WO2015046187A1 - Series hybrid combine - Google Patents

Series hybrid combine Download PDF

Info

Publication number
WO2015046187A1
WO2015046187A1 PCT/JP2014/075167 JP2014075167W WO2015046187A1 WO 2015046187 A1 WO2015046187 A1 WO 2015046187A1 JP 2014075167 W JP2014075167 W JP 2014075167W WO 2015046187 A1 WO2015046187 A1 WO 2015046187A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
engine
power
generator
speed
Prior art date
Application number
PCT/JP2014/075167
Other languages
French (fr)
Japanese (ja)
Inventor
山中 之史
仲島 鉄弥
麻美 藤井
高尾 吉郎
池田 博
Original Assignee
株式会社クボタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クボタ filed Critical 株式会社クボタ
Publication of WO2015046187A1 publication Critical patent/WO2015046187A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D41/00Combines, i.e. harvesters or mowers combined with threshing devices
    • A01D41/12Details of combines
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D69/00Driving mechanisms or parts thereof for harvesters or mowers
    • A01D69/02Driving mechanisms or parts thereof for harvesters or mowers electric

Definitions

  • the present invention includes an engine, a generator driven by the output of the engine, a motor driven by electric power from the generator, an electric machine control unit that controls the generator and the motor, and rotation from the motor
  • a traveling device that causes the vehicle to travel by power, an engine control unit that controls the output of the engine, a farm work device that harvests crops as the vehicle travels, and a vehicle speed setting operation for setting the vehicle speed according to the operation position
  • the present invention relates to a series hybrid combine including an apparatus and an engine speed acquisition unit that acquires the engine speed of the engine.
  • An engine for transmitting power to the traveling device, an electric motor, a generator for generating electric power by driving the engine, a battery for storing electric power generated by the generator for driving the electric motor, and the electric motor or the internal combustion engine or its A hybrid combine comprising a working device driven by both is known from US Pat.
  • This hybrid combine is operated by selecting one of a charging mode for storing the electric power generated by the generator in the battery and an assist mode for using at least a part of the electric power stored in the battery as power for the working device. Is done.
  • a smaller engine can be used.
  • reduction of combustion exhaust gas emissions and engine noise can be realized.
  • a large-capacity battery required for accumulating engine surplus power as electric power and a control device for power supply / charge control of the battery increase the cost burden.
  • An electric motor for driving and harvesting that drives a traveling device and a harvesting processing device that harvests and conveys the crops backward
  • an electric motor for threshing that drives a threshing device that threshs the harvested crops
  • power generation driven by an engine A hybrid combine equipped with a machine is known from US Pat.
  • each of the traveling device, the reaping device, and the threshing device is driven by the electric motor, so that the excellent drive characteristics of the electric motor can be used effectively, but the conventional engine is installed, As long as the generator is driven by the engine, the effect cannot be expected so much in terms of reducing engine noise and fuel consumption.
  • a series hybrid combine includes an engine, a generator driven by the output of the engine, a motor driven by electric power from the generator, an electric machine control unit that controls the generator and the motor, To set a traveling device that travels the vehicle by rotational power from the motor, an engine control unit that controls the output of the engine, a farm work device that harvests crops as the vehicle travels, and a vehicle speed according to the operation position. And an engine speed acquisition unit for acquiring the engine speed of the engine so that the output torque of the motor is controlled so that the power generation load of the generator does not exceed an allowable load. It is configured.
  • the motor output torque is set so that the generator load generated by the present invention does not exceed the allowable load. It is important to appropriately calculate a torque check value for the motor for the motor control to check. In particular, since the output of the engine changes depending on the engine speed, it is desirable to calculate the torque check value every time the engine speed changes. Therefore, in one embodiment of the present invention, a motor-consumable power calculation unit that calculates motor-consumable power that is power that can be used by the motor based on the engine speed, and the vehicle speed setting operation device.
  • a motor rotation number setting unit that calculates a motor command rotation speed for the motor based on the operation position of the motor, and a torque value calculated from the motor-consumable power and the motor command rotation speed as a torque check value in motor control.
  • a torque check value calculation unit applied to the electric machine control unit.
  • the power that can be used by the motor is calculated from the engine speed acquired by the engine speed acquisition unit, and the calculated power is used to calculate the torque check value. Motor torque check control becomes possible.
  • the motor consumable power calculated based on the engine speed is It can be determined based on the engine output characteristics at the engine speed (referred to as E mode), or can be determined based on the power generation output characteristics of the generator at each engine speed (referred to as G mode). Is also possible.
  • the motor-consumable power is configured to depend on an engine output value derived from an engine output characteristic of the engine with the engine speed as an input parameter. ing. That is, if the engine speed can be acquired, the engine output value can be derived from the engine speed using the engine output characteristics of the mounted engine.
  • the motor receives power from the engine via the generator, the motor consumable power as power that can be consumed by the motor without problems can be obtained using the engine output value. Furthermore, since a power transmission mechanism and a generator are interposed between the engine and the motor, it is advantageous that their loss power and overall effectiveness are taken into consideration when determining the motor consumable power.
  • the motor-consumable power depends on a power generation output value derived from a generator output characteristic of the generator with the engine speed as an input parameter. It is configured. Since the output shaft of the engine is connected to the input shaft of the generator, the power generation output value can be derived from the engine speed using the generator output characteristics of the generator.
  • the motor power supply battery is not provided and the motor is supplied with power only from the generator, the power that can be consumed by the motor can be obtained using this power generation output value. Even in this case, it is advantageous that the power loss and the overall effectiveness of the related power transmission mechanism are taken into account when determining the power that can be consumed by the motor.
  • the motor-consumable power is a first value that depends on an engine output value derived from an engine output characteristic of the engine with the engine speed as an input parameter. And the second value depending on the power generation output value derived from the generator output characteristics of the power generator using the engine speed as an input parameter.
  • this series hybrid combine is a battery-less serial hybrid vehicle, and since the vehicle cannot be driven by the power from the battery, the power from the generator that generates power by the engine that is constantly rotating is used. It travels with a driving motor.
  • FIG. 1 schematically shows power transmission and power control in a series hybrid combine (hereinafter simply referred to as a combine or vehicle) of the present invention.
  • the starting point of power transmission is an internal combustion engine, here a diesel engine (hereinafter simply referred to as an engine) 80.
  • the rotational speed of the engine 80 is controlled by an engine control unit 86 that employs an electronic governor system, a common rail system, or the like.
  • a generator 81 that generates electric power using rotational power output from the engine 80 is connected to the engine 80 serving as a rotational power source.
  • the electric power output from the generator 81 is converted into electric power by the electric power converter 84 controlled by the electric machine control unit 85, and drives the motor 82 as another rotational power source.
  • the rotation speed and torque of the motor 82 are controlled according to the power conversion by the power conversion unit 84.
  • the end point of the power transmission is the farm work device W composed of a device for harvesting crops and the traveling device 1 for running the combine.
  • the farm work device W includes an engine drive work device WE that receives power directly from the engine 80 and a motor drive work device WM that receives power directly from the motor 82.
  • the traveling device 1 includes a pair of left and right crawler traveling bodies driven independently of each other, that is, a left crawler traveling body 1a and a right crawler traveling body 1b. Between the motor 82 and the traveling device 1, there is provided a power transmission mechanism 50A including a transmission 47 capable of transmitting speed change power with different rotational speeds to the left crawler traveling body 1a and the right crawler traveling body 1b. .
  • a vehicle speed setting operation device OD operated by the driver.
  • the vehicle speed setting operation device OD is constituted by a plurality of operation tools including a turning setting lever and a speed setting lever for setting turning (steering), but is constituted only by a common single operating tool. May be.
  • the operation position of the vehicle speed setting operation device OD, the shift state of the power transmission mechanism 50A, the drive state of the farm work device W, and the like are detected by the positions of various sensors and various switches.
  • an engine rotation sensor S2 that detects the rotation of the engine output shaft is provided as an engine rotation speed acquisition unit that acquires the engine rotation speed of the engine 80, and a signal from the engine rotation sensor S2 is Treated as actual engine speed.
  • the engine speed acquisition unit may adopt other forms such as acquiring the engine command speed for the engine 80 as the engine speed other than the engine speed sensor S2.
  • an operation position of a stroke-type vehicle speed setting operation lever constituting the vehicle speed setting operation device OD is detected. Based on the vehicle speed operation position information included in this operation position, the motor command rotation speed that is the control target rotation speed of the motor 82 is calculated. Here, the motor command rotation speed is derived using the operation position as an input parameter.
  • the operation position-motor command rotational speed map is used.
  • the vehicle speed setting operation device OD includes a turning setting operation tool and a lever, based on the turning operation position information for turning setting included in the operation position of the vehicle speed setting operation device OD,
  • the driving speeds of the left crawler traveling body 1a and the right crawler traveling body 1b are calculated using the operation position-left / right crawler driving speed map, but detailed description thereof is omitted here.
  • the calculated motor command rotational speed is sent to the electric machine control unit 85 on the one hand, and is sent to the torque check value calculating section 12f on the other hand.
  • the electric machine control unit 85 generates a control signal for the power conversion unit 84 based on the motor command rotational speed, and drives and controls the motor 82 via the power conversion unit 84.
  • the torque check value calculation unit 12f is a torque check value for torque check control for preventing the generator 81 from being stopped when the motor torque increase request accompanying the load increase of the motor 82 exceeds the output of the generator 81. Is calculated.
  • the torque check value calculated by the saddle torque check value calculation unit 12f is sent to the electric machine control unit 85 as a limit motor torque value.
  • the electric machine control unit 85 limits the electric power to the motor 82 so that the motor 82 does not output a motor torque equal to or greater than the limit motor torque value.
  • the power generation load of the generator 81 is prohibited from exceeding the allowable load, and a sudden stop of the generator 81 is avoided. Therefore, when a large load is suddenly applied to the motor 82, the load is dealt with by a natural decrease in the motor rotation speed, that is, a decrease in the vehicle speed.
  • the motor command rotation speed and the motor-consumable power calculated based on the engine rotation speed, that is, the power that can be used by the motor 82 are input parameters.
  • the torque check value is calculated from the motor-consumable power and the motor command rotational speed.
  • the power that can be consumed by the motor is calculated by calculating the engine output value obtained by applying the actual engine speed to the engine output characteristics that are mapped or formulated.
  • the engine output characteristic curve indicating the engine output characteristic a curve obtained by lowering the engine maximum output curve to an area where fuel efficiency is good is used. Therefore, as long as the motor 82 is driven and controlled with this motor-consumable power as a limit, the engine 80, and consequently the generator 81, is driven without burden and without waste. That is, the E mode is configured such that the motor-consumable power depends on the engine output value derived from the engine output characteristics of the engine with the engine speed as an input parameter.
  • the engine output value can be derived from the engine output characteristics of the mounted engine.
  • a mechanical power transmission mechanism and a generator 81 are interposed between the engine 80 and the motor 82, their loss power and overall effectiveness are taken into consideration when obtaining the motor consumable power. . This will be described below by formulating it.
  • the function (calculation formula) F used here can be derived from the relationship between the motor rotation speed and the torque.
  • the calculation of the torque check value in the G mode is basically the same as that in the E mode, and the actual engine speed is applied to the generator output characteristics defined by the formula of the generator 81 (mapped). Then, the power that can be consumed by the motor is calculated by calculating the generated power output value. Again, since a mechanical power transmission mechanism or the like is interposed between the generator 81 and the motor 82, their loss power and overall effectiveness are taken into account when determining the motor consumable power. Again, this will be described in the following mathematical formula.
  • the actual engine speed is RE-RPM and the mapped generator output characteristics are expressed by the function G
  • T-limit F (MC-RPM, M-out) It becomes.
  • either the E mode or the G mode may be mounted, but both may be mounted and the one with the smaller torque check value obtained by each may be employed. Or you may calculate both, such as the average of both, and may determine a final torque check value.
  • FIG. 2 is a side view of a combine which is an example of a harvesting machine
  • FIG. 3 is a side view.
  • FIG. 2 is a side view of the combine
  • FIG. 3 is a side view.
  • This combine includes a crawler type traveling device 1 including a left crawler traveling body 1a and a right crawler traveling body 1b, and an airframe 2 supported by the traveling device 1 on the ground.
  • a cutting processing unit 3 is disposed in the front of the machine body 2.
  • a threshing device 4 and a grain tank 5 are arranged side by side in the machine body crossing direction on the left and right sides in the machine body advance direction.
  • a boarding operation unit 7 is disposed in front of the grain tank 5.
  • the cocoon cutting processing unit 3 is swingable up and down around the horizontal axis P1 by operation of the hydraulic cylinder CY.
  • the crops harvested by the mowing processing unit 3 are threshed by the threshing device 4, and the grains obtained by the threshing device 4 are stored in the grain tank 5.
  • the harvesting processing unit 3, the threshing device 4, and the boarding operation unit 7 are attached to a body frame 6 constituting the body 2.
  • the cocoon cutting processing unit 3 includes a cutting unit 8 located at the front of the vehicle body, and a vertical transfer device 9 as a crop transfer unit that transfers the crops harvested by the cutting unit 8 toward the rear upper side of the vehicle body.
  • the vertical conveying device 9 conveys the harvested cereal meal backward and delivers it to the feed chain 18.
  • the cutting unit 8 includes a weeding tool 10 for weeding the harvested culm, a pulling device 11 for causing the planted culm to fall in a standing position, and a clipper for cutting the planted culm planted It has a type mowing device 12.
  • the cutting processing unit 3 is supported by the body frame 6 so as to be swingable up and down around the horizontal axis P1, and the vehicle body so as to open the normal working posture located at the front of the body 2 and the vehicle body front side of the body 2.
  • the posture can be changed around the vertical axis Y1 (see FIG. 3) over the maintenance posture retracted laterally outward.
  • the cutting unit frame 13 provided in the cutting processing unit 3 is supported around the horizontal axis P1 by the relay support member 15 supported by the left and right support members 14R and 14L provided upright from the body frame 6. Is supported so as to be swingable up and down.
  • the relay support member 15 that supports the reaper part frame 13 is supported by the machine body 2 so as to be rotatable about a longitudinal axis Y1 on a support body 14L located on the left side. That is, as a result, the entire cutting processing unit 3 is supported by the body 2 so as to be swingable around the longitudinal axis Y1.
  • the longitudinal axis Y ⁇ b> 1 on which the harvesting processing unit 3 is rotated to change the posture is located on the outer side in the vehicle body width direction on the opposite side of the boarding operation unit 7 in the vertical transfer device 9. Located in.
  • the threshing device 4 includes a threshing unit 16 that threshs the harvested cereal and a sorting unit 17 that sorts a processed product threshed by the threshing unit 16 into grains and dust. .
  • the harvested cereal is transported in a sideways posture in which the stock side is sandwiched by the feed chain 18. Further, in the handling chamber 19 through which the head side of the harvested cereal rice cake passes, a handling cylinder 20 that performs a handling process on the tip side of the harvested grain rice cake by being rotationally driven around the longitudinal axis of the machine body, and this handling processing.
  • a receiving network 21 is disposed for allowing the obtained processed material to leak downward.
  • a dust feed port 22 is formed on the lower side of the receiving net 21 in the processed material transfer direction to allow the processed material that has not leaked through the receiving net 21 to flow downward toward the lower side (rear side) of the sorting unit 17. Has been.
  • the sorting unit 17 is located below the threshing unit 16 and has a swing sorting mechanism 23 that swings and sorts the processed material leaked from the receiving net 21, a drive shaft 24a, and a tang ridge 24 that generates a sorting wind.
  • a collection unit 27, a second collection unit 30 and the like are provided.
  • the No. 1 recovery unit 27 recovers the selected grain (No. 1) and the right end of the recovered No. 1 by the No. 1 screw 25 arranged at the bottom along the vehicle body width direction (left and right direction). It is conveyed toward the lifting screw conveyor 26 that is connected in communication.
  • the No. 2 recovery unit 30 recovers a mixture (No. 2) such as cereal grains and straw scraps, and the No. 2 screw 28 provided at the bottom of the recovered No. 2 along the lateral direction of the vehicle body. Is conveyed toward the second reduction device 29 connected to the right end thereof.
  • the swing sorting mechanism 23 is provided with a swing sorting case 33, a precision sorting chaff sheave 34 disposed inside the swing sorting case 33, a Glen sheave 35, a Strollac 36, and the like.
  • the swing sorting case 33 is driven by an eccentric crank mechanism 32 whose front side is supported by a swing arm 31 and whose rear side is rotationally driven. Thereby, the swing sorting case 33 swings back and forth.
  • Glen sieve 35 sorts grain from the leaked processed material.
  • the Strollac 36 swings and transfers the straw scraps backward.
  • the first thing conveyed by the No. 1 screw 25 is lifted by the lifting screw conveyor 26, supplied to the grain tank 5, and stored.
  • the second product conveyed by the second screw 28 is rethreshed by the second reduction device 29 and then lifted and reduced to the swing sorting mechanism 23.
  • a grain discharging device 37 that discharges the grains stored in the grain tank 5 to the outside is provided.
  • the grain discharging device 37 includes a bottom screw 38, a vertical screw conveyor 39, and a horizontal screw conveyor 41.
  • the bottom screw 38 is provided along the groove-shaped bottom 5 a at the lower part of the grain tank 5.
  • the vertical screw conveyor 39 conveys the grain upward from the conveyance terminal end of the bottom screw 38.
  • the horizontal screw conveyor 41 conveys the grains in the horizontal direction from the upper part of the vertical screw conveyor 39 and discharges the grains from the discharge port 40 at the tip to a truck bed (not shown).
  • the lifting position of the horizontal screw conveyor 41 is changed by expansion and contraction of the hydraulic cylinder 42 provided between the vertical screw conveyor 39 and the horizontal screw conveyor 41. Furthermore, the vertical screw conveyor 39 can be swung around the vertical axis Y2 by a swivel motor 43 provided in the lower part thereof.
  • the bottom screw 38 and the vertical screw conveyor 39 and the vertical screw conveyor 39 and the horizontal screw conveyor 41 are connected to each other by bevel gear mechanisms 44 and 45, respectively. Accordingly, these conveyors are integrally rotated when power is supplied to the input pulley 46 provided at the front end of the bottom screw 38. As a result, the grain in the grain tank 5 is carried out to the outside.
  • FIG. 5 shows a first power transmission mechanism that supplies rotational power from the engine 80 to the handling cylinder 20, the sorting unit 17, and the like.
  • a traveling device 1 is composed of a left crawler traveling body 1 a and a right crawler traveling body 1 b that are arranged to rotate the rotational power from an electric motor (hereinafter simply abbreviated as “motor”) 82 on the left and right in the lateral direction of the vehicle body.
  • motor electric motor
  • the traveling transmission 47 that is powered by the second power transmission mechanism is unevenly arranged in the lateral direction of the boarding operation unit 7 at the center in the lateral direction of the vehicle body. Power is transmitted to the traveling device 1.
  • a travel cutting motor 82 that supplies power to the travel transmission 47 is disposed at a lower position of the driving unit step 48 in the boarding driving unit 7.
  • the output shaft 49a of the motor 82 and the input shaft 49b of the traveling transmission 47 are interlocked and connected via a joint.
  • a gear-type reduction mechanism 53 As shown in FIG. 6, in the transmission case 47 of the traveling transmission 47, a gear-type reduction mechanism 53, a hydraulically operated and gear-meshing auxiliary transmission 54, and the left crawler traveling body 1a and the right crawler traveling.
  • a turning transmission mechanism 55 for turning traveling due to a speed difference from the body 1b is provided. Further, power is transmitted from the traveling transmission 47 to the cutting processing unit 3.
  • a one-way clutch 63 that transmits only power for forward travel and a belt tension type cutting clutch 64 that intermittently transmits power are interposed in the power transmission path.
  • the motor 82 is a power source for the pair of left and right traveling devices 1, 1 and the cutting processing unit 3.
  • the output control of the motor 82 will be described later, basically, the command rotational speed for the motor 82 is calculated based on the operation position of the vehicle speed setting operation device OD.
  • the vehicle speed setting operation device OD includes a stroke operation type main transmission lever (first operation tool) 66 that functions as a vehicle speed setting lever, and a turning setting lever provided in the boarding operation unit 7.
  • a functioning operation lever 61 is included.
  • the stroke operation type main transmission lever 66 If the stroke operation type main transmission lever 66 is in the neutral position, the main transmission lever 66 is stopped, and the forward movement speed increases as the operation displacement of the main transmission lever 66 toward the front increases, and the operation displacement toward the rear of the main transmission lever 66 increases. The reverse travel speed increases as the value increases.
  • the operation position of the main transmission lever 66 is detected by the stroke sensor S4.
  • a negative brake 67 that brakes when the driving of the eaves motor 82 is stopped is disposed at the end of the input shaft 49b of the traveling transmission 47 that is opposite to the connection portion of the motor 82.
  • the negative brake 67 is urged into a braking state by a spring (not shown), and releases the braking state against an urging force of the spring by an electric or hydraulic actuator.
  • the negative brake 67 is controlled by the main electronic unit 100 to be in a braking state when the motor 82 is in an operation stop state (a state where no running torque is generated), and to a brake release state when the motor 82 is in an operation state. .
  • the negative brake 67 is switched from the braking release state to the braking state, the braking force is gradually increased and the impact during braking is suppressed.
  • the sub-transmission device 54 shown in FIG. 7 is combined with the speed switching of the motor 82, which will be described later, in order to create three speed states of high speed, medium speed, and low speed.
  • Low speed stage Due to the speed change of the motor 82 and the two speed stages of the auxiliary transmission 54, a medium speed state can be adopted when cutting in a standard farm field, and when the crop is lying down or when the crop is in a deep wet field, When it is large, the low speed state can be adopted, and when traveling on the road, the high speed state can be adopted.
  • the gear position of the auxiliary transmission 54 can be selected by a second operating tool 57 and a third operating tool 56 which are one of the vehicle speed setting operating tools provided in the boarding operation unit 7 (see FIG. 3). That is, the three speed states are selected according to the operation states of the second operation tool 57 and the third operation tool 56.
  • both the second operation tool 57 and the third operation tool 56 are formed as operation switches.
  • the second operation tool 57 is also called a cutting shift switch
  • the third operation tool 56 is also called an auxiliary transmission switch.
  • the turning transmission mechanism 55 includes a slow turning clutch 58 for transmitting deceleration power to one of the left crawler traveling body 1a and the right crawler traveling body 1b, a deceleration brake 59 for applying a braking force to either one,
  • the steering clutch 60 etc. which switch the power transmission state with respect to either to a straight-ahead state and a turning state (a deceleration state or a braking state) are included.
  • the saddle turning transmission mechanism 55 is linked to an operation lever 61 provided in the boarding operation unit 7.
  • the traveling body 2 is turned rightward or leftward from the straight traveling state.
  • a turning lever sensor S3 is provided to detect the inclination angle from the neutral position of the operation lever 61 to the left and right. That is, the turning degree of the combine is calculated based on the operation displacement of the operating lever 61, and the detection signal of the turning lever sensor S3 is used for calculating the turning degree. Therefore, the operation position signal of the turning lever sensor S3 is input to the main electronic unit 100 and used for steering control and the like.
  • the operation lever 61 is swingable in the front-rear direction, and the lifting operation and the lowering operation of the cutting processing unit 3 are realized by the swinging operation in the front-rear direction.
  • the intermediate speed state used when cutting in a standard field is achieved through switching of the gear position of the sub-transmission device 54 and shifting of the motor 82, and when the crop is lying down, It is possible to create a low-speed state that is used when the traveling load is large in a deep marsh and a high-speed state that is used when traveling on the road.
  • Switching of the auxiliary transmission 54 is performed by the third operation tool 56.
  • a second operating tool 57 is also provided for temporarily changing the vehicle speed during the cutting operation. Under specific conditions, the auxiliary transmission 54 is also switched in accordance with the operation of the second operation tool 57.
  • the third operating tool 56 and the second operating tool 57 are switches in this embodiment, and preferably are formed as momentary switches operated by a driver's finger. The switch is turned on, and the switch is turned off by pressing again.
  • the third operating tool 56 is provided in the grip portion of the main transmission lever 66 that is one of the speed setting operating tools of the motor 82, and the second operating tool 57 is the grip portion of the operating lever 61. Is provided.
  • the 3rd operation tool 56 and the 2nd operation tool 57 can also be provided in other positions, for example, a control panel etc.
  • Operation state signals (switch signals) of the third operation tool 56 and the second operation tool 57 and an operation position signal of the main transmission lever 66 by the stroke sensor S4 are input to the main electronic unit 100, and will be described later.
  • 82 and the auxiliary transmission 54 are used for control.
  • the power system for the sorting unit 17 receives rotational power directly from the engine 80.
  • the power from the engine 80 is transmitted to the sorting section 17, specifically, the drive shaft 24 a of the carp 24 through the belt tension type sorting on / off clutch 71. Further, power is transmitted from the drive shaft 24 a of the carp 24 to the first screw 25, the second screw 28, the swing sorting mechanism 23, the feed chain 18, and the like via the transmission belt 72.
  • the power from the engine 80 is supplied to the grain discharging device 37, specifically the bottom screw 38, via the belt tension type discharging on / off clutch 73, the bevel gear mechanism 74, and the belt transmission mechanism 75. It is transmitted to an input pulley 46 provided at the front side end.
  • the sorting on / off clutch 71 is switched between the on state and the off state by a sorting clutch motor (not shown).
  • the discharge on / off clutch 73 is switched between an on state and an off state by a discharge clutch motor (not shown).
  • the output shaft 80 a of the engine 80 is connected to a power transmission mechanism 50 ⁇ / b> B that functions as a power supply mechanism to the threshing unit 16 and the grain discharging device 37, and generates power.
  • the power generation rotary shaft 81a of the machine 81 is also connected.
  • the generator 81 and the motor 82 are connected to the electric machine control unit 85 via the power converter 84.
  • the motor 82 is a known three-phase AC induction electric motor that is used as a motor for driving the vehicle.
  • the power converter 84 includes a power generating inverter that converts AC power generated by the generator 81 into DC power, a converter that converts DC power converted by the power generating inverter into AC power suitable for the motor 82, and the like. Power electronics equipment is included.
  • the electric machine control unit 85 gives a control signal to the power conversion unit 84 based on a command from the main electronic unit 100 that has built a control algorithm for appropriately controlling the power electronics device.
  • the engine control unit 86 controls the output (rotation speed and torque) of the engine 80 by changing the fuel supply amount to the engine 80 based on the command from the main electronic unit 100.
  • the signal from the engine rotation sensor S2 that detects the engine speed is sent to the engine control unit 86 and / or the main electronic unit 100 via the vehicle state detection unit 90.
  • the signal from the engine rotation sensor S2 including other signals, may be sent directly without passing through the vehicle state detection unit 90.
  • engine control is controlled by the engine control unit 86 in an electronic governor manner.
  • the engine control unit 86 is either droop control that slightly decreases the engine speed as the load of the engine 80 increases, or isochronous control that maintains the engine speed constant regardless of the load of the engine 80.
  • the engine 80 can be controlled.
  • the work device control unit 87 is incorporated in the engine drive work device W1 that uses the rotational power of the engine 80 as it is and the motor drive work device W2 that uses the rotational power of the motor 82 based on a command from the main electronic unit 100.
  • a control signal is given to operating devices such as a clutch operating device and a hydraulic cylinder.
  • the vehicle state detection unit 90 performs preprocessing such as conversion processing on signals input from various switches and sensors as necessary, and transfers the signals to the main electronic unit 100.
  • the main electronic unit 100 is connected to other ECUs such as an engine control unit 86, an electric machine control unit 85, a work device control unit 87, and a vehicle state detection unit 90 through an in-vehicle LAN. It should be noted that not only the main electronic unit 100 but also other ECUs are configured in an easy-to-understand manner for the purpose of explanation. Accordingly, in practice, each ECU may be appropriately integrated or may be appropriately divided. In this embodiment, the main electronic unit 100 constructs an engine management module 110, an electric appliance management module 120, a vehicle management module 130, and the like as those particularly related to the present invention by hardware and software (computer program). Yes.
  • the engine management module 110 sends various engine control commands to the engine control unit 86 to adjust the output of the engine 80 in cooperation with other management modules.
  • the electric machine management module 120 also cooperates with other management modules and sends an electric equipment control command to the electric machine control unit 85 so that the generator 81 and the motor 82 are appropriately driven via the power conversion unit 84.
  • the vehicle management module 130 executes the traveling state and working state of this combine. Confirm and manage.
  • a vehicle state determination unit 13a and a speed state determination unit 13b are constructed. Based on various state detection signals acquired from the vehicle state detection unit 90, the vehicle state determination unit 13a drives the left crawler traveling body 1a and the right crawler traveling body 1b, and the cutting processing unit 3, the threshing device 4, and the grain. The driving state of the agricultural work apparatus W such as the grain discharging apparatus 37 is determined.
  • the speed state determination unit 13b determines the vehicle speed based on various state detection signals related to the vehicle speed acquired from the vehicle state detection unit 90, or command information on the number of revolutions for the motor 82 handled by the electric machine management module 120 or the electric machine control unit 85. The speed state indicating is determined.
  • the stroke operation position in the front-rear direction of the main transmission lever 66 operated by the driver is detected by the stroke sensor S4 as a speed setting signal and sent to the main electronic unit 100.
  • the left / right inclination angle of the operation lever 61 operated by the driver is detected by the turning lever sensor S3 as a turning degree calculation signal indicating turning (steering) of the airframe 2 and is sent to the main electronic unit 100. It is done.
  • the electric machine management module 120 determines the number of rotations of the motor 82 based on the operation positions of the main transmission lever 66 and the operation lever 61, that is, based on the detection signals from the stroke sensor S4 and the turning lever sensor S3, and as a result A command for controlling the driving speed of the crawler traveling body 1a and the right crawler traveling body 1b is given to the electric machine control unit 85.
  • the electric machine control unit 85 controls power electronics devices such as an inverter and a converter included in the power conversion unit 84 based on a command from the electric machine management module 120. At that time, the output of the generator 81 and the motor 82 is changed and adjusted by controlling on / off the switching transistors provided in the three phases (u phase, v phase, w phase).
  • the output torque of the motor 82 is checked so that the power generation load of the generator 81 does not exceed the allowable load.
  • the basic principle described with reference to FIG. 1 is adopted in this torque check control algorithm.
  • a motor rotation number setting unit 12c, a motor-consumable power calculation unit 12d, and a torque check value calculation unit 12f are constructed by a computer program as functional units particularly related to the present invention. .
  • the motor rotation speed setting unit 12 c calculates the motor command rotation speed that is the control target rotation speed of the motor 82 based on the operation position of the main transmission lever 66 and the operation lever 61, and outputs the motor command rotation speed to the electric machine control unit 85.
  • the calculation of the motor command rotation speed uses a motor command rotation speed control map that derives the motor command rotation speed from the operation position of the main transmission lever.
  • the motor command rotation speed control map since the motor command rotation speed is adjusted by turning set by the operation position of the operation lever 61, the motor command rotation speed control map includes the operation position of the main transmission lever and the operation position of the operation lever 61. It is preferable to use a multi-dimensional map having as input parameters.
  • a configuration in which a motor command rotation speed control map for deriving a motor command rotation speed from the operation position of the main transmission lever may be changed depending on the operation position of the operation lever 61 may be adopted.
  • the motor-consumable power calculation unit 12d can use the motor 82 within a range in which the power generation load of the generator 81 does not exceed the allowable load based on the actual engine speed calculated from the detection signal of the engine rotation sensor S2.
  • the power is calculated as the power that can be consumed by the motor.
  • the torque check value calculation unit 12f calculates the torque value calculated from the motor consumable power calculated by the motor consumable power calculation unit 12d and the motor command rotation number calculated by the motor rotation number setting unit 12c in the motor control. Calculate the torque check value.
  • the calculated torque check value is given to the electric machine control unit 85 and used for motor control with respect to the motor 82.
  • both the E mode and the G mode described above are mounted, and the smaller torque check value obtained by each is selected.
  • the functions of the motor speed setting unit 12c, the motor-consumable power calculation unit 12d, and the torque check value calculation unit 12f in both modes are as described with reference to FIG.
  • the formula is specifically shown as one of the examples.
  • an engine of 2800 rpm with a rated output of 21 KW is used as the engine 80.
  • E (RE-RPM) 85 [Nm] x RE-RPM [rpm] x 2 ⁇ / 60 [W]
  • L is 3000 [W] in loss power and ⁇ is 85 [%] in total efficiency.
  • T-limit is calculated using MC-RPM as the motor command rotational speed calculated by the motor rotational speed setting unit 12c.
  • Torque check value: T-limit is the same as in E mode.
  • the engine management module 110 appropriately manages the operation of the engine 80 in consideration of the engine load.
  • the load estimation unit 11d constructed in the engine management module 110 is an engine load estimated from the driving state of the left crawler traveling body 1a and the right crawler traveling body 1b determined by the vehicle state determining unit 13a and the driving state of the agricultural work device W. Is also calculated as an estimated load.
  • an engine command rotational speed calculation unit 11b constructed in the engine management module 110 calculates an engine command rotational speed based on the estimated load calculated by the load estimation unit 11d and an engine control command based on the engine command rotational speed. Is output to the engine control unit 86.
  • the load estimation unit 11d and the engine control unit 86 operate integrally, but first, based on the upper side from the vehicle state determination unit 13a, as the operation mode that affects the engine load, the following 8 Specifies two modes.
  • Stop mode No work or running.
  • straight-forward mode The machine body 2 is traveling straight ahead for a predetermined time immediately before entering the mowing operation or for a predetermined time after the mowing operation is completed.
  • the machine body 2 Before / after cutting operation and turning mode: The machine body 2 is turning (a left crawler traveling body 1a and a right crawler traveling body 1b) for a predetermined time immediately before entering the cutting operation or a predetermined time after the cutting operation is completed. And the speed is different).
  • Cutting operation + straight running mode During cutting operation, the airframe 2 goes straight.
  • Cutting operation + turning mode Aircraft 2 is turning during cutting operation.
  • Road running + straight running mode The vehicle body 2 is running straight in the running with the auxiliary transmission 54 at a high speed.
  • Road traveling + turning mode In the traveling with the auxiliary transmission 54 at a high speed, the body 2 is turning.
  • Kernel discharge mode The kernel is discharged from the kernel tank 5 using the kernel discharge device 37.
  • the engine control unit 86 calculates the engine command rotational speed according to the operation mode. In this embodiment, since an engine performance curve as schematically shown in FIG. 8 is defined, the engine command rotational speed based on this is calculated.
  • the engine 80 has a maximum output of 18.5 KW and a maximum rotational speed of 2500 rpm, and the engine control characteristics schematically shown in FIG. 8 are represented by three lines. That is, a high rotational speed Nh (for example, a rotational speed slightly lower than 2500 rpm) is set at a high load, a medium rotational speed Nm (for example, a rotational speed slightly lower than 2000 rpm) is set at a medium load, and a low rotational speed at a low load.
  • Nh for example, a rotational speed slightly lower than 2500 rpm
  • Nm for example, a rotational speed slightly lower than 2000 rpm
  • Nl for example, a low rotational speed slightly higher than 1500 rpm
  • the idling speed of the engine 80 is slightly higher than 1000 rpm. From this, in practice, (1) In stop mode, idling speed is set, (2) Before / after mowing operation + straight running mode, the region from idling speed to low speed is set, (3) Before / after mowing operation + turning mode, a slightly lower rotational speed than the high rotational speed is set, (4) In the cutting and straight running mode, the area from the low speed to the maximum speed is set. (5) During cutting and turning mode, the maximum number of revolutions is set.
  • the maximum number of revolutions was set regardless of the load.
  • the maximum number of revolutions is set even at low loads, so the low load continues. In some cases, energy saving is insufficient.
  • the engine speed setting is constantly adjusted in accordance with the load fluctuation, in the situation where the load fluctuates finely, there arises an inconvenience related to energy saving and noise that the engine is repeatedly puffed.
  • the engine speed is set according to the load, such as high speed at high load, air speed at medium load, and low speed at low load. At that time, the maximum rotation speed is set since the cutting operation + turning mode and road traveling + turning mode are the operating states in which the greatest load is generated.
  • FIG. 9 shows a hydraulic circuit that is equipped with SL and supplies hydraulic pressure to them.
  • the hydraulic pump P1 as a hydraulic source is driven by the engine 80 in this embodiment. Since a low-power engine 80 is used for energy saving, the hydraulic circuit is devised as follows so that the hydraulic pump P1 does not consume unnecessary power as much as possible.
  • Hydraulic pump P1 is connected to a hydraulic cylinder CY via a cutting lift valve V4.
  • the hydraulic pump P1 and the cutting lift valve V4 are connected by an oil path R1, and the cutting lift valve V4 and the hydraulic cylinder CY are connected by an oil path R2.
  • a pilot check valve V2 is interposed in the oil passage R2, and a sequence valve V7 and a relief valve V9 are interposed in the oil passage R1.
  • the cutting lift valve V4 is pilot pressure controlled by a cutting lowering solenoid valve V5 and a cutting lifting solenoid valve V6 provided in a pilot oil passage PR having a pilot pressure reduced by the system pressure reducing valve V8.
  • the pilot check valve V2 is pilot pressure controlled by a sequence valve V7 and a shuttle check valve V3.
  • the oil passage R3 is branched from the oil passage R1 by the sequence valve V7, and the hydraulic cylinder 42 and other hydraulic cylinders SL are driven by the hydraulic pressure supplied by the oil passage R3.
  • An unload valve V11 is interposed in an oil path R4 branched from the dredged oil path R3 and connected to the oil discharge side of the relief valve V9.
  • the unload valve V11 is controlled by the pilot pressure from the system solenoid valve V12.
  • the system solenoid valve V12 is configured to be duty controlled. By controlling the duty of the system solenoid valve V12, the unload valve V11 can be controlled to a predetermined opening degree, and the driving pressure of the hydraulic circuit can be optimally adjusted. That is, conventionally, since the unload valve V11 is simply closed and the driving pressure defined by the relief valve V9 is maintained, the driving pressure of this hydraulic circuit is always constant, and the driving pressure required by the model is If they are different, waste occurs. Such waste can be eliminated by optimizing the passage flow rate of the unload valve V11 by duty control of the system solenoid valve V12.
  • this hydraulic circuit is divided into sub hydraulic circuits of the hydraulic cylinders SY, 42, SL, and the minimum necessary for each sub hydraulic circuit divided using the system solenoid valve V12 and the unload valve V11 that are duty controlled.
  • a configuration in which a limited driving pressure can be obtained may be employed.
  • a control may be employed in which a sub hydraulic circuit is configured from a plurality of combinations of the hydraulic cylinders SY, 42, and SL, and the sub hydraulic circuit is set to the minimum necessary driving pressure.
  • the traveling device 1 is composed of the left crawler traveling body 1a and the right crawler traveling body 1b. However, even if a combined configuration of wheels and crawler traveling bodies or a configuration including only wheels is adopted. Good.
  • the third operation tool 56 and the second operation tool 57 may be configured by an operation lever operated by a driver and a sensor that detects an operation displacement of the operation lever.
  • the engine command rotational speed is calculated by the engine command rotational speed calculation unit 11b based on the load of the load estimation unit 11d.
  • the engine command rotation speed calculation unit 11b calculates the engine command rotation speed from the motor command rotation speed. It may be derived. In that case, it is convenient to integrate the engine management module 110 and the electric machine management module 120.
  • the present invention can be applied to a self-removal type or a normal type combine in which crops are harvested and threshed as the vehicle body travels.
  • traveling device 1a first (left) crawler 1b: second (right) crawler 2: traveling machine body 3: reaping processing unit 4: threshing device 5: grain tank 7: boarding operation unit 8: reaping unit 12: reaping Device 16: Threshing unit 17: Sorting unit 37: Grain discharging device 54: Sub-transmission device 56: Third operation tool 57: Second operation tool 61: Operation lever 66: Main transmission lever (first operation tool) 80: Engine 81: Generator 82: Motor (electric motor) 84: Power conversion unit 85: Electric control unit 86: Engine control unit 87: Work device control unit 90: Vehicle state detection unit 100: Main electronic unit 110: Engine management module 11b: Engine command rotational speed calculation unit 11d: Load estimation unit 120: Electricity management module 12b: Motor rotation speed correction section 12c: Motor rotation speed setting section 12d: Motor consumable power calculation section 12f: Torque check value calculation section 130: Vehicle management module 13a: Vehicle state determination section WE: Engine drive work Device WM: Motor-driven work device S2

Abstract

[Problem] To provide a series hybrid combine which, in order to improve the fuel consumption for an engine which is the drive source for a motor, uses as small (low output) as possible engine and generator, and, while doing so, is free of instances of the vehicle stopping that would have resulted from unexpected interruptions of the generator. [Solution] The series hybrid combine is provided with: a generator (81) driven by engine output; a motor (82) driven by electric power from this generator (81); an electrical machinery control unit (85) that controls the generator (81) and the motor (82); a traveling device (1) that makes the vehicle travel by rotary power from the motor; a vehicle speed setting operating device (OD) for setting vehicle speed according to an operating position; and an engine rotation sensor (S2) that acquires engine rotational speed. Furthermore, the constitution is such that the motor (82) output torque is diverted such that the generating load on the generator (81) does not exceed the allowable load.

Description

シリーズハイブリッドコンバインSeries hybrid combine
  本発明は、エンジンと、前記エンジンの出力によって駆動する発電機と、前記発電機からの電力によって駆動するモータと、前記発電機と前記モータとを制御する電機制御ユニットと、前記モータからの回転動力によって車両を走行させる走行装置と、前記エンジンの出力を制御するエンジン制御ユニットと、車両の走行に伴って農作物を収穫する農作業装置と、操作位置に応じた車速を設定するための車速設定操作装置と、前記エンジンのエンジン回転数を取得するエンジン回転数取得部とを備えたシリーズハイブリッドコンバインに関する。 The present invention includes an engine, a generator driven by the output of the engine, a motor driven by electric power from the generator, an electric machine control unit that controls the generator and the motor, and rotation from the motor A traveling device that causes the vehicle to travel by power, an engine control unit that controls the output of the engine, a farm work device that harvests crops as the vehicle travels, and a vehicle speed setting operation for setting the vehicle speed according to the operation position The present invention relates to a series hybrid combine including an apparatus and an engine speed acquisition unit that acquires the engine speed of the engine.
  走行装置に動力を伝達するエンジンと、電動モータと、エンジンの駆動で発電する発電機と、この発電機で発電された電力を電動モータ駆動用に蓄えるバッテリと、この電動モータまたは内燃機関あるいはその両方により駆動される作業用装置とを備えたハイブリッドコンバインが、特許文献1から知られている。このハイブリッドコンバインは、発電機で発電された電力をバッテリに蓄える充電モードとバッテリに蓄えられた電力の少なくとも一部を作業用装置の動力として利用するアシストモードのいずれかのモードを選択して運転される。このようなハイブリッドコンバインでは、エンジンに余力のある際に充電されたバッテリからの電力によって駆動される電動モータがエンジン出力を補うことができるので、より小型のエンジンを使用することができる。その結果、燃焼排ガスの排出量削減、エンジン騒音の低減が実現する。しかしながら、エンジン余力を電力として蓄積するために要求される大容量のバッテリ、及びバッテリの給電・充電制御のための制御機器により、コスト的な負担が大きくなる。 An engine for transmitting power to the traveling device, an electric motor, a generator for generating electric power by driving the engine, a battery for storing electric power generated by the generator for driving the electric motor, and the electric motor or the internal combustion engine or its A hybrid combine comprising a working device driven by both is known from US Pat. This hybrid combine is operated by selecting one of a charging mode for storing the electric power generated by the generator in the battery and an assist mode for using at least a part of the electric power stored in the battery as power for the working device. Is done. In such a hybrid combine, since the electric motor driven by the electric power from the battery charged when the engine has a surplus power can supplement the engine output, a smaller engine can be used. As a result, reduction of combustion exhaust gas emissions and engine noise can be realized. However, a large-capacity battery required for accumulating engine surplus power as electric power and a control device for power supply / charge control of the battery increase the cost burden.
  走行装置及び作物を刈り取って後方に搬送する刈取処理装置を駆動する走行刈取用の電動モータと、刈り取った作物を脱穀処理する脱穀装置を駆動する脱穀用の電動モータと、エンジンによって駆動される発電機とを備えたハイブリッドコンバインが特許文献2から知られている。このコンバインでは、走行装置、刈取処理装置及び脱穀装置の夫々が電動モータによって駆動されるので、電動モータが有する優れた駆動特性を有効利用することができるが、従来通りのエンジンを搭載して、エンジンによって発電機を駆動する限り、エンジン騒音の低減や燃料消費の抑制の点ではあまりその効果が期待できない。逆に、エンジンを最も燃費のよい条件で駆動して得られる発電機からの電力を大型のバッテリに蓄積し、バッテリを介して電動モータに給電する場合、燃料消費の抑制が可能となっても、その反面、バッテリ自体のコストやバッテリの充電給電制御のコストが負担となる。 An electric motor for driving and harvesting that drives a traveling device and a harvesting processing device that harvests and conveys the crops backward, an electric motor for threshing that drives a threshing device that threshs the harvested crops, and power generation driven by an engine A hybrid combine equipped with a machine is known from US Pat. In this combine, each of the traveling device, the reaping device, and the threshing device is driven by the electric motor, so that the excellent drive characteristics of the electric motor can be used effectively, but the conventional engine is installed, As long as the generator is driven by the engine, the effect cannot be expected so much in terms of reducing engine noise and fuel consumption. On the other hand, if the electric power from the generator obtained by driving the engine with the best fuel economy is stored in a large battery and fed to the electric motor via the battery, fuel consumption can be suppressed. On the other hand, the cost of the battery itself and the cost of the battery charging and feeding control are borne.
  乗用車の分野では、走行装置がエンジンからの回転動力を利用するに与えるエンジン駆動モードとモータによる回転動力を利用するモータ駆動モードとを状況に応じて切り替えるパラレルハイブリットが普及している。しかしながら、パラレルハイブリットでは、エンジン駆動モードとモータ駆動モードと間の動力切替機構が複雑となり、動力伝達機構(トランスミッション)のコストが上昇するという問題点がある。 In the field of passenger cars, parallel hybrids that switch between the engine drive mode that the traveling device gives when using the rotational power from the engine and the motor drive mode that uses the rotational power of the motor are widely used. However, the parallel hybrid has a problem that the power switching mechanism between the engine driving mode and the motor driving mode becomes complicated, and the cost of the power transmission mechanism (transmission) increases.
特開2004-242558号公報JP 2004-242558 A 特開2013-70642号公報JP 2013-70642 A
  上述したような従来のハイブリッドコンバインに鑑み、変速特性に優れたモータによって走行装置を駆動させる利点のさらなる追求、モータ給電用の大型バッテリがもたらす不都合の解消等を実現するハイブリッドコンバインが要望されている。モータへの電力供給を発電機からの電力だけにすれば、モータ給電用のバッテリは不要となり、コスト的に有利になるが、モータに負荷がかかることによるモータ出力の増加に必要となる電力が発電機の出力を超えた場合、発電機が停止してしまう。この問題をさけるためには、発電機を大出力タイプにすればよいが、その結果、この発電機に回転動力を与えるエンジンも大出力タイプとなり、コストや燃料消費の点で不都合である。また。エンジン及び発電機の大型化は重量増加をもたらし、さらなる燃料消費の悪化を導く。  このため、モータの駆動源となるエンジンの燃料消費を改善するため、できるだけ小型(小出力)のエンジン及び発電機を採用しながらも、不測の発電機停止に伴う車両停止が生じないシリーズハイブリッドコンバインが要望されている。 In view of the conventional hybrid combine as described above, there is a demand for a hybrid combine that realizes further pursuit of the advantage of driving the traveling device with a motor having excellent speed change characteristics, elimination of inconvenience caused by a large battery for motor power supply, and the like. . If the power supply to the motor is limited to the power from the generator, a battery for power supply to the motor becomes unnecessary, which is advantageous in terms of cost, but the power required to increase the motor output due to the load on the motor is reduced. If the output of the generator is exceeded, the generator will stop. In order to avoid this problem, the generator may be of a high output type. As a result, the engine that gives rotational power to the generator is also of a high output type, which is disadvantageous in terms of cost and fuel consumption. Also. Increasing the size of engines and generators leads to an increase in weight, leading to further deterioration in fuel consumption. For this reason, in order to improve the fuel consumption of the engine that is the drive source of the motor, a series hybrid combine that employs the smallest possible (small output) engine and generator but does not cause the vehicle to stop due to unexpected generator stoppage. Is desired.
  本発明によるシリーズハイブリッドコンバインは、エンジンと、前記エンジンの出力によって駆動する発電機と、前記発電機からの電力によって駆動するモータと、前記発電機と前記モータとを制御する電機制御ユニットと、前記モータからの回転動力によって車両を走行させる走行装置と、前記エンジンの出力を制御するエンジン制御ユニットと、車両の走行に伴って農作物を収穫する農作業装置と、操作位置に応じた車速を設定するための車速設定操作装置と、前記エンジンのエンジン回転数を取得するエンジン回転数取得部とを備え、前記発電機の発電負荷が許容負荷を超えないように、前記モータの出力トルクが牽制されるように構成されている。 A series hybrid combine according to the present invention includes an engine, a generator driven by the output of the engine, a motor driven by electric power from the generator, an electric machine control unit that controls the generator and the motor, To set a traveling device that travels the vehicle by rotational power from the motor, an engine control unit that controls the output of the engine, a farm work device that harvests crops as the vehicle travels, and a vehicle speed according to the operation position. And an engine speed acquisition unit for acquiring the engine speed of the engine so that the output torque of the motor is controlled so that the power generation load of the generator does not exceed an allowable load. It is configured.
  この構成によれば、走行装置に回転動力を供給しているモータの出力トルクが、発電機の発電負荷が許容負荷を超えないように牽制されているので、走行装置に大きな負荷が生じてモータに大きなトルクが必要になっても、発電機が停止しない限度範囲でしか、モータトルクを増加させる制御が行われない。その結果、走行装置に大きな負荷が生じても、発電機が停止してしまうようなことは回避され、モータの回転数が低下するだけなので、車両の不測の停止といった事態は免れる。とくに、そのような走行装置に生じる大負荷はわずかな時間間隔の事象であることが多いので、モータ回転数の低下による車速の低下は、しばらくすれば回復し、大きな問題とはならない。 According to this configuration, since the output torque of the motor that supplies the rotational power to the traveling device is controlled so that the power generation load of the generator does not exceed the allowable load, a large load is generated on the traveling device and the motor Even when a large torque is required, control for increasing the motor torque is performed only within a limit range in which the generator does not stop. As a result, even if a large load is generated on the traveling device, it is avoided that the generator stops, and the number of revolutions of the motor is reduced, so that an unexpected stop of the vehicle is avoided. In particular, since a large load generated in such a traveling device is often an event of a slight time interval, a decrease in the vehicle speed due to a decrease in the motor speed is recovered after a while and does not become a major problem.
  エンジンや発電機の大型化をともなうことなしにコンバイン特有の突発的な走行負荷に対処するため、本発明で提案された、発電機の発電負荷が許容負荷を超えないようにモータの出力トルクを牽制するというモータ制御には、モータに対するトルク牽制値の算定を適切に行うことが重要である。特に、エンジンはエンジン回転数によって出力が変化するので、エンジン回転数が変化する毎にトルク牽制値を算定することが望ましい。このため、本発明の実施形態の1つでは、前記エンジン回転数に基づいて、前記モータによって利用可能な動力であるモータ消費可能動力を算定するモータ消費可能動力算定部と、前記車速設定操作装置の操作位置に基づいて前記モータに対するモータ指令回転数を算定するモータ回転数設定部と、前記モータ消費可能動力と前記モータ指令回転数とから算定したトルク値を、モータ制御におけるトルク牽制値として前記電機制御ユニットに与えるトルク牽制値算定部とが備えられている。この構成では、エンジン回転数取得部で取得されたエンジン回転数から、モータが利用できる動力を算定して、その算定された動力がトルク牽制値の算定に用いられるので、エンジン回転数を考慮したモータトルク牽制制御が可能となる。 In order to cope with the sudden running load peculiar to the combine without increasing the size of the engine or the generator, the motor output torque is set so that the generator load generated by the present invention does not exceed the allowable load. It is important to appropriately calculate a torque check value for the motor for the motor control to check. In particular, since the output of the engine changes depending on the engine speed, it is desirable to calculate the torque check value every time the engine speed changes. Therefore, in one embodiment of the present invention, a motor-consumable power calculation unit that calculates motor-consumable power that is power that can be used by the motor based on the engine speed, and the vehicle speed setting operation device. A motor rotation number setting unit that calculates a motor command rotation speed for the motor based on the operation position of the motor, and a torque value calculated from the motor-consumable power and the motor command rotation speed as a torque check value in motor control. And a torque check value calculation unit applied to the electric machine control unit. In this configuration, the power that can be used by the motor is calculated from the engine speed acquired by the engine speed acquisition unit, and the calculated power is used to calculate the torque check value. Motor torque check control becomes possible.
  モータは発電機から電力を供給されていること、及びその発電機はエンジンから回転動力を供給されていることを考慮すると、エンジン回転数に基づいて算定されたモータ消費可能動力は、その都度のエンジン回転数におけるエンジンの出力特性に基づいて求める(Eモードと称する)ことも可能であるし、あるいはその都度のエンジン回転数における発電機の発電出力特性に基づいて求める(Gモードと称する)ことも可能である。
  前者(Eモード)を採用した実施形態の1つでは、前記モータ消費可能動力が、前記エンジン回転数を入力パラメータとして前記エンジンのエンジン出力特性から導出されたエンジン出力値に依存するように構成されている。つまり、エンジンの回転数が取得できれば、このエンジン回転数から、搭載されているエンジンのエンジン出力特性を用いてエンジン出力値が導出できる。モータは、発電機を介してエンジンから動力を受けているので、このエンジン出力値を用いて、モータが問題なく消費できる動力としてのモータ消費可能動力を求めることができる。さらに、エンジンとモータとの間には、動力伝達機構や発電機が介在しているので、それらの損失動力や総合効力が、モータ消費可能動力を求める際に考慮されると好都合である。
  後者(Gモード)を採用した実施形態の1つでは、前記モータ消費可能動力が、前記エンジン回転数を入力パラメータとして前記発電機の発電機出力特性から導出された発電出力値に依存するように構成されている。発電機の入力軸にはエンジンの出力軸が連結されているので、エンジン回転数から、この発電機の発電機出力特性を用いて、発電出力値が導出できる。モータ給電用バッテリは備えられておらず、モータは発電機からのみ給電されているので、この発電出力値を用いて、モータ消費可能動力を求めることができる。この場合でも、関連する動力伝達機構の損失動力や総合効力が、モータ消費可能動力を求める際に考慮されると好都合である。
Considering that the motor is supplied with power from the generator and that the generator is supplied with rotational power from the engine, the motor consumable power calculated based on the engine speed is It can be determined based on the engine output characteristics at the engine speed (referred to as E mode), or can be determined based on the power generation output characteristics of the generator at each engine speed (referred to as G mode). Is also possible.
In one embodiment employing the former (E mode), the motor-consumable power is configured to depend on an engine output value derived from an engine output characteristic of the engine with the engine speed as an input parameter. ing. That is, if the engine speed can be acquired, the engine output value can be derived from the engine speed using the engine output characteristics of the mounted engine. Since the motor receives power from the engine via the generator, the motor consumable power as power that can be consumed by the motor without problems can be obtained using the engine output value. Furthermore, since a power transmission mechanism and a generator are interposed between the engine and the motor, it is advantageous that their loss power and overall effectiveness are taken into consideration when determining the motor consumable power.
In one of the embodiments adopting the latter (G mode), the motor-consumable power depends on a power generation output value derived from a generator output characteristic of the generator with the engine speed as an input parameter. It is configured. Since the output shaft of the engine is connected to the input shaft of the generator, the power generation output value can be derived from the engine speed using the generator output characteristics of the generator. Since the motor power supply battery is not provided and the motor is supplied with power only from the generator, the power that can be consumed by the motor can be obtained using this power generation output value. Even in this case, it is advantageous that the power loss and the overall effectiveness of the related power transmission mechanism are taken into account when determining the power that can be consumed by the motor.
  上記EモードとGモードとで求められたモータ消費可能動力は、その手法の違いから基本的には同じにはならない。運転状況や作業状況によってはかなり異なる場合もあり得る。したがって、両者の位置の小さい方のモータ消費可能動力を採用して、トルク牽制値を求めると、発電機停止に対する安全性は高まる。このことから、本発明の好適な実施形態の1つでは、前記モータ消費可能動力を、前記エンジン回転数を入力パラメータとして前記エンジンのエンジン出力特性から導出されたエンジン出力値に依存する第1値と、前記エンジン回転数を入力パラメータとして前記発電機の発電機出力特性から導出された発電出力値に依存する第2値との小さい方とするように構成されている。 モ ー タ The motor power that can be consumed by the E mode and the G mode is not basically the same due to the difference in the methods. It can be quite different depending on the driving and working conditions. Therefore, if the motor-consumable power with the smaller position is employed to obtain the torque check value, the safety against the generator stop increases. Accordingly, in one preferred embodiment of the present invention, the motor-consumable power is a first value that depends on an engine output value derived from an engine output characteristic of the engine with the engine speed as an input parameter. And the second value depending on the power generation output value derived from the generator output characteristics of the power generator using the engine speed as an input parameter.
本発明の基本的な原理を説明する模式図である。It is a schematic diagram explaining the basic principle of this invention. 本発明の具体的な実施形態の1つであるコンバインの全体側面図である。It is a whole side view of a combine which is one of the concrete embodiments of the present invention. コンバインの全体平面図である。It is a whole top view of a combine. 脱穀装置の縦断側面図である。It is a vertical side view of a threshing apparatus. エンジンからの回転動力を扱胴や選別部に供給する動力伝達機構を示す模式図である。It is a schematic diagram which shows the power transmission mechanism which supplies the rotational power from an engine to a handling cylinder and a selection part. モータからの回転動力を、車体横幅方向の左と右に配置されたクローラ走行体と刈取処理部とに供給する動力伝達機構を示す模式図である。It is a schematic diagram which shows the power transmission mechanism which supplies the rotational power from a motor to the crawler traveling body arrange | positioned at the left and right of a vehicle body width direction, and a cutting process part. 動力制御系統を示す機能ブロック図である。It is a functional block diagram which shows a power control system. エンジン負荷に応じたエンジン回転数制御(パワーオンデマンド制御)説明する模式図である。It is a schematic diagram explaining the engine speed control (power on demand control) according to engine load. 最適駆動圧制御の一例を示す油圧回路図である。It is a hydraulic circuit diagram which shows an example of optimal drive pressure control.
  本発明によるシリーズハイブリッドコンバインの具体的な実施形態を説明する前に、図1を用いて本発明の基本原理を説明する。
  なお、このシリーズハイブリッドコンバインは、バッテリレスのシリアルハイブリッド車両であり、バッテリからの電力で車両を走行させることはできないので、定常的に回転しているエンジンによって発電している発電機からの電力で駆動するモータによって走行する。
Before describing a specific embodiment of a series hybrid combine according to the present invention, the basic principle of the present invention will be described with reference to FIG.
Note that this series hybrid combine is a battery-less serial hybrid vehicle, and since the vehicle cannot be driven by the power from the battery, the power from the generator that generates power by the engine that is constantly rotating is used. It travels with a driving motor.
  図1には、本発明のシリーズハイブリッドコンバイン(以下単にコンバインまたは車両と略称される)における動力伝達と動力制御とが模式的に示されている。動力伝達の出発点は、内燃機関、ここではディーゼルエンジン(以下単にエンジンと称する)80である。エンジン80の回転数は、電子ガバナー方式やコモンレール方式などを採用するエンジン制御ユニット86によって制御される。回転動力源としてのエンジン80には、エンジン80から出力される回転動力によって発電する発電機81が連結されている。この発電機81から出力された電力は、電機制御ユニット85によって制御される電力変換部84によって電力変換され、もう1つの回転動力源となるモータ82を駆動する。電力変換部84による電力変換に応じて、モータ82の回転数やトルクが制御される。動力伝達の終点は、農作物を収穫するための機器からなる農作業装置Wとこのコンバインを走行させる走行装置1である。 FIG. 1 schematically shows power transmission and power control in a series hybrid combine (hereinafter simply referred to as a combine or vehicle) of the present invention. The starting point of power transmission is an internal combustion engine, here a diesel engine (hereinafter simply referred to as an engine) 80. The rotational speed of the engine 80 is controlled by an engine control unit 86 that employs an electronic governor system, a common rail system, or the like. A generator 81 that generates electric power using rotational power output from the engine 80 is connected to the engine 80 serving as a rotational power source. The electric power output from the generator 81 is converted into electric power by the electric power converter 84 controlled by the electric machine control unit 85, and drives the motor 82 as another rotational power source. The rotation speed and torque of the motor 82 are controlled according to the power conversion by the power conversion unit 84. The end point of the power transmission is the farm work device W composed of a device for harvesting crops and the traveling device 1 for running the combine.
  農作業装置Wには、エンジン80から直接動力を受けるエンジン駆動作業装置WEと、モータ82から直接動力を受けるモータ駆動作業装置WMが含まれている。走行装置1は、互いに独立して駆動される左右一対のクローラ走行体、つまり左クローラ走行体1aと右クローラ走行体1bとからなる。モータ82と走行装置1との間には、左クローラ走行体1aと右クローラ走行体1bとに異なる回転数の変速動力を伝達することができるトランスミッション47を含む動力伝達機構50Aが備えられている。 The farm work device W includes an engine drive work device WE that receives power directly from the engine 80 and a motor drive work device WM that receives power directly from the motor 82. The traveling device 1 includes a pair of left and right crawler traveling bodies driven independently of each other, that is, a left crawler traveling body 1a and a right crawler traveling body 1b. Between the motor 82 and the traveling device 1, there is provided a power transmission mechanism 50A including a transmission 47 capable of transmitting speed change power with different rotational speeds to the left crawler traveling body 1a and the right crawler traveling body 1b. .
  左クローラ走行体1aと右クローラ走行体1bの速度差による車両の旋回(操向)を含む車速の設定は、運転者によって操作される車速設定操作装置ODによって行われる。ここでは、車速設定操作装置ODは、旋回(操向)を設定する旋回設定用レバーと速度設定用レバーとを含む複数の操作具で構成されているが、共通の単一操作具だけで構成してもよい。車速設定操作装置ODの操作位置、動力伝達機構50Aの変速状態、農作業装置Wの駆動状態などは、各種センサや各種スイッチの位置によって検出される。これにより、直進走行、旋回走行、路上走行などの走行に関する走行駆動状態、刈取り作業中、刈取り作業前後、穀粒排出などの作業駆動状態を示す情報は、随時利用可能である。
  また、図1の例では、エンジン80のエンジン回転数を取得するエンジン回転数取得部としてエンジン出力軸の回転を検出するエンジン回転センサS2が設けられており、このエンジン回転センサS2からの信号が実エンジン回転数として取り扱われる。もちろん、エンジン回転数取得部は、エンジン回転センサS2以外、エンジン80に対するエンジン指令回転数をエンジン回転数として取得するなど他の形態を採用してもよい。
Setting of the vehicle speed including turning (steering) of the vehicle due to a speed difference between the left crawler traveling body 1a and the right crawler traveling body 1b is performed by a vehicle speed setting operation device OD operated by the driver. Here, the vehicle speed setting operation device OD is constituted by a plurality of operation tools including a turning setting lever and a speed setting lever for setting turning (steering), but is constituted only by a common single operating tool. May be. The operation position of the vehicle speed setting operation device OD, the shift state of the power transmission mechanism 50A, the drive state of the farm work device W, and the like are detected by the positions of various sensors and various switches. Thereby, the information indicating the driving state relating to traveling such as straight traveling, turning traveling, and traveling on the road, during the cutting operation, before and after the cutting operation, and the operation driving state such as grain discharge can be used at any time.
In the example of FIG. 1, an engine rotation sensor S2 that detects the rotation of the engine output shaft is provided as an engine rotation speed acquisition unit that acquires the engine rotation speed of the engine 80, and a signal from the engine rotation sensor S2 is Treated as actual engine speed. Of course, the engine speed acquisition unit may adopt other forms such as acquiring the engine command speed for the engine 80 as the engine speed other than the engine speed sensor S2.
  上述したような本発明のシリーズハイブリッドコンバインでは、モータ82に負荷がかかると、それに応じた電力がモータ82に発電機81から供給されることになるが、発電機81がそのような電力をすべて発電しなければならない。種々の事態を考慮してモータ82が必要となるモータトルクを作り出すための電力を発電しようとすると、非常に大きな発電出力を有する発電機81を搭載しなければならない。この発明では、小出力であって小型の発電機81を搭載することで、そしてその結果小出力の小型のエンジン80を搭載することで、省エネを図っている。このため、モータ82が所定以上のモータトルクを要求しないように、トルク牽制制御を行っている。 In the series hybrid combine of the present invention as described above, when a load is applied to the motor 82, electric power corresponding to the load is supplied from the generator 81 to the motor 82. The generator 81 supplies all such electric power. We must generate electricity. In order to generate electric power for generating the motor torque required by the motor 82 in consideration of various situations, a generator 81 having a very large power generation output must be mounted. In the present invention, energy saving is achieved by mounting a small-sized generator 81 with a small output and, as a result, mounting a small-sized engine 80 with a small output. For this reason, torque check control is performed so that the motor 82 does not require a motor torque higher than a predetermined value.
  以下にそのトルク牽制制御の基本原理を、図1を用いながら説明する。
  まず、車速設定操作装置ODを構成する、例えば、ストローク式の車速設定用操作レバ
ーの操作位置が検知される。この操作位置に含まれている車速操作位置情報に基づいて、モータ82の制御目標回転数となるモータ指令回転数が算定されるが、ここでは、操作位置を入力パラメータとしてモータ指令回転数を導出する操作位置-モータ指令回転数マップが用いられている。また、車速設定操作装置ODには旋回設定用の操作具もレバーも含まれていることから、車速設定操作装置ODの操作位置に含まれている旋回設定用の旋回操作位置情報に基づいて、左クローラ走行体1a及び右クローラ走行体1bの駆動速度が、操作位置-左右クローラ駆動速度マップを用いて算定されるが、ここでは、その詳しい説明は省略する。
The basic principle of the torque check control will be described below with reference to FIG.
First, for example, an operation position of a stroke-type vehicle speed setting operation lever constituting the vehicle speed setting operation device OD is detected. Based on the vehicle speed operation position information included in this operation position, the motor command rotation speed that is the control target rotation speed of the motor 82 is calculated. Here, the motor command rotation speed is derived using the operation position as an input parameter. The operation position-motor command rotational speed map is used. Further, since the vehicle speed setting operation device OD includes a turning setting operation tool and a lever, based on the turning operation position information for turning setting included in the operation position of the vehicle speed setting operation device OD, The driving speeds of the left crawler traveling body 1a and the right crawler traveling body 1b are calculated using the operation position-left / right crawler driving speed map, but detailed description thereof is omitted here.
  算定されたモータ指令回転数は、一方では、電機制御ユニット85に送られ、他方では、トルク牽制値算定部12fに送られる。電機制御ユニット85は、モータ指令回転数に基づいて電力変換部84に対する制御信号を生成し、電力変換部84を介してモータ82を駆動制御する。トルク牽制値算定部12fは、モータ82の負荷増大に伴うモータトルクの増加要求が発電機81の出力を超えることで発電機81が停止してしまうことを避けるためのトルク牽制制御のトルク牽制値を算定する。 モ ー タ The calculated motor command rotational speed is sent to the electric machine control unit 85 on the one hand, and is sent to the torque check value calculating section 12f on the other hand. The electric machine control unit 85 generates a control signal for the power conversion unit 84 based on the motor command rotational speed, and drives and controls the motor 82 via the power conversion unit 84. The torque check value calculation unit 12f is a torque check value for torque check control for preventing the generator 81 from being stopped when the motor torque increase request accompanying the load increase of the motor 82 exceeds the output of the generator 81. Is calculated.
  トルク牽制値算定部12fで算定されたトルク牽制値は、限界モータトルク値として電機制御ユニット85に送られる。電機制御ユニット85は、モータ82が限界モータトルク値以上のモータトルクを出力しないように、モータ82への電力を制限する。その結果、発電機81の発電負荷が許容負荷を超えることが禁止され、発電機81の突然停止が回避される。したがって、モータ82に突発的に大きな負荷がかかった場合には、モータ回転数の自然低下、つまり車速の低下によって、その負荷に対処する。 The torque check value calculated by the saddle torque check value calculation unit 12f is sent to the electric machine control unit 85 as a limit motor torque value. The electric machine control unit 85 limits the electric power to the motor 82 so that the motor 82 does not output a motor torque equal to or greater than the limit motor torque value. As a result, the power generation load of the generator 81 is prohibited from exceeding the allowable load, and a sudden stop of the generator 81 is avoided. Therefore, when a large load is suddenly applied to the motor 82, the load is dealt with by a natural decrease in the motor rotation speed, that is, a decrease in the vehicle speed.
  トルク牽制値算定部12fにおけるトルク牽制値の算定には、モータ指令回転数と、エンジン回転数に基づいて算定されるモータ消費可能動力、つまりモータ82が利用することができる動力とが入力パラメータとして用いられ、モータ消費可能動力とモータ指令回転数とからトルク牽制値が算定される。 In calculating the torque check value in the torque check value calculation unit 12f, the motor command rotation speed and the motor-consumable power calculated based on the engine rotation speed, that is, the power that can be used by the motor 82 are input parameters. The torque check value is calculated from the motor-consumable power and the motor command rotational speed.
  モータ消費可能動力の算定には、ここでは、図1でも示しているように2つの方法、つまりEモードとGモードとが提案されている。いずれのモードにおいても、ここではエンジン回転センサS2であるエンジン回転数取得部から取得された実エンジン回転数が利用される。 Here, as shown in FIG. 1, two methods, that is, an E mode and a G mode, have been proposed for calculating the power that can be consumed by the motor. In any mode, the actual engine speed acquired from the engine speed acquisition unit, which is the engine speed sensor S2, is used here.
  Eモードによるトルク牽制値の算定では、マップ化または数式化されたエンジン出力特性に実エンジン回転数を適用して得られたエンジン出力値を演算して、モータ消費可能動力が算定される。エンジン出力特性を示すエンジン出力特性曲線は、エンジン最大出力曲線を燃費効率の良い領域まで引き下げた曲線が用いられている。したがって、このモータ消費可能動力を限度としてモータ82を駆動制御している限り、エンジン80、結果的には発電機81は、負担なくかつ無駄なく駆動する。つまり、Eモードは、前記モータ消費可能動力が、前記エンジン回転数を入力パラメータとして前記エンジンのエンジン出力特性から導出されたエンジン出力値に依存するように構成されている。したがって、エンジンの回転数が取得できれば、搭載されているエンジンのエンジン出力特性からエンジン出力値が導出できる。もちろん、エンジン80とモータ82との間には、機械的動力伝達機構や発電機81が介在しているので、それらの損失動力や総合効力が、上記モータ消費可能動力を求める際に考慮される。このことを、以下に、数式化して説明する。
  実エンジン回転数をRE-RPMとし、マップ化されたエンジン出力特性を関数Eで表現すると、エンジン出力値:E0-outは、
E0-out=E(RE-RPM)
となる。さらに、損失動力や効率を考慮する修正関数:Kを適用すると、修正後のエンジン出力値であるモータ82が消費可能な動力、つまりモータ消費可能動力:M-outは、
M-out=K(E0-out)
で表される。
先に算定されているモータ指令回転数をMC-RPMとすると、トルク牽制値:T-limitは、T-limit=F(MC-RPM,M-out)
となる。ここで用いた関数(演算式)Fは、モータ回転数とトルクとの関係から導くことができる。
In the calculation of the torque check value by the E mode, the power that can be consumed by the motor is calculated by calculating the engine output value obtained by applying the actual engine speed to the engine output characteristics that are mapped or formulated. As the engine output characteristic curve indicating the engine output characteristic, a curve obtained by lowering the engine maximum output curve to an area where fuel efficiency is good is used. Therefore, as long as the motor 82 is driven and controlled with this motor-consumable power as a limit, the engine 80, and consequently the generator 81, is driven without burden and without waste. That is, the E mode is configured such that the motor-consumable power depends on the engine output value derived from the engine output characteristics of the engine with the engine speed as an input parameter. Therefore, if the engine speed can be acquired, the engine output value can be derived from the engine output characteristics of the mounted engine. Of course, since a mechanical power transmission mechanism and a generator 81 are interposed between the engine 80 and the motor 82, their loss power and overall effectiveness are taken into consideration when obtaining the motor consumable power. . This will be described below by formulating it.
When the actual engine speed is RE-RPM and the mapped engine output characteristic is expressed by function E, the engine output value: E0-out is
E0-out = E (RE-RPM)
It becomes. Furthermore, when the correction function: K that takes into account the loss power and efficiency is applied, the power that can be consumed by the motor 82, that is, the engine output value after correction, that is, the power that can be consumed by the motor: M-out is
M-out = K (E0-out)
It is represented by
If the previously calculated motor command speed is MC-RPM, the torque check value: T-limit is T-limit = F (MC-RPM, M-out)
It becomes. The function (calculation formula) F used here can be derived from the relationship between the motor rotation speed and the torque.
  Gモードによるトルク牽制値の算定でも、基本的にはEモードと同様であり、発電機81の型式によって規定される演算式化(マップ化)された発電機出力特性に実エンジン回転数を適用して得られた発電出力値を演算して、モータ消費可能動力が算定される。ここでも、発電機81とモータ82との間には、機械的動力伝達機構などが介在しているので、それらの損失動力や総合効力が、上記モータ消費可能動力を求める際に考慮される。ここでも、このことを、以下に、数式化して説明する。
  実エンジン回転数をRE-RPMとし、マップ化された発電機出力特性を関数Gで表現すると、発電出力値:G0-outは、
G0-out=G(RE-RPM)
となる。さらに、損失動力や効率を考慮する修正関数:Jを適用すると、修正後の発電出力値であるモータ82が消費可能な動力、つまりモータ消費可能動力:M-outは、
M-out=J(G0-out)
で表される。
従って、トルク牽制値:T-limitは、
T-limit=F(MC-RPM,M-out)
となる。
The calculation of the torque check value in the G mode is basically the same as that in the E mode, and the actual engine speed is applied to the generator output characteristics defined by the formula of the generator 81 (mapped). Then, the power that can be consumed by the motor is calculated by calculating the generated power output value. Again, since a mechanical power transmission mechanism or the like is interposed between the generator 81 and the motor 82, their loss power and overall effectiveness are taken into account when determining the motor consumable power. Again, this will be described in the following mathematical formula.
When the actual engine speed is RE-RPM and the mapped generator output characteristics are expressed by the function G, the power generation output value: G0-out is
G0-out = G (RE-RPM)
It becomes. Furthermore, when the correction function J that takes into account the loss power and efficiency is applied, the power that can be consumed by the motor 82 that is the corrected power generation output value, that is, the power that can be consumed by the motor:
M-out = J (G0-out)
It is represented by
Therefore, the torque check value: T-limit is
T-limit = F (MC-RPM, M-out)
It becomes.
  なお、EモードとGモードのいずれか一方を実装してもよいが、両方実装して、それぞれで得られたトルク牽制値の小さい方を採用するようにしてもよい。あるいは、両者の平均など両者を演算して最終的なトルク牽制値を決定してもよい。 Note that either the E mode or the G mode may be mounted, but both may be mounted and the one with the smaller torque check value obtained by each may be employed. Or you may calculate both, such as the average of both, and may determine a final torque check value.
  次に、図面を用いて、本発明による収穫機の具体的な実施形態の1つを説明する。図2は、収穫機の一例であるコンバインの側面図であり、図3は側面図である。 Next, one specific embodiment of the harvester according to the present invention will be described with reference to the drawings. FIG. 2 is a side view of a combine which is an example of a harvesting machine, and FIG. 3 is a side view.
  次に、図面を用いて、本発明によるシリーズハイブリッドコンバイン(以下コンバインと略称する)の具体的な実施形態の1つを説明する。図2は、コンバインの側面図であり、図3は側面図である。 Next, one specific embodiment of a series hybrid combine (hereinafter abbreviated as a combine) according to the present invention will be described with reference to the drawings. FIG. 2 is a side view of the combine, and FIG. 3 is a side view.
  このコンバインは、左クローラ走行体1aと右クローラ走行体1bとを含むクローラ式走行装置1と、この走行装置1によって対地支持されている機体2とを備えている。機体2の前部には、刈取処理部3が配置されている。機体2の後部には、脱穀装置4と、穀粒タンク5とが、それぞれ機体前進方向で左側と右側に、機体横断方向に並んで、配置されている。さらに、穀粒タンク5の前方に搭乗運転部7が配置されている。 This combine includes a crawler type traveling device 1 including a left crawler traveling body 1a and a right crawler traveling body 1b, and an airframe 2 supported by the traveling device 1 on the ground. A cutting processing unit 3 is disposed in the front of the machine body 2. At the rear of the machine body 2, a threshing device 4 and a grain tank 5 are arranged side by side in the machine body crossing direction on the left and right sides in the machine body advance direction. Further, a boarding operation unit 7 is disposed in front of the grain tank 5.
  刈取処理部3は、油圧シリンダCYの操作により横軸芯P1周りに昇降揺動自在である。刈取処理部3にて刈り取られた農作物は脱穀装置4によって脱穀処理され、脱穀装置4にて得られた穀粒は穀粒タンク5に貯留される。刈取処理部3、脱穀装置4、搭乗運転部7は、機体2を構成する機体フレーム6に取り付けられている。 The cocoon cutting processing unit 3 is swingable up and down around the horizontal axis P1 by operation of the hydraulic cylinder CY. The crops harvested by the mowing processing unit 3 are threshed by the threshing device 4, and the grains obtained by the threshing device 4 are stored in the grain tank 5. The harvesting processing unit 3, the threshing device 4, and the boarding operation unit 7 are attached to a body frame 6 constituting the body 2.
  刈取処理部3は、車体前部に位置する刈取部8と、その刈取部8にて刈り取った農作物を車体後方上方側に向けて搬送する農作物搬送部としての縦搬送装置9とを含む。縦搬送装置9は、刈取穀稈を後方へ搬送し、フィードチェーン18に受け渡す。刈取部8は、刈取対象穀稈を分草する分草具10、倒伏姿勢の植立穀稈を立姿勢に引起す引起し装置11、引起された植立穀稈の株元を切断するバリカン型の刈取装置12を有する。 The cocoon cutting processing unit 3 includes a cutting unit 8 located at the front of the vehicle body, and a vertical transfer device 9 as a crop transfer unit that transfers the crops harvested by the cutting unit 8 toward the rear upper side of the vehicle body. The vertical conveying device 9 conveys the harvested cereal meal backward and delivers it to the feed chain 18. The cutting unit 8 includes a weeding tool 10 for weeding the harvested culm, a pulling device 11 for causing the planted culm to fall in a standing position, and a clipper for cutting the planted culm planted It has a type mowing device 12.
  又、刈取処理部3は、横軸芯P1周りに昇降揺動自在に機体フレーム6に支持され、機体2の前部に位置する通常作業姿勢と機体2の車体前方側を開放するように車体横外方に退避するメンテナンス用姿勢とに亘って縦向き軸芯Y1(図3参照)周りで姿勢変更可能である。 Further, the cutting processing unit 3 is supported by the body frame 6 so as to be swingable up and down around the horizontal axis P1, and the vehicle body so as to open the normal working posture located at the front of the body 2 and the vehicle body front side of the body 2. The posture can be changed around the vertical axis Y1 (see FIG. 3) over the maintenance posture retracted laterally outward.
  さらに、刈取処理部3に備えられる刈取部フレーム13が、機体フレーム6から立設された左右両側の支持体14R,14Lにより受止め支持されている中継用支持部材15にて横軸芯P1周りに昇降揺動自在に支持されている。刈取部フレーム13を支持する中継用支持部材15は、左側に位置する支持体14Lに縦向き軸芯Y1周りで回動自在に機体2に支持されている。つまり結果的には、刈取処理部3全体が縦向き軸芯Y1周りで揺動自在に機体2に支持されている。図3に示すように、刈取処理部3が姿勢変更のために回動操作される縦向き軸芯Y1は、縦搬送装置9における搭乗運転部7とは反対側の車体横幅方向外端側箇所に位置する。 Further, the cutting unit frame 13 provided in the cutting processing unit 3 is supported around the horizontal axis P1 by the relay support member 15 supported by the left and right support members 14R and 14L provided upright from the body frame 6. Is supported so as to be swingable up and down. The relay support member 15 that supports the reaper part frame 13 is supported by the machine body 2 so as to be rotatable about a longitudinal axis Y1 on a support body 14L located on the left side. That is, as a result, the entire cutting processing unit 3 is supported by the body 2 so as to be swingable around the longitudinal axis Y1. As shown in FIG. 3, the longitudinal axis Y <b> 1 on which the harvesting processing unit 3 is rotated to change the posture is located on the outer side in the vehicle body width direction on the opposite side of the boarding operation unit 7 in the vertical transfer device 9. Located in.
  図4に示すように、脱穀装置4は、刈り取った穀稈を脱穀処理する脱穀部16と、脱穀部16で脱穀処理された処理物を穀粒と塵埃とに選別する選別部17とを含む。 As shown in FIG. 4, the threshing device 4 includes a threshing unit 16 that threshs the harvested cereal and a sorting unit 17 that sorts a processed product threshed by the threshing unit 16 into grains and dust. .
  脱穀部16では、刈取穀稈がその株元側をフィードチェーン18により挟持された横向きの姿勢で搬送される。さらに、刈取穀稈の穂先側が通過する扱室19には、機体前後向き軸芯周りで回転駆動されることで刈取穀稈の穂先側に扱き処理を施す扱胴20、及び、この扱き処理で得られた処理物を下方に向けて漏下させる受網21が配置されている。又、受網21の処理物移送方向下手側には、受網21を通じて漏下しなかった処理物を選別部17の選別方向下手側(後部側)に向けて流下させる送塵口22が形成されている。 In the threshing unit 16, the harvested cereal is transported in a sideways posture in which the stock side is sandwiched by the feed chain 18. Further, in the handling chamber 19 through which the head side of the harvested cereal rice cake passes, a handling cylinder 20 that performs a handling process on the tip side of the harvested grain rice cake by being rotationally driven around the longitudinal axis of the machine body, and this handling processing. A receiving network 21 is disposed for allowing the obtained processed material to leak downward. In addition, a dust feed port 22 is formed on the lower side of the receiving net 21 in the processed material transfer direction to allow the processed material that has not leaked through the receiving net 21 to flow downward toward the lower side (rear side) of the sorting unit 17. Has been.
  選別部17は、脱穀部16の下方に位置して受網21から漏下した処理物を揺動選別する揺動選別機構23、駆動軸24aを有するとともに選別風を生起する唐箕24、1番回収部27、2番回収部30等を備えている。1番回収部27は、選別された穀粒(1番物)を回収するとともに、回収した1番物をその底部に車体横幅方向(左右方向)に沿って配備した1番スクリュー25によってその右端に連通接続した揚送スクリューコンベア26に向けて搬送する。2番回収部30は、枝梗付き穀粒やワラ屑などの混在物(2番物)を回収するとともに、回収した2番物をその底部に車体横幅方向に沿って配備した2番スクリュー28によって、その右端に連通接続した2番還元装置29に向けて搬送する。 The sorting unit 17 is located below the threshing unit 16 and has a swing sorting mechanism 23 that swings and sorts the processed material leaked from the receiving net 21, a drive shaft 24a, and a tang ridge 24 that generates a sorting wind. A collection unit 27, a second collection unit 30 and the like are provided. The No. 1 recovery unit 27 recovers the selected grain (No. 1) and the right end of the recovered No. 1 by the No. 1 screw 25 arranged at the bottom along the vehicle body width direction (left and right direction). It is conveyed toward the lifting screw conveyor 26 that is connected in communication. The No. 2 recovery unit 30 recovers a mixture (No. 2) such as cereal grains and straw scraps, and the No. 2 screw 28 provided at the bottom of the recovered No. 2 along the lateral direction of the vehicle body. Is conveyed toward the second reduction device 29 connected to the right end thereof.
  揺動選別機構23には、揺動選別ケース33と、この揺動選別ケース33の内部に配置された精選別用のチャフシーブ34と、グレンシーブ35と、ストローラック36等が配置されている。揺動選別ケース33は、その機体前部側が揺動アーム31にて吊り下げ支持され、かつその機体後部側が回転駆動される偏芯クランク機構32によって駆動される。これにより、揺動選別ケース33は前後揺動する。グレンシーブ35は、漏下した処理物から穀粒を選別する。ストローラック36はワラ屑を後方に向けて揺動移送する。 The swing sorting mechanism 23 is provided with a swing sorting case 33, a precision sorting chaff sheave 34 disposed inside the swing sorting case 33, a Glen sheave 35, a Strollac 36, and the like. The swing sorting case 33 is driven by an eccentric crank mechanism 32 whose front side is supported by a swing arm 31 and whose rear side is rotationally driven. Thereby, the swing sorting case 33 swings back and forth. Glen sieve 35 sorts grain from the leaked processed material. The Strollac 36 swings and transfers the straw scraps backward.
  1番スクリュー25によって搬送された1番物は、揚送スクリューコンベア26により揚送されて穀粒タンク5に供給されて貯留される。又、2番スクリュー28によって搬送された2番物は、2番還元装置29により再脱穀処理を施した後に揚送して揺動選別機構23に還元される。 The first thing conveyed by the No. 1 screw 25 is lifted by the lifting screw conveyor 26, supplied to the grain tank 5, and stored. The second product conveyed by the second screw 28 is rethreshed by the second reduction device 29 and then lifted and reduced to the swing sorting mechanism 23.
  図2と図3とに示すように、穀粒タンク5に貯留される穀粒を外部に排出させる穀粒排出装置37が備えられている。この穀粒排出装置37は、底部スクリュー38と、縦スクリューコンベア39と、横スクリューコンベア41とを備えている。底部スクリュー38は、穀粒タンク5下部における凹溝状の底部5aに沿って設けられている。縦スクリューコンベア39は、底部スクリュー38の搬送終端部から上方に向けて穀粒を搬送する。横スクリューコンベア41は、縦スクリューコンベア39の上部から穀粒を横方向に搬送して先端の排出口40からトラックの荷台等(図示せず)に排出する。 穀 As shown in FIGS. 2 and 3, a grain discharging device 37 that discharges the grains stored in the grain tank 5 to the outside is provided. The grain discharging device 37 includes a bottom screw 38, a vertical screw conveyor 39, and a horizontal screw conveyor 41. The bottom screw 38 is provided along the groove-shaped bottom 5 a at the lower part of the grain tank 5. The vertical screw conveyor 39 conveys the grain upward from the conveyance terminal end of the bottom screw 38. The horizontal screw conveyor 41 conveys the grains in the horizontal direction from the upper part of the vertical screw conveyor 39 and discharges the grains from the discharge port 40 at the tip to a truck bed (not shown).
  縦スクリューコンベア39と横スクリューコンベア41とに亘って設けた油圧シリンダ42の伸縮により、横スクリューコンベア41の昇降位置が変更される。さらに、縦スクリューコンベア39は、その下部に設けられた旋回モータ43によって縦軸芯Y2周りで旋回可能である。 The lifting position of the horizontal screw conveyor 41 is changed by expansion and contraction of the hydraulic cylinder 42 provided between the vertical screw conveyor 39 and the horizontal screw conveyor 41. Furthermore, the vertical screw conveyor 39 can be swung around the vertical axis Y2 by a swivel motor 43 provided in the lower part thereof.
  底部スクリュー38と縦スクリューコンベア39との間、及び、縦スクリューコンベア39と横スクリューコンベア41との間が、夫々、ベベルギア機構44,45により連動連結されている。従って、これらのコンベアは、底部スクリュー38の前部側端部に設けられた入力プーリ46に動力が供給されると、一体的に回転駆動される。その結果、穀粒タンク5内の穀粒が外部に搬出される。 The bottom screw 38 and the vertical screw conveyor 39 and the vertical screw conveyor 39 and the horizontal screw conveyor 41 are connected to each other by bevel gear mechanisms 44 and 45, respectively. Accordingly, these conveyors are integrally rotated when power is supplied to the input pulley 46 provided at the front end of the bottom screw 38. As a result, the grain in the grain tank 5 is carried out to the outside.
  次に、このシリーズハイブリッドコンバインに搭載されている2つの動力伝達機構について説明する。
  図5には、エンジン80からの回転動力を、扱胴20や選別部17等に供給する第1動力伝達機構が示されている。図6には、電動モータ(以下単にモータと略称する)82からの回転動力を、車体横幅方向の左と右に配置された左クローラ走行体1aと右クローラ走行体1bとからなる走行装置1と刈取処理部3とに供給する第2動力伝達機構が示されている。
Next, two power transmission mechanisms mounted on this series hybrid combine will be described.
FIG. 5 shows a first power transmission mechanism that supplies rotational power from the engine 80 to the handling cylinder 20, the sorting unit 17, and the like. In FIG. 6, a traveling device 1 is composed of a left crawler traveling body 1 a and a right crawler traveling body 1 b that are arranged to rotate the rotational power from an electric motor (hereinafter simply abbreviated as “motor”) 82 on the left and right in the lateral direction of the vehicle body. The 2nd power transmission mechanism supplied to the cutting processing part 3 is shown.
  なお、図では明らかにされていないが、第2動力伝達機構によって動力をうける走行用トランスミッション47は、車体横幅方向中央部であって且つ搭乗運転部7の横幅方向で偏在配置され、左右一対の走行装置1に動力を伝達する。図2及び図3から明らかなように、走行用トランスミッション47に動力を供給する走行刈取用のモータ82が搭乗運転部7における運転部ステップ48の下方側箇所に配置されている。モータ82の出力軸49aと走行用トランスミッション47の入力軸49bとは継手を介して連動連結されている。 Although not shown in the figure, the traveling transmission 47 that is powered by the second power transmission mechanism is unevenly arranged in the lateral direction of the boarding operation unit 7 at the center in the lateral direction of the vehicle body. Power is transmitted to the traveling device 1. As is clear from FIG. 2 and FIG. 3, a travel cutting motor 82 that supplies power to the travel transmission 47 is disposed at a lower position of the driving unit step 48 in the boarding driving unit 7. The output shaft 49a of the motor 82 and the input shaft 49b of the traveling transmission 47 are interlocked and connected via a joint.
  図6に示すように、走行用トランスミッション47のミッションケース52内に、ギア式の減速機構53や油圧操作式かつギア咬み合い式の副変速装置54、及び、左クローラ走行体1aと右クローラ走行体1bとの速度差による旋回走行のための旋回用伝動機構55等が備えられている。さらに、この走行用トランスミッション47から刈取処理部3に動力が伝達される。この動力伝達経路に、前進走行のための動力のみを伝達するワンウェイクラッチ63及び動力伝達を断続するベルトテンション式の刈取クラッチ64が介装されている。 As shown in FIG. 6, in the transmission case 47 of the traveling transmission 47, a gear-type reduction mechanism 53, a hydraulically operated and gear-meshing auxiliary transmission 54, and the left crawler traveling body 1a and the right crawler traveling. A turning transmission mechanism 55 for turning traveling due to a speed difference from the body 1b is provided. Further, power is transmitted from the traveling transmission 47 to the cutting processing unit 3. A one-way clutch 63 that transmits only power for forward travel and a belt tension type cutting clutch 64 that intermittently transmits power are interposed in the power transmission path.
  つまり、モータ82が、左右一対の走行装置1,1と刈取処理部3との動力源である。モータ82の出力制御については後述するが、基本的には、車速設定操作装置ODの操作位置に基づいてモータ82に対する指令回転数が算定される。この実施形態では、車速設定操作装置ODには、搭乗運転部7に備えられた、車速設定用レバーとして機能するストローク操作式の主変速レバー(第1操作具)66及び、旋回設定用レバーとして機能する操作レバー61が含まれている。ストローク操作式の主変速レバー66が中立位置にあれば停止状態となり、主変速レバー66の前側への操作変位が大きいほど前進走行速度が大きくなり、主変速レバー66の後側への操作変位が大きいほど後進走行速度が大きくなるように構成されている。主変速レバー66の操作位置は、ストロークセンサS4によって検出される。 That is, the motor 82 is a power source for the pair of left and right traveling devices 1, 1 and the cutting processing unit 3. Although the output control of the motor 82 will be described later, basically, the command rotational speed for the motor 82 is calculated based on the operation position of the vehicle speed setting operation device OD. In this embodiment, the vehicle speed setting operation device OD includes a stroke operation type main transmission lever (first operation tool) 66 that functions as a vehicle speed setting lever, and a turning setting lever provided in the boarding operation unit 7. A functioning operation lever 61 is included. If the stroke operation type main transmission lever 66 is in the neutral position, the main transmission lever 66 is stopped, and the forward movement speed increases as the operation displacement of the main transmission lever 66 toward the front increases, and the operation displacement toward the rear of the main transmission lever 66 increases. The reverse travel speed increases as the value increases. The operation position of the main transmission lever 66 is detected by the stroke sensor S4.
  モータ82の駆動停止状態で制動作用するネガティブブレーキ67が、走行用トランスミッション47の入力軸49bにおけるモータ82の接続箇所とは反対側の端部に配置されている。ネガティブブレーキ67は、図示しないバネにより制動状態に付勢され、且つ、電気式あるいは油圧式アクチュエータにてバネの付勢力に抗して制動状態を解除する。ネガティブブレーキ67は、メイン電子ユニット100によって、モータ82が作動停止状態(走行用トルクが発生していない状態)であるときは制動状態に、モータ82が作動状態になると制動解除状態に制御される。ネガティブブレーキ67を制動解除状態から制動状態に切り換える際は、制動力が漸増され、制動時の衝撃が抑制される。 A negative brake 67 that brakes when the driving of the eaves motor 82 is stopped is disposed at the end of the input shaft 49b of the traveling transmission 47 that is opposite to the connection portion of the motor 82. The negative brake 67 is urged into a braking state by a spring (not shown), and releases the braking state against an urging force of the spring by an electric or hydraulic actuator. The negative brake 67 is controlled by the main electronic unit 100 to be in a braking state when the motor 82 is in an operation stop state (a state where no running torque is generated), and to a brake release state when the motor 82 is in an operation state. . When the negative brake 67 is switched from the braking release state to the braking state, the braking force is gradually increased and the impact during braking is suppressed.
  図7に示されている副変速装置54は、後述するモータ82の速度切替との組み合わせで、高速、中速、低速の3段の速度状態を作り出すために、2つの変速段(高速段、低速段)を有する。モータ82の速度切替と副変速装置54の2つの変速段により、標準的な圃場で刈取作業する場合には中速状態が採用可能で、作物が倒伏しているときや深い湿田で走行負荷が大きいときは低速状態が採用可能で、路上走行する場合には高速状態が採用可能である。 The sub-transmission device 54 shown in FIG. 7 is combined with the speed switching of the motor 82, which will be described later, in order to create three speed states of high speed, medium speed, and low speed. Low speed stage). Due to the speed change of the motor 82 and the two speed stages of the auxiliary transmission 54, a medium speed state can be adopted when cutting in a standard farm field, and when the crop is lying down or when the crop is in a deep wet field, When it is large, the low speed state can be adopted, and when traveling on the road, the high speed state can be adopted.
  副変速装置54の変速段は、搭乗運転部7に備えられた、車速設定操作具の1つである第2操作具57と第3操作具56とにより選択できる(図3参照)。つまり、上記3つの速度状態は、第2操作具57及び第3操作具56の操作状態によって選択される。この実施形態では、第2操作具57と第3操作具56とはともに操作スイッチとして形成されている。コンバインにおいては、第2操作具57は刈取変速スイッチ、第3操作具56は副変速スイッチとも呼ばれる。 The gear position of the auxiliary transmission 54 can be selected by a second operating tool 57 and a third operating tool 56 which are one of the vehicle speed setting operating tools provided in the boarding operation unit 7 (see FIG. 3). That is, the three speed states are selected according to the operation states of the second operation tool 57 and the third operation tool 56. In this embodiment, both the second operation tool 57 and the third operation tool 56 are formed as operation switches. In the combine, the second operation tool 57 is also called a cutting shift switch, and the third operation tool 56 is also called an auxiliary transmission switch.
  旋回用伝動機構55は、左クローラ走行体1aと右クローラ走行体1bとのどちらか一方に減速動力を伝えるための緩旋回用クラッチ58、どちらか一方に制動力を付与する減速用ブレーキ59、どちらか一方に対する動力伝達状態を直進状態と旋回状態(減速状態や制動状態)に切り換える操向クラッチ60等を含む。 The turning transmission mechanism 55 includes a slow turning clutch 58 for transmitting deceleration power to one of the left crawler traveling body 1a and the right crawler traveling body 1b, a deceleration brake 59 for applying a braking force to either one, The steering clutch 60 etc. which switch the power transmission state with respect to either to a straight-ahead state and a turning state (a deceleration state or a braking state) are included.
  旋回用伝動機構55は、搭乗運転部7に備えられた操作レバー61と連動連係されている。操作レバー61(図2、図3図参照)の中立位置から左右方向への傾斜角に応じて、走行機体2の直進状態から右方向又は左方向への旋回が作り出される。操作レバー61の中立位置から左右への傾斜角の大きさを検出するために旋回レバーセンサS3が設けられている。つまり、この操作レバー61の操作変位によりこのコンバインの旋回度が算定されるが、この旋回度の算定のために旋回レバーセンサS3の検出信号が利用される。従って、この旋回レバーセンサS3の操作位置信号は、メイン電子ユニット100に入力され、操向制御などに用いられる。尚、詳述はしないが、操作レバー61は、前後方向へも揺動操作自在であり、この前後方向の搖動操作により刈取処理部3の上昇操作及び下降操作が実現する。 The saddle turning transmission mechanism 55 is linked to an operation lever 61 provided in the boarding operation unit 7. Depending on the inclination angle from the neutral position to the left and right direction from the neutral position of the operation lever 61 (see FIGS. 2 and 3), the traveling body 2 is turned rightward or leftward from the straight traveling state. A turning lever sensor S3 is provided to detect the inclination angle from the neutral position of the operation lever 61 to the left and right. That is, the turning degree of the combine is calculated based on the operation displacement of the operating lever 61, and the detection signal of the turning lever sensor S3 is used for calculating the turning degree. Therefore, the operation position signal of the turning lever sensor S3 is input to the main electronic unit 100 and used for steering control and the like. Although not described in detail, the operation lever 61 is swingable in the front-rear direction, and the lifting operation and the lowering operation of the cutting processing unit 3 are realized by the swinging operation in the front-rear direction.
  この走行用トランスミッション47では、副変速装置54の変速段の切り替えと、モータ82の変速とを通じて、標準的な圃場で刈取作業する場合利用される中速状態とし、農作物が倒伏しているときや深い湿田で走行負荷が大きいときに利用される低速状態、路上走行する場合に利用される高速状態とを作り出すことができる。副変速装置54の切り替えは、第3操作具56によって行われる。また、刈取作業時において、一時的に車速を変更するために、第2操作具57も備えられている。特定条件においては、この第2操作具57の操作に伴って副変速装置54の切り替えも行われる。 In this traveling transmission 47, the intermediate speed state used when cutting in a standard field is achieved through switching of the gear position of the sub-transmission device 54 and shifting of the motor 82, and when the crop is lying down, It is possible to create a low-speed state that is used when the traveling load is large in a deep marsh and a high-speed state that is used when traveling on the road. Switching of the auxiliary transmission 54 is performed by the third operation tool 56. A second operating tool 57 is also provided for temporarily changing the vehicle speed during the cutting operation. Under specific conditions, the auxiliary transmission 54 is also switched in accordance with the operation of the second operation tool 57.
  図3及び図7に示すように、第3操作具56及び第2操作具57は、この実施形態ではスイッチであり、好ましくは運転者の指によって操作されるモメンタリスイッチとして形成され、押し込み操作でスイッチONとなり、再度の押し込み操作でスイッチOFFとなる。この実施形態では、第3操作具56は、モータ82の速度設定操作具の1つである主変速レバー66のグリップ部に設けられており、第2操作具57は、操作レバー61のグリップ部に設けられている。もちろん、第3操作具56や第2操作具57は、その他の位置、例えば、操縦パネルなどに設けることも可能である。第3操作具56と第2操作具57との操作状態信号(スイッチ信号)、及びストロークセンサS4による主変速レバー66の操作位置信号は、メイン電子ユニット100に入力され、後述するように、モータ82や副変速装置54の制御に利用される。   As shown in FIGS. 3 and 7, the third operating tool 56 and the second operating tool 57 are switches in this embodiment, and preferably are formed as momentary switches operated by a driver's finger. The switch is turned on, and the switch is turned off by pressing again. In this embodiment, the third operating tool 56 is provided in the grip portion of the main transmission lever 66 that is one of the speed setting operating tools of the motor 82, and the second operating tool 57 is the grip portion of the operating lever 61. Is provided. Of course, the 3rd operation tool 56 and the 2nd operation tool 57 can also be provided in other positions, for example, a control panel etc. Operation state signals (switch signals) of the third operation tool 56 and the second operation tool 57 and an operation position signal of the main transmission lever 66 by the stroke sensor S4 are input to the main electronic unit 100, and will be described later. 82 and the auxiliary transmission 54 are used for control.
  次に、エンジン80からの回転動力を直接、扱胴20や選別部17等に供給する第1動力伝達機構について説明する。図4と図5とから理解できるように、選別部17のための動力系は、エンジン80から直接回転動力を受ける。その際、一方では、エンジン80からの動力は、ベルトテンション式の選別入切用クラッチ71を介して選別部17、具体的には、唐箕24の駆動軸24aに伝達される。さらに、唐箕24の駆動軸24aから、伝動ベルト72を介して、1番スクリュー25、2番スクリュー28、揺動選別機構23、フィードチェーン18等に動力が伝達される。 Next, the first power transmission mechanism that directly supplies the rotational power from the engine 80 to the handling cylinder 20 and the sorting unit 17 will be described. As can be understood from FIGS. 4 and 5, the power system for the sorting unit 17 receives rotational power directly from the engine 80. At that time, on the other hand, the power from the engine 80 is transmitted to the sorting section 17, specifically, the drive shaft 24 a of the carp 24 through the belt tension type sorting on / off clutch 71. Further, power is transmitted from the drive shaft 24 a of the carp 24 to the first screw 25, the second screw 28, the swing sorting mechanism 23, the feed chain 18, and the like via the transmission belt 72.
  他方では、エンジン80からの動力は、ベルトテンション式の排出入切用クラッチ73、ベベルギア機構74、及び、ベルト伝動機構75を介して、穀粒排出装置37、具体的には、底部スクリュー38の前部側端部に設けられた入力プーリ46に伝達される。入力プーリ46に供給された動力により、底部スクリュー38、縦スクリューコンベア39、及び、横スクリューコンベア41(第1横スクリューコンベア41aと第2横スクリューコンベア41bに分割されている)が回転駆動され、その結果、穀粒タンク5内の穀粒が外部に搬出される。選別入切用クラッチ71は、図示されていない選別用クラッチモータにより入り状態と切り状態とに切り換えられる。排出入切用クラッチ73は、図示されていない排出用クラッチモータにより入り状態と切り状態とに切り換えられる。 On the other hand, the power from the engine 80 is supplied to the grain discharging device 37, specifically the bottom screw 38, via the belt tension type discharging on / off clutch 73, the bevel gear mechanism 74, and the belt transmission mechanism 75. It is transmitted to an input pulley 46 provided at the front side end. By the power supplied to the input pulley 46, the bottom screw 38, the vertical screw conveyor 39, and the horizontal screw conveyor 41 (divided into the first horizontal screw conveyor 41a and the second horizontal screw conveyor 41b) are rotationally driven, As a result, the grain in the grain tank 5 is carried out to the outside. The sorting on / off clutch 71 is switched between the on state and the off state by a sorting clutch motor (not shown). The discharge on / off clutch 73 is switched between an on state and an off state by a discharge clutch motor (not shown).
  図7に、模式的に示されているように、エンジン80の出力軸80aは、脱穀部16や穀粒排出装置37への動力供給機構として機能する動力伝達機構50Bに連結されるともに、発電機81の発電用回転軸81aとも連結されている。発電機81とモータ82とは電力変換部84を介して電機制御ユニット85に接続されている。モータ82は、この実施形態では、車両の走行駆動用のモータとして用いられる周知の三相交流式誘導電動モータである。電力変換部84には、発電機81にて発電された交流電力を直流電力に変換する発電用インバータや当該発電用インバータで変換された直流電力をモータ82に適した交流電力に変換するコンバータなどのパワーエレクトロニクス機器が含まれている。このパワーエレクトロニクス機器を適切に制御するための制御アルゴリズムを内部に構築しているメイン電子ユニット100からの指令に基づいて、電機制御ユニット85は、電力変換部84に制御信号を与える。 As schematically shown in FIG. 7, the output shaft 80 a of the engine 80 is connected to a power transmission mechanism 50 </ b> B that functions as a power supply mechanism to the threshing unit 16 and the grain discharging device 37, and generates power. The power generation rotary shaft 81a of the machine 81 is also connected. The generator 81 and the motor 82 are connected to the electric machine control unit 85 via the power converter 84. In this embodiment, the motor 82 is a known three-phase AC induction electric motor that is used as a motor for driving the vehicle. The power converter 84 includes a power generating inverter that converts AC power generated by the generator 81 into DC power, a converter that converts DC power converted by the power generating inverter into AC power suitable for the motor 82, and the like. Power electronics equipment is included. The electric machine control unit 85 gives a control signal to the power conversion unit 84 based on a command from the main electronic unit 100 that has built a control algorithm for appropriately controlling the power electronics device.
  エンジン制御ユニット86は、メイン電子ユニット100からの指令に基づいて、エンジン80に対する燃料供給量を変更することによりエンジン80の出力(回転数及びトルク)を制御する。エンジン回転数を検出するエンジン回転センサS2からの信号は、この実施形態では車両状態検出ユニット90を介してエンジン制御ユニット86またはメイン電子ユニット100あるいはその両方に送られる。もちろん、エンジン回転センサS2からの信号は、その他の信号も含めて、車両状態検出ユニット90を介さずに直接送られてもよい。 The engine control unit 86 controls the output (rotation speed and torque) of the engine 80 by changing the fuel supply amount to the engine 80 based on the command from the main electronic unit 100. In this embodiment, the signal from the engine rotation sensor S2 that detects the engine speed is sent to the engine control unit 86 and / or the main electronic unit 100 via the vehicle state detection unit 90. Of course, the signal from the engine rotation sensor S2, including other signals, may be sent directly without passing through the vehicle state detection unit 90.
  このコンバインでは、発電機81とモータ82との間の給電ラインには、バッテリ(大型コンデンサを含む)が備えられていないので、モータ82は発電機81によって生み出された電力を直接利用する。このため、エンジン停止は、直接発電機81の停止、結果的にはモータ82の停止を導くので、不用意なエンジン停止が発生しないように、省エネとエンジン負荷との両者をバランスよく考慮して、エンジン制御を実行する必要がある。この実施形態では、エンジン制御は、エンジン制御ユニット86によって電子ガバナー方式で制御される。エンジン制御ユニット86は、エンジン80の負荷が増加するにつれてエンジン回転数をわずかに減少させていくドループ制御と、エンジン80の負荷にかかわらずエンジン回転数を一定に維持しようとするアイソクロナス制御のいずれかでエンジン80を制御することが可能である。 In this combine, the power supply line between the generator 81 and the motor 82 is not provided with a battery (including a large capacitor), so the motor 82 directly uses the power generated by the generator 81. For this reason, the engine stop directly leads to the stop of the generator 81 and consequently the stop of the motor 82. Therefore, in order to prevent an inadvertent engine stop, both energy saving and engine load are considered in a balanced manner. Need to perform engine control. In this embodiment, engine control is controlled by the engine control unit 86 in an electronic governor manner. The engine control unit 86 is either droop control that slightly decreases the engine speed as the load of the engine 80 increases, or isochronous control that maintains the engine speed constant regardless of the load of the engine 80. Thus, the engine 80 can be controlled.
  作業装置制御ユニット87は、メイン電子ユニット100からの指令に基づいて、エンジン80の回転動力をそのまま利用するエンジン駆動作業装置W1及びモータ82の回転動力を利用するモータ駆動作業装置W2に組み込まれたクラッチ操作機器や油圧シリンダなどの動作機器に制御信号を与える。車両状態検出ユニット90は、各種スイッチやセンサから入力される信号に対して、必要に応じて変換処理等の前処理を施し、メイン電子ユニット100に転送する。 The work device control unit 87 is incorporated in the engine drive work device W1 that uses the rotational power of the engine 80 as it is and the motor drive work device W2 that uses the rotational power of the motor 82 based on a command from the main electronic unit 100. A control signal is given to operating devices such as a clutch operating device and a hydraulic cylinder. The vehicle state detection unit 90 performs preprocessing such as conversion processing on signals input from various switches and sensors as necessary, and transfers the signals to the main electronic unit 100.
  メイン電子ユニット100は、エンジン制御ユニット86、電機制御ユニット85、作業装置制御ユニット87、車両状態検出ユニット90などの他のECUと車載LANを通じて接続されている。なお、このメイン電子ユニット100だけでなく、他のECUも含め、その構成は、説明目的のためにわかりやすく区分けされている。したがって、実際においては、各ECUは適当に統合化されてもよいし、適当に分割化されてもよい。この実施形態では、メイン電子ユニット100は、ハードウエア及びソフトウエア(コンピュータプログラム)によって、特に本発明に関係するものとして、エンジン管理モジュール110、電機管理モジュール120、車両管理モジュール130などを構築している。 The main electronic unit 100 is connected to other ECUs such as an engine control unit 86, an electric machine control unit 85, a work device control unit 87, and a vehicle state detection unit 90 through an in-vehicle LAN. It should be noted that not only the main electronic unit 100 but also other ECUs are configured in an easy-to-understand manner for the purpose of explanation. Accordingly, in practice, each ECU may be appropriately integrated or may be appropriately divided. In this embodiment, the main electronic unit 100 constructs an engine management module 110, an electric appliance management module 120, a vehicle management module 130, and the like as those particularly related to the present invention by hardware and software (computer program). Yes.
  エンジン管理モジュール110は、他の管理モジュールと相互連携し、エンジン80の出力を調整するために、エンジン制御ユニット86に種々のエンジン制御指令を送る。電機管理モジュール120も、他の管理モジュールと相互連携し、電力変換部84を介して発電機81とモータ82とが適切に駆動されるように、電機制御ユニット85に電機機器制御指令を送る。車両管理モジュール130は、エンジン制御ユニット86、電機制御ユニット85、作業装置制御ユニット87、車両状態検出ユニット90から送られてくる情報(信号・データ)に基づいて、このコンバインの走行状態や作業状態を確認して管理する。 The engine management module 110 sends various engine control commands to the engine control unit 86 to adjust the output of the engine 80 in cooperation with other management modules. The electric machine management module 120 also cooperates with other management modules and sends an electric equipment control command to the electric machine control unit 85 so that the generator 81 and the motor 82 are appropriately driven via the power conversion unit 84. Based on the information (signal / data) sent from the engine control unit 86, the electric machine control unit 85, the work device control unit 87, and the vehicle state detection unit 90, the vehicle management module 130 executes the traveling state and working state of this combine. Confirm and manage.
  図7の車両管理モジュール130には、車両状態決定部13aと速度状態決定部13bとが構築されている。車両状態決定部13aは、車両状態検出ユニット90から取得した各種の状態検出信号に基づいて、左クローラ走行体1aと右クローラ走行体1bの駆動状態及び、刈取処理部3や脱穀装置4や穀粒排出装置37などの農作業装置Wの駆動状態を決定する。速度状態決定部13bは、車両状態検出ユニット90から取得した車速に関する各種状態検出信号、あるいは電機管理モジュール120や電機制御ユニット85で取り扱われているモータ82に対する回転数の指令情報などに基づいて車速を示す速度状態を決定する。 In the vehicle management module 130 of FIG. 7, a vehicle state determination unit 13a and a speed state determination unit 13b are constructed. Based on various state detection signals acquired from the vehicle state detection unit 90, the vehicle state determination unit 13a drives the left crawler traveling body 1a and the right crawler traveling body 1b, and the cutting processing unit 3, the threshing device 4, and the grain. The driving state of the agricultural work apparatus W such as the grain discharging apparatus 37 is determined. The speed state determination unit 13b determines the vehicle speed based on various state detection signals related to the vehicle speed acquired from the vehicle state detection unit 90, or command information on the number of revolutions for the motor 82 handled by the electric machine management module 120 or the electric machine control unit 85. The speed state indicating is determined.
  メイン電子ユニット100の電機管理モジュール120と電機制御ユニット85とによるモータ82の制御について具体的に説明する。 The control of the motor 82 by the electric machine management module 120 and the electric machine control unit 85 of the main electronic unit 100 will be specifically described.
  運転者によって操作される主変速レバー66の前後方向のストローク操作位置は、速度設定用信号としてストロークセンサS4によって検出され、メイン電子ユニット100に送られる。同様に、運転者によって操作される操作レバー61の左右方向の傾斜角は、機体2の旋回(操向)を示す旋回度算定用信号として旋回レバーセンサS3によって検出され、メイン電子ユニット100に送られる。電機管理モジュール120は、主変速レバー66と操作レバー61との操作位置に基づいて、つまりストロークセンサS4及び旋回レバーセンサS3からの検出信号に基づいて、モータ82の回転数、結果的には左クローラ走行体1aと右クローラ走行体1bとの駆動速度を制御するための指令を電機制御ユニット85に与える。 The stroke operation position in the front-rear direction of the main transmission lever 66 operated by the driver is detected by the stroke sensor S4 as a speed setting signal and sent to the main electronic unit 100. Similarly, the left / right inclination angle of the operation lever 61 operated by the driver is detected by the turning lever sensor S3 as a turning degree calculation signal indicating turning (steering) of the airframe 2 and is sent to the main electronic unit 100. It is done. The electric machine management module 120 determines the number of rotations of the motor 82 based on the operation positions of the main transmission lever 66 and the operation lever 61, that is, based on the detection signals from the stroke sensor S4 and the turning lever sensor S3, and as a result A command for controlling the driving speed of the crawler traveling body 1a and the right crawler traveling body 1b is given to the electric machine control unit 85.
  電機制御ユニット85は、電機管理モジュール120からの指令に基づいて、電力変換部84に含まれているインバータやコンバータなどのパワーエレクトロニクス機器を制御する。その際、三相(u相,v相,w相)の各相に設けられているスイッチングトランジスタをオンオフ制御することで発電機81及びモータ82の出力を変更調整する。 The electric machine control unit 85 controls power electronics devices such as an inverter and a converter included in the power conversion unit 84 based on a command from the electric machine management module 120. At that time, the output of the generator 81 and the motor 82 is changed and adjusted by controlling on / off the switching transistors provided in the three phases (u phase, v phase, w phase).
  本発明では、この電機管理モジュール120によるモータ82の制御では、モータ82の出力トルクは、発電機81の発電負荷が許容負荷を超えないように牽制される。このトルク牽制制御のアルゴリズムには、図1を用いて説明された基本原理が採用されている。このため、電機管理モジュール120には、本発明に特に関係する機能部として、モータ回転数設定部12cとモータ消費可能動力算定部12dとトルク牽制値算定部12fとがコンピュータプログラムで構築されている。 In the present invention, in the control of the motor 82 by the electric appliance management module 120, the output torque of the motor 82 is checked so that the power generation load of the generator 81 does not exceed the allowable load. The basic principle described with reference to FIG. 1 is adopted in this torque check control algorithm. For this reason, in the electric machine management module 120, a motor rotation number setting unit 12c, a motor-consumable power calculation unit 12d, and a torque check value calculation unit 12f are constructed by a computer program as functional units particularly related to the present invention. .
  モータ回転数設定部12cは、主変速レバー66と操作レバー61との操作位置に基づいて、モータ82の制御目標回転数となるモータ指令回転数を算定して、電機制御ユニット85に出力する。モータ指令回転数の算定は、主変速レバーの操作位置からモータ指令回転数を導出するモータ指令回転数制御マップが用いられる。なお、この実施形態では、操作レバー61の操作位置によって設定される旋回によってモータ指令回転数を調整しているので、モータ指令回転数制御マップは主変速レバーの操作位置及び操作レバー61の操作位置を入力パラメータとする多次元マップが用いられるとよい。あるいは、主変速レバーの操作位置からモータ指令回転数を導出するモータ指令回転数制御マップを操作レバー61の操作位置によって変更される構成を採用してもよい。 The motor rotation speed setting unit 12 c calculates the motor command rotation speed that is the control target rotation speed of the motor 82 based on the operation position of the main transmission lever 66 and the operation lever 61, and outputs the motor command rotation speed to the electric machine control unit 85. The calculation of the motor command rotation speed uses a motor command rotation speed control map that derives the motor command rotation speed from the operation position of the main transmission lever. In this embodiment, since the motor command rotation speed is adjusted by turning set by the operation position of the operation lever 61, the motor command rotation speed control map includes the operation position of the main transmission lever and the operation position of the operation lever 61. It is preferable to use a multi-dimensional map having as input parameters. Alternatively, a configuration in which a motor command rotation speed control map for deriving a motor command rotation speed from the operation position of the main transmission lever may be changed depending on the operation position of the operation lever 61 may be adopted.
  モータ消費可能動力算定部12dは、エンジン回転センサS2の検出信号から算定された実際のエンジン回転数に基づいて、発電機81の発電負荷が許容負荷を超えない範囲で、モータ82が利用可能な動力をモータ消費可能動力として算定する。トルク牽制値算定部12fは、モータ消費可能動力算定部12dで算定されたモータ消費可能動力と、モータ回転数設定部12cで算定されたモータ指令回転数とから算定したトルク値を、モータ制御におけるトルク牽制値を算定する。算定されたトルク牽制値は、電機制御ユニット85に与えられ、モータ82に対するモータ制御に利用される。 The motor-consumable power calculation unit 12d can use the motor 82 within a range in which the power generation load of the generator 81 does not exceed the allowable load based on the actual engine speed calculated from the detection signal of the engine rotation sensor S2. The power is calculated as the power that can be consumed by the motor. The torque check value calculation unit 12f calculates the torque value calculated from the motor consumable power calculated by the motor consumable power calculation unit 12d and the motor command rotation number calculated by the motor rotation number setting unit 12c in the motor control. Calculate the torque check value. The calculated torque check value is given to the electric machine control unit 85 and used for motor control with respect to the motor 82.
  この実施形態では、トルク牽制値を算定するために、上述したEモードとGモードの両方が実装され、それぞれで得られたトルク牽制値の小さい方が選択されるように構成されている。両モードにおける、モータ回転数設定部12cとモータ消費可能動力算定部12dとトルク牽制値算定部12fの機能は、図1を用いて説明した通りであるが、ここでは、その説明に用いられた式を、実施例の1つとして具体的に示す。なお、この実施例は、エンジン80として、定格出力21KWで2800rpmのエンジンが使用されている。 In this embodiment, in order to calculate the torque check value, both the E mode and the G mode described above are mounted, and the smaller torque check value obtained by each is selected. The functions of the motor speed setting unit 12c, the motor-consumable power calculation unit 12d, and the torque check value calculation unit 12f in both modes are as described with reference to FIG. The formula is specifically shown as one of the examples. In this embodiment, an engine of 2800 rpm with a rated output of 21 KW is used as the engine 80.
  Eモードで、エンジン出力値:E0-outを求める式は、
E0-out=E(RE-RPM)
=85[Nm]×RE-RPM[rpm]×2π/60[W]
であるが、これはエンジン回転数が1850[rpm]未満の時に用いられ、エンジン回転数が1850[rpm]以上では、16500[W]の固定値とする。
  さらに、モータ消費可能動力:M-outを求める式は、
M-out=K(E0-out)
=(E0-out-L)×η
であり、ここで、Lは損失動力で3000[W]とし、ηは総合効率で85[%]である。
  トルク牽制値:T-limitを求める式は、モータ回転数設定部12cで算定されたモータ指令回転数をMC-RPMとすると、
T-limit=F(MC-RPM,M-out)
=M-out/( MC-RPM×2π/60)
である。
In E mode, the equation to calculate the engine output value: E0-out is
E0-out = E (RE-RPM)
= 85 [Nm] x RE-RPM [rpm] x 2π / 60 [W]
However, this is used when the engine speed is less than 1850 [rpm], and is fixed at 16500 [W] when the engine speed is 1850 [rpm] or more.
In addition, the formula for obtaining the motor-consumable power: M-out is
M-out = K (E0-out)
= (E0-out-L) x η
Where L is 3000 [W] in loss power and η is 85 [%] in total efficiency.
Torque check value: T-limit is calculated using MC-RPM as the motor command rotational speed calculated by the motor rotational speed setting unit 12c.
T-limit = F (MC-RPM, M-out)
= M-out / (MC-RPM × 2π / 60)
It is.
  Gモードでは、発電出力値:G0-outを求める式は、
G0-out=G(RE-RPM)
=78[Nm]×RE-RPM[rpm]×2π/60[W]
である。
  モータ消費可能動力:M-outを求める式は、
M-out=J(G0-out)
=G0-out×η
である。
  トルク牽制値:T-limitは、Eモードと同様に、
T-limit=F(MC-RPM,M-out)
=M-out/( MC-RPM×2π/60)
である。
In G mode, the equation to calculate the power generation output value: G0-out is
G0-out = G (RE-RPM)
= 78 [Nm] x RE-RPM [rpm] x 2π / 60 [W]
It is.
Motor consumable power: The formula for calculating M-out is
M-out = J (G0-out)
= G0-out x η
It is.
Torque check value: T-limit is the same as in E mode.
T-limit = F (MC-RPM, M-out)
= M-out / (MC-RPM × 2π / 60)
It is.
  このコンバインは、バッテリレスのシリアルハイブリッド車両であり、バッテリからの電力で車両を走行させることはできないので、通常は、定常的に回転しているエンジンによって発電している発電機からの電力で駆動するモータによって走行する。したがって、エンジン80の過負荷などで停止することを避けなければならないが、必要以上の出力でエンジン80を運転することは燃費の悪化を導く。このことから、エンジン管理モジュール110は、エンジン負荷を考慮して、適切にエンジン80の運転を管理する。エンジン管理モジュール110に構築された負荷推定部11dは、車両状態決定部13aによって決定された左クローラ走行体1aと右クローラ走行体1bの駆動状態及び農作業装置Wの駆動状態から推定されるエンジン負荷も推定負荷として算定する。その際、左クローラ走行体1aと右クローラ走行体1bの速度差から推定されるエンジン負荷も考慮される。同様にエンジン管理モジュール110に構築されたエンジン指令回転数算定部11bは、負荷推定部11dによって算定された推定負荷に基づいてエンジン指令回転数を算定するとともに当該エンジン指令回転数に基づくエンジン制御指令をエンジン制御ユニット86に出力する。 This combine is a battery-less serial hybrid vehicle and cannot be driven by the power from the battery, so it is usually driven by the power from the generator that generates power from the engine that is constantly rotating. It travels with the motor. Therefore, it must be avoided that the engine 80 is stopped due to overload or the like, but driving the engine 80 with an output more than necessary leads to deterioration of fuel consumption. From this, the engine management module 110 appropriately manages the operation of the engine 80 in consideration of the engine load. The load estimation unit 11d constructed in the engine management module 110 is an engine load estimated from the driving state of the left crawler traveling body 1a and the right crawler traveling body 1b determined by the vehicle state determining unit 13a and the driving state of the agricultural work device W. Is also calculated as an estimated load. At that time, the engine load estimated from the speed difference between the left crawler traveling body 1a and the right crawler traveling body 1b is also taken into consideration. Similarly, an engine command rotational speed calculation unit 11b constructed in the engine management module 110 calculates an engine command rotational speed based on the estimated load calculated by the load estimation unit 11d and an engine control command based on the engine command rotational speed. Is output to the engine control unit 86.
  この負荷推定部11dとエンジン制御ユニット86とによる、エンジン負荷に応じたエンジン回転数制御(パワーオンデマンド制御)の簡単なアルゴリズムの具体例の1つを、図8を用いて、説明する。この具体例では、負荷推定部11dとエンジン制御ユニット86とは一体的に動作するが、まず、車両状態決定部13aからの上方に基づいて、エンジン負荷に影響を与える運転モードとして、次の8つのモードを規定する。
(1)停止モード:作業も走行も行われていない。
(2)刈取り作業前後+直進モード:刈取作業に入る直前の所定時間、または刈取作業が終了した後の所定時間で、機体2は直進している。
(3)刈取り作業前後+旋回モード:刈取作業に入る直前の所定時間、または刈取作業が終了した後の所定時間で、機体2は旋回している(左クローラ走行体1aと右クローラ走行体1bとの速度が異なっている)。
(4)刈取り作業中+直進モード:刈取作業中で、機体2は直進している。
(5)刈取り作業中+旋回モード:刈取作業中で、機体2は旋回している。
(6)路上走行+直進モード:副変速装置54を高速段にしての走行で、機体2は直進している。
(7)路上走行+旋回モード:副変速装置54を高速段にしての走行で、機体2は旋回している。
(8)穀粒排出モード:穀粒排出装置37を用いて穀粒タンク5から穀粒を排出している。
  エンジン制御ユニット86は、上記運転モードに応じてエンジン指令回転数を算定する。この実施形態では、図8で模式的に示されたようなエンジン性能曲線が規定されているので、これに基づいたエンジン指令回転数が算定される。このエンジン80の最大出力が18.5KWで、最高回転数が2500rpmであり、図8で模式的に示されたエンジン制御特性は、3つの線で表されている。つまり、高負荷時には高回転数Nh(例えば、2500rpmより少し低い回転数)が設定され、中負荷時には中回転数Nm(例えば、2000rpmより少し低い回転数)が設定され、低負荷時には低回転数Nl(例えば、1500rpmより少し高い低回転数)が設定され、ドループ制御される。またこのエンジン80のアイドリング回転数は1000rpmより少し高い回転数となっている。
  このことから、実際的には、
(1)停止モードでは、アイドリング回転数が設定され、
(2)刈取り作業前後+直進モードでは、アイドリング回転数から低回転数までの領域が設定され、
(3)刈取り作業前後+旋回モードでは、高回転数よりやや低い回転数が設定され、
(4)刈取り作業中+直進モードでは、低回転数から最高回転数までの領域が設定され、
(5)刈取り作業中+旋回モードでは、最高回転数が設定され、
(6)路上走行+直進モードでは、低回転数から中回転数までの領域が設定され、
(7)路上走行+旋回モードでは、最高回転数が設定され、
(8)穀粒排出モードでは、アイドリング回転数よりやや高い回転数が設定される。
One specific example of a simple algorithm for engine speed control (power on demand control) according to the engine load by the load estimation unit 11d and the engine control unit 86 will be described with reference to FIG. In this specific example, the load estimation unit 11d and the engine control unit 86 operate integrally, but first, based on the upper side from the vehicle state determination unit 13a, as the operation mode that affects the engine load, the following 8 Specifies two modes.
(1) Stop mode: No work or running.
(2) Before / after mowing operation + straight-forward mode: The machine body 2 is traveling straight ahead for a predetermined time immediately before entering the mowing operation or for a predetermined time after the mowing operation is completed.
(3) Before / after cutting operation and turning mode: The machine body 2 is turning (a left crawler traveling body 1a and a right crawler traveling body 1b) for a predetermined time immediately before entering the cutting operation or a predetermined time after the cutting operation is completed. And the speed is different).
(4) Cutting operation + straight running mode: During cutting operation, the airframe 2 goes straight.
(5) Cutting operation + turning mode: Aircraft 2 is turning during cutting operation.
(6) Road running + straight running mode: The vehicle body 2 is running straight in the running with the auxiliary transmission 54 at a high speed.
(7) Road traveling + turning mode: In the traveling with the auxiliary transmission 54 at a high speed, the body 2 is turning.
(8) Kernel discharge mode: The kernel is discharged from the kernel tank 5 using the kernel discharge device 37.
The engine control unit 86 calculates the engine command rotational speed according to the operation mode. In this embodiment, since an engine performance curve as schematically shown in FIG. 8 is defined, the engine command rotational speed based on this is calculated. The engine 80 has a maximum output of 18.5 KW and a maximum rotational speed of 2500 rpm, and the engine control characteristics schematically shown in FIG. 8 are represented by three lines. That is, a high rotational speed Nh (for example, a rotational speed slightly lower than 2500 rpm) is set at a high load, a medium rotational speed Nm (for example, a rotational speed slightly lower than 2000 rpm) is set at a medium load, and a low rotational speed at a low load. Nl (for example, a low rotational speed slightly higher than 1500 rpm) is set, and droop control is performed. The idling speed of the engine 80 is slightly higher than 1000 rpm.
From this, in practice,
(1) In stop mode, idling speed is set,
(2) Before / after mowing operation + straight running mode, the region from idling speed to low speed is set,
(3) Before / after mowing operation + turning mode, a slightly lower rotational speed than the high rotational speed is set,
(4) In the cutting and straight running mode, the area from the low speed to the maximum speed is set.
(5) During cutting and turning mode, the maximum number of revolutions is set.
(6) In the road running + straight running mode, an area from a low speed to a medium speed is set.
(7) In road driving + turning mode, the maximum speed is set,
(8) In the grain discharging mode, a rotational speed slightly higher than the idling rotational speed is set.
  従来のシリーズハイブリッドでは、エンジンの高効率運転による省エネを図るため、負荷にかかわらず最高回転数に設定していたが、低負荷でも最高回転数が設定されることになるので、低負荷が続く場合には、省エネが不充分となる。また、負荷変動に合わせて、常にエンジン回転数の設定を調整する場合、負荷が細かく変動する状況では、エンジンのふかしが繰り返されるという、省エネや騒音に関する不都合が生じる。このようなことを考慮し、上記の具体例では、高負荷で高回転数、中負荷で宙回転数、低負荷で低回転数というように負荷に応じてエンジン回転数を設定している。その際、刈取り作業中+旋回モード及び路上走行+旋回モードは最も大きな負荷が生じる運転状態なので最大回転数が設定されている。 In the conventional series hybrid, in order to save energy by high-efficiency operation of the engine, the maximum number of revolutions was set regardless of the load. However, the maximum number of revolutions is set even at low loads, so the low load continues. In some cases, energy saving is insufficient. Further, when the engine speed setting is constantly adjusted in accordance with the load fluctuation, in the situation where the load fluctuates finely, there arises an inconvenience related to energy saving and noise that the engine is repeatedly puffed. In consideration of the above, in the above specific example, the engine speed is set according to the load, such as high speed at high load, air speed at medium load, and low speed at low load. At that time, the maximum rotation speed is set since the cutting operation + turning mode and road traveling + turning mode are the operating states in which the greatest load is generated.
  コンバインには、上述した、刈取処理部3を昇降揺動させる油圧シリンダCY(図2参照)や横スクリューコンベア41を昇降揺動させる油圧シリンダ42(図2参照)以外にも、種々の油圧シリンダSLが装備されており、それらに油圧を供給するための油圧回路が図9に示されている。油圧源としての油圧ポンプP1は、この実施形態ではエンジン80によって駆動される。省エネのために小出力のエンジン80が使用されているので、この油圧回路では、できるだけ油圧ポンプP1が無駄な動力を消費しないように、以下に示すような工夫がなされている。 For the combine, in addition to the above-described hydraulic cylinder CY (see FIG. 2) for moving the cutting processing unit 3 up and down and the hydraulic cylinder 42 (see FIG. 2) for moving the horizontal screw conveyor 41 up and down, various hydraulic cylinders are used. FIG. 9 shows a hydraulic circuit that is equipped with SL and supplies hydraulic pressure to them. The hydraulic pump P1 as a hydraulic source is driven by the engine 80 in this embodiment. Since a low-power engine 80 is used for energy saving, the hydraulic circuit is devised as follows so that the hydraulic pump P1 does not consume unnecessary power as much as possible.
  油圧ポンプP1は、刈取昇降弁V4を介して油圧シリンダCYと連結している。油圧ポンプP1と刈取昇降弁V4とは油路R1で接続され、刈取昇降弁V4と油圧シリンダCYとは油路R2で接続されている。油路R2にはパイロットチェック弁V2が介装され、油路R1にはシーケンス弁V7と、リリーフ弁V9が介装されている。刈取昇降弁V4は、システム減圧弁V8によって減圧されたパイロット圧を有するパイロット油路PRに設けられた、刈取下降ソレノイド弁V5と刈取上昇ソレノイド弁V6とによってパイロット圧制御される。パイロットチェック弁V2は、シーケンス弁V7とシャトルチェック弁V3とによってパイロット圧制御される。油路R1からシーケンス弁V7によって油路R3が分岐しており、油路R3によって供給される油圧によって、油圧シリンダ42やその他の油圧シリンダSLが駆動する。 Hydraulic pump P1 is connected to a hydraulic cylinder CY via a cutting lift valve V4. The hydraulic pump P1 and the cutting lift valve V4 are connected by an oil path R1, and the cutting lift valve V4 and the hydraulic cylinder CY are connected by an oil path R2. A pilot check valve V2 is interposed in the oil passage R2, and a sequence valve V7 and a relief valve V9 are interposed in the oil passage R1. The cutting lift valve V4 is pilot pressure controlled by a cutting lowering solenoid valve V5 and a cutting lifting solenoid valve V6 provided in a pilot oil passage PR having a pilot pressure reduced by the system pressure reducing valve V8. The pilot check valve V2 is pilot pressure controlled by a sequence valve V7 and a shuttle check valve V3. The oil passage R3 is branched from the oil passage R1 by the sequence valve V7, and the hydraulic cylinder 42 and other hydraulic cylinders SL are driven by the hydraulic pressure supplied by the oil passage R3.
  油路R3から分岐してリリーフ弁V9の排油側とつながる油路R4にアンロード弁V11が介装さている。このアンロード弁V11は、システムソレノイド弁V12からのパイロット圧によって制御される。システムソレノイド弁V12は、デューティ制御されるように構成されている。このシステムソレノイド弁V12をデューティ制御することで、アンロード弁V11を所定の開度に制御することができ、この油圧回路の駆動圧を最適に調整することができる。つまり、従来では、アンロード弁V11を単純に閉鎖し、リリーフ弁V9で規定される駆動圧を維持しているので、この油圧回路の駆動圧は常に一定となり、機種によって要求される駆動圧が異なる場合、無駄が生じる。このような無駄は、システムソレノイド弁V12のデューティ制御によって、アンロード弁V11の通過流量を最適化することで、解消することができる。 An unload valve V11 is interposed in an oil path R4 branched from the dredged oil path R3 and connected to the oil discharge side of the relief valve V9. The unload valve V11 is controlled by the pilot pressure from the system solenoid valve V12. The system solenoid valve V12 is configured to be duty controlled. By controlling the duty of the system solenoid valve V12, the unload valve V11 can be controlled to a predetermined opening degree, and the driving pressure of the hydraulic circuit can be optimally adjusted. That is, conventionally, since the unload valve V11 is simply closed and the driving pressure defined by the relief valve V9 is maintained, the driving pressure of this hydraulic circuit is always constant, and the driving pressure required by the model is If they are different, waste occurs. Such waste can be eliminated by optimizing the passage flow rate of the unload valve V11 by duty control of the system solenoid valve V12.
  また、この油圧回路を、各油圧シリンダSY,42、SLのサブ油圧回路として区分けし、デューティ制御されるシステムソレノイド弁V12とアンロード弁V11とを用いて区分けされたサブ油圧回路毎に必要最小限の駆動圧が得られるような構成を採用してもよい。あるいは、油圧シリンダSY,42、SLうちの複数の組み合わせからサブ油圧回路を構成して、サブ油圧回路を必要最小限の駆動圧とする制御を採用してもよい。
〔別実施形態〕
Further, this hydraulic circuit is divided into sub hydraulic circuits of the hydraulic cylinders SY, 42, SL, and the minimum necessary for each sub hydraulic circuit divided using the system solenoid valve V12 and the unload valve V11 that are duty controlled. A configuration in which a limited driving pressure can be obtained may be employed. Alternatively, a control may be employed in which a sub hydraulic circuit is configured from a plurality of combinations of the hydraulic cylinders SY, 42, and SL, and the sub hydraulic circuit is set to the minimum necessary driving pressure.
[Another embodiment]
(1)上述した実施形態では走行装置1は左クローラ走行体1aと右クローラ走行体1bとから構成されていたが、車輪とクローラ走行体の複合構成、あるいは車輪のみの構成を採用してもよい。
(2)第3操作具56及び第2操作具57は、運転者によって操作される操作レバーと当該操作レバーの操作変位を検出するセンサとから構成してもよい。
(3)上述した実施形態では、エンジン指令回転数は、負荷推定部11dの負荷に基づいてエンジン指令回転数算定部11bで算定された。しかしながら、電機管理モジュール120によるモータ指令回転数の算定にもモータ負荷、結果的にはエンジン負荷がされていることから、エンジン指令回転数算定部11bがこのモータ指令回転数からエンジン指令回転数を導出するようにしてもよい。その際には、エンジン管理モジュール110と電機管理モジュール120を一体化すると好都合である。
(1) In the above-described embodiment, the traveling device 1 is composed of the left crawler traveling body 1a and the right crawler traveling body 1b. However, even if a combined configuration of wheels and crawler traveling bodies or a configuration including only wheels is adopted. Good.
(2) The third operation tool 56 and the second operation tool 57 may be configured by an operation lever operated by a driver and a sensor that detects an operation displacement of the operation lever.
(3) In the above-described embodiment, the engine command rotational speed is calculated by the engine command rotational speed calculation unit 11b based on the load of the load estimation unit 11d. However, since the motor load, and consequently the engine load, is also calculated in the calculation of the motor command rotation speed by the electric appliance management module 120, the engine command rotation speed calculation unit 11b calculates the engine command rotation speed from the motor command rotation speed. It may be derived. In that case, it is convenient to integrate the engine management module 110 and the electric machine management module 120.
  本発明は、車体の走行に伴って農作物を刈り取って脱穀処理するようにした自脱型又は
普通型のコンバインに適用できる。
INDUSTRIAL APPLICABILITY The present invention can be applied to a self-removal type or a normal type combine in which crops are harvested and threshed as the vehicle body travels.
  1:走行装置
1a:第1(左)クローラ
1b:第2(右)クローラ
  2:走行機体
  3:刈取処理部
  4:脱穀装置
  5:穀粒タンク
  7:搭乗運転部
  8:刈取部
12:刈取装置
16:脱穀部
17:選別部
37:穀粒排出装置
54:副変速装置
56:第3操作具
57:第2操作具
61:操作レバー
66:主変速レバー(第1操作具)
80:エンジン
81:発電機
82:モータ(電動モータ)
84:電力変換部
85:電機制御ユニット
86:エンジン制御ユニット
87:作業装置制御ユニット
90:車両状態検出ユニット
100:メイン電子ユニット
110:エンジン管理モジュール
11b:エンジン指令回転数算定部
11d:負荷推定部
120:電機管理モジュール
12b:モータ回転数修正部
12c:モータ回転数設定部
12d:モータ消費可能動力算定部
12f:トルク牽制値算定部
130:車両管理モジュール
13a:車両状態決定部
WE:エンジン駆動作業装置
WM:モータ駆動作業装置
S2:エンジン回転センサ(エンジン回転数取得部)
S3:旋回レバーセンサ
S4:ストロークセンサ
OD:車速設定部操作装置
1: traveling device 1a: first (left) crawler 1b: second (right) crawler 2: traveling machine body 3: reaping processing unit 4: threshing device 5: grain tank 7: boarding operation unit 8: reaping unit 12: reaping Device 16: Threshing unit 17: Sorting unit 37: Grain discharging device 54: Sub-transmission device 56: Third operation tool 57: Second operation tool 61: Operation lever 66: Main transmission lever (first operation tool)
80: Engine 81: Generator 82: Motor (electric motor)
84: Power conversion unit 85: Electric control unit 86: Engine control unit 87: Work device control unit 90: Vehicle state detection unit 100: Main electronic unit 110: Engine management module 11b: Engine command rotational speed calculation unit 11d: Load estimation unit 120: Electricity management module 12b: Motor rotation speed correction section 12c: Motor rotation speed setting section 12d: Motor consumable power calculation section 12f: Torque check value calculation section 130: Vehicle management module 13a: Vehicle state determination section WE: Engine drive work Device WM: Motor-driven work device S2: Engine rotation sensor (engine speed acquisition unit)
S3: Turn lever sensor S4: Stroke sensor OD: Vehicle speed setting unit operating device

Claims (5)

  1.   エンジンと、前記エンジンの出力によって駆動する発電機と、前記発電機からの電力によって駆動するモータと、前記発電機と前記モータとを制御する電機制御ユニットと、前記モータからの回転動力によって車両を走行させる走行装置と、前記エンジンの出力を制御するエンジン制御ユニットと、車両の走行に伴って農作物を収穫する農作業装置と、操作位置に応じた車速を設定するための車速設定操作装置と、前記エンジンのエンジン回転数を取得するエンジン回転数取得部とを備えたシリーズハイブリッドコンバインであって、
      前記発電機の発電負荷が許容負荷を超えないように、前記モータの出力トルクが牽制されるシリーズハイブリッドコンバイン。
    An engine, a generator driven by the output of the engine, a motor driven by electric power from the generator, an electric machine control unit for controlling the generator and the motor, and a vehicle driven by rotational power from the motor A traveling device for traveling; an engine control unit for controlling the output of the engine; a farm work device for harvesting crops as the vehicle travels; a vehicle speed setting operation device for setting a vehicle speed according to an operation position; A series hybrid combine including an engine speed acquisition unit for acquiring the engine speed of the engine,
    A series hybrid combine in which the output torque of the motor is controlled so that the power generation load of the generator does not exceed an allowable load.
  2.   前記エンジン回転数に基づいて、前記モータによって利用可能な動力であるモータ消費可能動力を算定するモータ消費可能動力算定部と、
      前記操作位置に基づいて前記モータに対するモータ指令回転数を算定するモータ回転数設定部と、
      前記モータ消費可能動力と前記モータ指令回転数とから算定したトルク値を、モータ制御におけるトルク牽制値として前記電機制御ユニットに与えるトルク牽制値算定部と、を備えた請求項1に記載のシリーズハイブリッドコンバイン。
    A motor-consumable power calculation unit that calculates motor-consumable power, which is power that can be used by the motor, based on the engine speed;
    A motor rotation number setting unit that calculates a motor command rotation number for the motor based on the operation position;
    2. The series hybrid according to claim 1, further comprising: a torque check value calculation unit that gives a torque value calculated from the motor-consumable power and the motor command rotational speed to the electric machine control unit as a torque check value in motor control. Combine.
  3.   前記モータ消費可能動力が、前記エンジン回転数を入力パラメータとして前記エンジンのエンジン出力特性から導出されたエンジン出力値に依存する請求項2に記載のシリーズハイブリッドコンバイン。 The series hybrid combine according to claim 2, wherein the motor-consumable power depends on an engine output value derived from an engine output characteristic of the engine with the engine speed as an input parameter.
  4.   前記モータ消費可能動力が、前記エンジン回転数を入力パラメータとして前記発電機の発電機出力特性から導出された発電出力値に依存する請求項2に記載のシリーズハイブリッドコンバイン。 The series hybrid combine according to claim 2, wherein the motor-consumable power depends on a power generation output value derived from a generator output characteristic of the generator with the engine speed as an input parameter.
  5.   前記モータ消費可能動力が、前記エンジン回転数を入力パラメータとして前記エンジンのエンジン出力特性から導出されたエンジン出力値に依存する第1値と、前記エンジン回転数を入力パラメータとして前記発電機の発電機出力特性から導出された発電出力値に依存する第2値との小さい方である請求項2に記載のシリーズハイブリッドコンバイン。 The power that can be consumed by the motor is a first value that depends on an engine output value derived from an engine output characteristic of the engine with the engine speed as an input parameter, and a generator of the generator with the engine speed as an input parameter The series hybrid combine according to claim 2, which is the smaller of the second value depending on the power generation output value derived from the output characteristics.
PCT/JP2014/075167 2013-09-27 2014-09-24 Series hybrid combine WO2015046187A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013202786A JP6066880B2 (en) 2013-09-27 2013-09-27 Series hybrid combine
JP2013-202786 2013-09-27

Publications (1)

Publication Number Publication Date
WO2015046187A1 true WO2015046187A1 (en) 2015-04-02

Family

ID=52743323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075167 WO2015046187A1 (en) 2013-09-27 2014-09-24 Series hybrid combine

Country Status (2)

Country Link
JP (1) JP6066880B2 (en)
WO (1) WO2015046187A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114475211A (en) * 2022-01-28 2022-05-13 江苏大学 Parallel hybrid power combine harvester and control method
CN114506205A (en) * 2022-01-28 2022-05-17 江苏大学 Tandem type oil-electricity hybrid power combine harvester and method
US11528836B2 (en) * 2019-11-22 2022-12-20 Cnh Industrial America Llc System and method for sequentially controlling agricultural implement ground-engaging tools

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002095112A (en) * 2000-09-11 2002-03-29 Tcm Corp Travel drive apparatus for industrial vehicle
JP2004242558A (en) * 2003-02-13 2004-09-02 Iseki & Co Ltd Self-propelled type agricultural working machine
JP2007313992A (en) * 2006-05-24 2007-12-06 Hitachi Constr Mach Co Ltd Drive system for electrically-driven dump truck
JP2013070642A (en) * 2011-09-27 2013-04-22 Kubota Corp Combine harvester

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002095112A (en) * 2000-09-11 2002-03-29 Tcm Corp Travel drive apparatus for industrial vehicle
JP2004242558A (en) * 2003-02-13 2004-09-02 Iseki & Co Ltd Self-propelled type agricultural working machine
JP2007313992A (en) * 2006-05-24 2007-12-06 Hitachi Constr Mach Co Ltd Drive system for electrically-driven dump truck
JP2013070642A (en) * 2011-09-27 2013-04-22 Kubota Corp Combine harvester

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11528836B2 (en) * 2019-11-22 2022-12-20 Cnh Industrial America Llc System and method for sequentially controlling agricultural implement ground-engaging tools
CN114475211A (en) * 2022-01-28 2022-05-13 江苏大学 Parallel hybrid power combine harvester and control method
CN114506205A (en) * 2022-01-28 2022-05-17 江苏大学 Tandem type oil-electricity hybrid power combine harvester and method

Also Published As

Publication number Publication date
JP6066880B2 (en) 2017-01-25
JP2015065896A (en) 2015-04-13

Similar Documents

Publication Publication Date Title
US7779616B2 (en) Vehicle with electric hybrid powering of external loads and engine-off capability
RU2514412C2 (en) Agricultural machine (versions) and method of implementation of harvesting operations
JP5676404B2 (en) Combine
JP5745985B2 (en) Combine
JP2004242558A (en) Self-propelled type agricultural working machine
UA100365C2 (en) AGRICULTURAL COMBINE
BRPI0900379B1 (en) AGRICULTURAL HARVEST, AND METHOD FOR OPERATING AN AGRICULTURAL HARVEST
JP6066880B2 (en) Series hybrid combine
EA018847B1 (en) Agricultural harvester with propulsion load shifting between dual engines
KR102307094B1 (en) Series hybrid combine
JP6129046B2 (en) Series hybrid combine
JPH04278828A (en) Combine
JP5138437B2 (en) Combine
JP6129045B2 (en) Series hybrid combine
JP5681602B2 (en) Combine
JP6161499B2 (en) Series hybrid combine
JP6104119B2 (en) Series hybrid combine
JP4207681B2 (en) Combine
JP2004073006A (en) Driving force apparatus of combine harvester or the like
US11622504B2 (en) Agricultural production machine
JP5764024B2 (en) Combine
JP5764022B2 (en) Combine
JP2013070644A (en) Combine harvester
CN117598092A (en) Power system and method of soybean and corn harvesting machine and harvester
JP2015029507A (en) Combine harvester

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14847705

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14847705

Country of ref document: EP

Kind code of ref document: A1