WO2015046127A1 - Inclination detection device - Google Patents

Inclination detection device Download PDF

Info

Publication number
WO2015046127A1
WO2015046127A1 PCT/JP2014/075034 JP2014075034W WO2015046127A1 WO 2015046127 A1 WO2015046127 A1 WO 2015046127A1 JP 2014075034 W JP2014075034 W JP 2014075034W WO 2015046127 A1 WO2015046127 A1 WO 2015046127A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
inclination
light emitting
reflected light
detected object
Prior art date
Application number
PCT/JP2014/075034
Other languages
French (fr)
Japanese (ja)
Inventor
寛人 石川
石川 弘樹
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2015539198A priority Critical patent/JP6020738B2/en
Publication of WO2015046127A1 publication Critical patent/WO2015046127A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • G01C9/02Details

Definitions

  • the present invention relates to an inclination detection device that detects an inclination of an object to be detected using a light emitting element and a light receiving element.
  • a light-emitting element In general, a light-emitting element, a light-receiving element that receives light reflected by the object to be detected, and a signal that detects the tilt of the object to be detected based on a reflected light signal received by the light-receiving element
  • An inclination detecting device including a processing unit is known. (For example, refer to Patent Document 1 and Non-Patent Document 1).
  • the tilt detection apparatus described in Patent Document 1 is provided with three light receiving elements surrounding the periphery of one light emitting element, and converts the light received by each light receiving element into an electrical signal to obtain a current.
  • the tilt detection apparatus calculates the reciprocal of the square root of each current and obtains the tilt angle of the detected object by a predetermined calculation process.
  • the tilt detection apparatus described in Non-Patent Document 1 uses a plurality of infrared distance measuring sensors. That is, this inclination detection device emits an infrared LED, receives reflected light from the detected object by the position detection element, and obtains coordinates between each sensor and the detected object. And the inclination detection apparatus described in the nonpatent literature 1 has obtained the inclination of the to-be-detected object from the calculated
  • the reflected light reflected from the detected object is converted into an electrical signal, and the tilt of the detected object is not performed unless a calculation process is performed using a complicated calculation formula having a correction coefficient.
  • a calculation process is performed using a complicated calculation formula having a correction coefficient.
  • the distance between the sensor and the object to be detected must be obtained and the coordinates must be derived, which is complicated. There is also a problem that only a uniaxial inclination can be obtained.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide an inclination detection apparatus that can determine the inclination of an object to be detected with a simple configuration and signal processing.
  • the present invention provides a first and second light emitting elements that emit light in a time-division manner, and light that is emitted from the first and second light emitting elements and is reflected by an object to be detected.
  • the signal processing means includes the first light receiving element and the signal processing means for detecting the inclination of the detected object based on a signal of the reflected light received by the light receiving element.
  • Reflected light intensity ratio calculating means for calculating a reflected light intensity ratio between the intensity of the reflected light by the light emitting element and the intensity of the reflected light by the second light emitting element, and the reflected light intensity ratio from a previously registered table
  • an angle conversion means for converting the angle into the tilt angle of the detected object.
  • the detected object when the detected object reflects the light of the two light emitting elements, the reflected light intensity ratio of each reflected light is obtained, and the reflected light intensity ratio is converted into an inclination angle.
  • the inclination of the object to be detected can be obtained from this inclination angle.
  • the present invention also provides the first, second, and third light emitting elements that emit light in a time-sharing manner, and the light that is emitted from the first, second, and third light emitting elements reflected by the object to be detected.
  • the signal processing means includes the first light receiving element and the signal processing means for detecting the inclination of the detected object based on a signal of the reflected light received by the light receiving element.
  • a first reflected light intensity ratio calculating means for calculating a first reflected light intensity ratio between the intensity of the reflected light from the light emitting element and the intensity of the reflected light from the second light emitting element; First angle conversion means for converting the first reflected light intensity ratio from the table of 1 into the first tilt angle of the detected object; the intensity of the reflected light by the second light emitting element; and the third Second reflected light intensity ratio with reflected light intensity by light emitting element Second reflected light intensity ratio calculating means for calculating, and a second angle for converting the second reflected light intensity ratio into a second tilt angle of the detected object from a previously registered second table. It is characterized by comprising conversion means and inclination calculation means for obtaining the inclination of the detected object based on the first inclination angle and the second inclination angle.
  • the detected object when the detected object reflects the light of the three light emitting elements, the reflected light intensity ratio of each reflected light is obtained, and the reflected light intensity ratio is converted into an inclination angle.
  • the inclination of the detected object can be obtained from the plurality of inclination angles.
  • the inclination of the detected object in the biaxial direction can be obtained by using at least two reflected light intensity ratios.
  • the signal processing means calculates the third reflected light intensity ratio between the intensity of the reflected light from the third light emitting element and the intensity of the reflected light from the first light emitting element.
  • Intensity ratio calculating means, and third angle conversion means for converting the third reflected light intensity ratio from a third table registered in advance into a third tilt angle of the detected object,
  • the tilt calculating means is based on a first tilt vector based on the first tilt angle, a second tilt vector based on the second tilt angle, and a third tilt vector based on the third tilt angle. The inclination of the detected object is obtained.
  • the reflected light intensity ratio between the first light emitting element and the second light emitting element the reflected light intensity ratio between the second light emitting element and the third light emitting element, the third light emitting element and the first light emitting element.
  • Each of the reflected light intensity ratios of the light-emitting elements is converted into an inclination angle to obtain each inclination vector. For this reason, the inclination of the detected object in the biaxial direction can be obtained based on these three inclination vectors.
  • the irradiation positions of the light from the first, second, and third light emitting elements are separated from each other as the distance between the first, second, and third light emitting elements is increased.
  • the configuration is such that light is emitted in the direction.
  • the distance between the irradiation positions is larger between the distances between the three light emitting elements and the distances between the three irradiation positions on the detected object.
  • FIG. 3 is a cross-sectional view of the tilt detection device as seen from the direction of arrows III-III in FIG.
  • FIG. 3 is a cross-sectional view of the tilt detection device as seen from the direction of arrows III-III in FIG.
  • It is explanatory drawing which shows the case where an inclination detection apparatus and a to-be-detected object are parallel.
  • It is a characteristic diagram which shows the time change of the light emission signal and reflected light signal in case an inclination detection apparatus and a to-be-detected object are parallel.
  • the first and second embodiments it is a flowchart showing the overall processing for specifying the inclination of the detected object.
  • 1st, 2nd embodiment it is explanatory drawing which shows the 1st, 2nd and 3rd table for converting an inclination angle from reflected light intensity ratio and calculating
  • or FIG. 13 has shown the 1st Embodiment of this invention.
  • the tilt detection apparatus 1 includes a substrate 2, light emitting elements 3 to 5, a light receiving element 6, and the like.
  • the substrate 2 is a flat plate formed using an insulating material.
  • a printed wiring board is used as the substrate 2.
  • the light emitting elements 3 to 5 and the light receiving element 6 are mounted on the surface 2A of the substrate 2.
  • the light emitting elements 3 to 5 are mounted on the surface 2A of the substrate 2 and emit time-divided light such as infrared rays and visible rays.
  • the optical axes of the light emitting elements 3 to 5 are usually emitted in a direction perpendicular to the surface 2A of the substrate 2 (Z-axis direction), for example.
  • a light emitting diode (LED), a laser diode (LD), or a surface emitting laser (VCSEL) is used.
  • the three light emitting elements 3 to 5 are arranged at the apexes of a triangle on the surface 2A of the substrate 2, respectively. If the inclination detection error is acceptable, the three light emitting elements 3 to 5 may be aligned.
  • the light receiving element 6 is mounted on the surface 2A of the substrate 2 and receives the light reflected by the detected object Obj from the infrared rays and the visible light emitted from the light emitting elements 3 to 5.
  • the light receiving element 6 for example, a photodiode (PD), a phototransistor or the like is used.
  • the light receiving element 6 is disposed within a triangular region formed by the three light emitting elements 3 to 5 on the surface 2A of the substrate 2.
  • the light receiving element 6 is preferably arranged at a position where the distance from each of the light emitting elements 3 to 5 is equal. If the inclination detection error is acceptable, the light receiving element 6 may be arranged outside the triangular area formed by the three light emitting elements 3 to 5.
  • the detected object Obj when the detected object Obj is greatly separated above the substrate 2, the light from the light emitting elements 3 to 5 becomes weak, and the reflected light from the detected object Obj cannot be detected by the light receiving element 6. For this reason, it is preferable to set the arrangement range of the detected object Obj within a height range in which the light reflected from the detected object Obj can be detected by the light receiving element 6.
  • a transparent resin layer 7 is formed on the surface 2A of the substrate 2.
  • the transparent resin layer 7 covers the entire surface 2A of the substrate 2 and seals the light emitting elements 3 to 5 and the light receiving element 6.
  • light emitting element lenses 7A to 7C are formed at positions corresponding to the light emitting elements 3 to 5, respectively.
  • the light emitting element lenses 7A to 7C are formed in a substantially hemispherical shape protruding upward.
  • the center of the light emitting element lenses 7A to 7C and the mounting position of the light emitting elements 3 to 5 are shifted by a slight distance. For this reason, the optical axes L1 to L3 of the light beams emitted from the light emitting elements 3 to 5 are bent by the light emitting element lenses 7A to 7C and emitted toward the direction inclined from the Z-axis direction. At this time, the inclination directions of the optical axes L1 to L3 are set in directions away from each other. Thereby, the irradiation positions of the light from the light emitting elements 3 to 5 on the detected object Obj are different from each other. In addition, as the distance between the light emitting elements 3 to 5 and the detected object Obj increases, the irradiation positions of the light from the light emitting elements 3 to 5 on the detected object Obj are separated from each other.
  • each of the optical axes L1 to L3 is emitted with an inclination at the same angle from the Z-axis direction.
  • the light irradiation positions are separated from each other at an equal distance.
  • a light receiving element lens 7D is formed at a position corresponding to the light receiving element 6. Similarly to the light emitting element lenses 7A to 7C, the light receiving element lens 7D is also formed in a hemispherical shape.
  • the light receiving element lens 7 ⁇ / b> D collects light incident from the outside onto the light receiving element 6.
  • the light emitting element lenses 7A to 7C and the light receiving element lens 7D are integrally formed on the transparent resin layer 7 for sealing the light emitting elements 3 to 5 and the light receiving element 6, but separately from the transparent resin layer 7. It may be provided. Further, the light from the light emitting elements 3 to 5 is configured to be inclined from the vertical direction of the substrate 2 by the light emitting element lenses 7A to 7C, but the light emitting elements 3 to 5 are inclined with respect to the surface 2A of the substrate 2. The light emitted from the light emitting elements 3 to 5 may be attached and inclined from the vertical direction of the substrate 2 directly.
  • the signal processing circuit 11 constitutes signal processing means for detecting the inclination of the detected object Obj based on the reflected light signal received by the light receiving element 6.
  • the signal processing circuit 11 includes a drive unit 12, a nonvolatile memory 13, and a calculation unit 14.
  • the driving unit 12 controls the time division light emission of the light emitting elements 3 to 5 in cooperation with the calculation unit 14.
  • the drive unit 12 is connected to the light emitting elements 3 to 5 and outputs the light emission signals St1 to St3 based on the control signal from the calculation unit 14. Specifically, the drive unit 12 supplies the light emitting elements 3 to 5 with a driving current for causing the light emitting elements 3 to 5 to emit light.
  • the signal processing circuit 11 drives the light emitting elements 3 to 5 using the driving unit 12, and emits light along the optical axes L1 to L3 from the light emitting elements 3 to 5 toward the detected object Obj.
  • the light receiving element 6 that has received the reflected light from the detected object Obj outputs the light detection signal S0 to the calculation unit 14.
  • the nonvolatile memory 13 is connected to the calculation unit 14, and includes a table T 1 for converting the reflected light intensity ratio Ra between the light emitting element 3 and the light emitting element 4 into the tilt angle ⁇ 1, and the reflected light intensity of the light emitting element 4 and the light emitting element 5.
  • a table T2 for converting the ratio Rb into the inclination angle ⁇ 2 and a table T3 for converting the reflected light intensity ratio Rc between the light emitting element 5 and the light emitting element 3 into the inclination angle ⁇ 3 are stored.
  • the nonvolatile memory 13 stores information for converting the inclination angles ⁇ 1 to ⁇ 3 into the inclination vectors Va to Vc, and a table T4 for obtaining the inclination of the detected object Obj based on the values of the inclination vectors Va to Vc. Is remembered.
  • the nonvolatile memory 13 for example, a ROM or a flash memory is used.
  • the nonvolatile memory 13 stores correction coefficients C1 to C3 for calibrating individual differences in output intensity of the light emitting elements 3 to 5 and distance differences between the light emitting elements 3 to 5 and the light receiving element 6.
  • the calculation unit 14 is, for example, a microprocessor, a process for controlling the light emission of the light emitting elements 3 to 5, a process for separating the light detection signal S0 into three reflected light signals Sr1 to Sr3 corresponding to the light emitting elements 3 to 5, and a reflection Processing for multiplying the optical signals Sr1 to Sr3 by correction coefficients C1 to C3 Processing for detecting the inclination of the detected object Obj via the tables T1 to T3 of the nonvolatile memory 13 based on the three reflected light signals C1Sr1 to C3Sr3, inclination The entire control of the detection apparatus 1 is performed.
  • the calculation unit 14 supplies a control signal for controlling the intensity and timing of the detection light of the light emitting elements 3 to 5 to the driving unit 12, and the light emitting elements 3 to 5 correspond to the control signal.
  • the drive unit 12 supplies pulsed drive currents to the light emitting elements 3 to 5 as the light emission signals St1 to St3, respectively.
  • the pulses of the light emission signals St1 to St3 have a constant light emission interval T0 and are output at different timings for the light emitting elements 3 to 5, respectively.
  • each of the light emitting elements 3 to 5 emits pulse light and emits light in a time-sharing manner (see FIGS. 6 and 8).
  • the light emitting elements 3 to 5 may emit pulses in a time division manner. For this reason, for example, the light emission of the next light emitting element 4 may be started simultaneously with the light emission of the light emitting element 3 being stopped.
  • the calculation unit 14 executes the program shown in FIG. In this program, the inclination of the detected object Obj is specified by the following procedure.
  • step 1 the light detection signal S0 supplied from the light receiving element 6 is read.
  • step 2 the three reflected light signals Sr1 to Sr3 are separated from the light detection signal S0.
  • the light emitting elements 3 to 5 emit light in a time-sharing manner at different timings
  • the light reflected from the detected object Obj reflects the light from each of the light emitting elements 3 to 5 at each light emission timing of the light emitting elements 3 to 5. Is received by the light receiving element 6. Therefore, by extracting three signals synchronized with the light emission signals St1 to St3 from the light detection signal S0, it is possible to separate reflected light signals based on the light from the respective light emitting elements 3 to 5.
  • the calculation unit 14 extracts the light detection signal S0 at each light emission timing of the light emitting elements 3 to 5, and separates it into three reflected light signals Sr1 to Sr3 corresponding to the reflected light of the light emitting elements 3 to 5.
  • the number of the light receiving elements 6 can be reduced, the number of parts can be reduced, and the manufacturing cost can be reduced. can do.
  • the correction factors C1 to C3 are multiplied to the reflected light signals Sr1 to Sr3 in order to calibrate the individual differences of the light emitting elements 3 to 5 and the like.
  • the correction coefficients C1 to C3 are coefficients such that the values of the reflected light signals Sr1 to Sr3 become the same value with reference to the case where the detected object Obj is arranged parallel to the substrate 2. If it is. That is, when the object to be detected Obj is arranged in parallel to the substrate 2, the relationship represented by the following formula 1 may be satisfied.
  • the reflected light intensity ratio Ra is calculated based on the corrected reflected light signal C1Sr1 and reflected light signal C2Sr2.
  • step 4 using the table T1, the reflected light intensity ratio Ra is converted into an inclination angle ⁇ 1, and an inclination vector Va is obtained.
  • the inclination vector Va is a vector orthogonal to a vector connecting the irradiation positions of the light from the light emitting elements 3 and 4, for example, a vector along a perpendicular line of the detected object Obj viewed from the direction of the light emitting elements 3 and 4. It is.
  • the tilt angle ⁇ 1 is an angle formed by the Z axis and the tilt vector Va (see FIG. 9A).
  • the table T1 is a conversion table for converting the reflected light intensity ratio Ra between the light emitting element 3 and the light emitting element 4 into the tilt angle ⁇ 1. An example of the table T1 is shown in FIG.
  • the table T1 in FIG. 12A illustrates a case where the inclination angle ⁇ 1 is divided into a horizontal state, a positive side inclination state, and a negative side inclination state.
  • the value A in the table T1 indicates an angle range in which the inclination angle ⁇ 1 can be detected as a horizontal state (0 °).
  • the tilt angle ⁇ 1 does not fall within the range between ( ⁇ A) and (+ A)
  • the values Ra1 and Ra2 are threshold values of the reflected light intensity ratio Ra.
  • the table T1 detects the tilt angle ⁇ 1 in three stages by comparing the reflected light intensity ratio Ra with the values Ra1 and Ra2.
  • the inclination angle ⁇ 1 is smaller than ( ⁇ A), corresponding to the negative inclination state.
  • the inclination angle ⁇ 1 is a value between ( ⁇ A) and (+ A), which corresponds to the horizontal state.
  • the inclination angle ⁇ 1 is larger than (+ A), corresponding to the positive inclination state.
  • the values A, Ra1, and Ra2 in the table T1 are arbitrary values, and these values can be set as appropriate.
  • the reflected light intensity ratio Rb is calculated based on the corrected reflected light signal C2Sr2 and reflected light signal C3Sr3.
  • the reflected light intensity ratio Rb is converted into an inclination angle ⁇ 2 to obtain an inclination vector Vb.
  • the inclination vector Vb is a vector orthogonal to a vector connecting the irradiation positions of the light from the light emitting elements 4 and 5, for example, a vector along a perpendicular line of the detected object Obj viewed from the direction of the light emitting elements 4 and 5. It is.
  • the tilt angle ⁇ 2 is an angle formed by the Z axis and the tilt vector Vb (see FIG. 9B).
  • the table T2 is a conversion table for converting the reflected light intensity ratio Rb between the light emitting element 4 and the light emitting element 5 into the tilt angle ⁇ 2.
  • An example of the table T2 is shown in FIG.
  • the table T2 is configured almost the same as the table T1.
  • Values Rb1 and Rb2 in the table T2 are threshold values of the reflected light intensity ratio Rb, and are set as appropriate similarly to the values Ra1 and Ra2.
  • the reflected light intensity ratio Rc is calculated based on the corrected reflected light signal C3Sr3 and the reflected light signal C1Sr1.
  • the reflected light intensity ratio Rc is converted into an inclination angle ⁇ 3 to obtain an inclination vector Vc.
  • the inclination vector Vc is a vector orthogonal to a vector connecting the irradiation positions of the light from the light emitting elements 5 and 3, and is, for example, a vector along a perpendicular line of the detected object Obj viewed from the direction of the light emitting elements 5 and 3. It is.
  • the tilt angle ⁇ 3 is an angle formed by the Z axis and the tilt vector Vc (see FIG. 9C).
  • the table T3 is a conversion table for converting the reflected light intensity ratio Rc between the light emitting element 5 and the light emitting element 3 into the tilt angle ⁇ 3.
  • An example of the table T3 is shown in FIG.
  • the table T3 is configured in substantially the same manner as the table T1.
  • Values Rc1 and Rc2 in the table T3 are threshold values of the reflected light intensity ratio Rc, and are appropriately set in the same manner as the values Ra1 and Ra2.
  • the tables T1 to T3 detect the inclination angles ⁇ 1 to ⁇ 3 in three stages.
  • the present invention is not limited to this, and the tables T1 to T3 detect the inclination angles ⁇ 1 to ⁇ 3 in a total of five stages, for example, a horizontal state, a two-step inclination state on the positive side, and a two-step inclination state on the negative side.
  • the tilt angles ⁇ 1 to ⁇ 3 may be detected with a higher resolution than that.
  • step 9 the normal vector N of the detected object Obj is specified based on the respective inclination vectors Va to Vc, and the inclination of the detected object Obj is obtained.
  • each of the inclination vectors Va to Vc has only a value “ ⁇ ” representing the negative inclination state, “0” representing the horizontal state, and “+” representing the positive inclination state.
  • a method of using the table T4 based on the values of the inclination vectors Va to Vc when obtaining the inclination of the detected object Obj is exemplified (see FIGS. 12 and 13).
  • the triangle formed by the light irradiation positions from the light emitting elements 3 to 5 is an equilateral triangle, and each rotation axis is at the middle point of each light irradiation position. explain.
  • the light emitting elements 3 to 5 emit light toward the upper side of the substrate 2.
  • the detected object Obj such as a palm
  • the detected object Obj blocks the optical path of the light emitting elements 3 to 5.
  • the detected object Obj reflects the light from the light emitting elements 3 to 5.
  • the reflected light is received by the light receiving element 6, and the light receiving element 6 outputs a current corresponding to the intensity of the reflected light as the light detection signal S0.
  • the calculation unit 14 separates the three reflected light signals Sr1 to Sr3 from the light detection signal S0 from the light receiving element 6.
  • the calculation unit 14 calculates these reflected light intensity ratios Ra to Rc by multiplying these reflected light signals Sr1 to Sr3 by correction coefficients C1 to C3 registered in advance in the nonvolatile memory 13. Then, the calculation unit 14 converts the three reflected light intensity ratios Ra to Rc into inclination angles ⁇ 1 to ⁇ 3 using the tables T1 to T3 registered in advance in the nonvolatile memory 13. That is, as shown in FIG. 12, the calculation unit 14 converts the reflected light intensity ratio Ra between the light emitting element 3 and the light emitting element 4 into the tilt angle ⁇ 1 using the table T1.
  • the calculation unit 14 converts the reflected light intensity ratio Rb between the light emitting element 4 and the light emitting element 5 into the tilt angle ⁇ 2 using the table T2.
  • the computing unit 14 converts the reflected light intensity ratio Rc between the light emitting element 5 and the light emitting element 3 into the tilt angle ⁇ 3 using the table T3.
  • the calculation unit 14 converts the three inclination angles ⁇ 1 to ⁇ 3 into the inclination vectors Va to Vc, and specifies the inclination of the detected object Obj based on the inclination vectors Va to Vc.
  • tables T1 to T3 for converting the inclination angles ⁇ 1 to ⁇ 3 into inclination vectors Va to Vc are registered in advance in the nonvolatile memory 13, and the inclination angles ⁇ 1 are stored.
  • the inclination vectors Va to Vc are obtained from .about. ⁇ 3.
  • the inclination of the detected object Obj is specified using a table T4 based on the inclination vectors Va to Vc.
  • the values of the inclination vectors Va to Vc are “000”, it indicates that the detected object Obj is parallel to the substrate 2. Further, for example, when the values of the inclination vectors Va to Vc are “0 ⁇ +”, the normal vector N is directed in the 270 ° direction in FIG. 13 and the detected object Obj is inclined forward. Show.
  • the table T4 obtains the azimuth angle of the normal vector N based on the inclination vectors Va to Vc.
  • the state in which the detected object Obj is inclined toward the light emitting element 4 around the rotation axis of the straight line connecting the light emitting elements 3 and 4 is set to 0 °.
  • the other angles in FIG. 13 are assumed to increase counterclockwise with 0 ° as a reference.
  • the case where the detected object Obj is parallel to the tilt detection apparatus 1 will be described.
  • the reflected light intensity ratios Ra to Rc have the same value. This is because the correction coefficients C1 to C3 are applied to the reflected light signals Sr1 to Sr3 in order to calibrate the individual differences of the light emitting elements 3 to 5 etc. with reference to the case where the detected object Obj is arranged parallel to the substrate 2. Because it is hung.
  • the corrected reflected light signals C1Sr1 to C3Sr3 have substantially the same magnitude, and the reflected light intensity ratios Ra to Rc. Is a value shown in the following equations (2), (3), and (4).
  • the tilt vectors Va to Vc are perpendicular to the respective rotation axes, so that they are “0”, “0”, and “0” in order. Therefore, since the position indicated by “000” from the table T4 in FIG. 13 is the center of the circle, the normal vector N of the detected object Obj extends in the vertical direction from the center, and the inclination of the detected object Obj is detected as an inclination. Parallel to the device 1.
  • the detected object Obj is tilted around the Y axis, that is, with the Y axis as the center, the left end side of the detected object Obj is close to the tilt detecting device 1 and the right end side of the detected object Obj is from the tilt detecting device 1.
  • the magnitudes of the reflected light signals Sr1 to Sr3 vary according to the position of the detected object Obj in the Z-axis direction. That is, when the detected object Obj is arranged at a position close to the inclination detecting device 1, the reflected light becomes strong and the reflected light signals Sr1 to Sr3 also become large.
  • the detected object Obj is arranged at a position away from the inclination detecting device 1, the reflected light becomes weak and the reflected light signals Sr1 to Sr3 also become small.
  • the magnitudes of the corrected reflected light signals C1Sr1 to C3Sr3 are expressed by the following equation (5). (See FIG. 8). This is because the position closest to the tilt detection apparatus 1 is the irradiation position of the optical axis L1 by the light emitting element 3, and the position closest to the second is the irradiation position of the optical axis L3 by the light emitting element 5. This is because the second closest position is the irradiation position of the optical axis L2 by the light emitting element 4.
  • each of the reflected light intensity ratios Ra to Rc has values shown in the following equations (6), (7), and (8).
  • the tilt vector Va is tilted toward the light emitting element 3 side, and therefore “ ⁇ ” (see FIG. 9A), the tilt vector Vb is moved toward the light emitting element 4 side. Since it is inclined, “+” (see FIG. 9B), the inclination vector Vc becomes “+” (see FIG. 9C) because it is inclined toward the light emitting element 3 side. Accordingly, since the position indicated by “ ⁇ ++” from the table T4 in FIG. 14 is the 180 ° direction, the normal vector N of the detected object Obj extends from the center in the 180 ° direction, and the inclination of the detected object Obj is It can be seen that it is tilted to the left around the Y axis.
  • the signal processing circuit 11 converts the reflected light intensity ratios Ra to Rc by the light emitting elements 3 to 5 into the inclination angles ⁇ 1 to ⁇ 3, and the inclination vectors Va to Vc. Ask for. Thereby, the inclination of the detected object Obj in the biaxial direction can be obtained based on these inclination vectors Va to Vc.
  • Step 3 in FIG. 11 shows a specific example of the first reflected light intensity ratio calculation means
  • Step 4 shows a specific example of the first angle conversion means
  • Step 5 shows a specific example of the second reflected light intensity ratio calculation means
  • Step 6 shows a specific example of the second angle conversion means
  • Step 7 shows a specific example of the third reflected light intensity ratio calculation means
  • Step 8 shows a specific example of the third angle conversion means.
  • step 9 shows a specific example of the inclination calculating means.
  • the inclination calculating means specifies the roll angle and pitch angle of the detected object Obj based on the respective inclination vectors Va to Vc, and determines the inclination of the detected object Obj.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the triangle formed by the light irradiation positions from the light emitting elements 3 to 5 is a regular triangle and each rotation axis is at the midpoint of each light irradiation position will be described as an example.
  • the inclination detection device 21 according to the second embodiment is configured similarly to the inclination detection device 1 according to the first embodiment.
  • the signal processing circuit 22 is configured in the same manner as the signal processing circuit 11 according to the first embodiment.
  • the calculation unit 14 according to the second embodiment executes the program shown in FIG. 11 in substantially the same manner as in the first embodiment.
  • the difference between the first embodiment and the second embodiment is that the inclination of the detected object Obj is obtained by using the following equations (9) and (10) without using the table T4 in step 9. ing.
  • step 9 the X-axis direction component of each gradient vector is obtained from each gradient vector Va to Vc using equation (9), and Y of each gradient vector is derived from each gradient vector Va to Vc using equation (10).
  • An axial direction component is obtained, and an inclination of the detected object Obj is obtained based on the X axis direction component and the Y axis direction component.
  • the X-axis direction is a direction connecting the light-emitting elements 3 and 4 shown in FIG. 14, and the Y-axis direction is a direction orthogonal to the X-axis.
  • Vx is a combination of the X-axis direction components of the respective gradient vectors Va to Vc.
  • Vy is a composite of Y-axis direction components of the respective gradient vectors Va to Vc.
  • the roll angle of the detected object Obj around the Y axis can be obtained from the synthesized X axis direction component Vx. Further, the pitch angle of the detected object Obj around the X axis can be obtained from the synthesized Y axis direction component Vy. Therefore, in the second embodiment, the inclination of the detected object Obj is obtained based on these roll angle and pitch angle.
  • the inclination of the detected object Obj is obtained using two light emitting elements. Note that, in the third embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the tilt detection device 31 according to the third embodiment is configured in substantially the same manner as the tilt detection device 1 according to the first embodiment.
  • the substrate 2 is provided with two light emitting elements 3 and 4 and a light receiving element 6, and a signal processing circuit 32 as a signal processing means is mounted.
  • the signal processing circuit 32 is configured in substantially the same manner as the signal processing circuit 11 according to the first embodiment, and includes a drive unit 12, a nonvolatile memory 13, and a calculation unit 14.
  • the calculation unit 14 executes the program shown in FIG.
  • the inclination of the detected object Obj is specified by the following procedure.
  • step 11 the light detection signal S0 supplied from the light receiving element 6 is read.
  • step 12 the two reflected light signals Sr1 and Sr2 are separated from the light detection signal S0.
  • the reflected light signals Sr1, Sr2 are multiplied by correction coefficients C1, C2.
  • the reflected light intensity ratio Ra is calculated based on the corrected reflected light signal C1Sr1 and reflected light signal C2Sr2.
  • the reflected light intensity ratio Ra is converted into an inclination angle ⁇ 1 using the table T31, and the inclination of the detected object Obj is obtained.
  • the inclination angle ⁇ 1 calculated from the reflected light intensity ratio Ra using the table T31 becomes the inclination of the detected object Obj as it is.
  • the table T31 is configured in substantially the same manner as the table T1 in the first embodiment.
  • the inclination of the detected object Obj can be obtained by converting the reflected light intensity ratio Ra by the light emitting elements 3 and 4 into the inclination angle ⁇ 1.
  • step 13 in FIG. 17 shows a specific example of the reflected light intensity ratio calculation means
  • step 14 shows a specific example of the angle conversion means.
  • the case where the three light emitting elements 3 to 5 are provided has been described as an example, but a configuration including four or more light emitting elements may be used.
  • the inclination of the detected object Obj is obtained from the three inclination vectors Va to Vc.
  • the inclination of the detected object Obj may be obtained from the two inclination vectors.
  • the inclination of the detected object Obj is obtained based on two inclination vectors detected on two sides orthogonal to each other. Also good.
  • the values of the respective inclination vectors Va to Vc are “ ⁇ ” representing a negative inclination state, “0” representing a horizontal state, and “+” representing a positive inclination state.
  • the inclination of the detected object Obj is obtained based on the table T4.
  • the present invention is not limited to this, and it is possible to increase the values of the respective inclination vectors Va to Vc to obtain the inclination direction and inclination angle of the detected object Obj more finely.
  • the triangle formed by the irradiation positions of the light from the light emitting elements 3 to 5 is a regular triangle, and the inclination of the detected object Obj is determined based on the three inclination angles ⁇ 1 to ⁇ 3.
  • the shape of the triangle is not limited to a regular triangle, and may be an arbitrary triangle.
  • the reflected light signals Sr1 to Sr3 are multiplied by the correction coefficients C1 to C3 in order to correct individual differences among the light emitting elements.
  • the present invention is not limited to this, and the reflected light signals Sr1 to Sr3 may be used as they are to obtain the inclination of the detected object Obj by simpler signal processing.
  • the inclination of the detected object Obj is obtained from three inclination vectors.
  • the present invention is not limited to this, and a vector of two sides of a triangle (a vector orthogonal to the inclination vector) connecting the three light irradiation positions when the object Obj is irradiated with light from the light emitting elements 3 to 5 is used.
  • the normal vector N of the detected object Obj may be obtained by calculating the outer product of the detected object Obj to obtain the inclination of the detected object Obj.
  • the X-axis direction and the Y-axis direction are not limited to those exemplified in the above embodiments, and can be set to arbitrary two-axis directions that are parallel to the surface 2A of the substrate 2 and orthogonal to each other.
  • the optical axes L1 to L3 from the light emitting elements 3 to 5 are emitted in directions away from each other by the light emitting element lenses 7A to 7C.
  • the present invention is not limited to this, and the light-emitting element lenses 7A to 7C are not disposed, and the optical axes L1 to L3 from the light-emitting elements 3 to 5 may be emitted directly in the vertical direction of the substrate 2. Good. Further, the center of the light emitting element lenses 7A to 7C and the mounting position of the light emitting elements 3 to 5 may be matched to emit the optical axes L1 to L3 from the light emitting elements 3 to 5 in the vertical direction of the substrate 2. .
  • the light receiving element 6 and the calculation unit 14 are directly connected.
  • the present invention is not limited to this, and a configuration in which a signal amplification device that amplifies the light detection signal S0 and a filter device that removes noise of the light detection signal S0 are provided between the light receiving element 6 and the calculation unit 14. Good.
  • one light receiving element 6 is provided.
  • a light receiving element may receive light for each light emitting element.
  • the signal processing circuits 11, 22 and 32 as signal processing means are configured to be mounted on the substrate 2, but may be provided separately from the substrate 2.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

A signal processing circuit (11) calculates the intensity ratio (Ra) of light from light-emitting elements (3, 4) that has been reflected and converts the reflected light intensity ratio (Ra) to an inclination angle (θ1) of an object under detection (Obj) using a table (T1). The signal processing circuit (11) calculates the intensity ratio (Rb) of light from light-emitting elements (4, 5) that has been reflected and converts the reflected light intensity ratio (Rb) to an inclination angle (θ2) of the object under detection (Obj) using a table (T2). The signal processing circuit (11) calculates the intensity ratio (Rc) of light from light-emitting elements (5, 3) that has been reflected and converts the reflected light intensity ratio (Rc) to an inclination angle (θ3) of the object under detection (Obj) using a table (T3). The signal processing circuit (11) determines the inclination of the object under detection (Obj) on the basis of the inclination angles (θ1 to θ3).

Description

傾き検出装置Tilt detection device
 本発明は、発光素子と受光素子を用いて被検出物体の傾きを検知する傾き検出装置に関する。 The present invention relates to an inclination detection device that detects an inclination of an object to be detected using a light emitting element and a light receiving element.
 一般に、発光素子と、発光素子から出射された光が被検出物体によって反射された光を受光する受光素子と、受光素子で受光した反射光の信号に基づいて被検出物体の傾きを検知する信号処理手段とを備えた傾き検出装置が知られている。(例えば、特許文献1、非特許文献1参照)。 In general, a light-emitting element, a light-receiving element that receives light reflected by the object to be detected, and a signal that detects the tilt of the object to be detected based on a reflected light signal received by the light-receiving element An inclination detecting device including a processing unit is known. (For example, refer to Patent Document 1 and Non-Patent Document 1).
 特許文献1に記載された傾き検出装置は、1個の発光素子の周囲を取囲んで3個の受光素子を設け、各受光素子で受光した光を電気信号に変換し、電流を得る。そして、この傾き検出装置は、各電流の平方根の逆数を演算し、所定の演算処理によって被検出物体の傾き角を求めている。非特許文献1に記載された傾き検出装置は、複数の赤外線測距センサを用いている。すなわち、この傾き検出装置は、赤外線LEDを発光させて被検出物体からの反射光を位置検出素子で受光し、各センサと被検出物体との座標を求める。そして、非特許文献1に記載された傾き検出装置は、求めた複数の座標から、最小二乗法を用いて、被検出物体の傾きを得ている。 The tilt detection apparatus described in Patent Document 1 is provided with three light receiving elements surrounding the periphery of one light emitting element, and converts the light received by each light receiving element into an electrical signal to obtain a current. The tilt detection apparatus calculates the reciprocal of the square root of each current and obtains the tilt angle of the detected object by a predetermined calculation process. The tilt detection apparatus described in Non-Patent Document 1 uses a plurality of infrared distance measuring sensors. That is, this inclination detection device emits an infrared LED, receives reflected light from the detected object by the position detection element, and obtains coordinates between each sensor and the detected object. And the inclination detection apparatus described in the nonpatent literature 1 has obtained the inclination of the to-be-detected object from the calculated | required coordinate using the least squares method.
特開平6-94443号公報JP-A-6-94443
 特許文献1に記載された傾き検出装置では、被検出物体から反射した反射光を電気信号に変換し、補正係数を有する煩雑な計算式を用いて演算処理を行わなければ、被検出物体の傾きを得られなかった。非特許文献1に記載された傾き検出装置では、センサと被検出物体との距離を求め、座標を導出しなければならず、煩雑であった。また、1軸の傾きしか得られないという問題もあった。 In the tilt detection apparatus described in Patent Document 1, the reflected light reflected from the detected object is converted into an electrical signal, and the tilt of the detected object is not performed unless a calculation process is performed using a complicated calculation formula having a correction coefficient. Could not get. In the tilt detection apparatus described in Non-Patent Document 1, the distance between the sensor and the object to be detected must be obtained and the coordinates must be derived, which is complicated. There is also a problem that only a uniaxial inclination can be obtained.
 本発明は前述の問題に鑑みなされたものであり、本発明の目的は、簡単な構成および信号処理で被検出物体の傾きを求めることができる傾き検出装置を提供することにある。 The present invention has been made in view of the above-described problems, and an object of the present invention is to provide an inclination detection apparatus that can determine the inclination of an object to be detected with a simple configuration and signal processing.
 (1).上記課題を解決するために、本発明は、互いに時分割発光する第1および第2の発光素子と、前記第1および第2の発光素子から出射された光が被検出物体によって反射された光を受光する受光素子と、前記受光素子で受光した反射光の信号に基づいて前記被検出物体の傾きを検知する信号処理手段とを備えた傾き検出装置において、前記信号処理手段は、前記第1の発光素子による反射光の強度と前記第2の発光素子による反射光の強度との反射光強度比を演算する反射光強度比演算手段と、予め登録しておいたテーブルから前記反射光強度比を前記被検出物体の傾き角度に換算する角度換算手段とを備えたことを特徴としている。 (1). In order to solve the above-described problems, the present invention provides a first and second light emitting elements that emit light in a time-division manner, and light that is emitted from the first and second light emitting elements and is reflected by an object to be detected. In the inclination detecting device, the signal processing means includes the first light receiving element and the signal processing means for detecting the inclination of the detected object based on a signal of the reflected light received by the light receiving element. Reflected light intensity ratio calculating means for calculating a reflected light intensity ratio between the intensity of the reflected light by the light emitting element and the intensity of the reflected light by the second light emitting element, and the reflected light intensity ratio from a previously registered table And an angle conversion means for converting the angle into the tilt angle of the detected object.
 本発明によれば、2個の発光素子の光を被検出物体が反射したときに、各々の反射光の反射光強度比を求め、その反射光強度比を傾き角度に換算する。この傾き角度によって、被検出物体の傾きを求めることができる。 According to the present invention, when the detected object reflects the light of the two light emitting elements, the reflected light intensity ratio of each reflected light is obtained, and the reflected light intensity ratio is converted into an inclination angle. The inclination of the object to be detected can be obtained from this inclination angle.
 (2).また、本発明は、互いに時分割発光する第1,第2および第3の発光素子と、前記第1,第2および第3の発光素子から出射された光が被検出物体によって反射された光を受光する受光素子と、前記受光素子で受光した反射光の信号に基づいて前記被検出物体の傾きを検知する信号処理手段とを備えた傾き検出装置において、前記信号処理手段は、前記第1の発光素子による反射光の強度と前記第2の発光素子による反射光の強度との第1の反射光強度比を演算する第1の反射光強度比演算手段と、予め登録しておいた第1のテーブルから前記第1の反射光強度比を前記被検出物体の第1の傾き角度に換算する第1の角度換算手段と、前記第2の発光素子による反射光の強度と前記第3の発光素子による反射光の強度との第2の反射光強度比を演算する第2の反射光強度比演算手段と、予め登録しておいた第2のテーブルから前記第2の反射光強度比を前記被検出物体の第2の傾き角度に換算する第2の角度換算手段と、前記第1の傾き角度と前記第2の傾き角度とに基づいて前記被検出物体の傾きを求める傾き演算手段とを備えたことを特徴としている。 (2). The present invention also provides the first, second, and third light emitting elements that emit light in a time-sharing manner, and the light that is emitted from the first, second, and third light emitting elements reflected by the object to be detected. In the inclination detecting device, the signal processing means includes the first light receiving element and the signal processing means for detecting the inclination of the detected object based on a signal of the reflected light received by the light receiving element. A first reflected light intensity ratio calculating means for calculating a first reflected light intensity ratio between the intensity of the reflected light from the light emitting element and the intensity of the reflected light from the second light emitting element; First angle conversion means for converting the first reflected light intensity ratio from the table of 1 into the first tilt angle of the detected object; the intensity of the reflected light by the second light emitting element; and the third Second reflected light intensity ratio with reflected light intensity by light emitting element Second reflected light intensity ratio calculating means for calculating, and a second angle for converting the second reflected light intensity ratio into a second tilt angle of the detected object from a previously registered second table. It is characterized by comprising conversion means and inclination calculation means for obtaining the inclination of the detected object based on the first inclination angle and the second inclination angle.
 本発明によれば、3個の発光素子の光を被検出物体が反射したときに、各々の反射光の反射光強度比を求め、その反射光強度比を傾き角度に換算する。これらの複数の傾き角度によって、被検出物体の傾きを求めることができる。また、本発明では、発光素子を3個用いているので、少なくとも2つの反射光強度比を用いることにより、被検出物体の2軸方向の傾きを求めることができる。 According to the present invention, when the detected object reflects the light of the three light emitting elements, the reflected light intensity ratio of each reflected light is obtained, and the reflected light intensity ratio is converted into an inclination angle. The inclination of the detected object can be obtained from the plurality of inclination angles. In the present invention, since three light emitting elements are used, the inclination of the detected object in the biaxial direction can be obtained by using at least two reflected light intensity ratios.
 (3).本発明では、前記信号処理手段は、前記第3の発光素子による反射光の強度と前記第1の発光素子による反射光の強度との第3の反射光強度比を演算する第3の反射光強度比演算手段と、予め登録しておいた第3のテーブルから前記第3の反射光強度比を前記被検出物体の第3の傾き角度に換算する第3の角度換算手段とをさらに備え、前記傾き演算手段は、前記第1の傾き角度による第1の傾きベクトルと、前記第2の傾き角度による第2の傾きベクトルと、前記第3の傾き角度による第3の傾きベクトルとに基づいて前記被検出物体の傾きを求める構成としたことにある。 (3). In the present invention, the signal processing means calculates the third reflected light intensity ratio between the intensity of the reflected light from the third light emitting element and the intensity of the reflected light from the first light emitting element. Intensity ratio calculating means, and third angle conversion means for converting the third reflected light intensity ratio from a third table registered in advance into a third tilt angle of the detected object, The tilt calculating means is based on a first tilt vector based on the first tilt angle, a second tilt vector based on the second tilt angle, and a third tilt vector based on the third tilt angle. The inclination of the detected object is obtained.
 本発明によれば、第1の発光素子と第2の発光素子による反射光強度比と、第2の発光素子と第3の発光素子による反射光強度比と、第3の発光素子と第1の発光素子による反射光強度比とをそれぞれ傾き角度に換算し、各傾きベクトルを求める。このため、これら3つの傾きベクトルに基づいて、被検出物体の2軸方向の傾きを求めることができる。 According to the present invention, the reflected light intensity ratio between the first light emitting element and the second light emitting element, the reflected light intensity ratio between the second light emitting element and the third light emitting element, the third light emitting element and the first light emitting element. Each of the reflected light intensity ratios of the light-emitting elements is converted into an inclination angle to obtain each inclination vector. For this reason, the inclination of the detected object in the biaxial direction can be obtained based on these three inclination vectors.
 (4).本発明では、前記第1,第2および第3の発光素子は、前記被検出物体との距離が大きくなるに従って前記第1,第2および第3の発光素子からの光の照射位置が互いに離れる方向に向けて光を出射してなる構成としたことにある。 (4). In the present invention, the irradiation positions of the light from the first, second, and third light emitting elements are separated from each other as the distance between the first, second, and third light emitting elements is increased. The configuration is such that light is emitted in the direction.
 本発明によれば、3つの発光素子間の各距離と被検出物体における3つの照射位置間の各距離とでは、照射位置間の距離の方が大きくなる。その結果、出射光と反射光の進む距離が長くなるに従って、各発光素子における反射光強度の差も大きくなるから、反射光強度比の精度を高めることができる。これにより、被検出物体の傾きを精度よく求めることができる。 According to the present invention, the distance between the irradiation positions is larger between the distances between the three light emitting elements and the distances between the three irradiation positions on the detected object. As a result, as the distance traveled by the emitted light and reflected light increases, the difference in reflected light intensity between the light emitting elements also increases, so that the accuracy of the reflected light intensity ratio can be increased. Thereby, the inclination of the detected object can be obtained with high accuracy.
第1,第2の実施の形態による傾き検出装置を示す斜視図である。It is a perspective view which shows the inclination detection apparatus by 1st, 2nd embodiment. 図1の傾き検出装置を示す平面図である。It is a top view which shows the inclination detection apparatus of FIG. 傾き検出装置を図2中の矢示III-III方向からみた断面図である。FIG. 3 is a cross-sectional view of the tilt detection device as seen from the direction of arrows III-III in FIG. 第1,第2の実施の形態による傾き検出装置を示すブロック図である。It is a block diagram which shows the inclination detection apparatus by 1st, 2nd embodiment. 傾き検出装置と被検出物体が平行な場合を示す説明図である。It is explanatory drawing which shows the case where an inclination detection apparatus and a to-be-detected object are parallel. 傾き検出装置と被検出物体が平行な場合の発光信号および反射光信号の時間変化を示す特性線図である。It is a characteristic diagram which shows the time change of the light emission signal and reflected light signal in case an inclination detection apparatus and a to-be-detected object are parallel. 被検出物体がY軸周りに傾いている場合を示す説明図である。It is explanatory drawing which shows the case where the to-be-detected object inclines around the Y-axis. 被検出物体がY軸周りに傾いている場合の発光信号および反射光信号の時間変化を示す特性線図である。It is a characteristic diagram which shows the time change of the light emission signal and reflected light signal in case a to-be-detected object inclines around the Y-axis. 被検出物体がY軸周りに傾いている場合の第1,第2および第3の傾きベクトルの状態を模式的に示す説明図である。It is explanatory drawing which shows typically the state of the 1st, 2nd and 3rd inclination vector in case the to-be-detected object inclines around the Y-axis. 被検出物体がY軸周りに傾いている場合の第1,第2および第3の傾きベクトルを上方から平面視した状態で模式的に示す説明図である。It is explanatory drawing typically shown in the state which planarly viewed the 1st, 2nd, and 3rd inclination vector in case the to-be-detected object inclines around the Y-axis. 第1,第2の実施の形態において、被検出物体の傾きを特定するための全体処理を示す流れ図である。In the first and second embodiments, it is a flowchart showing the overall processing for specifying the inclination of the detected object. 第1,第2の実施の形態において、反射光強度比から傾き角度を換算し、傾きベクトルを求めるための第1,第2および第3のテーブルを示す説明図である。In 1st, 2nd embodiment, it is explanatory drawing which shows the 1st, 2nd and 3rd table for converting an inclination angle from reflected light intensity ratio and calculating | requiring an inclination vector. 第1の実施の形態において、被検出物体の傾きを求めるための第1,第2および第3の傾きベクトルに基づくテーブルを示す説明図である。It is explanatory drawing which shows the table based on the 1st, 2nd and 3rd inclination vector for calculating | requiring the inclination of a to-be-detected object in 1st Embodiment. 第2の実施の形態による傾き検出装置において、被検出物体のロール角およびピッチ角を模式的に示す説明図である。It is explanatory drawing which shows typically the roll angle and pitch angle of a to-be-detected object in the inclination detection apparatus by 2nd Embodiment. 第3の実施の形態による傾き検出装置を示す平面図である。It is a top view which shows the inclination detection apparatus by 3rd Embodiment. 第3の実施の形態による傾き検出装置を示すブロック図である。It is a block diagram which shows the inclination detection apparatus by 3rd Embodiment. 第3の実施の形態において、被検出物体の傾きを特定するための全体処理を示す流れ図である。14 is a flowchart illustrating an overall process for specifying the inclination of an object to be detected in the third embodiment. 第3の実施の形態において、反射光強度比から傾き角度を換算するためのテーブルを示す説明図である。In 3rd Embodiment, it is explanatory drawing which shows the table for converting an inclination angle from reflected light intensity ratio.
 以下、本発明の実施の形態による傾き検出装置について、図面を参照しつつ詳細に説明する。まず、図1ないし図13は本発明の第1の実施の形態を示している。 Hereinafter, an inclination detection apparatus according to an embodiment of the present invention will be described in detail with reference to the drawings. First, FIG. 1 thru | or FIG. 13 has shown the 1st Embodiment of this invention.
 図1ないし図4に、第1の実施の形態による傾き検出装置1を示す。傾き検出装置1は、基板2、発光素子3~5、受光素子6等を備えている。 1 to 4 show an inclination detection apparatus 1 according to the first embodiment. The tilt detection apparatus 1 includes a substrate 2, light emitting elements 3 to 5, a light receiving element 6, and the like.
 基板2は、絶縁材料を用いて形成された平板である。基板2としては、例えばプリント配線基板が用いられる。基板2の表面2Aには、発光素子3~5と受光素子6とが実装されている。 The substrate 2 is a flat plate formed using an insulating material. As the substrate 2, for example, a printed wiring board is used. The light emitting elements 3 to 5 and the light receiving element 6 are mounted on the surface 2A of the substrate 2.
 発光素子3~5は、基板2の表面2Aに実装され、赤外線や可視光線の時分割された光を出射する。発光素子3~5の光軸は通常、例えば基板2の表面2Aに対して垂直方向(Z軸方向)に出射される。発光素子3~5としては、例えば発光ダイオード(LED)、レーザダイオード(LD)、面発光レーザ(VCSEL)が用いられる。3個の発光素子3~5は、例えば、基板2の表面2A上で三角形の頂点位置にそれぞれ配置される。なお、傾きの検出誤差が許容可能であれば、3個の発光素子3~5は一直線上に並んでいてもよい。 The light emitting elements 3 to 5 are mounted on the surface 2A of the substrate 2 and emit time-divided light such as infrared rays and visible rays. The optical axes of the light emitting elements 3 to 5 are usually emitted in a direction perpendicular to the surface 2A of the substrate 2 (Z-axis direction), for example. As the light emitting elements 3 to 5, for example, a light emitting diode (LED), a laser diode (LD), or a surface emitting laser (VCSEL) is used. For example, the three light emitting elements 3 to 5 are arranged at the apexes of a triangle on the surface 2A of the substrate 2, respectively. If the inclination detection error is acceptable, the three light emitting elements 3 to 5 may be aligned.
 受光素子6は、基板2の表面2Aに実装され、発光素子3~5から出射された赤外線や可視光線の光が被検出物体Objによって反射された光を受光する。受光素子6としては、例えばフォトダイオード(PD)、フォトトランジスタ等が用いられる。受光素子6は、例えば基板2の表面2Aのうち3個の発光素子3~5によって形成される三角形領域の範囲内に配置される。なお、被検出物体Objの傾きを精度よく検出するためには、受光素子6は各発光素子3~5からの距離が等しい位置に配置されるのが好ましい。なお、傾きの検出誤差が許容可能であれば、受光素子6は3個の発光素子3~5による三角形領域の外側に配置してもよい。 The light receiving element 6 is mounted on the surface 2A of the substrate 2 and receives the light reflected by the detected object Obj from the infrared rays and the visible light emitted from the light emitting elements 3 to 5. As the light receiving element 6, for example, a photodiode (PD), a phototransistor or the like is used. For example, the light receiving element 6 is disposed within a triangular region formed by the three light emitting elements 3 to 5 on the surface 2A of the substrate 2. In order to detect the inclination of the detected object Obj with high accuracy, the light receiving element 6 is preferably arranged at a position where the distance from each of the light emitting elements 3 to 5 is equal. If the inclination detection error is acceptable, the light receiving element 6 may be arranged outside the triangular area formed by the three light emitting elements 3 to 5.
 また、被検出物体Objが基板2の上方に大きく離れると、発光素子3~5からの光が弱くなり、被検出物体Objからの反射光を受光素子6によって検出できなくなる。このため、被検出物体Objの配置範囲を、被検出物体Objからの反射光が受光素子6によって検出可能となるような高さの範囲内に設定することが好ましい。 Further, when the detected object Obj is greatly separated above the substrate 2, the light from the light emitting elements 3 to 5 becomes weak, and the reflected light from the detected object Obj cannot be detected by the light receiving element 6. For this reason, it is preferable to set the arrangement range of the detected object Obj within a height range in which the light reflected from the detected object Obj can be detected by the light receiving element 6.
 基板2の表面2Aには、透明樹脂層7が形成される。透明樹脂層7は、基板2の表面2Aを全面に亘って覆い、発光素子3~5および受光素子6を封止する。透明樹脂層7には、各発光素子3~5と対応した位置に発光素子用レンズ7A~7Cが形成される。発光素子用レンズ7A~7Cは、上方に突出した略半球形状に形成される。 A transparent resin layer 7 is formed on the surface 2A of the substrate 2. The transparent resin layer 7 covers the entire surface 2A of the substrate 2 and seals the light emitting elements 3 to 5 and the light receiving element 6. In the transparent resin layer 7, light emitting element lenses 7A to 7C are formed at positions corresponding to the light emitting elements 3 to 5, respectively. The light emitting element lenses 7A to 7C are formed in a substantially hemispherical shape protruding upward.
 発光素子用レンズ7A~7Cの中心と発光素子3~5の実装位置とは、僅かな距離だけずれている。このため、発光素子3~5から出射する光束の光軸L1~L3は、発光素子用レンズ7A~7Cによって曲げられ、Z軸方向から傾斜した方向に向けて出射される。このとき、光軸L1~L3の傾斜方向は互いに離れる方向に設定される。これにより、被検出物体Objにおける発光素子3~5からの光の照射位置は、互いに異なる部位となる。これに加えて、各発光素子3~5と被検出物体Objとの距離が大きくなるに従って、被検出物体Objにおける各発光素子3~5からの光の照射位置が互いに離れていくことになる。 The center of the light emitting element lenses 7A to 7C and the mounting position of the light emitting elements 3 to 5 are shifted by a slight distance. For this reason, the optical axes L1 to L3 of the light beams emitted from the light emitting elements 3 to 5 are bent by the light emitting element lenses 7A to 7C and emitted toward the direction inclined from the Z-axis direction. At this time, the inclination directions of the optical axes L1 to L3 are set in directions away from each other. Thereby, the irradiation positions of the light from the light emitting elements 3 to 5 on the detected object Obj are different from each other. In addition, as the distance between the light emitting elements 3 to 5 and the detected object Obj increases, the irradiation positions of the light from the light emitting elements 3 to 5 on the detected object Obj are separated from each other.
 また、各光軸L1~L3は、Z軸方向から同じ角度で傾斜して出射されるのが好ましい。この場合、発光素子3~5と被検出物体Objが離れるに従って、光の照射位置が互いに等距離で離れていく。その結果、被検出物体Objの傾きが同じであれば、基板2との距離が異なる位置で被検出物体Objの傾きを検出するときでも、被検出物体Objに対して各発光素子3~5からの光の照射位置が作る三角形は、互いに相似する。 Also, it is preferable that each of the optical axes L1 to L3 is emitted with an inclination at the same angle from the Z-axis direction. In this case, as the light emitting elements 3 to 5 and the detected object Obj are separated from each other, the light irradiation positions are separated from each other at an equal distance. As a result, if the inclination of the detected object Obj is the same, even when the inclination of the detected object Obj is detected at a position where the distance from the substrate 2 is different, the light emitting elements 3 to 5 are detected with respect to the detected object Obj. The triangles created by the light irradiation positions are similar to each other.
 また、透明樹脂層7には、受光素子6と対応した位置に受光素子用レンズ7Dが形成される。受光素子用レンズ7Dも、発光素子用レンズ7A~7Cと同様に半球形状に形成される。受光素子用レンズ7Dは、外部から入射される光を受光素子6に集光するものである。 In the transparent resin layer 7, a light receiving element lens 7D is formed at a position corresponding to the light receiving element 6. Similarly to the light emitting element lenses 7A to 7C, the light receiving element lens 7D is also formed in a hemispherical shape. The light receiving element lens 7 </ b> D collects light incident from the outside onto the light receiving element 6.
 なお、発光素子用レンズ7A~7Cおよび受光素子用レンズ7Dは、発光素子3~5および受光素子6を封止する透明樹脂層7に一体的に形成したが、透明樹脂層7とは別個に設けてもよい。また、発光素子3~5からの光は発光素子用レンズ7A~7Cによって基板2の鉛直方向から傾斜する構成としたが、発光素子3~5を基板2の表面2Aに対して傾斜した状態で取付けて、発光素子3~5から出射する光を直接的に基板2の鉛直方向から傾斜させる構成としてもよい。 The light emitting element lenses 7A to 7C and the light receiving element lens 7D are integrally formed on the transparent resin layer 7 for sealing the light emitting elements 3 to 5 and the light receiving element 6, but separately from the transparent resin layer 7. It may be provided. Further, the light from the light emitting elements 3 to 5 is configured to be inclined from the vertical direction of the substrate 2 by the light emitting element lenses 7A to 7C, but the light emitting elements 3 to 5 are inclined with respect to the surface 2A of the substrate 2. The light emitted from the light emitting elements 3 to 5 may be attached and inclined from the vertical direction of the substrate 2 directly.
 次に、発光素子3~5および受光素子6に接続された信号処理回路11について説明する。 Next, the signal processing circuit 11 connected to the light emitting elements 3 to 5 and the light receiving element 6 will be described.
 図4に示すように、信号処理回路11は、受光素子6で受光した反射光の信号に基づいて、被検出物体Objの傾きを検知する信号処理手段を構成している。この信号処理回路11は、駆動部12、不揮発性メモリ13および演算部14を備えている。 As shown in FIG. 4, the signal processing circuit 11 constitutes signal processing means for detecting the inclination of the detected object Obj based on the reflected light signal received by the light receiving element 6. The signal processing circuit 11 includes a drive unit 12, a nonvolatile memory 13, and a calculation unit 14.
 駆動部12は、演算部14と協働して発光素子3~5の時分割発光を制御する。駆動部12は、発光素子3~5に接続され、演算部14からの制御信号に基づいて発光信号St1~St3を出力する。具体的には、駆動部12は、発光素子3~5を発光させるための駆動電流を、発光素子3~5に供給する。 The driving unit 12 controls the time division light emission of the light emitting elements 3 to 5 in cooperation with the calculation unit 14. The drive unit 12 is connected to the light emitting elements 3 to 5 and outputs the light emission signals St1 to St3 based on the control signal from the calculation unit 14. Specifically, the drive unit 12 supplies the light emitting elements 3 to 5 with a driving current for causing the light emitting elements 3 to 5 to emit light.
 そして、信号処理回路11は、駆動部12を用いて発光素子3~5を駆動し、発光素子3~5から被検出物体Objに向けて光軸L1~L3に沿った光を出射する。また、被検出物体Objからの反射光を受光した受光素子6は、光検出信号S0を演算部14に向けて出力する。 Then, the signal processing circuit 11 drives the light emitting elements 3 to 5 using the driving unit 12, and emits light along the optical axes L1 to L3 from the light emitting elements 3 to 5 toward the detected object Obj. In addition, the light receiving element 6 that has received the reflected light from the detected object Obj outputs the light detection signal S0 to the calculation unit 14.
 不揮発性メモリ13は、演算部14に接続されていて、発光素子3と発光素子4の反射光強度比Raを傾き角度θ1に換算するテーブルT1と、発光素子4と発光素子5の反射光強度比Rbを傾き角度θ2に換算するテーブルT2と、発光素子5と発光素子3の反射光強度比Rcを傾き角度θ3に換算するテーブルT3とが記憶されている。同様に、不揮発性メモリ13は、各傾き角度θ1~θ3を各傾きベクトルVa~Vcに変換する情報を記憶し、傾きベクトルVa~Vcの値に基づいて被検出物体Objの傾きを求めるテーブルT4を記憶している。ここで、不揮発性メモリ13としては、例えばROMやフラッシュメモリが用いられる。 The nonvolatile memory 13 is connected to the calculation unit 14, and includes a table T 1 for converting the reflected light intensity ratio Ra between the light emitting element 3 and the light emitting element 4 into the tilt angle θ 1, and the reflected light intensity of the light emitting element 4 and the light emitting element 5. A table T2 for converting the ratio Rb into the inclination angle θ2 and a table T3 for converting the reflected light intensity ratio Rc between the light emitting element 5 and the light emitting element 3 into the inclination angle θ3 are stored. Similarly, the nonvolatile memory 13 stores information for converting the inclination angles θ1 to θ3 into the inclination vectors Va to Vc, and a table T4 for obtaining the inclination of the detected object Obj based on the values of the inclination vectors Va to Vc. Is remembered. Here, as the nonvolatile memory 13, for example, a ROM or a flash memory is used.
 また、不揮発性メモリ13は、各発光素子3~5の出力強度の個体差や、各発光素子3~5と受光素子6との距離差を校正する補正係数C1~C3が記憶されている。 The nonvolatile memory 13 stores correction coefficients C1 to C3 for calibrating individual differences in output intensity of the light emitting elements 3 to 5 and distance differences between the light emitting elements 3 to 5 and the light receiving element 6.
 演算部14は、例えばマイクロプロセッサであり、発光素子3~5の発光を制御する処理、光検出信号S0から発光素子3~5に対応した3つの反射光信号Sr1~Sr3に分離する処理、反射光信号Sr1~Sr3に補正係数C1~C3を掛ける処理、3つの反射光信号C1Sr1~C3Sr3に基づいて不揮発性メモリ13のテーブルT1~T3を介して被検出物体Objの傾きを検出する処理、傾き検出装置1の全体的な制御等を行う。 The calculation unit 14 is, for example, a microprocessor, a process for controlling the light emission of the light emitting elements 3 to 5, a process for separating the light detection signal S0 into three reflected light signals Sr1 to Sr3 corresponding to the light emitting elements 3 to 5, and a reflection Processing for multiplying the optical signals Sr1 to Sr3 by correction coefficients C1 to C3 Processing for detecting the inclination of the detected object Obj via the tables T1 to T3 of the nonvolatile memory 13 based on the three reflected light signals C1Sr1 to C3Sr3, inclination The entire control of the detection apparatus 1 is performed.
 具体的には、演算部14は、発光素子3~5の検出光の強度やタイミングを制御するための制御信号を駆動部12に供給し、この制御信号に対応するように発光素子3~5を発光させる。ここで、駆動部12は、発光信号St1~St3としてパルス状の駆動電流を発光素子3~5にそれぞれ供給する。発光信号St1~St3のパルスは、一定の発光間隔T0を有すると共に、発光素子3~5毎に異なるタイミングで出力される。これにより、発光素子3~5は、各々がパルス発光で、かつ時分割発光する(図6、図8参照)。 Specifically, the calculation unit 14 supplies a control signal for controlling the intensity and timing of the detection light of the light emitting elements 3 to 5 to the driving unit 12, and the light emitting elements 3 to 5 correspond to the control signal. To emit light. Here, the drive unit 12 supplies pulsed drive currents to the light emitting elements 3 to 5 as the light emission signals St1 to St3, respectively. The pulses of the light emission signals St1 to St3 have a constant light emission interval T0 and are output at different timings for the light emitting elements 3 to 5, respectively. As a result, each of the light emitting elements 3 to 5 emits pulse light and emits light in a time-sharing manner (see FIGS. 6 and 8).
 なお、発光素子3~5は、時分割でパルス発光すればよい。このため、例えば発光素子3の発光が停止するのと同時に、次なる発光素子4の発光を開始してもよい。 The light emitting elements 3 to 5 may emit pulses in a time division manner. For this reason, for example, the light emission of the next light emitting element 4 may be started simultaneously with the light emission of the light emitting element 3 being stopped.
 また、演算部14は、図11に示すプログラムを実行する。このプログラムでは、以下に示す手順によって、被検出物体Objの傾きを特定する。 Further, the calculation unit 14 executes the program shown in FIG. In this program, the inclination of the detected object Obj is specified by the following procedure.
 ステップ1では、受光素子6から供給された光検出信号S0を読込む。ステップ2では、光検出信号S0から3つの反射光信号Sr1~Sr3を分離する。ここで、発光素子3~5は互いに異なるタイミングで時分割発光するので、発光素子3~5の発光タイミング毎に、それぞれの発光素子3~5からの光を被検出物体Objが反射した反射光が受光素子6において受光される。このため、光検出信号S0から発光信号St1~St3と同期した3つの信号を取り出すことによって、それぞれの発光素子3~5からの光に基づく反射光の信号を分離することができる。 In step 1, the light detection signal S0 supplied from the light receiving element 6 is read. In step 2, the three reflected light signals Sr1 to Sr3 are separated from the light detection signal S0. Here, since the light emitting elements 3 to 5 emit light in a time-sharing manner at different timings, the light reflected from the detected object Obj reflects the light from each of the light emitting elements 3 to 5 at each light emission timing of the light emitting elements 3 to 5. Is received by the light receiving element 6. Therefore, by extracting three signals synchronized with the light emission signals St1 to St3 from the light detection signal S0, it is possible to separate reflected light signals based on the light from the respective light emitting elements 3 to 5.
 そこで、演算部14は、光検出信号S0を発光素子3~5の発光タイミング毎に取り出し、発光素子3~5の反射光に応じた3つの反射光信号Sr1~Sr3に分離する。 Therefore, the calculation unit 14 extracts the light detection signal S0 at each light emission timing of the light emitting elements 3 to 5, and separates it into three reflected light signals Sr1 to Sr3 corresponding to the reflected light of the light emitting elements 3 to 5.
 この場合、1個の受光素子6によって各々の発光素子3~5による反射光を検出することができるから、受光素子6の個数を低減することができ、部品点数を削減して製造コストを低減することができる。 In this case, since the light reflected by each of the light emitting elements 3 to 5 can be detected by one light receiving element 6, the number of the light receiving elements 6 can be reduced, the number of parts can be reduced, and the manufacturing cost can be reduced. can do.
 ステップ2の次の処理として、発光素子3~5等の個体差を校正するために、反射光信号Sr1~Sr3に補正係数C1~C3を掛ける。ここで、補正係数C1~C3は、被検出物体Objが基板2に対して平行に配置された場合を基準として、その場合に各反射光信号Sr1~Sr3の値が同じ値となるような係数であればよい。すなわち、被検出物体Objが基板2に対して平行に配置された場合に、以下の数1の式に示す関係が成立すればよい。 As the next process of step 2, the correction factors C1 to C3 are multiplied to the reflected light signals Sr1 to Sr3 in order to calibrate the individual differences of the light emitting elements 3 to 5 and the like. Here, the correction coefficients C1 to C3 are coefficients such that the values of the reflected light signals Sr1 to Sr3 become the same value with reference to the case where the detected object Obj is arranged parallel to the substrate 2. If it is. That is, when the object to be detected Obj is arranged in parallel to the substrate 2, the relationship represented by the following formula 1 may be satisfied.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 続くステップ3では、補正した反射光信号C1Sr1と反射光信号C2Sr2に基づいて、反射光強度比Raを演算する。ステップ4では、テーブルT1を用いて、反射光強度比Raを傾き角度θ1に換算し、傾きベクトルVaを求める。ここで、傾きベクトルVaは、発光素子3,4からの光の照射位置を結ぶベクトルに直交したベクトルであり、例えば、発光素子3,4方向から見た被検出物体Objの垂線に沿ったベクトルである。また、傾き角度θ1とは、Z軸と傾きベクトルVaとがなす角度をいう(図9(a)参照)。また、テーブルT1は、発光素子3と発光素子4の反射光強度比Raを傾き角度θ1に換算するための換算表である。テーブルT1の一例を図12(a)に示す。 In the subsequent step 3, the reflected light intensity ratio Ra is calculated based on the corrected reflected light signal C1Sr1 and reflected light signal C2Sr2. In step 4, using the table T1, the reflected light intensity ratio Ra is converted into an inclination angle θ1, and an inclination vector Va is obtained. Here, the inclination vector Va is a vector orthogonal to a vector connecting the irradiation positions of the light from the light emitting elements 3 and 4, for example, a vector along a perpendicular line of the detected object Obj viewed from the direction of the light emitting elements 3 and 4. It is. The tilt angle θ1 is an angle formed by the Z axis and the tilt vector Va (see FIG. 9A). The table T1 is a conversion table for converting the reflected light intensity ratio Ra between the light emitting element 3 and the light emitting element 4 into the tilt angle θ1. An example of the table T1 is shown in FIG.
 図12(a)中のテーブルT1は、傾き角度θ1を水平状態、正側の傾斜状態、負側の傾斜状態に分けた場合を例示している。このとき、テーブルT1における値Aは、傾き角度θ1が水平状態(0°)として検出可能となる角度範囲を示している。一方、傾き角度θ1が(-A)と(+A)の間の範囲内に該当しない場合は、傾き角度θ1は正側または負側に傾斜していることを示している。また、値Ra1,Ra2は、反射光強度比Raのしきい値である。テーブルT1は、反射光強度比Raと値Ra1,Ra2とを比較することによって、傾き角度θ1を3段階で検出する。 The table T1 in FIG. 12A illustrates a case where the inclination angle θ1 is divided into a horizontal state, a positive side inclination state, and a negative side inclination state. At this time, the value A in the table T1 indicates an angle range in which the inclination angle θ1 can be detected as a horizontal state (0 °). On the other hand, when the tilt angle θ1 does not fall within the range between (−A) and (+ A), it indicates that the tilt angle θ1 is tilted to the positive side or the negative side. The values Ra1 and Ra2 are threshold values of the reflected light intensity ratio Ra. The table T1 detects the tilt angle θ1 in three stages by comparing the reflected light intensity ratio Ra with the values Ra1 and Ra2.
 従って、反射光強度比RaがRa1より大きい場合、傾き角度θ1は(-A)よりも小さい値となり、負側の傾斜状態に対応する。反射光強度比RaがRa1とRa2の間の範囲内の場合、傾き角度θ1は(-A)と(+A)の間の値となり、水平状態に対応する。また同様に、反射光強度比RaがRa2よりも小さい場合、傾き角度θ1は(+A)よりも大きい値となり、正側の傾斜状態に対応する。 Therefore, when the reflected light intensity ratio Ra is larger than Ra1, the inclination angle θ1 is smaller than (−A), corresponding to the negative inclination state. When the reflected light intensity ratio Ra is within the range between Ra1 and Ra2, the inclination angle θ1 is a value between (−A) and (+ A), which corresponds to the horizontal state. Similarly, when the reflected light intensity ratio Ra is smaller than Ra2, the inclination angle θ1 is larger than (+ A), corresponding to the positive inclination state.
 なお、テーブルT1における値A,Ra1,Ra2は任意の値であり、これらの値は適宜設定することが可能である。 The values A, Ra1, and Ra2 in the table T1 are arbitrary values, and these values can be set as appropriate.
 ステップ5でも同様に、補正した反射光信号C2Sr2と反射光信号C3Sr3に基づいて反射光強度比Rbを演算する。ステップ6では、テーブルT2を用いて、反射光強度比Rbを傾き角度θ2に換算し、傾きベクトルVbを求める。ここで、傾きベクトルVbは、発光素子4,5からの光の照射位置を結ぶベクトルに直交したベクトルであり、例えば、発光素子4,5方向から見た被検出物体Objの垂線に沿ったベクトルである。また、傾き角度θ2とは、Z軸と傾きベクトルVbとがなす角度をいう(図9(b)参照)。また、テーブルT2は、発光素子4と発光素子5の反射光強度比Rbを傾き角度θ2に換算するための換算表である。テーブルT2の一例を図12(b)に示す。なお、テーブルT2は、テーブルT1とほぼ同様に構成される。テーブルT2における値Rb1,Rb2は、反射光強度比Rbのしきい値であり、値Ra1,Ra2と同様に適宜設定される。 Similarly, in step 5, the reflected light intensity ratio Rb is calculated based on the corrected reflected light signal C2Sr2 and reflected light signal C3Sr3. In step 6, using the table T2, the reflected light intensity ratio Rb is converted into an inclination angle θ2 to obtain an inclination vector Vb. Here, the inclination vector Vb is a vector orthogonal to a vector connecting the irradiation positions of the light from the light emitting elements 4 and 5, for example, a vector along a perpendicular line of the detected object Obj viewed from the direction of the light emitting elements 4 and 5. It is. The tilt angle θ2 is an angle formed by the Z axis and the tilt vector Vb (see FIG. 9B). The table T2 is a conversion table for converting the reflected light intensity ratio Rb between the light emitting element 4 and the light emitting element 5 into the tilt angle θ2. An example of the table T2 is shown in FIG. The table T2 is configured almost the same as the table T1. Values Rb1 and Rb2 in the table T2 are threshold values of the reflected light intensity ratio Rb, and are set as appropriate similarly to the values Ra1 and Ra2.
 従って、上述した反射光強度比Raと同様に、反射光強度比RbがテーブルT2の左欄のいずれか1つに該当する場合は、その該当する欄と同行にある右欄の傾き角度θ2を求めることができる。 Therefore, similarly to the above-described reflected light intensity ratio Ra, when the reflected light intensity ratio Rb corresponds to any one of the left column of the table T2, the inclination angle θ2 of the right column in the same row as the corresponding column is set. Can be sought.
 ステップ7でも同様に、補正した反射光信号C3Sr3と反射光信号C1Sr1に基づいて、反射光強度比Rcを演算する。ステップ8では、テーブルT3を用いて、反射光強度比Rcを傾き角度θ3に換算し、傾きベクトルVcを求める。ここで、傾きベクトルVcは、発光素子5,3からの光の照射位置を結ぶベクトルに直交したベクトルであり、例えば、発光素子5,3方向から見た被検出物体Objの垂線に沿ったベクトルである。また、傾き角度θ3とは、Z軸と傾きベクトルVcとがなす角度をいう(図9(c)参照)。また、テーブルT3は、発光素子5と発光素子3の反射光強度比Rcを傾き角度θ3に換算するための換算表である。テーブルT3の一例を図12(c)に示す。なお、テーブルT3は、テーブルT1とほぼ同様に構成される。テーブルT3における値Rc1,Rc2は、反射光強度比Rcのしきい値であり、値Ra1,Ra2と同様に適宜設定される。 Similarly, in step 7, the reflected light intensity ratio Rc is calculated based on the corrected reflected light signal C3Sr3 and the reflected light signal C1Sr1. In step 8, using the table T3, the reflected light intensity ratio Rc is converted into an inclination angle θ3 to obtain an inclination vector Vc. Here, the inclination vector Vc is a vector orthogonal to a vector connecting the irradiation positions of the light from the light emitting elements 5 and 3, and is, for example, a vector along a perpendicular line of the detected object Obj viewed from the direction of the light emitting elements 5 and 3. It is. The tilt angle θ3 is an angle formed by the Z axis and the tilt vector Vc (see FIG. 9C). The table T3 is a conversion table for converting the reflected light intensity ratio Rc between the light emitting element 5 and the light emitting element 3 into the tilt angle θ3. An example of the table T3 is shown in FIG. The table T3 is configured in substantially the same manner as the table T1. Values Rc1 and Rc2 in the table T3 are threshold values of the reflected light intensity ratio Rc, and are appropriately set in the same manner as the values Ra1 and Ra2.
 従って、上述した反射光強度比Raと同様に、反射光強度比RcがテーブルT3の左欄のいずれか1つに該当する場合は、その該当する欄と同行にある右欄の傾き角度θ3を求めることができる。 Therefore, similarly to the above-described reflected light intensity ratio Ra, when the reflected light intensity ratio Rc corresponds to any one of the left column of the table T3, the inclination angle θ3 of the right column in the same row as the corresponding column is set. Can be sought.
 なお、テーブルT1~T3は、傾き角度θ1~θ3を3段階で検出するものとした。しかし、本発明はこれに限らず、テーブルT1~T3は、例えば水平状態、正側で2段階の傾斜状態、負側で2段階の傾斜状態の合計5段階で傾き角度θ1~θ3を検出してもよく、それ以上の高い分解能をもって傾き角度θ1~θ3を検出してもよい。 The tables T1 to T3 detect the inclination angles θ1 to θ3 in three stages. However, the present invention is not limited to this, and the tables T1 to T3 detect the inclination angles θ1 to θ3 in a total of five stages, for example, a horizontal state, a two-step inclination state on the positive side, and a two-step inclination state on the negative side. Alternatively, the tilt angles θ1 to θ3 may be detected with a higher resolution than that.
 そして、ステップ9では、各傾きベクトルVa~Vcに基づいて、被検出物体Objの法線ベクトルNを特定し、被検出物体Objの傾きを求める。 In step 9, the normal vector N of the detected object Obj is specified based on the respective inclination vectors Va to Vc, and the inclination of the detected object Obj is obtained.
 次に、図5ないし図13を用いて、傾き検出装置1による被検出物体Objの傾き検出動作について説明する。なお、説明を簡便にするため、各傾きベクトルVa~Vcは負側の傾斜状態を表す「-」,水平状態を表す「0」,正側の傾斜状態を表す「+」の値しか有さず、被検出物体Objの傾きを求める際、各傾きベクトルVa~Vcの値に基づいたテーブルT4を用いる方法を例示する(図12,図13参照)。また、図10に示すように、各発光素子3~5からの光の照射位置が作る三角形が正三角形であり、各回転軸が各々の光の照射位置の中点にある場合を例示して説明する。 Next, the tilt detection operation of the detected object Obj by the tilt detection apparatus 1 will be described with reference to FIGS. In order to simplify the explanation, each of the inclination vectors Va to Vc has only a value “−” representing the negative inclination state, “0” representing the horizontal state, and “+” representing the positive inclination state. First, a method of using the table T4 based on the values of the inclination vectors Va to Vc when obtaining the inclination of the detected object Obj is exemplified (see FIGS. 12 and 13). Further, as shown in FIG. 10, the triangle formed by the light irradiation positions from the light emitting elements 3 to 5 is an equilateral triangle, and each rotation axis is at the middle point of each light irradiation position. explain.
 傾き検出装置1が駆動すると、発光素子3~5は基板2の上方に向けて光を出射する。この状態で基板2の上方に例えば手の平のような被検出物体Objが配置されると、発光素子3~5の光路を被検出物体Objが遮る。これにより、被検出物体Objは発光素子3~5からの光を反射する。この反射光は受光素子6によって受光され、受光素子6は、反射光の強度に応じた電流を光検出信号S0として出力する。 When the tilt detection device 1 is driven, the light emitting elements 3 to 5 emit light toward the upper side of the substrate 2. In this state, when the detected object Obj such as a palm is disposed above the substrate 2, the detected object Obj blocks the optical path of the light emitting elements 3 to 5. As a result, the detected object Obj reflects the light from the light emitting elements 3 to 5. The reflected light is received by the light receiving element 6, and the light receiving element 6 outputs a current corresponding to the intensity of the reflected light as the light detection signal S0.
 演算部14は、受光素子6からの光検出信号S0から3つの反射光信号Sr1~Sr3を分離する。演算部14は、これらの反射光信号Sr1~Sr3に、不揮発性メモリ13に予め登録しておいた補正係数C1~C3を掛けて、これらの反射光強度比Ra~Rcを演算する。そして、演算部14は、不揮発性メモリ13に予め登録しておいたテーブルT1~T3を用いて、3つの反射光強度比Ra~Rcを傾き角度θ1~θ3に換算する。すなわち、図12に示すように、演算部14は、テーブルT1を用いて、発光素子3と発光素子4による反射光強度比Raを傾き角度θ1に換算する。演算部14は、テーブルT2を用いて、発光素子4と発光素子5による反射光強度比Rbを傾き角度θ2に換算する。演算部14は、テーブルT3を用いて、発光素子5と発光素子3による反射光強度比Rcを傾き角度θ3に換算する。 The calculation unit 14 separates the three reflected light signals Sr1 to Sr3 from the light detection signal S0 from the light receiving element 6. The calculation unit 14 calculates these reflected light intensity ratios Ra to Rc by multiplying these reflected light signals Sr1 to Sr3 by correction coefficients C1 to C3 registered in advance in the nonvolatile memory 13. Then, the calculation unit 14 converts the three reflected light intensity ratios Ra to Rc into inclination angles θ1 to θ3 using the tables T1 to T3 registered in advance in the nonvolatile memory 13. That is, as shown in FIG. 12, the calculation unit 14 converts the reflected light intensity ratio Ra between the light emitting element 3 and the light emitting element 4 into the tilt angle θ1 using the table T1. The calculation unit 14 converts the reflected light intensity ratio Rb between the light emitting element 4 and the light emitting element 5 into the tilt angle θ2 using the table T2. The computing unit 14 converts the reflected light intensity ratio Rc between the light emitting element 5 and the light emitting element 3 into the tilt angle θ3 using the table T3.
 そして、演算部14は、3つの傾き角度θ1~θ3を各傾きベクトルVa~Vcに変換し、各傾きベクトルVa~Vcに基づいて、被検出物体Objの傾きを特定する。具体的な方法としては、図12に示すように、各傾き角度θ1~θ3を各傾きベクトルVa~Vcに換算するテーブルT1~T3を不揮発性メモリ13に予め登録しておき、各傾き角度θ1~θ3から各傾きベクトルVa~Vcを求める。次に、図13に示すように、各傾きベクトルVa~Vcに基づくテーブルT4を用いて、被検出物体Objの傾きを特定する。例えば、各傾きベクトルVa~Vcの値が「000」である場合は、被検出物体Objは基板2と平行であることを示す。また、例えば、各傾きベクトルVa~Vcの値が「0-+」である場合は、法線ベクトルNは図13中の270°方向を向き、被検出物体Objは手前に傾いていることを示している。 Then, the calculation unit 14 converts the three inclination angles θ1 to θ3 into the inclination vectors Va to Vc, and specifies the inclination of the detected object Obj based on the inclination vectors Va to Vc. As a specific method, as shown in FIG. 12, tables T1 to T3 for converting the inclination angles θ1 to θ3 into inclination vectors Va to Vc are registered in advance in the nonvolatile memory 13, and the inclination angles θ1 are stored. The inclination vectors Va to Vc are obtained from .about.θ3. Next, as shown in FIG. 13, the inclination of the detected object Obj is specified using a table T4 based on the inclination vectors Va to Vc. For example, when the values of the inclination vectors Va to Vc are “000”, it indicates that the detected object Obj is parallel to the substrate 2. Further, for example, when the values of the inclination vectors Va to Vc are “0− +”, the normal vector N is directed in the 270 ° direction in FIG. 13 and the detected object Obj is inclined forward. Show.
 このように、テーブルT4は各傾きベクトルVa~Vcに基づいて法線ベクトルNの方位角を求めるものである。図13において、発光素子3,4を結ぶ直線の回転軸を中心として、被検出物体Objが発光素子4側に傾いている状態を0°とした。図13における他の角度は、0°を基準として、反時計回りに増加するものとした。 Thus, the table T4 obtains the azimuth angle of the normal vector N based on the inclination vectors Va to Vc. In FIG. 13, the state in which the detected object Obj is inclined toward the light emitting element 4 around the rotation axis of the straight line connecting the light emitting elements 3 and 4 is set to 0 °. The other angles in FIG. 13 are assumed to increase counterclockwise with 0 ° as a reference.
 ここで、被検出物体Objが傾き検出装置1に対して平行な場合について説明する。図5に示すように、被検出物体Objが傾き検出装置1に対して平行な場合は、各反射光強度比Ra~Rcは同じ値となる。なぜなら、被検出物体Objが基板2に対して平行に配置された場合を基準として、発光素子3~5等の個体差を校正するために、反射光信号Sr1~Sr3に補正係数C1~C3を掛けているからである。 Here, the case where the detected object Obj is parallel to the tilt detection apparatus 1 will be described. As shown in FIG. 5, when the detected object Obj is parallel to the inclination detecting device 1, the reflected light intensity ratios Ra to Rc have the same value. This is because the correction coefficients C1 to C3 are applied to the reflected light signals Sr1 to Sr3 in order to calibrate the individual differences of the light emitting elements 3 to 5 etc. with reference to the case where the detected object Obj is arranged parallel to the substrate 2. Because it is hung.
 従って、図6に示すように、被検出物体Objが基板2に対して平行に配置された場合は、補正した反射光信号C1Sr1~C3Sr3は略同じ大きさとなり、各反射光強度比Ra~Rcは以下の数2,数3,数4の式に示す値となる。 Therefore, as shown in FIG. 6, when the detected object Obj is arranged parallel to the substrate 2, the corrected reflected light signals C1Sr1 to C3Sr3 have substantially the same magnitude, and the reflected light intensity ratios Ra to Rc. Is a value shown in the following equations (2), (3), and (4).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 そして、図12に示すテーブルT1~T3を用いて、反射光強度比Ra~Rcから3つの傾き角度θ1~θ3を求める。また、3つの傾き角度θ1~θ3を各傾きベクトルVa~Vcに変換し、図13に示す、傾きベクトルVa~Vcに基づくテーブルT4から、被検出物体Objの法線ベクトルNを特定し、傾きを検出することができる。 Then, using the tables T1 to T3 shown in FIG. 12, three inclination angles θ1 to θ3 are obtained from the reflected light intensity ratios Ra to Rc. Further, the three inclination angles θ1 to θ3 are converted into respective inclination vectors Va to Vc, and the normal vector N of the detected object Obj is specified from the table T4 based on the inclination vectors Va to Vc shown in FIG. Can be detected.
 すなわち、被検出物体Objが傾き検出装置1に対して平行な場合、各傾きベクトルVa~Vcは各回転軸に対して垂直なので、順に「0」,「0」,「0」となる。従って、図13のテーブルT4から「000」が示す位置は円の中心であるので、被検出物体Objの法線ベクトルNは中心から鉛直方向に向かって伸び、被検出物体Objの傾きは傾き検出装置1に対して平行となる。 That is, when the object to be detected Obj is parallel to the tilt detection device 1, the tilt vectors Va to Vc are perpendicular to the respective rotation axes, so that they are “0”, “0”, and “0” in order. Therefore, since the position indicated by “000” from the table T4 in FIG. 13 is the center of the circle, the normal vector N of the detected object Obj extends in the vertical direction from the center, and the inclination of the detected object Obj is detected as an inclination. Parallel to the device 1.
 次に、被検出物体ObjがY軸周りに傾いている場合、すなわちY軸を中心として、被検出物体Objの左端側が傾き検出装置1に近く、被検出物体Objの右端側が傾き検出装置1から遠い場合について説明する。ここで、反射光信号Sr1~Sr3の大きさは、被検出物体ObjのZ軸方向の位置に応じて変化する。すなわち、被検出物体Objが傾き検出装置1に近い位置に配置されたときには、反射光が強くなり、反射光信号Sr1~Sr3も大きくなる。一方、被検出物体Objが傾き検出装置1から離れた位置に配置されたときには、反射光が弱くなり、反射光信号Sr1~Sr3も小さくなる。 Next, when the detected object Obj is tilted around the Y axis, that is, with the Y axis as the center, the left end side of the detected object Obj is close to the tilt detecting device 1 and the right end side of the detected object Obj is from the tilt detecting device 1. The case of being far will be described. Here, the magnitudes of the reflected light signals Sr1 to Sr3 vary according to the position of the detected object Obj in the Z-axis direction. That is, when the detected object Obj is arranged at a position close to the inclination detecting device 1, the reflected light becomes strong and the reflected light signals Sr1 to Sr3 also become large. On the other hand, when the detected object Obj is arranged at a position away from the inclination detecting device 1, the reflected light becomes weak and the reflected light signals Sr1 to Sr3 also become small.
 従って、図7に示すように、被検出物体Objが傾き検出装置1に対してY軸周りに傾いている場合は、補正した反射光信号C1Sr1~C3Sr3の大きさは、以下の数5の式のようになる(図8参照)。これは、傾き検出装置1に対して、1番目に近い位置が発光素子3による光軸L1の照射位置であり、2番目に近い位置が発光素子5による光軸L3の照射位置であり、3番目に近い位置が発光素子4による光軸L2の照射位置となるからである。 Therefore, as shown in FIG. 7, when the detected object Obj is tilted about the Y axis with respect to the tilt detection apparatus 1, the magnitudes of the corrected reflected light signals C1Sr1 to C3Sr3 are expressed by the following equation (5). (See FIG. 8). This is because the position closest to the tilt detection apparatus 1 is the irradiation position of the optical axis L1 by the light emitting element 3, and the position closest to the second is the irradiation position of the optical axis L3 by the light emitting element 5. This is because the second closest position is the irradiation position of the optical axis L2 by the light emitting element 4.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 従って、各反射光強度比Ra~Rcは、以下の数6,数7,数8の式に示す値となる。 Accordingly, each of the reflected light intensity ratios Ra to Rc has values shown in the following equations (6), (7), and (8).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 そして、図12に示すテーブルT1~T3を用いて、各反射光強度比Ra~Rcから3つの傾き角度θ1~θ3を求め、3つの傾き角度θ1~θ3を各傾きベクトルVa~Vcに変換する。そして、図13に示す、傾きベクトルVa~Vcに基づくテーブルT4から、被検出物体Objの法線ベクトルNを特定し、傾きを検出することができる。 Then, using the tables T1 to T3 shown in FIG. 12, three inclination angles θ1 to θ3 are obtained from the respective reflected light intensity ratios Ra to Rc, and the three inclination angles θ1 to θ3 are converted into respective inclination vectors Va to Vc. . Then, the normal vector N of the detected object Obj can be specified from the table T4 based on the inclination vectors Va to Vc shown in FIG. 13, and the inclination can be detected.
 すなわち、被検出物体ObjがY軸周りに傾いている場合、傾きベクトルVaは発光素子3側に傾いているので「-」(図9(a)参照)、傾きベクトルVbは発光素子4側に傾いているので「+」(図9(b)参照)、傾きベクトルVcは発光素子3側に傾いているので「+」(図9(c)参照)となる。従って、図14のテーブルT4から「-++」が示す位置は180°方向であるので、被検出物体Objの法線ベクトルNは中心から180°方向に向かって伸び、被検出物体Objの傾きはY軸周りに左側に傾いていることが分かる。 That is, when the detected object Obj is tilted around the Y axis, the tilt vector Va is tilted toward the light emitting element 3 side, and therefore “−” (see FIG. 9A), the tilt vector Vb is moved toward the light emitting element 4 side. Since it is inclined, “+” (see FIG. 9B), the inclination vector Vc becomes “+” (see FIG. 9C) because it is inclined toward the light emitting element 3 side. Accordingly, since the position indicated by “− ++” from the table T4 in FIG. 14 is the 180 ° direction, the normal vector N of the detected object Obj extends from the center in the 180 ° direction, and the inclination of the detected object Obj is It can be seen that it is tilted to the left around the Y axis.
 かくして、第1の実施の形態によれば、信号処理回路11は、各発光素子3~5による各反射光強度比Ra~Rcを各傾き角度θ1~θ3に換算し、各傾きベクトルVa~Vcを求める。これにより、これらの傾きベクトルVa~Vcに基づいて、被検出物体Objの2軸方向の傾きを求めることができる。 Thus, according to the first embodiment, the signal processing circuit 11 converts the reflected light intensity ratios Ra to Rc by the light emitting elements 3 to 5 into the inclination angles θ1 to θ3, and the inclination vectors Va to Vc. Ask for. Thereby, the inclination of the detected object Obj in the biaxial direction can be obtained based on these inclination vectors Va to Vc.
 なお、図11中のステップ3は第1の反射光強度比演算手段の具体例を示し、ステップ4は第1の角度換算手段の具体例を示している。また、ステップ5は第2の反射光強度比演算手段の具体例を示し、ステップ6は第2の角度換算手段の具体例を示している。また、ステップ7は第3の反射光強度比演算手段の具体例を示し、ステップ8は第3の角度換算手段の具体例を示している。さらに、ステップ9は傾き演算手段の具体例を示している。 Note that Step 3 in FIG. 11 shows a specific example of the first reflected light intensity ratio calculation means, and Step 4 shows a specific example of the first angle conversion means. Step 5 shows a specific example of the second reflected light intensity ratio calculation means, and Step 6 shows a specific example of the second angle conversion means. Step 7 shows a specific example of the third reflected light intensity ratio calculation means, and Step 8 shows a specific example of the third angle conversion means. Further, step 9 shows a specific example of the inclination calculating means.
 次に、図1ないし図4、図11、図14を用いて、本発明の第2の実施の形態について説明する。第2の実施の形態では、テーブルT4を用いずに、傾き演算手段として、各傾きベクトルVa~Vcに基づいて被検出物体Objのロール角およびピッチ角を特定し、被検出物体Objの傾きを求める。なお、第2の実施の形態において、第1の実施の形態と同一の構成要素は同一の符号を付し、その説明を省略する。また、各発光素子3~5からの光の照射位置が作る三角形が正三角形であり、各回転軸が各々の光の照射位置の中点にある場合を例示して説明する。 Next, a second embodiment of the present invention will be described with reference to FIGS. 1 to 4, FIG. 11, and FIG. In the second embodiment, without using the table T4, the inclination calculating means specifies the roll angle and pitch angle of the detected object Obj based on the respective inclination vectors Va to Vc, and determines the inclination of the detected object Obj. Ask. Note that in the second embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted. Further, the case where the triangle formed by the light irradiation positions from the light emitting elements 3 to 5 is a regular triangle and each rotation axis is at the midpoint of each light irradiation position will be described as an example.
 第2の実施の形態による傾き検出装置21は、第1の実施の形態による傾き検出装置1と同様に構成される。また、信号処理回路22も、第1の実施の形態による信号処理回路11と同様に構成される。さらに、第2の実施の形態による演算部14は、第1の実施の形態とほぼ同様に図11に示すプログラムを実行する。第1の実施の形態と第2の実施の形態とでは、ステップ9においてテーブルT4を用いずに、下記に示す数9および数10の式を用いて被検出物体Objの傾きを求める点が異なっている。 The inclination detection device 21 according to the second embodiment is configured similarly to the inclination detection device 1 according to the first embodiment. Further, the signal processing circuit 22 is configured in the same manner as the signal processing circuit 11 according to the first embodiment. Further, the calculation unit 14 according to the second embodiment executes the program shown in FIG. 11 in substantially the same manner as in the first embodiment. The difference between the first embodiment and the second embodiment is that the inclination of the detected object Obj is obtained by using the following equations (9) and (10) without using the table T4 in step 9. ing.
 すなわち、ステップ9では、数9の式を用いて各傾きベクトルVa~Vcから各傾きベクトルのX軸方向成分を求め、数10の式を用いて各傾きベクトルVa~Vcから各傾きベクトルのY軸方向成分を求め、これらのX軸方向成分とY軸方向成分とに基づいて被検出物体Objの傾きを求める。ここで、X軸方向とは図14に示す発光素子3,4とを結ぶ方向とし、Y軸方向とは該X軸に直交する方向としている。また、数9の式においてVxは、各傾きベクトルVa~VcのX軸方向成分を合成したものである。数10の式においてVyは、各傾きベクトルVa~VcのY軸方向成分を合成したものである。 That is, in step 9, the X-axis direction component of each gradient vector is obtained from each gradient vector Va to Vc using equation (9), and Y of each gradient vector is derived from each gradient vector Va to Vc using equation (10). An axial direction component is obtained, and an inclination of the detected object Obj is obtained based on the X axis direction component and the Y axis direction component. Here, the X-axis direction is a direction connecting the light-emitting elements 3 and 4 shown in FIG. 14, and the Y-axis direction is a direction orthogonal to the X-axis. In the equation (9), Vx is a combination of the X-axis direction components of the respective gradient vectors Va to Vc. In the equation (10), Vy is a composite of Y-axis direction components of the respective gradient vectors Va to Vc.
 合成したX軸方向成分Vxから、Y軸周りにおける被検出物体Objのロール角を求めることができる。また、合成したY軸方向成分Vyから、X軸周りにおける被検出物体Objのピッチ角を求めることができる。従って、第2の実施の形態では、これらのロール角およびピッチ角に基づいて被検出物体Objの傾きを求める。 The roll angle of the detected object Obj around the Y axis can be obtained from the synthesized X axis direction component Vx. Further, the pitch angle of the detected object Obj around the X axis can be obtained from the synthesized Y axis direction component Vy. Therefore, in the second embodiment, the inclination of the detected object Obj is obtained based on these roll angle and pitch angle.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 かくして、第2の実施の形態でも、第1の実施の形態とほぼ同様の作用効果を得ることができる。 Thus, in the second embodiment, substantially the same operational effects as in the first embodiment can be obtained.
 次に、図15ないし図18を用いて、本発明の第3の実施の形態について説明する。第3の実施の形態では、2個の発光素子を用いて被検出物体Objの傾きを求める。なお、第3の実施の形態において、第1の実施の形態と同一の構成要素は同一の符号を付し、その説明を省略する。 Next, a third embodiment of the present invention will be described with reference to FIGS. In the third embodiment, the inclination of the detected object Obj is obtained using two light emitting elements. Note that, in the third embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
 第3の実施の形態による傾き検出装置31は、第1の実施の形態による傾き検出装置1とほぼ同様に構成される。このため、基板2には、2個の発光素子3,4と受光素子6が設けられると共に、信号処理手段としての信号処理回路32が実装される。信号処理回路32は、第1の実施の形態による信号処理回路11とほぼ同様に構成され、駆動部12、不揮発性メモリ13および演算部14を備える。 The tilt detection device 31 according to the third embodiment is configured in substantially the same manner as the tilt detection device 1 according to the first embodiment. For this reason, the substrate 2 is provided with two light emitting elements 3 and 4 and a light receiving element 6, and a signal processing circuit 32 as a signal processing means is mounted. The signal processing circuit 32 is configured in substantially the same manner as the signal processing circuit 11 according to the first embodiment, and includes a drive unit 12, a nonvolatile memory 13, and a calculation unit 14.
 第3の実施の形態による演算部14は、図17に示すプログラムを実行する。このプログラムでは、以下に示す手順によって、被検出物体Objの傾きを特定する。 The calculation unit 14 according to the third embodiment executes the program shown in FIG. In this program, the inclination of the detected object Obj is specified by the following procedure.
 ステップ11では、受光素子6から供給された光検出信号S0を読込む。ステップ12では、光検出信号S0から2つの反射光信号Sr1とSr2を分離する。ステップ12の次の処理として、発光素子3,4等の個体差を校正するために、反射光信号Sr1,Sr2に補正係数C1,C2を掛ける。 In step 11, the light detection signal S0 supplied from the light receiving element 6 is read. In step 12, the two reflected light signals Sr1 and Sr2 are separated from the light detection signal S0. As the next processing of step 12, in order to calibrate the individual differences of the light emitting elements 3, 4, etc., the reflected light signals Sr1, Sr2 are multiplied by correction coefficients C1, C2.
 続くステップ13では、補正した反射光信号C1Sr1と反射光信号C2Sr2に基づいて、反射光強度比Raを演算する。ステップ14では、テーブルT31を用いて、反射光強度比Raを傾き角度θ1に換算し、被検出物体Objの傾きを求める。なお、第3の実施の形態では、テーブルT31を用いて反射光強度比Raから算出した傾き角度θ1が、そのまま被検出物体Objの傾きとなる。なお、テーブルT31は第1の実施の形態のテーブルT1とほぼ同様に構成される。 In the following step 13, the reflected light intensity ratio Ra is calculated based on the corrected reflected light signal C1Sr1 and reflected light signal C2Sr2. In step 14, the reflected light intensity ratio Ra is converted into an inclination angle θ1 using the table T31, and the inclination of the detected object Obj is obtained. In the third embodiment, the inclination angle θ1 calculated from the reflected light intensity ratio Ra using the table T31 becomes the inclination of the detected object Obj as it is. The table T31 is configured in substantially the same manner as the table T1 in the first embodiment.
 かくして、第3の実施の形態によれば、各発光素子3,4による反射光強度比Raを傾き角度θ1に換算することにより、被検出物体Objの傾きを求めることができる。 Thus, according to the third embodiment, the inclination of the detected object Obj can be obtained by converting the reflected light intensity ratio Ra by the light emitting elements 3 and 4 into the inclination angle θ1.
 なお、図17中のステップ13は反射光強度比演算手段の具体例を示し、ステップ14は角度換算手段の具体例を示している。 Note that step 13 in FIG. 17 shows a specific example of the reflected light intensity ratio calculation means, and step 14 shows a specific example of the angle conversion means.
 ここで、前記第1の実施の形態では、3個の発光素子3~5を備える場合を例に挙げて説明したが、4個以上の発光素子を備える構成としてもよい。 Here, in the first embodiment, the case where the three light emitting elements 3 to 5 are provided has been described as an example, but a configuration including four or more light emitting elements may be used.
 また、前記第1の実施の形態では、3つの傾きベクトルVa~Vcから被検出物体Objの傾きを求める構成としたが、2つの傾きベクトルから被検出物体Objの傾きを求める構成としてもよい。例えば、各発光素子3~5からの光の照射位置が作る三角形が直角三角形である場合は、互いに直交する2辺で検出した2つの傾きベクトルに基づいて被検出物体Objの傾きを求める構成としてもよい。 In the first embodiment, the inclination of the detected object Obj is obtained from the three inclination vectors Va to Vc. However, the inclination of the detected object Obj may be obtained from the two inclination vectors. For example, when the triangle formed by the light irradiation positions from the light emitting elements 3 to 5 is a right triangle, the inclination of the detected object Obj is obtained based on two inclination vectors detected on two sides orthogonal to each other. Also good.
 また、前記第1の実施の形態では、各傾きベクトルVa~Vcの値が負側の傾斜状態を表す「-」,水平状態を表す「0」,正の傾斜状態を表す「+」の値しか有さず、テーブルT4に基づいて被検出物体Objの傾きを求める構成とした。しかし、本発明はこれに限らず、各傾きベクトルVa~Vcの値を増やして、被検出物体Objの傾き方向や傾き角度をより細かく求める構成としてもよい。 In the first embodiment, the values of the respective inclination vectors Va to Vc are “−” representing a negative inclination state, “0” representing a horizontal state, and “+” representing a positive inclination state. However, the inclination of the detected object Obj is obtained based on the table T4. However, the present invention is not limited to this, and it is possible to increase the values of the respective inclination vectors Va to Vc to obtain the inclination direction and inclination angle of the detected object Obj more finely.
 前記第1,第2の実施の形態では、各発光素子3~5からの光の照射位置が作る三角形が正三角形であり、3つの傾き角度θ1~θ3に基づいて被検出物体Objの傾きを求める構成としたが、三角形の形状は正三角形に限らず、任意の三角形でよい。 In the first and second embodiments, the triangle formed by the irradiation positions of the light from the light emitting elements 3 to 5 is a regular triangle, and the inclination of the detected object Obj is determined based on the three inclination angles θ1 to θ3. Although the required configuration is adopted, the shape of the triangle is not limited to a regular triangle, and may be an arbitrary triangle.
 また、前記各実施の形態では、各発光素子の個体差を修正するために、反射光信号Sr1~Sr3に補正係数C1~C3を掛ける構成とした。しかし、本発明はこれに限らず、反射光信号Sr1~Sr3をそのまま用いて、より簡易な信号処理で被検出物体Objの傾きを求める構成としてもよい。 In each of the above embodiments, the reflected light signals Sr1 to Sr3 are multiplied by the correction coefficients C1 to C3 in order to correct individual differences among the light emitting elements. However, the present invention is not limited to this, and the reflected light signals Sr1 to Sr3 may be used as they are to obtain the inclination of the detected object Obj by simpler signal processing.
 また、前記各実施の形態では、3つの傾きベクトルから被検出物体Objの傾きを求める構成とした。しかし、本発明はこれに限らず、被検出物体Objに発光素子3~5からの光を照射したときの3つの光の照射位置を結ぶ三角形の2辺のベクトル(傾きベクトルに直交したベクトル)の外積を演算することによって、被検出物体Objの法線ベクトルNを求め、被検出物体Objの傾きを求める構成としてもよい。 In each of the above embodiments, the inclination of the detected object Obj is obtained from three inclination vectors. However, the present invention is not limited to this, and a vector of two sides of a triangle (a vector orthogonal to the inclination vector) connecting the three light irradiation positions when the object Obj is irradiated with light from the light emitting elements 3 to 5 is used. The normal vector N of the detected object Obj may be obtained by calculating the outer product of the detected object Obj to obtain the inclination of the detected object Obj.
 また、X軸方向およびY軸方向は前記各実施の形態に例示したものに限らず、基板2の表面2Aに平行で互いに直交した任意の2軸方向に設定することができる。 Further, the X-axis direction and the Y-axis direction are not limited to those exemplified in the above embodiments, and can be set to arbitrary two-axis directions that are parallel to the surface 2A of the substrate 2 and orthogonal to each other.
 また、前記各実施の形態では、発光素子3~5からの光軸L1~L3は発光素子用レンズ7A~7Cによって互いに離れる方向に出射される。しかし、本発明はこれに限らず、発光素子用レンズ7A~7Cを配置せず、発光素子3~5からの光軸L1~L3を、直接的に基板2の鉛直方向に出射する構成としてもよい。また、発光素子用レンズ7A~7Cの中心と発光素子3~5の実装位置を一致させて、発光素子3~5からの光軸L1~L3を基板2の鉛直方向に出射する構成としてもよい。 In the above embodiments, the optical axes L1 to L3 from the light emitting elements 3 to 5 are emitted in directions away from each other by the light emitting element lenses 7A to 7C. However, the present invention is not limited to this, and the light-emitting element lenses 7A to 7C are not disposed, and the optical axes L1 to L3 from the light-emitting elements 3 to 5 may be emitted directly in the vertical direction of the substrate 2. Good. Further, the center of the light emitting element lenses 7A to 7C and the mounting position of the light emitting elements 3 to 5 may be matched to emit the optical axes L1 to L3 from the light emitting elements 3 to 5 in the vertical direction of the substrate 2. .
 また、前記各実施の形態では、受光素子6と演算部14との間を直接接続する構成としている。しかし、本発明はこれに限らず、受光素子6と演算部14との間に、光検出信号S0を増幅する信号増幅装置と、光検出信号S0のノイズを除去するフィルタ装置を設ける構成としてもよい。 In each of the above embodiments, the light receiving element 6 and the calculation unit 14 are directly connected. However, the present invention is not limited to this, and a configuration in which a signal amplification device that amplifies the light detection signal S0 and a filter device that removes noise of the light detection signal S0 are provided between the light receiving element 6 and the calculation unit 14. Good.
 また、前記各実施の形態では、受光素子6を1個設ける構成としたが、例えば、発光素子毎に別個の受光素子で受光する構成としてもよい。 In each of the above-described embodiments, one light receiving element 6 is provided. However, for example, a light receiving element may receive light for each light emitting element.
 さらに、前記各実施の形態では、信号処理手段としての信号処理回路11,22,32は基板2に実装する構成としたが、基板2と別個に設けてもよい。 Further, in each of the above-described embodiments, the signal processing circuits 11, 22 and 32 as signal processing means are configured to be mounted on the substrate 2, but may be provided separately from the substrate 2.
 1,21,31 傾き検出装置
 3~5 発光素子
 6 受光素子
 11,22,32 信号処理回路(信号処理手段)
 14 演算部
 Ra,Rb,Rc 反射光強度比
 θ1,θ2,θ3 傾き角度
 T1,T2,T3,T4,T31 テーブル
 Va,Vb,Vc 傾きベクトル
1, 21, 31 Tilt detection device 3-5 Light emitting element 6 Light receiving element 11, 22, 32 Signal processing circuit (signal processing means)
14 Arithmetic unit Ra, Rb, Rc Reflected light intensity ratio θ1, θ2, θ3 Inclination angle T1, T2, T3, T4, T31 Table Va, Vb, Vc Inclination vector

Claims (4)

  1.  互いに時分割発光する第1および第2の発光素子と、前記第1および第2の発光素子から出射された光が被検出物体によって反射された光を受光する受光素子と、前記受光素子で受光した反射光の信号に基づいて前記被検出物体の傾きを検知する信号処理手段とを備えた傾き検出装置において、
     前記信号処理手段は、前記第1の発光素子による反射光の強度と前記第2の発光素子による反射光の強度との反射光強度比を演算する反射光強度比演算手段と、
     予め登録しておいたテーブルから前記反射光強度比を前記被検出物体の傾き角度に換算する角度換算手段とを備えたことを特徴とする傾き検出装置。
    First and second light emitting elements that emit light in a time-sharing manner, a light receiving element that receives light reflected by a detection object, and light received by the light receiving element. In a tilt detection apparatus comprising signal processing means for detecting the tilt of the detected object based on a signal of reflected light that has been obtained,
    The signal processing means includes a reflected light intensity ratio calculating means for calculating a reflected light intensity ratio between the intensity of the reflected light from the first light emitting element and the intensity of the reflected light from the second light emitting element,
    An inclination detecting device comprising angle conversion means for converting the reflected light intensity ratio into an inclination angle of the detected object from a previously registered table.
  2.  互いに時分割発光する第1,第2および第3の発光素子と、前記第1,第2および第3の発光素子から出射された光が被検出物体によって反射された光を受光する受光素子と、前記受光素子で受光した反射光の信号に基づいて前記被検出物体の傾きを検知する信号処理手段とを備えた傾き検出装置において、
     前記信号処理手段は、前記第1の発光素子による反射光の強度と前記第2の発光素子による反射光の強度との第1の反射光強度比を演算する第1の反射光強度比演算手段と、
     予め登録しておいた第1のテーブルから前記第1の反射光強度比を前記被検出物体の第1の傾き角度に換算する第1の角度換算手段と、
     前記第2の発光素子による反射光の強度と前記第3の発光素子による反射光の強度との第2の反射光強度比を演算する第2の反射光強度比演算手段と、
     予め登録しておいた第2のテーブルから前記第2の反射光強度比を前記被検出物体の第2の傾き角度に換算する第2の角度換算手段と、
     前記第1の傾き角度と前記第2の傾き角度とに基づいて前記被検出物体の傾きを求める傾き演算手段とを備えたことを特徴とする傾き検出装置。
    First, second, and third light emitting elements that emit light in a time-sharing manner, and a light receiving element that receives light reflected from the object to be detected, emitted from the first, second, and third light emitting elements. In an inclination detection apparatus comprising signal processing means for detecting the inclination of the detected object based on a signal of reflected light received by the light receiving element,
    The signal processing means calculates a first reflected light intensity ratio calculating means for calculating a first reflected light intensity ratio between the intensity of the reflected light from the first light emitting element and the intensity of the reflected light from the second light emitting element. When,
    First angle conversion means for converting the first reflected light intensity ratio from a first table registered in advance to a first tilt angle of the detected object;
    A second reflected light intensity ratio calculating means for calculating a second reflected light intensity ratio between the intensity of the reflected light from the second light emitting element and the intensity of the reflected light from the third light emitting element;
    Second angle conversion means for converting the second reflected light intensity ratio from a second table registered in advance into a second tilt angle of the detected object;
    An inclination detecting apparatus comprising: an inclination calculating means for obtaining an inclination of the detected object based on the first inclination angle and the second inclination angle.
  3.  前記信号処理手段は、前記第3の発光素子による反射光の強度と前記第1の発光素子による反射光の強度との第3の反射光強度比を演算する第3の反射光強度比演算手段と、
     予め登録しておいた第3のテーブルから前記第3の反射光強度比を前記被検出物体の第3の傾き角度に換算する第3の角度換算手段とをさらに備え、
     前記傾き演算手段は、前記第1の傾き角度による第1の傾きベクトルと、前記第2の傾き角度による第2の傾きベクトルと、前記第3の傾き角度による第3の傾きベクトルとに基づいて前記被検出物体の傾きを求める構成としてなる請求項2に記載の傾き検出装置。
    The signal processing means calculates third reflected light intensity ratio calculating means for calculating a third reflected light intensity ratio between the intensity of the reflected light from the third light emitting element and the intensity of the reflected light from the first light emitting element. When,
    A third angle conversion means for converting the third reflected light intensity ratio from a third table registered in advance into a third inclination angle of the detected object;
    The tilt calculating means is based on a first tilt vector based on the first tilt angle, a second tilt vector based on the second tilt angle, and a third tilt vector based on the third tilt angle. The tilt detection apparatus according to claim 2, wherein the tilt detection apparatus is configured to obtain a tilt of the detected object.
  4.  前記第1,第2および第3の発光素子は、前記被検出物体との距離が大きくなるに従って前記第1,第2および第3の発光素子からの光の照射位置が互いに離れる方向に向けて光を出射してなる請求項2または3に記載の傾き検出装置。 The first, second, and third light emitting elements are directed such that the irradiation positions of the light from the first, second, and third light emitting elements are separated from each other as the distance from the detected object increases. The tilt detection apparatus according to claim 2 or 3, wherein light is emitted.
PCT/JP2014/075034 2013-09-25 2014-09-22 Inclination detection device WO2015046127A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015539198A JP6020738B2 (en) 2013-09-25 2014-09-22 Tilt detection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013198672 2013-09-25
JP2013-198672 2013-09-25

Publications (1)

Publication Number Publication Date
WO2015046127A1 true WO2015046127A1 (en) 2015-04-02

Family

ID=52743263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075034 WO2015046127A1 (en) 2013-09-25 2014-09-22 Inclination detection device

Country Status (2)

Country Link
JP (1) JP6020738B2 (en)
WO (1) WO2015046127A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05333152A (en) * 1992-06-01 1993-12-17 Fujitsu Ltd Inclination measuring device
JPH11102254A (en) * 1997-09-26 1999-04-13 Ricoh Co Ltd Pen type input device and pattern recognizing method therefor
US6115128A (en) * 1997-09-17 2000-09-05 The Regents Of The Univerity Of California Multi-dimensional position sensor using range detectors
JP2008268181A (en) * 2007-03-26 2008-11-06 Casio Comput Co Ltd Projector
JP2011117916A (en) * 2009-12-07 2011-06-16 Nec Corp Inclination/eccentricity detection device of rotor, and inclination/eccentricity detection method of the rotor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05333152A (en) * 1992-06-01 1993-12-17 Fujitsu Ltd Inclination measuring device
US6115128A (en) * 1997-09-17 2000-09-05 The Regents Of The Univerity Of California Multi-dimensional position sensor using range detectors
JPH11102254A (en) * 1997-09-26 1999-04-13 Ricoh Co Ltd Pen type input device and pattern recognizing method therefor
JP2008268181A (en) * 2007-03-26 2008-11-06 Casio Comput Co Ltd Projector
JP2011117916A (en) * 2009-12-07 2011-06-16 Nec Corp Inclination/eccentricity detection device of rotor, and inclination/eccentricity detection method of the rotor

Also Published As

Publication number Publication date
JPWO2015046127A1 (en) 2017-03-09
JP6020738B2 (en) 2016-11-02

Similar Documents

Publication Publication Date Title
JP6854366B2 (en) Detector that optically detects at least one object
EP3117234B1 (en) Optoelectronic modules operable to recognize spurious reflections and to compensate for errors caused by spurious reflections
JP4644540B2 (en) Imaging device
US8569679B2 (en) System and circuit including multiple photo detectors and at least one optical barrier
JP6026743B2 (en) Position detection sensor, system and method
JPH02236108A (en) Solar sensor
US20140016113A1 (en) Distance sensor using structured light
JP5765483B2 (en) Optical sensor
JP4035515B2 (en) Optical displacement sensor and external force detection device
US20160084650A1 (en) Optical sensor and optical sensor system
US11703392B2 (en) Sequential beam splitting in a radiation sensing apparatus
JP2012517907A5 (en)
US20220113127A1 (en) A detector for determining a position of at least one object
WO2013140649A1 (en) Optical sensor
JP6020738B2 (en) Tilt detection device
US20190301855A1 (en) Parallax detection device, distance detection device, robot device, parallax detection method, and distance detection method
KR100885642B1 (en) Apparatus and method for detecting position using psd sensor
JP2733743B2 (en) Optical position and attitude detection device
JP2018025463A (en) Information processing device, sunlight receiving element, and artificial satellite
TWI734465B (en) Optical navigation apparatus
US20240116186A1 (en) Calibration apparatus, calibration system, mobile system, calibration method, and control program
US20160216356A1 (en) Non-Contact Fiber Optic Localization And Tracking System
US9170657B2 (en) Angle measurement by use of multiple oriented light sources
JPWO2004068175A1 (en) Object detection device
KR20160064628A (en) Sensor Apparatus for Detection Position of PCB

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14849429

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015539198

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14849429

Country of ref document: EP

Kind code of ref document: A1