WO2015045551A1 - Lamp - Google Patents

Lamp Download PDF

Info

Publication number
WO2015045551A1
WO2015045551A1 PCT/JP2014/068019 JP2014068019W WO2015045551A1 WO 2015045551 A1 WO2015045551 A1 WO 2015045551A1 JP 2014068019 W JP2014068019 W JP 2014068019W WO 2015045551 A1 WO2015045551 A1 WO 2015045551A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
base
source unit
lamp
cover
Prior art date
Application number
PCT/JP2014/068019
Other languages
French (fr)
Japanese (ja)
Inventor
篤史 大野
孝佳 今成
守幸 関根
Original Assignee
岩崎電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 岩崎電気株式会社 filed Critical 岩崎電気株式会社
Publication of WO2015045551A1 publication Critical patent/WO2015045551A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/83Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks the elements having apertures, ducts or channels, e.g. heat radiation holes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/232Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings specially adapted for generating an essentially omnidirectional light distribution, e.g. with a glass bulb
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V25/00Safety devices structurally associated with lighting devices
    • F21V25/02Safety devices structurally associated with lighting devices coming into action when lighting device is disturbed, dismounted, or broken

Definitions

  • the present invention relates to a lamp.
  • a lamp having a plurality of light source units each having a mounting substrate on which a light emitting element is mounted on the surface of a metal base, and the plurality of light source units are arranged around the axis of the lamp with the back surface of the base facing inward.
  • a heat radiating fin is provided on the back surface of the base.
  • the present invention has been made in view of the above-described circumstances, and an object thereof is to provide a lamp capable of ensuring heat dissipation and preventing electric shock.
  • the present invention includes a plurality of light source units each including a mounting substrate on which a light emitting element is mounted, and a base made of a plate-like metal material on which the mounting substrate is provided.
  • a support body made of an insulating material that supports the light source unit, and each of the plurality of light source units is disposed around the support body with a back surface of the base body facing inward, and one end portion of the base body
  • the base is provided with a cover made of an insulating material that covers the periphery of the base, and the other end of the base is insulated between the other end and the inside.
  • a lamp comprising a lid made of a material.
  • the present invention is characterized in that in the lamp described above, a heat radiating fin is provided on the back surface of the base.
  • the present invention is characterized in that, in the lamp, a vent hole is formed in the lid.
  • the present invention is characterized in that, in the lamp, the cover is provided with a flange that protrudes to an adjacent light source unit.
  • the present invention is characterized in that, in the lamp, the mounting substrate is directly attached to the base.
  • the present invention is characterized in that, in the lamp described above, the lid body is connected to the other end portions of the bases of the plurality of light source units, and is provided substantially flush with the tip end of the other end portion. To do.
  • FIG. 1 is a perspective view of the LED lamp according to the first embodiment.
  • FIG. 2 is a side view of the LED lamp.
  • FIG. 3 is a plan view of the LED lamp.
  • FIG. 4 is an exploded perspective view of the LED lamp.
  • FIG. 5 is a perspective view of the LED lamp with one of the light source units removed.
  • FIG. 6 is an exploded perspective view of the light source unit.
  • 7A and 7B are diagrams showing the light source unit, where FIG. 7A is a front view of the light source unit viewed from the back side, FIG. 7B is a plan view, and FIG. 7C is a side view.
  • FIG. 8 is a chart showing an example of the correlation between the angle of the heat radiating fin (inclination angle) and the temperature of the light source unit.
  • FIG. 8 is a chart showing an example of the correlation between the angle of the heat radiating fin (inclination angle) and the temperature of the light source unit.
  • FIG. 9 is a table showing an example of the correlation between the interval between the heat radiating fins and the temperature of the light source unit.
  • FIG. 10 is a perspective view of the LED lamp as viewed from above.
  • FIG. 11 is a perspective view of the light source unit according to the second embodiment viewed from the back side.
  • FIG. 12 is a plan view showing a light source unit and a light source unit according to the third embodiment.
  • FIG. 1 to 4 are diagrams showing a configuration of an LED lamp 1 according to a first embodiment, in which FIG. 1 is a perspective view, FIG. 2 is a side view, FIG. 3 is a plan view, and FIG. 4 is an exploded perspective view.
  • the LED lamp 1 is a so-called cap-type lamp in which an LED 20 as an example of a light-emitting element is used as a light source and has a cap 10.
  • the base 10 is of a type that fits into an existing socket, and the LED lamp 1 can be mounted on an existing socket and used.
  • the LED lamp 1 extends like a bar like an arc tube of an HID lamp (discharge lamp), and emits radiated light substantially uniformly over the extending direction around the extending direction. Moreover, the LED lamp 1 has a light output that can be used in place of a high-power type existing discharge lamp such as an HID lamp. In addition, it can replace with LED20 and can use arbitrary elements for the light emitting element of a light source.
  • HID lamp discharge lamp
  • the LED lamp 1 receives DC power through a power supply circuit (also referred to as a power conversion circuit) that converts AC power from the commercial power supply into DC power. Supplied.
  • the LED lamp 1 does not include the power supply circuit, but is provided with a power supply circuit on the socket side so that DC power is input from the socket through the base 10. In other words, when the LED lamp 1 is used by being mounted on an existing lamp for a discharge lamp, the LED lamp 1 is used after the ballast included in the lamp is replaced with the power supply circuit.
  • the LED lamp 1 includes the base 10, a cylindrical mounting body 11 having the base 10 attached to one end, and a cylindrical shape connected to the other end of the mounting body 11.
  • the support 12, a plurality of (three in the present embodiment) light source units 13 arranged around the support 12 and supported by the support 12, and the light source units 13 are combined.
  • the LED lamp 1 has an elongated lamp shape extending in a rod shape as a whole.
  • each light source unit 13 is formed in a long plate shape having a longitudinal direction, surrounds the periphery of the axis C passing through the center of the bar shape of the LED lamp 1, and is arranged in alignment with the axis C in the longitudinal direction. It is supported by.
  • the axis C and the central axis of the base 10 are substantially coincident.
  • the base 10 is a screw-in type (rotating type) generally called an E-type base such as E26 type or E39 type, and is configured according to the existing size, and is screwed into an existing socket. It is possible. Direct current power from a lighting power source is supplied to the base 10 through a socket (not shown), and each light source unit 13 is turned on.
  • the base 10 may be a plug-in type.
  • FIG. 5 is a perspective view of the LED lamp 1 with one of the light source units 13 removed.
  • the support body 12 is provided with the cylindrical part 15 and the some attachment part 16, and these are integrally formed by the insulating material provided with electrical insulation.
  • a resin material is preferably used for this insulating material.
  • the cylindrical part 15 is a cylindrical part (cylindrical in this example) centering on the axis C, and the attachment body 11 is connected to the one end part 15a. Further, the cylindrical portion 15 is formed in a so-called cap shape with the other end portion 15b closed by a top surface 15c.
  • Each of the plurality of attachment portions 16 is a portion to which one end portion 13a of the light source unit 13 is attached.
  • the mounting portion 16 has a substantially rectangular parallelepiped shape, and is erected on the top surface 15c of the cylindrical portion 15 so as to surround the periphery of the axis C with the outer peripheral surface 16b serving as the mounting surface of the light source unit 13 facing outward. ing.
  • Each mounting portion 16 is provided at a position corresponding to the arrangement position of the light source unit 13.
  • the mounting portions 16 are provided at three locations at equal intervals (120 ° intervals) in the circumferential direction of the cylindrical portion 15. .
  • These mounting portions 16 are integrally coupled by a coupling portion 16a provided at a position overlapping the axis C.
  • an introduction hole 17 that communicates with the cylindrical portion 15 through the inside of the attachment portion 16 is formed.
  • a lead wire (not shown) of the light source unit 13 is passed through the introduction hole 17, and this lead wire passes through the inside of the support body 12 and the attachment body 11 from the introduction hole 17 and is connected to the base 10.
  • a screw hole 18 is formed below the introduction hole 17 on the outer peripheral surface 16b.
  • the light source unit 13 has a fixed hole portion 19 at one end portion 13a in the longitudinal direction, and the outer peripheral surface 16b of each mounting portion 16 is inserted by a screw 45 inserted through the fixed hole portion 19 and fastened to the screw hole portion 18. Fixed to.
  • each light source unit 13 has one end 13a supported by the mounting portion 16 and extends upward along the axis C so as to surround the axis C, and is supported by the support 12 in a cantilever manner. Yes.
  • a space R through which air can flow is formed on the inner side (the side of the axis C) surrounded by the light source units 13.
  • the other end portion 13 b in the longitudinal direction of the light source unit 13 is coupled to each other by a coupling member 14.
  • the coupling member 14 is also a plate-like lid that closes the end of the space R in the direction of the axis C. More specifically, the coupling member 14 closes communication between the other end portion 13b of the light source unit 13 and the inner space R, and prevents entry from the other end portion 13b of the light source unit 13 into the inner space R. It is a lid.
  • the coupling member 14 has a shape in plan view seen from the other end portion 13 b side of the space R in order to close the other end portion 13 b side of the space R, that is, the other end portions of the three light source units 13.
  • the shape is a substantially equilateral triangle shape.
  • the coupling member 14 is made of an insulating material that insulates electricity, for example, an insulating plastic.
  • FIG. 6 is an exploded perspective view of the light source unit 13.
  • 7 is a view showing the light source unit 13
  • FIG. 7 (a) is a front view of the light source unit 13 seen from the back side
  • FIG. 7 (b) is a plan view
  • FIG. 7 (c) is a side view. It is.
  • the light source unit 13 emits radiated light using the LED 20 as a light source, and is a rectangular module extending along the axis C.
  • the light source unit 13 is formed longer in the direction of the axis C than in the width direction thereof, and is formed in a rectangular shape when viewed from the front.
  • the LED lamp 1 includes three light source units 13, and these light source units 13 face the back surface 22 d of each base 22 inward and extend in the same direction as the axis C, and are equally spaced around the axis C. And is supported by the support 12. Thereby, light will be radiated
  • These light source units 13 all have the same structure and shape, and when configuring the LED lamp 1 with different light outputs, the number of light source units 13 corresponding to the desired light output is around the support 12. Arranged.
  • a gap G ⁇ b> 1 is provided between the adjacent light source units 13. By providing the gap G1, external air can be taken into the space R through the gap G1 and the light source unit 13 can be cooled.
  • the light source unit 13 includes a mounting substrate 21 on which the LEDs 20 are mounted, a base body 22 to which the mounting substrate 21 is attached, and a cover 30 that covers the mounting substrate 21.
  • the mounting board 21 is a substantially rectangular plate-like printed wiring board, and a plurality of LEDs 20 and an electrode pattern 21a that constitutes a charging unit by soldering the lead wires are provided on the surface thereof.
  • the electrode pattern 21a is formed at the end of the mounting substrate 21, and is electrically connected to each LED 20 in series or in parallel through a printed wiring (not shown).
  • the LED 20 is formed by arranging a large number of LED elements, for example, in a lattice shape in a substantially rectangular range in plan view, and molding the surface thereof with a thin thickness with a resin material, and substantially the entire surface emits light. As shown in FIG. 6, a plurality of (two in the illustrated example) LEDs 20 are arranged in series in the axis C direction on the mounting substrate 21 with almost no gap so that linear light emission can be obtained by these LEDs 20. It has become.
  • the base 22 is formed by forming a metal material (for example, aluminum), which is a kind of high thermal conductivity material having high thermal conductivity, into an elongated rectangular plate shape, and receives heat generated by the base for packaging the mounting substrate 21 and the LED 20. It functions as a heat sink that dissipates heat. More specifically, as shown in FIG. 6, the base body 22 is formed in a thin plate shape (plate shape with a flat front and back) having a surface area that can accommodate the mounting substrate 21 therein, and the surface 22c A mounting portion 22f is formed. The mounting portion 22f is a recess having a depth that allows the mounting substrate 21 to be substantially flush with the base 22.
  • a metal material for example, aluminum
  • the base body 22 is formed in a thin plate shape (plate shape with a flat front and back) having a surface area that can accommodate the mounting substrate 21 therein, and the surface 22c
  • a mounting portion 22f is formed.
  • the mounting portion 22f is a recess having a depth that allows the
  • the mounting portion 22f is formed in a planar shape so that the bottom surface of the mounting portion 22f can be in close contact with the mounting substrate 21.
  • the heat transfer from the substrate to the base 22 is enhanced.
  • the mounting substrate 21 is directly attached to the mounting portion 22f without using a sheet-like electrical insulating member or the like. For this reason, the heat of the mounting substrate 21 is efficiently transmitted to the base body 22.
  • a substantially rectangular lead-out hole 23 penetrating the base 22 is provided at one end 22 a in the longitudinal direction of the base 22, and the lead wire passes through the lead-out hole 23 and is drawn out to the back surface 22 d side.
  • a cylindrical section 24 having a rectangular cross section connected to the edge of the outlet hole 23 is formed on the rear surface 22d so as to stand on the rear surface 22d.
  • protrusions 25 are provided on both sides of the cylinder part 24, and each protrusion 25 is formed on both sides of the cylinder part 24 so as to extend in the axis C direction.
  • the fixed hole portion 19 is formed closer to the end of the one end portion 22a than the cylindrical portion 24 is.
  • the one end portion 22a is provided with a fixing hole portion 22g fixed by a screw 45.
  • the base body 22 is positioned by the cylindrical portion 24 being inserted into the introduction hole 17 (FIG. 5) and the pair of protrusions 25 are fitted to the both side surface portions 16 c (FIG. 5) of the mounting portion 16, and is fixed by screws 45. .
  • a rod-like connecting stay portion 26 that protrudes toward the axis C is provided upright on the back surface 22 d of the other end portion 22 b in the longitudinal direction of the base body 22.
  • the connecting stay portion 26 is located at a substantially central position in the width direction of the base body 22, and at a position entering the end portion 22 a side from the end surface 27 of the other end portion 22 b of the base body 22 by the thickness of the coupling member 14. Is provided.
  • a screw hole 26a is formed at the tip of the connection stay portion 26, and the coupling member 14 is fixed to the connection stay portion 26 by a coupling member fixing screw 28 fastened to the screw hole 26a.
  • a plurality of long plate-shaped heat radiation fins 29 are provided upright on the back surface 22 d of the base 22.
  • the radiating fins 29 are formed on the back side of the mounting portion 22f so that the heat of the mounting substrate 21 housed in the mounting portion 22f on the surface 22c can be efficiently radiated.
  • a plurality of radiating fins 29 are provided in a range over the entire width direction of the base body 22, and a plurality of radiating fins 29 are provided in a range over a section between the connecting stay portion 26 and the cylindrical portion 24 in the longitudinal direction. ing.
  • Each radiating fin 29 extends in a direction inclined with respect to the axis C.
  • the radiating fins 29 are provided in a shape that is not parallel to the longitudinal direction of the base 22 but extends in a direction inclined by a predetermined angle.
  • the inclination angle of each radiation fin 29 is the same, and the height and thickness of each radiation fin 29 are the same over its entire length.
  • the radiating fins 29 are provided to extend linearly at equal intervals and in parallel.
  • the inclination angle of each radiation fin 29 does not need to be the same, and it is not necessary to form all the radiation fins 29 in parallel. Further, the radiating fins need not be equally spaced.
  • the cover 30 covers the surface 22 c of the base 22 and forms a waterproof structure with the base 22.
  • the cover 30 is formed in a rectangular shape in a front view corresponding to the shape of the surface 22c and covers substantially the entire surface 22c, and an outer periphery provided over the entire periphery of the edge of the cover body 31. And a surface cover portion 32.
  • the cover main body 31 is formed with a dome-shaped bulging portion 31 a having a semicircular cross section at a position corresponding to the LED 20.
  • the entire cover 30 is made of a material having translucency and electrical insulation, and in this example, is made of a resin material.
  • the outer peripheral surface cover portion 32 is formed so as to cover the outer peripheral portion 22e, which is the outer surface of the base member 22, over the entire periphery. When the cover 30 is attached, the outer peripheral surface cover portion 32 is attached to the inner surface of the outer peripheral surface cover portion 32. The outer peripheral portion 22e of 22 enters and fits.
  • a plate-like flange portion 33 protruding toward the side (outer side) is formed on the long-side outer peripheral portion 32 a which is a pair of outer peripheral portions extending in parallel with the axis C.
  • the flange portion 33 is provided at the tip of the outer peripheral surface cover portion 32 in the protruding direction, and is provided over substantially the entire length of the cover 30.
  • a waterproof packing (not shown) is interposed between the cover 30 and the base body 22.
  • the cover 30 includes a seat portion 31 b through which the screw 45 is inserted in the cover main body portion 31.
  • the cover main body 31 and the base body 22 are fastened together with the mounting portion 16 by screws 45.
  • a gap G1 is provided between adjacent light source units 13 in the circumferential direction (the direction around the axis C), and the space R is formed from the gap G1 or the gap between the light source unit 13 and the support 12.
  • Part of the air that has flowed in passes through the ventilation path 35 between the radiation fins 29 and cools the radiation fins 29.
  • the LED lamp 1 shown in FIG. 2 is arranged vertically so that the axis C is oriented in the vertical direction
  • one side in the width direction of the base 22 is an inlet 35a (FIG. 7) of the airflow W flowing through the ventilation path 35, and the width direction
  • the other side becomes the discharge port 35b of the airflow W. Since the air heated by the light source unit 13 flows upward, the flow flowing from each inlet 35a at a lower position to each outlet 35b at a higher position becomes dominant.
  • the radiation fins 29 are arranged in parallel to the axis C by arranging the radiation fins 29 inclined with respect to the axis C. Compared with the case, the distance of the ventilation path 35 is short. For this reason, an air current can be efficiently passed through the air passage 35, and the heat of the light source unit 13 can be efficiently radiated. Further, since the radiating fins 29 are inclined and extend with respect to the axis C, the airflow passing through the radiating fins 29 on the lower side of the light source unit 13 is discharged from the upper and lower intermediate outlets 35b, and the lower side heat is supplied. Can be prevented from affecting the upper radiation fin 29.
  • the adjacent light source units 13 are the same components, and the inclination directions of the heat radiation fins 29 are also the same between the adjacent light source units 13.
  • FIG. 8 is a chart showing an example of the correlation between the angle S (inclination angle) at which the radiating fin 29 extends with respect to the axis C and the temperature of the light source unit 13.
  • FIG. 8 shows the result when the LED lamp 1 is vertically arranged, and shows the result of the test conducted by the present inventors.
  • the angle S of the radiation fin 29 is an angle with respect to the reference line L (FIG. 7) orthogonal to the axis C.
  • the angle S of the radiating fin 29 was 0 °, that is, an angle orthogonal to the axis C
  • the temperature of the light source unit 13 was the highest. This is considered to be because the airflow hardly flows in the ventilation path 35.
  • the temperature of the light source unit 13 was lower than when the angle S was 0 °. This is considered to be because the airflow easily flows through the ventilation path 35.
  • the angle S of the radiating fin 29 was 90 °, that is, an angle parallel to the axis C, the temperature of the light source unit 13 was lower than when the angle S was 15 °. This is considered to be because the airflow flows through the ventilation path 35 more easily than when the angle S is 15 °.
  • the temperature value of the light source unit 13 can be connected by an approximate straight line A1, and the angle S of the radiating fin 29 and the temperature of the light source unit 13 are It can be seen that is in a linear relationship.
  • the temperature of the light source unit 13 is significantly lower than that when the angle is 15 °, and is significantly lower than the temperature predicted from the approximate straight line A1.
  • the temperature of the light source unit 13 when the angle S of the radiating fins 29 is 30 ° is lower than when the angle S of the radiating fins 29 is 90 °. This is because by tilting the radiating fins 29 with respect to the axis C, an effect of allowing the air flow to flow efficiently through the ventilation path 35 is obtained, and this effect is remarkably generated by setting the angle S to 30 °. It is thought that.
  • the angle S of the radiating fin 29 When the angle S of the radiating fin 29 is 45 °, the temperature of the light source unit 13 is lower than that when the angle S is 30 °, and is significantly lower than the temperature predicted from the approximate straight line A1. When the angle S of the radiating fin 29 is 60 °, the temperature of the light source unit 13 is the lowest and is significantly lower than the temperature predicted from the approximate straight line A1. When the angle S of the radiating fin 29 is 75 °, the temperature of the light source unit 13 is equivalent to that when the angle S is 45 °, and is significantly lower than the temperature predicted from the approximate straight line A1.
  • the value of the temperature of the light source unit 13 when the angle S of the radiating fins 29 is 0 °, 30 °, 45 °, 60 °, 75 °, and 90 ° can be connected by an approximate curve A2.
  • the approximate curve A2 is a substantially quadratic curve in which the temperature of the light source unit 13 is the lowest when the angle S of the radiating fins 29 is 60 °. From this experimental result, it is clear that when the angle S of the radiating fin 29 is in the range of 25 ° to 85 °, a significant difference from the result predicted from the approximate straight line A1 can be seen.
  • the light source unit 13 can be effectively cooled by the radiation fins 29 by setting the angle S of the radiation fins 29 to a range of 25 ° to 85 °. Furthermore, it is more preferable that the angle S of the radiating fins 29 be in the range of 45 ° to 75 ° because the temperature of the light source unit 13 can be greatly reduced.
  • FIG. 9 is a chart showing an example of the correlation between the distance between the radiation fins 29 and the temperature of the light source unit 13.
  • FIG. 9 shows the results when the angle S of the radiating fins 29 is set to 60 ° and the LED lamps are arranged vertically, and shows the results of tests conducted by the present inventors.
  • the interval between the radiation fins 29 is the distance between the opposing surfaces of the adjacent radiation fins 29.
  • the temperature of the light source unit 13 was higher when the distance between the heat dissipating fins 29 was 12 mm than when the distance between the heat radiating fins 29 was 3 mm.
  • the temperature value of the light source unit 13 when the distance between the radiation fins 29 is 3 mm and 12 mm can be connected by the approximate straight line B1.
  • the temperature of the light source unit 13 decreased as the interval increased from 3 mm, and was lowest at 6 mm. Further, the temperature of the light source unit 13 increased as the distance between the radiation fins 29 increased from 6 mm, and was highest at 12 mm. It is considered that the airflow can be efficiently flowed through the ventilation path 35 by setting the distance between the radiation fins 29 to 6 mm.
  • the temperature of the light source unit 13 can be lowered by setting the interval between the radiation fins 29 in the range of 4 mm to 11 mm, as predicted from the approximate straight line B1. Furthermore, it is more preferable that the temperature of the light source unit 13 can be greatly reduced by setting the interval between the radiation fins 29 to a range of 5 mm to 9 mm.
  • an electric shock prevention structure is provided so that a finger of a user or an operator does not touch the base body 22 and the heat radiation fin 29 from the outside of the LED lamp 1.
  • the structure for preventing electric shock will be described.
  • the outer peripheral surface cover portion 32 of the cover 30 is formed higher than the outer peripheral portion 22e of the base 22, and the light source unit 13 is placed on the back surface 22d side as shown in FIG. ,
  • the outer peripheral part 22e is one step lower than the outer peripheral surface cover part 32.
  • the outer peripheral part 22e is completely covered with the outer peripheral surface cover part 32, and is not exposed outside.
  • the outer peripheral surface cover portion 32 is formed integrally with the cover 30 and is made of an insulating material.
  • the outer peripheral surface cover part 32 has a plurality of claw parts 34 projecting inward of the cover 30 at the tip part, and the cover 30 is fixed to the base body 22 by being caught by the end of the outer peripheral part 22e of the base body 22. Is done.
  • each light source unit 13 is arranged so as to form a space R of a substantially regular polygon (substantially regular triangle in the present embodiment) on the inner side, and the gap G1 is formed at each vertex of the substantially regular polygon. Formed in position.
  • the gap G1 is a gap in the circumferential direction of the LED lamp 1 formed between the adjacent light source units 13, and extends the flange 33 from the cover 30 to the gap G1 (that is, toward the adjacent light source unit 13). , Its size has been adjusted.
  • the gap G1 is a gap between the tips of the adjacent flanges 33.
  • the size of the gap G1 is set so that the test finger T having a predetermined shape formed on the assumption of a human finger can only enter the space R to a predetermined depth.
  • the predetermined depth is a depth at which the test finger T (FIG. 3) that has entered the space R does not come into contact with the radiation fins 29. For this reason, it is possible to prevent the finger of an operator or the like from entering the space R and touching the heat radiation fin 29 by the flange portion 33 while taking the air from the gap G ⁇ b> 1 to cool the heat radiation fin 29.
  • the coupling member 14 is a plate-like lid formed in a substantially regular polygon shape that is slightly smaller than the substantially regular polygon shape of the space R.
  • the end portion 13b is partitioned to close the opening Rk (that is, formed by being edged by the other end portion 13b).
  • the coupling member 14 is provided with a ventilation hole 40 near each vertex of the substantially regular polygonal shape, and a central hole 41 is also provided at a central portion overlapping the axis C.
  • the coupling member 14 includes a seat portion 42 through which the coupling member fixing screw 28 is inserted between the adjacent ventilation holes 40.
  • the surface 14a of the coupling member 14 is flat except for the hole portion.
  • Receiving portions 43 projecting toward the space R are formed at positions corresponding to the respective seat portions 42 on the back surface of the coupling member 14.
  • the coupling member 14 is coupled to each light source unit 13 by placing the receiving portion 43 on the coupling stay portion 26 and fastening the coupling member fixing screw 28 inserted through the seat portion 42 into the screw hole 26a. That is, the other end 13b of each light source unit 13 is integrally coupled via the coupling member 14, and the opening Rk at the upper end of the space R (the end opposite to the base 10 of the LED lamp 1) is the coupling member. 14 is blocked.
  • the surface 14 a of the coupling member 14 is provided substantially flush with the upper end surface 30 a (tip surface) of the cover 30 of the light source unit 13. For this reason, even if it is the structure which provided the coupling member 14 and improved the rigidity of the light source unit 13, the LED lamp 1 can be reduced in size.
  • an upper gap G ⁇ b> 2 (FIG. 10) is formed between the outer peripheral surface of the coupling member 14 and the light source unit 13.
  • the upper gap G2 is set to a size that is smaller than the gap G1 so that the test finger T does not touch the radiating fins 29 through the upper gap G2.
  • the ventilation hole 40 and the central hole 41 of the coupling member 14 are set to a size that prevents the test finger T from touching the radiation fin 29 through the ventilation hole 40 and the central hole 41. For this reason, a finger of an operator or the like is prevented from touching the heat radiation fin 29.
  • FIG. 10 is a perspective view of the LED lamp 1 as viewed from above.
  • FIG. 10 shows a state where one light source unit 13 is removed.
  • a relatively large corner gap G3 is formed between the apex of the substantially regular polygonal shape of the coupling member 14 and the upper end of the gap G1.
  • the corner gap G3 is set to a size such that the test finger T does not touch the radiating fin 29 through the corner gap G3. For this reason, it is possible to prevent a finger of an operator or the like from touching the radiating fin 29 while adopting a configuration in which air enters and leaves the space R from the corner gap G3.
  • a relatively large corner gap G4 is formed between the support 12 and the lower end of the gap G1.
  • the corner gap G4 is set to a size such that the test finger T does not touch the radiating fin 29 through the corner gap G4. For this reason, it is possible to prevent a finger of an operator or the like from touching the radiation fin 29 while adopting a configuration in which air enters and leaves the space R from the corner gap G4.
  • the LED lamp 1 includes the plurality of light source units 13 having the mounting substrate 21 on which the LEDs 20 are mounted on the surface 22c of the base body 22,
  • the plurality of light source units 13 are arranged around the axis C of the LED lamp 1 with the back surface 22d of each base 22 facing inward and with a gap G1 therebetween, and the back surface 22d of the base 22 has an axial direction of the axis C.
  • Radiating fins 29 are provided so as to be inclined with respect to the surface.
  • the light source unit 13 is formed longer in the direction of the axis C than in the width direction, and a plurality of LEDs 20 are arranged in the direction of the axis C.
  • the distance of the ventilation path 35 of the airflow along the radiation fin 29 can be shortened and the airflow can be efficiently flowed to the ventilation path 35 of the radiation fin 29, the heat of the LED lamp 1 is efficiently radiated by the radiation fin 29. it can.
  • the angle S of the radiating fin 29 with respect to the reference line L orthogonal to the axis C is in the range of 25 ° to 85 °, the airflow can be efficiently passed through the ventilation path 35 of the radiating fin 29, and the LED lamp 1 Can be efficiently radiated by the radiation fins 29.
  • heat can be efficiently radiated by setting the distance between the radiation fins 29 to a range of 4 mm to 11 mm.
  • the LED lamp 1 includes a plurality of light sources in which the mounting substrate 21 on which the LEDs 20 are mounted is provided on the surface 22c of the base 22 made of a substantially flat metal material.
  • the unit 13 and a support 12 made of an insulating material and supporting the plurality of light source units 13 are provided.
  • the light source unit 13 includes a cover 30 made of an insulating material that covers the mounting substrate 21 and the outer peripheral portion 22e of the base body 22, The one end portion 13a is attached so as to cover the support 12 from the periphery, and is disposed around the axis C of the LED lamp 1 with the back surface 22d of each base member 22 facing inward.
  • the LED lamp 1 includes a plurality of light source units.
  • the coupling member 14 made of an insulating material that closes an opening formed by the other end 13b. For this reason, the heat dissipation of the mounting substrate 21 is enhanced by the metal base 22. Further, the cover 30 made of an insulating material covering the outer peripheral portion 22e of the base 22 can prevent the finger from directly touching the outer peripheral portion 22e as well as the surface 22c. In addition, since the opening formed by the other end portion 13b of the light source unit 13 is blocked by the coupling member 14 made of an insulating material, the coupling member 14 made of an insulating material means that a finger enters the opening portion Rk made by the other end portion 13b. Therefore, it is possible to prevent the finger from coming into contact with the heat radiation fin 29. Thereby, since it is not necessary to cover the whole LED lamp 1 with a cover or the like, the heat dissipation of the LED lamp 1 can be ensured and an electric shock can be prevented.
  • the cover 30 and the coupling member 14 that cover the outer peripheral portion 22e are provided, it is possible to prevent a finger from touching the radiation fins 29 on the back surface 22d of the base 22. Moreover, since the ventilation hole 40 is formed in the coupling member 14, favorable heat dissipation can be obtained while preventing an electric shock.
  • the collar part 33 protruding in the gap G1 between the light source units 13 is provided, it is possible to prevent an electric shock by preventing the finger from entering the gap G1, and to dissipate heat from the gap G1. Further, since the mounting substrate 21 is directly attached to the base 22, heat is efficiently transmitted from the mounting substrate 21 to the base 22. For this reason, heat can be efficiently radiated through the radiation fins 29. Even in the configuration in which the mounting substrate 21 is directly attached to the base body 22, it is possible to prevent the finger from touching the base body 22 by the electric shock prevention structure.
  • the coupling member 14 couples the other end portions 13b to each other and is provided substantially flush with the upper end surface 30a of the other end portion 13b. For this reason, while being able to prevent an electric shock with a simple structure using the coupling member 14 which couple
  • the said 1st Embodiment shows the one aspect
  • This invention is not limited to the said 1st Embodiment.
  • the clearance gap G1 was demonstrated as what is a clearance gap between the front-end
  • the LED lamp 1 was demonstrated as what is vertically arrange
  • a horizontal arrangement in which the axis C is oriented in the horizontal direction is also possible, and in this case as well, the radiation fins 29 are inclined with respect to the vertical airflow, so air can be taken in from each light source unit gap G1, Since the air warmed by the heat from the LED 20 escapes to the outside through the gap G1 on the opposite side, heat can be radiated efficiently.
  • the cover 30 made of an insulating material has been described as covering the mounting substrate 21 and the outer peripheral portion 22e of the base body 22, but the cover 30 may not be integrated.
  • the outer peripheral surface cover part 32 and the cover main body part 31 may be configured separately and the outer peripheral surface cover part 32 may be an insulator.
  • the light source unit 13 has been described as being disposed so as to form a substantially equilateral triangular space R on the inside thereof.
  • the present invention is not limited to this, and for example, the light source unit 13. May be arranged so as to form a substantially square space inside.
  • the coupling member 14 is also formed in a substantially regular square according to the shape of the space.
  • each radiation fin 29 was demonstrated as what was extended linearly, this invention is not limited to this.
  • Each radiating fin 29 should just incline with respect to the axis C between the inflow port 35a and the discharge port 35b, seeing the flow path as a whole, for example, between the inflow port 35a and the discharge port 35b. May be curved.
  • each radiating fin 29 has been described as being the same over its entire length, but in the second embodiment, the height of the radiating fin 29 is the length direction thereof. This is different from the first embodiment described above.
  • FIG. 11 is a perspective view of the light source unit 113 according to the second embodiment viewed from the back side.
  • the light source unit 113 includes a base body 122 and a cover 30.
  • the base 122 is the same as the base 22 except for the shape of the radiation fins 129.
  • the radiating fin 129 is formed so that its height gradually increases as it goes from the inlet 35a side of the airflow W to the outlet 35b.
  • the heat radiation fin 129 can be reduced in weight while securing the heat radiation performance of the heat radiation fin 129.
  • the adjacent light source units 13 are the same components, and the inclination direction of the radiation fins 29 is also assumed to be the same between the adjacent light source units 13.
  • the third embodiment is different from the first embodiment in that the inclination direction of the radiation fins 29 is different between adjacent light source units 13.
  • FIG. 12 is a plan view illustrating the light source unit 13 and the light source unit 213 according to the third embodiment.
  • FIG. 12 a state in which the light source unit 13 and the light source unit 213 are unfolded on a plane in a direction removed from the LED lamp 1 is shown.
  • the light source unit 213 is formed symmetrically with respect to the light source unit 13 with respect to the axis C. Since the light source unit 13 and the light source unit 213 are bilaterally symmetric, the same reference numerals are given to the respective parts and description thereof is omitted here.
  • the inflow ports 35a are arranged adjacent to each other, and the discharge ports 35b are located far from each other.
  • the adjacent light source units 13 and the heat radiation fins 29 of the light source units 213 are formed substantially symmetrically with respect to the axis C, and therefore, the heat radiation fins of one adjacent light source unit 13. It is possible to prevent the warmed airflow W discharged from the 29 outlets 35 b from flowing into the inlets 35 a of the radiation fins 29 of the other light source unit 213. For this reason, it is difficult to be affected by the heat from the adjacent light source units, and the heat radiation fins 29 can efficiently radiate heat.
  • LED lamp (lamp) DESCRIPTION OF SYMBOLS 12 Support body 13,113,213 Light source unit 13a One end part 13b Other end part 14 Connection member (lid body) 20 LED (light emitting device) 21 mounting substrate 22, 122 base 22c surface 22e outer peripheral part (peripheral part) 22d Back surface 29,129 Radiation fin 30 Cover 30a Upper end surface (tip surface) 32 Outer peripheral surface cover part 33 Gutter part 40 Ventilation hole C axis

Abstract

The present invention makes it possible to maintain heat radiation properties and prevent electric shock in a lamp. A lamp is provided with a plurality of light source units (13) that comprise a mounting board (21) on the surface of a metal substrate having a substantially flat plate shape, said mounting board (21) having an LED (20) mounted thereto; and a support body (12) that comprises an insulating material and that supports the plurality of light source units (13). A heat-radiating fin (29) is provided to the rear surface of the substrate. The plurality of light source units (13) are attached so that one end section (13a) thereof surrounds and covers the support body (12) and arranged around the axis (C) of an LED lamp (1) so that the rear surface of each substrate faces inward. The lamp is additionally provided with a joining member that comprises an insulating material and that blocks an opening that is created by the other end sections (13b) of the plurality of light source units (13).

Description

ランプlamp
 本発明は、ランプに関する。 The present invention relates to a lamp.
 従来、発光素子が実装される実装基板を金属製の基体の表面に有する複数の光源ユニットを備え、これら複数の光源ユニットが、基体の裏面を内側に向けてランプの軸線周囲に配置されるランプが知られている(例えば、特許文献1参照)。特許文献1のランプでは、基体の裏面に放熱フィンが設けられている。 2. Description of the Related Art Conventionally, a lamp having a plurality of light source units each having a mounting substrate on which a light emitting element is mounted on the surface of a metal base, and the plurality of light source units are arranged around the axis of the lamp with the back surface of the base facing inward. Is known (see, for example, Patent Document 1). In the lamp of Patent Document 1, a heat radiating fin is provided on the back surface of the base.
特開2013-122899号公報JP 2013-122899 A
 ところで、仮に、従来のランプに対し、ランプの全体を樹脂やガラス等のカバーで覆うようにすれば、ユーザや作業者の手や指と上記基体の接触を阻止し感電が防止される。しかしながら、カバー内に熱が籠ることから、基体の放熱フィンによる放熱性能が低下してしまう。
 本発明は、上述した事情に鑑みてなされたものであり、放熱性を確保でき、且つ、感電を防止できるランプを提供することを目的とする。
By the way, if the entire lamp is covered with a cover made of resin, glass, or the like with respect to a conventional lamp, contact between the user's or operator's hand or finger and the substrate is prevented, and electric shock is prevented. However, since heat is generated in the cover, the heat radiation performance by the heat radiation fins of the base body is deteriorated.
The present invention has been made in view of the above-described circumstances, and an object thereof is to provide a lamp capable of ensuring heat dissipation and preventing electric shock.
 この明細書には、2013年9月25日付で出願された日本国特許出願・特願2013-198280の全ての内容が含まれる。
 上記目的を達成するために、本発明は、発光素子が実装された実装基板と、前記実装基板が表面に設けられた板状の金属材からなる基体とを有した複数の光源ユニットと、複数の前記光源ユニットを支持する絶縁材からなる支持体と、を備え、複数の前記光源ユニットのそれぞれは、前記基体の裏面を内側に向けて前記支持体の周りに配置され、当該基体の一端部で前記支持体に支持され、前記基体の表面には当該基体の周縁部まで覆う絶縁材からなるカバーを備え、前記基体の他端部には、当該他端部と前記内側の間を閉じる絶縁材からなる蓋体を備えたことを特徴とするランプを提供する。
This specification includes all the contents of the Japanese Patent Application / Japanese Patent Application No. 2013-198280 filed on September 25, 2013.
In order to achieve the above object, the present invention includes a plurality of light source units each including a mounting substrate on which a light emitting element is mounted, and a base made of a plate-like metal material on which the mounting substrate is provided. A support body made of an insulating material that supports the light source unit, and each of the plurality of light source units is disposed around the support body with a back surface of the base body facing inward, and one end portion of the base body The base is provided with a cover made of an insulating material that covers the periphery of the base, and the other end of the base is insulated between the other end and the inside. Provided is a lamp comprising a lid made of a material.
 また本発明は、上記ランプにおいて、前記基体の裏面には放熱フィンが設けられていることを特徴とする。 Further, the present invention is characterized in that in the lamp described above, a heat radiating fin is provided on the back surface of the base.
 また本発明は、上記ランプにおいて、前記蓋体には通風孔が形成されていることを特徴とする。 Further, the present invention is characterized in that, in the lamp, a vent hole is formed in the lid.
 また本発明は、上記ランプにおいて、前記カバーには、隣の光源ユニットに突出する鍔部が設けられることを特徴とする。 Further, the present invention is characterized in that, in the lamp, the cover is provided with a flange that protrudes to an adjacent light source unit.
 また本発明は、上記ランプにおいて、前記実装基板は、前記基体に直付けされていることを特徴とする。 Further, the present invention is characterized in that, in the lamp, the mounting substrate is directly attached to the base.
 また本発明は、上記ランプにおいて、前記蓋体は、複数の前記光源ユニットの基体のそれぞれの他端部を結合し、前記他端部の先端と略面一に設けられていることを特徴とする。 Further, the present invention is characterized in that, in the lamp described above, the lid body is connected to the other end portions of the bases of the plurality of light source units, and is provided substantially flush with the tip end of the other end portion. To do.
 本発明によれば、ランプにおいて、放熱性を確保でき、且つ、感電を防止できる。 According to the present invention, in the lamp, heat dissipation can be ensured and electric shock can be prevented.
図1は、第1の実施の形態に係るLEDランプの斜視図である。FIG. 1 is a perspective view of the LED lamp according to the first embodiment. 図2は、LEDランプの側面図である。FIG. 2 is a side view of the LED lamp. 図3は、LEDランプの平面図である。FIG. 3 is a plan view of the LED lamp. 図4は、LEDランプの分解斜視図である。FIG. 4 is an exploded perspective view of the LED lamp. 図5は、光源ユニットの一つを取り外した状態のLEDランプの斜視図である。FIG. 5 is a perspective view of the LED lamp with one of the light source units removed. 図6は、光源ユニットの分解斜視図である。FIG. 6 is an exploded perspective view of the light source unit. 図7は、光源ユニットを示す図であり、(a)は光源ユニットを裏面から見た正面図であり、(b)は平面図であり、(c)は側面図である。7A and 7B are diagrams showing the light source unit, where FIG. 7A is a front view of the light source unit viewed from the back side, FIG. 7B is a plan view, and FIG. 7C is a side view. 図8は、放熱フィンの角度(傾斜角度)と光源ユニットの温度との相関の一例を示す図表である。FIG. 8 is a chart showing an example of the correlation between the angle of the heat radiating fin (inclination angle) and the temperature of the light source unit. 図9は、放熱フィンの間隔と光源ユニットの温度との相関の一例を示す図表である。FIG. 9 is a table showing an example of the correlation between the interval between the heat radiating fins and the temperature of the light source unit. 図10は、LEDランプを上方から見た斜視図である。FIG. 10 is a perspective view of the LED lamp as viewed from above. 図11は、第2の実施の形態の光源ユニットを裏面側から見た斜視図である。FIG. 11 is a perspective view of the light source unit according to the second embodiment viewed from the back side. 図12は、第3の実施の形態の光源ユニット及び光源ユニットを示す平面図である。FIG. 12 is a plan view showing a light source unit and a light source unit according to the third embodiment.
 以下、本発明の実施の形態を、図面を参照しながら説明する。
<第1の実施の形態>
 図1~図4は、第1の実施の形態に係るLEDランプ1の構成を示す図であり、図1は斜視図、図2は側面図、図3は平面図、図4は分解斜視図である。
 LEDランプ1は、図1に示すように、発光素子の一例たるLED20が光源に用いられ、口金10を有した、いわゆる口金型のランプである。口金10には既設のソケットに適合する型式のものが用いられ、このLEDランプ1は既設のソケットに装着して使用可能になっている。
 LEDランプ1は、HIDランプ(放電ランプ)の発光管と同様に棒状に延び、延びる方向周りの周囲に向けて、延びる方向に亘って略均等に放射光を放射する。なおかつLEDランプ1は、HIDランプのような高出力タイプの既存の放電ランプの代わりに用いることができる程度の光出力を有する。
 なお、光源の発光素子にはLED20に代えて、任意の素子を用いることができる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
<First Embodiment>
1 to 4 are diagrams showing a configuration of an LED lamp 1 according to a first embodiment, in which FIG. 1 is a perspective view, FIG. 2 is a side view, FIG. 3 is a plan view, and FIG. 4 is an exploded perspective view. It is.
As shown in FIG. 1, the LED lamp 1 is a so-called cap-type lamp in which an LED 20 as an example of a light-emitting element is used as a light source and has a cap 10. The base 10 is of a type that fits into an existing socket, and the LED lamp 1 can be mounted on an existing socket and used.
The LED lamp 1 extends like a bar like an arc tube of an HID lamp (discharge lamp), and emits radiated light substantially uniformly over the extending direction around the extending direction. Moreover, the LED lamp 1 has a light output that can be used in place of a high-power type existing discharge lamp such as an HID lamp.
In addition, it can replace with LED20 and can use arbitrary elements for the light emitting element of a light source.
 ただし、放電ランプは交流電力で点灯するが、LEDなどの発光素子は直流電力で点灯する。したがって、LED20を光源としたLEDランプ1を交流の商用電源で点灯させる場合には、商用電源の交流電力を直流電力に変換する電源回路(電力変換回路とも呼ばれる)を通じてLEDランプ1に直流電力が供給される。
 このLEDランプ1は、上記電源回路を内蔵しておらず、ソケットの側に電源回路が設けられ、当該ソケットから口金10を通じて直流電力が入力される構成となっている。換言すれば、このLEDランプ1は、既設の放電ランプ用の灯具に装着して使用される場合、灯具が備える安定器が上記電源回路に置き換えられた上で使用される。
However, while the discharge lamp is lit with AC power, the light emitting elements such as LEDs are lit with DC power. Therefore, when the LED lamp 1 using the LED 20 as a light source is lit with an AC commercial power supply, the DC lamp 1 receives DC power through a power supply circuit (also referred to as a power conversion circuit) that converts AC power from the commercial power supply into DC power. Supplied.
The LED lamp 1 does not include the power supply circuit, but is provided with a power supply circuit on the socket side so that DC power is input from the socket through the base 10. In other words, when the LED lamp 1 is used by being mounted on an existing lamp for a discharge lamp, the LED lamp 1 is used after the ballast included in the lamp is replaced with the power supply circuit.
 次いで、LEDランプ1の構成について詳述する。
 LEDランプ1は、図1~図4に示すように、上記口金10と、この口金10が一端に取り付けられた筒状の取付体11と、この取付体11の他端に連結された筒状の支持体12と、この支持体12の周囲を囲むように配置され、この支持体12に支持された複数(本実施形態では3つ)の光源ユニット13と、これらの光源ユニット13を結合する結合部材14と、を備えている。
 LEDランプ1は、全体として棒状に延びる細長いランプ形状を成す。すなわち、各光源ユニット13は長手方向を有する長板状を成し、LEDランプ1の棒形状の中心を通る軸線Cの周囲を囲み、かつ軸線Cに長手方向を合わせて配置され、支持体12に支持されている。軸線Cと口金10の中心軸は略一致している。
 口金10は、例えばE26タイプやE39タイプ等の一般的にE型口金と呼ばれるねじ込み式(回しこみ式)のものであり、既存のサイズに合わせて構成され、既設のソケットに螺合して装着可能になっている。口金10には、図示せぬソケットを通じて点灯電源からの直流電力が供給され、各光源ユニット13が点灯される。なお、口金10には差し込み式を用いても良い。
Next, the configuration of the LED lamp 1 will be described in detail.
As shown in FIGS. 1 to 4, the LED lamp 1 includes the base 10, a cylindrical mounting body 11 having the base 10 attached to one end, and a cylindrical shape connected to the other end of the mounting body 11. The support 12, a plurality of (three in the present embodiment) light source units 13 arranged around the support 12 and supported by the support 12, and the light source units 13 are combined. And a coupling member 14.
The LED lamp 1 has an elongated lamp shape extending in a rod shape as a whole. That is, each light source unit 13 is formed in a long plate shape having a longitudinal direction, surrounds the periphery of the axis C passing through the center of the bar shape of the LED lamp 1, and is arranged in alignment with the axis C in the longitudinal direction. It is supported by. The axis C and the central axis of the base 10 are substantially coincident.
The base 10 is a screw-in type (rotating type) generally called an E-type base such as E26 type or E39 type, and is configured according to the existing size, and is screwed into an existing socket. It is possible. Direct current power from a lighting power source is supplied to the base 10 through a socket (not shown), and each light source unit 13 is turned on. The base 10 may be a plug-in type.
 図5は、光源ユニット13の一つを取り外した状態のLEDランプ1の斜視図である。
 図4及び図5に示すように、支持体12は、筒状部15と、複数の取付部16とを備え、これらが電気絶縁性を備えた絶縁材によって一体に形成されている。この絶縁材には樹脂材が好適に用いられる。筒状部15は、軸線Cを中心軸とする筒状(この例では円筒状)の部位であり、一端部15aに取付体11が連結される。また筒状部15は、他端部15bが天面15cで塞がれており、いわゆるキャップ状に形成されている。
 複数の取付部16のそれぞれは、光源ユニット13の一端部13aが取り付けられる部位である。すなわち、取付部16は概略直方体形状を成し、筒状部15の天面15cに軸線Cの周囲を囲む位置に、光源ユニット13の取付面である外周面16bを外側に向けて立設されている。それぞれの取付部16は、光源ユニット13の配置位置に対応した位置に設けられており、このLEDランプ1では、筒状部15の周方向に等間隔(120°間隔)で3箇所に設けられる。これらの取付部16は、軸線Cに重なる位置に設けられた結合部16aによって一体に結合されている。
FIG. 5 is a perspective view of the LED lamp 1 with one of the light source units 13 removed.
As shown in FIG.4 and FIG.5, the support body 12 is provided with the cylindrical part 15 and the some attachment part 16, and these are integrally formed by the insulating material provided with electrical insulation. A resin material is preferably used for this insulating material. The cylindrical part 15 is a cylindrical part (cylindrical in this example) centering on the axis C, and the attachment body 11 is connected to the one end part 15a. Further, the cylindrical portion 15 is formed in a so-called cap shape with the other end portion 15b closed by a top surface 15c.
Each of the plurality of attachment portions 16 is a portion to which one end portion 13a of the light source unit 13 is attached. That is, the mounting portion 16 has a substantially rectangular parallelepiped shape, and is erected on the top surface 15c of the cylindrical portion 15 so as to surround the periphery of the axis C with the outer peripheral surface 16b serving as the mounting surface of the light source unit 13 facing outward. ing. Each mounting portion 16 is provided at a position corresponding to the arrangement position of the light source unit 13. In the LED lamp 1, the mounting portions 16 are provided at three locations at equal intervals (120 ° intervals) in the circumferential direction of the cylindrical portion 15. . These mounting portions 16 are integrally coupled by a coupling portion 16a provided at a position overlapping the axis C.
 各取付部16の外周面16bには、取付部16の内を通って筒状部15に連通する導入孔17が形成されている。導入孔17には、光源ユニット13のリード線(不図示)が通され、このリード線は、導入孔17から支持体12及び取付体11の内部を通り、口金10に接続される。
 外周面16bにおいて導入孔17の下方には、ねじ孔部18が形成されている。光源ユニット13は、長手方向の一端部13aに固定孔部19を有しており、固定孔部19に挿通されてねじ孔部18に締結されるねじ45によって、各取付部16の外周面16bに固定される。すなわち、各光源ユニット13は、一端部13aが取付部16に支持され、軸線Cを囲うように軸線Cに沿って上方に延びており、支持体12に対しては、片持ちで支持されている。
 3つの光源ユニット13が軸線Cを囲うように配置されることで、これら光源ユニット13によって囲まれた内側(軸線Cの側)に、空気が流通可能な空間Rが形成されている。
In the outer peripheral surface 16 b of each attachment portion 16, an introduction hole 17 that communicates with the cylindrical portion 15 through the inside of the attachment portion 16 is formed. A lead wire (not shown) of the light source unit 13 is passed through the introduction hole 17, and this lead wire passes through the inside of the support body 12 and the attachment body 11 from the introduction hole 17 and is connected to the base 10.
A screw hole 18 is formed below the introduction hole 17 on the outer peripheral surface 16b. The light source unit 13 has a fixed hole portion 19 at one end portion 13a in the longitudinal direction, and the outer peripheral surface 16b of each mounting portion 16 is inserted by a screw 45 inserted through the fixed hole portion 19 and fastened to the screw hole portion 18. Fixed to. That is, each light source unit 13 has one end 13a supported by the mounting portion 16 and extends upward along the axis C so as to surround the axis C, and is supported by the support 12 in a cantilever manner. Yes.
By arranging the three light source units 13 so as to surround the axis C, a space R through which air can flow is formed on the inner side (the side of the axis C) surrounded by the light source units 13.
 図3~図5に示すように、光源ユニット13の長手方向の他端部13bは、結合部材14によって互いに結合されている。また結合部材14は、空間Rの軸線C方向の端を塞ぐ板状の蓋体でもある。より具体的には、結合部材14は、光源ユニット13の他端部13bと上記内側の空間Rと間の連通を閉じ、光源ユニット13の他端部13bから内側の空間Rへの進入を阻止する蓋体である。
 このLEDランプ1では、結合部材14は、空間Rの他端部13bの側を塞ぐために、空間Rの他端部13bの側からみた平面視形状、すなわち、3つの光源ユニット13の他端部13bによって縁取られる形状に形成されており、この例では、この形状は略正三角形状である。結合部材14は、電気を絶縁する絶縁材により構成され、例えば、絶縁性プラスチックにより構成される。このように、結合部材14によって光源ユニット13の他端部13b同士を連結する構成とすることで、LEDランプ1の剛性を効果的に確保しながら、空間Rを大きく確保できる。
As shown in FIGS. 3 to 5, the other end portion 13 b in the longitudinal direction of the light source unit 13 is coupled to each other by a coupling member 14. The coupling member 14 is also a plate-like lid that closes the end of the space R in the direction of the axis C. More specifically, the coupling member 14 closes communication between the other end portion 13b of the light source unit 13 and the inner space R, and prevents entry from the other end portion 13b of the light source unit 13 into the inner space R. It is a lid.
In the LED lamp 1, the coupling member 14 has a shape in plan view seen from the other end portion 13 b side of the space R in order to close the other end portion 13 b side of the space R, that is, the other end portions of the three light source units 13. In this example, the shape is a substantially equilateral triangle shape. The coupling member 14 is made of an insulating material that insulates electricity, for example, an insulating plastic. Thus, by setting it as the structure which connects the other end parts 13b of the light source unit 13 by the coupling member 14, space R can be ensured large, ensuring the rigidity of the LED lamp 1 effectively.
 図6は、光源ユニット13の分解斜視図である。図7は光源ユニット13を示す図であり、図7(a)は光源ユニット13を裏面から見た正面図であり、図7(b)は平面図であり、図7(c)は側面図である。
 光源ユニット13は、LED20を光源として放射光を放射するものであり、軸線Cに沿って延びる矩形状のモジュール体である。光源ユニット13は、その幅方向よりも軸線C方向に長く形成されており、正面視では、長方形状に形成されている。
FIG. 6 is an exploded perspective view of the light source unit 13. 7 is a view showing the light source unit 13, FIG. 7 (a) is a front view of the light source unit 13 seen from the back side, FIG. 7 (b) is a plan view, and FIG. 7 (c) is a side view. It is.
The light source unit 13 emits radiated light using the LED 20 as a light source, and is a rectangular module extending along the axis C. The light source unit 13 is formed longer in the direction of the axis C than in the width direction thereof, and is formed in a rectangular shape when viewed from the front.
 このLEDランプ1では、3つの光源ユニット13を備え、これらの光源ユニット13が各基体22の裏面22dを内側に向け、なおかつ、軸線Cと同一方向に延びる姿勢で、軸線Cの周囲に等間隔に環状に配列され、支持体12によって支持されている。これにより、軸線Cの全周囲に亘る範囲に光が放射されることとなる。
 これら光源ユニット13は、全て同一構造、及び形状となっており、光出力が異なるLEDランプ1を構成する際には、所望の光出力に応じた数の光源ユニット13が支持体12の周囲に配列される。
 また、LEDランプ1では、光源ユニット13を軸線Cの周りに配置するに際し、隣り合う光源ユニット13の間に隙間G1が設けられている。隙間G1を設けることで、外部の空気を隙間G1を介して空間Rに取り込み、光源ユニット13を冷却できる。
The LED lamp 1 includes three light source units 13, and these light source units 13 face the back surface 22 d of each base 22 inward and extend in the same direction as the axis C, and are equally spaced around the axis C. And is supported by the support 12. Thereby, light will be radiated | emitted to the range over the perimeter of the axis line C. FIG.
These light source units 13 all have the same structure and shape, and when configuring the LED lamp 1 with different light outputs, the number of light source units 13 corresponding to the desired light output is around the support 12. Arranged.
In the LED lamp 1, when the light source unit 13 is arranged around the axis C, a gap G <b> 1 is provided between the adjacent light source units 13. By providing the gap G1, external air can be taken into the space R through the gap G1 and the light source unit 13 can be cooled.
 光源ユニット13は、LED20が実装された実装基板21と、実装基板21が取り付けられる基体22と、実装基板21を覆うカバー30とを備える。
 実装基板21は、略矩形板状のプリント配線基板であって、その表面には、複数のLED20と、上記リード線が半田付けされて充電部を構成する電極パターン21aとが設けられている。電極パターン21aは、実装基板21の端部に形成され、図示を省略したプリント配線を通じて各LED20に直列又は並列に電気的に接続されている。
 LED20は、多数のLED素子を、例えば格子状に平面視略矩形の範囲内に配列し、その表面を樹脂材で薄い厚みでモールドして成るものであり、その略全面が発光する。この実装基板21には、図6に示すように、複数(図示例では2つ)のLED20が略隙間無く軸線C方向に直列に配列されており、これらLED20によって線状の発光が得られるようになっている。
The light source unit 13 includes a mounting substrate 21 on which the LEDs 20 are mounted, a base body 22 to which the mounting substrate 21 is attached, and a cover 30 that covers the mounting substrate 21.
The mounting board 21 is a substantially rectangular plate-like printed wiring board, and a plurality of LEDs 20 and an electrode pattern 21a that constitutes a charging unit by soldering the lead wires are provided on the surface thereof. The electrode pattern 21a is formed at the end of the mounting substrate 21, and is electrically connected to each LED 20 in series or in parallel through a printed wiring (not shown).
The LED 20 is formed by arranging a large number of LED elements, for example, in a lattice shape in a substantially rectangular range in plan view, and molding the surface thereof with a thin thickness with a resin material, and substantially the entire surface emits light. As shown in FIG. 6, a plurality of (two in the illustrated example) LEDs 20 are arranged in series in the axis C direction on the mounting substrate 21 with almost no gap so that linear light emission can be obtained by these LEDs 20. It has become.
 基体22は、高熱伝導性を有する高熱伝導性材の一種である金属材(例えばアルミニウム)を細長い矩形板状に成形したものであり、実装基板21をパッケージする基体、並びにLED20の発熱を受けて放熱するヒートシンクとして機能する。
 さらに詳述すると、図6に示すように、基体22は、実装基板21を内部に収容可能な表面積を有する大きさの薄板状(表裏が平面な板状)に形成され、その表面22cには実装部22fが形成されている。実装部22fは、実装基板21を基体22と略面一に収める深さの凹部であり、実装部22fの底面が実装基板21と密着可能なように平面状に形成されており、実装基板21から基体22への伝熱性が高められている。また、実装基板21は、シート状の電気絶縁部材等を介さずに、実装部22fに直付けされている。このため、実装基板21の熱が効率良く基体22に伝達されている。
The base 22 is formed by forming a metal material (for example, aluminum), which is a kind of high thermal conductivity material having high thermal conductivity, into an elongated rectangular plate shape, and receives heat generated by the base for packaging the mounting substrate 21 and the LED 20. It functions as a heat sink that dissipates heat.
More specifically, as shown in FIG. 6, the base body 22 is formed in a thin plate shape (plate shape with a flat front and back) having a surface area that can accommodate the mounting substrate 21 therein, and the surface 22c A mounting portion 22f is formed. The mounting portion 22f is a recess having a depth that allows the mounting substrate 21 to be substantially flush with the base 22. The mounting portion 22f is formed in a planar shape so that the bottom surface of the mounting portion 22f can be in close contact with the mounting substrate 21. The heat transfer from the substrate to the base 22 is enhanced. The mounting substrate 21 is directly attached to the mounting portion 22f without using a sheet-like electrical insulating member or the like. For this reason, the heat of the mounting substrate 21 is efficiently transmitted to the base body 22.
 基体22の長手方向の一端部22aには、基体22を貫通する略矩形の導出孔23が設けられており、上記リード線は、導出孔23を通って裏面22d側に引き出される。裏面22dには、導出孔23の縁部に連結された断面矩形状の筒部24が裏面22dに立設するように形成されている。また、裏面22dにおいて筒部24の両側には突起25が設けられ、各突起25は筒部24の両側で軸線C方向に延びるように形成されている。
 固定孔部19は、筒部24よりも一端部22aの端に近い側に形成されている。さらに、一端部22aには、ねじ45により固定される固定孔部22gが設けられている。
 基体22は、筒部24が導入孔17(図5)に差し込まれるとともに、一対の突起25が取付部16の両側面部16c(図5)に嵌まることで位置決めされ、ねじ45によって固定される。
A substantially rectangular lead-out hole 23 penetrating the base 22 is provided at one end 22 a in the longitudinal direction of the base 22, and the lead wire passes through the lead-out hole 23 and is drawn out to the back surface 22 d side. A cylindrical section 24 having a rectangular cross section connected to the edge of the outlet hole 23 is formed on the rear surface 22d so as to stand on the rear surface 22d. Further, on the back surface 22d, protrusions 25 are provided on both sides of the cylinder part 24, and each protrusion 25 is formed on both sides of the cylinder part 24 so as to extend in the axis C direction.
The fixed hole portion 19 is formed closer to the end of the one end portion 22a than the cylindrical portion 24 is. Further, the one end portion 22a is provided with a fixing hole portion 22g fixed by a screw 45.
The base body 22 is positioned by the cylindrical portion 24 being inserted into the introduction hole 17 (FIG. 5) and the pair of protrusions 25 are fitted to the both side surface portions 16 c (FIG. 5) of the mounting portion 16, and is fixed by screws 45. .
 基体22の長手方向の他端部22bの裏面22dには、軸線Cに向かうように突出する棒状の連結ステー部26が立設されている。連結ステー部26は、基体22の幅方向の略中央の位置であり、かつ、結合部材14の厚さ分だけ基体22の他端部22bの端面27から一端部22aの側に入った位置に設けられている。連結ステー部26の先端には、ねじ孔26aが形成されており、結合部材14は、ねじ孔26aに締結される結合部材固定ねじ28によって連結ステー部26に固定される。 A rod-like connecting stay portion 26 that protrudes toward the axis C is provided upright on the back surface 22 d of the other end portion 22 b in the longitudinal direction of the base body 22. The connecting stay portion 26 is located at a substantially central position in the width direction of the base body 22, and at a position entering the end portion 22 a side from the end surface 27 of the other end portion 22 b of the base body 22 by the thickness of the coupling member 14. Is provided. A screw hole 26a is formed at the tip of the connection stay portion 26, and the coupling member 14 is fixed to the connection stay portion 26 by a coupling member fixing screw 28 fastened to the screw hole 26a.
 基体22の裏面22dには、長い板状の複数の放熱フィン29が立設されている。放熱フィン29は、表面22cの実装部22fに収めた実装基板21の熱を効率良く放熱できるように、この実装部22fの裏側に形成されている。基体22の幅方向の全体に亘る範囲に複数の放熱フィン29が設けられるとともに、長手方向では、連結ステー部26と筒部24との間の区間に亘る範囲に複数の放熱フィン29が設けられている。
 それぞれの放熱フィン29は、軸線Cに対して傾斜する方向に延びて配置されている。すなわち、放熱フィン29は、基体22の長手方向に対し平行ではなく、所定の角度だけ傾斜する方向に延びる形状で設けられている。各放熱フィン29の傾斜角度は、同一であり、各放熱フィン29の高さ及び厚さはその全長に亘り同一である。また、各放熱フィン29は、互いに等間隔且つ平行に直線的に延びて設けられている。なお、各放熱フィン29の傾斜角度は同一でなくてもよく、全ての放熱フィン29を平行に形成しなくても構わない。また、各放熱フィンは等間隔でなくともよい。
A plurality of long plate-shaped heat radiation fins 29 are provided upright on the back surface 22 d of the base 22. The radiating fins 29 are formed on the back side of the mounting portion 22f so that the heat of the mounting substrate 21 housed in the mounting portion 22f on the surface 22c can be efficiently radiated. A plurality of radiating fins 29 are provided in a range over the entire width direction of the base body 22, and a plurality of radiating fins 29 are provided in a range over a section between the connecting stay portion 26 and the cylindrical portion 24 in the longitudinal direction. ing.
Each radiating fin 29 extends in a direction inclined with respect to the axis C. That is, the radiating fins 29 are provided in a shape that is not parallel to the longitudinal direction of the base 22 but extends in a direction inclined by a predetermined angle. The inclination angle of each radiation fin 29 is the same, and the height and thickness of each radiation fin 29 are the same over its entire length. In addition, the radiating fins 29 are provided to extend linearly at equal intervals and in parallel. In addition, the inclination angle of each radiation fin 29 does not need to be the same, and it is not necessary to form all the radiation fins 29 in parallel. Further, the radiating fins need not be equally spaced.
 カバー30は、基体22の表面22cを覆い当該基体22との間で防水構造を構成する。カバー30は、表面22cの形状に対応して正面視で矩形状に形成されて表面22cの略全体を覆うカバー本体部31と、カバー本体部31の縁の全周に亘って設けられた外周面カバー部32とを備えている。カバー本体部31には、LED20に対応する位置に、断面半円形状に形成されたドーム状の膨出部31aが形成されている。ここで、カバー30は、その全体が、透光性及び電気絶縁性を備えた材料によって構成され、この例では樹脂材料によって構成されている。
 外周面カバー部32は、基体22の外側面である外周部22eを全周に亘って覆い隠すように形成されており、カバー30が取り付けられた状態では、外周面カバー部32の内面に基体22の外周部22eが入り込み嵌合する。
The cover 30 covers the surface 22 c of the base 22 and forms a waterproof structure with the base 22. The cover 30 is formed in a rectangular shape in a front view corresponding to the shape of the surface 22c and covers substantially the entire surface 22c, and an outer periphery provided over the entire periphery of the edge of the cover body 31. And a surface cover portion 32. The cover main body 31 is formed with a dome-shaped bulging portion 31 a having a semicircular cross section at a position corresponding to the LED 20. Here, the entire cover 30 is made of a material having translucency and electrical insulation, and in this example, is made of a resin material.
The outer peripheral surface cover portion 32 is formed so as to cover the outer peripheral portion 22e, which is the outer surface of the base member 22, over the entire periphery. When the cover 30 is attached, the outer peripheral surface cover portion 32 is attached to the inner surface of the outer peripheral surface cover portion 32. The outer peripheral portion 22e of 22 enters and fits.
 外周面カバー部32において軸線Cと平行に延びる一対の外周部である長手側外周部32aには、側方(外側)に向けて突出する板状の鍔部33が形成されている。鍔部33は、外周面カバー部32の突出方向の先端に設けられるとともに、カバー30の長手方向の略全体に亘って設けられている。
 カバー30と基体22との間には、防水パッキン(不図示)が介装される。カバー30は、ねじ45が挿通される座部31bをカバー本体部31に備える。カバー本体部31及び基体22は、ねじ45によって取付部16に共締めされる。
In the outer peripheral surface cover portion 32, a plate-like flange portion 33 protruding toward the side (outer side) is formed on the long-side outer peripheral portion 32 a which is a pair of outer peripheral portions extending in parallel with the axis C. The flange portion 33 is provided at the tip of the outer peripheral surface cover portion 32 in the protruding direction, and is provided over substantially the entire length of the cover 30.
A waterproof packing (not shown) is interposed between the cover 30 and the base body 22. The cover 30 includes a seat portion 31 b through which the screw 45 is inserted in the cover main body portion 31. The cover main body 31 and the base body 22 are fastened together with the mounting portion 16 by screws 45.
 ここで、放熱フィン29について詳細に説明する。
 本実施の形態では、隣接する光源ユニット13間には、周方向(軸線Cの周り方向)に隙間G1が設けられており、隙間G1や光源ユニット13と支持体12との隙間から空間Rに流入した空気の一部は、各放熱フィン29の間の通風路35を通り、放熱フィン29を冷却する。
 図2に示すLEDランプ1を、軸線Cが鉛直方向を向くように鉛直配置した場合、基体22の幅方向の一側が通風路35を流れる気流Wの流入口35a(図7)となり、幅方向の他側が気流Wの排出口35bとなる。光源ユニット13によって暖められた空気は、上方へ流れるため、低い位置にある各流入口35aから、より高い位置にある各排出口35bに流れる流れが支配的となる。
Here, the radiation fin 29 will be described in detail.
In the present embodiment, a gap G1 is provided between adjacent light source units 13 in the circumferential direction (the direction around the axis C), and the space R is formed from the gap G1 or the gap between the light source unit 13 and the support 12. Part of the air that has flowed in passes through the ventilation path 35 between the radiation fins 29 and cools the radiation fins 29.
When the LED lamp 1 shown in FIG. 2 is arranged vertically so that the axis C is oriented in the vertical direction, one side in the width direction of the base 22 is an inlet 35a (FIG. 7) of the airflow W flowing through the ventilation path 35, and the width direction The other side becomes the discharge port 35b of the airflow W. Since the air heated by the light source unit 13 flows upward, the flow flowing from each inlet 35a at a lower position to each outlet 35b at a higher position becomes dominant.
 光源ユニット13は、幅方向よりも軸線C方向に長く形成されているため、軸線Cに対して傾斜した形状の放熱フィン29を配置することで、各放熱フィン29を軸線Cと平行に配置した場合に比して、通風路35の距離が短くなっている。このため、気流を通風路35に効率良く流すことができ、光源ユニット13の熱を効率良く放熱できる。また、放熱フィン29が軸線Cに対して傾斜して延びているため、光源ユニット13の下部側の放熱フィン29を通る気流は、上下の中間部の排出口35bから排出され、下部側の熱が上部の放熱フィン29に影響することを抑制できる。このため、上部の放熱フィン29に熱が集中することを防止でき、効率良く光源ユニット13を冷却できる。さらに、各放熱フィンを軸線Cと平行に配置した場合には、気流の流入方向が上下方向に限定されてしまうが、放熱フィン29を傾斜させて延すことで、上下方向及び側方からの気流を利用できる。このため、通風路35に効率良く気流を流すことができ、光源ユニット13を効率良く冷却できる。
 図5に示すように、隣り合う光源ユニット13は、同一の部品であり、放熱フィン29の傾斜方向も、隣り合う光源ユニット13同士で同一である。
Since the light source unit 13 is formed longer in the direction of the axis C than in the width direction, the radiation fins 29 are arranged in parallel to the axis C by arranging the radiation fins 29 inclined with respect to the axis C. Compared with the case, the distance of the ventilation path 35 is short. For this reason, an air current can be efficiently passed through the air passage 35, and the heat of the light source unit 13 can be efficiently radiated. Further, since the radiating fins 29 are inclined and extend with respect to the axis C, the airflow passing through the radiating fins 29 on the lower side of the light source unit 13 is discharged from the upper and lower intermediate outlets 35b, and the lower side heat is supplied. Can be prevented from affecting the upper radiation fin 29. For this reason, it can prevent that heat concentrates on the upper radiation fin 29, and can cool the light source unit 13 efficiently. Furthermore, when each radiating fin is arranged in parallel to the axis C, the inflow direction of the airflow is limited to the vertical direction, but by extending the radiating fin 29 by inclining, the vertical direction and the lateral direction Airflow can be used. For this reason, an air flow can be efficiently flowed to the ventilation path 35, and the light source unit 13 can be cooled efficiently.
As shown in FIG. 5, the adjacent light source units 13 are the same components, and the inclination directions of the heat radiation fins 29 are also the same between the adjacent light source units 13.
 図8は、放熱フィン29が軸線Cに対して延びる角度S(傾斜角度)と光源ユニット13の温度との相関の一例を示す図表である。図8は、LEDランプ1を鉛直配置した場合の結果であり、本発明者らが行った試験の結果を示している。ここで、図8では、放熱フィン29の角度Sは、軸線Cに直交する基準線L(図7)に対する角度が示されている。
 図8に示すように、放熱フィン29の角度Sを0°、すなわち軸線Cに直交する角度とした場合、光源ユニット13の温度は最も高くなった。これは、通風路35に気流が流れ難いためであると考えられる。
FIG. 8 is a chart showing an example of the correlation between the angle S (inclination angle) at which the radiating fin 29 extends with respect to the axis C and the temperature of the light source unit 13. FIG. 8 shows the result when the LED lamp 1 is vertically arranged, and shows the result of the test conducted by the present inventors. Here, in FIG. 8, the angle S of the radiation fin 29 is an angle with respect to the reference line L (FIG. 7) orthogonal to the axis C.
As shown in FIG. 8, when the angle S of the radiating fin 29 was 0 °, that is, an angle orthogonal to the axis C, the temperature of the light source unit 13 was the highest. This is considered to be because the airflow hardly flows in the ventilation path 35.
 放熱フィン29の角度Sを15°とした場合、光源ユニット13の温度は、角度Sが0°の場合よりも低くなった。これは、通風路35に気流が流れ易くなったためであると考えられる。
 放熱フィン29の角度Sを90°、すなわち軸線Cに平行な角度とした場合、光源ユニット13の温度は、角度Sを15°にした場合よりも低くなった。これは、角度Sを15°とした場合よりも通風路35に気流が流れ易いためであると考えられる。
 放熱フィン29の角度Sを0°、15°及び90°とした場合における光源ユニット13の温度の値は、近似直線A1で結ぶことができ、放熱フィン29の角度Sと光源ユニット13の温度とは線形の関係にあることが分かる。
When the angle S of the radiating fins 29 was 15 °, the temperature of the light source unit 13 was lower than when the angle S was 0 °. This is considered to be because the airflow easily flows through the ventilation path 35.
When the angle S of the radiating fin 29 was 90 °, that is, an angle parallel to the axis C, the temperature of the light source unit 13 was lower than when the angle S was 15 °. This is considered to be because the airflow flows through the ventilation path 35 more easily than when the angle S is 15 °.
When the angle S of the radiating fin 29 is 0 °, 15 °, and 90 °, the temperature value of the light source unit 13 can be connected by an approximate straight line A1, and the angle S of the radiating fin 29 and the temperature of the light source unit 13 are It can be seen that is in a linear relationship.
 放熱フィン29の角度Sを30°とした場合、光源ユニット13の温度は、角度を15°とした場合よりも大幅に低くなり、近似直線A1から予測される温度よりも大幅に低い。また、放熱フィン29の角度Sを30°とした場合の光源ユニット13の温度は、放熱フィン29の角度Sを90°とした場合よりも低くなっている。これは、軸線Cに対して放熱フィン29を傾けることで、通風路35に効率良く気流を流すことができる効果が得られ、この効果が、角度Sを30°とすることで顕著に発生したためであると考えられる。 When the angle S of the radiating fin 29 is 30 °, the temperature of the light source unit 13 is significantly lower than that when the angle is 15 °, and is significantly lower than the temperature predicted from the approximate straight line A1. In addition, the temperature of the light source unit 13 when the angle S of the radiating fins 29 is 30 ° is lower than when the angle S of the radiating fins 29 is 90 °. This is because by tilting the radiating fins 29 with respect to the axis C, an effect of allowing the air flow to flow efficiently through the ventilation path 35 is obtained, and this effect is remarkably generated by setting the angle S to 30 °. It is thought that.
 放熱フィン29の角度Sを45°とした場合、光源ユニット13の温度は、角度Sを30°とした場合よりも低く、近似直線A1から予測される温度よりも大幅に低い。
 放熱フィン29の角度Sを60°とした場合、光源ユニット13の温度は、最も低くなり、近似直線A1から予測される温度よりも大幅に低い。
 放熱フィン29の角度Sを75°とした場合、光源ユニット13の温度は、角度Sを45°とした場合と同等となり、近似直線A1から予測される温度よりも大幅に低い。
When the angle S of the radiating fin 29 is 45 °, the temperature of the light source unit 13 is lower than that when the angle S is 30 °, and is significantly lower than the temperature predicted from the approximate straight line A1.
When the angle S of the radiating fin 29 is 60 °, the temperature of the light source unit 13 is the lowest and is significantly lower than the temperature predicted from the approximate straight line A1.
When the angle S of the radiating fin 29 is 75 °, the temperature of the light source unit 13 is equivalent to that when the angle S is 45 °, and is significantly lower than the temperature predicted from the approximate straight line A1.
 放熱フィン29の角度Sを0°、30°、45°、60°、75°及び90°とした場合における光源ユニット13の温度の値は、近似曲線A2で結ぶことができる。近似曲線A2は、放熱フィン29の角度Sが60°の場合に光源ユニット13の温度が最も低くなる略2次曲線となっている。
 この実験結果から、放熱フィン29の角度Sが25°から85°の範囲の場合、近似直線A1から予測される結果に対する優位な差が見られることが明らかとなった。放熱フィン29の角度Sを25°から85°の範囲とすることで、放熱フィン29によって光源ユニット13を効果的に冷却することができる。さらに、放熱フィン29の角度Sを45°から75°の範囲とすることで、光源ユニット13の温度を大きく低下させることができ、より好ましい。
The value of the temperature of the light source unit 13 when the angle S of the radiating fins 29 is 0 °, 30 °, 45 °, 60 °, 75 °, and 90 ° can be connected by an approximate curve A2. The approximate curve A2 is a substantially quadratic curve in which the temperature of the light source unit 13 is the lowest when the angle S of the radiating fins 29 is 60 °.
From this experimental result, it is clear that when the angle S of the radiating fin 29 is in the range of 25 ° to 85 °, a significant difference from the result predicted from the approximate straight line A1 can be seen. The light source unit 13 can be effectively cooled by the radiation fins 29 by setting the angle S of the radiation fins 29 to a range of 25 ° to 85 °. Furthermore, it is more preferable that the angle S of the radiating fins 29 be in the range of 45 ° to 75 ° because the temperature of the light source unit 13 can be greatly reduced.
 図9は、放熱フィン29の間隔と光源ユニット13の温度との相関の一例を示す図表である。図9は、放熱フィン29の角度Sを60°とし、LEDランプを鉛直配置した場合の結果であり、本発明者らが行った試験の結果を示している。ここで、図9では、放熱フィン29の間隔は、隣接する放熱フィン29の対向する面の間の距離である。
 図9に示すように、光源ユニット13の温度は、放熱フィン29の間隔を3mmとした場合よりも12mmとした場合の方が高くなった。放熱フィン29の間隔を、3mm及び12mmとした場合における光源ユニット13の温度の値は、近似直線B1で結ぶことができる。
 放熱フィン29の間隔を3mmから12mmの間で変化させた場合、3mmから間隔が大きくなるに連れて光源ユニット13の温度は低くなり、6mmで最も低くなった。また、光源ユニット13の温度は、放熱フィン29の間隔が6mmから大きくなるに連れて高くなり、12mmで最も高くなった。放熱フィン29の間隔を6mmとすることで、通風路35に効率良く気流を流すことができると考えられる。
FIG. 9 is a chart showing an example of the correlation between the distance between the radiation fins 29 and the temperature of the light source unit 13. FIG. 9 shows the results when the angle S of the radiating fins 29 is set to 60 ° and the LED lamps are arranged vertically, and shows the results of tests conducted by the present inventors. Here, in FIG. 9, the interval between the radiation fins 29 is the distance between the opposing surfaces of the adjacent radiation fins 29.
As shown in FIG. 9, the temperature of the light source unit 13 was higher when the distance between the heat dissipating fins 29 was 12 mm than when the distance between the heat radiating fins 29 was 3 mm. The temperature value of the light source unit 13 when the distance between the radiation fins 29 is 3 mm and 12 mm can be connected by the approximate straight line B1.
When the interval between the heat radiating fins 29 was changed between 3 mm and 12 mm, the temperature of the light source unit 13 decreased as the interval increased from 3 mm, and was lowest at 6 mm. Further, the temperature of the light source unit 13 increased as the distance between the radiation fins 29 increased from 6 mm, and was highest at 12 mm. It is considered that the airflow can be efficiently flowed through the ventilation path 35 by setting the distance between the radiation fins 29 to 6 mm.
 この実験結果から、放熱フィン29の間隔を4mmから11mmの範囲とすることで、近似直線B1から予測されるよりも、光源ユニット13の温度を低下させることができることが明らかとなった。さらに、放熱フィン29の間隔を5mmから9mmの範囲とすることで、光源ユニット13の温度を大きく低下させることができ、より好ましい。 From this experimental result, it has been clarified that the temperature of the light source unit 13 can be lowered by setting the interval between the radiation fins 29 in the range of 4 mm to 11 mm, as predicted from the approximate straight line B1. Furthermore, it is more preferable that the temperature of the light source unit 13 can be greatly reduced by setting the interval between the radiation fins 29 to a range of 5 mm to 9 mm.
 本実施の形態では、LEDランプ1の外側から基体22及び放熱フィン29に、ユーザや作業者の手の指が触れることがないように、感電防止構造が設けられている。以下、感電防止構造について説明する。
 図6及び図7に示すように、カバー30の外周面カバー部32は、基体22の外周部22eよりも高く形成されており、図7(a)のように、光源ユニット13を裏面22d側から見た場合、外周部22eは外周面カバー部32よりも一段低くなっている。また、図7(c)に示すように、側面視では、外周部22eは外周面カバー部32によって完全に覆われており、外側に露出していない。外周面カバー部32は、カバー30に一体に形成されており、絶縁材で構成されている。
 外周面カバー部32は、カバー30の内方に突出する爪部34を先端部に複数有し、爪部34が基体22の外周部22eの端に引っかかることで、カバー30は基体22に固定される。
In the present embodiment, an electric shock prevention structure is provided so that a finger of a user or an operator does not touch the base body 22 and the heat radiation fin 29 from the outside of the LED lamp 1. Hereinafter, the structure for preventing electric shock will be described.
As shown in FIGS. 6 and 7, the outer peripheral surface cover portion 32 of the cover 30 is formed higher than the outer peripheral portion 22e of the base 22, and the light source unit 13 is placed on the back surface 22d side as shown in FIG. , The outer peripheral part 22e is one step lower than the outer peripheral surface cover part 32. Moreover, as shown in FIG.7 (c), in the side view, the outer peripheral part 22e is completely covered with the outer peripheral surface cover part 32, and is not exposed outside. The outer peripheral surface cover portion 32 is formed integrally with the cover 30 and is made of an insulating material.
The outer peripheral surface cover part 32 has a plurality of claw parts 34 projecting inward of the cover 30 at the tip part, and the cover 30 is fixed to the base body 22 by being caught by the end of the outer peripheral part 22e of the base body 22. Is done.
 図1~図3に示すように、LEDランプ1では、基体22がカバー30の外周面カバー部32によって覆われているため、作業者等が基体22に直接触れてしまうことがなく、基体22に触れることによる感電が防止される。
 各光源ユニット13は、その内側に略正多角形(本実施の形態では略正三角形)の空間Rを形成するように配置されており、隙間G1は、上記略正多角形の各頂点部の位置に形成される。隙間G1は、隣接する各光源ユニット13間に形成されるLEDランプ1の周方向の隙間であり、カバー30から隙間G1に(すなわち隣の光源ユニット13に向けて)鍔部33を延ばすことで、その大きさが調整されている。
As shown in FIGS. 1 to 3, in the LED lamp 1, since the base 22 is covered by the outer peripheral surface cover portion 32 of the cover 30, an operator or the like does not directly touch the base 22, and the base 22 Electric shock due to touching is prevented.
Each light source unit 13 is arranged so as to form a space R of a substantially regular polygon (substantially regular triangle in the present embodiment) on the inner side, and the gap G1 is formed at each vertex of the substantially regular polygon. Formed in position. The gap G1 is a gap in the circumferential direction of the LED lamp 1 formed between the adjacent light source units 13, and extends the flange 33 from the cover 30 to the gap G1 (that is, toward the adjacent light source unit 13). , Its size has been adjusted.
 すなわち、隙間G1は、隣接する鍔部33の先端間の隙間である。隙間G1の大きさは、人間の指を想定して形成された所定形状の試験指Tが、空間R内に所定の深さまでしか入らないように設定されている。詳細には、上記所定の深さは、空間Rに入った試験指T(図3)が放熱フィン29に接触することがない深さである。このため、隙間G1から空気を取り込んで放熱フィン29を冷却する構成としながら、作業者等の指が空間Rに入って放熱フィン29に触れてしまうことを鍔部33によって防止することができる。 That is, the gap G1 is a gap between the tips of the adjacent flanges 33. The size of the gap G1 is set so that the test finger T having a predetermined shape formed on the assumption of a human finger can only enter the space R to a predetermined depth. Specifically, the predetermined depth is a depth at which the test finger T (FIG. 3) that has entered the space R does not come into contact with the radiation fins 29. For this reason, it is possible to prevent the finger of an operator or the like from entering the space R and touching the heat radiation fin 29 by the flange portion 33 while taking the air from the gap G <b> 1 to cool the heat radiation fin 29.
 図3~図5に示すように、結合部材14は、空間Rの略正多角形形状よりも一回り小さい略正多角形形状に形成された板状の蓋であり、各光源ユニット13の他端部13bが区画して作る(すなわち、これらの他端部13bによって縁取られてできる)開口部Rkを塞ぐ。
 結合部材14は、その略正多角形形状の各頂点の近くに通風孔40が設けられているとともに、軸線Cに重なる中央部にも中央孔41が設けられている。
 また、結合部材14は、結合部材固定ねじ28が挿通される座部42を、隣接する各通風孔40の間に備える。
 結合部材14の表面14aは孔の部分を除き平坦である。結合部材14の裏面において各座部42に対応する位置には、空間R側に突出する受け部43がそれぞれ形成されている。
As shown in FIGS. 3 to 5, the coupling member 14 is a plate-like lid formed in a substantially regular polygon shape that is slightly smaller than the substantially regular polygon shape of the space R. The end portion 13b is partitioned to close the opening Rk (that is, formed by being edged by the other end portion 13b).
The coupling member 14 is provided with a ventilation hole 40 near each vertex of the substantially regular polygonal shape, and a central hole 41 is also provided at a central portion overlapping the axis C.
Further, the coupling member 14 includes a seat portion 42 through which the coupling member fixing screw 28 is inserted between the adjacent ventilation holes 40.
The surface 14a of the coupling member 14 is flat except for the hole portion. Receiving portions 43 projecting toward the space R are formed at positions corresponding to the respective seat portions 42 on the back surface of the coupling member 14.
 結合部材14は、受け部43が連結ステー部26上に載置され、座部42に挿通された結合部材固定ねじ28がねじ孔26aに締結されることで各光源ユニット13に連結される。すなわち、各光源ユニット13の他端部13bは、結合部材14を介して一体に結合されるとともに、空間Rの上端(LEDランプ1の口金10と反対側の端)の開口部Rkは結合部材14によって塞がれる。
 結合部材14の表面14aは、光源ユニット13のカバー30の上端面30a(先端面)と略面一に設けられている。このため、結合部材14を設けて光源ユニット13の剛性を向上させた構成であったとしても、LEDランプ1を小型化できる。
The coupling member 14 is coupled to each light source unit 13 by placing the receiving portion 43 on the coupling stay portion 26 and fastening the coupling member fixing screw 28 inserted through the seat portion 42 into the screw hole 26a. That is, the other end 13b of each light source unit 13 is integrally coupled via the coupling member 14, and the opening Rk at the upper end of the space R (the end opposite to the base 10 of the LED lamp 1) is the coupling member. 14 is blocked.
The surface 14 a of the coupling member 14 is provided substantially flush with the upper end surface 30 a (tip surface) of the cover 30 of the light source unit 13. For this reason, even if it is the structure which provided the coupling member 14 and improved the rigidity of the light source unit 13, the LED lamp 1 can be reduced in size.
 結合部材14は空間Rの略正多角形形状よりも一回り小さいため、結合部材14の外周面と光源ユニット13との間には、上部隙間G2(図10)が形成されている。このように、結合部材14側には、上部隙間G2、通風孔40及び中央孔41が設けられているため、空気が上部隙間G2、通風孔40及び中央孔41から空間Rに出入りでき、放熱フィン29によって効果的に放熱できる。
 上部隙間G2は、隙間G1よりも小さく、試験指Tが上部隙間G2を通って放熱フィン29に触れることがない大きさに設定されている。このため、作業者等の指が放熱フィン29に触れることが防止される。
 また、結合部材14の通風孔40及び中央孔41は、試験指Tが通風孔40及び中央孔41を通って放熱フィン29に触れることがない大きさに設定されている。このため、作業者等の指が放熱フィン29に触れることが防止される。
Since the coupling member 14 is slightly smaller than the substantially regular polygonal shape of the space R, an upper gap G <b> 2 (FIG. 10) is formed between the outer peripheral surface of the coupling member 14 and the light source unit 13. As described above, since the upper gap G2, the ventilation hole 40, and the central hole 41 are provided on the coupling member 14 side, air can enter and leave the space R from the upper gap G2, the ventilation hole 40, and the central hole 41, and heat is radiated. The fins 29 can effectively dissipate heat.
The upper gap G2 is set to a size that is smaller than the gap G1 so that the test finger T does not touch the radiating fins 29 through the upper gap G2. For this reason, a finger of an operator or the like is prevented from touching the heat radiation fin 29.
Further, the ventilation hole 40 and the central hole 41 of the coupling member 14 are set to a size that prevents the test finger T from touching the radiation fin 29 through the ventilation hole 40 and the central hole 41. For this reason, a finger of an operator or the like is prevented from touching the heat radiation fin 29.
 図10は、LEDランプ1を上方から見た斜視図である。図10では、一つの光源ユニット13が取り外された状態が示されている。
 図10に示すように、結合部材14の略正多角形形状の頂点部と隙間G1の上端との間には、比較的大きな角部隙間G3が形成されている。角部隙間G3は、試験指Tが角部隙間G3を通って放熱フィン29に触れることがない大きさに設定されている。このため、角部隙間G3から空間Rに空気を出入りさせる構成としながら、作業者等の指が放熱フィン29に触れることを防止できる。
 また、一端部13a側では、支持体12と隙間G1の下端との間に、比較的大きな角部隙間G4が形成されている。角部隙間G4は、試験指Tが角部隙間G4を通って放熱フィン29に触れることがない大きさに設定されている。このため、角部隙間G4から空間Rに空気を出入りさせる構成としながら、作業者等の指が放熱フィン29に触れることを防止できる。
FIG. 10 is a perspective view of the LED lamp 1 as viewed from above. FIG. 10 shows a state where one light source unit 13 is removed.
As shown in FIG. 10, a relatively large corner gap G3 is formed between the apex of the substantially regular polygonal shape of the coupling member 14 and the upper end of the gap G1. The corner gap G3 is set to a size such that the test finger T does not touch the radiating fin 29 through the corner gap G3. For this reason, it is possible to prevent a finger of an operator or the like from touching the radiating fin 29 while adopting a configuration in which air enters and leaves the space R from the corner gap G3.
On the one end 13a side, a relatively large corner gap G4 is formed between the support 12 and the lower end of the gap G1. The corner gap G4 is set to a size such that the test finger T does not touch the radiating fin 29 through the corner gap G4. For this reason, it is possible to prevent a finger of an operator or the like from touching the radiation fin 29 while adopting a configuration in which air enters and leaves the space R from the corner gap G4.
 以上説明したように、本発明を適用した第1の実施の形態によれば、LEDランプ1は、LED20が実装される実装基板21を基体22の表面22cに有する複数の光源ユニット13を備え、これら複数の光源ユニット13は、各基体22の裏面22dを内側に向けるとともに互いに隙間G1を開けてLEDランプ1の軸線Cの周囲に配置され、基体22の裏面22dには、軸線Cの軸方向に対して傾斜して配置される放熱フィン29が設けられる。
 これにより、放熱フィン29の流路である通風路35に、LEDランプ1の軸線C方向及び軸線Cの方向とは異なる方向から気流を流すことができ、気流を放熱フィン29の通風路35に効率良く流すことができるため、LEDランプ1の熱を放熱フィン29によって効率良く放熱できる。また、光源ユニット13の下部側の放熱フィン29を通る気流が、上下の中間部の排出口35bから排出されるため、上部の放熱フィン29に熱が集中することを防止でき、効率良く光源ユニット13を冷却できる。
As described above, according to the first embodiment to which the present invention is applied, the LED lamp 1 includes the plurality of light source units 13 having the mounting substrate 21 on which the LEDs 20 are mounted on the surface 22c of the base body 22, The plurality of light source units 13 are arranged around the axis C of the LED lamp 1 with the back surface 22d of each base 22 facing inward and with a gap G1 therebetween, and the back surface 22d of the base 22 has an axial direction of the axis C. Radiating fins 29 are provided so as to be inclined with respect to the surface.
Thereby, it is possible to flow an air flow from the direction different from the direction of the axis C of the LED lamp 1 and the direction of the axis C to the ventilation path 35 which is a flow path of the radiation fin 29, and the air flow to the ventilation path 35 of the radiation fin 29. Since it can flow efficiently, the heat of the LED lamp 1 can be efficiently radiated by the radiation fins 29. Further, since the airflow passing through the heat radiation fins 29 on the lower side of the light source unit 13 is discharged from the upper and lower middle discharge ports 35b, heat can be prevented from concentrating on the upper heat radiation fins 29, and the light source unit can be efficiently used. 13 can be cooled.
 また、光源ユニット13は、その幅方向よりも軸線Cの方向に長く形成され、複数のLED20が軸線Cの方向に並べて配置されている。
 これにより、放熱フィン29に沿う気流の通風路35の距離を短くでき、気流を放熱フィン29の通風路35に効率良く流すことができるため、LEDランプ1の熱を放熱フィン29によって効率良く放熱できる。
 また、軸線Cに直交する基準線Lに対する放熱フィン29の角度Sは、25°から85°の範囲であるため、気流を放熱フィン29の通風路35に効率良く流すことができ、LEDランプ1の熱を放熱フィン29によって効率良く放熱できる。
 また、放熱フィン29の間隔を4mmから11mmの範囲とすることで、効率良く放熱できる。
The light source unit 13 is formed longer in the direction of the axis C than in the width direction, and a plurality of LEDs 20 are arranged in the direction of the axis C.
Thereby, since the distance of the ventilation path 35 of the airflow along the radiation fin 29 can be shortened and the airflow can be efficiently flowed to the ventilation path 35 of the radiation fin 29, the heat of the LED lamp 1 is efficiently radiated by the radiation fin 29. it can.
In addition, since the angle S of the radiating fin 29 with respect to the reference line L orthogonal to the axis C is in the range of 25 ° to 85 °, the airflow can be efficiently passed through the ventilation path 35 of the radiating fin 29, and the LED lamp 1 Can be efficiently radiated by the radiation fins 29.
In addition, heat can be efficiently radiated by setting the distance between the radiation fins 29 to a range of 4 mm to 11 mm.
 また、本発明を適用した第1の実施の形態によれば、LEDランプ1は、LED20が実装される実装基板21を略平板状の金属材から成る基体22の表面22cに設けた複数の光源ユニット13と、絶縁材からなり複数の光源ユニット13を支持する支持体12とを備え、光源ユニット13は、実装基板21と基体22の外周部22eとを覆う絶縁材からなるカバー30を備え、その一端部13aが支持体12を周囲から覆うように取り付けられるとともに、各基体22の裏面22dを内側に向けてLEDランプ1の軸線Cの周囲に配置され、LEDランプ1は、複数の光源ユニット13の他端部13bが作る開口を塞ぐ絶縁材からなる結合部材14を備えた。
 このため、金属材の基体22により実装基板21の放熱性が高められる。また基体22の外周部22eを覆う絶縁材からなるカバー30によって、表面22cは勿論のこと、外周部22eに指が直接触れてしまうことが防止できる。また、光源ユニット13の他端部13bが作る開口が絶縁材からなる結合部材14で塞がれるため、他端部13bによって作られる開口部Rkに指が入ることを絶縁材からなる結合部材14によって防止でき、指が放熱フィン29に接触してしまうことを防止できる。これにより、カバー等でLEDランプ1の全体を覆う必要もなくなるため、LEDランプ1の放熱性を確保でき、且つ、感電を防止できる。
Further, according to the first embodiment to which the present invention is applied, the LED lamp 1 includes a plurality of light sources in which the mounting substrate 21 on which the LEDs 20 are mounted is provided on the surface 22c of the base 22 made of a substantially flat metal material. The unit 13 and a support 12 made of an insulating material and supporting the plurality of light source units 13 are provided. The light source unit 13 includes a cover 30 made of an insulating material that covers the mounting substrate 21 and the outer peripheral portion 22e of the base body 22, The one end portion 13a is attached so as to cover the support 12 from the periphery, and is disposed around the axis C of the LED lamp 1 with the back surface 22d of each base member 22 facing inward. The LED lamp 1 includes a plurality of light source units. 13 is provided with a coupling member 14 made of an insulating material that closes an opening formed by the other end 13b.
For this reason, the heat dissipation of the mounting substrate 21 is enhanced by the metal base 22. Further, the cover 30 made of an insulating material covering the outer peripheral portion 22e of the base 22 can prevent the finger from directly touching the outer peripheral portion 22e as well as the surface 22c. In addition, since the opening formed by the other end portion 13b of the light source unit 13 is blocked by the coupling member 14 made of an insulating material, the coupling member 14 made of an insulating material means that a finger enters the opening portion Rk made by the other end portion 13b. Therefore, it is possible to prevent the finger from coming into contact with the heat radiation fin 29. Thereby, since it is not necessary to cover the whole LED lamp 1 with a cover or the like, the heat dissipation of the LED lamp 1 can be ensured and an electric shock can be prevented.
 また、外周部22eを覆うカバー30及び結合部材14を設けたため、基体22の裏面22dの放熱フィン29に指が触れてしまうことを防止できる。
 また、結合部材14には通風孔40が形成されているため、感電を防止しつつ、良好な放熱性を得られる。
In addition, since the cover 30 and the coupling member 14 that cover the outer peripheral portion 22e are provided, it is possible to prevent a finger from touching the radiation fins 29 on the back surface 22d of the base 22.
Moreover, since the ventilation hole 40 is formed in the coupling member 14, favorable heat dissipation can be obtained while preventing an electric shock.
 さらに、光源ユニット13の間の隙間G1に突出する鍔部33が設けられるため、隙間G1に指が入ることを鍔部33で防止して感電を防止できるとともに、隙間G1から放熱できる。
 また、実装基板21は、基体22に直付けされているため、実装基板21から効率良く基体22に熱が伝わる。このため、放熱フィン29を介して効率良く放熱できる。実装基板21を基体22に直付けした構成であっても、上記感電防止構造によって、指が基体22に触れることが防止される。
Furthermore, since the collar part 33 protruding in the gap G1 between the light source units 13 is provided, it is possible to prevent an electric shock by preventing the finger from entering the gap G1, and to dissipate heat from the gap G1.
Further, since the mounting substrate 21 is directly attached to the base 22, heat is efficiently transmitted from the mounting substrate 21 to the base 22. For this reason, heat can be efficiently radiated through the radiation fins 29. Even in the configuration in which the mounting substrate 21 is directly attached to the base body 22, it is possible to prevent the finger from touching the base body 22 by the electric shock prevention structure.
 また、結合部材14は、他端部13bを互いに結合し、他端部13bの上端面30aに対して略面一に設けられている。このため、他端部13bを結合する結合部材14を利用して簡単な構成で感電を防止できるとともに、結合部材14が出っ張らない分だけLEDランプ1をコンパクト化できる。 Further, the coupling member 14 couples the other end portions 13b to each other and is provided substantially flush with the upper end surface 30a of the other end portion 13b. For this reason, while being able to prevent an electric shock with a simple structure using the coupling member 14 which couple | bonds the other end part 13b, the LED lamp 1 can be made compact by the part which the coupling member 14 does not protrude.
 なお、上記第1の実施の形態は本発明を適用した一態様を示すものであって、本発明は上記第1の実施の形態に限定されるものではない。
 上記第1の実施の形態では、隙間G1は、隣接する鍔部33の先端間の隙間であるものとして説明したが、本発明はこれに限定されるものではない。例えば、鍔部33を設けずに、外周面カバー部32の厚さを調整することで、隙間G1の大きさを設定してもよい。
 また、上記第1の実施の形態では、LEDランプ1は、軸線Cが鉛直となるように鉛直配置されるものとして説明したが、本発明はこれに限定されるものではなく、LEDランプ1を寝かして配置してもよい。例えば、軸線Cが水平方向に指向する水平配置も可能であり、この場合においても、上下方向の気流に対して放熱フィン29が傾斜するため、各光源ユニット隙間G1から空気を取り込むことができ、LED20からの熱で温められた空気は反対側の隙間G1から外部に抜けるため効率良く放熱できる。
In addition, the said 1st Embodiment shows the one aspect | mode which applied this invention, Comprising: This invention is not limited to the said 1st Embodiment.
In the said 1st Embodiment, although the clearance gap G1 was demonstrated as what is a clearance gap between the front-end | tips of the adjacent collar part 33, this invention is not limited to this. For example, you may set the magnitude | size of the clearance gap G1 by adjusting the thickness of the outer peripheral surface cover part 32, without providing the collar part 33. FIG.
Moreover, in the said 1st Embodiment, although the LED lamp 1 was demonstrated as what is vertically arrange | positioned so that the axis line C may become vertical, this invention is not limited to this, LED lamp 1 is shown. You may lay down. For example, a horizontal arrangement in which the axis C is oriented in the horizontal direction is also possible, and in this case as well, the radiation fins 29 are inclined with respect to the vertical airflow, so air can be taken in from each light source unit gap G1, Since the air warmed by the heat from the LED 20 escapes to the outside through the gap G1 on the opposite side, heat can be radiated efficiently.
 また、上記第1の実施の形態では、絶縁材からなるカバー30が、実装基板21と基体22の外周部22eとを覆うものとして説明したが、カバー30は一体でなくともよい。例えば、外周面カバー部32とカバー本体部31とを別体で構成し、外周面カバー部32を絶縁物としてもよい。
 また、上記第1の実施の形態では、光源ユニット13は、その内側に略正三角形の空間Rを形成するように配置されているものとして説明したが、これに限らず、例えば、光源ユニット13は、内側に略正四角形の空間を形成するように配置されてもよい。この場合、上記空間の形状に合わせて、結合部材14も略正四角形に形成される。
 また、上記第1の実施の形態では、各放熱フィン29は、直線的に延びて設けられているものとして説明したが、本発明はこれに限定されるものではない。各放熱フィン29は、流路を全体的に見て、流入口35aと排出口35bとの間で軸線Cに対して傾斜していれば良く、例えば、流入口35aと排出口35bとの間で湾曲していても良い。
In the first embodiment, the cover 30 made of an insulating material has been described as covering the mounting substrate 21 and the outer peripheral portion 22e of the base body 22, but the cover 30 may not be integrated. For example, the outer peripheral surface cover part 32 and the cover main body part 31 may be configured separately and the outer peripheral surface cover part 32 may be an insulator.
In the first embodiment, the light source unit 13 has been described as being disposed so as to form a substantially equilateral triangular space R on the inside thereof. However, the present invention is not limited to this, and for example, the light source unit 13. May be arranged so as to form a substantially square space inside. In this case, the coupling member 14 is also formed in a substantially regular square according to the shape of the space.
Moreover, in the said 1st Embodiment, although each radiation fin 29 was demonstrated as what was extended linearly, this invention is not limited to this. Each radiating fin 29 should just incline with respect to the axis C between the inflow port 35a and the discharge port 35b, seeing the flow path as a whole, for example, between the inflow port 35a and the discharge port 35b. May be curved.
<第2の実施の形態>
 以下、図11を参照して、本発明を適用した第2の実施の形態について説明する。この第2の実施の形態において、上記第1の実施の形態と同様に構成される部分については、同符号を付して説明を省略する。
 上記第1の実施の形態では、各放熱フィン29の高さは、その全長に亘り同一であるものとして説明したが、第2の実施の形態は、放熱フィン29の高さがその長さ方向に変化している点が、上記第1の実施の形態と異なる。
<Second Embodiment>
Hereinafter, a second embodiment to which the present invention is applied will be described with reference to FIG. In the second embodiment, parts that are configured in the same manner as in the first embodiment are given the same reference numerals, and descriptions thereof are omitted.
In the first embodiment, the height of each radiating fin 29 has been described as being the same over its entire length, but in the second embodiment, the height of the radiating fin 29 is the length direction thereof. This is different from the first embodiment described above.
 図11は、第2の実施の形態の光源ユニット113を裏面側から見た斜視図である。
 光源ユニット113は、基体122及びカバー30を備える。基体122は、放熱フィン129の形状以外は、基体22と同一である。
 放熱フィン129は、その高さが、気流Wの流入口35a側から排出口35bに行くほど徐々に高くなるように形成されている。
 本第2の実施の形態によれば、放熱フィン129に整流されて気流が整うことで効率良く放熱できる排出口35b側の放熱フィン129の部分を流入口35a側の部分よりも高くするため、放熱フィン129の放熱性を確保しつつ、放熱フィン129を軽量化できる。
FIG. 11 is a perspective view of the light source unit 113 according to the second embodiment viewed from the back side.
The light source unit 113 includes a base body 122 and a cover 30. The base 122 is the same as the base 22 except for the shape of the radiation fins 129.
The radiating fin 129 is formed so that its height gradually increases as it goes from the inlet 35a side of the airflow W to the outlet 35b.
According to the second embodiment, in order to make the portion of the radiation fin 129 on the discharge port 35b side that can efficiently radiate heat by rectifying the airflow fin 129 and adjusting the airflow higher than the portion on the inflow port 35a side, The heat radiation fin 129 can be reduced in weight while securing the heat radiation performance of the heat radiation fin 129.
<第3の実施の形態>
 以下、図12を参照して、本発明を適用した第3の実施の形態について説明する。この第3の実施の形態において、上記第1の実施の形態と同様に構成される部分については、同符号を付して説明を省略する。
 上記第1の実施の形態では、隣り合う光源ユニット13は、同一の部品であり、放熱フィン29の傾斜方向も、隣り合う光源ユニット13同士で同一であるものとして説明した。第3の実施の形態は、放熱フィン29の傾斜方向が、隣り合う光源ユニット13同士で異なる点が、上記第1の実施の形態と異なる。
<Third Embodiment>
Hereinafter, a third embodiment to which the present invention is applied will be described with reference to FIG. In the third embodiment, parts that are configured in the same manner as in the first embodiment are given the same reference numerals, and descriptions thereof are omitted.
In the first embodiment, the adjacent light source units 13 are the same components, and the inclination direction of the radiation fins 29 is also assumed to be the same between the adjacent light source units 13. The third embodiment is different from the first embodiment in that the inclination direction of the radiation fins 29 is different between adjacent light source units 13.
 図12は、第3の実施の形態の光源ユニット13及び光源ユニット213を示す平面図である。ここで、図12では、光源ユニット13及び光源ユニット213をLEDランプ1から取り外したままの向きで平面に展開した状態が示されている。
 光源ユニット213は、軸線Cを基準に光源ユニット13に対して対称に形成されている。光源ユニット13及び光源ユニット213は左右対称であるため、ここでは、各部に同一の符号を付して説明を省略する。
FIG. 12 is a plan view illustrating the light source unit 13 and the light source unit 213 according to the third embodiment. Here, in FIG. 12, a state in which the light source unit 13 and the light source unit 213 are unfolded on a plane in a direction removed from the LED lamp 1 is shown.
The light source unit 213 is formed symmetrically with respect to the light source unit 13 with respect to the axis C. Since the light source unit 13 and the light source unit 213 are bilaterally symmetric, the same reference numerals are given to the respective parts and description thereof is omitted here.
 光源ユニット13及び光源ユニット213は、流入口35a同士が隣接して配置されており、排出口35bは互いに遠い位置にある。
 本第3の実施の形態によれば、隣り合う光源ユニット13及び光源ユニット213の放熱フィン29は、軸線Cを基準に略対称に形成されているため、隣り合う一方の光源ユニット13の放熱フィン29の排出口35bから排出される温められた気流Wが、他方の光源ユニット213の放熱フィン29の流入口35aに流れることを防止できる。このため、隣接する光源ユニットからの熱の影響を受けにくく放熱フィン29によって効率良く放熱できる。
In the light source unit 13 and the light source unit 213, the inflow ports 35a are arranged adjacent to each other, and the discharge ports 35b are located far from each other.
According to the third embodiment, the adjacent light source units 13 and the heat radiation fins 29 of the light source units 213 are formed substantially symmetrically with respect to the axis C, and therefore, the heat radiation fins of one adjacent light source unit 13. It is possible to prevent the warmed airflow W discharged from the 29 outlets 35 b from flowing into the inlets 35 a of the radiation fins 29 of the other light source unit 213. For this reason, it is difficult to be affected by the heat from the adjacent light source units, and the heat radiation fins 29 can efficiently radiate heat.
 1 LEDランプ(ランプ)
 12 支持体
 13,113,213 光源ユニット
 13a 一端部
 13b 他端部
 14 結合部材(蓋体)
 20 LED(発光素子)
 21 実装基板
 22,122 基体
 22c 表面
 22e 外周部(周縁部)
 22d 裏面
 29,129 放熱フィン
 30 カバー
 30a 上端面(先端面)
 32 外周面カバー部
 33 鍔部
 40 通風孔
 C 軸線
1 LED lamp (lamp)
DESCRIPTION OF SYMBOLS 12 Support body 13,113,213 Light source unit 13a One end part 13b Other end part 14 Connection member (lid body)
20 LED (light emitting device)
21 mounting substrate 22, 122 base 22c surface 22e outer peripheral part (peripheral part)
22d Back surface 29,129 Radiation fin 30 Cover 30a Upper end surface (tip surface)
32 Outer peripheral surface cover part 33 Gutter part 40 Ventilation hole C axis

Claims (6)

  1.  発光素子が実装された実装基板と、前記実装基板が表面に設けられた板状の金属材からなる基体とを有した複数の光源ユニットと、
     複数の前記光源ユニットを支持する絶縁材からなる支持体と、を備え、
     複数の前記光源ユニットのそれぞれは、
     前記基体の裏面を内側に向けて前記支持体の周りに配置され、当該基体の一端部で前記支持体に支持され、
     前記基体の表面には当該基体の周縁部まで覆う絶縁材からなるカバーを備え、
     前記基体の他端部には、当該他端部と前記内側の間を閉じる絶縁材からなる蓋体を備えた
     ことを特徴とするランプ。
    A plurality of light source units each including a mounting substrate on which a light emitting element is mounted, and a base made of a plate-like metal material on which the mounting substrate is provided;
    A support made of an insulating material that supports the plurality of light source units, and
    Each of the plurality of light source units is
    Arranged around the support with the back side of the base facing inward, supported by the support at one end of the base,
    The surface of the base is provided with a cover made of an insulating material that covers the peripheral edge of the base,
    The lamp is characterized in that the other end portion of the base body is provided with a lid made of an insulating material that closes between the other end portion and the inner side.
  2.  前記基体の裏面には放熱フィンが設けられていることを特徴とする請求項1記載のランプ。 The lamp according to claim 1, wherein a heat radiating fin is provided on a back surface of the base.
  3.  前記蓋体には通風孔が形成されていることを特徴とする請求項1または2に記載のランプ。 The lamp according to claim 1 or 2, wherein a ventilation hole is formed in the lid.
  4.  前記カバーには、隣の光源ユニットに突出する鍔部が設けられることを特徴とする請求項1から3のいずれかに記載のランプ。 The lamp according to any one of claims 1 to 3, wherein the cover is provided with a flange that protrudes to an adjacent light source unit.
  5.  前記実装基板は、前記基体に直付けされていることを特徴とする請求項1から4のいずれかに記載のランプ。 The lamp according to any one of claims 1 to 4, wherein the mounting substrate is directly attached to the base.
  6.  前記蓋体は、複数の前記光源ユニットの基体のそれぞれの他端部を結合し、前記他端部の先端と略面一に設けられていることを特徴とする請求項1から5のいずれかに記載のランプ。 The said cover body couple | bonds the other end part of each base | substrate of the said several light source unit, and is provided in the front-end | tip of the said other end part, and substantially flush. Lamp described in.
PCT/JP2014/068019 2013-09-25 2014-07-07 Lamp WO2015045551A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-198280 2013-09-25
JP2013198280A JP6244776B2 (en) 2013-09-25 2013-09-25 lamp

Publications (1)

Publication Number Publication Date
WO2015045551A1 true WO2015045551A1 (en) 2015-04-02

Family

ID=52742709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/068019 WO2015045551A1 (en) 2013-09-25 2014-07-07 Lamp

Country Status (2)

Country Link
JP (1) JP6244776B2 (en)
WO (1) WO2015045551A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101761812A (en) * 2010-02-10 2010-06-30 周成凤 Lamp tube type LED lamp
WO2012099251A1 (en) * 2011-01-21 2012-07-26 シチズン電子株式会社 Manufacturing method for lighting device and holder
JP2013524412A (en) * 2010-03-26 2013-06-17 ソーラーコー カンパニー リミテッド LED illumination module and illumination lamp using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101761812A (en) * 2010-02-10 2010-06-30 周成凤 Lamp tube type LED lamp
JP2013524412A (en) * 2010-03-26 2013-06-17 ソーラーコー カンパニー リミテッド LED illumination module and illumination lamp using the same
WO2012099251A1 (en) * 2011-01-21 2012-07-26 シチズン電子株式会社 Manufacturing method for lighting device and holder

Also Published As

Publication number Publication date
JP2015065032A (en) 2015-04-09
JP6244776B2 (en) 2017-12-13

Similar Documents

Publication Publication Date Title
US7434964B1 (en) LED lamp with a heat sink assembly
US9518724B2 (en) Light emitting device module array
US8471443B2 (en) Lighting device
US8845116B2 (en) LED lighting device including module which is changeable according to power consumption and having improved heat radiation and waterproof
US20110216536A1 (en) Illumination device
JP5846176B2 (en) lamp
US8794794B2 (en) Lamp unit and luminaire
BR112013017693B1 (en) LIGHTING DEVICE
JP2009158144A (en) Illumination fixture
US20140211478A1 (en) Lighting device
JP5752336B1 (en) LED lamp
JP2011258454A (en) Light source and lighting fixture
WO2015045551A1 (en) Lamp
WO2018180902A1 (en) Irradiation unit and irradiation device
JP6187784B2 (en) LED lighting fixtures
JP5062429B2 (en) Lighting device
JP6295723B2 (en) lamp
JP6793324B2 (en) lighting equipment
JP2011258453A (en) Lighting fixture
JP6916148B2 (en) Lighting device
JP6275234B2 (en) LED lighting device
KR101558274B1 (en) Hybrid type radiating device
KR20120092449A (en) Lighting device
KR20120116078A (en) Lighting device
JP2010040597A (en) Electrical component and lighting fixture

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14848448

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14848448

Country of ref document: EP

Kind code of ref document: A1