protective layer using a rubbery polymer containing acrylonitrile as a binder for the protective layer.
 また、特許文献2では、アクリロニトリルを原料の1つとして合成したコアシェル構造のポリマー粒子を保護層用バインダーとして使用した保護層が開示されている。 Patent Document 2 discloses a protective layer in which core-shell polymer particles synthesized using acrylonitrile as one of raw materials are used as a binder for the protective layer.
特開2005-235508号公報JP 2005-235508 A WO2011/040474WO2011 / 040474
 従来、保護層用バインダーの合成に使用されているアクリロニトリルは、毒性が高く取り扱いが難しい。このため、保護層用バインダーを製造する作業者の安全性、健康被害を考慮して、アクリロニトリルを原料として使用しない保護層用バインダーの開発が求められていた。しかしながら、電解液により劣化しにくい耐久性(以下、「電解液耐性」という)に優れるとともに、電極およびセパレータ(特に、ポリオレフィン層)との高い密着性を満足できる保護層用バインダーが得られていないという問題がある。 Conventionally, acrylonitrile used to synthesize protective layer binders is highly toxic and difficult to handle. For this reason, the development of a protective layer binder that does not use acrylonitrile as a raw material has been required in consideration of the safety and health hazards of workers who produce the protective layer binder. However, a protective layer binder that is excellent in durability (hereinafter referred to as “electrolytic solution resistance”) that is not easily deteriorated by an electrolytic solution and that can satisfy high adhesion to an electrode and a separator (particularly, a polyolefin layer) has not been obtained. There is a problem.
 そこで、本発明の目的は、電解液耐性に優れ、かつ電極およびセパレータ(特に、ポリオレフィン層)との密着性が良好であり、製造時の安全性に優れ、かつ健康被害が生じにくい非水二次電池用バインダーを提供することにある。 Accordingly, an object of the present invention is to provide a non-aqueous solution that is excellent in electrolytic solution resistance, has good adhesion to electrodes and separators (particularly, a polyolefin layer), is excellent in safety during production, and hardly causes health damage. It is to provide a binder for a secondary battery.
 また、本発明の目的は、かかる非水二次電池用バインダーを含む非水二次電池用樹脂組成物、非水二次電池用樹脂組成物から形成してなる保護層を備える非水二次電池セパレータおよび非水二次電池電極、ならびに、これらの非水二次電池セパレータおよび非水二次電池電極のうちの少なくとも一方を備える非水二次電池を提供することにもある。 Another object of the present invention is to provide a nonaqueous secondary battery resin composition containing such a nonaqueous secondary battery binder, and a nonaqueous secondary battery comprising a protective layer formed from the nonaqueous secondary battery resin composition. Another object of the present invention is to provide a battery separator and a non-aqueous secondary battery electrode, and a non-aqueous secondary battery including at least one of these non-aqueous secondary battery separator and non-aqueous secondary battery electrode.
 本発明の非水二次電池用バインダーは、ポリマーで構成された複数の粒子を含み、このポリマーが、酸性官能基を含有する第1のモノマーと、アミド基を含有する第2のモノマーと、第1のモノマー、第2のモノマーおよび(メタ)アクリロニトリルと異なる第3のモノマーとを共重合してなり、そのガラス転移温度が-60℃~60℃であることを特徴とする。 The binder for a non-aqueous secondary battery of the present invention includes a plurality of particles composed of a polymer, and the polymer includes a first monomer containing an acidic functional group, a second monomer containing an amide group, It is characterized in that it is obtained by copolymerizing a first monomer, a second monomer, and a third monomer different from (meth) acrylonitrile, and has a glass transition temperature of −60 ° C. to 60 ° C.
 本発明によれば、アミド基を含有する第2のモノマーを使用して得た所定の範囲のガラス転移温度(以下、「Tg」という)を有するポリマー(非水二次電池用バインダー)を使用する。このため、かかるポリマーを含む非水二次電池用樹脂組成物から形成してなる保護層は、電解液で劣化し難い耐久性(電解液耐性)に優れ、かつ電極およびセパレータ(特に、ポリオレフィンで構成されるセパレータ)との良好な密着性が得られる。 According to the present invention, a polymer (a binder for a non-aqueous secondary battery) having a glass transition temperature (hereinafter referred to as “Tg”) in a predetermined range obtained by using a second monomer containing an amide group is used. To do. For this reason, the protective layer formed from the resin composition for non-aqueous secondary batteries containing such a polymer is excellent in durability (electrolytic solution resistance) that is not easily deteriorated by the electrolytic solution, and is provided with electrodes and separators (particularly polyolefins). Good adhesion to the separator formed) is obtained.
 さらに、本発明の非水二次電池用バインダー(ポリマー)は、(メタ)アクリロニトリルを原料として使用することなく製造(合成)される。このため、非水二次電池用バインダーを製造する際の安全性が向上し、健康被害が生じにくいという効果も得られる。 Furthermore, the binder (polymer) for non-aqueous secondary batteries of the present invention is produced (synthesized) without using (meth) acrylonitrile as a raw material. For this reason, the safety | security at the time of manufacturing the binder for non-aqueous secondary batteries improves, and the effect that a health hazard hardly arises is also acquired.
図1は、本発明のLIBの一実施形態を示す縦断面図である。FIG. 1 is a longitudinal sectional view showing an embodiment of the LIB of the present invention.
 本発明により電解液耐性に優れ、かつ電極およびセパレータ(特に、ポリオレフィン層)との密着性が良好でありながら、製造時の安全性に優れ、かつ健康被害が生じにくい非水二次電池用バインダーを提供することができる。 According to the present invention, the binder for a non-aqueous secondary battery is excellent in electrolytic solution resistance and has good adhesion to electrodes and separators (especially polyolefin layers), and is excellent in safety during production and hardly causes health hazards. Can be provided.
 以下、本発明にかかる非水二次電池用バインダー、非水二次電池用樹脂組成物、非水二次電池セパレータ、非水二次電池電極および非水二次電池について詳細に説明する。 Hereinafter, the binder for non-aqueous secondary battery, the resin composition for non-aqueous secondary battery, the non-aqueous secondary battery separator, the non-aqueous secondary battery electrode and the non-aqueous secondary battery according to the present invention will be described in detail.
 本発明の非水二次電池用バインダーは、Tgが-60℃~60℃のポリマーで構成された粒子(以下、「ポリマー粒子」ということもある。)を複数含む。また、このポリマーは、酸性官能基を含有する第1のモノマー(以下、単に「第1のモノマー」と記載する)と、アミド基を含有する第2のモノマー(以下、単に「第2のモノマー」と記載する)と、第1のモノマー、第2のモノマーおよび(メタ)アクリロニトリルと異なる第3のモノマー(以下、単に「第3のモノマー」と記載する)とを共重合して得られることを特徴とする。 The binder for non-aqueous secondary batteries of the present invention includes a plurality of particles composed of a polymer having a Tg of −60 ° C. to 60 ° C. (hereinafter sometimes referred to as “polymer particles”). In addition, this polymer includes a first monomer containing an acidic functional group (hereinafter simply referred to as “first monomer”) and a second monomer containing an amide group (hereinafter simply referred to as “second monomer”). And a third monomer different from (meth) acrylonitrile (hereinafter, simply referred to as “third monomer”), and obtained by copolymerization of the first monomer, the second monomer, and (meth) acrylonitrile. It is characterized by.
 なお、これらのモノマーの共重合の方法は、特に限定されないが、一般的には乳化重合または懸濁重合が好ましい。これにより、粒子状のポリマーをより確実に得ることができる。以下では、第1のモノマーと、第2のモノマーと、第3のモノマーとの混合物を「モノマー混合物」ということもある。 The method for copolymerizing these monomers is not particularly limited, but in general, emulsion polymerization or suspension polymerization is preferable. Thereby, a particulate polymer can be obtained more reliably. Hereinafter, a mixture of the first monomer, the second monomer, and the third monomer may be referred to as a “monomer mixture”.
 本発明の非水二次電池用バインダーは、非水二次電池の電極およびセパレータの保護層として使用することが好ましく、セパレータの保護層として使用することがより好ましい。なお、非水二次電池とは、電解液に水を使用しない二次電池であり、例えば、リチウムイオン二次電池(LIB)、ナトリウムイオン二次電池、マグネシウム二次電池等が挙げられる。なお、後述するように、本明細書では、LIBを非水二次電池の例として説明を行うが、LIB以外の非水二次電池に、本発明の非水二次電池用バインダー、非水二次電池用樹脂組成物、非水二次電池セパレータおよび非水二次電池電極を適用できることはいうまでも無い。 The binder for a non-aqueous secondary battery of the present invention is preferably used as a protective layer for an electrode of a non-aqueous secondary battery and a separator, and more preferably used as a protective layer for a separator. In addition, a non-aqueous secondary battery is a secondary battery which does not use water for electrolyte solution, for example, a lithium ion secondary battery (LIB), a sodium ion secondary battery, a magnesium secondary battery etc. are mentioned. As will be described later, in this specification, LIB is described as an example of a non-aqueous secondary battery. However, the non-aqueous secondary battery of the present invention includes a non-aqueous secondary battery, a non-aqueous secondary battery other than LIB. Needless to say, a resin composition for a secondary battery, a non-aqueous secondary battery separator, and a non-aqueous secondary battery electrode can be applied.
 本発明の非水二次電池用バインダーを、無機フィラーと配合することで、本発明の非水二次電池用樹脂組成物が得られる。そして、後述する電極の合材層上に、当該非水二次電池用樹脂組成物を使用した保護層を形成することが出来る。また、セパレータ(例えば、ポリオレフィン層)上に、当該非水二次電池用樹脂組成物を使用した保護層を形成することができる。これらの保護層により、非水二次電池が過熱した際に、両電極間でショートが生じて、非水二次電池が爆発する危険性を低減することができる。さらに、これらの保護層により、電解液に生成したデンドライト状粒子による電極やセパレータの損傷を抑制することもできる。 The non-aqueous secondary battery resin composition of the present invention can be obtained by blending the non-aqueous secondary battery binder of the present invention with an inorganic filler. And the protective layer which uses the said resin composition for non-aqueous secondary batteries can be formed on the compound-material layer of the electrode mentioned later. Moreover, the protective layer which uses the said resin composition for non-aqueous secondary batteries can be formed on a separator (for example, polyolefin layer). By these protective layers, when the non-aqueous secondary battery is overheated, a short circuit occurs between both electrodes, and the risk of the non-aqueous secondary battery exploding can be reduced. Furthermore, these protective layers can also suppress damage to electrodes and separators caused by dendritic particles produced in the electrolyte.
 本発明の非水二次電池用バインダーは、モノマー混合物を共重合して得たポリマーで構成される複数のポリマー粒子を含む。これらのポリマー粒子は、無機フィラーと配合して、非水二次電池用樹脂組成物を製造した後、電極およびセパレータ(例えば、ポリオレフィン層)に塗工すると同時に、配合された無機フィラー同士を点接着するように機能する。そのため、非水二次電池用バインダーは、粒子であることが重要である。一方、線状ポリマーを使用して保護層を形成する場合、無機フィラー同士の隙間を埋めてしまう恐れがある。その結果、線状ポリマーを使用した保護層を電極やセパレータに形成すると、両電極間のイオン等の自由な動きを阻害する。このため、線状ポリマーを使用した場合、LIBの電池性能が低下する傾向にある。 The binder for a non-aqueous secondary battery of the present invention includes a plurality of polymer particles composed of a polymer obtained by copolymerizing a monomer mixture. These polymer particles are blended with an inorganic filler to produce a resin composition for a non-aqueous secondary battery, and then applied to an electrode and a separator (for example, a polyolefin layer). Functions to adhere. Therefore, it is important that the binder for non-aqueous secondary batteries is particles. On the other hand, when forming a protective layer using a linear polymer, there exists a possibility of filling the clearance gap between inorganic fillers. As a result, when a protective layer using a linear polymer is formed on an electrode or a separator, free movement of ions or the like between both electrodes is hindered. For this reason, when a linear polymer is used, the battery performance of LIB tends to deteriorate.
 本発明において、ポリマー粒子は、第1のモノマーと、第2のモノマーと、第3のモノマーとを含むモノマー混合物を共重合して得られ、そのTgが-60℃~60℃であるポリマーで構成される。ポリマー粒子は、アミド基の存在により電解液耐性が向上し、さらに無機フィラーとの親和性が向上することで、これらを含む非水二次電池用樹脂組成物の溶液安定性も向上する。さらに、無機フィラーは、ポリマー粒子との親和性が良好であるが故、非水二次電池用樹脂組成物中に均一に分散している。このため、かかる非水二次電池用樹脂組成物を使用した保護層が形成された電極やセパレータを使用し、例えばこれらを渦巻き状に巻き込んで非水二次電池を作成した場合に、保護層に亀裂が生じにくく、かつ無機フィラーが脱落しにくい優れた効果を得ることができる。 In the present invention, the polymer particles are polymers having a Tg of −60 ° C. to 60 ° C. obtained by copolymerizing a monomer mixture containing a first monomer, a second monomer, and a third monomer. Composed. The polymer particles have improved electrolyte resistance due to the presence of the amide group, and further improved affinity with the inorganic filler, thereby improving the solution stability of the resin composition for non-aqueous secondary batteries containing them. Furthermore, since the inorganic filler has good affinity with the polymer particles, it is uniformly dispersed in the non-aqueous secondary battery resin composition. For this reason, when a protective layer using such a resin composition for a non-aqueous secondary battery is used, for example, when a non-aqueous secondary battery is created by winding them in a spiral shape, the protective layer It is possible to obtain an excellent effect in which cracks are hardly generated and the inorganic filler is not easily removed.
 また、本発明では、ポリマーを合成する際に、(メタ)アクリロニトリル(アクリロニトリルおよびメタクリロニトリル)を原料として使用していないため、作業者は、より安全な環境での作業が可能であり、健康被害が生じにくくなる。 Further, in the present invention, when synthesizing the polymer, (meth) acrylonitrile (acrylonitrile and methacrylonitrile) is not used as a raw material, so that the worker can work in a safer environment and is healthy. Damage is less likely to occur.
 さらに、本発明では、ポリマーのTgが-60℃~60℃であるため、非水二次電池用バインダー(非水二次電池用樹脂組成物)の電解液耐性が向上するとともに、電極およびセパレータ(特に、ポリオレフィン層)との密着性が向上する。ポリマーのTgは、-60℃~60℃であればよいが、-45℃~45℃が好ましく、-30℃~30℃がより好ましい。なお、Tgは、DSC(示差走査熱量計 TAインスツルメント社製)を使用して測定することができる。具体的には、サンプル約2mgをアルミニウムパン上で秤量し、該アルミニウムパンをDSC測定ホルダーにセットし、5℃/分の昇温条件にて得られる吸熱ピークを読み取ることで、Tgを測定することができる。 Furthermore, in the present invention, since the Tg of the polymer is −60 ° C. to 60 ° C., the electrolyte solution resistance of the binder for non-aqueous secondary battery (resin composition for non-aqueous secondary battery) is improved, and the electrode and separator Adhesiveness with (especially polyolefin layer) improves. The Tg of the polymer may be −60 ° C. to 60 ° C., preferably −45 ° C. to 45 ° C., more preferably −30 ° C. to 30 ° C. Tg can be measured using DSC (differential scanning calorimeter, manufactured by TA Instruments). Specifically, about 2 mg of a sample is weighed on an aluminum pan, the aluminum pan is set on a DSC measurement holder, and an endothermic peak obtained under a temperature rising condition of 5 ° C./min is read to measure Tg. be able to.
 以下、このようなポリマーの合成に用いられる第1~第3のモノマーについて、それぞれ詳細に説明する。 Hereinafter, the first to third monomers used for the synthesis of such a polymer will be described in detail.
 第1のモノマーは、酸性官能基を含有する。この酸性官能基としては、カルボキシル基、スルホン酸基、リン酸基等が好ましい。これらの酸性官能基を有することで、電極およびセパレータ(特に、ポリオレフィン層)との密着性が向上することに加え、重合時の安定性が向上する。さらに非水二次電池用樹脂組成物の溶液安定性が向上する。 The first monomer contains an acidic functional group. As this acidic functional group, a carboxyl group, a sulfonic acid group, a phosphoric acid group and the like are preferable. By having these acidic functional groups, in addition to improving adhesion to the electrode and the separator (particularly, the polyolefin layer), stability during polymerization is improved. Furthermore, the solution stability of the resin composition for non-aqueous secondary batteries is improved.
 カルボキシル基を含有する第1のモノマーとしては、例えば、アクリル酸、メタクリル酸、イタコン酸、マレイン酸、2-メタクリロイルプロピオン酸等が挙げられる。 Examples of the first monomer containing a carboxyl group include acrylic acid, methacrylic acid, itaconic acid, maleic acid, 2-methacryloylpropionic acid and the like.
 スルホン酸基を含有する第1のモノマーとしては、例えば、スチレンスルホン酸、スチレンスルホン酸ナトリウム、スチレンスルホン酸アンモニウム、2-アクリルアミド2-メチルプロパンスルホン酸、2-アクリルアミド2-メチルプロパン酸ナトリウム、メタリルスルホン酸、メタリルスルホン酸ナトリウム、メタリルスルホン酸アンモニウム、アリルスルホン酸、アリルスルホン酸ナトリウム、アリルスルホン酸アンモニウム、ビニルスルホン酸、ビニルスルホン酸ナトリウム、ビニルスルホン酸アンモニウム、アリルオキシベンゼンスルホン酸、アリルオキシベンゼンスルホン酸ナトリウム、アリルオキシベンゼンスルホン酸アンモニウム等が挙げられる。 Examples of the first monomer containing a sulfonic acid group include styrene sulfonic acid, sodium styrene sulfonate, ammonium styrene sulfonate, 2-acrylamido 2-methylpropane sulfonic acid, sodium 2-acrylamido 2-methylpropanoate, Ryl sulfonic acid, sodium methallyl sulfonate, ammonium methallyl sulfonate, allyl sulfonic acid, sodium allyl sulfonate, ammonium allyl sulfonate, vinyl sulfonic acid, sodium vinyl sulfonate, ammonium vinyl sulfonate, allyloxybenzene sulfonic acid, Examples include sodium allyloxybenzene sulfonate and ammonium allyloxybenzene sulfonate.
 リン酸基を含有する第1のモノマーとしては、例えば、2-メタクリロイルオキシエチルアシッドホスフェート、2-アクリロイルオキシエチルアシッドホスフェート、ジフェニル-2-アクリロイルオキシエチルホスフェート、ジフェニル-2-メタクリロイルオキシエチルホスフェート、ジブチル-2-アクリロイルオキシエチルホスフェート、ポリプロピレングリコールモノメタクリレートアシッドホスフェート、(2-ヒドロキシエチル)メタクリレートアシッドホスフェート等が挙げられる。 Examples of the first monomer containing a phosphoric acid group include 2-methacryloyloxyethyl acid phosphate, 2-acryloyloxyethyl acid phosphate, diphenyl-2-acryloyloxyethyl phosphate, diphenyl-2-methacryloyloxyethyl phosphate, dibutyl -2-acryloyloxyethyl phosphate, polypropylene glycol monomethacrylate acid phosphate, (2-hydroxyethyl) methacrylate acid phosphate, and the like.
 第2のモノマーは、アミド基を含有するが、酸性官能基を含有しないことが好ましい。これにより、近接する酸性官能基によりアミド基の作用が弱められるのを防止することができ、アミド基の存在に起因する前記効果がより高まる場合がある。すなわち、かかる第2のモノマーを含むポリマー粒子は、電解液の種類に応じて、電解液耐性がより向上し、および無機フィラーの種類に応じて、無機フィラーとの親和性がより向上する場合がある。このため、これらを含む非水二次電池用樹脂組成物の溶液安定性もより高まる場合がある。なお、酸性官能基としては、例えば、前述した第1のモノマーで記載したのと同様の酸性官能基が挙げられる。 The second monomer contains an amide group but preferably does not contain an acidic functional group. Thereby, it is possible to prevent the action of the amide group from being weakened by the adjacent acidic functional group, and the effect due to the presence of the amide group may be further enhanced. That is, the polymer particles containing the second monomer may have improved resistance to the electrolytic solution depending on the type of the electrolytic solution, and may further improve the affinity with the inorganic filler depending on the type of the inorganic filler. is there. For this reason, the solution stability of the resin composition for non-aqueous secondary batteries containing these may increase more. In addition, as an acidic functional group, the acidic functional group similar to what was described with the 1st monomer mentioned above is mentioned, for example.
 このような第2のモノマーとしては、例えば、アクリルアミド、メタクリルアミド、ダイアセトンアクリルアミド、N-メチルアクリルアミド、N-メチルメタクリルアミド、N-ジメチルアクリルアミド、N-エチルアクリルアミド、N-ジエチルアクリルアミド、N-イソプロピルアクリルアミド、N-ブチルアクリルアミド、ヒドロキシエチルアクリルアミド等が挙げられる。 Examples of such second monomer include acrylamide, methacrylamide, diacetone acrylamide, N-methyl acrylamide, N-methyl methacrylamide, N-dimethyl acrylamide, N-ethyl acrylamide, N-diethyl acrylamide, N-isopropyl. Examples include acrylamide, N-butylacrylamide, and hydroxyethylacrylamide.
 第3のモノマーは、第1のモノマー、第2のモノマーおよび(メタ)アクリロニトリルと異なるモノマーである。第3のモノマーとしては、各種のモノマーを使用することができるが、具体的には、(メタ)アクリル酸アルキルエステル、水酸基含有モノマー、グリシジル基含有モノマー、ポリオキシアルキレン基含有モノマー、架橋性モノマー(ビニル基を2つ以上有するモノマー)、アルコキシシリル基含有モノマー、及びビニルモノマー(ビニル基を1つ有するモノマー)が好ましい。これらの中でも、第3のモノマーは、(メタ)アクリル酸アルキルエステルを主成分(必須成分)とし、ポリオキシアルキレン基含有モノマー、架橋性モノマーおよびアルコキシシリル基含有モノマーの少なくとも1つを含むことが好ましい。 The third monomer is a monomer different from the first monomer, the second monomer, and (meth) acrylonitrile. As the third monomer, various monomers can be used. Specifically, (meth) acrylic acid alkyl ester, hydroxyl group-containing monomer, glycidyl group-containing monomer, polyoxyalkylene group-containing monomer, crosslinkable monomer (Monomers having two or more vinyl groups), alkoxysilyl group-containing monomers, and vinyl monomers (monomers having one vinyl group) are preferred. Among these, the third monomer may contain (meth) acrylic acid alkyl ester as a main component (essential component) and include at least one of a polyoxyalkylene group-containing monomer, a crosslinkable monomer, and an alkoxysilyl group-containing monomer. preferable.
 なお、各第1~第3のモノマーは、上述した化合物を単独でまたは2種類以上を組合せて使用することができる。 Each of the first to third monomers can be used alone or in combination of two or more.
 (メタ)アクリル酸アルキルエステルとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、ターシャリーブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ウンデル(メタ)アクリレート、ドデシル(メタ)アクリレート、トリデシル(メタ)アクリレート、テトラデシル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボニル(メタ)アクリレート、ベンジル(メタ)アクリレート等が挙げられる。 Examples of the (meth) acrylic acid alkyl ester include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, tertiary butyl (meth) acrylate, pentyl (meth) acrylate, Hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, octyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, undel (meth) acrylate, dodecyl (meth) acrylate, tridecyl (meth) acrylate, Tetradecyl (meth) acrylate, hexadecyl (meth) acrylate, octadecyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, benzyl Meth) acrylate.
 水酸基含有モノマーとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、グリセロールモノ(メタ)アクリレート、アリルアルコール等が挙げられる。 Examples of the hydroxyl group-containing monomer include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, glycerol mono (meth) acrylate, allyl alcohol, and the like.
 水酸基含有モノマーを使用すると、ポリマー粒子の内部架橋が促進されるため凝集力が高まり、電解液耐性や、電極およびセパレータ(特に、ポリオレフィン層)との密着性がさらに向上する。 When a hydroxyl group-containing monomer is used, the internal cross-linking of the polymer particles is promoted, so that the cohesive force is increased, and the electrolytic solution resistance and the adhesion with the electrode and the separator (particularly, the polyolefin layer) are further improved.
 グリシジル基含有モノマーとしては、例えば、グリシジル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートグリシジルエーテル等が挙げられる。 Examples of the glycidyl group-containing monomer include glycidyl (meth) acrylate and 4-hydroxybutyl (meth) acrylate glycidyl ether.
 グリシジル基含有モノマーを使用すると、ポリマー粒子の内部架橋が促進されるため凝集力が高まり、電解液耐性や、電極およびセパレータ(特に、ポリオレフィン層)との密着性がさらに向上する。 When the glycidyl group-containing monomer is used, the internal crosslinking of the polymer particles is promoted, so that the cohesive force is increased, and the resistance to the electrolyte and the adhesion to the electrode and the separator (particularly, the polyolefin layer) are further improved.
 ポリオキシアルキレン基含有モノマーとしては、例えば、ジエチレングリコールモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリエチレングリコール・ポリプロピレングリコールモノ(メタ)アクリレート、メトキシジエチレングリコールモノ(メタ)アクリレート、メトキシポリエチレングリコールモノ(メタ)アクリレート、フェノキシジエチレングリコールモノ(メタ)アクリレート、フェノキシポリエチレングリコールモノ(メタ)アクリレート等が挙げられる。 Examples of the polyoxyalkylene group-containing monomer include diethylene glycol mono (meth) acrylate, polyethylene glycol mono (meth) acrylate, polyethylene glycol / polypropylene glycol mono (meth) acrylate, methoxydiethylene glycol mono (meth) acrylate, methoxypolyethylene glycol mono ( Examples include meth) acrylate, phenoxydiethylene glycol mono (meth) acrylate, and phenoxypolyethylene glycol mono (meth) acrylate.
 ポリオキシアルキレン基含有モノマーを使用すると、保護層のイオン伝導性がより向上するため電池性能がより向上する。特に、メトキシポリエチレングリコールモノ(メタ)アクリレートを使用すると、かかる効果がより顕著となる。ポリオキシアルキレン基含有モノマーの配合量は、モノマー混合物100重量%対して、0.01~5重量%が好ましく、0.05~3重量%がより好ましい。これにより、上記効果がさらに向上する。 When a polyoxyalkylene group-containing monomer is used, the ionic conductivity of the protective layer is further improved, so that battery performance is further improved. In particular, when methoxypolyethylene glycol mono (meth) acrylate is used, such an effect becomes more remarkable. The compounding amount of the polyoxyalkylene group-containing monomer is preferably 0.01 to 5% by weight, more preferably 0.05 to 3% by weight with respect to 100% by weight of the monomer mixture. Thereby, the above effect is further improved.
 架橋性モノマーとしては、アリル(メタ)アクリレート、ビニル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ジメチロールトリシクロデカンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジビニルベンゼン、アジピン酸ジビニル、イソフタル酸ジアリル、フタル酸ジアリル、マレイン酸ジアリル等が挙げられる。 Examples of crosslinkable monomers include allyl (meth) acrylate, vinyl (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, 1,10-decanediol di (meth) acrylate, neopentyl Glycol di (meth) acrylate, glycerin di (meth) acrylate, dimethylol tricyclodecane di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate Over DOO, pentaerythritol tetra (meth) acrylate, divinylbenzene, divinyl adipate, diallyl isophthalate, diallyl phthalate, and diallyl maleate and the like.
 架橋性モノマーを使用すると、ポリマー粒子の内部架橋が促進されるため凝集力が高まり、電解液耐性がさらに向上する。特に、フタル酸ジアリルを使用すると、かかる効果がより顕著となる。架橋性モノマーの配合量は、モノマー混合物100重量%対して、0.01~5重量%が好ましく、0.05~3重量%がより好ましい。これにより、上記効果がさらに向上する。 When a crosslinkable monomer is used, the internal crosslinking of the polymer particles is promoted, so that the cohesive force is increased and the electrolyte resistance is further improved. In particular, when diallyl phthalate is used, such an effect becomes more remarkable. The blending amount of the crosslinkable monomer is preferably 0.01 to 5% by weight and more preferably 0.05 to 3% by weight with respect to 100% by weight of the monomer mixture. Thereby, the above effect is further improved.
 アルコキシシリル基含有モノマーとしては、例えば、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリエトキシシラン、γ-メタクリロキシプロピルトリブトキシシラン、γ-メタクリロキシプロピルメチルジメトキシシラン、γ-メタクリロキシプロピルメチルジエトキシシラン、γ-アクリロキシプロピルトリメトキシシラン、γ-アクリロキシプロピルトリエトキシシラン、γ-アクリロキシプロピルトリブトキシシラン、γ-アクリロキシプロピルメチルジメトキシシラン、γ-アクリロキシプロピルメチルジエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリブトキシシラン、ビニルメチルジメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、パラスチリルトリメトキシシラン等が挙げられる。 Examples of the alkoxysilyl group-containing monomer include γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropyltriethoxysilane, γ-methacryloxypropyltributoxysilane, γ-methacryloxypropylmethyldimethoxysilane, and γ-methacryloxy. Propylmethyldiethoxysilane, γ-acryloxypropyltrimethoxysilane, γ-acryloxypropyltriethoxysilane, γ-acryloxypropyltributoxysilane, γ-acryloxypropylmethyldimethoxysilane, γ-acryloxypropylmethyldiethoxy Silane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltributoxysilane, vinylmethyldimethoxysilane, γ-methacryloxypropyltrimethoxysilane, para And styryltrimethoxysilane.
 アルコキシシリル基含有モノマーを使用すると、ポリマー粒子の内部架橋が促進されるため凝集力が高まり、電解液耐性がさらに向上する。特に、γ-メタクリロキシプロピルトリメトキシシランを使用すると、かかる効果がより顕著となる。アルコキシシリル基含有モノマーの配合量は、モノマー混合物100重量%対して、0.01~5重量%が好ましく、0.05~3重量%がより好ましい。これにより、上記効果がさらに向上する。また、第3のモノマーのなかでもアルコキシシリル基含有モノマーは少量で凝集力を向上できるため、電解液耐性と密着性とを高いレベルで両立できるためより好ましい。 When an alkoxysilyl group-containing monomer is used, the internal crosslinking of the polymer particles is promoted, so that the cohesive force is increased and the electrolyte resistance is further improved. In particular, when γ-methacryloxypropyltrimethoxysilane is used, such an effect becomes more remarkable. The compounding amount of the alkoxysilyl group-containing monomer is preferably 0.01 to 5% by weight, more preferably 0.05 to 3% by weight, based on 100% by weight of the monomer mixture. Thereby, the above effect is further improved. Further, among the third monomers, the alkoxysilyl group-containing monomer is more preferable because it can improve the cohesion with a small amount, and can achieve both a high level of electrolytic solution resistance and adhesion.
 ビニルモノマーとしては、例えば、スチレン、α-メチルスチレン、酢酸ビニル等が挙げられる。ビニルモノマーを使用すると保護層の硬さ等を実施態様に応じて調整し易くなる。ビニルモノマーの使用量は、例えば、第1~第3のモノマーの合計(モノマー混合物)100重量%に対して、0.1~50重量%とすることが好ましく、0.1~30重量%がより好ましく、0.1~10重量%がより好ましい。これにより、上記効果がさらに向上する。 Examples of vinyl monomers include styrene, α-methylstyrene, vinyl acetate and the like. When a vinyl monomer is used, it becomes easy to adjust the hardness etc. of a protective layer according to an embodiment. The amount of the vinyl monomer used is preferably 0.1 to 50% by weight, for example, 0.1 to 30% by weight with respect to 100% by weight of the total of the first to third monomers (monomer mixture). More preferred is 0.1 to 10% by weight. Thereby, the above effect is further improved.
 以上のようなモノマーを所定の割合(配合比)で共重合することにより、より電解液耐性が向上したポリマー(非水二次電池用バインダー)が得られる。具体的には、共重合に使用する第1~第3のモノマーの割合は、モノマー混合物100重量%に対して、第1のモノマーが0.1~5重量%、第2のモノマーが0.1~5重量%、および第3のモノマーが90~99.8重量%であることが好ましい。 By copolymerizing the above monomers at a predetermined ratio (blending ratio), a polymer (binder for non-aqueous secondary battery) with further improved electrolyte resistance can be obtained. Specifically, the proportions of the first to third monomers used for copolymerization are 0.1 to 5% by weight for the first monomer and 0.1% for the second monomer with respect to 100% by weight of the monomer mixture. It is preferred that 1-5% by weight and the third monomer is 90-99.8% by weight.
 また、これらの割合(配合比)で第1~第3のモノマーを共重合させてなるポリマー(非水二次電池用バインダー)に、無機フィラーを混合して得られる非水二次電池用樹脂組成物は、その電解液耐性および溶液安定性がより向上する。 Further, a resin for a non-aqueous secondary battery obtained by mixing an inorganic filler with a polymer (a binder for a non-aqueous secondary battery) obtained by copolymerizing the first to third monomers at these ratios (blending ratio). The composition further improves its electrolyte resistance and solution stability.
 このようなモノマーの共重合は、界面活性剤および保護コロイドの少なくとも一方の存在下で行うことが好ましい。 Such copolymerization of the monomer is preferably performed in the presence of at least one of a surfactant and a protective colloid.
 界面活性剤のイオン種としては、アニオン、カチオン、ノニオンが挙げられるが、アニオンおよびノニオンが好ましい。また、界面活性剤は、分子内にラジカル重合可能な不飽和2重結合(ビニル基、(メタ)アクリロイル基)を1個以上有する反応性界面活性剤を使用することもできる。 The ionic species of the surfactant includes anions, cations and nonions, with anions and nonions being preferred. As the surfactant, a reactive surfactant having at least one unsaturated double bond (vinyl group, (meth) acryloyl group) capable of radical polymerization in the molecule can also be used.
 非反応性界面活性剤として、アニオン性界面活性剤は、主骨格がスルホコハク酸エステル、アルキルエーテル、アルキルフェニルエーテル、アルキルフェニルエステル、(メタ)アクリレート硫酸エステル、またはリン酸エステルであることが好ましい。 As the non-reactive surfactant, the anionic surfactant preferably has a main skeleton of sulfosuccinate, alkyl ether, alkylphenyl ether, alkylphenyl ester, (meth) acrylate sulfate, or phosphate.
 アニオン性界面活性剤の具体例としては、オレイン酸ナトリウムなどの高級脂肪酸塩、ドデシルベンゼンスルホン酸などのアルキルアリールスルホン酸塩、ラウリル硫酸ナトリウムなどのアルキル硫酸エステル塩、ポリオキシエチレンラウリルエーテル硫酸ナトリウムなどのポリオキシエチレンアルキルエーテル硫酸エステル塩、モノオクチルスルホコハク酸ナトリウム、ジオクチルスルホコハク酸ナトリウム、ポリオキシエチレンラウリルスルホコハク酸ナトリウムなどのアルキルスルホコハク酸エステル塩およびその誘導体、ポリオキシエチレンジスチレン化フェニルエーテル硫酸エステル塩等が挙げられる。 Specific examples of anionic surfactants include higher fatty acid salts such as sodium oleate, alkylaryl sulfonates such as dodecylbenzene sulfonic acid, alkyl sulfate esters such as sodium lauryl sulfate, polyoxyethylene lauryl ether sodium sulfate, etc. Polyoxyethylene alkyl ether sulfates, sodium monooctylsulfosuccinate, sodium dioctylsulfosuccinate, polyoxyethylene lauryl sodium sulfosuccinate and derivatives thereof, polyoxyethylene distyrenated phenyl ether sulfate Etc.
 非反応性界面活性剤として、ノニオン性界面活性剤は、主骨格がアルキルエーテル、アルキルフェニルエーテル、またはアルキルフェニルエステルであることが好ましい。 As the non-reactive surfactant, the nonionic surfactant is preferably an alkyl ether, an alkylphenyl ether, or an alkylphenyl ester as a main skeleton.
 ノニオン性界面活性剤の具体例としては、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテルなどのポリオキシエチレンアルキルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテルなどのポリオキシエチレンアルキルフェニルエーテル、ソルビタンモノラウレート、ソルビタンモノステアレート、ソルビタントリオレエートなどのソルビタン高級脂肪酸エステル、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノステアレートなどのポリオキシエチレンソルビタン高級脂肪酸エステル、ポリオキシエチレンモノラウレート、ポリオキシエチレンモノステアレートなどのポリオキシエチレン高級脂肪酸エステル、オレイン酸モノグリセライド、ステアリン酸モノグリセライドなどのグリセリン高級脂肪酸エステル、ポリオキシエチレン・ポリオキシプロピレン・ブロックコポリマー、ポリオキシエチレンジスチレン化フェニルエーテル等が挙げられる。 Specific examples of nonionic surfactants include polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether and polyoxyethylene stearyl ether, polyoxyethylene alkylphenyls such as polyoxyethylene octylphenyl ether and polyoxyethylene nonylphenyl ether. Sorbitan higher fatty acid esters such as ether, sorbitan monolaurate, sorbitan monostearate, sorbitan trioleate, polyoxyethylene sorbitan higher fatty acid esters such as polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monostearate, polyoxyethylene Polyoxyethylene higher fatty acid esters such as monolaurate and polyoxyethylene monostearate, oleic acid Noguriseraido, glycerin higher fatty acid esters such as stearic acid monoglyceride, polyoxyethylene polyoxypropylene block copolymers, polyoxyethylene distyrenated phenyl ether and the like.
 また、上記界面活性剤は、非反応性界面活性剤として使用することもできるが、反応性界面活性剤として使用することが好ましい。ここで、反応性界面活性剤とは、分子内にラジカル重合可能な不飽和2重結合(ビニル基、(メタ)アクリロイル基)を1個以上有する界面活性剤である。これらの反応性界面活性剤としては、上記界面活性剤(好ましくは、アニオン性界面活性剤またはノニオン性界面活性剤)にラジカル重合可能な不飽和2重結合が結合した化合物を使用することができる。 The surfactant can be used as a non-reactive surfactant, but is preferably used as a reactive surfactant. Here, the reactive surfactant is a surfactant having at least one unsaturated double bond (vinyl group, (meth) acryloyl group) capable of radical polymerization in the molecule. As these reactive surfactants, compounds in which an unsaturated double bond capable of radical polymerization is bonded to the above-described surfactant (preferably anionic surfactant or nonionic surfactant) can be used. .
 界面活性剤は、モノマー混合物100重量部に対して、0.1~5重量部を使用することが好ましい。 The surfactant is preferably used in an amount of 0.1 to 5 parts by weight with respect to 100 parts by weight of the monomer mixture.
 また、モノマーの共重合は、ラジカル重合開始剤(以下、「重合開始剤」という)の存在下で行うこともできる。重合開始剤としては、公知の油溶性重合開始剤や水溶性重合開始剤を使用することができるが、水溶性重合開始剤を使用することが好ましい。 The copolymerization of the monomer can also be performed in the presence of a radical polymerization initiator (hereinafter referred to as “polymerization initiator”). As the polymerization initiator, known oil-soluble polymerization initiators and water-soluble polymerization initiators can be used, but it is preferable to use water-soluble polymerization initiators.
 油溶性重合開始剤としては、例えば、ベンゾイルパーオキサイド、ターシャリーブチルオキシベンゾエート、ターシャリーブチルハイドロパーオキサイド、ターシャリーブチルパーオキシ-2-エチルヘキサノエート、ターシャリーブチルパーオキシ-3,5,5,トリメチルヘキサノエート、ジターシャリーブチルパーオキサイド、キュメンハイドロパーオキサイド、p-メンタンハイドロパーオキサイド等の有機過酸化物、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス-2,4-ジメチルバレロニトリル、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、1,1’-アゾビス-シクロヘキサン-1-カルボニトリル等のアゾビス化合物が挙げられる。 Examples of the oil-soluble polymerization initiator include benzoyl peroxide, tertiary butyloxybenzoate, tertiary butyl hydroperoxide, tertiary butyl peroxy-2-ethylhexanoate, tertiary butyl peroxy-3,5, 5, organic peroxides such as trimethylhexanoate, ditertiary butyl peroxide, cumene hydroperoxide, p-menthane hydroperoxide, 2,2'-azobisisobutyronitrile, 2,2'-azobis- Examples include azobis compounds such as 2,4-dimethylvaleronitrile, 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), 1,1′-azobis-cyclohexane-1-carbonitrile.
 水溶性重合開始剤としては、例えば、過硫酸アンモニウム、過硫酸ナトリウム、過硫酸カリウム、過酸化水素、2,2’-アゾビス(2-メチルプロピオンアミジン)ジハイドロクロライド等が挙げられる。 Examples of the water-soluble polymerization initiator include ammonium persulfate, sodium persulfate, potassium persulfate, hydrogen peroxide, 2,2'-azobis (2-methylpropionamidine) dihydrochloride, and the like.
 なお、このような重合開始剤は、モノマー混合物100重量部に対して、0.03~5重量部を使用することが好ましい。 Note that 0.03 to 5 parts by weight of such a polymerization initiator is preferably used with respect to 100 parts by weight of the monomer mixture.
 共重合に際して、重合開始剤とともに還元剤を併用することができる。これにより重合反応を促進することができる。 In the copolymerization, a reducing agent can be used in combination with a polymerization initiator. Thereby, the polymerization reaction can be promoted.
 このような還元剤としては、アスコルビン酸、エリソルビン酸、酒石酸、クエン酸、ブドウ糖、ホルムアルデヒドスルホキシラートなどの金属塩等の還元性有機化合物、亜硫酸ナトリウム、重亜硫酸ナトリウム、メタ重亜硫酸ナトリウム(SMBS)、次亜硫酸ナトリウム等の還元性無機化合物、塩化第一鉄、ロンガリット等が挙げられる。なお、還元剤は、モノマー混合物100重量部に対して、0.01~2.5重量部を使用することが好ましい。 Such reducing agents include reducing organic compounds such as metal salts such as ascorbic acid, erythorbic acid, tartaric acid, citric acid, glucose, formaldehyde sulfoxylate, sodium sulfite, sodium bisulfite, sodium metabisulfite (SMBS) And reducing inorganic compounds such as sodium hyposulfite, ferrous chloride, Rongalite and the like. The reducing agent is preferably used in an amount of 0.01 to 2.5 parts by weight with respect to 100 parts by weight of the monomer mixture.
 また、モノマーを共重合する際、必要に応じて、緩衝剤、連鎖移動剤、塩基性化合物等を使用することができる。 Also, when copolymerizing monomers, a buffer, a chain transfer agent, a basic compound, etc. can be used as necessary.
 緩衝剤としては、例えば、酢酸ナトリウム、クエン酸ナトリウム、重炭酸ナトリウム等が挙げられる。 Examples of the buffer include sodium acetate, sodium citrate, and sodium bicarbonate.
 連鎖移動剤としては、例えば、オクチルメルカプタン、ターシャリードデシルメルカプタン、ラウリルメルカプタン、ステアリルメルカプタン、メルカプト酢酸2-エチルヘキシル、メルカプト酢酸オクチル、メルカプトプロピオン酸2-エチルヘキシル、メルカプトプロピオン酸オクチル等が挙げられる。 Examples of the chain transfer agent include octyl mercaptan, tertiary decyl mercaptan, lauryl mercaptan, stearyl mercaptan, 2-ethylhexyl mercaptoacetate, octyl mercaptoacetate, 2-ethylhexyl mercaptopropionate, octyl mercaptopropionate, and the like.
 塩基性化合物は中和に使用される化合物である。この塩基性化合物としては、例えば、トリメチルアミン、トリエチルアミン、ブチルアミンなどのアルキルアミン、2-ジメチルアミノエタノール、ジエチルアミノエタノール、ジエタノールアミン、トリエタノールアミン、アミノメチルプロパノールなどのアルコールアミン、モルホリン、アンモニア等が挙げられる。 Basic compounds are compounds used for neutralization. Examples of the basic compound include alkylamines such as trimethylamine, triethylamine, and butylamine, alcohol amines such as 2-dimethylaminoethanol, diethylaminoethanol, diethanolamine, triethanolamine, and aminomethylpropanol, morpholine, and ammonia.
 ポリマー粒子の平均粒子径は、50~500nmが好ましく、100~300nmがより好ましい。平均粒子径が50~500nmのポリマー粒子を使用することにより、保護層と、電極およびセパレータ(特に、ポリオレフィン層)との密着性がより向上する。さらに、かかるポリマー粒子(非水二次電池用バインダー)と無機フィラーとを混合して得られる非水二次電池用樹脂組成物の溶液安定性がより向上する。なお、平均粒子径は、動的光散乱測定法を使用したD50平均粒子径である。測定は、ポリマー粒子の水分散体を水で500倍に希釈した希釈液を作成し、該希釈液約5mLを使用してナノトラック(日機装社製)で測定することができる。 The average particle diameter of the polymer particles is preferably 50 to 500 nm, more preferably 100 to 300 nm. By using polymer particles having an average particle diameter of 50 to 500 nm, the adhesion between the protective layer and the electrode and separator (particularly, the polyolefin layer) is further improved. Furthermore, the solution stability of the resin composition for non-aqueous secondary batteries obtained by mixing such polymer particles (binder for non-aqueous secondary batteries) and an inorganic filler is further improved. In addition, an average particle diameter is D50 average particle diameter which used the dynamic light scattering measuring method. The measurement can be performed with Nanotrac (manufactured by Nikkiso Co., Ltd.) by preparing a diluted solution obtained by diluting an aqueous dispersion of polymer particles 500 times with water and using about 5 mL of the diluted solution.
 本発明の非水二次電池用樹脂組成物は、非水二次電池用バインダー(ポリマー粒子)及び無機フィラーを含むことが好ましい。前記無機フィラーは、非水二次電池の電解液中で変質しない無機化合物で構成されていることが好ましい。具体的な無機化合物としては、酸化アルミニウム、酸化ジルコニウム、酸化チタン、シリカ、イオン伝導性ガラス等が挙げられる。 The resin composition for non-aqueous secondary batteries of the present invention preferably contains a binder (polymer particles) for non-aqueous secondary batteries and an inorganic filler. It is preferable that the said inorganic filler is comprised with the inorganic compound which does not change in the electrolyte solution of a non-aqueous secondary battery. Specific examples of the inorganic compound include aluminum oxide, zirconium oxide, titanium oxide, silica, and ion conductive glass.
 無機フィラーの平均粒子径は、0.01~10μmが好ましい。前記平均粒子径の無機フィラーを使用することにより、保護層は、被膜強度及びリチウムイオンの伝導性をより高いレベルで両立することができる。 The average particle size of the inorganic filler is preferably 0.01 to 10 μm. By using the inorganic filler having the average particle diameter, the protective layer can achieve both higher coating strength and lithium ion conductivity.
 ポリマー粒子は、無機フィラー100重量部に対して、0.1~10重量部を使用することが好ましく、0.1~5重量部を使用することがより好ましい。無機フィラー100重量部に対して、0.1~10重量部のポリマー粒子を使用することで、無機フィラー同士の密着性や、保護層の電極およびセパレータへの優れた密着性と柔軟性とを維持しつつ、保護層のリチウムイオンの伝導性をより向上することができる。 The polymer particles are preferably used in an amount of 0.1 to 10 parts by weight, more preferably 0.1 to 5 parts by weight with respect to 100 parts by weight of the inorganic filler. By using 0.1 to 10 parts by weight of polymer particles with respect to 100 parts by weight of the inorganic filler, the adhesion between the inorganic fillers and the excellent adhesion and flexibility to the electrode and separator of the protective layer can be achieved. While maintaining, the lithium ion conductivity of the protective layer can be further improved.
 本発明の非水二次電池用樹脂組成物には、他の任意成分として、レベリング剤、分散剤、増粘剤、消泡剤等を配合することが好ましい。レベリング剤のタイプとしては、シリコン系、フッ素系、金属系、コハク酸系等が挙げられる。分散剤としては、アニオン性化合物、ノニオン性化合物、高分子化合物等が挙げられる。 In the resin composition for a non-aqueous secondary battery of the present invention, it is preferable to add a leveling agent, a dispersant, a thickener, an antifoaming agent, etc. as other optional components. Examples of the leveling agent include silicon, fluorine, metal, and succinic acid. Examples of the dispersant include an anionic compound, a nonionic compound, and a polymer compound.
 本発明の非水二次電池用樹脂組成物に用いる溶媒としては、水を使用することが好ましいが、必要に応じて、水溶性の溶剤を使用することもできる。水溶性の溶剤としては、例えば、アルコール、グリコール、セロソルブ、アミノアルコール、アミン、ケトン類、カルボン酸アミド、リン酸アミド、スルホキシド、カルボン酸エステル、リン酸エステル、エーテル、ニトリル等が挙げられる。 As the solvent used in the resin composition for a non-aqueous secondary battery of the present invention, water is preferably used, but a water-soluble solvent can also be used as necessary. Examples of the water-soluble solvent include alcohol, glycol, cellosolve, amino alcohol, amine, ketones, carboxylic acid amide, phosphoric acid amide, sulfoxide, carboxylic acid ester, phosphoric acid ester, ether, and nitrile.
 本発明の非水二次電池用樹脂組成物の製造は、公知の混合装置を使用して行うことができる。具体的な混合装置としては、例えば、ディスパー、ホモミキサー、プラネタリーミキサー、ボールミル、サンドミル、アトライター、パールミル、ジェットミル、ロールミル等が挙げられる。 The production of the resin composition for a non-aqueous secondary battery of the present invention can be performed using a known mixing device. Specific examples of the mixing apparatus include a disper, a homomixer, a planetary mixer, a ball mill, a sand mill, an attritor, a pearl mill, a jet mill, and a roll mill.
 次に、本発明の非水二次電池についてLIBを例に挙げて説明する。LIBは、少なくとも、正極と、負極と、正極と負極との間に設けられたセパレータとを備える電池本体と、電池本体に含浸された電解液とを有する。図1は、LIBの一実施形態を示す縦断面図である。図1に示すLIB100は、全体として円盤状をなすボタン型の非水二次電池である。このLIB100は、電池容器10と、この電池容器10内に収納された電池本体1と、電池容器10内に充填(供給)された電解液とで構成されている。 Next, the nonaqueous secondary battery of the present invention will be described by taking LIB as an example. The LIB includes at least a battery body including a positive electrode, a negative electrode, and a separator provided between the positive electrode and the negative electrode, and an electrolyte solution impregnated in the battery body. FIG. 1 is a longitudinal sectional view showing an embodiment of a LIB. The LIB 100 shown in FIG. 1 is a button-type non-aqueous secondary battery having a disk shape as a whole. The LIB 100 includes a battery container 10, a battery main body 1 accommodated in the battery container 10, and an electrolyte solution filled (supplied) in the battery container 10.
 電池容器10は、正極ケース11と、負極ケース12と、正極ケース11と負極ケース12との間を液密的に封止する封止材13とで構成されている。これらの正極ケース11、負極ケース12および封止材13で画成される空間内に電池本体1が収納されている。電池本体1は、電池容器10内に収納された状態で、正極ケース11および負極ケース12にそれぞれ接触している。 The battery container 10 includes a positive electrode case 11, a negative electrode case 12, and a sealing material 13 that seals between the positive electrode case 11 and the negative electrode case 12 in a liquid-tight manner. The battery body 1 is housed in a space defined by the positive electrode case 11, the negative electrode case 12 and the sealing material 13. The battery body 1 is in contact with the positive electrode case 11 and the negative electrode case 12 while being housed in the battery container 10.
 この電池本体1は、正極2および負極3(以下、これらを総称して「電極」ということもある)と、正極2と負極3との間に設けられたセパレータ4とを備えている。電池容器10内に電池本体1を収納するとともに、電池容器10内の前記空間内に電解液を充填(供給)することにより、電池本体1(セパレータ4)に電解液が担持(含浸)される。 The battery body 1 includes a positive electrode 2 and a negative electrode 3 (hereinafter, collectively referred to as “electrode”), and a separator 4 provided between the positive electrode 2 and the negative electrode 3. The battery body 1 is housed in the battery container 10 and the electrolyte solution is loaded (impregnated) in the battery body 1 (separator 4) by filling (supplying) the electrolyte in the space in the battery container 10. .
 正極2および負極3は、それぞれ、集電体21、31と、集電体21、31のセパレータ4側に設けられ、電極活物質を必須成分として含む合材組成物を使用して形成された合材層22、32とを有する。図1に示すように、正極2および負極3には、さらに、合材層22、32の集電体21、31とは反対の面に本発明の非水二次電池用樹脂組成物を用いて保護層5が形成されている。この保護層5により、リチウムのデンドライト状粒子が生成した際に、両電極間でショートが生じて、非水二次電池が爆発する危険性を低減することができる。この保護層5が形成された正極2および負極3が、それぞれ、本発明の非水二次電池電極(保護層付き電極)を構成する。 The positive electrode 2 and the negative electrode 3 were formed using current collectors 21 and 31 and a composite composition provided on the separator 4 side of the current collectors 21 and 31 and including an electrode active material as an essential component. The composite material layers 22 and 32 are included. As shown in FIG. 1, the resin composition for a non-aqueous secondary battery of the present invention is further used for the positive electrode 2 and the negative electrode 3 on the surface opposite to the current collectors 21 and 31 of the composite material layers 22 and 32. Thus, the protective layer 5 is formed. With this protective layer 5, when lithium dendrite-like particles are produced, a short circuit occurs between the two electrodes, and the risk of explosion of the nonaqueous secondary battery can be reduced. The positive electrode 2 and the negative electrode 3 on which the protective layer 5 is formed constitute the non-aqueous secondary battery electrode (electrode with protective layer) of the present invention.
 正極活物質としては、特に限定はされないが、リチウムイオンをドーピングまたはインターカレーション可能な金属酸化物、金属硫化物等の金属化合物、導電性高分子等を使用することができる。金属酸化物または金属化合物としては、例えば、Fe、Co、Ni、Mn等の遷移金属の酸化物、リチウムとの複合酸化物、遷移金属硫化物等の無機化合物等が挙げられる。金属酸化物または金属化合物の具体例としては、MnO、V25、V613、TiO2等の遷移金属酸化物粉末、層状構造のニッケル酸リチウム、コバルト酸リチウム、マンガン酸リチウム、スピネル構造のマンガン酸リチウムなどのリチウムと遷移金属との複合酸化物粉末、オリビン構造のリチウム酸化合物であるリン酸鉄リチウム系材料、TiS2、FeSなどの遷移金属硫化物粉末等が挙げられる。なお、これらは、1種または2種以上を組合せて使用することができる。 Although it does not specifically limit as a positive electrode active material, Metal compounds, such as a metal oxide and metal sulfide which can dope or intercalate lithium ion, a conductive polymer, etc. can be used. Examples of the metal oxide or metal compound include oxides of transition metals such as Fe, Co, Ni, and Mn, complex oxides with lithium, and inorganic compounds such as transition metal sulfides. Specific examples of the metal oxide or metal compound include transition metal oxide powders such as MnO, V 2 O 5 , V 6 O 13 , TiO 2 , layered lithium nickelate, lithium cobaltate, lithium manganate, spinel. Examples thereof include composite oxide powders of lithium and transition metals such as lithium manganate having a structure, lithium iron phosphate materials which are lithium acid compounds having an olivine structure, and transition metal sulfide powders such as TiS 2 and FeS. In addition, these can be used 1 type or in combination of 2 or more types.
 負極活物質は、リチウムイオンをドーピングまたはインターカレーション可能なものであれば特に限定されない。負極活物質としては、例えば、金属Li、金属Liを含む合金(例えば、スズ合金、シリコン合金、鉛合金)、チタン酸リチウム、バナジウム酸リチウム、ケイ素酸リチウム等の金属酸化物、ポリアセチレン、ポリ-p-フェニレン等の導電性高分子、ソフトカーボン、ハードカーボンのアモルファス系炭素材料、高黒鉛化炭素材料等の人造黒鉛、天然黒鉛等の炭素質粉末、カーボンブラック、メソフェーズカーボンブラック、樹脂焼成炭素材料、気相成長炭素繊維、炭素繊維などの炭素材料等が挙げられる。なお、これらは、1種または2種以上を組合せて使用することができる。 The negative electrode active material is not particularly limited as long as it can be doped or intercalated with lithium ions. Examples of the negative electrode active material include metal Li, alloys containing metal Li (for example, tin alloy, silicon alloy, lead alloy), metal oxides such as lithium titanate, lithium vanadate, lithium siliconate, polyacetylene, poly- Conductive polymer such as p-phenylene, soft carbon, amorphous carbon material of hard carbon, artificial graphite such as highly graphitized carbon material, carbonaceous powder such as natural graphite, carbon black, mesophase carbon black, resin-fired carbon material And carbon materials such as vapor-grown carbon fiber and carbon fiber. In addition, these can be used 1 type or in combination of 2 or more types.
 集電体21、31としては、各種二次電池に適用可能な集電体を適宜選択することができる。集電体21、31の材質としては、例えば、アルミニウム、銅、ニッケル、チタン、ステンレス等の金属、その合金等が挙げられる。LIBの場合、正極2にはアルミニウムで構成された集電体21を、負極3には銅で構成された集電体31を、それぞれ使用することが好ましい。なお、集電体21、31の厚みは、5~50μmが好ましい。 As the current collectors 21 and 31, current collectors applicable to various secondary batteries can be appropriately selected. Examples of the material of the current collectors 21 and 31 include metals such as aluminum, copper, nickel, titanium, and stainless steel, alloys thereof, and the like. In the case of LIB, it is preferable to use a current collector 21 made of aluminum for the positive electrode 2 and a current collector 31 made of copper for the negative electrode 3. The thickness of the current collectors 21 and 31 is preferably 5 to 50 μm.
 合材層22、32および保護層5を形成する方法は、塗工が好ましい。塗工方法の具体例としては、ダイコーティング法、ディップコーティング法、ロールコーティング法、ドクターコーティング法、ナイフコーティング法、スプレーコーティング法、グラビアコーティング法、スクリーン印刷法、静電塗装法等が挙げられる。また塗工の際、溶媒を乾燥することも好ましい。具体的には、熱風乾燥、赤外線乾燥、遠赤外線等の公知の乾燥方法を使用することができる。 The method for forming the composite layers 22 and 32 and the protective layer 5 is preferably coating. Specific examples of the coating method include die coating method, dip coating method, roll coating method, doctor coating method, knife coating method, spray coating method, gravure coating method, screen printing method, electrostatic coating method and the like. It is also preferable to dry the solvent during coating. Specifically, known drying methods such as hot air drying, infrared drying, and far infrared radiation can be used.
 合材層22、32の厚みは、30~300μmが好ましい。 The thickness of the composite material layers 22 and 32 is preferably 30 to 300 μm.
 このような合材層22、32の集電体21、31と反対の面に、本発明の非水二次電池用樹脂組成物から形成してなる保護層5が設けられている。 The protective layer 5 formed from the resin composition for non-aqueous secondary batteries of the present invention is provided on the surface of the mixture layers 22 and 32 opposite to the current collectors 21 and 31.
 保護層5の厚みは、0.5~50μmが好ましく、1~30μmがより好ましい。保護層5の厚みを0.5~50μmとすることで、保護層5は、被膜としての十分な強度を確保するとともに、優れた電池性能を発揮する電極(非水二次電池)を得ることができる。 The thickness of the protective layer 5 is preferably 0.5 to 50 μm, more preferably 1 to 30 μm. By setting the thickness of the protective layer 5 to 0.5 to 50 μm, the protective layer 5 ensures sufficient strength as a film and obtains an electrode (non-aqueous secondary battery) that exhibits excellent battery performance. Can do.
 以上のような保護層付き正極2と保護層付き負極3との間にセパレータ4が設けられる。このセパレータ4は、イオンが通過できる微細な孔を有する多孔質のシートないし不織布である。具体的には、セパレータ4は、ポリエチレン、ポリプロピレンなどのポリオレフィン、セルロース、芳香族ポリアミド等の公知の素材を使用して構成することができる。 A separator 4 is provided between the positive electrode 2 with a protective layer and the negative electrode 3 with a protective layer as described above. The separator 4 is a porous sheet or non-woven fabric having fine pores through which ions can pass. Specifically, the separator 4 can be configured using a known material such as polyolefin such as polyethylene or polypropylene, cellulose, or aromatic polyamide.
 図1に示すように、セパレータ4の両面には、保護層5が形成されている。この保護層5によりセパレータ4の耐熱性が向上し、非水二次電池が過熱した際に、両電極間でのショートが生じて、非水二次電池が爆発する危険性を低減することができる。保護層5は、セパレータ4の両面に形成することが好ましいが、片面でも良い。保護層5をセパレータ4の片面に形成する場合は、デンドライト状粒子が優先的に発生する傾向にある負極3側に保護層5を向けて、セパレータ4を配置することが好ましい。 As shown in FIG. 1, protective layers 5 are formed on both sides of the separator 4. This protective layer 5 improves the heat resistance of the separator 4, and when the non-aqueous secondary battery is overheated, a short circuit occurs between the two electrodes, thereby reducing the risk of the non-aqueous secondary battery exploding. it can. The protective layer 5 is preferably formed on both sides of the separator 4, but may be on one side. When the protective layer 5 is formed on one side of the separator 4, it is preferable to dispose the separator 4 with the protective layer 5 facing the negative electrode 3 side on which dendritic particles tend to be preferentially generated.
 なお、かかる保護層5は、上記電極で説明した保護層5と同様にして形成し、同様の厚みとすることができる。本発明において、保護層5は、一般に密着し難いポリオレフィンシートを使用したセパレータ4に対して特に密着性が良好である。なお、シート、フィルム、及び層は、同様の意味内容である。 The protective layer 5 can be formed in the same manner as the protective layer 5 described in the above electrode, and can have the same thickness. In the present invention, the protective layer 5 has particularly good adhesion to the separator 4 using a polyolefin sheet that is generally difficult to adhere. In addition, a sheet, a film, and a layer have the same meaning content.
 この保護層5が形成されたセパレータ4が、本発明の非水二次電池セパレータ(保護層付きセパレータ)を構成する。 The separator 4 on which the protective layer 5 is formed constitutes the nonaqueous secondary battery separator (separator with protective layer) of the present invention.
 また、図1中に拡大して示すように、本実施形態の保護層5は、ポリマー粒子51(非水二次電池用バインダー)と、無機フィラー52とを含む非水二次電池用樹脂組成物で形成されている。ポリマー粒子51は、無機フィラー52同士を点接着している。これにより、無機フィラー52同士の間に、十分な大きさの隙間を確保することができる。このため、保護層5は、優れたイオン導電性を有する。その結果、かかる保護層5を備えるLIB100は、電池特性がより向上する。 Further, as shown in an enlarged view in FIG. 1, the protective layer 5 of the present embodiment includes a resin composition for a non-aqueous secondary battery including polymer particles 51 (a binder for a non-aqueous secondary battery) and an inorganic filler 52. It is formed of things. The polymer particles 51 are point-bonded to the inorganic fillers 52. Thereby, a sufficiently large gap can be secured between the inorganic fillers 52. For this reason, the protective layer 5 has excellent ionic conductivity. As a result, the battery characteristics of the LIB 100 including the protective layer 5 are further improved.
 セパレータ4には、電解液が含浸(保持)されている。この電解液は、リチウムを含む電解質を、非水系の溶剤に溶解した液体である。電解質の具体例としては、例えば、LiBF4、LiClO4、LiPF6、LiAsF6、LiSbF6、LiCF3SO3、Li(CF3SO22N、LiC49SO3、Li(CF3SO23C、LiI、LiBr、LiCl、LiAlCl、LiHF2、LiSCN、LiBPh4等が挙げられる。 The separator 4 is impregnated (held) with an electrolytic solution. This electrolytic solution is a liquid in which an electrolyte containing lithium is dissolved in a non-aqueous solvent. Specific examples of the electrolyte, for example, LiBF 4, LiClO 4, LiPF 6, LiAsF 6, LiSbF 6, LiCF 3 SO 3, Li (CF 3 SO 2) 2 N, LiC 4 F 9 SO 3, Li (CF 3 SO 2) 3 C, LiI, LiBr, LiCl, LiAlCl, LiHF 2, LiSCN, LiBPh 4 , and the like.
 非水系の溶剤としては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート等のカーボネート、γ-ブチルラクトン、γ-バレロラクトン、γ-オクタノイックラクトン等のラクトン、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、1,2-メトキシエタン、1,2-エトキシエタン、1,2-ジブトキシエタン等のグライム、メチルフォルメート、メチルアセテート、メチルプロピオネート等のエステル、ジメチルスルホキシド、スルホラン等のスルホキシド、アセトニトリル等のニトリル等が挙げられる。これらは、単独または2種以上を組合せて使用することができる。 Examples of the non-aqueous solvent include carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate, and lactones such as γ-butyl lactone, γ-valerolactone, and γ-octanoic lactone. , Tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, 1,2-methoxyethane, 1,2-ethoxyethane, 1,2-dibutoxyethane and the like, methyl Examples thereof include esters such as formate, methyl acetate and methyl propionate, sulfoxides such as dimethyl sulfoxide and sulfolane, and nitriles such as acetonitrile. These can be used alone or in combination of two or more.
 また、電解液は、ポリマーマトリクスに保持することでゲルとした高分子電解質として使用することも好ましい。ポリマーマトリックスの具体的な素材としては、例えば、ポリアルキレンオキシドセグメントを有するアクリル樹脂、ポリアルキレンオキシドセグメントを有するポリホスファゼン樹脂、ポリアルキレンオキシドセグメントを有するポリシロキサン樹脂等が挙げられる。 It is also preferable to use the electrolytic solution as a polymer electrolyte that is gelled by being held in a polymer matrix. Specific examples of the material for the polymer matrix include an acrylic resin having a polyalkylene oxide segment, a polyphosphazene resin having a polyalkylene oxide segment, and a polysiloxane resin having a polyalkylene oxide segment.
 本実施形態では、非水二次電池としてボタン型のLIBについて説明した。しかしながら、本発明の非水二次電池は、これに限定されず、円筒型、角型、コイン型、パック型、シート型等であってもよい。例えば、非水二次電池を円筒型、角型等とする場合には、電池本体1を円筒状または角筒状に巻いて、電池容器10に収納すればよい。前述したように、無機フィラー52は、ポリマー粒子51との親和性が良好で、非水二次電池用樹脂組成物中に均一に分散している。このため、電池本体1を円筒状または角筒状に巻いた場合でも、保護層5に亀裂が生じにくく、また保護層5からの無機フィラー52の脱落も生じにくい。 In this embodiment, the button-type LIB has been described as the non-aqueous secondary battery. However, the non-aqueous secondary battery of the present invention is not limited to this, and may be a cylindrical type, a square type, a coin type, a pack type, a sheet type, or the like. For example, when the non-aqueous secondary battery is a cylindrical shape, a rectangular shape or the like, the battery body 1 may be wound into a cylindrical shape or a rectangular tube shape and stored in the battery container 10. As described above, the inorganic filler 52 has good affinity with the polymer particles 51 and is uniformly dispersed in the resin composition for non-aqueous secondary batteries. For this reason, even when the battery body 1 is wound into a cylindrical shape or a rectangular tube shape, the protective layer 5 is not easily cracked, and the inorganic filler 52 is not easily detached from the protective layer 5.
 上記の部材を使用した非水二次電池は、安全性、電池特性に優れている。本発明の非水二次電池は、産業用、車載用、モバイル用に使用することができる。 The non-aqueous secondary battery using the above members is excellent in safety and battery characteristics. The nonaqueous secondary battery of the present invention can be used for industrial use, in-vehicle use, and mobile use.
 以上、本発明の非水二次電池用バインダー、非水二次電池用樹脂組成物、非水二次電池セパレータ、非水二次電池電極及び非水二次電池を好適な実施形態に基づいて説明した。しかしながら、本発明は、これに限定されるものではない。各構成は、同様の機能を発揮し得る任意のものと置換することができ、あるいは、任意の構成のものを付加することができる。 As described above, the binder for a non-aqueous secondary battery, the resin composition for a non-aqueous secondary battery, the non-aqueous secondary battery separator, the non-aqueous secondary battery electrode and the non-aqueous secondary battery of the present invention are based on the preferred embodiments. explained. However, the present invention is not limited to this. Each component can be replaced with any component that can exhibit the same function, or can be added with any component.
 例えば、保護層5は、図1に示すように、正極2、負極3およびセパレータ4のすべてに設けるようにしてもよいし、これらのうちの1つのみに設けるようにしてもよい。また、保護層5は、電極およびセパレータ4に直接接触して設けるようにしてもよいが、保護層5と電極またはセパレータ4との間には、任意の目的(例えば、密着性の向上、平滑性の向上等)で、1または2以上の層を設けるようにしてもよい。 For example, as shown in FIG. 1, the protective layer 5 may be provided on all of the positive electrode 2, the negative electrode 3, and the separator 4, or may be provided on only one of them. Further, the protective layer 5 may be provided in direct contact with the electrode and the separator 4, but between the protective layer 5 and the electrode or separator 4, an arbitrary purpose (for example, improvement in adhesion, smoothness) One or more layers may be provided in order to improve the property.
 以下に、実施例により、本発明をさらに詳細に説明するが、本発明はこれらにより何ら限定されるものではない。なお、部は重量部、%は重量%をそれぞれ意味する。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto. In addition, a part means a weight part and% means weight%, respectively.
<合成例1>バインダーの合成
 第1のモノマーとしてアクリル酸1.5%と、第2のモノマーとしてメタクリルアミド2.5%と、第3のモノマーとしてメチルメタクリレート44%、ブチルアクリレート50%、及びフタル酸ジアリル2%とを含有するモノマー混合物100部に、アニオン性界面活性剤としてエレミノールCLS-20(三洋化成工業社製)1.5部と、イオン交換水53.1部とを混合することで混合液を得、この混合液を乳化することでモノマープレエマルションを作成した後、滴下槽に仕込んだ。
<Synthesis Example 1> Synthesis of Binder 1.5% of acrylic acid as the first monomer, 2.5% of methacrylamide as the second monomer, 44% of methyl methacrylate, 50% of butyl acrylate as the third monomer, and Mixing 100 parts of a monomer mixture containing 2% diallyl phthalate with 1.5 parts of Eleminol CLS-20 (manufactured by Sanyo Chemical Industries) as an anionic surfactant and 53.1 parts of ion-exchanged water A monomer liquid emulsion was prepared by emulsifying this liquid mixture and then charged into a dropping tank.
 別途、還流冷却器、攪拌機、温度計、窒素導入管、及び原料投入口を具備する容積2Lの4つ口フラスコを反応容器として準備し、該反応容器にイオン交換水89.4部を仕込んだ。次いで、反応容器内に窒素を導入し、イオン交換水を攪拌しながら、その液温が60℃となるように加熱した。そして、反応容器中に、アニオン性界面活性剤であるエレミノールCLS-20を0.2部添加し、滴下槽から上記モノマープレエマルションを5時間かけて連続的に滴下した。次いで、液温を約60℃に保ちつつ、過硫酸アンモニウム0.3部を使用することで乳化重合を3時間継続して行った。その後、反応容器内の溶液を50℃まで冷却し、この溶液を180メッシュのポリエステル製の濾布で濾過することでバインダー分散液を得た。濾布に残った凝集物はなく、重合安定性は良好であった。得られたバインダー分散液の不揮発分は40%、その酸価は13mgKOH/gであった。 Separately, a 2 L four-necked flask equipped with a reflux condenser, a stirrer, a thermometer, a nitrogen inlet tube, and a raw material inlet was prepared as a reaction vessel, and 89.4 parts of ion-exchanged water was charged into the reaction vessel. . Next, nitrogen was introduced into the reaction vessel, and the solution was heated to 60 ° C. while stirring the ion exchange water. Then, 0.2 part of Eleminol CLS-20, which is an anionic surfactant, was added to the reaction vessel, and the monomer pre-emulsion was continuously dropped over 5 hours from the dropping tank. Subsequently, emulsion polymerization was continued for 3 hours by using 0.3 part of ammonium persulfate while maintaining the liquid temperature at about 60 ° C. Thereafter, the solution in the reaction vessel was cooled to 50 ° C., and this solution was filtered through a 180 mesh polyester filter cloth to obtain a binder dispersion. There was no aggregate remaining on the filter cloth, and the polymerization stability was good. The obtained binder dispersion had a nonvolatile content of 40% and an acid value of 13 mgKOH / g.
<バインダーの電解液耐性>
 得られたバインダー分散液を乾燥後の厚みが500μmになるように設定した型枠に流し込み、40℃で72時間乾燥させて、樹脂フィルムを作製した。得られた樹脂フィルムを縦10mm×横10mmの大きさに切断し、試料とした。前記試料を電解液に、80℃で24時間浸漬した。その後、常温のジエチルカーボネートで電解液を洗い流し、150℃で30分間乾燥させた後の試料重量を測定し、浸漬後の試料重量とした。そして浸漬前の試料重量を基準として重量減少率を計算し、バインダーの電解液耐性を評価した。
<Electrolyte resistance of binder>
The obtained binder dispersion was poured into a mold set so that the thickness after drying was 500 μm, and dried at 40 ° C. for 72 hours to prepare a resin film. The obtained resin film was cut into a size of 10 mm long × 10 mm wide to prepare a sample. The sample was immersed in an electrolytic solution at 80 ° C. for 24 hours. Thereafter, the electrolyte solution was washed away with diethyl carbonate at room temperature, and the sample weight after drying at 150 ° C. for 30 minutes was measured to obtain the sample weight after immersion. And the weight reduction rate was calculated on the basis of the sample weight before immersion, and the electrolyte solution tolerance of the binder was evaluated.
 なお、電解液には、エチレンカーボネートとジエチルカーボネートとを体積比1:1の割合で混合した混合溶媒に、LiPF6を1mol/Lの濃度で溶解させた溶液を使用した。 As the electrolytic solution, a solution obtained by dissolving LiPF 6 at a concentration of 1 mol / L in a mixed solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1 was used.
<合成例2~18>バインダーの合成
 表1に示す配合組成に変更した以外は、合成例1と同様の方法で合成を行うことで、合成例2~18のバインダー分散液を得た。
<Synthesis Examples 2 to 18> Synthesis of Binder Synthesis was performed in the same manner as in Synthesis Example 1 except that the blending composition shown in Table 1 was changed, so that binder dispersions of Synthesis Examples 2 to 18 were obtained.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 なお、表中の略号は以下の通りである。
AA:アクリル酸
MAA:メタクリル酸
NaSS:スチレンスルホン酸ナトリウム
P-1A(N):2-アクリロイルオキシエチルアシッドホスフェート
AAm:アクリルアミド
MAAm:メタクリルアミド
DMAAm:N-ジメチルアクリルアミド
MMA:メチルメタクリレート
BA:ブチルアクリレート
2EHA:2-エチルヘキシルアクリレート
LMA:ドデシルメタクリレート
2HEMA:2-ヒドロキシエチルメタクリレート
GMA:グリシジルメタクリレート
DAP:フタル酸ジアリル
MOEMA:分子量約200のメトキシポリエチレングリコールメタクリレート
γMPMS:γ-メタクリロキシプロピルトリメトキシシラン
St:スチレン
PAASA:ポリオキシエチレン-1-(アリルオキシメチル)アルキルエーテル硫酸アンモニウム(反応性アニオン性界面活性剤)
The abbreviations in the table are as follows.
AA: Acrylic acid MAA: Methacrylic acid NaSS: Sodium styrenesulfonate P-1A (N): 2-acryloyloxyethyl acid phosphate AAm: Acrylamide MAAm: Methacrylamide amide DMAAm: N-dimethylacrylamide MMA: Methyl methacrylate BA: Butyl acrylate 2EHA : 2-ethylhexyl acrylate LMA: dodecyl methacrylate 2HEMA: 2-hydroxyethyl methacrylate GMA: glycidyl methacrylate DAP: diallyl phthalate MOEMA: methoxypolyethylene glycol methacrylate having a molecular weight of about 200 γMPMS: γ-methacryloxypropyltrimethoxysilane St: styrene PAASA: Polyoxyethylene-1- (allyloxymethyl) alkyl ether sulfuric acid Ammonium (reactive anionic surfactant)
<配合例1>非水二次電池用樹脂組成物の調製
 無機粒子(アルミナ、体積平均粒子径0.5μm)と、合成例1で得たバインダー分散液とを不揮発分比で100:3となるように混合した。さらに、この無機粒子を含有するバインダー分散液に、水、高分子型分散剤、及びレベリング剤を加え、不揮発分が20%になるように調製した後、これらを混合して混合液を得た。次いで、この混合液をビーズミルに投入し、分散することで非水二次電池用樹脂組成物を得た。
<Formulation Example 1> Preparation of Resin Composition for Nonaqueous Secondary Battery Inorganic particles (alumina, volume average particle diameter 0.5 μm) and the binder dispersion obtained in Synthesis Example 1 are in a non-volatile content ratio of 100: 3. It mixed so that it might become. Further, water, a polymer type dispersant, and a leveling agent were added to the binder dispersion containing the inorganic particles, and the mixture was prepared so that the non-volatile content was 20%. . Next, this mixed solution was put into a bead mill and dispersed to obtain a resin composition for a non-aqueous secondary battery.
<配合例2~18>非水二次電池用樹脂組成物の調製
 合成例2~18で得たバインダー分散液を用いた以外は、配合例1と同様の方法で調製を行うことで、配合例2~18の非水二次電池用樹脂組成物を得た。
<Formulation Examples 2 to 18> Preparation of Resin Composition for Nonaqueous Secondary Battery By preparing in the same manner as Formulation Example 1 except that the binder dispersion obtained in Synthesis Examples 2 to 18 was used, Resin compositions for nonaqueous secondary batteries of Examples 2 to 18 were obtained.
<溶液安定性>
 得られた非水二次電池用樹脂組成物を25℃で保管し、凝集、沈降及び分離の有無を目視で観察することで、溶液安定性を下記の評価基準に従って評価した。
  A:保管開始から二週間以上、非水二次電池用樹脂組成物に異常が観察されなかった。(特に優れている)
  B:保管開始から一週間から二週間の間に、非水二次電池用樹脂組成物に何らかの異常が観察された。(実用上問題のないレベル)
  C:保管開始から一週間以内に、非水二次電池用樹脂組成物に何らかの異常が観察された。(使用不可)
<Solution stability>
The obtained resin composition for non-aqueous secondary batteries was stored at 25 ° C., and the stability of the solution was evaluated according to the following evaluation criteria by visually observing the presence / absence of aggregation, sedimentation and separation.
A: No abnormality was observed in the resin composition for nonaqueous secondary batteries for 2 weeks or more after the start of storage. (Especially excellent)
B: Some abnormality was observed in the resin composition for a non-aqueous secondary battery between one week and two weeks from the start of storage. (Practical problem-free level)
C: Some abnormality was observed in the resin composition for nonaqueous secondary batteries within one week from the start of storage. (Usage prohibited)
[実施例1]
<保護層付き正極の作製>
 炭素材料としてアセチレンブラック(デンカブラックHS-100)5部と、正極活物質としてLiFePO4 100部と、分散剤としてカルボキシメチルセルロース1部と、バインダーとして、ポリテトラフルオロエチレン30-J(三井・デュポンフロロケミカル社製、60%水分散)8部と、水60部とをプラネタリーミキサーで混合し、正極用合材組成物を作製した。
[Example 1]
<Preparation of positive electrode with protective layer>
5 parts of acetylene black (Denka Black HS-100) as a carbon material, 100 parts of LiFePO 4 as a positive electrode active material, 1 part of carboxymethylcellulose as a dispersant, and polytetrafluoroethylene 30-J (Mitsui / Dupont Fluoro) as a binder (Chemical Co., 60% water dispersion) 8 parts and water 60 parts were mixed with a planetary mixer to prepare a positive electrode mixture composition.
 そして、得られた正極用合材組成物をドクターブレードを用いて乾燥後の厚みが80μmになるように、集電体であるアルミ箔(厚さ20μm)上に塗布した。その後、減圧下で加熱乾燥を行い、さらに、ロールプレスによる圧延処理を行うことで厚み65μmの合材層を作製し、正極を得た。 Then, the obtained positive electrode mixture composition was applied onto an aluminum foil (thickness 20 μm) as a current collector so that the thickness after drying was 80 μm using a doctor blade. Then, heat drying was performed under reduced pressure, and further a rolling process by a roll press was performed to produce a 65 μm-thick composite material layer to obtain a positive electrode.
 次いで、配合例1の非水二次電池用樹脂組成物をドクターブレードを用いて、乾燥後の厚みが5μmになるように、正極の合材層上に塗布して保護層を形成した。その後、減圧下で加熱乾燥することで、保護層付き正極(LIB用正極)を作製した。 Next, the protective layer was formed by applying the resin composition for non-aqueous secondary batteries of Formulation Example 1 on the mixture layer of the positive electrode using a doctor blade so that the thickness after drying was 5 μm. Then, the positive electrode with a protective layer (positive electrode for LIB) was produced by heat-drying under pressure reduction.
<保護層の柔軟性>
 次の方法により保護層の柔軟性を評価した。得られた保護層付き正極を幅10mm×縦50mmの大きさに切断し、試料とした。該試料を集電体が接するように直径1.5mmの金属棒に巻きつけた。そして、その状態で保護層の表面状態を目視で観察し、下記の評価基準に従って柔軟性を評価した。
  A:保護層の表面に変化が観察されなかった。(特に優れている)
  B:保護層の表面の一部に変化が観察された。(実用上問題のないレベル)
  C:保護層の表面の一部分にひび割れが観察された。(使用不可)
  D:保護層の表面の全体にひび割れが観察された。(使用不可)
<Flexibility of protective layer>
The flexibility of the protective layer was evaluated by the following method. The obtained positive electrode with a protective layer was cut into a size of width 10 mm × length 50 mm to prepare a sample. The sample was wound around a metal rod having a diameter of 1.5 mm so that the current collector was in contact. In this state, the surface state of the protective layer was visually observed, and the flexibility was evaluated according to the following evaluation criteria.
A: No change was observed on the surface of the protective layer. (Especially excellent)
B: A change was observed in a part of the surface of the protective layer. (Practical problem-free level)
C: Cracks were observed on a part of the surface of the protective layer. (Usage prohibited)
D: Cracks were observed on the entire surface of the protective layer. (Usage prohibited)
<保護層の密着性>
 得られた保護層付き正極に対して、ナイフを用いて保護層の表面から合材層に達する深さの切込みを、2mm間隔で縦方向および横方向にそれぞれ6本碁盤目状に形成した。これにより、保護層には、複数の切り込みで区画された25個の小領域が形成された。この25個の小領域が形成された保護層の部分にセロハンテープを貼り付けた後、直ちに保護層から引き剥がした。そして、小領域の合材層からの剥離の有無を目視で観察し、下記の評価基準に従って評価した。
  A:小領域の合材層からの剥離がなかった。(特に優れている)
  B:1~15個の小領域が合材層から剥離した。(実用上問題のないレベル)
  C:16個以上の小領域が合材層から剥離した。(使用不可)
<Adhesiveness of protective layer>
With respect to the obtained positive electrode with a protective layer, notches having a depth reaching the composite layer from the surface of the protective layer using a knife were formed in a grid pattern of 6 in the longitudinal direction and the lateral direction at intervals of 2 mm. As a result, 25 small regions partitioned by a plurality of cuts were formed in the protective layer. A cellophane tape was applied to the portion of the protective layer in which the 25 small regions were formed, and then immediately peeled off from the protective layer. And the presence or absence of peeling from the composite material layer of a small area | region was observed visually, and it evaluated in accordance with the following evaluation criteria.
A: There was no peeling from the small area mixture layer. (Especially excellent)
B: 1 to 15 small regions were peeled from the composite material layer. (Practical problem-free level)
C: 16 or more small regions were peeled from the composite material layer. (Usage prohibited)
<保護層の電解液耐性>
 得られた保護層付き正極を縦10mm×横10mmの大きさに切断し、試料とした。該試料を電解液に、80℃で24時間浸漬させた。その後、常温のジエチルカーボネートで電解液を洗い流し、150℃で30分乾燥後の試料重量を測定し、浸漬後の試料重量とした。そして、浸漬前の試料重量を基準として重量減少率を計算し、保護層の電解液耐性を下記の評価基準に従って評価した。
  A:重量減少率が1%未満(特に優れている)
  B:重量減少率が1%以上、3%未満(実用上問題のないレベル)
  C:重量減少率が3%以上(使用不可)
<Electrolyte resistance of protective layer>
The obtained positive electrode with a protective layer was cut into a size of 10 mm long × 10 mm wide to prepare a sample. The sample was immersed in an electrolytic solution at 80 ° C. for 24 hours. Thereafter, the electrolyte solution was washed away with diethyl carbonate at room temperature, and the sample weight after drying at 150 ° C. for 30 minutes was measured to obtain the sample weight after immersion. And the weight reduction | decrease rate was calculated on the basis of the sample weight before immersion, and the electrolyte solution tolerance of the protective layer was evaluated according to the following evaluation criteria.
A: Weight reduction rate is less than 1% (particularly excellent)
B: The weight reduction rate is 1% or more and less than 3% (a level causing no problem in practical use)
C: Weight reduction rate is 3% or more (unusable)
<負極の作製>
 炭素材料としてアセチレンブラック(デンカブラックHS-100)1部と、負極活物質として人造黒鉛100部と、分散剤としてカルボキシメチルセルロース1部と、バインダーとしてポリテトラフルオロエチレン30-J 8部と、水70部とをプラネタリーミキサーで混合し、負極用合材組成物を作製した。
<Production of negative electrode>
1 part of acetylene black (Denka Black HS-100) as a carbon material, 100 parts of artificial graphite as a negative electrode active material, 1 part of carboxymethylcellulose as a dispersant, 8 parts of polytetrafluoroethylene 30-J as a binder, and water 70 Were mixed with a planetary mixer to produce a negative electrode mixture composition.
 得られた負極用合材組成物をドクターブレードを用いて乾燥後の厚みが80μmになるように、集電体である銅箔(厚さ20μm)上に塗布した。その後、減圧下で加熱乾燥し、ロールプレスによる圧延処理を行うことで厚み65μmの合材層を作製し、負極(LIB用負極)を作製した。 The obtained negative electrode mixture composition was applied onto a copper foil (thickness 20 μm) as a current collector so that the thickness after drying was 80 μm using a doctor blade. Then, it heat-dried under reduced pressure, the 65-micrometer-thick composite material layer was produced by performing the rolling process by a roll press, and the negative electrode (negative electrode for LIB) was produced.
<LIBの組み立て>
 保護層付き正極を直径15.9mmの円盤状に打ち抜き、負極を16.1mmの円盤状に打ち抜いた。セパレータは、多孔質ポリプロピレンフィルムを直径23mmに円状に打ち抜いて形成した。かかるセパレータを介して保護層付き正極と負極とを対向させ、電池容器内に収納するとともに、電解液で満たすことでコイン型電池を作製した。なお、コイン型電池の作製は、アルゴン置換したグローブボックス内で行った。
<Assembly of LIB>
The positive electrode with a protective layer was punched into a disk shape having a diameter of 15.9 mm, and the negative electrode was punched into a disk shape having a diameter of 16.1 mm. The separator was formed by punching a porous polypropylene film into a circle having a diameter of 23 mm. The positive electrode with the protective layer and the negative electrode were opposed to each other with the separator interposed between them and housed in a battery container, and a coin-type battery was produced by filling with an electrolyte. The coin-type battery was produced in a glove box substituted with argon.
<電池特性>
 得られたコイン型電池について、充放電装置(北斗電工社製SM-8)を用いて次の通り充放電測定を行った。充電電流1.2mAにて充電終止電圧4.2Vまで定電流充電を続けた。電池の電圧が4.2Vに達した後、放電電流1.2mAで放電終止電圧2.0Vに達するまで定電流放電を行った。これらの充電・放電サイクルを1サイクルとして5サイクルの充電・放電を繰り返し、5サイクル目の放電容量を初回放電容量とした。なお、初回放電容量を維持した場合を維持率100%とした。
<Battery characteristics>
The obtained coin-type battery was subjected to charge / discharge measurement as follows using a charge / discharge device (SM-8 manufactured by Hokuto Denko). The constant current charging was continued up to a charging end voltage of 4.2 V at a charging current of 1.2 mA. After the battery voltage reached 4.2 V, constant current discharge was performed at a discharge current of 1.2 mA until the discharge end voltage of 2.0 V was reached. These charge / discharge cycles are defined as one cycle, and 5 cycles of charge / discharge are repeated, and the discharge capacity at the fifth cycle is defined as the initial discharge capacity. The case where the initial discharge capacity was maintained was set to 100%.
 次に、5サイクル目までと同様に充電を行った後、60℃恒温槽にてコイン型電池を100時間保存した後、放電電流1.2mAで放電終止電圧2.0Vに達するまで定電流放電を行い、放電容量の維持率を算出した。なお、維持率が100%に近いほど、電池特性が良好であることを示す。
  A:維持率が95%以上(特に優れている)
  B:維持率が85%以上、95%未満(実用上問題のないレベル)
  C:維持率が85%未満(使用不可)
Next, after charging as in the 5th cycle, the coin-type battery was stored in a 60 ° C. constant temperature bath for 100 hours and then discharged at a constant discharge current of 1.2 mA until reaching a final discharge voltage of 2.0V. The discharge capacity maintenance rate was calculated. In addition, it shows that a battery characteristic is so favorable that a maintenance factor is near 100%.
A: Maintenance rate is 95% or more (particularly excellent)
B: Maintenance rate is 85% or more and less than 95% (a level that causes no problem in practical use)
C: Maintenance rate is less than 85% (unusable)
[実施例2~5、23]、[比較例1~5]
 表2に示す非水二次電池用樹脂組成物を使用した以外は、実施例1と同様にして、保護層付き正極を作製し、LIBの組み立てを行って、コイン型電池を得た。得られた保護層付き正極及びコイン型電池に対して、実施例1と同様にして評価を行った。
[Examples 2 to 5, 23], [Comparative Examples 1 to 5]
Except having used the resin composition for non-aqueous secondary batteries shown in Table 2, the positive electrode with a protective layer was produced like Example 1 and LIB was assembled, and the coin-type battery was obtained. The obtained positive electrode with a protective layer and coin-type battery were evaluated in the same manner as in Example 1.
[実施例6]
<保護層付き負極の作製>
 実施例1で使用した負極の合材層上に、配合例1の非水二次電池用樹脂組成物をドクターブレードを用いて、乾燥後の厚みが5μmになるように塗布して保護層を形成し、その後、減圧下で加熱乾燥することで、保護層付き負極(LIB用負極)を得た。
[Example 6]
<Preparation of negative electrode with protective layer>
On the composite layer of the negative electrode used in Example 1, the protective layer was applied by applying the nonaqueous secondary battery resin composition of Formulation Example 1 using a doctor blade so that the thickness after drying was 5 μm. After that, a negative electrode with a protective layer (LIB negative electrode) was obtained by heating and drying under reduced pressure.
 <LIBの組み立て>
 作製した保護層付き負極と、保護層を形成しない正極とを使用した以外は、実施例1と同様にして、コイン型電池を得た。
<Assembly of LIB>
A coin-type battery was obtained in the same manner as in Example 1 except that the produced negative electrode with a protective layer and the positive electrode without a protective layer were used.
 得られた保護層付き負極及びコイン型電池に対して、実施例1と同様にして評価を行った。 The obtained negative electrode with a protective layer and coin-type battery were evaluated in the same manner as in Example 1.
[実施例7~10]、[比較例6~10]
 表2に示す非水二次電池用樹脂組成物を使用した以外は、実施例6と同様にして、保護層付き負極を作製し、LIBの組み立てを行って、コイン型電池を得た。得られた保護層付き負極及びコイン型電池に対して、実施例1と同様にして評価を行った。
[Examples 7 to 10], [Comparative Examples 6 to 10]
Except having used the resin composition for non-aqueous secondary batteries shown in Table 2, the negative electrode with a protective layer was produced similarly to Example 6, the LIB was assembled, and the coin-type battery was obtained. The obtained negative electrode with protective layer and coin-type battery were evaluated in the same manner as in Example 1.
[実施例11]
<保護層付きセパレータの作製>
 実施例1で使用したセパレータの片面(セパレータの負極側の面)に、配合例1の非水二次電池用樹脂組成物をドクターブレードを用いて乾燥後の厚みが5μmになるように塗布して保護層を形成し、その後、減圧下で加熱乾燥することで、保護層付きセパレータ(LIB用セパレータ)を得た。
[Example 11]
<Preparation of separator with protective layer>
On one side of the separator used in Example 1 (surface on the negative electrode side of the separator), the non-aqueous secondary battery resin composition of Formulation Example 1 was applied using a doctor blade so that the thickness after drying was 5 μm. Then, a protective layer was formed, and then heat-dried under reduced pressure to obtain a separator with a protective layer (LIB separator).
<LIBの組み立て>
 作製した保護層付きセパレータと保護層を形成しない正極とを使用した以外は、実施例1と同様にして、コイン型電池を得た。なお、保護層付きセパレータは、保護層を負極に向けて設置した。
<Assembly of LIB>
A coin-type battery was obtained in the same manner as in Example 1 except that the manufactured separator with a protective layer and the positive electrode not forming the protective layer were used. In addition, the separator with a protective layer was installed with the protective layer facing the negative electrode.
 得られた保護層付きセパレータ及びコイン型電池に対して、実施例1と同様にして評価を行った。 Evaluation was performed in the same manner as in Example 1 for the obtained separator with a protective layer and coin-type battery.
[実施例12~22、24]、[比較例11~15]
 表2に示す非水二次電池用樹脂組成物を使用した以外は、実施例11と同様にして、保護層付きセパレータを作製し、LIBの組み立てを行って、コイン型電池を得た。得られた保護層付きセパレータ及びコイン型電池に対して、実施例1と同様にして評価を行った。
[Examples 12 to 22, 24], [Comparative Examples 11 to 15]
Except having used the resin composition for non-aqueous secondary batteries shown in Table 2, it carried out similarly to Example 11, produced the separator with a protective layer, assembled LIB, and obtained the coin-type battery. The obtained separator with a protective layer and coin-type battery were evaluated in the same manner as in Example 1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2から明らかなように、各実施例では、溶液安定性、柔軟性、密着性、電解液耐性及び電池特性のいずれの評価に対しても良好な結果が得られた。一方、各比較例では、特性の評価において満足な結果を得ることはできなかった。すなわち、各実施例では、5つの特性の評価において、CまたはDの結果がなかったのに対し、各比較例では、5つの特性の評価において、CまたはDの結果が少なくとも1つあった。 As is clear from Table 2, in each Example, good results were obtained for any of the evaluations of solution stability, flexibility, adhesion, electrolyte solution resistance, and battery characteristics. On the other hand, in each comparative example, satisfactory results could not be obtained in the evaluation of characteristics. That is, in each example, there was no result of C or D in the evaluation of five characteristics, whereas in each comparative example, there was at least one result of C or D in the evaluation of five characteristics.
 また、第1~第3のモノマーを所定の割合(配合比)で共重合してなるポリマー(バインダー)を使用した実施例1~4、実施例6~8、実施例11~17、実施例23及び実施例24では、特性の評価結果が特に良好であった。 Examples 1 to 4, Examples 6 to 8, Examples 11 to 17 and Examples using polymers (binders) obtained by copolymerizing the first to third monomers at a predetermined ratio (blending ratio) In 23 and Example 24, the evaluation results of the characteristics were particularly good.
 さらに、メトキシポリエチレングリコールメタクリレート、フタル酸ジアリル、及びγ-メタクリロキシプロピルトリメトキシシランを含む第3のモノマーを共重合してなるポリマー(バインダー)を使用することにより、特性の評価結果がより良好となる傾向にあった。 Furthermore, by using a polymer (binder) obtained by copolymerizing a third monomer containing methoxypolyethylene glycol methacrylate, diallyl phthalate, and γ-methacryloxypropyltrimethoxysilane, the evaluation results of the characteristics are improved. Tended to be.
 本発明の非水二次電池用バインダーは、ポリマーで構成された複数の粒子を含み、前記ポリマーは、酸性官能基を含有する第1のモノマーと、アミド基を含有する第2のモノマーと、前記第1のモノマー、前記第2のモノマーおよび(メタ)アクリロニトリルと異なる第3のモノマーとを共重合してなり、そのガラス転移温度が-60℃~60℃である。 The binder for a non-aqueous secondary battery of the present invention includes a plurality of particles composed of a polymer, and the polymer includes a first monomer containing an acidic functional group, a second monomer containing an amide group, The first monomer, the second monomer, and a third monomer different from (meth) acrylonitrile are copolymerized, and the glass transition temperature is −60 ° C. to 60 ° C.
 これにより、電解液耐性に優れ、かつ電極およびセパレータとの密着性が良好な保護層が得られる。さらに、本発明の非水二次電池用バインダーは、(メタ)アクリロニトリルを原料として使用することなく製造される。このため、非水二次電池用バインダーを製造する際の安全性が向上し、健康被害が生じにくいという効果も得られる。したがって、本発明は、産業上の利用可能性を有する。 Thereby, it is possible to obtain a protective layer which is excellent in resistance to electrolyte and has good adhesion to the electrode and the separator. Furthermore, the binder for non-aqueous secondary batteries of the present invention is produced without using (meth) acrylonitrile as a raw material. For this reason, the safety | security at the time of manufacturing the binder for non-aqueous secondary batteries improves, and the effect that a health hazard hardly arises is also acquired. Therefore, the present invention has industrial applicability.

Claims (10)

  1.  ポリマーで構成された複数の粒子を含み、
     前記ポリマーは、酸性官能基を含有する第1のモノマーと、アミド基を含有する第2のモノマーと、前記第1のモノマー、前記第2のモノマーおよび(メタ)アクリロニトリルと異なる第3のモノマーとを共重合してなり、そのガラス転移温度が-60℃~60℃であることを特徴とする非水二次電池用バインダー。
    Comprising a plurality of particles composed of a polymer;
    The polymer includes a first monomer containing an acidic functional group, a second monomer containing an amide group, a third monomer different from the first monomer, the second monomer, and (meth) acrylonitrile. And a glass transition temperature of -60 ° C to 60 ° C.
  2.  前記第2のモノマーは、酸性官能基を含有しない請求項1記載の非水二次電池用バインダー。 The binder for a non-aqueous secondary battery according to claim 1, wherein the second monomer does not contain an acidic functional group.
  3.  前記ポリマーは、前記第1~前記第3のモノマーの合計100重量%に対して、0.1~5重量%の前記第1のモノマーと、0.1~5重量%の前記第2のモノマーと、90~99.8重量%の前記第3のモノマーとを共重合してなる請求項1記載の非水二次電池用バインダー。 The polymer comprises 0.1 to 5% by weight of the first monomer and 0.1 to 5% by weight of the second monomer with respect to a total of 100% by weight of the first to third monomers. The binder for a non-aqueous secondary battery according to claim 1, wherein 90% to 99.8% by weight of the third monomer is copolymerized.
  4.  前記第3のモノマーは、(メタ)アクリル酸アルキルエステルを必須とし、ポリオキシアルキレン基含有モノマー、架橋性モノマーおよびアルコキシシリル基含有モノマーの少なくとも1つを含む請求項1記載の非水二次電池用バインダー。 2. The non-aqueous secondary battery according to claim 1, wherein the third monomer is essentially a (meth) acrylic acid alkyl ester and includes at least one of a polyoxyalkylene group-containing monomer, a crosslinkable monomer, and an alkoxysilyl group-containing monomer. Binder.
  5.  前記粒子の平均粒子径が50~500nmである請求項1記載の非水二次電池用バインダー。 The binder for non-aqueous secondary batteries according to claim 1, wherein the average particle diameter of the particles is 50 to 500 nm.
  6.  請求項1に記載の非水二次電池用バインダーと、無機フィラーとを含むことを特徴とする非水二次電池用樹脂組成物。 A resin composition for a non-aqueous secondary battery comprising the binder for a non-aqueous secondary battery according to claim 1 and an inorganic filler.
  7.  シート状のセパレータと、該セパレータの少なくとも一方の面側に設けられ、請求項6記載の非水二次電池用樹脂組成物から形成してなる保護層とを備えることを特徴とする非水二次電池セパレータ。 A non-aqueous two comprising a sheet-like separator and a protective layer provided on at least one surface side of the separator and formed from the resin composition for a non-aqueous secondary battery according to claim 6. Secondary battery separator.
  8.  前記シート状のセパレータは、ポリオレフィンで構成されている請求項7記載の非水二次電池セパレータ。 The non-aqueous secondary battery separator according to claim 7, wherein the sheet-like separator is made of polyolefin.
  9.  集電体と合材層とを含む電極と、前記合材層の前記集電体と反対の面側に設けられ、請求項6記載の非水二次電池用樹脂組成物から形成してなる保護層とを備えることを特徴とする非水二次電池電極。 An electrode including a current collector and a composite material layer, provided on the surface of the composite material layer opposite to the current collector, and formed from the resin composition for a non-aqueous secondary battery according to claim 6. A non-aqueous secondary battery electrode comprising a protective layer.
  10.  請求項7記載の非水二次電池セパレータ、および請求項9記載の非水二次電池電極のうちの少なくとも一方を備えることを特徴とする非水二次電池。 A nonaqueous secondary battery comprising at least one of the nonaqueous secondary battery separator according to claim 7 and the nonaqueous secondary battery electrode according to claim 9.
PCT/JP2014/075176 2013-09-24 2014-09-24 Binder for nonaqueous secondary batteries, resin composition for nonaqueous secondary batteries, nonaqueous secondary battery separator, nonaqueous secondary battery electrode, and nonaqueous secondary battery WO2015046191A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020167004735A KR101868240B1 (en) 2013-09-24 2014-09-24 Binder for nonaqueous secondary batteries, resin composition for nonaqueous secondary batteries, nonaqueous secondary battery separator, nonaqueous secondary battery electrode, and nonaqueous secondary battery
CN201480050595.XA CN105531854B (en) 2013-09-24 2014-09-24 Non-aqueous secondary batteries adhesive, non-aqueous secondary batteries resin combination, non-aqueous secondary batteries barrier film, non-aqueous secondary batteries electrode and non-aqueous secondary batteries

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013197494 2013-09-24
JP2013-197494 2013-09-24

Publications (1)

Publication Number Publication Date
WO2015046191A1 true WO2015046191A1 (en) 2015-04-02

Family

ID=52743327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075176 WO2015046191A1 (en) 2013-09-24 2014-09-24 Binder for nonaqueous secondary batteries, resin composition for nonaqueous secondary batteries, nonaqueous secondary battery separator, nonaqueous secondary battery electrode, and nonaqueous secondary battery

Country Status (4)

Country Link
JP (1) JP5708872B1 (en)
KR (1) KR101868240B1 (en)
CN (1) CN105531854B (en)
WO (1) WO2015046191A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016175515A1 (en) * 2015-04-29 2016-11-03 삼성에스디아이 주식회사 Highly heat resistant and flame retardant separator, and electrochemical cell
KR20180063077A (en) 2015-09-30 2018-06-11 니폰 제온 가부시키가이샤 A binder composition for a non-aqueous secondary battery electrode, a slurry composition for a non-aqueous secondary battery electrode, an electrode for a non-aqueous secondary battery,
US20220021076A1 (en) * 2018-12-26 2022-01-20 Samsung Sdi Co., Ltd. Separator for lithium secondary battery and lithium secondary battery comprising same
WO2022092984A1 (en) * 2020-11-02 2022-05-05 주식회사 엘지에너지솔루션 Composition for separator for non-aqueous electrolyte battery, separator for non-aqueous electrolyte battery, and non-aqueous electrolyte battery
US11955640B2 (en) 2018-11-09 2024-04-09 Ricoh Company, Ltd. Inorganic particle layer, electrode, electrode element, and non-aqueous electrolyte power storage element

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11374222B2 (en) 2015-03-20 2022-06-28 Sekisui Chemical Co., Ltd. Composition for lithium secondary battery electrodes
JP6485268B2 (en) * 2015-07-24 2019-03-20 日本ゼオン株式会社 Nonaqueous secondary battery porous membrane binder composition, nonaqueous secondary battery porous membrane composition, nonaqueous secondary battery porous membrane and nonaqueous secondary battery
JP6485269B2 (en) * 2015-07-24 2019-03-20 日本ゼオン株式会社 Nonaqueous secondary battery porous membrane binder composition, nonaqueous secondary battery porous membrane composition, nonaqueous secondary battery porous membrane and nonaqueous secondary battery
WO2017038551A1 (en) * 2015-08-28 2017-03-09 Dic株式会社 Aqueous resin composition for heat-resistant layers of lithium ion secondary batteries
US10770706B2 (en) 2015-11-19 2020-09-08 Asahi Kasei Kabushiki Kaisha Binder for electricity storage device and binder composition for electricity storage device
CN108352487B (en) 2015-11-19 2020-12-25 旭化成株式会社 Separator for electricity storage device, and electrode body and electricity storage device using same
KR102335587B1 (en) * 2016-03-29 2021-12-06 도레이 카부시키가이샤 Separator for secondary battery and secondary battery
JP6259952B1 (en) 2016-04-01 2018-01-10 積水化学工業株式会社 Lithium secondary battery electrode composition
CN107325225B (en) * 2016-04-29 2019-12-03 四川茵地乐科技有限公司 Negative electrode of lithium ion battery aqueous binder and preparation method thereof
JP6579383B2 (en) * 2016-08-10 2019-09-25 荒川化学工業株式会社 Lithium ion secondary battery separator, method for producing lithium ion secondary battery separator, and lithium ion secondary battery
JP6346986B1 (en) * 2016-12-20 2018-06-20 旭化成株式会社 Electric storage device separator and laminate, wound body and secondary battery using the same
CN111149239B (en) 2017-09-28 2023-09-19 积水化学工业株式会社 Composition for secondary battery electrode
JP7276135B2 (en) * 2017-09-28 2023-05-18 日本ゼオン株式会社 Binder composition for secondary battery, slurry composition for secondary battery, functional layer for secondary battery, electrode layer for secondary battery, and secondary battery
CN108467503B (en) * 2018-03-02 2021-08-10 瑞固新能(上海)材料科技有限公司 Preparation method of heat-resistant lithium battery diaphragm
CN108400335B (en) * 2018-03-09 2021-07-02 清华大学 Binder, composition, electrode material and preparation method thereof
KR20200032542A (en) * 2018-09-18 2020-03-26 삼성에스디아이 주식회사 Separator for rechargeable lithium battery and rechargeable lithium battery including the same
JP7468352B2 (en) * 2018-10-31 2024-04-16 日本ゼオン株式会社 Binder composition for secondary battery and manufacturing method thereof, slurry composition for secondary battery, functional layer for secondary battery and manufacturing method thereof, electrode layer for secondary battery, and secondary battery
WO2020095824A1 (en) 2018-11-09 2020-05-14 Ricoh Company, Ltd. Inorganic particle layer, electrode, electrode element, and non-aqueous electrolyte power storage element
KR102342669B1 (en) * 2019-01-16 2021-12-22 삼성에스디아이 주식회사 Separator for rechargeable lithium battery and rechargeable lithium battery including the same
JP7327942B2 (en) * 2019-02-01 2023-08-16 三星エスディアイ株式会社 Composition for forming porous insulating layer, electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for producing electrode for non-aqueous electrolyte secondary battery
KR102416526B1 (en) 2019-06-07 2022-07-01 삼성에스디아이 주식회사 Separator for rechargeable lithium battery and rechargeable lithium battery including the same
EP3796434A1 (en) * 2019-09-17 2021-03-24 Arakawa Chemical Industries, Ltd. Binder aqueous solution for lithium-ion battery, slurry for lithium-ion battery negative electrode, negative electrode for lithium-ion battery, and lithium-ion battery
CN111200093B (en) * 2020-01-10 2022-08-12 武汉中兴创新材料技术有限公司 Ceramic particle and preparation method and application thereof
KR102321774B1 (en) * 2020-02-14 2021-11-04 주식회사 이엠앤아이 A organic layer composition for sealing organic light emitting device
KR20230037482A (en) 2020-07-14 2023-03-16 세키스이가가쿠 고교가부시키가이샤 Modified polyvinyl acetal resin, battery electrode composition, pigment composition
EP4318634A1 (en) 2021-03-30 2024-02-07 Sekisui Chemical Co., Ltd. All solid state battery composition
CN117897833A (en) * 2021-09-30 2024-04-16 株式会社大阪曹達 Binder for electrode, and power storage device
WO2023089133A1 (en) * 2021-11-22 2023-05-25 Solvay Specialty Polymers Italy S.P.A. Silicon anode binder
JP2024007380A (en) 2022-06-30 2024-01-18 旭化成株式会社 Binder for nonaqueous secondary battery, slurry for lithium ion secondary battery porous layer, lithium ion secondary battery porous layer, lithium ion secondary battery separator, and lithium ion secondary battery
WO2024040572A1 (en) * 2022-08-26 2024-02-29 宁德时代新能源科技股份有限公司 Water-based adhesive for positive electrode sheet, and positive electrode sheet made by water-based adhesive

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004342572A (en) * 2002-11-13 2004-12-02 Nitto Denko Corp Porous film carrying partially cross-linked adhesive for separator of battery and its utilization
JP2008204788A (en) * 2007-02-20 2008-09-04 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2008287888A (en) * 2007-05-15 2008-11-27 Asahi Kasei Chemicals Corp Coating composition for non-aqueous electrolyte secondary battery
JP2008546135A (en) * 2005-05-17 2008-12-18 エルジー・ケム・リミテッド Binder for electrochemical devices including multiple stacked electrochemical cells
JP2010123465A (en) * 2008-11-21 2010-06-03 Hitachi Maxell Ltd Separator for battery and lithium secondary battery
WO2011040474A1 (en) * 2009-09-30 2011-04-07 日本ゼオン株式会社 Porous membrane for secondary battery, and secondary battery
JP2013522843A (en) * 2010-03-17 2013-06-13 エルジー・ケム・リミテッド Separator and electrochemical element provided with the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100491026B1 (en) * 2003-03-05 2005-05-24 주식회사 엘지화학 The cell property, adhesive property and coating property-controlled binder for lithium secondary battery with 2 or more phases
JP4794820B2 (en) 2004-02-18 2011-10-19 パナソニック株式会社 Lithium ion secondary battery and manufacturing method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004342572A (en) * 2002-11-13 2004-12-02 Nitto Denko Corp Porous film carrying partially cross-linked adhesive for separator of battery and its utilization
JP2008546135A (en) * 2005-05-17 2008-12-18 エルジー・ケム・リミテッド Binder for electrochemical devices including multiple stacked electrochemical cells
JP2008204788A (en) * 2007-02-20 2008-09-04 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2008287888A (en) * 2007-05-15 2008-11-27 Asahi Kasei Chemicals Corp Coating composition for non-aqueous electrolyte secondary battery
JP2010123465A (en) * 2008-11-21 2010-06-03 Hitachi Maxell Ltd Separator for battery and lithium secondary battery
WO2011040474A1 (en) * 2009-09-30 2011-04-07 日本ゼオン株式会社 Porous membrane for secondary battery, and secondary battery
JP2013522843A (en) * 2010-03-17 2013-06-13 エルジー・ケム・リミテッド Separator and electrochemical element provided with the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016175515A1 (en) * 2015-04-29 2016-11-03 삼성에스디아이 주식회사 Highly heat resistant and flame retardant separator, and electrochemical cell
KR20180063077A (en) 2015-09-30 2018-06-11 니폰 제온 가부시키가이샤 A binder composition for a non-aqueous secondary battery electrode, a slurry composition for a non-aqueous secondary battery electrode, an electrode for a non-aqueous secondary battery,
US11462737B2 (en) 2015-09-30 2022-10-04 Zeon Corporation Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
US11955640B2 (en) 2018-11-09 2024-04-09 Ricoh Company, Ltd. Inorganic particle layer, electrode, electrode element, and non-aqueous electrolyte power storage element
US20220021076A1 (en) * 2018-12-26 2022-01-20 Samsung Sdi Co., Ltd. Separator for lithium secondary battery and lithium secondary battery comprising same
WO2022092984A1 (en) * 2020-11-02 2022-05-05 주식회사 엘지에너지솔루션 Composition for separator for non-aqueous electrolyte battery, separator for non-aqueous electrolyte battery, and non-aqueous electrolyte battery

Also Published As

Publication number Publication date
CN105531854B (en) 2017-10-31
JP2015088484A (en) 2015-05-07
KR101868240B1 (en) 2018-06-15
JP5708872B1 (en) 2015-04-30
CN105531854A (en) 2016-04-27
KR20160061317A (en) 2016-05-31

Similar Documents

Publication Publication Date Title
JP5708872B1 (en) Nonaqueous secondary battery binder, nonaqueous secondary battery resin composition, nonaqueous secondary battery separator, nonaqueous secondary battery electrode and nonaqueous secondary battery
JP6465323B2 (en) Nonaqueous electrolyte secondary battery electrode binder and use thereof
KR101819067B1 (en) Positive electrode for secondary batteries, method for producing same, slurry composition, and secondary battery
WO2015198530A1 (en) Laminate for nonaqueous secondary cell, method for producing same, and nonaqueous secondary cell
WO2015064411A1 (en) Particulate polymer for use in binder for lithium-ion secondary battery; adhesive layer; and porous-membrane composition
US10985374B2 (en) Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, non-aqueous secondary battery electrode, and non-aqueous secondary battery
JP2015118908A (en) Binder composition for electricity storage device, slurry for electricity storage device, electricity storage device electrode, separator, and electricity storage device
KR102493659B1 (en) Composition for nonaqueous secondary battery functional layers, functional layer for nonaqueous secondary batteries, and nonaqueous secondary battery
US10535854B2 (en) Binder composition for non-aqueous secondary battery, composition for non-aqueous secondary battery functional layer, functional layer for non-aqueous secondary battery, and non-aqueous secondary battery
JP7064881B2 (en) Water-based binder composition for secondary battery electrodes, slurry for secondary battery electrodes, binders, secondary battery electrodes, and secondary batteries
JP2015106488A (en) Slurry for electricity storage device negative electrode and electricity storage device negative electrode, slurry for electricity storage device positive electrode and electricity storage device positive electrode, and electricity storage device
KR20160008519A (en) Binder composition for lithium ion secondary battery, slurry composition for lithium ion secondary battery, electrode for lithium ion secondary battery, lithium ion secondary battery, and method for producing binder composition for lithium ion secondary battery
WO2016158939A1 (en) Composition for electrode mixture layer of nonaqueous electrolyte secondary battery, production method for said composition, and use of said composition
JP6388145B2 (en) Nonaqueous electrolyte secondary battery electrode mixture layer composition, method for producing the same, and use thereof
JP2015022956A (en) Slurry for power storage device, power storage device electrode, separator and power storage device
JPWO2018235722A1 (en) Binder composition for electrochemical device electrode, composition for electrochemical device electrode, electrode for electrochemical device, and electrochemical device
JP6645101B2 (en) Slurry composition for lithium ion secondary battery electrode, electrode for lithium ion secondary battery, and lithium ion secondary battery
JP7004104B1 (en) Binder dispersion for non-water secondary battery separator, slurry composition, non-water secondary battery separator, and non-water secondary battery
JP7095793B1 (en) Binder for non-water secondary battery separator, resin composition for non-water secondary battery separator, non-water secondary battery separator and non-water secondary battery
WO2023032729A1 (en) Binder for non-aqueous secondary battery separator, resin composition for non-aqueous secondary battery separator, non-aqueous secondary battery separator, non-aqueous secondary battery, power storage device and binder used therein, aqueous dispersion, resin composition, separator&amp;lt; and binder production method
JP7327404B2 (en) Binder for secondary battery electrode mixture layer, composition for secondary battery electrode mixture layer, and secondary battery electrode
WO2022254898A1 (en) Binder dispersion for non-aqueous secondary battery separator, slurry composition, non-aqueous secondary battery separator, and non-aqueous secondary battery
CN117461205A (en) Binder dispersion for nonaqueous secondary battery separator, slurry composition, nonaqueous secondary battery separator, and nonaqueous secondary battery

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480050595.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14846915

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167004735

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14846915

Country of ref document: EP

Kind code of ref document: A1