WO2015045587A1 - Vehicular reflective optical sensor - Google Patents

Vehicular reflective optical sensor Download PDF

Info

Publication number
WO2015045587A1
WO2015045587A1 PCT/JP2014/069299 JP2014069299W WO2015045587A1 WO 2015045587 A1 WO2015045587 A1 WO 2015045587A1 JP 2014069299 W JP2014069299 W JP 2014069299W WO 2015045587 A1 WO2015045587 A1 WO 2015045587A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
detection
vehicle
optical sensor
control unit
Prior art date
Application number
PCT/JP2014/069299
Other languages
French (fr)
Japanese (ja)
Inventor
俊 雷
小野 高志
田中 和也
航 平井
Original Assignee
株式会社アルファ
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルファ, 日産自動車株式会社 filed Critical 株式会社アルファ
Publication of WO2015045587A1 publication Critical patent/WO2015045587A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/10Detecting, e.g. by using light barriers
    • G01V8/12Detecting, e.g. by using light barriers using one transmitter and one receiver
    • G01V8/14Detecting, e.g. by using light barriers using one transmitter and one receiver using reflectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/04Systems determining the presence of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4868Controlling received signal intensity or exposure of sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection
    • G01S7/4873Extracting wanted echo signals, e.g. pulse detection by deriving and controlling a threshold value
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/10Detecting, e.g. by using light barriers
    • G01V8/12Detecting, e.g. by using light barriers using one transmitter and one receiver

Definitions

  • the present invention relates to a vehicle reflective optical sensor.
  • Patent Document 1 As a vehicle door opening / closing control device that uses an infrared sensor to control a vehicle door opening / closing operation, a device described in Patent Document 1 is known.
  • a foot detection sensor that outputs a signal such as an infrared ray is mounted on the vehicle, and the user is detected by the foot detection sensor that is driven after the portable wireless terminal possessed by the user is authenticated. When it is detected, the door is opened and closed.
  • an optical sensor is configured to detect a detection target based on the amount of reflected light with respect to an output signal (emitted light).
  • an output signal emitted light
  • the present invention has been made to solve the above-described drawbacks, and an object of the present invention is to provide a vehicle reflection type optical sensor capable of enhancing detection accuracy and a vehicle door opening / closing control device using the same.
  • the object is When the pulsed detection light 2 is projected from the vehicle outer wall portion toward the detection region 1 set outside the vehicle, and the amount of the reflected light 3 from the detection region 1 exceeds a predetermined threshold for detection determination
  • a reflective optical sensor for a vehicle including a control unit 6 for detecting the entry of the detection object 4 into the detection region 1,
  • the determination of the threshold excess state in the control unit 6 is performed by using a pulse group composed of an appropriate number of pulses as a determination unit, and the total amount of light received by the light receiving unit 5 during light emission and the light receiving unit 5 during non-light emission. This is achieved by providing a vehicle reflective optical sensor which is performed by comparing the difference between the total received light quantity and the total with a predetermined threshold value for detection determination.
  • the vehicle does not specify the optical environment of the stop position, the brightness of the detection area 1 varies depending on the stop position, and snowfall, rain, sunshine, etc. may occur when the same position is an outdoor stop.
  • detection reliability is extremely lowered.
  • the detection light 2 is emitted in units of a pulse group composed of a plurality of pulses, and the determination of an over-threshold state is made in units of pulse groups.
  • the tolerance is improved and the determination accuracy is also improved.
  • the accuracy of the determination unit is high, it is possible to increase the emission interval of the pulse group without reducing the accuracy, which is effective for power saving.
  • control part 6 of the reflective optical sensor for vehicles is For each pulse group, a deviation sum of squares corresponding to the difference between the total amount of received light in the light receiving unit 5 during light emission and the total amount of received light in the light receiving unit 5 during non-light emission is less than a predetermined test threshold value. It is possible to configure such that only the effective detection light is used as the determination target reflected light by performing the verification that the effective detection light is used only in the case.
  • the determination accuracy is further improved by performing the test for the pulse group and using only the effective pulse group as the determination target.
  • control unit 6 of the vehicle reflective optical sensor shortens the emission interval of the detection light 2 when the amount of reflected light from the detection region 1 exceeds the threshold value, and a predetermined number of times within a short cycle period. It can be configured to return the light emission interval to a long period after outputting the detection confirmation signal upon detection of the threshold excess state.
  • the emission interval of the detection light 2 is shortened only until the detection confirmation signal is output after the threshold excess state is detected, and after the detection confirmation signal is output, the long cycle again. Therefore, it is possible to save power.
  • the detection confirmation signal is output by confirming the state of exceeding the threshold value a plurality of times, the influence of noise becomes as small as possible, and the detection reliability becomes high.
  • the threshold excess state needs to be detected a predetermined number of times within a short cycle period in which the emission interval of the detection light 2 is shortened. Since it becomes possible to increase the number of times of detection of an over-value state, the detection reliability is further improved.
  • control unit 6 of the reflective sensor It can be configured to shift to a short cycle period when a threshold excess state is detected a predetermined number of times after detection of the first threshold excess state.
  • transition to the short cycle period can be started immediately after detecting the threshold excess state, the transition to the short cycle due to the influence of noise can be prevented by configuring as in the present invention. it can.
  • the vehicle door opening / closing control device using these vehicle reflection type optical sensors is A vehicle reflective optical sensor (A);
  • a door control unit 9 that opens the vehicle door 8 by operating the actuator 7 on condition of a detection confirmation signal of the detection target 4 in the vehicle reflection type optical sensor (A) can be configured.
  • the door control unit 9 when the door control unit 9 receives the detection confirmation signal, the door control unit 9 is in a locked state on condition that a predetermined other condition such as that the unlocking operation authority is authenticated by an appropriate authentication unit is satisfied.
  • the release and opening operation signal of the vehicle door 8 is output to the actuator 7, and the opening operation of the door is performed.
  • the door can be opened simply by inserting a load, a hand, etc. into the detection area 1 in a state where the unlocking conditions are satisfied, so that convenience is improved.
  • the determination accuracy can be increased.
  • FIG. 1 It is a figure which shows the vehicle by which the vehicle door opening / closing control apparatus was used, (a) is a rear view, (b) is a side view, (c) is the 1C-1C sectional view taken on the line of (a).
  • Fig. 1 shows a vehicle using a vehicle door opening / closing control device.
  • the vehicle door opening / closing control device is configured as a back door control device for controlling the opening / closing operation of the power back door driven by the actuator 7 such as a damper device, and is fixed to the back door 8 of the vehicle.
  • the reflection type optical sensor (A) is configured to output a detection confirmation signal when detecting the entry of the detection target 4 into the predetermined detection area 1 where the detection light 2 is projected. And fixed to the ceiling wall portion of the license plate mounting recess surrounded by the license plate finisher 10.
  • reference numeral 11 denotes a license plate.
  • the optical axis of the detection light 2 is slightly inclined toward the vehicle inner side (angle ⁇ ). .
  • the detection ability outside the concave portion of the license plate is lowered, so that the reflective optical sensor (A) may react inadvertently when a person other than the user, an animal, garbage, or the like approaches the vehicle. Can be prevented.
  • the door control unit 9 when a detection confirmation signal is output from the reflection type optical sensor (A), the door control unit 9 first performs authentication of an electronic key possessed by the user, detection of the state of the back door, locking / unlocking operation, etc. After performing the preparatory operation, the actuator 7 is driven. The authentication of the electronic key is performed by communicating with an authentication device (not shown) and authenticating the authentication code output from the electronic key. When the authentication is established, the back door 8 is in a closed condition on the condition that the back door 8 is in a closed state. After unlocking operation, the actuator 7 is driven to start the door opening operation.
  • the bag can be moved only by bringing the luggage or the like to be detected 4 close to or near the license plate mounting recess set as the detection area 1. Convenience is improved because the door can be opened.
  • the reflective optical sensor (A) includes a light emitting unit 12 using an infrared LED as a light source, a light receiving unit 5 including a light receiving circuit including an infrared light receiving element, and a control unit 6.
  • the control unit 6 includes a light emission control unit 6a that controls the light emission timing of the light emission unit 12, a light reception control unit 6b that controls the light reception timing of the light reception unit 5, and a calculation unit 13 that includes a threshold value calculation unit 13a.
  • the light-emitting unit 12 is controlled by the light-emission control unit 6a to generate the detection light 2 in units of a pulse group (PLS) composed of an appropriate number (eight in this example) of pulses (pls). Fire at predetermined intervals (T1, T2 in FIG. 3).
  • PLS pulse group
  • the light receiving control unit 6b activates the light receiving circuit from the sleep state in accordance with the light emission timing of the pulse group (PLS) in the light emitting unit 12 for power saving, and at the time of light emission and non-light emission for each light emission pulse (pls).
  • the amount of received light in the light receiving unit 5 is acquired.
  • the acquisition of the amount of light received at the time of light emission with respect to the light emission pulse (pls) takes into account the delay time until the light emission is started after the light emission control unit 6a sends the light emission request of each pulse (pls) to the light emission unit 12. Then, it is performed at the timing when the reflected light 3 for each light emission pulse (pls) reaches the peak, and the value is acquired as the light reception light amount (H) during light emission.
  • the received light amount when not emitting light is acquired at the timing when the light emitting unit 12 transitions from the light emitting state to the non-emitting state and the afterglow at the time of emitting light disappears, and the value is set as the received light amount (L) when not emitting light.
  • the calculation unit 13 calculates the amount of reflected light in units of pulse groups (PLS) based on the amount of light received by the light receiving unit 5.
  • the reflected light amount (P) of the pulse group (PLS) is
  • the inclusion of the received light amount (H 1 , L 1 ) for the first pulse and the received light amount (H 8 , L 8 ) for the last pulse should be excluded. This eliminates instability in the transient state.
  • the effectiveness of the reflected light 3 of each pulse group (PLS) obtained as described above is determined by the calculation unit 13. Effectiveness is the evaluation of the mixing of disturbance elements by the homogeneity of the amount of reflected light within the same pulse group (PLS).
  • the variation of each pulse in the pulse group (PLS), specifically equivalent to the sum of squared deviations value if larger than the predetermined validity test threshold (Th val) is invalid data.
  • the deviation sum of squares equivalent value is a so-called deviation sum of squares given as the sum of the squares of the difference between the received light amount (P) for each pulse light and the average value, or a variance obtained by dividing the deviation square sum by the number of data. Furthermore, it is possible to use a standard deviation or the like obtained as the square root of the variance. In this example, as shown in the equation (2), the absolute value of the difference between the received light amount of each pulse and the average value is used. The total of the values is substituted and the burden on the control unit 6 is reduced.
  • the calculation unit 13 compares the amount of reflected light of the pulse group (PLS) described above with a predetermined threshold value for detection determination (Th on ), detects a threshold excess state, and eliminates the threshold excess state.
  • PLS pulse group
  • Th on a threshold value for detection determination
  • the detection further, the entry of the detection object 4 to the detection area 1 is determined, and the entry of the detection object 4 to the detection area 1 is detected, a detection confirmation signal is output for a predetermined time, and further the detection confirmation signal A confirmation signal output flag indicating that has been output is set.
  • This confirmation signal output flag satisfies a predetermined cancellation condition when a threshold exceeding state is detected within a predetermined period after the confirmation signal is output and when a threshold exceeding state is not detected within a predetermined period. If the confirmation signal output flag is in the reset state, the calculation unit 13 executes the threshold value excess state detection step.
  • the threshold value for detection determination (Th on ), which is a criterion for determining the above threshold excess state, is obtained as the sum of a preset fixed value (Th onfix ) and an adjustment value (Th cal ).
  • the fixed value (Th onfix ) is set to about 20 to 30 percent of the validity test threshold value (Th val ).
  • the adjustment value (Th cal ) is an average value of the received light quantity of a predetermined number (10 in this example) preceding the determination target pulse group (P n ), as shown in FIGS. 4 and (3). And is calculated by the threshold value calculation unit 13a in the calculation unit 13.
  • the fixed value (Th onfix ) is set to about 20 to 30 percent of the validity test threshold value (Th val ).
  • the adjustment value (Th cal ) is shown by the arithmetic average of the appropriate number of received light amounts, but if it is a statistical representative value, for example, the mode value, the median value, etc. Can be used.
  • the calculation unit 13 performs noise determination using the adjustment value (Th cal ), and when noise is detected, the threshold calculation unit 13a.
  • the noise determination is performed by determining the received light amount (P n ) of the noise determination target pulse group (PLS) and the average value of the ten received light amounts preceding the received light amount (P n ), that is, the adjustment value (Th cal ). And a predetermined noise determination threshold value (Th nz ) are compared, and it is determined as noise light by satisfying either of the expressions (4) and (5).
  • the noise determination threshold (Th nz) is 5 to the Th Onfix is set to about 8%.
  • the threshold value calculation unit 13a notified of the occurrence of noise observes the amount of received light thereafter and determines the stability of the received light amount. Whether or not the stability is satisfied satisfies (6) with respect to an appropriate number (20 in this example) following the noise pulse group (PLS), that is, the amount of reflected light is a noise determination threshold value. It is determined whether or not it is non-noise light that falls within (Th nz ), and when the expression (6) is satisfied, it is determined that the subsequent pulse group (PLS) is stable.
  • the threshold value calculation unit 13a determines that there is stability with respect to the subsequent pulse group, as shown in the equation (7), the ten light receptions preceding the determination target pulse group (P n + 21 ). If it is determined that there is no stability using the average light intensity as the adjustment value (Th cal ), the average of the 10 received light quantities preceding the noise pulse group (P n ) is adjusted as shown in equation (8). A threshold value for detection determination (Th on ) is determined as a value (Th cal ).
  • the operation of the control unit 6 is shown in FIG. First, when the door control unit 9 or a control device such as an in-vehicle computer (not shown) detects that the start condition of the detection operation by the optical sensor (A) is satisfied, the door control unit 9 or the like detects the optical sensor (A). A drive signal is output and the optical sensor (A) is powered on.
  • the detection start condition of the optical sensor (A) is set as appropriate, for example, the stop of the vehicle detected by the shift lever position of the vehicle.
  • the CPU of the control unit 6 is initialized for a predetermined time (step S1), and then calibration initialization is performed by the threshold value calculation unit 13a (step S2).
  • the light emission control unit 6a maintains the firing interval (T1) of the pulse group (PLS) at about 15 (ms).
  • a predetermined number (10 in this example) of pulse groups (PLS) are fired to obtain the reflected light amounts (P 1 , P 2... P 10 ) for each pulse group (PLS).
  • the average value is set as an initial adjustment value (Th cal ).
  • the calculation unit 13 shifts to the threshold excess state in a state in which the light emission control unit 6a maintains the light emission interval of the detection light 2 in the intermittent mode with a long period of about 117 (ms). Is monitored (step S3).
  • step S5 an excess state verification process is then executed (step S5).
  • the verification step is for knowing whether or not the detected threshold excess state is an intentional entry operation of the detection target 4 by the user into the detection region 1, and includes a detection including an excess state. Whether or not the threshold value for detection determination (Th on ) has been exceeded continuously (four times in this example) is used as a test pass / fail criterion.
  • the threshold value for detection determination (Th on ) in this verification process is the one used when a threshold excess condition is detected to prevent a decrease in verification accuracy due to a change in the adjustment value (Th cal ) during verification. Therefore, satisfying all of the following formulas (10) to (13) is a condition for passing the test.
  • step S6 If it is determined that the test is passed as the intended operation satisfying the above conditions (step S6), after setting the confirmation signal output flag, the detection confirmation signal is output for a predetermined time (T4) (about 150 msec) (step S7). ).
  • the light emission control unit 6a sets the pulse group (P n + 1 ) immediately after the detection pulse group (P n ) to the long cycle mode with the interval (T2). (Step S51), the light emission interval (T3) is shifted to the short cycle mode shortened to about 20 (msec) (step S52), and after waiting for the output of the detection confirmation signal, the excess state canceling detection mode is set. Transition is made (step S8).
  • Th offfix is set to about 5 to 8 percent of Th onfix , similarly to Th nz .
  • step S8 When the excess state cancellation is detected in step S8 (step S80), the calculation unit 13 resets the confirmation signal output flag, and returns to the excess state detection mode to prepare for the detection of the excess state (step S3).
  • the threshold value for detection determination (Th on ) in step S3 the subsequent pulse group (P m + 4 , P m + 5 7) Whose initial value is the adjustment value used in the excess state elimination detection mode is used. The average value is used.
  • the arithmetic unit 13 cancels the threshold excess state on condition that the detection restart condition is satisfied.
  • the detection restart condition is that a predetermined number (20 in this example) of non-noise light defined by the equation (6) continues, and a confirmation signal is output by eliminating the threshold excess state due to the satisfaction of the detection restart condition.
  • the flag is reset and returns to the excess state detection mode again to prepare for the detection of a new threshold excess state (step S9).
  • the adjustment value (Th cal ) of the threshold value for detection determination (Th on ) in step S9 the value obtained by the equation (7) is used.
  • the detection resumption condition can be determined for each single pulse group (PLS).
  • PLS single pulse group
  • the equation (18) is used.
  • Continuous condition matching can be inferred by evaluating the entire 20 pulse groups (PLS).

Abstract

The purpose of this invention is to provide a vehicular reflective optical sensor whereby detection precision can be increased. Said vehicular reflective optical sensor is provided with a control unit (6) that: emits pulses of detection light (2) from an exterior panel of a vehicle towards a detection region (1) set outside said vehicle; and, if the amount of reflected light (3) from the detection region (1) exceeds a prescribed detection threshold, detects that a detection target (4) has entered the detection region (1). To determine whether the threshold has been exceeded, for each detection interval consisting of a pulse group comprising an appropriate number of pulses, the control unit (6) compares the detection threshold to the difference between the total amount of light received by a light-receiving unit (5) when light was being emitted and the total amount of light received by said light-receiving unit (5) when light was not being emitted.

Description

車両用反射型光センサReflective optical sensor for vehicles
 本発明は、車両用反射型光センサに関するものである。 The present invention relates to a vehicle reflective optical sensor.
 赤外線センサーを使用して車両のドア開閉操作を制御する車両ドア開閉制御装置としては、特許文献1に記載のものが知られている。この従来例において、車両には赤外線等の信号を出力する足部検出センサが搭載されており、利用者が所持する携帯型無線端末が認証された後駆動される足部検出センサにより利用者が検出されるとドアの開閉操作が行われる。 As a vehicle door opening / closing control device that uses an infrared sensor to control a vehicle door opening / closing operation, a device described in Patent Document 1 is known. In this conventional example, a foot detection sensor that outputs a signal such as an infrared ray is mounted on the vehicle, and the user is detected by the foot detection sensor that is driven after the portable wireless terminal possessed by the user is authenticated. When it is detected, the door is opened and closed.
特開2005-133529号公報JP 2005-133529 A
 一般に光学センサは、出力信号(発光光)に対する反射光量により検出対象を検出する構成をとるものであるが、上述した従来例のように車両の足部センサとして使用した場合には以下の問題がある。 In general, an optical sensor is configured to detect a detection target based on the amount of reflected light with respect to an output signal (emitted light). However, when used as a foot sensor of a vehicle as in the above-described conventional example, the following problems occur. is there.
 すなわち、車両は光学的条件の異なる種々の場所に駐車されるために、照射光に対する反射光量のみによって検出すると、駐車場所で異なる光学的環境の違いが外乱光として作用するために、検出精度が低下するという問題がある。 In other words, since the vehicle is parked in various places with different optical conditions, if the detection is made only by the amount of reflected light with respect to the irradiated light, the difference in the optical environment at the parking place acts as disturbance light, so the detection accuracy is high. There is a problem of lowering.
 本発明は、以上の欠点を解消すべくなされたものであって、検出精度を高めることのできる車両用反射型光センサ、およびこれを使用した車両ドア開閉制御装置の提供を目的とする。 The present invention has been made to solve the above-described drawbacks, and an object of the present invention is to provide a vehicle reflection type optical sensor capable of enhancing detection accuracy and a vehicle door opening / closing control device using the same.
 本発明によれば上記目的は、
 車両外壁部から車両外部に設定される検出領域1に向けてパルス状の検出光2を投光し、検出領域1からの反射光3の光量が所定の検出判定用しきい値を超えた際に検出領域1内への検出対象4の進入を検出する制御部6を備えた車両用反射型光センサであって、
 前記制御部6におけるしきい値超過状態の判定は、適数のパルスから構成されるパルス群を判定単位として、発光時における受光部5での受光光量の総和と、非発光時における受光部5での受光光量の総和との差分を所定の検出判定用しきい値と比較して行われる車両用反射型光センサを提供することにより達成される。
According to the present invention, the object is
When the pulsed detection light 2 is projected from the vehicle outer wall portion toward the detection region 1 set outside the vehicle, and the amount of the reflected light 3 from the detection region 1 exceeds a predetermined threshold for detection determination A reflective optical sensor for a vehicle including a control unit 6 for detecting the entry of the detection object 4 into the detection region 1,
The determination of the threshold excess state in the control unit 6 is performed by using a pulse group composed of an appropriate number of pulses as a determination unit, and the total amount of light received by the light receiving unit 5 during light emission and the light receiving unit 5 during non-light emission. This is achieved by providing a vehicle reflective optical sensor which is performed by comparing the difference between the total received light quantity and the total with a predetermined threshold value for detection determination.
 上述したように、車両は停車位置の光学的環境が特定せず、検出領域1の明るさ等が停車位置により変わる上に、同一位置でも屋外停車の場合には、降雪、降雨、日照等が常に変化するために、発光時における反射光量のみを判定基準とすると、検出信頼性が極めて低下する。 As described above, the vehicle does not specify the optical environment of the stop position, the brightness of the detection area 1 varies depending on the stop position, and snowfall, rain, sunshine, etc. may occur when the same position is an outdoor stop. In order to always change, if only the amount of reflected light during light emission is used as a criterion, detection reliability is extremely lowered.
 これに対し、本発明のように、発光時と非発光時の反射光量の差分を判定対象とすることにより、検出領域1の明るさのばらつきによる判定精度の低下を確実に防止することが可能になる。 On the other hand, as in the present invention, it is possible to reliably prevent a decrease in determination accuracy due to variations in the brightness of the detection region 1 by using the difference in the amount of reflected light between light emission and non-light emission as a determination target. become.
 また、検出光2を複数のパルスから構成されるパルス群単位で発射し、パルス群単位でしきい値超過状態の判定を行うことにより、単発のパルスを単位として判定する場合に比してノイズ耐性が向上し、判定精度も向上する。さらに、判定単位の精度が高いために、精度を低下することなくパルス群の発射間隔を長くすることが可能になり省電力に対しても有効である。 In addition, the detection light 2 is emitted in units of a pulse group composed of a plurality of pulses, and the determination of an over-threshold state is made in units of pulse groups. The tolerance is improved and the determination accuracy is also improved. Furthermore, since the accuracy of the determination unit is high, it is possible to increase the emission interval of the pulse group without reducing the accuracy, which is effective for power saving.
 また、車両用反射型光センサの制御部6は、
 前記各パルス群に対し、発光時の受光部5における受光光量の総和と非発光時の受光部5における受光光量の総和の差分に対する偏差平方和相当値が所定の検定用しきい値以下である場合にのみ有効検出光とする検定を実行し、有効検出光のみを判定対象反射光として採用するように構成することができる。
Moreover, the control part 6 of the reflective optical sensor for vehicles is
For each pulse group, a deviation sum of squares corresponding to the difference between the total amount of received light in the light receiving unit 5 during light emission and the total amount of received light in the light receiving unit 5 during non-light emission is less than a predetermined test threshold value. It is possible to configure such that only the effective detection light is used as the determination target reflected light by performing the verification that the effective detection light is used only in the case.
 本発明のように、パルス群に対する検定を行い、判定対象に有効パルス群のみを使用することにより、より判定精度が向上する。 As in the present invention, the determination accuracy is further improved by performing the test for the pulse group and using only the effective pulse group as the determination target.
 また、車両用反射型光センサの制御部6は、検出領域1からの反射光量がしきい値超過状態を検出した際、検出光2の発光間隔を短縮し、短周期期間内における所定回数のしきい値超過状態の検出により検出確認信号を出力した後、発光間隔を長周期に復帰させるように構成することができる。 Further, the control unit 6 of the vehicle reflective optical sensor shortens the emission interval of the detection light 2 when the amount of reflected light from the detection region 1 exceeds the threshold value, and a predetermined number of times within a short cycle period. It can be configured to return the light emission interval to a long period after outputting the detection confirmation signal upon detection of the threshold excess state.
 本発明において、検出光2の発光間隔は、しきい値超過状態が検出されたあと、検出確認信号が出力されるまでの間だけ短縮され、検出確認信号が出力されたあとは、再び長周期に復帰するために、省電力を図ることができる。 In the present invention, the emission interval of the detection light 2 is shortened only until the detection confirmation signal is output after the threshold excess state is detected, and after the detection confirmation signal is output, the long cycle again. Therefore, it is possible to save power.
 また、検出確認信号は、複数回のしきい値超過状態の確認により出力されるために、ノイズの影響が可及的に小さくなり、検出信頼性が高くなる。 Also, since the detection confirmation signal is output by confirming the state of exceeding the threshold value a plurality of times, the influence of noise becomes as small as possible, and the detection reliability becomes high.
 さらに、検出確認信号の出力のためには、検出光2の発光間隔が短縮された短周期期間内で所定回数しきい値超過状態が検出される必要があるために、同一時間内でしきい値超過状態の検出回数を多くすることが可能になるために、より検出信頼性が向上する。 Further, in order to output the detection confirmation signal, the threshold excess state needs to be detected a predetermined number of times within a short cycle period in which the emission interval of the detection light 2 is shortened. Since it becomes possible to increase the number of times of detection of an over-value state, the detection reliability is further improved.
 さらに、反射型センサの制御部6は、
 最初のしきい値超過状態の検出後、所定回数しきい値超過状態を検出したときに短周期期間に移行するように構成することができる。
Further, the control unit 6 of the reflective sensor
It can be configured to shift to a short cycle period when a threshold excess state is detected a predetermined number of times after detection of the first threshold excess state.
 短周期期間への移行は、しきい値超過状態を検出した直後から開始することも可能であるが、本発明のように構成することにより、ノイズの影響による短周期への移行を防ぐことができる。 Although the transition to the short cycle period can be started immediately after detecting the threshold excess state, the transition to the short cycle due to the influence of noise can be prevented by configuring as in the present invention. it can.
 また、これら車両用反射型光センサを使用した車両ドア開閉制御装置は、
 車両用反射型光センサ(A)と、
 車両用反射型光センサ(A)における検出対象4の検出確認信号を条件としてアクチュエータ7を作動させて車両ドア8を開放操作するドア制御部9とを有して構成することができる。
Moreover, the vehicle door opening / closing control device using these vehicle reflection type optical sensors is
A vehicle reflective optical sensor (A);
A door control unit 9 that opens the vehicle door 8 by operating the actuator 7 on condition of a detection confirmation signal of the detection target 4 in the vehicle reflection type optical sensor (A) can be configured.
 本発明において、ドア制御部9は検出確認信号を受領すると、適宜の認証手段により解錠操作権限が認証されていること等の所定の他の条件が充足していることを条件に施錠状態の解除、および車両ドア8の開放操作信号をアクチュエータ7に出力し、ドアの開放操作が行われる。この結果、解錠条件が充足した状態で荷物、手等を検出領域1に差し出すだけで、ドアを開放することができるために、利便性が向上する。 In the present invention, when the door control unit 9 receives the detection confirmation signal, the door control unit 9 is in a locked state on condition that a predetermined other condition such as that the unlocking operation authority is authenticated by an appropriate authentication unit is satisfied. The release and opening operation signal of the vehicle door 8 is output to the actuator 7, and the opening operation of the door is performed. As a result, the door can be opened simply by inserting a load, a hand, etc. into the detection area 1 in a state where the unlocking conditions are satisfied, so that convenience is improved.
 本発明によれば、検出対象有無の判定に際して非発光時における受光光量を考慮するために、判定精度を高めることができる。 According to the present invention, since the amount of received light when not emitting light is taken into account when determining the presence or absence of a detection target, the determination accuracy can be increased.
車両ドア開閉制御装置が使用された車両を示す図で、(a)は背面図、(b)は側面図、(c)は(a)の1C-1C線断面図である。It is a figure which shows the vehicle by which the vehicle door opening / closing control apparatus was used, (a) is a rear view, (b) is a side view, (c) is the 1C-1C sectional view taken on the line of (a). 反射型光センサのブロック図である。It is a block diagram of a reflection type optical sensor. 制御部の動作を示すタイミングチャートである。It is a timing chart which shows operation | movement of a control part. しきい値超過状態の検出タイミングを示すタイミングチャートである。It is a timing chart which shows the detection timing of a threshold value excess state. しきい値超過状態解消の検出タイミングを示すタイミングチャートである。It is a timing chart which shows the detection timing of threshold value excess state cancellation. 検定再開条件を説明するタイミングチャートである。It is a timing chart explaining examination resumption conditions.
 図1に車両ドア開閉制御装置が使用された車両を示す。本例において車両ドア開閉制御装置は、ダンパ装置等のアクチュエータ7により駆動されるパワーバックドアの開閉動作を制御するためのバックドア制御装置として構成されるもので、車両のバックドア8に固定される車両用反射型光センサ(A)と、アクチュエータ7を制御するためのドア制御部9とを有する。 Fig. 1 shows a vehicle using a vehicle door opening / closing control device. In this example, the vehicle door opening / closing control device is configured as a back door control device for controlling the opening / closing operation of the power back door driven by the actuator 7 such as a damper device, and is fixed to the back door 8 of the vehicle. A vehicle reflection type optical sensor (A), and a door control unit 9 for controlling the actuator 7.
 後述するように、反射型光センサ(A)は、検出光2が投光される所定の検出領域1内への検出対象4の進入を検出すると、検出確認信号を出力するように構成されており、ライセンスプレートフィニッシャ10に囲まれたライセンスプレート取り付け凹部の天井壁部に固定される。なお、図1において11はライセンスプレートを示す。 As will be described later, the reflection type optical sensor (A) is configured to output a detection confirmation signal when detecting the entry of the detection target 4 into the predetermined detection area 1 where the detection light 2 is projected. And fixed to the ceiling wall portion of the license plate mounting recess surrounded by the license plate finisher 10. In FIG. 1, reference numeral 11 denotes a license plate.
 また、本例において、反射型光センサ(A)の検出領域1の中心をライセンスプレート取り付け凹部内に位置させるために、検出光2の光軸はやや車両内方側に傾けられる(角度θ)。これにより、ライセンスプレート取り付け凹部外での検出能が低下するために、車両に利用者以外のヒト、動物、ゴミ等が接近した状態で反射型光センサ(A)が不用意に反応することが防止できる。 Further, in this example, in order to position the center of the detection region 1 of the reflective optical sensor (A) in the license plate mounting recess, the optical axis of the detection light 2 is slightly inclined toward the vehicle inner side (angle θ). . As a result, the detection ability outside the concave portion of the license plate is lowered, so that the reflective optical sensor (A) may react inadvertently when a person other than the user, an animal, garbage, or the like approaches the vehicle. Can be prevented.
 本例においてドア制御部9は、上記反射型光センサ(A)から検出確認信号が出力されると、まず、利用者が所持する電子キーの認証、バックドアの状態検出、施解錠動作等の準備動作を行った後、アクチュエータ7を駆動させる。電子キーの認証は、図外の認証装置と交信して電子キーから出力される認証コードを認証することにより行われ、認証が成立すると、バックドア8が閉扉状態にあることを条件にバックドアを解錠操作した後、アクチュエータ7を駆動させて開扉動作が開始される。 In this example, when a detection confirmation signal is output from the reflection type optical sensor (A), the door control unit 9 first performs authentication of an electronic key possessed by the user, detection of the state of the back door, locking / unlocking operation, etc. After performing the preparatory operation, the actuator 7 is driven. The authentication of the electronic key is performed by communicating with an authentication device (not shown) and authenticating the authentication code output from the electronic key. When the authentication is established, the back door 8 is in a closed condition on the condition that the back door 8 is in a closed state. After unlocking operation, the actuator 7 is driven to start the door opening operation.
 したがってこの実施の形態において、荷物等で手がふさがっている状態であっても、検出領域1として設定されたライセンスプレート取り付け凹部内、あるいはその近傍に検出対象4となる荷物等を近付けるだけでバックドアの開放操作が行えるために、利便性が向上する。 Therefore, in this embodiment, even if the hand is blocked by a luggage or the like, the bag can be moved only by bringing the luggage or the like to be detected 4 close to or near the license plate mounting recess set as the detection area 1. Convenience is improved because the door can be opened.
 図2に示すように、反射型光センサ(A)は、赤外線LEDを発光源とする発光部12と、赤外線受光素子を含む受光回路を備える受光部5と、制御部6とを有し、制御部6には、発光部12の発光タイミングを制御する発光制御部6a、受光部5での受光タイミングを制御する受光制御部6b、およびしきい値演算部13aを備える演算部13が含まれる。 As shown in FIG. 2, the reflective optical sensor (A) includes a light emitting unit 12 using an infrared LED as a light source, a light receiving unit 5 including a light receiving circuit including an infrared light receiving element, and a control unit 6. The control unit 6 includes a light emission control unit 6a that controls the light emission timing of the light emission unit 12, a light reception control unit 6b that controls the light reception timing of the light reception unit 5, and a calculation unit 13 that includes a threshold value calculation unit 13a. .
 図3に示すように、発光部12は発光制御部6aに制御されて、適数(本例においては8発)のパルス(pls)からなるパルス群(PLS)を単位とする検出光2を所定の間隔(図3においてはT1、T2)で発射する。  As shown in FIG. 3, the light-emitting unit 12 is controlled by the light-emission control unit 6a to generate the detection light 2 in units of a pulse group (PLS) composed of an appropriate number (eight in this example) of pulses (pls). Fire at predetermined intervals (T1, T2 in FIG. 3). *
 受光制御部6bは、省電力のために、発光部12におけるパルス群(PLS)の発光タイミングに合わせて受光回路をスリープ状態から活性化させ、各発光パルス(pls)に対する発光時と非発光時の受光部5における受光光量を取得する。発光パルス(pls)に対する発光時の受光光量の取得は、発光制御部6aが各パルス(pls)の発光要求を発光部12に送出してから発光が開始されるまでの遅延時間等を考慮して各発光パルス(pls)に対する反射光3がピークに達するタイミングで行われ、その値が発光時受光光量(H)として取得される。 The light receiving control unit 6b activates the light receiving circuit from the sleep state in accordance with the light emission timing of the pulse group (PLS) in the light emitting unit 12 for power saving, and at the time of light emission and non-light emission for each light emission pulse (pls). The amount of received light in the light receiving unit 5 is acquired. The acquisition of the amount of light received at the time of light emission with respect to the light emission pulse (pls) takes into account the delay time until the light emission is started after the light emission control unit 6a sends the light emission request of each pulse (pls) to the light emission unit 12. Then, it is performed at the timing when the reflected light 3 for each light emission pulse (pls) reaches the peak, and the value is acquired as the light reception light amount (H) during light emission.
 また、非発光時の受光光量は、発光部12が発光状態から非発光状態に遷移し、発光時の残光が消失したタイミングで取得され、その値が非発光時受光光量(L)とされる。 Further, the received light amount when not emitting light is acquired at the timing when the light emitting unit 12 transitions from the light emitting state to the non-emitting state and the afterglow at the time of emitting light disappears, and the value is set as the received light amount (L) when not emitting light. The
 一方、演算部13は、受光部5での受光光量に基いて、パルス群(PLS)を単位とする反射光量を演算する。パルス群(PLS)の反射光量(P)は、
Figure JPOXMLDOC01-appb-M000001
On the other hand, the calculation unit 13 calculates the amount of reflected light in units of pulse groups (PLS) based on the amount of light received by the light receiving unit 5. The reflected light amount (P) of the pulse group (PLS) is
Figure JPOXMLDOC01-appb-M000001
 で与えられる。 Is given by.
 なお、(1)式に示されるように、反射光量の算出に際し、先頭パルスに対する受光量(H1、L1)と最後尾パルスに対する受光量(H8、L8)の算入を排除することにより、過渡状態における不安定性が排除される。 As shown in equation (1), in calculating the amount of reflected light, the inclusion of the received light amount (H 1 , L 1 ) for the first pulse and the received light amount (H 8 , L 8 ) for the last pulse should be excluded. This eliminates instability in the transient state.
 以上のようにして求められた各パルス群(PLS)の反射光3は、演算部13において有効性が判定される。有効性は、同一パルス群(PLS)内での反射光量の均質性により外乱要素の混入を評価するもので、パルス群(PLS)内の各パルスのバラつき、具体的には、偏差平方和相当値が所定の有効性検定しきい値(Thval)より大きな場合には、無効データとされる。 The effectiveness of the reflected light 3 of each pulse group (PLS) obtained as described above is determined by the calculation unit 13. Effectiveness is the evaluation of the mixing of disturbance elements by the homogeneity of the amount of reflected light within the same pulse group (PLS). The variation of each pulse in the pulse group (PLS), specifically equivalent to the sum of squared deviations value if larger than the predetermined validity test threshold (Th val) is invalid data.
 偏差平方和相当値には、各パルス光に対する受光量(P)と平均値との差の2乗の合計値として与えられるいわゆる偏差平方和、あるいは偏差平方和をデータ数で割って求められる分散、さらには、分散の平方根として求められる標準偏差等を使用することが可能であるが、本例においては、(2)式に示すように、各パルスの受光量と平均値との差の絶対値の総和により代用され、制御部6への負担を軽減している。
Figure JPOXMLDOC01-appb-M000002
The deviation sum of squares equivalent value is a so-called deviation sum of squares given as the sum of the squares of the difference between the received light amount (P) for each pulse light and the average value, or a variance obtained by dividing the deviation square sum by the number of data. Furthermore, it is possible to use a standard deviation or the like obtained as the square root of the variance. In this example, as shown in the equation (2), the absolute value of the difference between the received light amount of each pulse and the average value is used. The total of the values is substituted and the burden on the control unit 6 is reduced.
Figure JPOXMLDOC01-appb-M000002
 また、演算部13は、上述したパルス群(PLS)の反射光量を所定の検出判定用しきい値(Thon)と比較して、しきい値超過状態の検出、しきい値超過状態の解消検出、さらには、検出領域1への検出対象4の進入を判定し、検出領域1への検出対象4の進入が検出された際には、検出確認信号を所定時間出力し、さらに検出確認信号が出力されたことを示す確認信号出力フラグがセットされる。 Further, the calculation unit 13 compares the amount of reflected light of the pulse group (PLS) described above with a predetermined threshold value for detection determination (Th on ), detects a threshold excess state, and eliminates the threshold excess state. When the detection, further, the entry of the detection object 4 to the detection area 1 is determined, and the entry of the detection object 4 to the detection area 1 is detected, a detection confirmation signal is output for a predetermined time, and further the detection confirmation signal A confirmation signal output flag indicating that has been output is set.
 この確認信号出力フラグは、確認信号出力後、所定期間内にしきい値超過状態解消が検出された場合、および所定期間内にしきい値超過状態が検出されなかった場合で、所定の解消条件が成立した場合にリセットされ、演算部13は、当該確認信号出力フラグがリセット状態にあるときにのみしきい値超過状態の検出ステップを実行する。 This confirmation signal output flag satisfies a predetermined cancellation condition when a threshold exceeding state is detected within a predetermined period after the confirmation signal is output and when a threshold exceeding state is not detected within a predetermined period. If the confirmation signal output flag is in the reset state, the calculation unit 13 executes the threshold value excess state detection step.
 上記しきい値超過状態の判定基準となる検出判定用しきい値(Thon)は、予め設定された固定値(Thonfix)と、調整値(Thcal)との和として求められ、本例において、固定値(Thonfix)は、有効性検定しきい値(Thval)の20ないし30パーセント程度に設定される。 The threshold value for detection determination (Th on ), which is a criterion for determining the above threshold excess state, is obtained as the sum of a preset fixed value (Th onfix ) and an adjustment value (Th cal ). The fixed value (Th onfix ) is set to about 20 to 30 percent of the validity test threshold value (Th val ).
 また、調整値(Thcal)は、図4、および(3)式に示すように、判定対象パルス群(Pn)に先行する所定数(本例においては10個)の受光光量の平均値として与えられ、演算部13内のしきい値演算部13aにおいて算出される。本例において、固定値(Thonfix)は、有効性検定しきい値(Thval)の20ないし30パーセント程度に設定される。
Figure JPOXMLDOC01-appb-M000003
The adjustment value (Th cal ) is an average value of the received light quantity of a predetermined number (10 in this example) preceding the determination target pulse group (P n ), as shown in FIGS. 4 and (3). And is calculated by the threshold value calculation unit 13a in the calculation unit 13. In this example, the fixed value (Th onfix ) is set to about 20 to 30 percent of the validity test threshold value (Th val ).
Figure JPOXMLDOC01-appb-M000003
 なお、本例において、調整値(Thcal)は先行する適数の受光光量の算術平均により与える場合を示したが、統計的な代表値であれば、例えば、最頻値、中央値等適宜のものを使用することができる。 In the present example, the adjustment value (Th cal ) is shown by the arithmetic average of the appropriate number of received light amounts, but if it is a statistical representative value, for example, the mode value, the median value, etc. Can be used.
 また、上記演算部13は、各パルス群(PLS)に対する有効性検定に加え、上記調整値(Thcal)を使用したノイズ判定を実行し、ノイズが検出された際に、しきい値演算部13aに伝達する。 In addition to the validity test for each pulse group (PLS), the calculation unit 13 performs noise determination using the adjustment value (Th cal ), and when noise is detected, the threshold calculation unit 13a.
 ノイズ判定は、ノイズ判定対象のパルス群(PLS)の受光光量(Pn)と、当該受光光量(Pn)に先行する10個の受光光量の平均値、すなわち、調整値(Thcal)との差分と所定のノイズ判定しきい値(Thnz)とを比較して行われ、(4)、(5)式のいずれかを充足することによりノイズ光と判定される。本例において、ノイズ判定しきい値(Thnz)は、Thonfixの5ないし8パーセント程度に設定される。
Figure JPOXMLDOC01-appb-M000004
The noise determination is performed by determining the received light amount (P n ) of the noise determination target pulse group (PLS) and the average value of the ten received light amounts preceding the received light amount (P n ), that is, the adjustment value (Th cal ). And a predetermined noise determination threshold value (Th nz ) are compared, and it is determined as noise light by satisfying either of the expressions (4) and (5). In this example, the noise determination threshold (Th nz) is 5 to the Th Onfix is set to about 8%.
Figure JPOXMLDOC01-appb-M000004
 ノイズの発生を通知されたしきい値演算部13aは、それ以後の受光光量を観察して受光光量の安定性を判定する。安定性の判定は、ノイズパルス群(PLS)に後続する適数個(本例においては20個)に対して(6)式を充足するか否か、すなわち、反射光量がノイズ判定しきい値(Thnz)内に収まる非ノイズ光であるか否かを判定し、(6)式を充足する場合には後続パルス群(PLS)に対して安定性ありと判定する。
Figure JPOXMLDOC01-appb-M000005
The threshold value calculation unit 13a notified of the occurrence of noise observes the amount of received light thereafter and determines the stability of the received light amount. Whether or not the stability is satisfied satisfies (6) with respect to an appropriate number (20 in this example) following the noise pulse group (PLS), that is, the amount of reflected light is a noise determination threshold value. It is determined whether or not it is non-noise light that falls within (Th nz ), and when the expression (6) is satisfied, it is determined that the subsequent pulse group (PLS) is stable.
Figure JPOXMLDOC01-appb-M000005
 しきい値演算部13aは、後続パルス群に対して安定性ありと判定した場合には、(7)式に示すように、判定対象パルス群(Pn+21)に先行する10個の受光光量の平均を調整値(Thcal)とし、安定性なしと判定した場合には、(8)式に示すように、ノイズパルス群(Pn)に先行する10個の受光光量の平均を調整値(Thcal)として検出判定用しきい値(Thon)を決定する。
Figure JPOXMLDOC01-appb-M000006
When the threshold value calculation unit 13a determines that there is stability with respect to the subsequent pulse group, as shown in the equation (7), the ten light receptions preceding the determination target pulse group (P n + 21 ). If it is determined that there is no stability using the average light intensity as the adjustment value (Th cal ), the average of the 10 received light quantities preceding the noise pulse group (P n ) is adjusted as shown in equation (8). A threshold value for detection determination (Th on ) is determined as a value (Th cal ).
Figure JPOXMLDOC01-appb-M000006
 図3以下に制御部6での動作を示す。まず、ドア制御部9、あるいは図外の車載コンピュータ等の制御装置が光センサ(A)による検出動作の開始条件が充足されたことを検知すると、ドア制御部9等から光センサ(A)の駆動信号が出力され、光センサ(A)の電源が投入される。光センサ(A)の検出開始条件は、例えば、車両のシフトレバー位置等による検出される車両の停車等、適宜に設定される。 The operation of the control unit 6 is shown in FIG. First, when the door control unit 9 or a control device such as an in-vehicle computer (not shown) detects that the start condition of the detection operation by the optical sensor (A) is satisfied, the door control unit 9 or the like detects the optical sensor (A). A drive signal is output and the optical sensor (A) is powered on. The detection start condition of the optical sensor (A) is set as appropriate, for example, the stop of the vehicle detected by the shift lever position of the vehicle.
 光センサ(A)の電源が投入されると、所定時間、制御部6のCPUが初期化された後(ステップS1)、しきい値演算部13aによるキャリブレーション初期化が実施され(ステップS2)、キャリブレーション初期化中、発光制御部6aは、パルス群(PLS)の発射間隔(T1)を15(ms)程度に維持する。 When the optical sensor (A) is turned on, the CPU of the control unit 6 is initialized for a predetermined time (step S1), and then calibration initialization is performed by the threshold value calculation unit 13a (step S2). During the calibration initialization, the light emission control unit 6a maintains the firing interval (T1) of the pulse group (PLS) at about 15 (ms).
 キャリブレーション初期化は、パルス群(PLS)を所定数(本例においては10発)発射して各パルス群(PLS)に対する反射光量(P1、P2・・・・10)を取得し、その平均値を初期の調整値(Thcal)とすることにより行われる。 In the calibration initialization, a predetermined number (10 in this example) of pulse groups (PLS) are fired to obtain the reflected light amounts (P 1 , P 2... P 10 ) for each pulse group (PLS). The average value is set as an initial adjustment value (Th cal ).
 キャリブレーション初期化工程が終了すると、演算部13は、発光制御部6aにより検出光2の発光間隔を117(ms)程度の長周期の間欠モードに維持した状態でしきい値超過状態への移行を監視する(ステップS3)。 When the calibration initialization process is completed, the calculation unit 13 shifts to the threshold excess state in a state in which the light emission control unit 6a maintains the light emission interval of the detection light 2 in the intermittent mode with a long period of about 117 (ms). Is monitored (step S3).
 図4に示すように、超過状態検出モードにおいて演算部13は上述したように、検出判定用しきい値(Thon)と反射光量(P)を比較し、
 Pn => Thon
    =Thonfix+Thcal ・・・・(9)
 を充足するとき、しきい値超過状態と判定する。
As shown in FIG. 4, in the excess state detection mode, the calculation unit 13 compares the threshold value for detection determination (Th on ) with the amount of reflected light (P) as described above.
Pn => Th on
= Th onfix + Th cal (9)
Is satisfied, it is determined that the threshold value is exceeded.
 演算部13がしきい値超過状態を検出すると(ステップS4)、次いで、超過状態の検定工程を実行する(ステップS5)。検定工程は、上記検出されたしきい値超過状態が検出領域1への利用者による意図的な検出対象4の進入操作であるか否かを知るためのもので、超過状態の検出を含め所定回数(本例においては4回)連続して検出判定用しきい値(Thon)を超えたか否かを検定合否基準とする。 When the calculation unit 13 detects an over-threshold state (step S4), an excess state verification process is then executed (step S5). The verification step is for knowing whether or not the detected threshold excess state is an intentional entry operation of the detection target 4 by the user into the detection region 1, and includes a detection including an excess state. Whether or not the threshold value for detection determination (Th on ) has been exceeded continuously (four times in this example) is used as a test pass / fail criterion.
 この検定工程における検出判定用しきい値(Thon)には、検定中における調整値(Thcal)の変化による検定精度の低下を防止するために、しきい値超過状態検出時のものが使用され、以下(10)から(13)式のすべてを充足することが検定合格条件となる。
Figure JPOXMLDOC01-appb-M000007
The threshold value for detection determination (Th on ) in this verification process is the one used when a threshold excess condition is detected to prevent a decrease in verification accuracy due to a change in the adjustment value (Th cal ) during verification. Therefore, satisfying all of the following formulas (10) to (13) is a condition for passing the test.
Figure JPOXMLDOC01-appb-M000007
 上記条件を充足して意図された操作として検定合格と判定されると(ステップS6)、確認信号出力フラグをセットした後、検出確認信号を所定時間(T4)(150msec程度)出力する(ステップS7)。 If it is determined that the test is passed as the intended operation satisfying the above conditions (step S6), after setting the confirmation signal output flag, the detection confirmation signal is output for a predetermined time (T4) (about 150 msec) (step S7). ).
 一方、検定工程において、条件合致前に(2)式に基づく、検定用しきい値(Thv)を超える無効な受光光が観測された場合には、検定工程を終了して監視モードに復帰する。 On the other hand, in the verification process, if invalid received light exceeding the verification threshold value (Th v ) based on equation (2) is observed before the condition is met, the verification process is terminated and the monitoring mode is restored. To do.
 また、発光制御部6aは、上記検定工程においてしきい値超過状態が検出されると、検出パルス群(Pn)の直後のパルス群(Pn+1)を間隔(T2)の長周期モードで発生させた後(ステップS51)、発光間隔(T3)が20(msec)程度に短縮された短周期モードに移行し(ステップS52)、検出確認信号の出力を待って超過状態解消検出モードに移行する(ステップS8)。 In addition, when the threshold value excess state is detected in the verification step, the light emission control unit 6a sets the pulse group (P n + 1 ) immediately after the detection pulse group (P n ) to the long cycle mode with the interval (T2). (Step S51), the light emission interval (T3) is shifted to the short cycle mode shortened to about 20 (msec) (step S52), and after waiting for the output of the detection confirmation signal, the excess state canceling detection mode is set. Transition is made (step S8).
 図5に示すように、超過状態解消検出モード(ステップS8)は、長周期モードでパルス群(PLS)を発射しながら、超過状態の解消を監視する。超過状態解消の判定は、パルス群(PLS)に対する反射光量が所定回数(本例においては4回)連続して検出解消判定用しきい値(Toff=Thofffix+Thcal)を下回ったこと、すなわち、(14)から(17)式のすべてを充足することが条件とされる。本例においてThofffixは、Thnzと同様に、Thonfixの5ないし8パーセント程度に設定される。
Figure JPOXMLDOC01-appb-M000008
As shown in FIG. 5, the excess state elimination detection mode (step S8) monitors the elimination of the excess state while emitting a pulse group (PLS) in the long period mode. Determination of excessive state persists, the amount of reflected light with respect to pulse group (PLS) was below the detection resolving determining threshold value (T off = Th offfix + Th cal) successively (4 times in this example) a predetermined number of times, That is, it is a condition that all the expressions (14) to (17) are satisfied. In this example, Th offfix is set to about 5 to 8 percent of Th onfix , similarly to Th nz .
Figure JPOXMLDOC01-appb-M000008
 ステップS8において超過状態解消が検出されると(ステップS80)、演算部13は確認信号出力フラグをリセットし、再び超過状態検出モードに復帰して超過状態の検出に備える(ステップS3)。ステップS3における検出判定用しきい値(Thon)には、上記超過状態解消検出モードにおいて使用した調整値を初期値とした後続パルス群(Pm+4、Pm+5・・・)の平均値が使用される。 When the excess state cancellation is detected in step S8 (step S80), the calculation unit 13 resets the confirmation signal output flag, and returns to the excess state detection mode to prepare for the detection of the excess state (step S3). In the threshold value for detection determination (Th on ) in step S3, the subsequent pulse group (P m + 4 , P m + 5 ...) Whose initial value is the adjustment value used in the excess state elimination detection mode is used. The average value is used.
 これに対し、図6に示すように、ステップS8において超過状態解消が検出されなかった場合、演算部13は検出再開条件の充足を条件にしきい値超過状態を解消させる。検出再開条件は、(6)式により定義される非ノイズ光が所定数(本例においては20)連続することであり、検出再開条件の充足によるしきい値超過状態の解消により、確認信号出力フラグはリセットされて再び超過状態検出モードに復帰し、新たなしきい値超過状態の検出に備える(ステップS9)。ステップS9における検出判定用しきい値(Thon)の調整値(Thcal)は、(7)式により求められた値が使用される。 On the other hand, as shown in FIG. 6, when the excess state cancellation is not detected in step S8, the arithmetic unit 13 cancels the threshold excess state on condition that the detection restart condition is satisfied. The detection restart condition is that a predetermined number (20 in this example) of non-noise light defined by the equation (6) continues, and a confirmation signal is output by eliminating the threshold excess state due to the satisfaction of the detection restart condition. The flag is reset and returns to the excess state detection mode again to prepare for the detection of a new threshold excess state (step S9). As the adjustment value (Th cal ) of the threshold value for detection determination (Th on ) in step S9, the value obtained by the equation (7) is used.
 なお、上記検出再開条件の判定は、単一のパルス群(PLS)ごとに行うことも可能であるが、本例においては、システムへの負担を軽減するために、(18)式のように、20個のパルス群(PLS)全体を評価することにより連続的な条件合致が類推される。
Figure JPOXMLDOC01-appb-M000009
The detection resumption condition can be determined for each single pulse group (PLS). In this example, in order to reduce the burden on the system, the equation (18) is used. , Continuous condition matching can be inferred by evaluating the entire 20 pulse groups (PLS).
Figure JPOXMLDOC01-appb-M000009
 1    検出領域
 2    検出光
 3    反射光
 4    検出対象
 5    受光部
 6    制御部
 7    アクチュエータ
 8    車両ドア
 9    ドア制御部
 A    反射型光センサ
DESCRIPTION OF SYMBOLS 1 Detection area 2 Detection light 3 Reflected light 4 Detection object 5 Light-receiving part 6 Control part 7 Actuator 8 Vehicle door 9 Door control part A Reflection type optical sensor

Claims (5)

  1.  車両外壁部から車両外部に設定される検出領域に向けてパルス状の検出光を投光し、検出領域からの反射光の光量が所定の検出判定用しきい値を超えた際に検出領域内への検出対象の進入を検出する制御部を備えた車両用反射型光センサであって、
     前記制御部におけるしきい値超過状態の判定は、適数のパルスから構成されるパルス群を判定単位として、発光時における受光部での受光光量の総和と、非発光時における受光部での受光光量の総和との差分を所定の検出判定用しきい値と比較して行われる車両用反射型光センサ。
    Pulse-shaped detection light is projected from the outer wall of the vehicle toward the detection area set outside the vehicle, and when the amount of reflected light from the detection area exceeds a predetermined threshold value for detection determination, It is a vehicle reflection type optical sensor provided with a control unit that detects entry of a detection target into the vehicle,
    The determination of the threshold excess state in the control unit is performed by using a pulse group composed of an appropriate number of pulses as a determination unit, and the total amount of light received by the light receiving unit during light emission and light reception by the light receiving unit during non-light emission. A reflective optical sensor for a vehicle, which is performed by comparing a difference with a total light amount with a predetermined threshold value for detection determination.
  2.  前記制御部は、各パルス群に対し、発光時の受光部における受光光量の総和と非発光時の受光部における受光光量の総和の差分に対する偏差平方和相当値が所定の検定用しきい値以下である場合にのみ有効検出光とする検定を実行し、有効検出光のみを判定対象反射光として採用する請求項1記載の車両用反射型光センサ。 The control unit, for each pulse group, a deviation square sum equivalent value for a difference between the total amount of received light in the light receiving unit during light emission and the total amount of received light in the light receiving unit during non-light emission is equal to or less than a predetermined test threshold value. 2. The vehicular reflective optical sensor according to claim 1, wherein the test is performed with the effective detection light only in the case of the above, and only the effective detection light is adopted as the determination target reflected light.
  3.  前記制御部は、検出領域からの反射光量がしきい値超過状態を検出した際、検出光の発光間隔を短縮し、短周期期間内における所定回数のしきい値超過状態の検出により検出確認信号を出力した後、発光間隔を長周期に復帰させる請求項1記載の車両用反射型光センサ。 When the control unit detects that the amount of light reflected from the detection area exceeds the threshold value, the detection interval is shortened, and a detection confirmation signal is detected by detecting the threshold value excess state a predetermined number of times within a short period. The vehicle reflection type optical sensor according to claim 1, wherein the light emission interval is returned to a long cycle after the output of.
  4.  前記制御部は、最初のしきい値超過状態の検出後、所定回数しきい値超過状態を検出したときに短周期期間への移行制御を実行する請求項3記載の車両用反射型光センサ。 4. The vehicle reflection type optical sensor according to claim 3, wherein the control unit executes transition control to a short cycle period when the threshold excess state is detected a predetermined number of times after the first threshold excess state is detected.
  5.  請求項1記載の車両用反射型光センサと、
     車両用反射型光センサにおける検出対象の検出確認信号を条件としてアクチュエータを作動させて車両ドアを開放操作するドア制御部とを有する車両ドア開閉制御装置。
    A vehicle reflective optical sensor according to claim 1;
    A vehicle door opening / closing control device comprising: a door control unit that operates an actuator to open and close a vehicle door on condition of a detection confirmation signal of a detection target in a vehicle reflection type optical sensor.
PCT/JP2014/069299 2013-09-24 2014-07-22 Vehicular reflective optical sensor WO2015045587A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-196896 2013-09-24
JP2013196896 2013-09-24

Publications (1)

Publication Number Publication Date
WO2015045587A1 true WO2015045587A1 (en) 2015-04-02

Family

ID=52742744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069299 WO2015045587A1 (en) 2013-09-24 2014-07-22 Vehicular reflective optical sensor

Country Status (1)

Country Link
WO (1) WO2015045587A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1095274A (en) * 1996-09-20 1998-04-14 Fuji Electric Co Ltd Stray light removing method in image forming optical sensor
JP2774545B2 (en) * 1989-02-07 1998-07-09 東陶機器株式会社 Automatic faucet device
JP2000275353A (en) * 1999-03-23 2000-10-06 Toto Ltd Object-detecting device
JP2012162908A (en) * 2011-02-07 2012-08-30 Alpha Corp Door body controller of vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2774545B2 (en) * 1989-02-07 1998-07-09 東陶機器株式会社 Automatic faucet device
JPH1095274A (en) * 1996-09-20 1998-04-14 Fuji Electric Co Ltd Stray light removing method in image forming optical sensor
JP2000275353A (en) * 1999-03-23 2000-10-06 Toto Ltd Object-detecting device
JP2012162908A (en) * 2011-02-07 2012-08-30 Alpha Corp Door body controller of vehicle

Similar Documents

Publication Publication Date Title
JP6232071B2 (en) Reflective optical sensor for vehicles
US9485840B2 (en) Sensing within a region
US6819407B2 (en) Distance measuring apparatus
US20100228448A1 (en) Vehicle door opening angle control system
JP4059224B2 (en) Driver appearance recognition system
US10173641B2 (en) Method for providing an operating signal
EP2077368B1 (en) Method of controlling an automatic door system
US10407024B2 (en) Assembly module
JP2013007171A (en) Automatic opening/closing device for vehicle door
JP6163481B2 (en) Vehicle control structure
WO2015045587A1 (en) Vehicular reflective optical sensor
AU2023237072A1 (en) Laser scanner for monitoring a monitoring region
US20200291713A1 (en) Door sensor device and method for operating a door sensor device
JP6926359B2 (en) Detection device
KR102463707B1 (en) System and method for informing parking position of vehicle
JP6208511B2 (en) Light sensor for vehicle
EP4304299A1 (en) Sensor combination for ultraviolet light system occupancy detection
JP2002187685A (en) Safety device of elevator door
KR102504414B1 (en) Vehicle interior sensing device and the method with preventing detection error
JP3059498B2 (en) Occupancy detection device
KR20200068820A (en) People counter for improving accuracy
KR101500401B1 (en) Apparatus and method for controlliing vehicle's courtesy light
JP2023066977A (en) Platform door device, state determination device, area sensor state determination method, and area sensor state determination program
JP2001226060A (en) Safety device for entrance of elevator
WO2016009843A1 (en) Vehicular lighting unit control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14849667

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14849667

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP