WO2015046100A1 - Composition and method for producing same - Google Patents

Composition and method for producing same Download PDF

Info

Publication number
WO2015046100A1
WO2015046100A1 PCT/JP2014/075000 JP2014075000W WO2015046100A1 WO 2015046100 A1 WO2015046100 A1 WO 2015046100A1 JP 2014075000 W JP2014075000 W JP 2014075000W WO 2015046100 A1 WO2015046100 A1 WO 2015046100A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
monomer
polymer
composition
pentadien
Prior art date
Application number
PCT/JP2014/075000
Other languages
French (fr)
Japanese (ja)
Inventor
持郎 田仲
Original Assignee
国立大学法人 岡山大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 岡山大学 filed Critical 国立大学法人 岡山大学
Priority to JP2015539179A priority Critical patent/JP6366110B2/en
Publication of WO2015046100A1 publication Critical patent/WO2015046100A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/01Palates or other bases or supports for the artificial teeth; Making same
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/30Compositions for temporarily or permanently fixing teeth or palates, e.g. primers for dental adhesives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/04Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials
    • A61L24/043Mixtures of macromolecular materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/22Mixtures comprising a continuous polymer matrix in which are dispersed crosslinked particles of another polymer

Definitions

  • the present invention relates to a polymer containing a methyl methacrylate unit, a composition containing a plurality of monomers and a polymerization initiator, and a method for producing the same. Moreover, it is related with the medical composition which consists of such a composition, especially a dental composition. Furthermore, the present invention relates to a molded product obtained by curing the composition and a kit for producing the composition.
  • a composition containing a polymer, a monomer, and a polymerization initiator is used as a material for a molded article.
  • Such a composition is usually produced by mixing a polymer powder and a monomer liquid.
  • a method for producing a molded article usually, a polymer powder and a monomer liquid are mixed, and the mixture is shaped after waiting until the mixture becomes cocoon-like, and then polymerized and cured. The method of obtaining the thing of this shape is used. If such a manufacturing method is used, manufacture of a composition and subsequent shaping are possible by simple operation.
  • the composition is used in the medical field and the like.
  • the composition is used as a material such as a denture base material and a mouthpiece material in the dental field, and is also used as a bone cement material and the like in the orthopedic field.
  • a cured product obtained by polymerizing a composition containing polymethyl methacrylate, methyl methacrylate and a polymerization initiator has high hardness and high strength, but may have insufficient toughness. Therefore, depending on the application, there is a risk of breakage due to stress or impact during use, and the improvement has been demanded. Further, when the cured product is used for a long time in a moist state, the mechanical properties may deteriorate due to water absorption of the molded product. In particular, denture bases and mouthpieces may be colored with coffee or tea or used for a long period of time, which may cause bad odors, and a reduction in water absorption rate has been demanded.
  • Patent Document 1 a polymerizable monomer having an unsaturated double bond, a polyalkyl (meth) acrylate, and a polymerization catalyst are mixed, and at least a part of the polyalkyl (meth) acrylate is polymerizable.
  • a denture base resin material characterized by being dissolved in a monomer is described. This makes it possible to obtain a cured body that is paste-like in advance and can be simplified in operation, and has a large elastic energy and appropriate hardness and tenacity.
  • Patent Document 2 a polyalkyl (meth) acrylate powder and a vinyl ester monomer solution having 6 or more carbon atoms are mixed and thickened in the presence of a polymerization initiator, and then shaped. Then, a method for producing a molded article is described in which the polymerization reaction is allowed to proceed and then cured.
  • a vinyl ester monomer is used as the liquid agent, the elastic modulus of the obtained molded product is low, and it may be insufficient for use in applications requiring high elastic modulus.
  • Patent Document 3 polymethylmethacrylate powder and polyethylene glycol di (meth) acrylate solution are mixed in the presence of a polymerization initiator to increase the viscosity, and then the polymerization reaction is allowed to proceed. A method for producing a molded product to be cured is described.
  • polyethylene glycol di (meth) acrylate has a slow rate of swelling the powder of polymethyl methacrylate, and the mixing operation requires 24 hours or more, so that the operability is insufficient. In some applications, the balance of strength, elastic modulus, and toughness may be insufficient.
  • the present invention has been made to solve the above problems, and provides a composition capable of obtaining a molded product having high strength and high elastic modulus, excellent toughness, and low water absorption. It is the purpose. Moreover, it aims at providing the method which can prepare such a resin composition simply.
  • the said subject is a composition containing a polymer (A), a monomer (B), and a polymerization initiator (C); Containing 100 to 280 parts by mass of the polymer (A) with respect to 100 parts by mass of the monomer (B),
  • the polymer (A) contains 70% by mass or more of methyl methacrylate units
  • the monomer (B) is represented by the following formula (1) [Wherein, R 1 and R 2 each independently represent a hydrogen atom or a methyl group, and at least one of R 1 and R 2 is a hydrogen atom.
  • the composition has a heterogeneous structure derived from the particles of the polymer (A).
  • composition wherein the monomer (B) contains 70 to 99.5% by mass of the compound (b1) and 0.5 to 30% by mass of 1,4-pentadien-3-ol (b3) is preferable. It is an aspect. Further, the composition wherein the monomer (B) contains 70 to 99.5% by mass of methyl methacrylate (b2) and 0.5 to 30% by mass of 1,4-pentadien-3-ol (b3) is also provided. Is a preferred embodiment.
  • a medical composition comprising the above composition is a preferred embodiment of the present invention
  • a dental composition comprising the medical composition, particularly a dental adhesive is a more preferred embodiment.
  • a bone cement made of the medical composition is a preferred embodiment.
  • a molded product obtained by curing the composition is also a preferred embodiment of the present invention.
  • a denture base or mouthpiece obtained by curing the dental composition is a preferred embodiment.
  • the above-mentioned problem is that the powder of the polymer (A) and the liquid agent of the monomer (B) are mixed and thickened in the presence of the polymerization initiator (C). It is also solved by providing a manufacturing method. At this time, it is preferable that the polymer (A) contains a polymerization initiator (C) in advance.
  • the above-mentioned subject is a powder of polymer (A) containing 70% by mass or more of a methyl methacrylate unit, Following formula (1) [Wherein, R 1 and R 2 each independently represent a hydrogen atom or a methyl group, and at least one of R 1 and R 2 is a hydrogen atom. ] 70 to 99.5% by mass of at least one compound selected from the compound (b1) and methyl methacrylate (b2) represented by formula (2): And a solution of monomer (B) containing 0.5 to 30% by mass of 1,4-pentadien-3-ol (b3) represented by the formula: wherein at least one of the powder or the solution is polymerized It is also solved by providing a kit containing the initiator (C).
  • the composition of the present invention can be easily prepared.
  • a molded product obtained by curing the composition of the present invention is excellent in toughness while having high strength and high elastic modulus, and also has a low water absorption. Therefore, the composition is suitably used for manufacturing a denture base or a mouthpiece, and is also suitably used as a dental adhesive or bone cement. Furthermore, according to the kit of this invention, the said composition can be manufactured simply.
  • Example 22 is a microscopic image of a thin section of a molded product in Example 21.
  • FIG. In Examples 1 to 6 and Comparative Example 2, the content (mass%) of 1,4-pentadien-3-ol (b3) is plotted on the horizontal axis, and the flexural modulus (GPa) of the obtained test piece is plotted on the vertical axis. Is a graph in which is plotted. In Examples 1 to 6 and Comparative Example 2, the content (mass%) of 1,4-pentadien-3-ol (b3) is plotted on the horizontal axis, and the bending strength (MPa) of the test piece obtained is plotted on the vertical axis. Is a graph in which is plotted.
  • Examples 1 to 6 and Comparative Example 2 the content (mass%) of 1,4-pentadien-3-ol (b3) is plotted on the horizontal axis, and the maximum deflection amount (mm) of the test piece obtained on the vertical axis. Is a graph in which is plotted. In Examples 1 to 6 and Comparative Example 2, the content (mass%) of 1,4-pentadien-3-ol (b3) is plotted on the horizontal axis, and the breaking energy (KJ / m) of the test piece obtained is plotted on the vertical axis. 2 ) is a graph obtained by plotting.
  • the horizontal axis represents the content (mass%) of 1,4-pentadien-3-ol (b3)
  • the vertical axis represents the apparent saturated water absorption rate of the obtained test piece. It is the graph which plotted (mass%).
  • the content (mass%) of 1,4-pentadien-3-ol (b3) is plotted on the horizontal axis, and the flexural modulus (GPa) of the test piece obtained is plotted on the vertical axis. Is a graph in which is plotted.
  • Example 11 to 20 and Comparative Example 3 the content (mass%) of 1,4-pentadien-3-ol (b3) is plotted on the horizontal axis, and the bending strength (MPa) of the obtained test piece is plotted on the vertical axis. Is a graph in which is plotted.
  • the horizontal axis represents the content (% by mass) of 1,4-pentadien-3-ol (b3), and the vertical axis represents the maximum deflection amount (mm) of the obtained test piece. Is a graph in which is plotted.
  • Example 11 to 20 and Comparative Example 3 the content (mass%) of 1,4-pentadien-3-ol (b3) is plotted on the horizontal axis, and the breaking energy (KJ / m) of the obtained test piece is plotted on the vertical axis. 2 ) is a graph obtained by plotting.
  • the horizontal axis represents the content (mass%) of 1,4-pentadien-3-ol (b3), and the vertical axis represents the apparent saturated water absorption (mass). %).
  • the composition of the present invention is a composition containing a polymer (A), a monomer (B) and a polymerization initiator (C); Containing 100 to 280 parts by mass of the polymer (A) with respect to 100 parts by mass of the monomer (B),
  • the polymer (A) contains 70% by mass or more of methyl methacrylate units
  • the monomer (B) is represented by the following formula (1) [Wherein, R 1 and R 2 each independently represent a hydrogen atom or a methyl group, and at least one of R 1 and R 2 is a hydrogen atom. ] 70 to 99.5% by mass of at least one compound selected from the compound (b1) and methyl methacrylate (b2) represented by formula (2): 1,4-pentadien-3-ol (b3) represented by the formula:
  • Polymer (A) is a polymer containing 70% by mass or more of methyl methacrylate units.
  • a molded product having high strength and high elastic modulus can be obtained. Therefore, such a molded article is suitably used as a denture base material, a mouthpiece material, or the like that requires a predetermined strength and elastic modulus.
  • the polymer (A) containing 70% by mass or more of methyl methacrylate units has higher biocompatibility than a polymer containing a halogen atom or a polymer containing an aromatic ring.
  • the polymer (A) is an amorphous polymer having a relatively high glass transition temperature, and a powder having a particle size suitable for the practice of the present invention can be easily obtained by suspension polymerization or the like.
  • the polymer (A) may be a homopolymer of methyl methacrylate or a copolymer of methyl methacrylate and other monomers.
  • the content of the methyl methacrylate unit in the polymer (A) is preferably 80% by mass or more, more preferably 90% by mass or more, and still more preferably 95% by mass or more. When the methyl methacrylate unit is less than 70% by mass, the strength and elastic modulus of the obtained molded product are lowered.
  • the monomer to be copolymerized with methyl methacrylate is not particularly limited as long as it is a monomer copolymerizable with methyl methacrylate.
  • alkyls such as methyl acrylate, ethyl (meth) acrylate, isopropyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate or t-butyl (meth) acrylate ( Meth) acrylate; olefins such as ethylene and propylene; vinyl carboxylates such as vinyl acetate; maleic anhydride; acrylonitrile; styrene; vinyl chloride and the like.
  • These monomers can be used alone or in combination of two or more. From the viewpoint of polymerizability, alkyl (meth) acrylate is preferred. From the viewpoint of ease of swelling of the polymer (A) in the case of producing a composition using the powder of the polymer (A) and the liquid agent of the monomer (B), ethyl methacrylate is preferable. is there.
  • the content of these monomers is 30% by mass or less, preferably 20% by mass or less, more preferably 10% by mass or less, and further preferably 5% by mass or less.
  • the molecular weight of the polymer (A) is not particularly limited, but those having a weight average molecular weight of 5,000 to 2,000,000 are usually used. When the molecular weight is lower than 5,000, the strength of the obtained molded product may be insufficient.
  • the molecular weight is more preferably 200,000 or more, and further preferably 300,000 or more.
  • the molecular weight of the polymer (A) is more preferably 1,500,000 or less, and more preferably 1,000,000 or less.
  • the weight average molecular weight can be measured by gel permeation chromatography (GPC).
  • the monomer (B) contained in the composition of the present invention contains 70 to 99.5 mass of at least one compound selected from the compound (b1) represented by the above formula (1) and methyl methacrylate (b2). % And 1,4-pentadien-3-ol (b3) represented by the above formula (2) in an amount of 0.5 to 30% by mass.
  • the monomer (B) contains 1,4-pentadien-3-ol (b3).
  • 1,4-pentadien-3-ol (b3) the water absorption of the obtained molded product is lowered. Furthermore, since none of the compound (b1) represented by the above formula (1), methyl methacrylate (b2) and 1,4-pentadien-3-ol (b3) contains a halogen element or an aromatic ring, the present invention This composition is considered to be highly biocompatible.
  • Both the compound (b1) represented by the above formula (1), which is the main component in the monomer (B), and methyl methacrylate (b2) are composed by rapidly swelling the particles of the polymer (A). Since a product can be obtained, productivity is good. And all the moldings obtained by hardening the said composition are high intensity
  • the structure of the compound (b1) used as the main component in the monomer (B) is as represented by the following formula (1).
  • the compound (b1) represented by the above formula (1) is a crosslinkable monomer having two polymerizable groups having an ethylenic double bond. Two polymerizable groups in the compound (b1) are linked by an ester bond, and the distance between the polymerizable groups is short.
  • the compound (b1) includes a methacryloyl group (when R 1 is a methyl group and R 2 is a hydrogen atom in the formula (1)), an acryloyl group (in the formula (1), R 1 and R 2 are A hydrogen atom) or a crotonoyl group (in the formula (1), when R 1 is a hydrogen atom and R 2 is a methyl group) and a carboxylic acid vinyl ester group.
  • the compound (b1) can swell the powder of the polymer (A) in a short time.
  • the carbonyl group in the methacryloyl group, acryloyl group or crotonoyl group and the carbonyl group in the carboxylic acid vinyl ester group are the same.
  • R 1 in the above formula (1) is a methyl group and R 2 is a hydrogen atom, or R 1 and R 2 in the formula (1) are hydrogen atoms Is preferred.
  • the compound (b1) is one in which R 1 in the formula (1) is a methyl group and R 2 is a hydrogen atom. More preferred.
  • the structure of 1,4-pentadien-3-ol (b3) contained in the monomer (B) is as represented by the following formula (2).
  • 1,4-pentadien-3-ol (b3) represented by the above formula (2) is a crosslinkable monomer having two polymerizable groups having an ethylenic double bond. Since the two polymerizable groups in 1,4-pentadien-3-ol (b3) are linked via one carbon atom, the distance between the polymerizable groups is very close. In addition, since the hydroxyl group is bonded to the carbon atom and the boiling point is increased, the volatilization during the production of the composition is small, which is preferable from the viewpoint of the working environment. Furthermore, since it has a hydroxyl group at the allylic position from the ethylenic double bond, the reactivity of the two ethylenic double bonds is high.
  • the monomer (B) comprises 70 to 99.5% by mass of at least one compound selected from the compound (b1) represented by the above formula (1) and methyl methacrylate (b2), 1,4-pentadiene -3-ol (b3) is contained in an amount of 0.5 to 30% by mass.
  • the content of at least one compound selected from the compound (b1) and methyl methacrylate (b2) is less than 70% by mass, the elastic modulus and strength are insufficient.
  • the content of the compound is preferably 85% by mass or more, and more preferably 92% by mass or more.
  • the content of at least one compound selected from the compound (b1) and methyl methacrylate (b2) exceeds 99.5% by mass, the effect of improving toughness and the effect of decreasing the water content are insufficient.
  • the content of the compound is preferably 99% by mass or less, and more preferably 98% by mass or less.
  • the content of 1,4-pentadien-3-ol (b3) is less than 0.5% by mass, the effect of improving toughness and the effect of reducing water content are insufficient.
  • the content of 1,4-pentadien-3-ol (b3) is preferably 1% by mass or more, and more preferably 2% by mass or more.
  • 1,4-pentadien-3-ol (b3) exceeds 30% by mass, the elastic modulus and strength are insufficient.
  • the content of 1,4-pentadien-3-ol (b3) is preferably 15% by mass or less, and more preferably 8% by mass or less.
  • the monomer (B) is polymerized after the monomer (B) enters between the molecular chains of the polymer (A), whereby the molecule of the polymer (A) is polymerized. It is presumed that a chain and a polymer composed of a plurality of types of monomers in the monomer (B) form a so-called “semi-interpenetrating network structure” that is intertwined with each other. At this time, it is considered that excellent toughness can be imparted to the obtained molded article by using 1,4-pentadien-3-ol (b3) having a very short distance between the crosslinking points after polymerization.
  • the entire composition is preferably not uniform and has a non-uniform structure derived from the particles of the polymer (A).
  • the powder of the polymer (A) and the liquid of the monomer (B) are mixed and thickened in the presence of the polymerization initiator (C).
  • the particles of the polymer (A) remain without being completely dissolved, the content of the monomer (B) is small at the center of the particle, and the content of the monomer (B) is large between the particles.
  • the heterogeneous structure is formed. It is considered that a molded body having high strength and high elastic modulus and excellent toughness can be obtained by curing a composition having such a heterogeneous structure.
  • the obtained molded product contains the compound (b1) or methyl methacrylate (b2) and 1,4-pentadien-3-ol (b3). It is considered that a network-like crosslinked structure is formed.
  • the crosslinked structure is considered to be entangled with the molecular chain of the polymer (A), and the crosslinked structure and the polymer (A) form a “semi-interpenetrating network structure”. It is estimated to be.
  • 1,4-pentadien-3-ol (b3) has a very short distance between the polymerizable groups, the crosslinked structure is considered to have a short distance between the crosslinking points. .
  • the vicinity of the surface of the polymer (A) particles in the molded product becomes partially extremely rigid, water absorption swelling is suppressed, and the water absorption rate of the molded product decreases.
  • the fact that the water absorption rate can be lowered by blending a monomer having a hydroxyl group has been revealed for the first time by the present inventors, and is surprising.
  • the merit of reducing the water absorption rate without introducing an aromatic group or a fluorine atom having a low biocompatibility is very large.
  • by forming a “semi-interpenetrating network structure” it is considered that a molded product having excellent strength and elastic modulus and excellent toughness can be obtained.
  • the molded product When a molded product having a high water absorption rate is used for a long time in a wet state, the molded product may be colored or a bad odor may be generated. Furthermore, mechanical properties may be deteriorated due to water absorption of the molded product. In particular, denture bases and mouthpieces may be colored with coffee or tea or used for a long period of time, which may cause bad odors and have a high water absorption rate. Therefore, the use of 1,4-pentadien-3-ol (b3) in the resin composition of the present invention is significant in that the water absorption rate can be greatly reduced.
  • the monomer (B) contains 70 to 99.5% by mass of the compound (b1) represented by the above formula (1) and 1,4-pentadiene-3- All (b3) 0.5 to 30% by mass is contained.
  • the content rate of a compound (b1) becomes like this.
  • it is 85 mass% or more, More preferably, it is 92 mass% or more.
  • the content rate of a compound (b1) is 99 mass% or less suitably, More preferably, it is 98 mass% or less.
  • the content of 1,4-pentadien-3-ol (b3) is preferably 1% by mass or more, and more preferably 2% by mass or more.
  • the content of 1,4-pentadien-3-ol (b3) is preferably 15% by mass or less, and more preferably 8% by mass or less.
  • 1,4-pentadien-3-ol (b3) is preferably 3% by mass or more.
  • the content rate of a compound (b1) shall be 97 mass% or less.
  • the obtained molded product is obtained as compared with the case where the methyl methacrylate (b2) is used.
  • the water absorption can be reduced.
  • Compound (b1) is a crosslinkable monomer having a short distance between polymerizable groups, and as shown in the examples below, even when only compound (b1) is used as monomer (B), methyl
  • the apparent saturated water absorption rate could be reduced by 10% or more compared to a commercial product of a denture base composition containing “methacrylate” as a main component of the liquid (“ACRON” manufactured by GC Corporation).
  • the compound (b1) is a relatively hydrophilic compound, but it is surprising that the water absorption of the obtained molded product is lower than when the more hydrophobic methyl methacrylate (b2) is used. Moreover, by using 1,4-pentadien-3-ol (b3) having a hydroxyl group in the molecule in addition to the compound (b1), the water absorption rate can be further reduced.
  • the monomer (B) contains 70 to 99.5% by mass of methyl methacrylate (b2) and 1,4-pentadien-3-ol (b3) 0. 5 to 30% by mass.
  • the content of methyl methacrylate (b2) is preferably 85% by mass or more, and more preferably 92% by mass or more.
  • the content of methyl methacrylate (b2) is preferably 99% by mass or less, and more preferably 98% by mass or less.
  • the content of 1,4-pentadien-3-ol (b3) is preferably 1% by mass or more, and more preferably 2% by mass or more.
  • the content of 1,4-pentadien-3-ol (b3) is preferably 15% by mass or less, and more preferably 8% by mass or less.
  • 1,4-pentadien-3-ol (b3) is preferably 5% by mass or less.
  • the content of methyl methacrylate (b2) is preferably 95% by mass or more.
  • the composition containing the polymer (A) and methyl methacrylate (b2) is the composition most widely used at present as a denture base composition, dental adhesive, bone cement or the like.
  • Methyl methacrylate (b2) can swell the powder of the polymer (A) in a short time and has good operability.
  • a molded product obtained by curing the composition has high strength and high elastic modulus.
  • the toughness may be insufficient depending on the application. In such a case, it is significant that the toughness can be greatly improved by adding a relatively small amount of 1,4-pentadien-3-ol (b3). Further, the water absorption can be greatly reduced by adding a relatively small amount of 1,4-pentadien-3-ol (b3), which is extremely useful in practice.
  • the monomer (B) is a compound (b1) represented by the formula (1), methyl methacrylate (b2) and 1,4-pentadien-3-ol (b3) as long as the effects of the present invention are not impaired.
  • a monomer other than) may be contained.
  • the monomer at this time is not particularly limited as long as it is copolymerizable with (b1), (b2) and (b3).
  • the monomer content other than (b1), (b2) and (b3) in the monomer (B) is usually 20% by mass or less, preferably 10% by mass or less, and 5% by mass. The following is more preferable, and 2% by mass or less is more preferable.
  • the polymerization initiator (C) is not particularly limited as long as it can polymerize the monomer (B), and a radical polymerization initiator, a photopolymerization initiator, or the like is used.
  • a radical polymerization initiator an organic peroxide or an organic azo compound is preferably used.
  • These radical polymerization initiators may generate radicals by heating, or may generate radicals at room temperature by mixing with a reducing agent such as an amine.
  • a photoinitiator the combination of a sensitizer and a reducing agent etc. are employ
  • Polymerization initiators that generate radicals upon heating include benzoyl peroxide, 2,4-dichlorobenzoyl peroxide, m-tolyl peroxide, t-butylperoxybenzoate, di-t-butylperoxyisophthalate 2,5-dimethyl-2,5-di (benzoylperoxy) hexane, 2,5-dimethyl-2,5-di [(o-benzoyl) benzoylperoxy] hexane, t-butylperoxy-2- Examples thereof include ethyl hexanoate and t-butyl peroxyisopropyl carbonate.
  • a combination of a peroxide and a reducing agent that generates radicals at room temperature includes peroxides such as benzoyl peroxide, 2,4-dichlorobenzoyl peroxide, m-tolyl peroxide, and t-butyl peroxide.
  • peroxides such as benzoyl peroxide, 2,4-dichlorobenzoyl peroxide, m-tolyl peroxide, and t-butyl peroxide.
  • sensitizers and reducing agents include camphorquinone, benzyl, diacetyl, benzyl dimethyl ketal, benzyl diethyl ketal, benzyl di (2-methoxyethyl) ketal, 4,4′-dimethylbenzyl- Dimethyl ketal, anthraquinone, 1-chloroanthraquinone, 2-chloroanthraquinone, 1,2-benzanthraquinone, 1-hydroxyanthraquinone, 1-methylanthraquinone, 2-ethylanthraquinone, 1-bromoanthraquinone, thioxanthone, 2-isopropylthioxanthone, 2 -Nitrothioxanthone, 2-methylthioxanthone, 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone
  • the composition of the present invention contains 100 to 280 parts by mass of the polymer (A) with respect to 100 parts by mass of the monomer (B).
  • the content of the polymer (A) exceeds 280 parts by mass, the composition of the present invention is prepared using the powder of the polymer (A) and the liquid of the monomer (B).
  • the powder of a polymer (A) may not fully swell. If the powder does not swell sufficiently, the mechanical properties of the resulting molded product may be reduced.
  • the content of the polymer (A) is more preferably 270 parts by mass or less.
  • the content rate of a polymer (A) is less than 100 mass parts, there exists a possibility that the mechanical property of the molded article obtained may fall or a polymerization shrinkage rate may become high.
  • the content of the polymer (A) is more preferably 180 parts by mass or more, and further preferably 200 parts by mass or more. From the viewpoint of the mechanical properties of the obtained molded product in the case of producing a molded product using the polymer (A) powder and the monomer (B) solution, the content of the polymer (A) is In the range where the polymer (A) is sufficiently swollen, it is preferable that the amount is larger.
  • the content of the polymerization initiator (C) is usually 0.01 to 10 parts by mass with respect to 100 parts by mass of the monomer (B). If the content of the polymerization initiator (C) is less than 0.01 parts by mass with respect to 100 parts by mass of the monomer (B), the effect of promoting the polymerization reaction may not be sufficient. Preferably it is 0.1 mass part or more. On the other hand, when the content of the polymerization initiator (C) exceeds 10 parts by mass with respect to 100 parts by mass of the monomer (B), the effect of accelerating the polymerization reaction reaches its peak, and the polymerization initiator ( There is also a possibility that the eluted components derived from C) may increase. The amount is preferably 5 parts by mass or less.
  • the composition of the present invention may contain components other than the polymer (A), the monomer (B) and the polymerization initiator (C) as long as the effects of the present invention are not impaired.
  • fillers, colorants, antibacterial agents, fragrances, and the like can be blended depending on the application. 40 mass% or less is suitable for the content rate of the said filler in the composition of this invention, and 20 mass% or less is more suitable.
  • a filler By containing a filler, the strength and elastic modulus of the obtained molded product are further improved. From the viewpoint of lowering the water absorption of the obtained molded product, an inorganic filler is more preferable.
  • the content of components other than the polymer (A), the monomer (B), the polymerization initiator (C) and the filler is preferably less than 20% by mass, and more preferably 10% by mass or less. It is.
  • a preferred method for producing the composition of the present invention is a method in which the powder of the polymer (A) and the liquid of the monomer (B) are mixed and thickened in the presence of the polymerization initiator (C). is there. After mixing the powder agent and the liquid agent, the mixture physically changes from a paste shape to a candy shape to a rubber shape, that is, from a viscous material to an elastic material.
  • the bowl shape is a state having both viscosity and fluidity. Since the cocoon-shaped composition has good operability, it is possible to easily perform a shaping operation and the like.
  • the powder of the polymer (A) and the liquid of the monomer (B) are mixed, it becomes a cocoon in about 2 to 5 minutes.
  • the preparation and shaping of the composition can be performed in a short time, so that the merit is great.
  • stir after spraying the liquid or soaking the liquid in the liquid It is preferable to stand still without increasing the viscosity.
  • stirring is preferable.
  • the monomer (B) is gradually impregnated into the particles of the polymer (A) constituting the powder, so that the particles Swells.
  • the composition becomes cocoon-like, the particles impregnated with the monomer (B) are soft enough to be easily deformed by the stress during molding. At this time, it is considered that the particles are swollen by impregnating a large amount of the monomer (B) in the vicinity of the surface. Thus, it is considered that the particles of the polymer (A) are swollen by the monomer (B).
  • the gap between the polymer (A) powder and the monomer (B) solution is filled.
  • the composition becomes bowl-shaped, it is considered that a part of the polymer (A) is dissolved in the monomer (B).
  • the soot-like composition obtained by mixing the powder of the polymer (A) and the liquid of the monomer (B) is a polymer (swelled by impregnation with the monomer (B)). It consists of a solution of the monomer (B) in which the polymer (A) is dissolved and present in a form to fill the gaps between the particles.
  • the polymer (A) particles impregnated in the monomer (B) impregnated in the vicinity of the surface of the polymer (A) particles. , (B1) or (b2) and (b3) are presumed to form the above-described semi-interpenetrating network structure.
  • a molded product having excellent strength and elastic modulus, excellent toughness, and low water absorption can be obtained.
  • the amount of the monomer (B) solution is small so long as the powder of the polymer (A) can be sufficiently swollen.
  • the monomer (B) contains the compound (b1) or methyl methacrylate (b2) represented by the above formula (1) and 1,4-pentadien-3-ol (b3)
  • the compound (b1) in the monomer (B) impregnated in the particles of the polymer (A) in the portion derived from the vicinity of the surface of the particles of the polymer (A)
  • methyl methacrylate (b2) and 1,4-pentadien-3-ol (b3) are crosslinked to form a semi-interpenetrating network structure having a very high crosslinking density.
  • the molded product becomes rigid, the water absorption swelling is suppressed, and the water absorption rate of the molded product decreases.
  • an extremely high density crosslinked structure composed of the compound (b1) or methyl methacrylate (b2) and 1,4-pentadien-3-ol (b3) is derived from the vicinity of the surface of the particles of the polymer (A).
  • the average particle size of the powder of the polymer (A) is not particularly limited, but is preferably 2 to 200 ⁇ m. When the average particle size is smaller than 2 ⁇ m, the powder may not be uniformly dispersed when the polymer (A) powder and the monomer (B) liquid are mixed.
  • the average particle size is more preferably 10 ⁇ m or more, and further preferably 20 ⁇ m or more. Moreover, when the average particle diameter of a polymer (A) is larger than 200 micrometers, there exists a possibility that the swelling rate of a powder may become too slow.
  • the average particle size is more preferably 150 ⁇ m or less, and even more preferably 100 ⁇ m or less.
  • the method for mixing the polymerization initiator (C) is not particularly limited.
  • the polymerization initiator (C) may be previously contained in at least one of the powder of the polymer (A) or the liquid of the monomer (B), or may be mixed during preparation of the composition. It is preferable that the polymerization initiator (C) is previously contained in at least one of the powder of the polymer (A) or the liquid of the monomer (B) because the operation can be simplified.
  • the polymer (A) contains a polymerization initiator (C) in advance. That is, it is preferable that the polymer (A) particles constituting the powder contain a polymerization initiator (C). In such a case, the polymerization initiator added when producing the polymer (A) by suspension polymerization or the like can be used as it is. Moreover, when a polymerization initiator (C) is what mixes multiple types of compounds and generate
  • the monomer (B) penetrates into the polymer (A), and the polymer (A) swells.
  • the viscosity gradually rises to a bowl shape. It is preferable to form the molded product by shaping after thickening in this way. It is preferable that the composition at the time of shaping has a bowl-like shape that maintains fluidity while the viscosity is sufficiently increased.
  • the shaping is performed by filling the mold, pressing it, or adjusting the shape by hand.
  • the time during which the composition maintains a bowl shape after mixing the powder of the polymer (A) and the liquid of the monomer (B) in the presence of the polymerization initiator (C) is not particularly limited, It is preferable that the time required for the operation of shaping the composition is maintained.
  • the monomer (B) of the present invention is used as the liquid agent, the composition maintains a bowl-like shape for a sufficient time to work.
  • a cured molded product is obtained by shaping the composition of the present invention and then performing a polymerization reaction.
  • a polymerization initiator (C) that causes a polymerization reaction to proceed at room temperature
  • the polymerization reaction proceeds at the same time as increasing the viscosity even if only mixed, but when the polymerization reaction proceeds using heat or light. In many cases, the polymerization reaction does not substantially proceed until it is treated with heat or light.
  • a heating method is preferred in consideration of workability.
  • the polymerization reaction can be easily advanced only by immersing in warm water. Since the hardness of the composition can be increased by changing the polymerization degree by adjusting the polymerization conditions such as temperature and the polymerization time during polymerization, a molded product having a desired hardness can be obtained depending on the application. Can be easily obtained.
  • the composition in the form of a bowl obtained by mixing the powder of the polymer (A) and the liquid of the monomer (B) in the presence of the polymerization initiator (C) is the monomer (B ) And the polymer (A) particles impregnated and swollen, and a solution of the monomer (B) in which the polymer (A) is dissolved and fills the gaps between the particles.
  • the particles constituting the polymer (A) powder generally maintain its shape after polymerization.
  • the gap between the particle-shaped portions derived from the particles of the polymer (A) is filled with the monomer (B) cured by polymerization.
  • the molded product obtained by polymerization is composed of a particle-shaped portion derived from the polymer (A) particles and a portion derived from the monomer (B) filling the gap.
  • the particle shape of the part derived from the polymer (A) particles in the molded product may be a shape close to a sphere or a distorted shape.
  • the shape of the part derived from the particles of the polymer (A) may be distorted by the pressure during molding.
  • the ratio of the part derived from the particles of the polymer (A) in the molded product is as large as possible.
  • grains of the polymer (A) presumed that the “semi-interpenetrating network structure” is formed can be taken. Thereby, the strength, elastic modulus and toughness of the molded product are further improved.
  • the structure of the molded product composed of the part derived from the polymer (A) particles and the part derived from the monomer (B) solution is to observe a thin slice obtained by thinly slicing the molded product with an optical microscope. Etc. can be confirmed.
  • the polymer (A) and the monomer (B) are considered to be highly safe. Moreover, according to the manufacturing method of the composition of this invention using the powder of a polymer (A) and the liquid agent of a monomer (B) mentioned above, in addition to being able to produce a composition easily, the obtained composition It is also easy to produce a molded product using Therefore, the composition of the present invention is suitably used as a medical composition.
  • a preferred embodiment of the medical composition is bone cement.
  • the medical composition is preferably used as a dental composition. Specifically, it can be suitably used as a dental adhesive.
  • the dental adhesive is used to bond dental materials such as enamel and dentin to dental metal, dental resin, dental porcelain, and the like. It is desirable to have excellent toughness for bonding materials with significantly different linear expansion coefficients and elastic moduli, and to be subjected to repeated loads after bonding.
  • the composition of the present invention is preferably used.
  • a denture base or a mouthpiece obtained by curing the dental composition is a preferred embodiment. In general, dentures are produced by taking a patient's oral impression and preparing a plaster model, then forming a denture base using wax on the plaster model, and arranging artificial teeth on the wax.
  • the denture is buried in a flask using an investment material and a wax denture mold is formed, and then wax is poured in hot water or the like to form a cavity in the denture base in the investment material. After filling the cavity with a soot-like composition and polymerizing and curing it, it is taken out from the investment material, and is subjected to final stage shape correction and polishing to complete.
  • the manufacturing method of a mouthpiece is substantially the same as the manufacturing method of a denture except the point which arranges artificial teeth.
  • the denture base and mouthpiece produced using the composition of the present invention have a high strength and a high elastic modulus, and also have an excellent toughness. Damage due to occlusal pressure or impact can be suppressed. Since the water absorption of the obtained molded product is low, coloring of the denture base and mouthpiece due to coffee or the like and generation of bad odor are unlikely to occur, and mechanical properties are not easily lowered.
  • a powder of a polymer (A) containing 70% by mass or more of a methyl methacrylate unit Following formula (1)
  • R 1 and R 2 each independently represent a hydrogen atom or a methyl group, and at least one of R 1 and R 2 is a hydrogen atom.
  • R 1 and R 2 each independently represent a hydrogen atom or a methyl group, and at least one of R 1 and R 2 is a hydrogen atom.
  • a composition can be prepared by an easy operation by simply mixing the two components of the powder and the liquid.
  • the use of the kit is not particularly limited, but a medical kit is preferable, and a bone cement kit is a preferred embodiment.
  • a dental kit is also suitable, and among them, a dental adhesive kit, a denture base kit, or a mouthpiece kit is a preferred embodiment.
  • the method described in the method for producing the composition can be employed.
  • Example 1 Polymethylmethacrylate powder produced by suspension polymerization (“Hyperl D-100M” manufactured by Negami Kogyo Co., Ltd .: weight average molecular weight 500,000, average particle size of about 50-80 ⁇ m, benzoyl peroxide 0.5-1. 4 g of 0% by weight), 1.98 ml (1.85 g) of vinyl methacrylate (hereinafter sometimes abbreviated as VMA) and 1,4-pentadien-3-ol (hereinafter abbreviated as 14PD3OH). ) 0.02 ml (0.02 g) was mixed with the liquid mixture and allowed to stand. The powder / liquid ratio was 2.0 g / ml.
  • the content of 1,4-pentadien-3-ol in the monomer (B) was 0.92% by mass. Moreover, 215 mass parts of polymers (A) were mix
  • Teflon registered trademark
  • a universal testing machine (Instron 5544) was used for the three-point bending test. The distance between fulcrums was set to 20 mm, the crosshead speed was set to 0.5 mm / min, and the bending elastic modulus, bending strength, maximum deflection amount and breaking energy were measured. Five samples were measured for each measurement. When it did not break, the test was stopped when it was bent about 10 mm. The results of the four types of bending characteristics measurements are shown in Table 1 and FIGS.
  • the water absorption test was performed by immersing the test piece in water at 37 ° C. for 180 days and measuring the apparent saturated water absorption rate of the test piece when no increase in water absorption was observed.
  • the apparent saturated water absorption (mass%) is obtained by multiplying the number obtained by dividing the increase in the mass of the test piece after immersion in water by the mass of the test piece before immersion by 100. The result at this time is shown in FIG.
  • Example 2-7 Comparative Example 1 A test piece was prepared and evaluated (three-point bending test and water absorption test) in the same manner as in Example 1 except that the amounts of VMA and 14PD3OH used were changed as follows. The results are shown in Table 1 and FIGS. For Example 7 and Comparative Example 1, only the water absorption test was performed.
  • Example 2 VMA: 1.96 ml (1.83 g), 14PD3OH: 0.04 ml (0.04 g) Content ratio of 14PD3OH in the liquid agent in the monomer (B): 1.86% by mass Amount of polymer (A) with respect to 100 parts by mass of monomer (B): 215 parts by mass /
  • Example 3 VMA: 1.94 ml (1.81 g), 14PD3OH: 0.06 ml (0.05 g) Content ratio of 14PD3OH in the liquid agent in the monomer (B): 2.79% by mass Amount of polymer (A) to 100 parts by mass of monomer (B): 215 parts by mass /
  • Example 4 VMA: 1.92 ml (1.79 g), 14PD3OH: 0.08 ml (0.07 g) Content ratio of 14PD3OH in the liquid agent in the monomer (B): 3.72% by mass Amount of polymer (A) with respect to 100 parts by mass of monomer (B): 215 parts by mass
  • Comparative Example 2 A test piece was prepared and evaluated (three-point bending test and water absorption test) in the same manner as in Example 1 except that only 2.00 ml (1.87 g) of VMA was used as the monomer (B). . The results are shown in Table 1 and FIGS.
  • Example 8 4 g of the same polymethyl methacrylate powder as in Example 1, 1.98 ml (1.85 g) of methyl methacrylate (hereinafter sometimes abbreviated as MMA) and 0.02 ml of 1,4-pentadien-3-ol (0 0.02 g) was mixed and left standing. About 5 minutes later, the mixture in a wrinkled state was molded in the same manner as in Example 1 to obtain a test piece, which was subjected to a three-point bending test. The results are shown in Table 1.
  • MMA methyl methacrylate
  • 1,4-pentadien-3-ol 0.02 g
  • Example 9 A test piece was prepared and evaluated (three-point bending test) in the same manner as in Example 8 except that the amounts of MMA and 14PD3OH used were changed as follows. The results are shown in Table 1.
  • Example 9 MMA: 1.96 ml (1.84 g), 14PD3OH: 0.04 ml (0.04 g) Content ratio of 14PD3OH in the liquid agent in the monomer (B): 1.85% by mass Amount of polymer (A) with respect to 100 parts by mass of monomer (B): 214 parts by mass /
  • Example 10 MMA: 1.90 ml (1.78 g), 14PD3OH: 0.10 ml (0.09 g) Content ratio of 14PD3OH in the liquid agent in the monomer (B): 4.64% by mass Amount of polymer (A) with respect to 100 parts by mass of monomer (B): 215 parts by mass
  • Example 11 4 g of the same polymethyl methacrylate powder as in Example 1 was mixed with a solution obtained by mixing 1.98 ml (1.85 g) of methyl methacrylate and 0.02 ml (0.02 g) of 1,4-pentadien-3-ol. Left to stand. The content of 1,4-pentadien-3-ol in the liquid agent in the monomer (B) was 0.92% by mass. At this time, 214 parts by mass of the polymer (A) was blended with 100 parts by mass of the monomer (B). About 5 minutes later, the mixture in a wrinkled state was molded in the same manner as in Example 1 to obtain a test piece, which was subjected to a three-point bending test and a water absorption test. In the water absorption test, the test period was 90 days. The results are shown in Table 2.
  • Example 12 A test piece was prepared and evaluated (three-point bending test and water absorption test) in the same manner as in Example 11 except that the amounts of MMA and 14PD3OH were changed as follows. The results are shown in Table 2.
  • Example 12 MMA: 1.96 ml (1.83 g), 14PD3OH: 0.04 ml (0.03 g) Content ratio of 14PD3OH in the liquid agent in the monomer (B): 1.85% by mass Amount of polymer (A) with respect to 100 parts by mass of monomer (B): 214 parts by mass / Example 13 MMA: 1.94 ml (1.82 g), 14PD3OH: 0.06 ml (0.05 g) Content of 14PD3OH in the liquid agent in the monomer (B): 2.78% by mass Amount of polymer (A) with respect to 100 parts by mass of monomer (B): 214 parts by mass /
  • Comparative Example 3 A test piece was prepared and evaluated (three-point bending test and water absorption test) in the same manner as in Example 11 except that only 2.00 ml (1.87 g) of MMA was used as the monomer (B). . The results are shown in Table 2.
  • Comparative Example 4 Using a commercially available acrylic denture base resin “Acron” (manufactured by GC Corporation), a test piece having a size of 2 mm ⁇ 2 mm ⁇ 25 mm was prepared by the method instructed by the instruction manual. A point bending test and a water absorption test were performed. The results are shown in Tables 1 and 2 and FIGS.
  • FIG. 2 to 5 show the content of 14PD3OH on the horizontal axis and the vertical axis on the test pieces prepared in Examples 1 to 6 and Comparative Example 2 when the main component in the monomer (B) is VMA.
  • 6 is a graph in which the bending elastic modulus (FIG. 2), bending strength (FIG. 3), maximum deflection (FIG. 4), and breaking energy (FIG. 5) are respectively plotted.
  • the maximum deflection amount and the breaking energy increase significantly. It can be seen that the addition of only 1% by mass shows a value more than twice that of the commercial product.
  • FIG. 6 shows the content of 14PD3OH on the horizontal axis and the vertical axis for the test pieces prepared in Examples 1 to 7 and Comparative Examples 1 and 2 when the main component in the monomer (B) is VMA. It is the graph which plotted apparent saturation water absorption (mass%). Even in Comparative Example 2 in which the total amount in the monomer (B) is VMA, the apparent saturated water absorption is lower by 10% by mass or more than the commercial denture base resin “Acron” whose main component is MMA. I understand that. And when 14PD3OH is mix
  • FIG. 7 to 10 show the content of 14PD3OH on the horizontal axis and the vertical axis on the test pieces prepared in Examples 11 to 20 and Comparative Example 3 when the main component in the monomer (B) is MMA.
  • 9 is a graph in which the bending elastic modulus (FIG. 7), bending strength (FIG. 8), maximum deflection (FIG. 9), and breaking energy (FIG. 10) are respectively plotted.
  • the flexural modulus is equal to or higher than that of MMA alone, and significantly increased in Example 12 (MMA 2.78% by mass).
  • the bending strength is almost the same as when MMA alone is used. If it exceeds 3% by mass, the flexural modulus and bending strength gradually decrease, but a relatively high value can be maintained up to about 5% by mass.
  • the maximum deflection amount and the breaking energy increase significantly. The sample increases significantly by adding only 1% by mass, and when it exceeds 2% by mass, a sample that does not break is included, and when it exceeds 4% by mass, it no longer breaks.
  • FIG. 11 shows the content of 14PD3OH on the horizontal axis and the vertical axis on the test pieces prepared in Examples 11 to 20 and Comparative Example 3 when the main component in the monomer (B) is MMA. It is the graph which plotted the saturated water absorption (mass%). Comparative Example 3 in which the total amount in the monomer (B) is MMA has an apparent saturated water absorption rate comparable to that of a commercial denture base resin “Acron” whose main component is MMA. And just adding about 1% by mass of 14PD3OH with respect to MMA, the apparent saturated water absorption is greatly reduced, and it is reduced by 24% from “Akron”.
  • Example 11 to 20 the time required to reach the apparent saturated water absorption when immersed in water is shorter than that of Comparative Example 3 in which the total amount of the monomer (B) is MMA, and is almost constant over two weeks. Became value. That is, an interesting phenomenon was observed that the molded product of the present invention had a low saturated water absorption rate despite a high water absorption rate.
  • Example 20 MMA 9.31 mass%)
  • the weight decreased as the immersion time in water increased, suggesting that unreacted monomers were eluted. This phenomenon was also observed to some extent in Examples 17 to 19 (MMA 6.50 to 8.37% by mass). Therefore, it is considered necessary to consider the elution of the monomer depending on the application.
  • Example 21 The structure of the molded product obtained by polymerizing the composition of the present invention was observed.
  • a powder a powder containing a pigment (dark pink) in polymethylmethacrylate particles [“ACRON” powder manufactured by GC Corporation (corresponding standard: JIS T6501 “acrylic resin for denture base (first type)”)] was used.
  • a test piece was prepared in the same manner as in Example 6 except that. The test piece was cut into 2 mm ⁇ 2 mm ⁇ 10 mm, placed in a silicon embedding plate for microtome, embedded with an epoxy resin (Epofix cold embedding resin, manufactured by Struers), and cured for 24 hours.
  • test piece embedded in the epoxy resin was cut with a glass knife (45 °) using a microtome (ULTRACUT E, manufactured by Leica) to obtain a thin slice having a thickness of about 5 ⁇ m.
  • a thin slice sample was observed with an optical microscope (Olympus Co., Ltd., “BX51”) under transmitted light conditions of 200 times (objective lens 20 times, eyepiece 10 times), and a digital camera attached to the eyepiece Thin sections were photographed with (Canon PowerShot S95).
  • An optical microscope Olympus Co., Ltd., “BX51”
  • transmitted light conditions 200 times (objective lens 20 times, eyepiece 10 times)
  • a digital camera attached to the eyepiece Thin sections were photographed with (Canon PowerShot S95).
  • a microscopic image of the thin section is shown in FIG.
  • FIG. 1 a plurality of black circles can be seen.
  • the black circle is due to the pigment contained in the polymethyl methacrylate, and it can be seen that the circle is a portion derived from the polymethyl methacrylate particles.
  • the gap portion of the circle is white and light is transmitted therethrough. Therefore, it turns out that the said part originates in the liquid agent (mixture of VMA and 14PD3OH) which does not contain a pigment.

Landscapes

  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Surgery (AREA)
  • Dentistry (AREA)
  • Dental Preparations (AREA)
  • Materials For Medical Uses (AREA)
  • Dental Prosthetics (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

This composition contains a polymer (A), a monomer (B) and a polymerization initiator (C). This composition contains 100-280 parts by mass of the polymer (A) per 100 parts by mass of the monomer (B), and the polymer (A) contains 70% by mass or more of a methyl methacrylate unit. The monomer (B) contains 70-99.5% by mass of at least one compound that is selected from among compounds (b1) represented by formula (1) and methyl methacrylate (b2), and 0.5-30% by mass of 1,4-pentadien-3-ol (b3). A molded article that has excellent toughness and low water absorption, while exhibiting high strength and high elastic modulus can be obtained using this composition. (In the formula, each of R1 and R2 independently represents a hydrogen atom or a methyl group, and at least one of R1 and R2 is a hydrogen atom.)

Description

組成物及びその製造方法Composition and method for producing the same
 本発明は、メチルメタクリレート単位を含有する重合体、複数種の単量体及び重合開始剤を含有する組成物及びその製造方法に関する。また、このような組成物からなる医療用組成物、特に歯科用組成物に関する。さらに、前記組成物を硬化させてなる成形品及び前記組成物を製造するためのキットに関する。 The present invention relates to a polymer containing a methyl methacrylate unit, a composition containing a plurality of monomers and a polymerization initiator, and a method for producing the same. Moreover, it is related with the medical composition which consists of such a composition, especially a dental composition. Furthermore, the present invention relates to a molded product obtained by curing the composition and a kit for producing the composition.
 重合体、単量体及び重合開始剤を含有する組成物は成形品の材料等として用いられている。このような組成物は、通常、重合体の粉剤と単量体の液剤を混合して製造される。そして、成形品の製造方法としては、通常、重合体の粉剤と単量体の液剤を混合して、混合物が餅状になるまで待ってから賦形し、その後重合させて硬化させることによって目的の形状のものを得る方法が用いられている。このような製造方法を用いれば、組成物の製造やその後の賦形が簡便な操作で可能である。これまで、このような組成物として、ポリメチルメタクリレート(PMMA)の粉剤とメチルメタクリレート(MMA)の液剤とを混合して得られるものが知られており、当該組成物は、医療分野等において使用されている。例えば、当該組成物は、歯科分野において、義歯床材、マウスピース材等の材料として使用されているほか、整形外科の分野において、骨セメント材等として使用されている。 A composition containing a polymer, a monomer, and a polymerization initiator is used as a material for a molded article. Such a composition is usually produced by mixing a polymer powder and a monomer liquid. And, as a method for producing a molded article, usually, a polymer powder and a monomer liquid are mixed, and the mixture is shaped after waiting until the mixture becomes cocoon-like, and then polymerized and cured. The method of obtaining the thing of this shape is used. If such a manufacturing method is used, manufacture of a composition and subsequent shaping are possible by simple operation. Until now, as such a composition, what is obtained by mixing a powder of polymethyl methacrylate (PMMA) and a liquid of methyl methacrylate (MMA) is known, and the composition is used in the medical field and the like. Has been. For example, the composition is used as a material such as a denture base material and a mouthpiece material in the dental field, and is also used as a bone cement material and the like in the orthopedic field.
 しかしながら、ポリメチルメタクリレート、メチルメタクリレート及び重合開始剤を含有する組成物を重合させた硬化物は、高硬度かつ高強度ではあるものの、靭性が不十分となる場合があった。したがって、用途によっては使用中の応力や衝撃によって破損するおそれがあり、その改善が求められていた。また、前記硬化物を湿った状態で長期間使用した場合、成形品が吸水することにより機械的性質が低下する場合があった。なかでも、義歯床やマウスピースは、コーヒーやお茶などにより着色することや、長期間使用することにより悪臭を発することがあり、吸水率の低下が求められていた。 However, a cured product obtained by polymerizing a composition containing polymethyl methacrylate, methyl methacrylate and a polymerization initiator has high hardness and high strength, but may have insufficient toughness. Therefore, depending on the application, there is a risk of breakage due to stress or impact during use, and the improvement has been demanded. Further, when the cured product is used for a long time in a moist state, the mechanical properties may deteriorate due to water absorption of the molded product. In particular, denture bases and mouthpieces may be colored with coffee or tea or used for a long period of time, which may cause bad odors, and a reduction in water absorption rate has been demanded.
 特許文献1には、不飽和二重結合を持つ重合性モノマーと、ポリアルキル(メタ)アクリレートと、重合触媒とが混合されてなり、前記ポリアルキル(メタ)アクリレートの少なくとも一部が前記重合性モノマー中に溶解していることを特徴とする義歯床用樹脂材料が記載されている。これにより、予めペースト状となっていて操作が簡略化できるとともに、弾性エネルギーが大きく適度な硬さと粘り強さとを有した硬化体が得られるとされている。実施例には、重合性モノマーとして、1,6-ヘキサンジオールジメタクリレート、トリメチロールプロパントリメタクリレート及びエチレングリコールジメタクリレートを用いた例が記載されているが、その強度は不十分なものであった。 In Patent Document 1, a polymerizable monomer having an unsaturated double bond, a polyalkyl (meth) acrylate, and a polymerization catalyst are mixed, and at least a part of the polyalkyl (meth) acrylate is polymerizable. A denture base resin material characterized by being dissolved in a monomer is described. This makes it possible to obtain a cured body that is paste-like in advance and can be simplified in operation, and has a large elastic energy and appropriate hardness and tenacity. In the examples, examples using 1,6-hexanediol dimethacrylate, trimethylolpropane trimethacrylate and ethylene glycol dimethacrylate as polymerizable monomers are described, but their strength was insufficient. .
 特許文献2には、ポリアルキル(メタ)アクリレートの粉剤と、炭素数が6以上のビニルエステル単量体の液剤とを、重合開始剤の存在下で混合して増粘させてから賦形し、その後重合反応を進行させて硬化させる、成形品の製造方法が記載されている。しかしながら、液剤としてビニルエステル単量体を用いたのでは、得られる成形品の弾性率が低くなり、高弾性率が要求される用途に用いるには不十分な場合があった。 In Patent Document 2, a polyalkyl (meth) acrylate powder and a vinyl ester monomer solution having 6 or more carbon atoms are mixed and thickened in the presence of a polymerization initiator, and then shaped. Then, a method for producing a molded article is described in which the polymerization reaction is allowed to proceed and then cured. However, when a vinyl ester monomer is used as the liquid agent, the elastic modulus of the obtained molded product is low, and it may be insufficient for use in applications requiring high elastic modulus.
 特許文献3には、ポリメチルメタクリレートの粉剤と、ポリエチレングリコールジ(メタ)アクリレートの液剤とを重合開始剤の存在下で混合して増粘させてから賦形し、その後重合反応を進行させて硬化させる、成形品の製造方法が記載されている。しかしながら、ポリエチレングリコールジ(メタ)アクリレートは、ポリメチルメタクリレートの粉剤を膨潤させる速度が遅く、混合操作に24時間あるいはそれ以上の時間を要するので、操作性が不十分であった。また、用途によっては、強度、弾性率、靭性のバランスが不十分となる場合があった。 In Patent Document 3, polymethylmethacrylate powder and polyethylene glycol di (meth) acrylate solution are mixed in the presence of a polymerization initiator to increase the viscosity, and then the polymerization reaction is allowed to proceed. A method for producing a molded product to be cured is described. However, polyethylene glycol di (meth) acrylate has a slow rate of swelling the powder of polymethyl methacrylate, and the mixing operation requires 24 hours or more, so that the operability is insufficient. In some applications, the balance of strength, elastic modulus, and toughness may be insufficient.
特開2000-254152号公報JP 2000-254152 A WO2006/077944号WO2006 / 077944 WO2011/090078号WO2011 / 090078
 本発明は、上記課題を解決するためになされたものであり、高強度かつ高弾性率でありながら靭性に優れ、しかも低吸水率である成形品を得ることができる組成物を提供することを目的とするものである。また、そのような樹脂組成物を簡便に調製することができる方法を提供することを目的とするものである。 The present invention has been made to solve the above problems, and provides a composition capable of obtaining a molded product having high strength and high elastic modulus, excellent toughness, and low water absorption. It is the purpose. Moreover, it aims at providing the method which can prepare such a resin composition simply.
 上記課題は、重合体(A)、単量体(B)及び重合開始剤(C)を含有する組成物であって;
単量体(B)100質量部に対して重合体(A)100~280質量部を含有し、
重合体(A)が、メチルメタクリレート単位を70質量%以上含有し、
単量体(B)が、下記式(1)
Figure JPOXMLDOC01-appb-C000005
[式中、R及びRは、それぞれ独立に水素原子又はメチル基を示し、R及びRのうち、少なくとも1つが水素原子である。]
で表される化合物(b1)及びメチルメタクリレート(b2)から選択される少なくとも1種の化合物70~99.5質量%と、下記式(2)
Figure JPOXMLDOC01-appb-C000006
で表される1,4-ペンタジエン-3-オール(b3)0.5~30質量%とを含有することを特徴とする組成物を提供することによって解決される。
The said subject is a composition containing a polymer (A), a monomer (B), and a polymerization initiator (C);
Containing 100 to 280 parts by mass of the polymer (A) with respect to 100 parts by mass of the monomer (B),
The polymer (A) contains 70% by mass or more of methyl methacrylate units,
The monomer (B) is represented by the following formula (1)
Figure JPOXMLDOC01-appb-C000005
[Wherein, R 1 and R 2 each independently represent a hydrogen atom or a methyl group, and at least one of R 1 and R 2 is a hydrogen atom. ]
70 to 99.5% by mass of at least one compound selected from the compound (b1) and methyl methacrylate (b2) represented by formula (2):
Figure JPOXMLDOC01-appb-C000006
It is solved by providing a composition characterized by containing 0.5 to 30% by mass of 1,4-pentadien-3-ol (b3) represented by the formula:
 このとき、前記組成物が、重合体(A)の粒子に由来する不均一構造を有することが好適である。 At this time, it is preferable that the composition has a heterogeneous structure derived from the particles of the polymer (A).
 単量体(B)が、化合物(b1)70~99.5質量%と1,4-ペンタジエン-3-オール(b3)0.5~30質量%とを含有する前記組成物が好適な実施態様である。また、単量体(B)が、メチルメタクリレート(b2)70~99.5質量%と1,4-ペンタジエン-3-オール(b3)0.5~30質量%とを含有する前記組成物も、好適な実施態様である。 The above composition wherein the monomer (B) contains 70 to 99.5% by mass of the compound (b1) and 0.5 to 30% by mass of 1,4-pentadien-3-ol (b3) is preferable. It is an aspect. Further, the composition wherein the monomer (B) contains 70 to 99.5% by mass of methyl methacrylate (b2) and 0.5 to 30% by mass of 1,4-pentadien-3-ol (b3) is also provided. Is a preferred embodiment.
 前記組成物からなる医療用組成物が本発明の好適な実施態様であり、当該医療用組成物からなる歯科用組成物、特に歯科用接着剤がより好適な実施態様である。具体的には、前記医療用組成物からなる骨セメントが好適な実施態様である。また、前記組成物を硬化させてなる成形品も本発明の好適な実施態様である。具体的には、前記歯科用組成物を硬化させてなる義歯床又はマウスピースが、好適な実施態様である。 A medical composition comprising the above composition is a preferred embodiment of the present invention, and a dental composition comprising the medical composition, particularly a dental adhesive, is a more preferred embodiment. Specifically, a bone cement made of the medical composition is a preferred embodiment. A molded product obtained by curing the composition is also a preferred embodiment of the present invention. Specifically, a denture base or mouthpiece obtained by curing the dental composition is a preferred embodiment.
 また上記課題は、重合体(A)の粉剤と、単量体(B)の液剤とを、重合開始剤(C)の存在下で混合して増粘させることを特徴とする前記組成物の製造方法を提供することによっても解決される。このとき、重合体(A)が予め重合開始剤(C)を含有していることが好適である。 Further, the above-mentioned problem is that the powder of the polymer (A) and the liquid agent of the monomer (B) are mixed and thickened in the presence of the polymerization initiator (C). It is also solved by providing a manufacturing method. At this time, it is preferable that the polymer (A) contains a polymerization initiator (C) in advance.
 さらに上記課題は、メチルメタクリレート単位を70質量%以上含有する重合体(A)の粉剤と、
下記式(1)
Figure JPOXMLDOC01-appb-C000007
[式中、R及びRは、それぞれ独立に水素原子又はメチル基を示し、R及びRのうち、少なくとも1つが水素原子である。]
で表される化合物(b1)及びメチルメタクリレート(b2)から選択される少なくとも1種の化合物70~99.5質量%と、下記式(2)
Figure JPOXMLDOC01-appb-C000008
で表される1,4-ペンタジエン-3-オール(b3)0.5~30質量%とを含有する単量体(B)の液剤、とからなり、前記粉剤又は前記液剤の少なくとも一方が重合開始剤(C)を含有するキットを提供することによっても解決される。
Furthermore, the above-mentioned subject is a powder of polymer (A) containing 70% by mass or more of a methyl methacrylate unit,
Following formula (1)
Figure JPOXMLDOC01-appb-C000007
[Wherein, R 1 and R 2 each independently represent a hydrogen atom or a methyl group, and at least one of R 1 and R 2 is a hydrogen atom. ]
70 to 99.5% by mass of at least one compound selected from the compound (b1) and methyl methacrylate (b2) represented by formula (2):
Figure JPOXMLDOC01-appb-C000008
And a solution of monomer (B) containing 0.5 to 30% by mass of 1,4-pentadien-3-ol (b3) represented by the formula: wherein at least one of the powder or the solution is polymerized It is also solved by providing a kit containing the initiator (C).
 本発明の組成物は、簡便に調製できる。また、本発明の組成物を硬化させてなる成形品は、高強度かつ高弾性率でありながら靭性に優れ、しかも低吸水率である。したがって、当該組成物は、義歯床又はマウスピースなどの製造に好適に用いられるとともに、歯科用接着剤や骨セメントとしても好適に用いられる。さらに、本発明のキットによれば、前記組成物を簡便に製造できる。 The composition of the present invention can be easily prepared. In addition, a molded product obtained by curing the composition of the present invention is excellent in toughness while having high strength and high elastic modulus, and also has a low water absorption. Therefore, the composition is suitably used for manufacturing a denture base or a mouthpiece, and is also suitably used as a dental adhesive or bone cement. Furthermore, according to the kit of this invention, the said composition can be manufactured simply.
実施例21における成形品の薄切片の顕微鏡画像である。22 is a microscopic image of a thin section of a molded product in Example 21. FIG. 実施例1~6及び比較例2において、横軸に1,4-ペンタジエン-3-オール(b3)の含有率(質量%)を、縦軸に得られた試験片の曲げ弾性係数(GPa)をプロットしたグラフである。In Examples 1 to 6 and Comparative Example 2, the content (mass%) of 1,4-pentadien-3-ol (b3) is plotted on the horizontal axis, and the flexural modulus (GPa) of the obtained test piece is plotted on the vertical axis. Is a graph in which is plotted. 実施例1~6及び比較例2において、横軸に1,4-ペンタジエン-3-オール(b3)の含有率(質量%)を、縦軸に得られた試験片の曲げ強さ(MPa)をプロットしたグラフである。In Examples 1 to 6 and Comparative Example 2, the content (mass%) of 1,4-pentadien-3-ol (b3) is plotted on the horizontal axis, and the bending strength (MPa) of the test piece obtained is plotted on the vertical axis. Is a graph in which is plotted. 実施例1~6及び比較例2において、横軸に1,4-ペンタジエン-3-オール(b3)の含有率(質量%)を、縦軸に得られた試験片の最大撓み量(mm)をプロットしたグラフである。In Examples 1 to 6 and Comparative Example 2, the content (mass%) of 1,4-pentadien-3-ol (b3) is plotted on the horizontal axis, and the maximum deflection amount (mm) of the test piece obtained on the vertical axis. Is a graph in which is plotted. 実施例1~6及び比較例2において、横軸に1,4-ペンタジエン-3-オール(b3)の含有率(質量%)を、縦軸に得られた試験片の破断エネルギー(KJ/m)をプロットしたグラフである。In Examples 1 to 6 and Comparative Example 2, the content (mass%) of 1,4-pentadien-3-ol (b3) is plotted on the horizontal axis, and the breaking energy (KJ / m) of the test piece obtained is plotted on the vertical axis. 2 ) is a graph obtained by plotting. 実施例1~7及び比較例1、2において、横軸に1,4-ペンタジエン-3-オール(b3)の含有率(質量%)を、縦軸に得られた試験片の見掛け飽和吸水率(質量%)をプロットしたグラフである。In Examples 1 to 7 and Comparative Examples 1 and 2, the horizontal axis represents the content (mass%) of 1,4-pentadien-3-ol (b3), and the vertical axis represents the apparent saturated water absorption rate of the obtained test piece. It is the graph which plotted (mass%). 実施例11~20及び比較例3において、横軸に1,4-ペンタジエン-3-オール(b3)の含有率(質量%)を、縦軸に得られた試験片の曲げ弾性係数(GPa)をプロットしたグラフである。In Examples 11 to 20 and Comparative Example 3, the content (mass%) of 1,4-pentadien-3-ol (b3) is plotted on the horizontal axis, and the flexural modulus (GPa) of the test piece obtained is plotted on the vertical axis. Is a graph in which is plotted. 実施例11~20及び比較例3において、横軸に1,4-ペンタジエン-3-オール(b3)の含有率(質量%)を、縦軸に得られた試験片の曲げ強さ(MPa)をプロットしたグラフである。In Examples 11 to 20 and Comparative Example 3, the content (mass%) of 1,4-pentadien-3-ol (b3) is plotted on the horizontal axis, and the bending strength (MPa) of the obtained test piece is plotted on the vertical axis. Is a graph in which is plotted. 実施例11~20及び比較例3において、横軸に1,4-ペンタジエン-3-オール(b3)の含有率(質量%)を、縦軸に得られた試験片の最大撓み量(mm)をプロットしたグラフである。In Examples 11 to 20 and Comparative Example 3, the horizontal axis represents the content (% by mass) of 1,4-pentadien-3-ol (b3), and the vertical axis represents the maximum deflection amount (mm) of the obtained test piece. Is a graph in which is plotted. 実施例11~20及び比較例3において、横軸に1,4-ペンタジエン-3-オール(b3)の含有率(質量%)を、縦軸に得られた試験片の破断エネルギー(KJ/m)をプロットしたグラフである。In Examples 11 to 20 and Comparative Example 3, the content (mass%) of 1,4-pentadien-3-ol (b3) is plotted on the horizontal axis, and the breaking energy (KJ / m) of the obtained test piece is plotted on the vertical axis. 2 ) is a graph obtained by plotting. 実施例11~20及び比較例3において、横軸に1,4-ペンタジエン-3-オール(b3)の含有率(質量%)を、縦軸に得られた試験片の見掛け飽和吸水率(質量%)をプロットしたグラフである。In Examples 11 to 20 and Comparative Example 3, the horizontal axis represents the content (mass%) of 1,4-pentadien-3-ol (b3), and the vertical axis represents the apparent saturated water absorption (mass). %).
 本発明の組成物は、重合体(A)、単量体(B)及び重合開始剤(C)を含有する組成物であって;
単量体(B)100質量部に対して重合体(A)100~280質量部を含有し、
重合体(A)が、メチルメタクリレート単位を70質量%以上含有し、
単量体(B)が、下記式(1)
Figure JPOXMLDOC01-appb-C000009
[式中、R及びRは、それぞれ独立に水素原子又はメチル基を示し、R及びRのうち、少なくとも1つが水素原子である。]
で表される化合物(b1)及びメチルメタクリレート(b2)から選択される少なくとも1種の化合物70~99.5質量%と、下記式(2)
Figure JPOXMLDOC01-appb-C000010
で表される1,4-ペンタジエン-3-オール(b3)0.5~30質量%とを含有することを特徴とする組成物である。
The composition of the present invention is a composition containing a polymer (A), a monomer (B) and a polymerization initiator (C);
Containing 100 to 280 parts by mass of the polymer (A) with respect to 100 parts by mass of the monomer (B),
The polymer (A) contains 70% by mass or more of methyl methacrylate units,
The monomer (B) is represented by the following formula (1)
Figure JPOXMLDOC01-appb-C000009
[Wherein, R 1 and R 2 each independently represent a hydrogen atom or a methyl group, and at least one of R 1 and R 2 is a hydrogen atom. ]
70 to 99.5% by mass of at least one compound selected from the compound (b1) and methyl methacrylate (b2) represented by formula (2):
Figure JPOXMLDOC01-appb-C000010
1,4-pentadien-3-ol (b3) represented by the formula:
 重合体(A)はメチルメタクリレート単位を70質量%以上含有する重合体である。メチルメタクリレート単位を70質量%以上含有することで、高強度及び高弾性率を有する成形品を得ることができる。したがって、このような成形品は、所定の強度や弾性率が求められる、義歯床用材料やマウスピース用材料などとして好適に用いられる。また、メチルメタクリレート単位を70質量%以上含有する重合体(A)は、ハロゲン原子を含む重合体や芳香環を含む重合体に比べて生体適合性が高い。さらに、重合体(A)は比較的ガラス転移温度の高い非晶性の重合体であり、懸濁重合などによって本発明の実施に好適な粒径の粉剤を容易に得ることが可能である。重合体(A)は、メチルメタクリレートの単独重合体であってもよいし、メチルメタクリレートとその他の単量体との共重合体であっても構わない。重合体(A)のメチルメタクリレート単位の含有率は、80質量%以上が好適であり、90質量%以上がより好適であり、95質量%以上がさらに好適である。メチルメタクリレート単位が70質量%未満の場合には、得られる成形品の強度や弾性率が低下する。 Polymer (A) is a polymer containing 70% by mass or more of methyl methacrylate units. By containing 70% by mass or more of methyl methacrylate units, a molded product having high strength and high elastic modulus can be obtained. Therefore, such a molded article is suitably used as a denture base material, a mouthpiece material, or the like that requires a predetermined strength and elastic modulus. Further, the polymer (A) containing 70% by mass or more of methyl methacrylate units has higher biocompatibility than a polymer containing a halogen atom or a polymer containing an aromatic ring. Furthermore, the polymer (A) is an amorphous polymer having a relatively high glass transition temperature, and a powder having a particle size suitable for the practice of the present invention can be easily obtained by suspension polymerization or the like. The polymer (A) may be a homopolymer of methyl methacrylate or a copolymer of methyl methacrylate and other monomers. The content of the methyl methacrylate unit in the polymer (A) is preferably 80% by mass or more, more preferably 90% by mass or more, and still more preferably 95% by mass or more. When the methyl methacrylate unit is less than 70% by mass, the strength and elastic modulus of the obtained molded product are lowered.
 重合体(A)が共重合体である場合にメチルメタクリレートと共重合させる単量体は、メチルメタクリレートと共重合可能な単量体であれば特に制限されない。例えば、メチルアクリレート、エチル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート又はt-ブチル(メタ)アクリレートなどのアルキル(メタ)アクリレート;エチレン、プロピレンなどのオレフィン;酢酸ビニルなどのカルボン酸ビニル;無水マレイン酸;アクリロニトリル;スチレン;塩化ビニルなどが挙げられる。これらの単量体は1種類でも使用可能であるし、2種類以上を組み合わせて使用してもよい。重合性の観点からは、アルキル(メタ)アクリレートが好適である。そして、重合体(A)の粉剤と単量体(B)の液剤を用いて組成物を製造する場合における、重合体(A)の膨潤のし易さの観点からは、エチルメタクリレートが好適である。これらの単量体の含有率は、30質量%以下であり、20質量%以下が好適であり、10質量%以下がより好適であり、5質量%以下がさらに好適である。 When the polymer (A) is a copolymer, the monomer to be copolymerized with methyl methacrylate is not particularly limited as long as it is a monomer copolymerizable with methyl methacrylate. For example, alkyls such as methyl acrylate, ethyl (meth) acrylate, isopropyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate or t-butyl (meth) acrylate ( Meth) acrylate; olefins such as ethylene and propylene; vinyl carboxylates such as vinyl acetate; maleic anhydride; acrylonitrile; styrene; vinyl chloride and the like. These monomers can be used alone or in combination of two or more. From the viewpoint of polymerizability, alkyl (meth) acrylate is preferred. From the viewpoint of ease of swelling of the polymer (A) in the case of producing a composition using the powder of the polymer (A) and the liquid agent of the monomer (B), ethyl methacrylate is preferable. is there. The content of these monomers is 30% by mass or less, preferably 20% by mass or less, more preferably 10% by mass or less, and further preferably 5% by mass or less.
 重合体(A)の分子量は特に制限されないが、通常5,000~2,000,000の重量平均分子量を有するものが使用される。分子量が5,000より低い場合には、得られる成形品の強度が不十分になるおそれがある。分子量は200,000以上がより好適であり、300,000以上がさらに好適である。重合体(A)の分子量は1,500,000以下がより好適であり、1,000,000以下がさらに好適である。上記重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)で測定することができる。 The molecular weight of the polymer (A) is not particularly limited, but those having a weight average molecular weight of 5,000 to 2,000,000 are usually used. When the molecular weight is lower than 5,000, the strength of the obtained molded product may be insufficient. The molecular weight is more preferably 200,000 or more, and further preferably 300,000 or more. The molecular weight of the polymer (A) is more preferably 1,500,000 or less, and more preferably 1,000,000 or less. The weight average molecular weight can be measured by gel permeation chromatography (GPC).
 本発明の組成物が含有する単量体(B)は、上記式(1)で表される化合物(b1)及びメチルメタクリレート(b2)から選択される少なくとも1種の化合物70~99.5質量%と、上記式(2)で表される1,4-ペンタジエン-3-オール(b3)0.5~30質量%とを含有するものである。ここで、単量体(B)が、1,4-ペンタジエン-3-オール(b3)を含むことが本発明の最大の特徴である。1,4-ペンタジエン-3-オール(b3)を含むことにより、得られる成形品の靭性が大きく向上する。このとき、弾性率や強度はそれほど大きく低下しないので、高強度かつ高弾性率でありながら靭性に優れた成形品を得ることができる。また、1,4-ペンタジエン-3-オール(b3)を含むことにより、得られる成形品の吸水率が低下する。さらに、上記式(1)で表される化合物(b1)、メチルメタクリレート(b2)及び1,4-ペンタジエン-3-オール(b3)のいずれも、ハロゲン元素や芳香環を含まないので、本発明の組成物は生体適合性が高いと考えられる。 The monomer (B) contained in the composition of the present invention contains 70 to 99.5 mass of at least one compound selected from the compound (b1) represented by the above formula (1) and methyl methacrylate (b2). % And 1,4-pentadien-3-ol (b3) represented by the above formula (2) in an amount of 0.5 to 30% by mass. Here, the greatest feature of the present invention is that the monomer (B) contains 1,4-pentadien-3-ol (b3). By including 1,4-pentadien-3-ol (b3), the toughness of the obtained molded product is greatly improved. At this time, since the elastic modulus and strength do not decrease so much, a molded product having high strength and high elastic modulus and excellent toughness can be obtained. Further, by including 1,4-pentadien-3-ol (b3), the water absorption of the obtained molded product is lowered. Furthermore, since none of the compound (b1) represented by the above formula (1), methyl methacrylate (b2) and 1,4-pentadien-3-ol (b3) contains a halogen element or an aromatic ring, the present invention This composition is considered to be highly biocompatible.
 単量体(B)中の主成分である上記式(1)で表される化合物(b1)も、メチルメタクリレート(b2)も、いずれも重合体(A)の粒子を迅速に膨潤させて組成物を得ることができるので、生産性が良好である。そして当該組成物を硬化させて得られる成形物は、いずれも高強度かつ高弾性率である。 Both the compound (b1) represented by the above formula (1), which is the main component in the monomer (B), and methyl methacrylate (b2) are composed by rapidly swelling the particles of the polymer (A). Since a product can be obtained, productivity is good. And all the moldings obtained by hardening the said composition are high intensity | strength and high elasticity modulus.
 単量体(B)中の主成分として用いられる化合物(b1)の構造は、下記式(1)で表されるとおりである。 The structure of the compound (b1) used as the main component in the monomer (B) is as represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 上記式(1)で表される化合物(b1)は、エチレン性二重結合を有する重合性基を2つ有する架橋性の単量体である。化合物(b1)中の2つの重合性基はエステル結合によって連結されていて、重合性基間の距離が近い。また、化合物(b1)は、メタクリロイル基(式(1)中、Rがメチル基であり、Rが水素原子である場合)、アクリロイル基(式(1)中、R及びRが水素原子である場合)又はクロトノイル基(式(1)中、Rが水素原子であり、Rがメチル基である場合)と、カルボン酸ビニルエステル基とを有する。これらの置換基はいずれも重合体(A)を膨潤させる機能を有するため、化合物(b1)は重合体(A)の粉剤を短時間で膨潤させることができる。ここで、化合物(b1)における、メタクリロイル基、アクリロイル基又はクロトノイル基中のカルボニル基と、カルボン酸ビニルエステル基中のカルボニル基は同一である。 The compound (b1) represented by the above formula (1) is a crosslinkable monomer having two polymerizable groups having an ethylenic double bond. Two polymerizable groups in the compound (b1) are linked by an ester bond, and the distance between the polymerizable groups is short. In addition, the compound (b1) includes a methacryloyl group (when R 1 is a methyl group and R 2 is a hydrogen atom in the formula (1)), an acryloyl group (in the formula (1), R 1 and R 2 are A hydrogen atom) or a crotonoyl group (in the formula (1), when R 1 is a hydrogen atom and R 2 is a methyl group) and a carboxylic acid vinyl ester group. Since these substituents all have a function of swelling the polymer (A), the compound (b1) can swell the powder of the polymer (A) in a short time. Here, in the compound (b1), the carbonyl group in the methacryloyl group, acryloyl group or crotonoyl group and the carbonyl group in the carboxylic acid vinyl ester group are the same.
 化合物(b1)としては、上記式(1)中のRがメチル基であり、Rが水素原子であるもの、又は、式(1)中のR及びRが水素原子であるものが好適である。生体適合性、並びに、得られる成形品の強度及び破断エネルギーが優れる観点からは、化合物(b1)は、式(1)中のRがメチル基であり、Rが水素原子であるものがより好適である。 As the compound (b1), R 1 in the above formula (1) is a methyl group and R 2 is a hydrogen atom, or R 1 and R 2 in the formula (1) are hydrogen atoms Is preferred. From the viewpoint of excellent biocompatibility and the strength and breaking energy of the obtained molded product, the compound (b1) is one in which R 1 in the formula (1) is a methyl group and R 2 is a hydrogen atom. More preferred.
 本発明の組成物において、単量体(B)が含有する1,4-ペンタジエン-3-オール(b3)の構造は、下記式(2)で表されるとおりである。 In the composition of the present invention, the structure of 1,4-pentadien-3-ol (b3) contained in the monomer (B) is as represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 上記式(2)で表される1,4-ペンタジエン-3-オール(b3)は、エチレン性二重結合を有する重合性基を2つ有する架橋性の単量体である。1,4-ペンタジエン-3-オール(b3)中の2つの重合性基は炭素原子1個を介して連結されているので、重合性基間の距離が非常に近い。また、当該炭素原子に水酸基が結合して沸点が上昇しているので、組成物を製造する際の揮発が少なく、作業環境の面からも好ましい。さらに、エチレン性二重結合からのアリル位に水酸基を有しているので、2つのエチレン性二重結合の反応性が高い。 1,4-pentadien-3-ol (b3) represented by the above formula (2) is a crosslinkable monomer having two polymerizable groups having an ethylenic double bond. Since the two polymerizable groups in 1,4-pentadien-3-ol (b3) are linked via one carbon atom, the distance between the polymerizable groups is very close. In addition, since the hydroxyl group is bonded to the carbon atom and the boiling point is increased, the volatilization during the production of the composition is small, which is preferable from the viewpoint of the working environment. Furthermore, since it has a hydroxyl group at the allylic position from the ethylenic double bond, the reactivity of the two ethylenic double bonds is high.
 単量体(B)は、上記式(1)で表される化合物(b1)及びメチルメタクリレート(b2)から選択される少なくとも1種の化合物70~99.5質量%と、1,4-ペンタジエン-3-オール(b3)0.5~30質量%とを含有する。化合物(b1)及びメチルメタクリレート(b2)から選択される少なくとも1種の化合物の含有率が70質量%未満の場合には、弾性率と強度が不十分となる。当該化合物の含有率は、好適には85質量%以上であり、より好適には92質量%以上である。一方、化合物(b1)及びメチルメタクリレート(b2)から選択される少なくとも1種の化合物の含有率が99.5質量%を超える場合には、靭性の改善効果及び含水率の低下効果が不十分となる。当該化合物の含有率は、好適には99質量%以下であり、より好適には98質量%以下である。また、1,4-ペンタジエン-3-オール(b3)の含有率が0.5質量%未満の場合には、靭性の改善効果及び含水率の低下効果が不十分となる。1,4-ペンタジエン-3-オール(b3)の含有率は、好適には1質量%以上であり、より好適には2質量%以上である。一方、1,4-ペンタジエン-3-オール(b3)の含有率が30質量%を超える場合には、弾性率と強度が不十分となる。1,4-ペンタジエン-3-オール(b3)の含有率は、好適には15質量%以下であり、より好適には8質量%以下である。 The monomer (B) comprises 70 to 99.5% by mass of at least one compound selected from the compound (b1) represented by the above formula (1) and methyl methacrylate (b2), 1,4-pentadiene -3-ol (b3) is contained in an amount of 0.5 to 30% by mass. When the content of at least one compound selected from the compound (b1) and methyl methacrylate (b2) is less than 70% by mass, the elastic modulus and strength are insufficient. The content of the compound is preferably 85% by mass or more, and more preferably 92% by mass or more. On the other hand, when the content of at least one compound selected from the compound (b1) and methyl methacrylate (b2) exceeds 99.5% by mass, the effect of improving toughness and the effect of decreasing the water content are insufficient. Become. The content of the compound is preferably 99% by mass or less, and more preferably 98% by mass or less. On the other hand, when the content of 1,4-pentadien-3-ol (b3) is less than 0.5% by mass, the effect of improving toughness and the effect of reducing water content are insufficient. The content of 1,4-pentadien-3-ol (b3) is preferably 1% by mass or more, and more preferably 2% by mass or more. On the other hand, when the content of 1,4-pentadien-3-ol (b3) exceeds 30% by mass, the elastic modulus and strength are insufficient. The content of 1,4-pentadien-3-ol (b3) is preferably 15% by mass or less, and more preferably 8% by mass or less.
 本発明の単量体(B)を使用することによって、高強度、高弾性率であり、しかも靭性に優れた成形体が得られる。このときのメカニズムについての詳細は明らかになっていないが、次のようなことが推測される。 By using the monomer (B) of the present invention, a molded article having high strength, high elastic modulus and excellent toughness can be obtained. The details of the mechanism at this time are not clear, but the following is presumed.
 本発明の樹脂組成物は、重合体(A)の分子鎖の間に単量体(B)が入り込んだ後に、単量体(B)が重合されることによって、重合体(A)の分子鎖と、単量体(B)中の複数種の単量体から構成される重合体とが相互に絡み合った、いわゆる「セミ相互侵入網目構造」を形成していると推定される。このとき、重合後の架橋点間の距離が非常に短い1,4-ペンタジエン-3-オール(b3)を用いることで、得られる成形品に優れた靭性が与えられるものと考えられる。 In the resin composition of the present invention, the monomer (B) is polymerized after the monomer (B) enters between the molecular chains of the polymer (A), whereby the molecule of the polymer (A) is polymerized. It is presumed that a chain and a polymer composed of a plurality of types of monomers in the monomer (B) form a so-called “semi-interpenetrating network structure” that is intertwined with each other. At this time, it is considered that excellent toughness can be imparted to the obtained molded article by using 1,4-pentadien-3-ol (b3) having a very short distance between the crosslinking points after polymerization.
 本発明の樹脂組成物においては、組成物全体が均一ではなく、重合体(A)の粒子に由来する不均一構造を有することが好ましい。本発明の樹脂組成物の好適な製造方法では、重合体(A)の粉剤と、単量体(B)の液剤とを、重合開始剤(C)の存在下で混合して増粘させる。このとき、重合体(A)の粒子は完全に溶解することなく残存し、粒子中心部では単量体(B)の含有率が少なく、粒子間では単量体(B)の含有率が多いという不均質構造が形成される。このような不均質な構造を有する組成物を硬化させることで、高強度、高弾性率であり、しかも靭性に優れた成形体が得られると考えられる。 In the resin composition of the present invention, the entire composition is preferably not uniform and has a non-uniform structure derived from the particles of the polymer (A). In a preferred method for producing the resin composition of the present invention, the powder of the polymer (A) and the liquid of the monomer (B) are mixed and thickened in the presence of the polymerization initiator (C). At this time, the particles of the polymer (A) remain without being completely dissolved, the content of the monomer (B) is small at the center of the particle, and the content of the monomer (B) is large between the particles. The heterogeneous structure is formed. It is considered that a molded body having high strength and high elastic modulus and excellent toughness can be obtained by curing a composition having such a heterogeneous structure.
 本発明の組成物において、1,4-ペンタジエン-3-オール(b3)を含有する単量体(B)を用いることにより、得られる成形品の吸水性が低下する。このメカニズムついては明らかになっていないが、次のようなことが推測される。 In the composition of the present invention, by using the monomer (B) containing 1,4-pentadien-3-ol (b3), the water absorption of the obtained molded article is lowered. Although this mechanism is not clear, the following is presumed.
 本発明の組成物を重合して成形品を作製した場合、得られる成形品中には、化合物(b1)又はメチルメタクリレート(b2)と、1,4-ペンタジエン-3-オール(b3)とからなる網目状の架橋構造体が形成されると考えられる。当該架橋構造体は、重合体(A)の分子鎖と相互に絡まり合っていると考えられ、当該架橋構造体と重合体(A)とが、「セミ相互侵入網目構造」を形成していると推定される。ここで、上述のとおり、1,4-ペンタジエン-3-オール(b3)は重合性基間の距離が非常に近いため、前記架橋構造体は、架橋点間の距離が近いものとなると考えられる。そのため、成形品中の重合体(A)粒子の表面付近が部分的に極めて剛直なものとなり、吸水膨潤が抑制され、成形品の吸水率が低下するものと考えられる。このように、水酸基を有する単量体を配合することで吸水率を低下させられることは、本発明者らが検討して初めて明らかになったことであり、まさに驚きである。生体親和性の低い芳香族基やフッ素原子等を導入することなく吸水率を低下させられることのメリットは非常に大きい。一方で、前述のように、「セミ相互侵入網目構造」を形成することにより、強度及び弾性率に優れるうえに、靭性にも優れた成形品となるものと考えられる。 When a molded product is produced by polymerizing the composition of the present invention, the obtained molded product contains the compound (b1) or methyl methacrylate (b2) and 1,4-pentadien-3-ol (b3). It is considered that a network-like crosslinked structure is formed. The crosslinked structure is considered to be entangled with the molecular chain of the polymer (A), and the crosslinked structure and the polymer (A) form a “semi-interpenetrating network structure”. It is estimated to be. Here, as described above, since 1,4-pentadien-3-ol (b3) has a very short distance between the polymerizable groups, the crosslinked structure is considered to have a short distance between the crosslinking points. . For this reason, it is considered that the vicinity of the surface of the polymer (A) particles in the molded product becomes partially extremely rigid, water absorption swelling is suppressed, and the water absorption rate of the molded product decreases. Thus, the fact that the water absorption rate can be lowered by blending a monomer having a hydroxyl group has been revealed for the first time by the present inventors, and is surprising. The merit of reducing the water absorption rate without introducing an aromatic group or a fluorine atom having a low biocompatibility is very large. On the other hand, as described above, by forming a “semi-interpenetrating network structure”, it is considered that a molded product having excellent strength and elastic modulus and excellent toughness can be obtained.
 吸水率の高い成形品を湿った状態で長期間使用した場合、成形品が着色したり、悪臭が発生したりする場合があった。さらに、成形品が吸水することにより、機械的性質が低下する場合もあった。なかでも、義歯床やマウスピースは、コーヒーやお茶などにより着色することや、長期間使用することにより悪臭を発することがあり、吸水率が高いことが大きな問題となっていた。したがって、本発明の樹脂組成物において1,4-ペンタジエン-3-オール(b3)を用いることで、吸水率を大きく低減できることの意義は大きい。 When a molded product having a high water absorption rate is used for a long time in a wet state, the molded product may be colored or a bad odor may be generated. Furthermore, mechanical properties may be deteriorated due to water absorption of the molded product. In particular, denture bases and mouthpieces may be colored with coffee or tea or used for a long period of time, which may cause bad odors and have a high water absorption rate. Therefore, the use of 1,4-pentadien-3-ol (b3) in the resin composition of the present invention is significant in that the water absorption rate can be greatly reduced.
 本発明の樹脂組成物の好適な実施態様では、単量体(B)が、上記式(1)で表される化合物(b1)70~99.5質量%と1,4-ペンタジエン-3-オール(b3)0.5~30質量%とを含有する。このとき、化合物(b1)の含有率は、好適には85質量%以上であり、より好適には92質量%以上である。一方、化合物(b1)の含有率は、好適には99質量%以下であり、より好適には98質量%以下である。また、1,4-ペンタジエン-3-オール(b3)の含有率は、好適には1質量%以上であり、より好適には2質量%以上である。一方、1,4-ペンタジエン-3-オール(b3)の含有率は、好適には15質量%以下であり、より好適には8質量%以下である。 In a preferred embodiment of the resin composition of the present invention, the monomer (B) contains 70 to 99.5% by mass of the compound (b1) represented by the above formula (1) and 1,4-pentadiene-3- All (b3) 0.5 to 30% by mass is contained. At this time, the content rate of a compound (b1) becomes like this. Preferably it is 85 mass% or more, More preferably, it is 92 mass% or more. On the other hand, the content rate of a compound (b1) is 99 mass% or less suitably, More preferably, it is 98 mass% or less. The content of 1,4-pentadien-3-ol (b3) is preferably 1% by mass or more, and more preferably 2% by mass or more. On the other hand, the content of 1,4-pentadien-3-ol (b3) is preferably 15% by mass or less, and more preferably 8% by mass or less.
 このとき、吸水率の低減を主眼に据えるのであれば、1,4-ペンタジエン-3-オール(b3)の含有率を大きくした方が好ましい場合がある。具体的には、1,4-ペンタジエン-3-オール(b3)の含有率を3質量%以上とすることが好ましい。このとき、化合物(b1)の含有率は97質量%以下とすることが好ましい。 At this time, if the focus is on reducing the water absorption rate, it may be preferable to increase the content of 1,4-pentadien-3-ol (b3). Specifically, the content of 1,4-pentadien-3-ol (b3) is preferably 3% by mass or more. At this time, it is preferable that the content rate of a compound (b1) shall be 97 mass% or less.
 ここで、単量体(B)中の主成分として上記式(1)で表される化合物(b1)を用いた場合には、メチルメタクリレート(b2)を用いた場合よりも、得られる成形品の吸水率を低下させることができる。化合物(b1)は重合性基間の距離が近い架橋性単量体であり、後の実施例にも示すように、単量体(B)として化合物(b1)のみを用いた場合でも、メチルメタクリレートを液剤の主成分とする義歯床用組成物の市販品(株式会社ジーシー製「アクロン」)よりも10%以上見かけ飽和吸水率を低下させることができた。 Here, when the compound (b1) represented by the above formula (1) is used as the main component in the monomer (B), the obtained molded product is obtained as compared with the case where the methyl methacrylate (b2) is used. The water absorption can be reduced. Compound (b1) is a crosslinkable monomer having a short distance between polymerizable groups, and as shown in the examples below, even when only compound (b1) is used as monomer (B), methyl The apparent saturated water absorption rate could be reduced by 10% or more compared to a commercial product of a denture base composition containing “methacrylate” as a main component of the liquid (“ACRON” manufactured by GC Corporation).
 化合物(b1)は比較的親水性の化合物であるが、より疎水性のメチルメタクリレート(b2)を用いたときよりも、得られる成形品の吸水率が低下することは驚きである。しかも、化合物(b1)に加えて、分子内に水酸基を有する1,4-ペンタジエン-3-オール(b3)を用いることによってその吸水率をさらに低下させることができる。 The compound (b1) is a relatively hydrophilic compound, but it is surprising that the water absorption of the obtained molded product is lower than when the more hydrophobic methyl methacrylate (b2) is used. Moreover, by using 1,4-pentadien-3-ol (b3) having a hydroxyl group in the molecule in addition to the compound (b1), the water absorption rate can be further reduced.
 本発明の樹脂組成物の他の好適な実施態様では、単量体(B)が、メチルメタクリレート(b2)70~99.5質量%と1,4-ペンタジエン-3-オール(b3)0.5~30質量%とを含有する。このとき、メチルメタクリレート(b2)の含有率は、好適には85質量%以上であり、より好適には92質量%以上である。一方、メチルメタクリレート(b2)の含有率は、好適には99質量%以下であり、より好適には98質量%以下である。また、1,4-ペンタジエン-3-オール(b3)の含有率は、好適には1質量%以上であり、より好適には2質量%以上である。一方、1,4-ペンタジエン-3-オール(b3)の含有率は、好適には15質量%以下であり、より好適には8質量%以下である。 In another preferred embodiment of the resin composition of the present invention, the monomer (B) contains 70 to 99.5% by mass of methyl methacrylate (b2) and 1,4-pentadien-3-ol (b3) 0. 5 to 30% by mass. At this time, the content of methyl methacrylate (b2) is preferably 85% by mass or more, and more preferably 92% by mass or more. On the other hand, the content of methyl methacrylate (b2) is preferably 99% by mass or less, and more preferably 98% by mass or less. The content of 1,4-pentadien-3-ol (b3) is preferably 1% by mass or more, and more preferably 2% by mass or more. On the other hand, the content of 1,4-pentadien-3-ol (b3) is preferably 15% by mass or less, and more preferably 8% by mass or less.
 このとき、高弾性率や高強度とすることを主眼に据えるのであれば、1,4-ペンタジエン-3-オール(b3)の含有率を小さくした方が好ましい場合がある。具体的には、1,4-ペンタジエン-3-オール(b3)の含有率を5質量%以下とすることが好ましい。このとき、メチルメタクリレート(b2)の含有率は95質量%以上とすることが好ましい。 At this time, if the main focus is on high elastic modulus and high strength, it may be preferable to reduce the content of 1,4-pentadien-3-ol (b3). Specifically, the content of 1,4-pentadien-3-ol (b3) is preferably 5% by mass or less. At this time, the content of methyl methacrylate (b2) is preferably 95% by mass or more.
 重合体(A)とメチルメタクリレート(b2)を含む組成物は、義歯床用組成物、歯科用接着剤あるいは骨セメントなどとして、現在最も広く用いられている組成物である。メチルメタクリレート(b2)は重合体(A)の粉剤を、短時間で膨潤させることができて操作性が良好である。また、当該組成物を硬化させて得られる成形品は高強度かつ高弾性率である。しかしながら、用途によっては靭性が不足する場合があり、このような場合に、比較的少量の1,4-ペンタジエン-3-オール(b3)を加えることで、靭性を大きく改善できることの意義は大きい。また、比較的少量の1,4-ペンタジエン-3-オール(b3)を加えるだけで吸水率を大きく低下させることもでき、実用上、極めて有用である。 The composition containing the polymer (A) and methyl methacrylate (b2) is the composition most widely used at present as a denture base composition, dental adhesive, bone cement or the like. Methyl methacrylate (b2) can swell the powder of the polymer (A) in a short time and has good operability. In addition, a molded product obtained by curing the composition has high strength and high elastic modulus. However, the toughness may be insufficient depending on the application. In such a case, it is significant that the toughness can be greatly improved by adding a relatively small amount of 1,4-pentadien-3-ol (b3). Further, the water absorption can be greatly reduced by adding a relatively small amount of 1,4-pentadien-3-ol (b3), which is extremely useful in practice.
 単量体(B)は、本発明の効果を阻害しない範囲であれば、式(1)で表される化合物(b1)、メチルメタクリレート(b2)及び1,4-ペンタジエン-3-オール(b3)以外の単量体を含有してもよい。このときの単量体としては、(b1)、(b2)及び(b3)と共重合可能なものであれば特に制限されない。例えば、メチルアクリレート、エチル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、4-メタクリロキシエチルトリメリット酸無水物(4-META)、4-アクリロキシエチルトリメティック酸(4-AET)、4-メタクリロキシエチルトリメリティック酸(4-MET)、2-メタクリロイルオキシエチルフェニルヒドロジェンホスフェート(Phenyl-P)などの単官能(メタ)アクリレート;エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールメタントリ(メタ)アクリレート、2-[10-(メタクリロイルオキシ)デシル]マロン酸(MAC-10)、10-メタクリロイルオキシデシルジヒドロジェンホスフェート(MDP)などの多官能(メタ)アクリレート;酢酸ビニルなどのカルボン酸ビニル;無水マレイン酸;アクリロニトリル;オレフィンなどが挙げられる。単量体(B)中の、(b1)、(b2)及び(b3)以外の単量体の含有率は、通常20質量%以下であり、10質量%以下が好適であり、5質量%以下がより好適であり、2質量%以下がさらに好適である。 The monomer (B) is a compound (b1) represented by the formula (1), methyl methacrylate (b2) and 1,4-pentadien-3-ol (b3) as long as the effects of the present invention are not impaired. A monomer other than) may be contained. The monomer at this time is not particularly limited as long as it is copolymerizable with (b1), (b2) and (b3). For example, methyl acrylate, ethyl (meth) acrylate, isopropyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, methoxydiethylene glycol ( (Meth) acrylate, ethoxydiethylene glycol (meth) acrylate, 4-methacryloxyethyl trimellitic anhydride (4-META), 4-acryloxyethyl trimetic acid (4-AET), 4-methacryloxyethyl trimellitic acid ( 4-MET), monofunctional (meth) acrylates such as 2-methacryloyloxyethylphenyl hydrogen phosphate (Phenyl-P); ethylene glycol di (meth) acrylate, diethylene glycol Di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, 1,3-butanediol di (meth) acrylate, 1,4-butanediol Di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,10-decanediol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolmethane tri (meth) acrylate, 2- [10- (methacryloyloxy) decyl] malonic acid (MAC-10), polyfunctional (meth) acrylates such as 10-methacryloyloxydecyl dihydrogen phosphate (MDP); vinyl carboxylates such as vinyl acetate; maleic anhydride Acid; acrylonitrile; and olefins. The monomer content other than (b1), (b2) and (b3) in the monomer (B) is usually 20% by mass or less, preferably 10% by mass or less, and 5% by mass. The following is more preferable, and 2% by mass or less is more preferable.
 重合開始剤(C)は、単量体(B)を重合させることのできるものであれば特に限定されず、ラジカル重合開始剤や光重合開始剤などが使用される。ラジカル重合開始剤としては、有機過酸化物や有機アゾ化合物が好適に使用される。これらのラジカル重合開始剤は加熱することによってラジカルを発生させるものであっても構わないし、アミンなどの還元剤などと混合することによって常温でラジカルを発生させるものであっても構わない。また、光重合開始剤を使用する場合には増感剤と還元剤の組み合わせなどが採用される。 The polymerization initiator (C) is not particularly limited as long as it can polymerize the monomer (B), and a radical polymerization initiator, a photopolymerization initiator, or the like is used. As the radical polymerization initiator, an organic peroxide or an organic azo compound is preferably used. These radical polymerization initiators may generate radicals by heating, or may generate radicals at room temperature by mixing with a reducing agent such as an amine. Moreover, when using a photoinitiator, the combination of a sensitizer and a reducing agent etc. are employ | adopted.
 加熱することによってラジカルを発生させる重合開始剤としては、ベンゾイルパーオキサイド、2,4-ジクロルベンゾイルパーオキサイド、m-トリルパーオキサイド、t-ブチルパーオキシベンゾエート、ジ-t-ブチルパーオキシイソフタレート、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ[(o-ベンゾイル)ベンゾイルパーオキシ]ヘキサン、t-ブチルパーオキシ-2-エチルヘキサノエート又はt-ブチルパーオキシイソプロピルカーボネートなどが例示される。 Polymerization initiators that generate radicals upon heating include benzoyl peroxide, 2,4-dichlorobenzoyl peroxide, m-tolyl peroxide, t-butylperoxybenzoate, di-t-butylperoxyisophthalate 2,5-dimethyl-2,5-di (benzoylperoxy) hexane, 2,5-dimethyl-2,5-di [(o-benzoyl) benzoylperoxy] hexane, t-butylperoxy-2- Examples thereof include ethyl hexanoate and t-butyl peroxyisopropyl carbonate.
 過酸化物と還元剤を組み合わせた、常温でラジカルを発生させるものとしては、過酸化物としては、ベンゾイルパーオキサイド、2,4-ジクロルベンゾイルパーオキシド、m-トリルパーオキサイド、t-ブチルパーオキシベンゾエート、ジ-t-ブチルパーオキシイソフタレート、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ[(o-ベンゾイル)ベンゾイルパーオキシ]ヘキサン、t-ブチルパーオキシ-2-エチルヘキサノエート又はt-ブチルパーオキシイソプロピルカーボネートなどが例示され、還元剤としては、N,N-ジメチルアニリン、N,N-ジメチル-p-トルイジン、N,N-ジメチル-m-トルイジン,N,N-ジエチル-p-トルイジン、N,N-ジメチル-3,5-ジメチルアニリン、N,N-ジメチル-3,4-ジメチルアニリン、N,N-ジメチル-4-エチルアニリン、N,N-ジメチル-4-i-プロピルアニリン、N,N-ジメチル-4-t-プロピルアニリン、N,N-ジメチル-3,5-ジ-t-ブチルアニリン、N,N-ビス(2-ヒドロキシエチル)-3,5-ジメチルアニリン、N,N-ジ(2-ヒドロキシエチル)-p-トルイジン、N,N-ビス(2-ヒドロキシエチル)-3,4-ジメチルアニリン、N,N-ビス(2-ヒドロキシエチル)-4-i-プロピルアニリン、N,N-ビス(2-ヒドロキシエチル)-4-t-プロピルアニリン、N,N-ビス(2-ヒドロキシエチル)-3,5-ジ-i-プロピルアニリン、N,N-ビス(2-ヒドロキシエチル)-3,5-ジ-t-プロピルアニリン、4-ジメチルアミノ安息香酸メチル、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸n-ブトキシエチル又は4-ジメチルアミノ安息香酸(2-メタクリロイルオキシ)エチル等の芳香族第3級アミンやトリメチルアミン、トリエチルアミン、N-メチルジエタノールアミン、N-エチルジエタノールアミン、N-n-ブチルジエタノールアミン、N-ラウリルジエタノールアミン、p-トリルジエタノールアミン、(2-ジメチルアミノ)エチルメタクリレート、N-メチルジエタノールアミンジメタクリレート、N-エチルジエタノールアミンジメタクリレート、トリエタノールアミンモノメタクリレート、トリエタノールアミンジメタクリレート、トリエタノールアミントリメタクリレート等の脂肪族第3級アミンやベンゼンスルフィン酸、ベンゼンスルフィン酸ナトリウム、ベンゼンスルフィン酸カリウム、ベンゼンスルフィン酸カルシウム、ベンゼンスルフィン酸リチウム、トルエンスルフィン酸、トルエンスルフィン酸ナトリウム、トルエンスルフィン酸カリウム、トルエンスルフィン酸カルシウム、トルエンスルフィン酸リチウム、2,4,6-トリメチルベンゼンスルフィン酸、2,4,6-トリメチルベンゼンスルフィン酸ナトリウム、2,4,6-トリメチルベンゼンスルフィン酸カリウム、2,4,6-トリメチルベンゼンスルフィン酸カルシウム、2,4,6-トリメチルベンゼンスルフィン酸リチウム、2,4,6-トリエチルベンゼンスルフィン酸、2,4,6-トリエチルベンゼンスルフィン酸カリウム、2,4,6-トリエチルベンゼンスルフィン酸カルシウム、2,4,6-i-プロピルベンゼンスルフィン酸、2,4,6-トリイソプロピルベンゼンスルフィン酸カリウム、2,4,6-トリイソプロピルベンゼンスルフィン酸カルシウムなどのスルフィン酸またはその塩などが例示される。 A combination of a peroxide and a reducing agent that generates radicals at room temperature includes peroxides such as benzoyl peroxide, 2,4-dichlorobenzoyl peroxide, m-tolyl peroxide, and t-butyl peroxide. Oxybenzoate, di-t-butylperoxyisophthalate, 2,5-dimethyl-2,5-di (benzoylperoxy) hexane, 2,5-dimethyl-2,5-di [(o-benzoyl) benzoylper Oxy] hexane, t-butylperoxy-2-ethylhexanoate, t-butylperoxyisopropyl carbonate, etc. are exemplified, and as the reducing agent, N, N-dimethylaniline, N, N-dimethyl-p-toluidine N, N-dimethyl-m-toluidine, N, N-diethyl-p-toluidine, N, N-dimethyl- , 5-dimethylaniline, N, N-dimethyl-3,4-dimethylaniline, N, N-dimethyl-4-ethylaniline, N, N-dimethyl-4-i-propylaniline, N, N-dimethyl-4 -T-propylaniline, N, N-dimethyl-3,5-di-t-butylaniline, N, N-bis (2-hydroxyethyl) -3,5-dimethylaniline, N, N-di (2- Hydroxyethyl) -p-toluidine, N, N-bis (2-hydroxyethyl) -3,4-dimethylaniline, N, N-bis (2-hydroxyethyl) -4-i-propylaniline, N, N- Bis (2-hydroxyethyl) -4-t-propylaniline, N, N-bis (2-hydroxyethyl) -3,5-di-i-propylaniline, N, N-bis (2-hydroxyethyl)- 3,5- Fragrances such as di-t-propylaniline, methyl 4-dimethylaminobenzoate, ethyl 4-dimethylaminobenzoate, n-butoxyethyl 4-dimethylaminobenzoate or ethyl (2-methacryloyloxy) 4-dimethylaminobenzoate Tertiary amine, trimethylamine, triethylamine, N-methyldiethanolamine, N-ethyldiethanolamine, Nn-butyldiethanolamine, N-lauryldiethanolamine, p-tolyldiethanolamine, (2-dimethylamino) ethyl methacrylate, N-methyldiethanolamine Dimethacrylate, N-ethyldiethanolamine dimethacrylate, triethanolamine monomethacrylate, triethanolamine dimethacrylate, triethanolamine trimethacrylate Aliphatic tertiary amines such as benzenesulfinic acid, sodium benzenesulfinate, potassium benzenesulfinate, calcium benzenesulfinate, lithium benzenesulfinate, toluenesulfinate, sodium toluenesulfinate, potassium toluenesulfinate, toluenesulfinate Calcium, lithium toluenesulfinate, 2,4,6-trimethylbenzenesulfinic acid, sodium 2,4,6-trimethylbenzenesulfinate, potassium 2,4,6-trimethylbenzenesulfinate, 2,4,6-trimethylbenzene Calcium sulfinate, lithium 2,4,6-trimethylbenzenesulfinate, 2,4,6-triethylbenzenesulfinate, potassium 2,4,6-triethylbenzenesulfinate 2,4,6-triethylbenzenesulfinic acid calcium, 2,4,6-i-propylbenzenesulfinic acid, potassium 2,4,6-triisopropylbenzenesulfinate, 2,4,6-triisopropylbenzenesulfinic acid Examples thereof include sulfinic acid such as calcium or a salt thereof.
 また、光重合開始剤の場合の増感剤と還元剤としては、カンファーキノン、ベンジル、ジアセチル、ベンジルジメチルケタール、ベンジルジエチルケタール、ベンジルジ(2-メトキシエチル)ケタール、4,4’-ジメチルベンジル-ジメチルケタール、アントラキノン、1-クロロアントラキノン、2-クロロアントラキノン、1,2-ベンズアントラキノン、1-ヒドロキシアントラキノン、1-メチルアントラキノン、2-エチルアントラキノン、1-ブロモアントラキノン、チオキサントン、2-イソプロピルチオキサントン、2-ニトロチオキサントン、2-メチルチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジイソプロピルチオキサントン、2-クロロ-7-トリフルオロメチルチオキサントン、チオキサントン-10,10-ジオキシド、チオキサントン-10-オキサイド、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンゾフェノン、ビス(4-ジメチルアミノフェニル)ケトン、4,4’-ビスジエチルアミノベンゾフェノン、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド,2,6-ジメトキシベンゾイルジフェニルホスフィンオキサイド,2,6-ジクロロベンゾイルジフェニルホスフィンオキサイド,2,3,5,6-テトラメチルベンゾイルフェニルホスフィンオキサイド,ベンゾイルジ-(2,6-ジメチルフェニル)ホスホネート,2,4,6-トリメチルベンゾイルエトキシフェニルホスフィンオキサイド,3,3’-カルボニルビス(7-ジエチルアミノ)クマリン,3-(4-メトキシベンゾイル)クマリン,2,4,6-トリス(トリクロロメチル)-s-トリアジン,2,4,6-トリス(トリブロモメチル)-s-トリアジン又は2-メチル-4,6-ビス(トリクロロメチル)-s-トリアジンなどの増感剤や4-ジメチルアミノ安息香酸メチル、4-ジメチルアミノ安息香酸エチル、2-ジメチルアミノエチルメタクリレート、N,N-ビス{(メタ)アクリロイルオキシエチル}-N-メチルアミン、N-メチルジエタノールアミン、4-ジメチルアミノベンゾフェノンなどの3級アミンやジメチルアミノベンズアルデヒド、テレフタルアルデヒドなどのアルデヒド類や2-メルカプトベンゾオキサゾール、デカンチオール、3-メルカプトプロピルトリメトキシシラン、チオ安息香酸などのチオール基を有する化合物やベンゼンスルフィン酸、ベンゼンスルフィン酸ナトリウム、ベンゼンスルフィン酸カリウム、ベンゼンスルフィン酸カルシウム、ベンゼンスルフィン酸リチウム、トルエンスルフィン酸、トルエンスルフィン酸ナトリウム、トルエンスルフィン酸カリウム、トルエンスルフィン酸カルシウム、トルエンスルフィン酸リチウム、2,4,6-トリメチルベンゼンスルフィン酸、2,4,6-トリメチルベンゼンスルフィン酸ナトリウム、2,4,6-トリメチルベンゼンスルフィン酸カリウム、2,4,6-トリメチルベンゼンスルフィン酸カルシウム、2,4,6-トリメチルベンゼンスルフィン酸リチウム、2,4,6-トリエチルベンゼンスルフィン酸、2,4,6-トリエチルベンゼンスルフィン酸カリウム、2,4,6-トリエチルベンゼンスルフィン酸カルシウム、2,4,6-i-プロピルベンゼンスルフィン酸、2,4,6-トリイソプロピルベンゼンスルフィン酸カリウム、2,4,6-トリイソプロピルベンゼンスルフィン酸カルシウムなどのスルフィン酸またはその塩などの還元剤が例示される。 In the case of a photopolymerization initiator, sensitizers and reducing agents include camphorquinone, benzyl, diacetyl, benzyl dimethyl ketal, benzyl diethyl ketal, benzyl di (2-methoxyethyl) ketal, 4,4′-dimethylbenzyl- Dimethyl ketal, anthraquinone, 1-chloroanthraquinone, 2-chloroanthraquinone, 1,2-benzanthraquinone, 1-hydroxyanthraquinone, 1-methylanthraquinone, 2-ethylanthraquinone, 1-bromoanthraquinone, thioxanthone, 2-isopropylthioxanthone, 2 -Nitrothioxanthone, 2-methylthioxanthone, 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2,4-diisopropylthioxanthone, 2-chloro-7-trifluoromethyl Thioxanthone, thioxanthone-10,10-dioxide, thioxanthone-10-oxide, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzophenone, bis (4-dimethylaminophenyl) ketone, 4,4'-bis Diethylaminobenzophenone, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2,6-dimethoxybenzoyldiphenylphosphine oxide, 2,6-dichlorobenzoyldiphenylphosphine oxide, 2,3,5,6-tetramethylbenzoylphenylphosphine oxide, Benzoyl di- (2,6-dimethylphenyl) phosphonate, 2,4,6-trimethylbenzoylethoxyphenyl phosphite Oxide, 3,3′-carbonylbis (7-diethylamino) coumarin, 3- (4-methoxybenzoyl) coumarin, 2,4,6-tris (trichloromethyl) -s-triazine, 2,4,6-tris ( Sensitizers such as tribromomethyl) -s-triazine or 2-methyl-4,6-bis (trichloromethyl) -s-triazine, methyl 4-dimethylaminobenzoate, ethyl 4-dimethylaminobenzoate, 2- Tertiary amines such as dimethylaminoethyl methacrylate, N, N-bis {(meth) acryloyloxyethyl} -N-methylamine, N-methyldiethanolamine, 4-dimethylaminobenzophenone, and aldehydes such as dimethylaminobenzaldehyde and terephthalaldehyde And 2-mercaptobenzoxazole, decane Compounds having a thiol group such as all, 3-mercaptopropyltrimethoxysilane, thiobenzoic acid, benzenesulfinic acid, sodium benzenesulfinate, potassium benzenesulfinate, calcium benzenesulfinate, lithium benzenesulfinate, toluenesulfinate, toluene Sodium sulfinate, potassium toluenesulfinate, calcium toluenesulfinate, lithium toluenesulfinate, 2,4,6-trimethylbenzenesulfinic acid, sodium 2,4,6-trimethylbenzenesulfinate, 2,4,6-trimethylbenzene Potassium sulfinate, calcium 2,4,6-trimethylbenzenesulfinate, lithium 2,4,6-trimethylbenzenesulfinate, 2,4,6-triethylbenzene Nzensulfinic acid, potassium 2,4,6-triethylbenzenesulfinate, calcium 2,4,6-triethylbenzenesulfinate, 2,4,6-i-propylbenzenesulfinic acid, 2,4,6-triisopropylbenzene Examples of the reducing agent include sulfinic acid such as potassium sulfinate and calcium 2,4,6-triisopropylbenzenesulfinate or a salt thereof.
 本発明の組成物は、単量体(B)100質量部に対して重合体(A)100~280質量部を含有する。重合体(A)の含有率が280質量部を超える場合には、本発明の組成物を、重合体(A)の粉剤と単量体(B)の液剤とを用いて調製する場合に、重合体(A)の粉剤が十分膨潤しないおそれがある。粉剤が十分膨潤しない場合、得られる成形品の機械的性質が低下するおそれがある。重合体(A)の含有率は、270質量部以下であることがより好適である。一方、重合体(A)の含有率が100質量部未満である場合には、得られる成形品の機械的性質が低下するおそれや重合収縮率が高くなるおそれがある。重合体(A)の含有率は、180質量部以上であることがより好適であり、200質量部以上であることがさらに好適である。重合体(A)の粉剤と単量体(B)の液剤とを用いて成形品を作製する場合における、得られる成形品の機械的性質の観点からは、重合体(A)の含有率は、重合体(A)が十分膨潤する範囲内において、多いほうが好ましい。 The composition of the present invention contains 100 to 280 parts by mass of the polymer (A) with respect to 100 parts by mass of the monomer (B). When the content of the polymer (A) exceeds 280 parts by mass, the composition of the present invention is prepared using the powder of the polymer (A) and the liquid of the monomer (B). There exists a possibility that the powder of a polymer (A) may not fully swell. If the powder does not swell sufficiently, the mechanical properties of the resulting molded product may be reduced. The content of the polymer (A) is more preferably 270 parts by mass or less. On the other hand, when the content rate of a polymer (A) is less than 100 mass parts, there exists a possibility that the mechanical property of the molded article obtained may fall or a polymerization shrinkage rate may become high. The content of the polymer (A) is more preferably 180 parts by mass or more, and further preferably 200 parts by mass or more. From the viewpoint of the mechanical properties of the obtained molded product in the case of producing a molded product using the polymer (A) powder and the monomer (B) solution, the content of the polymer (A) is In the range where the polymer (A) is sufficiently swollen, it is preferable that the amount is larger.
 重合開始剤(C)の含有率は、単量体(B)100質量部に対して通常0.01~10質量部である。重合開始剤(C)の含有率が、単量体(B)100質量部に対して0.01質量部未満の場合には、重合反応を促進する効果が十分でなくなるおそれがある。好適には0.1質量部以上である。一方、重合開始剤(C)の含有率が、単量体(B)100質量部に対して10質量部を超える場合には、重合反応を促進する効果が頭打ちになるとともに、重合開始剤(C)に由来する溶出成分が増加するおそれもある。好適には5質量部以下である。 The content of the polymerization initiator (C) is usually 0.01 to 10 parts by mass with respect to 100 parts by mass of the monomer (B). If the content of the polymerization initiator (C) is less than 0.01 parts by mass with respect to 100 parts by mass of the monomer (B), the effect of promoting the polymerization reaction may not be sufficient. Preferably it is 0.1 mass part or more. On the other hand, when the content of the polymerization initiator (C) exceeds 10 parts by mass with respect to 100 parts by mass of the monomer (B), the effect of accelerating the polymerization reaction reaches its peak, and the polymerization initiator ( There is also a possibility that the eluted components derived from C) may increase. The amount is preferably 5 parts by mass or less.
 本発明の組成物は、本発明の効果を阻害しない範囲であれば、重合体(A)、単量体(B)及び重合開始剤(C)以外の成分を含有しても構わない。例えば、フィラー、着色料、抗菌剤、香料などを用途に応じて配合することができる。本発明の組成物中の前記フィラーの含有率は、40質量%以下が好適であり、20質量%以下がより好適である。フィラーを含有することにより、得られる成形品の強度及び弾性率がより向上する。得られる成形品の吸水性をより低くできる観点からは、無機フィラーがより好適である。一方、重合体(A)、単量体(B)、重合開始剤(C)およびフィラー以外の成分の含有率は、20質量%未満であることが好適であり、10質量%以下がより好適である。 The composition of the present invention may contain components other than the polymer (A), the monomer (B) and the polymerization initiator (C) as long as the effects of the present invention are not impaired. For example, fillers, colorants, antibacterial agents, fragrances, and the like can be blended depending on the application. 40 mass% or less is suitable for the content rate of the said filler in the composition of this invention, and 20 mass% or less is more suitable. By containing a filler, the strength and elastic modulus of the obtained molded product are further improved. From the viewpoint of lowering the water absorption of the obtained molded product, an inorganic filler is more preferable. On the other hand, the content of components other than the polymer (A), the monomer (B), the polymerization initiator (C) and the filler is preferably less than 20% by mass, and more preferably 10% by mass or less. It is.
 本発明の組成物の好適な製造方法は、重合体(A)の粉剤と、単量体(B)の液剤とを、重合開始剤(C)の存在下で混合して増粘させる方法である。粉剤と液剤とを混合した後、混合物は、ペースト状から餅状を経て、ゴム状へと、すなわち、粘性体から弾性体へと物理的に性状が変化する。ここで、餅状とは、粘性と流動性とを併せ持った状態である。餅状の組成物は、操作性が良いため、賦形する作業等を簡便に行える。重合体(A)の粉剤と、単量体(B)の液剤とを混合した場合、2~5分程度で餅状になる。このような短時間で餅状になることにより、組成物の調製や賦形が短時間で行えるので、メリットが大きい。粉剤と液剤とを混合する際には、組成物内部への気泡の混入を防止したい場合には、液剤中に粉剤を散布するか、粉剤中に液剤を浸み込ませるかした後、撹拌せずに静置して増粘させるのが好ましい。しかしながら、増粘速度を向上させたり、全体を均質にしたりするためには、撹拌することが好ましい。 A preferred method for producing the composition of the present invention is a method in which the powder of the polymer (A) and the liquid of the monomer (B) are mixed and thickened in the presence of the polymerization initiator (C). is there. After mixing the powder agent and the liquid agent, the mixture physically changes from a paste shape to a candy shape to a rubber shape, that is, from a viscous material to an elastic material. Here, the bowl shape is a state having both viscosity and fluidity. Since the cocoon-shaped composition has good operability, it is possible to easily perform a shaping operation and the like. When the powder of the polymer (A) and the liquid of the monomer (B) are mixed, it becomes a cocoon in about 2 to 5 minutes. By forming the cocoon in such a short time, the preparation and shaping of the composition can be performed in a short time, so that the merit is great. When mixing powder and liquid, if you want to prevent air bubbles from entering the composition, stir after spraying the liquid or soaking the liquid in the liquid. It is preferable to stand still without increasing the viscosity. However, in order to improve the speed of thickening or to make the whole homogeneous, stirring is preferable.
 重合体(A)の粉剤と単量体(B)の液剤とを混合すると、粉剤を構成する重合体(A)の粒子中に単量体(B)が徐々に含浸することにより当該粒子が膨潤する。組成物が餅状になったときには、単量体(B)が含浸した前記粒子は、成形時の応力によって容易に変形する程に軟化している。このとき、表面近傍に多量の単量体(B)が含浸することで前記粒子が膨潤していると考えられる。このようにして重合体(A)の粒子が単量体(B)により膨潤していると考えられる。 When the powder of the polymer (A) and the liquid of the monomer (B) are mixed, the monomer (B) is gradually impregnated into the particles of the polymer (A) constituting the powder, so that the particles Swells. When the composition becomes cocoon-like, the particles impregnated with the monomer (B) are soft enough to be easily deformed by the stress during molding. At this time, it is considered that the particles are swollen by impregnating a large amount of the monomer (B) in the vicinity of the surface. Thus, it is considered that the particles of the polymer (A) are swollen by the monomer (B).
 一方、重合体(A)の粉剤と単量体(B)の液剤とを混合すると、重合体(A)の粉剤の隙間が単量体(B)の液剤で埋められる。組成物が餅状になったときには、前記単量体(B)中に重合体(A)の一部が溶解していると考えられる。 On the other hand, when the polymer (A) powder and the monomer (B) solution are mixed, the gap between the polymer (A) powder and the monomer (B) solution is filled. When the composition becomes bowl-shaped, it is considered that a part of the polymer (A) is dissolved in the monomer (B).
 重合体(A)の粉剤と単量体(B)の液剤とを混合して得られる餅状の組成物は、上述のように、単量体(B)が含浸して膨潤した重合体(A)の粒子と、当該粒子間の隙間を埋める形で存在する、重合体(A)が溶解した単量体(B)の溶液からなる。 As described above, the soot-like composition obtained by mixing the powder of the polymer (A) and the liquid of the monomer (B) is a polymer (swelled by impregnation with the monomer (B)). It consists of a solution of the monomer (B) in which the polymer (A) is dissolved and present in a form to fill the gaps between the particles.
 このような餅状の組成物を重合させた場合には、重合体(A)の粒子の表面近傍に由来する部分において、重合体(A)の粒子に含浸した単量体(B)中の、(b1)又は(b2)と、(b3)とが共重合することにより、上述したセミ相互侵入網目構造が形成されているものと推定される。これにより、強度及び弾性率に優れるうえに靭性にも優れ、しかも低吸水率の成形品が得られるものと考えられる。得られる成形品の機械的性質の観点からは、単量体(B)の液剤の量が、重合体(A)の粉剤を十分膨潤することができる範囲内において、少ないほうが好ましい。得られる成形品における、重合体(A)の粒子に由来する部分の比率が多くなることにより、機械的性質がさらに向上する。 When such a cocoon-shaped composition is polymerized, the polymer (A) particles impregnated in the monomer (B) impregnated in the vicinity of the surface of the polymer (A) particles. , (B1) or (b2) and (b3) are presumed to form the above-described semi-interpenetrating network structure. Thus, it is considered that a molded product having excellent strength and elastic modulus, excellent toughness, and low water absorption can be obtained. From the viewpoint of the mechanical properties of the resulting molded article, it is preferable that the amount of the monomer (B) solution is small so long as the powder of the polymer (A) can be sufficiently swollen. By increasing the ratio of the portion derived from the polymer (A) particles in the obtained molded article, the mechanical properties are further improved.
 また、単量体(B)が、上記式(1)で表される化合物(b1)又はメチルメタクリレート(b2)と、1,4-ペンタジエン-3-オール(b3)とを含有するとき、餅状の組成物を重合させた場合には、重合体(A)の粒子の表面近傍に由来する部分において、重合体(A)の粒子に含浸した単量体(B)中の化合物(b1)又はメチルメタクリレート(b2)と、1,4-ペンタジエン-3-オール(b3)とが架橋することにより、極めて架橋密度の高いセミ相互侵入網目構造が形成されているものと推定される。これにより、成形品が剛直になり、吸水膨潤が抑制され、成形品の吸水率が低下するものと考えられる。また、化合物(b1)又はメチルメタクリレート(b2)と、1,4-ペンタジエン-3-オール(b3)とからなる極めて密度の高い架橋構造体が重合体(A)の粒子の表面近傍に由来する部分において形成されることにより、重合体(A)の粒子の中心付近に由来する部分への水の侵入が抑制されるものと考えられ、このことも吸水性の低下に寄与していると考えられる。 When the monomer (B) contains the compound (b1) or methyl methacrylate (b2) represented by the above formula (1) and 1,4-pentadien-3-ol (b3), When the polymer composition is polymerized, the compound (b1) in the monomer (B) impregnated in the particles of the polymer (A) in the portion derived from the vicinity of the surface of the particles of the polymer (A) Alternatively, it is presumed that methyl methacrylate (b2) and 1,4-pentadien-3-ol (b3) are crosslinked to form a semi-interpenetrating network structure having a very high crosslinking density. Thereby, it is considered that the molded product becomes rigid, the water absorption swelling is suppressed, and the water absorption rate of the molded product decreases. Further, an extremely high density crosslinked structure composed of the compound (b1) or methyl methacrylate (b2) and 1,4-pentadien-3-ol (b3) is derived from the vicinity of the surface of the particles of the polymer (A). By forming in the part, it is thought that the penetration | invasion of the water to the part originating from the center vicinity of the particle | grains of a polymer (A) is suppressed, and this also thinks that it has contributed to the fall of water absorption. It is done.
 重合体(A)の粉剤の平均粒径は、特に制限されないが、2~200μmであることが好適である。平均粒径が2μmより小さい場合には、重合体(A)の粉剤と単量体(B)の液剤とを混合する際に、粉剤が均一に分散しないおそれがある。平均粒径は10μm以上がより好適であり、20μm以上がさらに好適である。また、重合体(A)の平均粒径が200μmより大きい場合には、粉剤の膨潤速度が遅くなりすぎるおそれがある。平均粒径は150μm以下がより好適であり、100μm以下がさらに好適である。 The average particle size of the powder of the polymer (A) is not particularly limited, but is preferably 2 to 200 μm. When the average particle size is smaller than 2 μm, the powder may not be uniformly dispersed when the polymer (A) powder and the monomer (B) liquid are mixed. The average particle size is more preferably 10 μm or more, and further preferably 20 μm or more. Moreover, when the average particle diameter of a polymer (A) is larger than 200 micrometers, there exists a possibility that the swelling rate of a powder may become too slow. The average particle size is more preferably 150 μm or less, and even more preferably 100 μm or less.
 重合開始剤(C)を混合する方法は特に制限されない。重合開始剤(C)を予め重合体(A)の粉剤又は単量体(B)の液剤の少なくとも一方に含有させておいてもよいし、組成物の調製時に混合してもよい。重合開始剤(C)を重合体(A)の粉剤又は単量体(B)の液剤の少なくとも一方に予め含有させておくことが、操作を簡便にできて好ましい。 The method for mixing the polymerization initiator (C) is not particularly limited. The polymerization initiator (C) may be previously contained in at least one of the powder of the polymer (A) or the liquid of the monomer (B), or may be mixed during preparation of the composition. It is preferable that the polymerization initiator (C) is previously contained in at least one of the powder of the polymer (A) or the liquid of the monomer (B) because the operation can be simplified.
 重合体(A)が予め重合開始剤(C)を含有していることが好ましい。すなわち、粉剤を構成する重合体(A)の粒子が重合開始剤(C)を含有していることが好ましい。このような場合には、懸濁重合などによって重合体(A)を製造するときに加えられた重合開始剤をそのまま使用することができる。また、重合開始剤(C)が複数種類の化合物を混合してラジカルを発生させるものである場合には、その一方を重合体(A)に、他方を単量体(B)に、予め含有させておくこともできる。 It is preferable that the polymer (A) contains a polymerization initiator (C) in advance. That is, it is preferable that the polymer (A) particles constituting the powder contain a polymerization initiator (C). In such a case, the polymerization initiator added when producing the polymer (A) by suspension polymerization or the like can be used as it is. Moreover, when a polymerization initiator (C) is what mixes multiple types of compounds and generate | occur | produces a radical, the one is previously contained in a polymer (A) and the other in a monomer (B) You can also let them.
 重合体(A)の粉剤と単量体(B)の液剤とを混合することによって、重合体(A)の中に単量体(B)が浸透し、重合体(A)が膨潤して徐々に粘度が上昇して餅状に至る。このようにして増粘させた後に賦形して成形品を製造することが好ましい。賦形する際の組成物は、十分に粘度が上昇していながらも流動性を保った餅状であることが好ましい。賦形は、型に充填したり、押し付けることによって、あるいは、手で形を整えたりすることなどにより行われる。 By mixing the powder of the polymer (A) and the liquid of the monomer (B), the monomer (B) penetrates into the polymer (A), and the polymer (A) swells. The viscosity gradually rises to a bowl shape. It is preferable to form the molded product by shaping after thickening in this way. It is preferable that the composition at the time of shaping has a bowl-like shape that maintains fluidity while the viscosity is sufficiently increased. The shaping is performed by filling the mold, pressing it, or adjusting the shape by hand.
 重合体(A)の粉剤と、単量体(B)の液剤とを、重合開始剤(C)の存在下で混合した後、組成物が餅状を維持する時間は、特に制限されないが、組成物を賦形したりする作業に必要な時間は維持されることが好ましい。液剤として、本発明の単量体(B)を用いた場合には、作業するのに十分な時間、組成物が餅状を維持する。 The time during which the composition maintains a bowl shape after mixing the powder of the polymer (A) and the liquid of the monomer (B) in the presence of the polymerization initiator (C) is not particularly limited, It is preferable that the time required for the operation of shaping the composition is maintained. When the monomer (B) of the present invention is used as the liquid agent, the composition maintains a bowl-like shape for a sufficient time to work.
 本発明の組成物を、賦形した後、重合反応を行うことで、硬化した成形品が得られる。室温で重合反応が進行するような重合開始剤(C)を使用する場合には、混合しただけでも増粘と同時に重合反応が進行するが、熱や光を用いて重合反応を進行させる場合には、熱や光で処理するまでは実質的に重合反応は進行しない場合が多い。加熱することや、光照射することによって、賦形した後で重合反応を進行させることができるが、作業性を考慮すれば加熱する方法が好適である。例えば、温水に浸漬するだけでも簡単に重合反応を進行させることができる。重合する際に温度などの重合条件や重合時間などの調整により重合度を変えることによって、組成物の硬さを上昇させることもできるから、用途に応じて、所望の硬さを有する成形品を容易に得ることができる。 A cured molded product is obtained by shaping the composition of the present invention and then performing a polymerization reaction. When using a polymerization initiator (C) that causes a polymerization reaction to proceed at room temperature, the polymerization reaction proceeds at the same time as increasing the viscosity even if only mixed, but when the polymerization reaction proceeds using heat or light. In many cases, the polymerization reaction does not substantially proceed until it is treated with heat or light. Although the polymerization reaction can proceed after shaping by heating or light irradiation, a heating method is preferred in consideration of workability. For example, the polymerization reaction can be easily advanced only by immersing in warm water. Since the hardness of the composition can be increased by changing the polymerization degree by adjusting the polymerization conditions such as temperature and the polymerization time during polymerization, a molded product having a desired hardness can be obtained depending on the application. Can be easily obtained.
 重合体(A)の粉剤と、単量体(B)の液剤とを、重合開始剤(C)の存在下で混合して得られる、餅状になった組成物は、単量体(B)が含浸して膨潤した重合体(A)の粒子と、当該粒子間の隙間を埋める形で存在する、重合体(A)が溶解した単量体(B)の溶液からなる。このような餅状の組成物を重合した場合には、重合体(A)の粉末を構成する粒子は、重合した後も概ねその形状を維持する。このような重合体(A)の粒子に由来する粒子形状の部分の隙間は、単量体(B)が重合により硬化したものにより埋められる。このように、重合して得られる成形品が、重合体(A)の粒子に由来する粒子形状の部分とその隙間を埋める単量体(B)に由来する部分からなることが好適である。これにより、強度、弾性率及び靭性がさらに向上する。成形品における、重合体(A)の粒子に由来する部分の粒子形状は、球に近い形状であってもよいし、歪んだ形状であっても構わない。成形時の圧力により、重合体(A)の粒子に由来する部分の形状が歪む場合がある。 The composition in the form of a bowl obtained by mixing the powder of the polymer (A) and the liquid of the monomer (B) in the presence of the polymerization initiator (C) is the monomer (B ) And the polymer (A) particles impregnated and swollen, and a solution of the monomer (B) in which the polymer (A) is dissolved and fills the gaps between the particles. When such a cocoon-shaped composition is polymerized, the particles constituting the polymer (A) powder generally maintain its shape after polymerization. The gap between the particle-shaped portions derived from the particles of the polymer (A) is filled with the monomer (B) cured by polymerization. Thus, it is preferable that the molded product obtained by polymerization is composed of a particle-shaped portion derived from the polymer (A) particles and a portion derived from the monomer (B) filling the gap. Thereby, strength, elastic modulus, and toughness are further improved. The particle shape of the part derived from the polymer (A) particles in the molded product may be a shape close to a sphere or a distorted shape. The shape of the part derived from the particles of the polymer (A) may be distorted by the pressure during molding.
 このとき、成形品における、重合体(A)の粒子に由来する部分の比率ができるだけ大きいことが好ましい。そうすることにより、「セミ相互侵入網目構造」が形成されていると推定される重合体(A)の粒子に由来する部分同士が接近した構造をとることができる。これにより成形品の強度、弾性率及び靭性がさらに向上する。重合体(A)の粒子に由来する部分と単量体(B)の液剤に由来する部分からなる成形品の構造は、成形品を薄くスライスして得られる薄切片を光学顕微鏡により観察することなどにより確認することができる。 At this time, it is preferable that the ratio of the part derived from the particles of the polymer (A) in the molded product is as large as possible. By doing so, the structure which the part derived from the particle | grains of the polymer (A) presumed that the “semi-interpenetrating network structure” is formed can be taken. Thereby, the strength, elastic modulus and toughness of the molded product are further improved. The structure of the molded product composed of the part derived from the polymer (A) particles and the part derived from the monomer (B) solution is to observe a thin slice obtained by thinly slicing the molded product with an optical microscope. Etc. can be confirmed.
 前述のとおり、重合体(A)及び単量体(B)は安全性が高いと考えられる。また、上述した、重合体(A)の粉剤と単量体(B)の液剤を用いる本発明の組成物の製造方法によれば、容易に組成物を作製できるうえに、得られた組成物を用いて成形品を作製することも容易である。したがって、本発明の組成物は、医療用組成物として好適に用いられる。当該医療用組成物の好適な実施態様は骨セメントである。 As described above, the polymer (A) and the monomer (B) are considered to be highly safe. Moreover, according to the manufacturing method of the composition of this invention using the powder of a polymer (A) and the liquid agent of a monomer (B) mentioned above, in addition to being able to produce a composition easily, the obtained composition It is also easy to produce a molded product using Therefore, the composition of the present invention is suitably used as a medical composition. A preferred embodiment of the medical composition is bone cement.
 前記医療用組成物は、歯科用組成物として好適に用いられる。具体的には、歯科用接着剤として好適に用いることができる。歯科用接着剤は、エナメル質や象牙質などの歯質と、歯科用金属、歯科用レジン、歯科用陶材などとを接着させるものである。線膨脹係数や弾性率の大きく異なる材料を接着し、接着後は繰り返しの荷重を受けるために、優れた靭性を有することが望まれるし、口腔内で使用されるので低吸水率であることも望まれるので、本発明の組成物が好適に用いられる。また、当該歯科用組成物を硬化させてなる義歯床又はマウスピースが好適な実施態様である。通常、義歯の作製は、患者の口腔内の印象を採取して石膏模型を作製した後、石膏模型上でワックスを用いて義歯床部を形成し、これに人工歯を配列して作製したロウ義歯を埋没材を用いてフラスコ内に埋没してロウ義歯の型を取った後、熱湯等でワックスを流して義歯床部分の空洞を埋没材中に形成させる。この空洞に餅状の組成物を填入して重合、硬化させた後、埋没材から取り出して、最終段階の形態修正や研磨が施されて完成する。また、マウスピースの作製方法は、人口歯を配列する点を除けば、義歯の作製方法とほぼ同じである。本発明の組成物を用いて作製した義歯床やマウスピースは、高い強度及び高い弾性率を有するうえに、優れた靭性をも有することから、肉厚が薄くても十分な強度を有し、しかも、咬合圧や衝撃等による破損を抑制することができる。得られる成形品の吸水率が低いため、コーヒー等による義歯床やマウスピースの着色や悪臭の発生が起きにくいうえに、機械的性質も低下しにくい。 The medical composition is preferably used as a dental composition. Specifically, it can be suitably used as a dental adhesive. The dental adhesive is used to bond dental materials such as enamel and dentin to dental metal, dental resin, dental porcelain, and the like. It is desirable to have excellent toughness for bonding materials with significantly different linear expansion coefficients and elastic moduli, and to be subjected to repeated loads after bonding. As desired, the composition of the present invention is preferably used. Further, a denture base or a mouthpiece obtained by curing the dental composition is a preferred embodiment. In general, dentures are produced by taking a patient's oral impression and preparing a plaster model, then forming a denture base using wax on the plaster model, and arranging artificial teeth on the wax. The denture is buried in a flask using an investment material and a wax denture mold is formed, and then wax is poured in hot water or the like to form a cavity in the denture base in the investment material. After filling the cavity with a soot-like composition and polymerizing and curing it, it is taken out from the investment material, and is subjected to final stage shape correction and polishing to complete. Moreover, the manufacturing method of a mouthpiece is substantially the same as the manufacturing method of a denture except the point which arranges artificial teeth. The denture base and mouthpiece produced using the composition of the present invention have a high strength and a high elastic modulus, and also have an excellent toughness. Damage due to occlusal pressure or impact can be suppressed. Since the water absorption of the obtained molded product is low, coloring of the denture base and mouthpiece due to coffee or the like and generation of bad odor are unlikely to occur, and mechanical properties are not easily lowered.
 メチルメタクリレート単位を70質量%以上含有する重合体(A)の粉剤と、
下記式(1)
A powder of a polymer (A) containing 70% by mass or more of a methyl methacrylate unit;
Following formula (1)
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
[式中、R及びRは、それぞれ独立に水素原子又はメチル基を示し、R及びRのうち、少なくとも1つが水素原子である。]
で表される化合物(b1)及びメチルメタクリレート(b2)から選択される少なくとも1種の化合物70~99.5質量%と、下記式(2)
[Wherein, R 1 and R 2 each independently represent a hydrogen atom or a methyl group, and at least one of R 1 and R 2 is a hydrogen atom. ]
70 to 99.5% by mass of at least one compound selected from the compound (b1) and methyl methacrylate (b2) represented by formula (2):
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
で表される1,4-ペンタジエン-3-オール(b3)0.5~30質量%とを含有する単量体(B)の液剤、とからなり、前記粉剤又は前記液剤の少なくとも一方が重合開始剤(C)を含有するキットも本発明の好適な実施態様である。 And a solution of monomer (B) containing 0.5 to 30% by mass of 1,4-pentadien-3-ol (b3) represented by the formula: wherein at least one of the powder or the solution is polymerized A kit containing the initiator (C) is also a preferred embodiment of the present invention.
 このようなキットは、該粉剤及び該液剤の2成分を混合するのみの容易な操作で組成物を調製することができる。キットの用途は特に限定されるものではないが、医療用キットが好適であり、中でも骨セメント用キットが好適な実施態様である。また、歯科用キットも好適であり、中でも、歯科用接着剤キット、義歯床用キット又はマウスピース用キットが好適な実施態様である。このようなキットを用いて、粉剤又は液剤に重合開始剤(C)を含有させる方法としては、組成物の製造方法のところで説明した方法を採用できる。 In such a kit, a composition can be prepared by an easy operation by simply mixing the two components of the powder and the liquid. The use of the kit is not particularly limited, but a medical kit is preferable, and a bone cement kit is a preferred embodiment. A dental kit is also suitable, and among them, a dental adhesive kit, a denture base kit, or a mouthpiece kit is a preferred embodiment. As a method of using such a kit to contain the polymerization initiator (C) in a powder or liquid, the method described in the method for producing the composition can be employed.
 以下、実施例を用いて本発明を説明する。実施例における試験片の作製や測定は、23℃、湿度50%の実験室にて実施した。本実施例で用いた単量体は以下のとおりである。 Hereinafter, the present invention will be described using examples. Preparation and measurement of the test pieces in the examples were carried out in a laboratory at 23 ° C. and a humidity of 50%. The monomers used in this example are as follows.
[単量体]
(b1)メタクリル酸ビニル(VMA)
 [上記式(1)で表される単量体であり、Rがメチル基であり、Rが水素原子である。]
 25℃における比重:0.933g/ml
(b2)メチルメタクリレート(MMA)
 25℃における比重:0.936g/ml
(b3)1,4-ペンタジエン-3-オール(14PD3OH)
 [上記式(2)で表される単量体である。]
 25℃における比重:0.865g/ml
[Monomer]
(B1) Vinyl methacrylate (VMA)
[A monomer represented by the above formula (1), R 1 is a methyl group, and R 2 is a hydrogen atom. ]
Specific gravity at 25 ° C .: 0.933 g / ml
(B2) Methyl methacrylate (MMA)
Specific gravity at 25 ° C .: 0.936 g / ml
(B3) 1,4-pentadien-3-ol (14PD3OH)
[A monomer represented by the above formula (2). ]
Specific gravity at 25 ° C .: 0.865 g / ml
実施例1
 懸濁重合によって製造された、ポリメチルメタクリレートの粉剤(根上工業株式会社製「ハイパールD-100M」:重量平均分子量500,000、平均粒径約50~80μm、ベンゾイルパーオキサイド0.5~1.0質量%含有)4gと、メタクリル酸ビニル(以下、VMAと略記することがある)1.98ml(1.85g)及び1,4-ペンタジエン-3-オール(以下、14PD3OHと略記することがある)0.02ml(0.02g)を混合した液剤とを混和し静置した。粉液比は、2.0g/mlとした。単量体(B)中の1,4-ペンタジエン-3-オールの含有率は0.92質量%であった。また、単量体(B)100質量部に対して重合体(A)を215質量部配合した。約3分後に、餅状態となった混和物を、2mm×2mm×25mmの試験片が成形できるテフロン(登録商標)型に填入してクランプし、恒温チャンバー(エスペック社製「ST-101B1」)内にて65℃で60min、続いて100℃で90min加熱して重合を進行させた。自然放冷後、テフロン(登録商標)型から取り出した試験片を空気中に一日放置した後、三点曲げ試験及び吸水性試験に供した。
Example 1
Polymethylmethacrylate powder produced by suspension polymerization (“Hyperl D-100M” manufactured by Negami Kogyo Co., Ltd .: weight average molecular weight 500,000, average particle size of about 50-80 μm, benzoyl peroxide 0.5-1. 4 g of 0% by weight), 1.98 ml (1.85 g) of vinyl methacrylate (hereinafter sometimes abbreviated as VMA) and 1,4-pentadien-3-ol (hereinafter abbreviated as 14PD3OH). ) 0.02 ml (0.02 g) was mixed with the liquid mixture and allowed to stand. The powder / liquid ratio was 2.0 g / ml. The content of 1,4-pentadien-3-ol in the monomer (B) was 0.92% by mass. Moreover, 215 mass parts of polymers (A) were mix | blended with respect to 100 mass parts of monomers (B). After about 3 minutes, the mixture in the cocoon state was inserted into a Teflon (registered trademark) mold that can form a 2 mm × 2 mm × 25 mm test piece and clamped, and a constant temperature chamber (“ST-101B1” manufactured by ESPEC CORP.) ) Was heated at 65 ° C. for 60 minutes and then at 100 ° C. for 90 minutes to proceed the polymerization. After natural cooling, the test piece taken out of the Teflon (registered trademark) mold was left in the air for one day, and then subjected to a three-point bending test and a water absorption test.
 三点曲げ試験には、万能試験機(インストロン5544)を用いた。支点間距離:20mm、クロスヘッドスピード:0.5mm/minに設定し、曲げ弾性係数、曲げ強さ、最大撓み量および破断エネルギーをそれぞれ測定した。各測定につき5点の試料を測定した。破断しない場合には約10mm撓んだところで試験を停止した。4種の曲げ特性測定の結果を表1及び図2~5に示す。 A universal testing machine (Instron 5544) was used for the three-point bending test. The distance between fulcrums was set to 20 mm, the crosshead speed was set to 0.5 mm / min, and the bending elastic modulus, bending strength, maximum deflection amount and breaking energy were measured. Five samples were measured for each measurement. When it did not break, the test was stopped when it was bent about 10 mm. The results of the four types of bending characteristics measurements are shown in Table 1 and FIGS.
 吸水性試験は、試験片を37℃の水に180日間浸漬し、吸水率の上昇が認められなくなった時の、当該試験片の見掛け飽和吸水率を測定することにより行った。ここで、見掛け飽和吸水率(質量%)は、水への浸漬後の試験片の質量の増加を、浸漬前の試験片の質量で割った数字に100をかけたものである。このときの結果を図6に示す。 The water absorption test was performed by immersing the test piece in water at 37 ° C. for 180 days and measuring the apparent saturated water absorption rate of the test piece when no increase in water absorption was observed. Here, the apparent saturated water absorption (mass%) is obtained by multiplying the number obtained by dividing the increase in the mass of the test piece after immersion in water by the mass of the test piece before immersion by 100. The result at this time is shown in FIG.
実施例2~7、比較例1
 VMAと14PD3OHの使用量を以下のように変更したこと以外は、実施例1と同様にして試験片の作製及び評価(三点曲げ試験及び吸水性試験)を行った。その結果を表1及び図2~6に示す。実施例7と比較例1については、吸水性試験のみを行った。
・実施例2
 VMA:1.96ml(1.83g)、14PD3OH:0.04ml(0.04g)
 単量体(B)中の液剤中の14PD3OHの含有率:1.86質量%
 単量体(B)100質量部に対する重合体(A)の量:215質量部
・実施例3
 VMA:1.94ml(1.81g)、14PD3OH:0.06ml(0.05g)
 単量体(B)中の液剤中の14PD3OHの含有率:2.79質量%
 単量体(B)100質量部に対する重合体(A)の量:215質量部
・実施例4
 VMA:1.92ml(1.79g)、14PD3OH:0.08ml(0.07g)
 単量体(B)中の液剤中の14PD3OHの含有率:3.72質量%
 単量体(B)100質量部に対する重合体(A)の量:215質量部
・実施例5
 VMA:1.90ml(1.77g)、14PD3OH:0.10ml(0.09g)
 単量体(B)中の液剤中の14PD3OHの含有率:4.66質量%
 単量体(B)100質量部に対する重合体(A)の量:215質量部
・実施例6
 VMA:1.80ml(1.68g)、14PD3OH:0.20ml(0.17g)
 単量体(B)中の液剤中の14PD3OHの含有率:9.34質量%
 単量体(B)100質量部に対する重合体(A)の量:216質量部
・実施例7
 VMA:1.60ml(1.49g)、14PD3OH:0.40ml(0.35g)
 単量体(B)中の液剤中の14PD3OHの含有率:18.80質量%
 単量体(B)100質量部に対する重合体(A)の量:218質量部
・比較例1
 VMA:1.00ml(0.93g)、14PD3OH:1.00ml(0.87g)
 単量体(B)中の液剤中の14PD3OHの含有率:48.11質量%
 単量体(B)100質量部に対する重合体(A)の量:223質量部
Examples 2-7, Comparative Example 1
A test piece was prepared and evaluated (three-point bending test and water absorption test) in the same manner as in Example 1 except that the amounts of VMA and 14PD3OH used were changed as follows. The results are shown in Table 1 and FIGS. For Example 7 and Comparative Example 1, only the water absorption test was performed.
Example 2
VMA: 1.96 ml (1.83 g), 14PD3OH: 0.04 ml (0.04 g)
Content ratio of 14PD3OH in the liquid agent in the monomer (B): 1.86% by mass
Amount of polymer (A) with respect to 100 parts by mass of monomer (B): 215 parts by mass / Example 3
VMA: 1.94 ml (1.81 g), 14PD3OH: 0.06 ml (0.05 g)
Content ratio of 14PD3OH in the liquid agent in the monomer (B): 2.79% by mass
Amount of polymer (A) to 100 parts by mass of monomer (B): 215 parts by mass / Example 4
VMA: 1.92 ml (1.79 g), 14PD3OH: 0.08 ml (0.07 g)
Content ratio of 14PD3OH in the liquid agent in the monomer (B): 3.72% by mass
Amount of polymer (A) with respect to 100 parts by mass of monomer (B): 215 parts by mass / Example 5
VMA: 1.90 ml (1.77 g), 14PD3OH: 0.10 ml (0.09 g)
Content ratio of 14PD3OH in the liquid agent in the monomer (B): 4.66% by mass
Amount of polymer (A) with respect to 100 parts by mass of monomer (B): 215 parts by mass / Example 6
VMA: 1.80 ml (1.68 g), 14PD3OH: 0.20 ml (0.17 g)
Content ratio of 14PD3OH in the liquid agent in the monomer (B): 9.34% by mass
Amount of polymer (A) with respect to 100 parts by mass of monomer (B): 216 parts by mass / Example 7
VMA: 1.60 ml (1.49 g), 14PD3OH: 0.40 ml (0.35 g)
Content ratio of 14PD3OH in the liquid agent in the monomer (B): 18.80% by mass
Amount of polymer (A) with respect to 100 parts by mass of monomer (B): 218 parts by mass / Comparative Example 1
VMA: 1.00 ml (0.93 g), 14PD3OH: 1.00 ml (0.87 g)
Content ratio of 14PD3OH in the liquid agent in the monomer (B): 48.11% by mass
Amount of polymer (A) with respect to 100 parts by mass of monomer (B): 223 parts by mass
比較例2
 単量体(B)として、VMA:2.00ml(1.87g)のみを用いた以外は実施例1と同様にして試験片の作製及び評価(三点曲げ試験及び吸水性試験)を行った。その結果を表1及び図2~6に示す。
Comparative Example 2
A test piece was prepared and evaluated (three-point bending test and water absorption test) in the same manner as in Example 1 except that only 2.00 ml (1.87 g) of VMA was used as the monomer (B). . The results are shown in Table 1 and FIGS.
実施例8
 実施例1と同じポリメチルメタクリレートの粉剤4gと、メタクリル酸メチル(以下、MMAと略記することがある)1.98ml(1.85g)及び1,4-ペンタジエン-3-オール0.02ml(0.02g)を混合した液剤とを混和し静置した。約5分後に、餅状態となった混和物を用い、実施例1と同様に成形して試験片を得て、三点曲げ試験に供した。その結果を表1に示す。
Example 8
4 g of the same polymethyl methacrylate powder as in Example 1, 1.98 ml (1.85 g) of methyl methacrylate (hereinafter sometimes abbreviated as MMA) and 0.02 ml of 1,4-pentadien-3-ol (0 0.02 g) was mixed and left standing. About 5 minutes later, the mixture in a wrinkled state was molded in the same manner as in Example 1 to obtain a test piece, which was subjected to a three-point bending test. The results are shown in Table 1.
実施例9及び10
 MMAと14PD3OHの使用量を以下のように変更したこと以外は、実施例8と同様にして試験片の作製及び評価(三点曲げ試験)を行った。その結果を表1に示す。
・実施例9
 MMA:1.96ml(1.84g)、14PD3OH:0.04ml(0.04g)
 単量体(B)中の液剤中の14PD3OHの含有率:1.85質量%
 単量体(B)100質量部に対する重合体(A)の量:214質量部
・実施例10
 MMA:1.90ml(1.78g)、14PD3OH:0.10ml(0.09g)
 単量体(B)中の液剤中の14PD3OHの含有率:4.64質量%
 単量体(B)100質量部に対する重合体(A)の量:215質量部
Examples 9 and 10
A test piece was prepared and evaluated (three-point bending test) in the same manner as in Example 8 except that the amounts of MMA and 14PD3OH used were changed as follows. The results are shown in Table 1.
Example 9
MMA: 1.96 ml (1.84 g), 14PD3OH: 0.04 ml (0.04 g)
Content ratio of 14PD3OH in the liquid agent in the monomer (B): 1.85% by mass
Amount of polymer (A) with respect to 100 parts by mass of monomer (B): 214 parts by mass / Example 10
MMA: 1.90 ml (1.78 g), 14PD3OH: 0.10 ml (0.09 g)
Content ratio of 14PD3OH in the liquid agent in the monomer (B): 4.64% by mass
Amount of polymer (A) with respect to 100 parts by mass of monomer (B): 215 parts by mass
実施例11
 実施例1と同じポリメチルメタクリレートの粉剤4gと、メタクリル酸メチル1.98ml(1.85g)及び1,4-ペンタジエン-3-オール0.02ml(0.02g)を混合した液剤とを混和し静置した。単量体(B)中の液剤中の1,4-ペンタジエン-3-オールの含有率は0.92質量%であった。このとき、単量体(B)100質量部に対して重合体(A)を214質量部配合した。約5分後に、餅状態となった混和物を用い、実施例1と同様に成形して試験片を得て、三点曲げ試験及び吸水性試験に供した。吸水試験に際しては、試験期間を90日とした。以上の結果を表2に示す。
Example 11
4 g of the same polymethyl methacrylate powder as in Example 1 was mixed with a solution obtained by mixing 1.98 ml (1.85 g) of methyl methacrylate and 0.02 ml (0.02 g) of 1,4-pentadien-3-ol. Left to stand. The content of 1,4-pentadien-3-ol in the liquid agent in the monomer (B) was 0.92% by mass. At this time, 214 parts by mass of the polymer (A) was blended with 100 parts by mass of the monomer (B). About 5 minutes later, the mixture in a wrinkled state was molded in the same manner as in Example 1 to obtain a test piece, which was subjected to a three-point bending test and a water absorption test. In the water absorption test, the test period was 90 days. The results are shown in Table 2.
実施例12~20
 MMAと14PD3OHの使用量を以下のように変更したこと以外は、実施例11と同様にして試験片の作製及び評価(三点曲げ試験及び吸水性試験)を行った。その結果を表2に示す。
・実施例12
 MMA:1.96ml(1.83g)、14PD3OH:0.04ml(0.03g)
 単量体(B)中の液剤中の14PD3OHの含有率:1.85質量%
 単量体(B)100質量部に対する重合体(A)の量:214質量部
・実施例13
 MMA:1.94ml(1.82g)、14PD3OH:0.06ml(0.05g)
 単量体(B)中の液剤中の14PD3OHの含有率:2.78質量%
 単量体(B)100質量部に対する重合体(A)の量:214質量部
・実施例14
 MMA:1.92ml(1.80g)、14PD3OH:0.08ml(0.07g)
 単量体(B)中の液剤中の14PD3OHの含有率:3.71質量%
 単量体(B)100質量部に対する重合体(A)の量:214質量部
・実施例15
 MMA:1.90ml(1.78g)、14PD3OH:0.10ml(0.09g)
 単量体(B)中の液剤中の14PD3OHの含有率:4.64質量%
 単量体(B)100質量部に対する重合体(A)の量:214質量部
・実施例16
 MMA:1.88ml(1.76g)、14PD3OH:0.12ml(0.10g)
 単量体(B)中の液剤中の14PD3OHの含有率:5.57質量%
 単量体(B)100質量部に対する重合体(A)の量:215質量部
・実施例17
 MMA:1.86ml(1.74g)、14PD3OH:0.14ml(0.12g)
 単量体(B)中の液剤中の14PD3OHの含有率:6.50質量%
 単量体(B)100質量部に対する重合体(A)の量:215質量部
・実施例18
 MMA:1.84ml(1.72g)、14PD3OH:0.16ml(0.14g)
 単量体(B)中の液剤中の14PD3OHの含有率:7.44質量%
 単量体(B)100質量部に対する重合体(A)の量:215質量部
・実施例19
 MMA:1.82ml(1.70g)、14PD3OH:0.18ml(0.16g)
 単量体(B)中の液剤中の14PD3OHの含有率:8.37質量%
 単量体(B)100質量部に対する重合体(A)の量:215質量部
・実施例20
 MMA:1.80ml(1.68g)、14PD3OH:0.20ml(0.17g)
 単量体(B)中の液剤中の14PD3OHの含有率:9.31質量%
 単量体(B)100質量部に対する重合体(A)の量:215質量部
Examples 12-20
A test piece was prepared and evaluated (three-point bending test and water absorption test) in the same manner as in Example 11 except that the amounts of MMA and 14PD3OH were changed as follows. The results are shown in Table 2.
Example 12
MMA: 1.96 ml (1.83 g), 14PD3OH: 0.04 ml (0.03 g)
Content ratio of 14PD3OH in the liquid agent in the monomer (B): 1.85% by mass
Amount of polymer (A) with respect to 100 parts by mass of monomer (B): 214 parts by mass / Example 13
MMA: 1.94 ml (1.82 g), 14PD3OH: 0.06 ml (0.05 g)
Content of 14PD3OH in the liquid agent in the monomer (B): 2.78% by mass
Amount of polymer (A) with respect to 100 parts by mass of monomer (B): 214 parts by mass / Example 14
MMA: 1.92 ml (1.80 g), 14PD3OH: 0.08 ml (0.07 g)
Content ratio of 14PD3OH in the liquid agent in the monomer (B): 3.71% by mass
Amount of polymer (A) with respect to 100 parts by mass of monomer (B): 214 parts by mass / Example 15
MMA: 1.90 ml (1.78 g), 14PD3OH: 0.10 ml (0.09 g)
Content ratio of 14PD3OH in the liquid agent in the monomer (B): 4.64% by mass
Amount of polymer (A) to 100 parts by mass of monomer (B): 214 parts by mass / Example 16
MMA: 1.88 ml (1.76 g), 14PD3OH: 0.12 ml (0.10 g)
Content of 14PD3OH in the liquid agent in the monomer (B): 5.57% by mass
Amount of polymer (A) with respect to 100 parts by mass of monomer (B): 215 parts by mass / Example 17
MMA: 1.86 ml (1.74 g), 14PD3OH: 0.14 ml (0.12 g)
Content ratio of 14PD3OH in the liquid agent in the monomer (B): 6.50% by mass
Amount of polymer (A) with respect to 100 parts by mass of monomer (B): 215 parts by mass / Example 18
MMA: 1.84 ml (1.72 g), 14PD3OH: 0.16 ml (0.14 g)
Content ratio of 14PD3OH in the liquid agent in the monomer (B): 7.44% by mass
Amount of polymer (A) with respect to 100 parts by mass of monomer (B): 215 parts by mass / Example 19
MMA: 1.82 ml (1.70 g), 14PD3OH: 0.18 ml (0.16 g)
Content ratio of 14PD3OH in the liquid agent in the monomer (B): 8.37% by mass
Amount of polymer (A) with respect to 100 parts by mass of monomer (B): 215 parts by mass / Example 20
MMA: 1.80 ml (1.68 g), 14PD3OH: 0.20 ml (0.17 g)
Content ratio of 14PD3OH in the liquid agent in the monomer (B): 9.31% by mass
Amount of polymer (A) with respect to 100 parts by mass of monomer (B): 215 parts by mass
比較例3
 単量体(B)として、MMA:2.00ml(1.87g)のみを用いた以外は実施例11と同様にして試験片の作製及び評価(三点曲げ試験及び吸水性試験)を行った。その結果を表2に示す。
Comparative Example 3
A test piece was prepared and evaluated (three-point bending test and water absorption test) in the same manner as in Example 11 except that only 2.00 ml (1.87 g) of MMA was used as the monomer (B). . The results are shown in Table 2.
比較例4
 市販のアクリル系義歯床用レジンである「アクロン」(株式会社ジーシー製)を用いて、その取扱説明書に指示された方法により2mm×2mm×25mmの大きさの試験片を作製した後、三点曲げ試験及び吸水性試験を行った。その結果を表1~2及び図2~11に示す。
Comparative Example 4
Using a commercially available acrylic denture base resin “Acron” (manufactured by GC Corporation), a test piece having a size of 2 mm × 2 mm × 25 mm was prepared by the method instructed by the instruction manual. A point bending test and a water absorption test were performed. The results are shown in Tables 1 and 2 and FIGS.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 図2~5は、単量体(B)中の主成分がVMAである場合において、実施例1~6及び比較例2において作製した試験片について、横軸に14PD3OHの含有率を、縦軸に曲げ弾性係数(図2)、曲げ強さ(図3)、最大撓み量(図4)及び破断エネルギー(図5)を、それぞれプロットしたグラフである。これらのグラフからわかるように、14PD3OHの含有率が増加するに従って、曲げ弾性係数及び曲げ強さは低下するが、その低下はあまり大きくない。一方、14PD3OHの含有率が増加するに従って、最大撓み量及び破断エネルギーは顕著に増加する。わずか1質量%加えるだけで、市販品の2倍以上の値を示すことがわかる。 2 to 5 show the content of 14PD3OH on the horizontal axis and the vertical axis on the test pieces prepared in Examples 1 to 6 and Comparative Example 2 when the main component in the monomer (B) is VMA. 6 is a graph in which the bending elastic modulus (FIG. 2), bending strength (FIG. 3), maximum deflection (FIG. 4), and breaking energy (FIG. 5) are respectively plotted. As can be seen from these graphs, as the content of 14PD3OH increases, the bending elastic modulus and bending strength decrease, but the decrease is not so great. On the other hand, as the content of 14PD3OH increases, the maximum deflection amount and the breaking energy increase significantly. It can be seen that the addition of only 1% by mass shows a value more than twice that of the commercial product.
 図6は、単量体(B)中の主成分がVMAである場合において、実施例1~7及び比較例1、2において作製した試験片について、横軸に14PD3OHの含有率を、縦軸に見掛け飽和吸水率(質量%)をプロットしたグラフである。単量体(B)中の全量がVMAである比較例2においても、単量体の主成分をMMAとする市販義歯床用レジン「アクロン」よりも10質量%以上見掛け飽和吸水率が低下することがわかる。そして、VMAに対して14PD3OHを配合すると大きく見掛け飽和吸水率が低下することがわかる。約10質量%程度の14PD3OHを含有するところで最小になり、それ以上の含有率では見掛け飽和吸水率が増加する。 FIG. 6 shows the content of 14PD3OH on the horizontal axis and the vertical axis for the test pieces prepared in Examples 1 to 7 and Comparative Examples 1 and 2 when the main component in the monomer (B) is VMA. It is the graph which plotted apparent saturation water absorption (mass%). Even in Comparative Example 2 in which the total amount in the monomer (B) is VMA, the apparent saturated water absorption is lower by 10% by mass or more than the commercial denture base resin “Acron” whose main component is MMA. I understand that. And when 14PD3OH is mix | blended with VMA, it turns out that a saturated water absorption rate falls large. It becomes the minimum when it contains about 14% by mass of 14PD3OH, and the apparent saturated water absorption increases at a content higher than that.
 図7~10は、単量体(B)中の主成分がMMAである場合において、実施例11~20及び比較例3において作製した試験片について、横軸に14PD3OHの含有率を、縦軸に曲げ弾性係数(図7)、曲げ強さ(図8)、最大撓み量(図9)及び破断エネルギー(図10)を、それぞれプロットしたグラフである。これらのグラフからわかるように、14PD3OHの含有率が3質量%までは、曲げ弾性係数はMMA単独の時と同程度以上であり、実施例12(MMA2.78質量%)では有意に上昇した。14PD3OHの含有率が3質量%までは、曲げ強さはMMA単独の時とほとんど変わらない。3質量%を超えて配合すると曲げ弾性係数及び曲げ強さは徐々に低下するが、5質量%くらいまでは比較的高い値を維持することができる。一方、14PD3OHの含有率が増加するに従って、最大撓み量及び破断エネルギーは顕著に増加する。わずか1質量%加えるだけで大幅に増加し、2質量%を超えると破断しない試料が含まれるようになり、4質量%を超えるともはや破断しない。 7 to 10 show the content of 14PD3OH on the horizontal axis and the vertical axis on the test pieces prepared in Examples 11 to 20 and Comparative Example 3 when the main component in the monomer (B) is MMA. 9 is a graph in which the bending elastic modulus (FIG. 7), bending strength (FIG. 8), maximum deflection (FIG. 9), and breaking energy (FIG. 10) are respectively plotted. As can be seen from these graphs, when the content of 14PD3OH is up to 3% by mass, the flexural modulus is equal to or higher than that of MMA alone, and significantly increased in Example 12 (MMA 2.78% by mass). When the content of 14PD3OH is up to 3% by mass, the bending strength is almost the same as when MMA alone is used. If it exceeds 3% by mass, the flexural modulus and bending strength gradually decrease, but a relatively high value can be maintained up to about 5% by mass. On the other hand, as the content of 14PD3OH increases, the maximum deflection amount and the breaking energy increase significantly. The sample increases significantly by adding only 1% by mass, and when it exceeds 2% by mass, a sample that does not break is included, and when it exceeds 4% by mass, it no longer breaks.
 図11は、単量体(B)中の主成分がMMAである場合において、実施例11~20及び比較例3において作製した試験片について、横軸に14PD3OHの含有率を、縦軸に見掛け飽和吸水率(質量%)をプロットしたグラフである。単量体(B)中の全量がMMAである比較例3は、単量体の主成分をMMAとする市販義歯床用レジン「アクロン」と同程度の見掛け飽和吸水率を有する。そして、MMAに対して約1質量%の14PD3OHを配合するだけで見掛け飽和吸水率が大きく低下し、「アクロン」から24%減少する。実施例11~20において、水中に浸漬したときに見掛け飽和吸水率に達するまでに要する時間は、単量体(B)中の全量がMMAである比較例3よりも短く、2週間でほぼ一定値になった。すなわち、本発明の成形品は、吸水速度が速いにもかかわらず飽和吸水率は低いという興味深い現象が観察された。なお、実施例20(MMA9.31質量%)では、水中浸漬時間が長くなると重量が減少しており、未反応の単量体が溶出していることが示唆された。この現象は、実施例17~19(MMA6.50~8.37質量%)でもある程度観察された。したがって、用途によっては単量体の溶出を考慮する必要があると考えられる。 FIG. 11 shows the content of 14PD3OH on the horizontal axis and the vertical axis on the test pieces prepared in Examples 11 to 20 and Comparative Example 3 when the main component in the monomer (B) is MMA. It is the graph which plotted the saturated water absorption (mass%). Comparative Example 3 in which the total amount in the monomer (B) is MMA has an apparent saturated water absorption rate comparable to that of a commercial denture base resin “Acron” whose main component is MMA. And just adding about 1% by mass of 14PD3OH with respect to MMA, the apparent saturated water absorption is greatly reduced, and it is reduced by 24% from “Akron”. In Examples 11 to 20, the time required to reach the apparent saturated water absorption when immersed in water is shorter than that of Comparative Example 3 in which the total amount of the monomer (B) is MMA, and is almost constant over two weeks. Became value. That is, an interesting phenomenon was observed that the molded product of the present invention had a low saturated water absorption rate despite a high water absorption rate. In Example 20 (MMA 9.31 mass%), the weight decreased as the immersion time in water increased, suggesting that unreacted monomers were eluted. This phenomenon was also observed to some extent in Examples 17 to 19 (MMA 6.50 to 8.37% by mass). Therefore, it is considered necessary to consider the elution of the monomer depending on the application.
実施例21
 本発明の組成物を重合させた成形品の組織構造を観察した。粉剤としてポリメチルメタクリレート粒子中に顔料(ダークピンク)を含む粉剤[株式会社ジーシー製「アクロン」の粉剤(該当規格:JIS T6501「義歯床用アクリル系レジン(第一種)」)]を用いたこと以外は、実施例6と同様にして試験片を作製した。試験片を2mm×2mm×10mmに切断し、ミクロトーム用シリコン包埋板に入れてエポキシ樹脂(エポフィックス冷間埋込樹脂、ストルアス社製)で包埋し、24時間かけて硬化させた。エポキシ樹脂に包埋された試験片はミクロトーム(ULTRACUT E、Leica社製)を用いて硝子ナイフ(45°)で切削し、厚さ約5μmの薄切片を得た。薄切片試料は光学顕微鏡(オリンパス株式会社製、「BX51」)を用いて透過光にて200倍(対物レンズ20倍、接眼レンズ10倍)の条件下で観察し、接眼レンズに取り付けたデジタルカメラ(Canon PowerShot S95)で薄切片を撮影した。薄切片の顕微鏡画像を図1に示す。
Example 21
The structure of the molded product obtained by polymerizing the composition of the present invention was observed. As a powder, a powder containing a pigment (dark pink) in polymethylmethacrylate particles [“ACRON” powder manufactured by GC Corporation (corresponding standard: JIS T6501 “acrylic resin for denture base (first type)”)] was used. A test piece was prepared in the same manner as in Example 6 except that. The test piece was cut into 2 mm × 2 mm × 10 mm, placed in a silicon embedding plate for microtome, embedded with an epoxy resin (Epofix cold embedding resin, manufactured by Struers), and cured for 24 hours. The test piece embedded in the epoxy resin was cut with a glass knife (45 °) using a microtome (ULTRACUT E, manufactured by Leica) to obtain a thin slice having a thickness of about 5 μm. A thin slice sample was observed with an optical microscope (Olympus Co., Ltd., “BX51”) under transmitted light conditions of 200 times (objective lens 20 times, eyepiece 10 times), and a digital camera attached to the eyepiece Thin sections were photographed with (Canon PowerShot S95). A microscopic image of the thin section is shown in FIG.
 図1において、複数の黒い円が見られる。当該円が黒いのは、ポリメチルメタクリレートに含有されている顔料によるものであり、これにより、当該円がポリメチルメタクリレートの粒子に由来する部分であることが分かる。一方、当該円の隙間の部分は白く、光が透過している。したがって、当該部分は顔料を含まない液剤(VMAと14PD3OHの混合物)に由来する部分であることが分かる。 In FIG. 1, a plurality of black circles can be seen. The black circle is due to the pigment contained in the polymethyl methacrylate, and it can be seen that the circle is a portion derived from the polymethyl methacrylate particles. On the other hand, the gap portion of the circle is white and light is transmitted therethrough. Therefore, it turns out that the said part originates in the liquid agent (mixture of VMA and 14PD3OH) which does not contain a pigment.
 図1において、黒いポリメチルメタクリレートの粒子に由来する部分同士がほぼ接する状態となり、液剤(VMAと14PD3OHの混合物)に由来する光が透過した部分の面積が非常に小さくなっていた。 In FIG. 1, the portions derived from the black polymethyl methacrylate particles are almost in contact with each other, and the area of the portion through which the light derived from the liquid (mixture of VMA and 14PD3OH) is transmitted is very small.

Claims (13)

  1.  重合体(A)、単量体(B)及び重合開始剤(C)を含有する組成物であって;
    単量体(B)100質量部に対して重合体(A)100~280質量部を含有し、
    重合体(A)が、メチルメタクリレート単位を70質量%以上含有し、
    単量体(B)が、下記式(1)
    Figure JPOXMLDOC01-appb-C000001
    [式中、R及びRは、それぞれ独立に水素原子又はメチル基を示し、R及びRのうち、少なくとも1つが水素原子である。]
    で表される化合物(b1)及びメチルメタクリレート(b2)から選択される少なくとも1種の化合物70~99.5質量%と、下記式(2)
    Figure JPOXMLDOC01-appb-C000002
    で表される1,4-ペンタジエン-3-オール(b3)0.5~30質量%とを含有することを特徴とする組成物。
    A composition comprising a polymer (A), a monomer (B) and a polymerization initiator (C);
    Containing 100 to 280 parts by mass of the polymer (A) with respect to 100 parts by mass of the monomer (B),
    The polymer (A) contains 70% by mass or more of methyl methacrylate units,
    The monomer (B) is represented by the following formula (1)
    Figure JPOXMLDOC01-appb-C000001
    [Wherein, R 1 and R 2 each independently represent a hydrogen atom or a methyl group, and at least one of R 1 and R 2 is a hydrogen atom. ]
    70 to 99.5% by mass of at least one compound selected from the compound (b1) and methyl methacrylate (b2) represented by formula (2):
    Figure JPOXMLDOC01-appb-C000002
    1,4-pentadien-3-ol (b3) represented by the formula: 0.5-30% by mass.
  2.  重合体(A)の粒子に由来する不均一構造を有する請求項1に記載の組成物。 The composition according to claim 1, which has a heterogeneous structure derived from particles of the polymer (A).
  3.  単量体(B)が、化合物(b1)70~99.5質量%と1,4-ペンタジエン-3-オール(b3)0.5~30質量%とを含有する請求項1又は2に記載の組成物。 The monomer (B) contains 70 to 99.5% by mass of the compound (b1) and 0.5 to 30% by mass of 1,4-pentadien-3-ol (b3). Composition.
  4.  単量体(B)が、メチルメタクリレート(b2)70~99.5質量%と1,4-ペンタジエン-3-オール(b3)0.5~30質量%とを含有する請求項1又は2に記載の組成物。 The monomer (B) contains 70 to 99.5% by mass of methyl methacrylate (b2) and 0.5 to 30% by mass of 1,4-pentadien-3-ol (b3) according to claim 1 or 2. The composition as described.
  5.  請求項1~4のいずれかに記載の組成物からなる医療用組成物。 A medical composition comprising the composition according to any one of claims 1 to 4.
  6.  請求項5に記載の医療用組成物からなる歯科用組成物。 A dental composition comprising the medical composition according to claim 5.
  7.  請求項6に記載の歯科用組成物からなる歯科用接着剤。 A dental adhesive comprising the dental composition according to claim 6.
  8.  請求項5に記載の医療用組成物からなる骨セメント。 A bone cement comprising the medical composition according to claim 5.
  9.  請求項1~4のいずれかに記載の組成物を硬化させてなる成形品。 A molded product obtained by curing the composition according to any one of claims 1 to 4.
  10.  請求項6に記載の歯科用組成物を硬化させてなる義歯床又はマウスピース。 A denture base or mouthpiece obtained by curing the dental composition according to claim 6.
  11.  重合体(A)の粉剤と、単量体(B)の液剤とを、重合開始剤(C)の存在下で混合して増粘させることを特徴とする請求項1~4のいずれかに記載の組成物の製造方法。 The powder of the polymer (A) and the liquid agent of the monomer (B) are mixed and thickened in the presence of the polymerization initiator (C). A method for producing the composition described.
  12.  重合体(A)が予め重合開始剤(C)を含有している請求項11に記載の組成物の製造方法。 The method for producing a composition according to claim 11, wherein the polymer (A) contains a polymerization initiator (C) in advance.
  13.  メチルメタクリレート単位を70質量%以上含有する重合体(A)の粉剤と、
    下記式(1)
    Figure JPOXMLDOC01-appb-C000003
    [式中、R及びRは、それぞれ独立に水素原子又はメチル基を示し、R及びRのうち、少なくとも1つが水素原子である。]
    で表される化合物(b1)及びメチルメタクリレート(b2)から選択される少なくとも1種の化合物70~99.5質量%と、下記式(2)
    Figure JPOXMLDOC01-appb-C000004
    で表される1,4-ペンタジエン-3-オール(b3)0.5~30質量%とを含有する単量体(B)の液剤、とからなり、前記粉剤又は前記液剤の少なくとも一方が重合開始剤(C)を含有する、キット。
    A powder of a polymer (A) containing 70% by mass or more of a methyl methacrylate unit;
    Following formula (1)
    Figure JPOXMLDOC01-appb-C000003
    [Wherein, R 1 and R 2 each independently represent a hydrogen atom or a methyl group, and at least one of R 1 and R 2 is a hydrogen atom. ]
    70 to 99.5% by mass of at least one compound selected from the compound (b1) and methyl methacrylate (b2) represented by formula (2):
    Figure JPOXMLDOC01-appb-C000004
    And a solution of monomer (B) containing 0.5 to 30% by mass of 1,4-pentadien-3-ol (b3) represented by the formula: wherein at least one of the powder or the solution is polymerized A kit containing an initiator (C).
PCT/JP2014/075000 2013-09-24 2014-09-22 Composition and method for producing same WO2015046100A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015539179A JP6366110B2 (en) 2013-09-24 2014-09-22 Composition and method for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-197510 2013-09-24
JP2013197510 2013-09-24
JP2014-060281 2014-03-24
JP2014060281 2014-03-24

Publications (1)

Publication Number Publication Date
WO2015046100A1 true WO2015046100A1 (en) 2015-04-02

Family

ID=52743236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075000 WO2015046100A1 (en) 2013-09-24 2014-09-22 Composition and method for producing same

Country Status (2)

Country Link
JP (1) JP6366110B2 (en)
WO (1) WO2015046100A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016180024A (en) * 2015-03-23 2016-10-13 国立大学法人 岡山大学 Composition and manufacturing method therefor
WO2018181821A1 (en) * 2017-03-31 2018-10-04 三井化学株式会社 Hard tissue repair composition and hard tissue repair kit
RU2745305C1 (en) * 2017-03-31 2021-03-23 Митсуи Кемикалс, Инк. Solid tissues recovery composition and solid tissues recovery kit
EP3769795A4 (en) * 2018-03-20 2021-12-15 Mitsui Chemicals, Inc. Hard tissue repair composition and hard tissue repair kit

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0776611A (en) * 1993-07-15 1995-03-20 Tokuyama Corp Silicone-modified acrylic random copolymer and adhesive using the same
JPH0790028A (en) * 1993-09-22 1995-04-04 Sekisui Chem Co Ltd Photopolymerizable composition, and adhesive tape and pressure-sensitive adhesive tape using the same
JPH0920873A (en) * 1995-07-07 1997-01-21 Tomey Technol Corp Polymeric dye and its production, and colored contact lens using the same and its production
JP2001122935A (en) * 1999-10-28 2001-05-08 Nippon Shokubai Co Ltd Method for producing radical polymerizable resin composition
JP2002521551A (en) * 1998-07-25 2002-07-16 イギリス国 Adhesives and sealants
JP2002318319A (en) * 2001-04-24 2002-10-31 Mitsubishi Gas Chem Co Inc Method for manufacturing film with distribution of refractive index

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08127908A (en) * 1994-10-27 1996-05-21 Unitika Ltd Antimicrobial glove
JP2000254152A (en) * 1999-03-12 2000-09-19 Gc Corp Resin material for dental plate
JP4517148B2 (en) * 2005-01-20 2010-08-04 国立大学法人 岡山大学 Dental / Orthopedic Resin Composition, Method for Producing the Same, and Method for Producing Dental / Orthopedic Molded Article
WO2011090078A1 (en) * 2010-01-20 2011-07-28 国立大学法人岡山大学 Resin composition for medical use, manufacturing method thereof, and medical kit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0776611A (en) * 1993-07-15 1995-03-20 Tokuyama Corp Silicone-modified acrylic random copolymer and adhesive using the same
JPH0790028A (en) * 1993-09-22 1995-04-04 Sekisui Chem Co Ltd Photopolymerizable composition, and adhesive tape and pressure-sensitive adhesive tape using the same
JPH0920873A (en) * 1995-07-07 1997-01-21 Tomey Technol Corp Polymeric dye and its production, and colored contact lens using the same and its production
JP2002521551A (en) * 1998-07-25 2002-07-16 イギリス国 Adhesives and sealants
JP2001122935A (en) * 1999-10-28 2001-05-08 Nippon Shokubai Co Ltd Method for producing radical polymerizable resin composition
JP2002318319A (en) * 2001-04-24 2002-10-31 Mitsubishi Gas Chem Co Inc Method for manufacturing film with distribution of refractive index

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016180024A (en) * 2015-03-23 2016-10-13 国立大学法人 岡山大学 Composition and manufacturing method therefor
AU2018242783B2 (en) * 2017-03-31 2021-01-07 Mitsui Chemicals, Inc. Hard tissue repair composition and hard tissue repair kit
RU2760390C2 (en) * 2017-03-31 2021-11-24 Митсуи Кемикалс, Инк. Composition for of hard tissue regeneration and kit for hard tissue regeneration
CN110461377A (en) * 2017-03-31 2019-11-15 三井化学株式会社 Composition for hard tissue repair and hard tissue repair suit
JPWO2018181821A1 (en) * 2017-03-31 2020-02-06 三井化学株式会社 Hard tissue repair composition and hard tissue repair kit
EP3603684A4 (en) * 2017-03-31 2020-12-30 Mitsui Chemicals, Inc. Hard tissue repair composition and hard tissue repair kit
WO2018181821A1 (en) * 2017-03-31 2018-10-04 三井化学株式会社 Hard tissue repair composition and hard tissue repair kit
RU2745305C1 (en) * 2017-03-31 2021-03-23 Митсуи Кемикалс, Инк. Solid tissues recovery composition and solid tissues recovery kit
KR20190122869A (en) * 2017-03-31 2019-10-30 미쓰이 가가쿠 가부시키가이샤 Hard tissue repair compositions and hard tissue repair kits
US11883555B2 (en) 2017-03-31 2024-01-30 Mitsui Chemicals, Inc. Composition for hard tissue repair and kit for hard tissue repair
JP7021836B2 (en) 2017-03-31 2022-02-17 三井化学株式会社 Hard Tissue Repair Composition and Hard Tissue Repair Kit
US11311642B2 (en) 2017-03-31 2022-04-26 Mitsui Chemicals, Inc. Composition for hard tissue repair and kit for hard tissue repair
KR102394502B1 (en) 2017-03-31 2022-05-03 미쓰이 가가쿠 가부시키가이샤 Hard tissue repair composition and hard tissue repair kit
CN110461377B (en) * 2017-03-31 2022-05-10 三井化学株式会社 Composition for hard tissue repair and kit for hard tissue repair
EP3769795A4 (en) * 2018-03-20 2021-12-15 Mitsui Chemicals, Inc. Hard tissue repair composition and hard tissue repair kit

Also Published As

Publication number Publication date
JPWO2015046100A1 (en) 2017-03-09
JP6366110B2 (en) 2018-08-01

Similar Documents

Publication Publication Date Title
JP5700339B2 (en) Medical resin composition, method for producing the same, and medical kit
Rueggeberg From vulcanite to vinyl, a history of resins in restorative dentistry
JP4794201B2 (en) 2 paste type glass ionomer cement
JP2021193145A (en) Adhesive dental materials with strongly acidic adhesive polymers
US6133339A (en) Dental cement for a temporary dental prosthesis or appliance and method of use
JP6197116B2 (en) Denture base composition with improved impact resistance
US9682018B2 (en) Denture tooth and material
JP6366110B2 (en) Composition and method for producing the same
EP1702605A1 (en) Curable composition
US6136881A (en) Photocuring resin composition for orthodontics
JP5207751B2 (en) Dental adhesive composition
WO2022087464A1 (en) Polymerizable composition for dental tooth and material 3d printing
JP7367935B2 (en) Kit for preparing curable composition for denture base
GB2347679A (en) Resin material for denture base
JP6821165B2 (en) Denture base, mouthpiece and their manufacturing method
JPH0331684B2 (en)
JP2009529021A (en) Materials for manufacturing plastic molded parts that can be used in the dental field
JPH09249514A (en) Pretreating agent for dental resin-reinforced type cement
WO2021132707A1 (en) Paste-like composition for dental use, and method for producing the same
JP7473968B2 (en) Hardenable composition for denture base
JP4554947B2 (en) Curable composition for soft lining materials
JP7378728B2 (en) Method for producing curable composition for denture base
JP2019505580A (en) Balanced denture system with hard composition
WO2022270601A1 (en) Dental adhesive kit
KR20020023824A (en) Composition for Light Cured Dental Pit and Fissure Sealant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14846861

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015539179

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14846861

Country of ref document: EP

Kind code of ref document: A1