WO2015045398A1 - Electrochromic display panel - Google Patents

Electrochromic display panel Download PDF

Info

Publication number
WO2015045398A1
WO2015045398A1 PCT/JP2014/004922 JP2014004922W WO2015045398A1 WO 2015045398 A1 WO2015045398 A1 WO 2015045398A1 JP 2014004922 W JP2014004922 W JP 2014004922W WO 2015045398 A1 WO2015045398 A1 WO 2015045398A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
display panel
data line
electrochromic display
scanning line
Prior art date
Application number
PCT/JP2014/004922
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 和仁
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Priority to JP2015538910A priority Critical patent/JPWO2015045398A1/en
Publication of WO2015045398A1 publication Critical patent/WO2015045398A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/155Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/163Operation of electrochromic cells, e.g. electrodeposition cells; Circuit arrangements therefor
    • G02F2001/1635Operation of electrochromic cells, e.g. electrodeposition cells; Circuit arrangements therefor the pixel comprises active switching elements, e.g. TFT

Definitions

  • the present invention relates to an electrochromic display panel, and more particularly to an electrochromic display panel in which a shield electrode is disposed between pixels and a manufacturing method thereof.
  • liquid crystal using a backlight as an information display panel has been mainstream.
  • the burden on the eyes is large, and it is not suitable for applications that keep watching for a long time.
  • Patent Document 1 a display panel having a pair of opposed electrodes and an electrophoretic display layer provided between the electrodes has been proposed as an electrophoretic display device.
  • This electrophoretic display panel displays characters and images by reflected light, similar to the printed paper, and is suitable for work that keeps the screen looking for a long time with little load on the eyes.
  • the white reflectance of the electrophoretic display medium that changes the reflectance by moving the white and black charged particles is not sufficiently high due to the influence of the black charged particles. Therefore, there is a demand for a reflective display panel having a high reflectance according to another method.
  • an electrochromic display method that uses an electrochromic material that can be electrically changed in color and has a simple structure with a small number of layers is attracting attention.
  • an electrochromic driving method a method in which the display electrode and the counter electrode are arranged on the same plane (see Patent Document 2), or a passive driving method in which the display electrode and the counter electrode are arranged to face each other at 90 degrees. (See Patent Document 3), a matrix driving method (see Patent Document 4) in which an active element is arranged for each pixel as a counter electrode has been proposed.
  • any of the driving methods causes the above-described problem. It is said that high-quality display is difficult with this method.
  • Patent Document 6 a proposal has been made to prevent the influence of an electric field on adjacent pixels by forming partition walls in units of pixels in order to suppress the spread of pixels.
  • an object of the present invention is to provide an electrochromic display panel that can easily suppress the expansion of the pixel coloring area without impairing such reflectance and image quality.
  • An electrochromic display panel comprising an electrode and a thin film transistor as a part of a laminated structure, the shield electrode covering from the data line and the scanning line and having a width of 2 ⁇ m to 4 ⁇ m wider than the data line and the scanning line It is an electrochromic display panel provided with.
  • the electrochromic display panel is provided with an insulating film on the surface of the scanning line and the data line.
  • the width of the insulating film formed on the scanning line and the data line is an electrochromic display panel formed to be larger than the width of the shield electrode on the scanning line and the data line.
  • the shield electrode is an electrochromic display panel arranged on the thin film transistor so as to shield light.
  • the thickness of the shield electrode is an electrochromic display panel having a thickness of 150 nm to 400 nm.
  • the electrochromic display panel is provided with an insulating film on the surface of the shield electrode.
  • the electrochromic display panel is provided with a partition wall for partitioning adjacent pixels on the surface of the shield electrode.
  • the shield electrode is provided on the data line and the scanning line between the pixels, and is formed wide so that the spread of the electric field between the adjacent pixels is suppressed, and between the pixels. Therefore, a clear color change is possible.
  • the present invention can suppress the spread of the electric field between adjacent pixels even in a panel with higher resolution (100 ppi or more), so that a high-quality image can be displayed on the panel with high resolution. Can do.
  • an electrochromic display medium that easily improves the problems of expansion of pixel area and low image quality display in an electrochromic display medium can be manufactured.
  • FIG. 1 is an equivalent circuit of various elements and wirings in a plurality of pixels formed in a matrix that forms an image display region of an electrochromic display panel.
  • FIG. 2 is a plan view of a plurality of adjacent pixels on a TFT substrate on which data lines, scanning lines, shield electrodes, and pixel electrodes are formed.
  • FIG. 3 is a plan view in which elements for showing the relationship among the data lines, scanning lines, shield electrodes, and pixel electrodes in FIG. 2 are extracted.
  • FIG. 4 is a cross-sectional view taken along the line A-A 'of FIG. 2, and is a cross-sectional view of an electrochromic display panel according to an embodiment in which the electrochromic material according to the present invention is used.
  • FIG. 5 is a cross-sectional view taken along the line A-A ′ of FIG. 2, and is a cross-sectional view when a partition wall is formed on the shield electrode.
  • the electrochromic display panel of the present invention can be driven in an active matrix by being provided with data lines, scanning lines, pixel electrodes, and thin film transistors.
  • FIG. 1 is an equivalent circuit of various elements and wirings in a plurality of pixels formed in a matrix that constitutes an image display region of an electrochromic display panel.
  • FIG. 2 is a plan view of a plurality of pixels adjacent to a TFT substrate on which data lines, scanning lines, shield electrodes, and pixel electrodes are formed.
  • FIG. 3 is a plan view of data lines, scanning lines, shield electrodes, and pixels in FIG. It is the top view which extracted the element for showing the relationship of an electrode.
  • FIG. 4 is a cross-sectional view taken along the line A-A ′ of FIG.
  • FIG. 5 is a cross-sectional view when a partition wall is formed on the shield electrode.
  • the scale of each layer and member is changed in order to make each layer thickness and member recognizable on the drawing.
  • each of a plurality of pixels formed in a matrix that forms an image display area in the present embodiment is formed with a pixel electrode 6 a and a TFT 20 for ON / OFF control of the pixel electrode 6 a.
  • a data line 3 a to which an image signal is supplied is electrically connected to the drain of the TFT 20.
  • the image signal to be written to the data line 3a is supplied in the order of D1, D2,..., Dn.
  • the scanning line 1a is electrically connected to the gate of the TFT 20, and the voltage is applied line-sequentially in the order of the scanning signals G1, G2,.
  • the pixel electrode 6a is electrically connected to the source of the TFT 20, and by turning on the TFT 20 as a switching element for a certain period, the image signal supplied from the data line 3a is converted to D1, D2,. ..., Dn is written at a predetermined timing.
  • the image signals D1, D2,..., Dn written to the electrochromic display panel via the pixel electrode 6a are held between the counter electrodes formed over the entire display area of the counter substrate.
  • a capacitor 30 is added in parallel with the electrochromic display element capacitor formed between the pixel electrode 6a and the counter electrode.
  • the capacitor 30 includes an electrode 200 fixed at a constant potential.
  • a plurality of pixel electrodes 6a are provided in a matrix on the TFT array substrate 10, and the scanning lines 1a and data lines 3a are arranged along the vertical and horizontal directions of the plurality of pixel electrodes 6a.
  • the shield electrode 12a is provided on each of the scanning line 1a and the data line 3a.
  • the scanning line 1a, the data line 3a, and the shield electrode 12a are made of a conductive film.
  • the scanning line 1a includes a channel region 9a indicated by a hatched region, and the scanning line 1a functions as a gate electrode.
  • Channel regions 9a are respectively provided in the vicinity of the intersection of the scanning line 1a and the data line 3a, and a pixel switching TFT 20 in which the main gate electrode of the scanning line 1a is disposed is provided.
  • the shield electrode 12a has a thickness of 150 nm or more and 400 nm or less and is disposed on the TFT 20 so as to shield light.
  • the electrochromic display panel includes a substrate on which a TFT array made of a glass substrate is disposed, a TFT array substrate 10 and a transparent substrate disposed opposite to the substrate, as shown in FIG. And a counter substrate 18 made of
  • a pixel electrode 6a is provided as shown in FIG. 4, and a charge storage layer 14 is provided thereon.
  • the pixel electrode 6a is made of, for example, an aluminum film
  • the counter substrate 18 side is provided with a counter electrode 17 made of a transparent conductive film such as an ITO film over the entire display area, and below that.
  • Is provided with a display layer 16.
  • An electrolyte layer 15 is provided between the TFT array substrate 10 and the counter substrate 18 arranged so as to face each other, and an electrochromic display layer 19 is formed.
  • each component including the pixel electrode 6a is provided in a laminated structure.
  • a first interlayer insulating film 11 is provided between the scanning line 1a and the data line 3a
  • a second interlayer insulating film 12 is provided between the scanning line 1a and the data line 3a and the shield electrode 12a.
  • the electrochromic display layer 19 can apply a positive or negative voltage or a current to flow between the pixel electrode 6a and the counter electrode 17, and an electric field is generated in the electrochromic display layer 19 by changing the voltage of the data line 3a. As a result, the display layer 16 and the charge storage layer 14 are oxidized and reduced.
  • the charge storage layer 14 loses electrons and is oxidized, and electrons are donated and reduced to the display layer 16 of the counter electrode 17 serving as a counter electrode.
  • the pixel electrode 6a is a negative electrode, electrons are donated to the charge storage layer 14 and reduced, and the display layer 16 loses electrons and is oxidized.
  • the visible light absorption wavelength region appears or changes color as it moves.
  • the shield electrode 12a connected to the external terminal is arranged between the pixels so that the same potential as the counter electrode 17 or an arbitrary potential can be applied from the external drive circuit.
  • a current is passed through the pixel, the color change and the spread of the electric field in the display layer between the pixels are suppressed on the shield electrode without being influenced by the electric field of the adjacent pixel.
  • the display layer corresponding to the pixel electrode undergoes a color change, and the color change does not occur in the display area of the pixel electrode adjacent to the pixel electrode that promoted the color change, and a clear display area with the adjacent pixel Appears and a high-quality image is displayed.
  • the shield electrode 12a is preferably formed wider than the data line 3a and the scanning line 1a by 2 ⁇ m to 4 ⁇ m.
  • the scanning line 1a, the data line 3a, and the edge of the TFT 20 region to the edge of the shield electrode 12a are less than 2 ⁇ m, the film is reduced due to damage (etchant, etc.) during etching in the shield electrode 12a formation process, and the TFT due to light leakage There is a risk of deteriorating characteristics and the effect of suppressing electric field.
  • the aperture ratio may be sacrificed in the application of a high resolution panel (100 ppi or more). There is.
  • the active matrix electrochromic display panel includes a thin film transistor for each pixel.
  • the present invention is not limited to this.
  • a passive matrix electrochromic display panel may be used.
  • the electrochromic display layer is formed of an electrochromic material, a supporting electrolyte, a reflective material, and a charge storage material.
  • General organic and inorganic compounds can be used for the electrochromic material.
  • low molecular organic electrochromic compounds such as viologens, phenothiazines, anthraquinones, styryl spiropyrans, pyrazolines, fluorans, styryl spiropyran dyes, phthalocyanines, polyaniline, polythiophene, polypyrrole, etc.
  • Inorganic compounds such as molecular compounds, titanium oxide, molybdenum oxide, niobium oxide, iridium oxide, vanadium oxide, tungsten oxide, indium oxide, iridium oxide, nickel oxide, Prussian blue, and Prussian blue analogues in which the coordination metal is replaced by other than iron Based electrochromic compounds.
  • leuco dyes which are generally electricity-donating organic substances, can also be electrically colored and decolored.
  • electron-donating dye precursors such as leucooramines, diarylphthalides, polyarylcarbinols, acylauramines, arylolamines, rhodamine B-lactams, indolines, spiropyrans, and fluorans Is mentioned.
  • a porous layer made of a mineral such as titanium oxide may be formed on the electrode layer and adsorbed.
  • the electrochromic material listed above is used directly or mixed with a binder to form a paint, and screen printing, micro gravure coater, kiss coater, comma coater, die coater, bar coater, spin coater, etc.
  • a typical coating technique can be used.
  • the projections matched to the pixel electrodes are formed by a coating method that can be patterned such as screen printing or ink jet printing.
  • the supporting salt examples include inorganic ion salts such as alkali metal salts and alkaline earth metal salts, quaternary ammonium salts, acids and alkalis. Further specific examples of the supporting salt include LiClO 4 , LiBF 4 , LiAsF 6 , LiPF 6 , LiCF 3 SO 3 , CF 3 COOLi, KCl, NaClO 3 , NaCl, NaBF 4 , NaSCN, KBF 4 , Mg ( ClO 4 ) 2 , Mg (BF 4 ) 2 and the like.
  • examples of the white material include magnesium oxide, barium sulfate, and titanium oxide.
  • examples of the black material include carbon black made of carbon such as lamp black and bone black, and titanium black powder made of an inorganic material. Furthermore, if it is blue, cobalt aluminate, cobalt chrome blue, phthalocyanines, and if it is red, anthraquinone and azo compounds may be mentioned.
  • the viscosity of the electrolyte layer may be increased by dissolving a polymer material such as an acrylic resin or a urethane resin in the electrolyte layer. Alternatively, a dispersant or a surfactant may be added.
  • the same material as the electrochromic material can be used as the charge storage material. However, a stable material that is unlikely to react with other compounds in both oxidized and reduced forms such as Prussian blue and ferrocene is preferable.
  • the counter substrate has a structure in which a transparent electrode is formed on a transparent base material.
  • a transparent substrate polyethylene terephthalate (PET), polycarbonate, polyimide, polyethylene naphthalate, polyethersulfone, acrylic resin, polyvinyl chloride or other plastic film, glass, or the like can be used.
  • PET polyethylene terephthalate
  • polycarbonate polycarbonate
  • polyimide polyethylene naphthalate
  • polyethersulfone acrylic resin
  • polyvinyl chloride or other plastic film, glass, or the like can be used.
  • What can be used as the transparent electrode material is a conductive oxide having transparency such as indium oxide, tin oxide and zinc oxide such as ITO. Conventional techniques such as vapor deposition, sputtering, and CVD can be used to form the transparent electrode.
  • the TFT array substrate can be an active matrix type electrode plate in which thin transistors using amorphous silicon or polycrystalline silicon, which are used for driving general liquid crystal panels, are arranged.
  • a back electrode plate capable of large-scale active matrix driving may be used by arranging a large number of electrodes in a grid pattern on the front surface of the printed circuit board and laying wiring on the back surface through through holes for each electrode.
  • the shield electrode wiring can be formed using a known material and a forming method, and the material and the forming method are not limited.
  • the shield electrode material include tantalum (Ta), aluminum (Al), Copper (Cu) etc. are mentioned.
  • the shield electrode is formed on the thin film transistor, it is possible to suppress the light from entering the TFT, and to reduce the change in characteristics of the TFT due to the light.
  • the barrier rib can be formed using a known material and a forming method, and the material and the forming method are not limited.
  • Examples of the barrier rib material include a thick film photoresist.
  • the height of the partition wall is preferably 50% or more with respect to the total thickness of the electrochromic display layer.
  • Example 1 ⁇ Preparation of front electrode substrate> A dispersion obtained by dispersing 1.0 mol / l of a water-soluble Prussian blue dispersion as an electrochromic material on a transparent electrode substrate formed using indium tin oxide as an electrode on 100 mm square glass was applied with a spin coater. A front electrode substrate having a coating film of about 0.5 ⁇ m was obtained by drying at 5 ° C. for 5 minutes.
  • a coating solution prepared by mixing 0.5 mol / l Prussian blue and polyethylene glycol in pure water was prepared, and a 250 ⁇ m square pattern was printed on the front substrate by ink jet printing.
  • a stepped front electrode substrate with a step of 4 ⁇ m was obtained.
  • a film forming process by sputtering, vapor deposition or CVD, a mask process such as photolithography, and a thin film shape processing process such as etching are appropriately performed.
  • the electrodes are formed by patterning, a first interlayer insulating film is formed, a switching element (TFT) is formed by patterning for each pixel, and then the second electrode is formed by patterning. At this time, a contact hole is formed in advance so as to connect the first electrode and the second electrode.
  • TFT switching element
  • the TFT hydrogenated amorphous silicon (a-Si: H)
  • a-Si: H hydrogenated amorphous silicon
  • a-Si: H amorphous silicon
  • a-Si: H a plasma CVD method
  • a reactive sputtering method n-type hydrogenated amorphous silicon
  • monosilane (SiH 4 ) or higher silane and phosphine (PH 3 ) are used as source gases, and these are decomposed by RF discharge to a temperature of 200 ° C. It is deposited on the substrate held at 300 ° C. or lower.
  • the hydrogenated amorphous silicon formed by such a method contains about 10 atm% to 20 atm% of hydrogen, and this hydrogen has an important influence on the characterization of the hydrogenated amorphous silicon.
  • Hydrogen contained in this hydrogenated amorphous silicon has a direct role of removing dangling bonds. In addition, it has a role in the surface process when forming a film of hydrogenated amorphous silicon and a role as a structural relaxation agent for the network, and the effects of these roles are coupled indirectly with the thermal effect due to the temperature of the substrate. It also reduces dangling bonds.
  • Si—H bonds in hydrogenated amorphous silicon reduce unstable dangling bonds and realize structural agility
  • crystalline Si and P are formed by P (phosphorus, V group) and B (boron, III group).
  • P phosphorus, V group
  • B boron, III group
  • a pn junction by similar substitutional doping is realized.
  • Such a property of hydrogen in hydrogenated amorphous silicon is an important property in application that enables application of hydrogenated amorphous silicon to diodes and transistors.
  • a second interlayer insulation is formed on the TFT by performing a film forming process such as sputtering, vapor deposition or CVD, a mask process such as photolithography, and a thin film shape processing process such as etching.
  • a film is formed by patterning, and a shield electrode is formed by patterning 2 ⁇ m wider than the data line and the scanning line on the electrode to be the data line and the scanning line.
  • the back electrode plate is a TFT substrate having a resolution of 102 ppi (pixel size 250 ⁇ m ⁇ ) and an interelectrode distance of 15 ⁇ m in order to evaluate the applicability of a high-resolution panel.
  • the prepared Prussian blue dispersion was applied by a spin coater in the same manner as the front electrode substrate to obtain a back electrode substrate using Prussian blue as a charge retention layer.
  • 0.1 M potassium hexafluorophosphate, PMMA (Wako Pure Chemicals) and titanium oxide (R-830, manufactured by Ishihara Sangyo) were dispersed as electrolytes in propylene carbonate to prepare an electrolyte solution.
  • Example 2 was the same as Example 1 except that the shield electrode was formed by patterning on the electrodes to be the data line and the scanning line so as to be 2.5 ⁇ m wider than the data line and the scanning line.
  • Example 1 was the same as Example 1 except that a shield electrode was formed by patterning 3 ⁇ m wider than the data line and the scanning line on the electrode to be the data line and the scanning line.
  • Example 4 Example 1 was the same as Example 1 except that a shield electrode was formed by patterning on the electrodes to be the data line and the scanning line so as to be 3.5 ⁇ m wider than the data line and the scanning line.
  • Example 1 was the same as Example 1 except that a shield electrode was formed by patterning 4 ⁇ m wider than the data line and the scan line on the data line and the scan line.
  • Example 1 was the same as Example 1 except that the shield electrode was formed by patterning 1 ⁇ m wider than the data line and the scanning line on the data line and scanning line.
  • Example 1 was the same as Example 1 except that a shield electrode was formed by patterning 5 ⁇ m wider than the data line and the scanning line on the data line and the scanning line.
  • Example 1 was the same as Example 1 except that the shield electrode was formed by patterning 6 ⁇ m wider than the data line and the scanning line on the electrode to be the data line and the scanning line.
  • Table 1 shows the evaluation results of Examples 1 to 5 and Comparative Examples 1 to 3.
  • a shield electrode formed on a data line and a scanning line, and a patterning pattern that is wider than 2 ⁇ m and 4 ⁇ m from the data line and the scanning line, is evaluated as “++ (good)”.
  • the patterning pattern wider than 4 ⁇ m is judged to require sacrificing the aperture ratio, and is evaluated as “-(impossible)”.
  • the patterning pattern narrower than 2 ⁇ m is confirmed to be damaged by the electrode film. Evaluated as “-(impossible)”. It was confirmed that good characteristics were obtained at a resolution of 102 ppi by patterning the shield electrode wider than the data line and the scanning line over 2 ⁇ m to 4 ⁇ m.
  • Example 6 the panel having a resolution of 150.3 ppi (pixel size: 169 ⁇ m ⁇ ) was evaluated as a panel having a higher resolution than those of Examples 1 to 5.
  • Example 6 ⁇ Preparation of front electrode substrate> A stepped front electrode substrate was prepared in the same manner as in Example 1 except that a coating solution in which 0.5 mol / l Prussian blue and polyethylene glycol were mixed in pure water was prepared and a pattern of 169 ⁇ m ⁇ was printed by inkjet printing. .
  • a shield electrode is formed on the data line and scan line electrode by patterning 2 ⁇ m wider than the data line and scan line, and the back electrode plate is a TFT substrate having a resolution of 150.3 ppi (pixel size 169 ⁇ m) and a distance between pixels of 15 ⁇ m.
  • a back electrode substrate was produced in the same manner as in Example 1 except that it was used.
  • ⁇ Production of evaluation substrate> It was produced in the same manner as in Example 1.
  • Example 6 was the same as Example 6 except that the shield electrode was formed by patterning on the electrodes to be the data line and the scanning line so as to be 2.5 ⁇ m wider than the data line and the scanning line.
  • Example 6 was the same as Example 6 except that the shield electrode was formed by patterning 3 ⁇ m wider than the data line and the scanning line on the electrode to be the data line and the scanning line.
  • Example 6 was the same as Example 6 except that the shield electrode was formed by patterning on the electrodes to be the data line and the scanning line so as to be 3.5 ⁇ m wider than the data line and the scanning line.
  • Example 6 was the same as Example 6 except that the shield electrode was formed by patterning 4 ⁇ m wider than the data line and the scanning line on the data line and the scanning line.
  • Example 6 was the same as Example 6 except that the shield electrode was formed by patterning 1 ⁇ m wider than the data line and the scanning line on the electrode serving as the data line and the scanning line.
  • Example 6 was the same as Example 6 except that a shield electrode was formed by patterning 5 ⁇ m wider than the data line and the scan line on the data line and the scan line.
  • Example 6 was the same as Example 6 except that the shield electrode was formed by patterning 6 ⁇ m wider than the data line and the scanning line on the electrode serving as the data line and the scanning line.
  • Table 2 shows the evaluation results of Examples 6 to 10 and Comparative Examples 4 to 6.
  • a shield electrode formed on a data line and a scanning line, and a patterning pattern that is wider than 2 ⁇ m and 4 ⁇ m from the data line and the scanning line, is evaluated as “++ (good)”.
  • the patterning pattern wider than 4 ⁇ m is judged to require sacrificing the aperture ratio, and is evaluated as “-(impossible)”.
  • the patterning pattern narrower than 2 ⁇ m is confirmed to be damaged by the electrode film. Evaluated as “-(impossible)”. It was confirmed that good characteristics were obtained at a resolution of 150.3 ppi by patterning the shield electrode wider than the data line and the scanning line over 2 ⁇ m to 4 ⁇ m.
  • the shield electrode is formed by the same method as in Example 6 and then patterned using a thick film photoresist by a photolithography method or the like and baked to form a partition wall. As a result of the evaluation, it was confirmed that the same result as this time was obtained.
  • the shield electrode is provided on the data line and the scanning line between the pixels, and is formed wide so that the spread of the electric field between the adjacent pixels is suppressed, and the color change between the pixels is small and clear. Color change is possible.
  • the present invention can suppress the spread of the electric field between adjacent pixels even in a panel with higher resolution (100 ppi or more), so that a high-quality image can be displayed on the panel with high resolution. Can do.
  • an electrochromic display medium that easily improves the problems of expansion of pixel area and low image quality display in an electrochromic display medium can be manufactured.
  • the present invention is useful for display devices such as electronic paper.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

Provided is an electrochromic display panel in which enlargement of pixel color surface area can easily be controlled without losing reflectivity and image quality. The electrochromic display panel is provided with a substrate on which part of a layered structure is formed by data lines (3a) extending in a first direction and scanning lines (1a) extending in a second direction crossing the data lines (3a) as well as pixel electrodes (6a) and thin film transistors (20) which are disposed so as to correspond to a crossing area of the data lines (3a) and the scanning lines (1a). The electrochromic display panel is also provided with shield electrodes (12a) that cover the data lines (3a) and scanning lines (1a) from above and are formed with a width 2 - 4 µm wider than the data lines (3a) and the scanning lines (1a).

Description

エレクトロクロミック表示パネルElectrochromic display panel
 本発明は、エレクトロクロミック表示パネルに関するものであり、特に画素間にシールド電極を配したエレクトロクロミック表示パネルとその製造方法に関する。 The present invention relates to an electrochromic display panel, and more particularly to an electrochromic display panel in which a shield electrode is disposed between pixels and a manufacturing method thereof.
 近年、情報表示パネルとしてバックライトを使用した液晶が主流である。しかし、目の負担が大きく、長時間見続ける用途に適していない。 In recent years, liquid crystal using a backlight as an information display panel has been mainstream. However, the burden on the eyes is large, and it is not suitable for applications that keep watching for a long time.
 そこで目の負担が小さい反射型表示装置として、一対の対向する電極間と、その電極間に設けられた電気泳動式表示層を有する表示パネルとが、電気泳動式表示装置として提案されている(特許文献1参照)。 Therefore, as a reflective display device with a small eye load, a display panel having a pair of opposed electrodes and an electrophoretic display layer provided between the electrodes has been proposed as an electrophoretic display device ( Patent Document 1).
 この電気泳動式表示パネルは、印刷された紙面と同様、反射光によって文字や画像を表示するので、目に対する負荷が少なく、画面を長時間見続ける作業に適している。 This electrophoretic display panel displays characters and images by reflected light, similar to the printed paper, and is suitable for work that keeps the screen looking for a long time with little load on the eyes.
 しかし、白および黒の帯電粒子を移動させることにより反射率を変化させる電気泳動方式表示媒体の白反射率は、黒帯電粒子の影響により十分に高くない。そのため、別方式による高反射率の反射型表示パネルが求められている。 However, the white reflectance of the electrophoretic display medium that changes the reflectance by moving the white and black charged particles is not sufficiently high due to the influence of the black charged particles. Therefore, there is a demand for a reflective display panel having a high reflectance according to another method.
 その一つとして、電気的に着色変化させることの出来るエレクトロクロミック材料を用い、少ない層数で簡便な構造であるため高反射率が期待されるエレクトロクロミック表示方式に注目が集まっている。 As one of them, an electrochromic display method that uses an electrochromic material that can be electrically changed in color and has a simple structure with a small number of layers is attracting attention.
 一方で、明確な電圧閾値が存在しないエレクトロクロミック方式には、電極間の電界の広がりにより着色画素面積が拡張する課題がある。 On the other hand, in the electrochromic method in which there is no clear voltage threshold, there is a problem that the color pixel area is expanded due to the spread of the electric field between the electrodes.
 そのため、エレクトロクロミックの駆動方式として、表示電極と対極電極とを同平面状上に配置する方式(特許文献2参照)や表示電極と対極電極とを90度交わるように対面に配置したパッシブ駆動方式(特許文献3参照)、対極電極を画素単位に能動素子を配置したマトリクス駆動方式(特許文献4参照)などが提案されているが、いずれの駆動方式でも上記課題が発生するため、このエレクトロクロミック方式では高画質の表示が困難であるといわれている。 Therefore, as an electrochromic driving method, a method in which the display electrode and the counter electrode are arranged on the same plane (see Patent Document 2), or a passive driving method in which the display electrode and the counter electrode are arranged to face each other at 90 degrees. (See Patent Document 3), a matrix driving method (see Patent Document 4) in which an active element is arranged for each pixel as a counter electrode has been proposed. However, any of the driving methods causes the above-described problem. It is said that high-quality display is difficult with this method.
 この課題を解決するため、電解質層に垂直ポーラス構造の隔壁を形成し、電界の広がりを抑制する提案がなされている(特許文献5参照)。 In order to solve this problem, a proposal has been made to suppress the spread of the electric field by forming vertical porous partition walls in the electrolyte layer (see Patent Document 5).
 しかし、垂直ポーラス構造の隔壁を形成すると、隔壁部に隣接するエレクトロクロミック層には十分な電解質が行き渡らず、着色変化の速度および着色濃度が不均一になってしまい、結果として反射率および画質の低下を招いてしまう。さらに、上述の隔壁のような微細加工は量産性が低く、現実的ではない。 However, when a vertical porous structure barrier rib is formed, sufficient electrolyte does not reach the electrochromic layer adjacent to the barrier rib portion, and the rate of color change and the color density become uneven, resulting in poor reflectance and image quality. It will cause a decline. Furthermore, microfabrication such as the partition walls described above has low mass productivity and is not practical.
 また、画素の広がりを抑制するために画素単位で隔壁を形成することにより隣接画素への電界影響を防ぐ提案もなされている(特許文献6)。 Also, a proposal has been made to prevent the influence of an electric field on adjacent pixels by forming partition walls in units of pixels in order to suppress the spread of pixels (Patent Document 6).
 しかし、電界の広がり自体を抑制するものではなかった。 However, it did not suppress the spread of the electric field itself.
特公昭50-015115号公報Japanese Patent Publication No. 50-015115 特開2006-323191号公報JP 2006-323191 A 特開2012-168439号公報JP 2012-168439 A 特開2002-287173号公報JP 2002-287173 A 特開2008-033083号公報JP 2008-033083 A 特開2010-224240号公報JP 2010-224240 A
 上記の通り、電界の広がりによる画素着色面積の拡張を改善するために、垂直ポーラス構造の隔壁を電解質層に構築するなどの提案がある。しかし、このような提案を行い駆動すると隔壁部に隣接するエレクトロクロミック層には十分な電解質が行き渡らず、着色変化の速度および着色濃度が不均一になってしまい、結果として反射率および画質の低下を招いてしまう。さらに、上述の隔壁のような微細加工は量産性が低く、現実的ではない。よって、本発明の目的はそのような反射率や画質を損なうことなく、画素着色面積の拡張を容易に抑制することの出来るエレクトロクロミック表示パネルを提供することである。 As described above, in order to improve the expansion of the pixel coloring area due to the spread of the electric field, there is a proposal of constructing a partition wall having a vertical porous structure in the electrolyte layer. However, when such a proposal is made and driven, sufficient electrolyte does not reach the electrochromic layer adjacent to the partition wall, resulting in uneven color change speed and color density, resulting in a decrease in reflectance and image quality. Will be invited. Furthermore, microfabrication such as the partition walls described above has low mass productivity and is not practical. Therefore, an object of the present invention is to provide an electrochromic display panel that can easily suppress the expansion of the pixel coloring area without impairing such reflectance and image quality.
 本願に関わる発明の各局面は、以下の通りである。 Each aspect of the invention related to the present application is as follows.
 まず、基板上に、第1方向に延在するデータ線及びデータ線に交差する第2方向に延在する走査線、並びに、データ線及び走査線の交差領域に対応するように配置された画素電極及び薄膜トランジスタが積層構造の一部をなして備えられたエレクトロクロミック表示パネルにおいて、データ線及び走査線上から覆い、かつ、データ線及び走査線よりも2μm以上4μm以下の幅広に形成されたシールド電極を備える、エレクトロクロミック表示パネルである。 First, on the substrate, a data line extending in the first direction, a scanning line extending in the second direction intersecting the data line, and a pixel arranged to correspond to the intersecting region of the data line and the scanning line An electrochromic display panel comprising an electrode and a thin film transistor as a part of a laminated structure, the shield electrode covering from the data line and the scanning line and having a width of 2 μm to 4 μm wider than the data line and the scanning line It is an electrochromic display panel provided with.
 さらに、走査線、並びにデータ線の表面上には、絶縁膜が備えられている、エレクトロクロミック表示パネルである。 Furthermore, the electrochromic display panel is provided with an insulating film on the surface of the scanning line and the data line.
 また、走査線及びデータ線上に形成される絶縁膜の幅は、該走査線及び該データ線上のシールド電極の幅よりも大きく形成されている、エレクトロクロミック表示パネルである。 The width of the insulating film formed on the scanning line and the data line is an electrochromic display panel formed to be larger than the width of the shield electrode on the scanning line and the data line.
 また、シールド電極は、薄膜トランジスタ上に遮光するように配置されている、エレクトロクロミック表示パネルである。 The shield electrode is an electrochromic display panel arranged on the thin film transistor so as to shield light.
 また、シールド電極の厚さは、150nm以上400nm以下である、エレクトロクロミック表示パネルである。 The thickness of the shield electrode is an electrochromic display panel having a thickness of 150 nm to 400 nm.
 また、シールド電極の表面上には、絶縁膜が備えられている、エレクトロクロミック表示パネルである。 Also, the electrochromic display panel is provided with an insulating film on the surface of the shield electrode.
 また、シールド電極の表面上には、隣り合う画素間を仕切る隔壁が備えられている、エレクトロクロミック表示パネルである。 Further, the electrochromic display panel is provided with a partition wall for partitioning adjacent pixels on the surface of the shield electrode.
 通常、隣り合う画素において、一方の画素電極に電流を流すと電解質層で電界が広がり、対向する電極上の表示層の着色変化は電極の面積よりも広がり、隣接する電極上の表示層も変色してしまう。 Normally, in an adjacent pixel, when an electric current is passed through one of the pixel electrodes, an electric field spreads in the electrolyte layer, and the color change of the display layer on the opposite electrode is larger than the area of the electrode, and the display layer on the adjacent electrode is also discolored. Resulting in.
 しかし、本発明にあるように、シールド電極が画素間のデータ線及び走査線上に備えられ、かつ、幅広に形成されていることにより、隣り合う画素間での電界の広がりを抑え、画素間での着色変化が少なく、明確な着色変化が可能になる。 However, as in the present invention, the shield electrode is provided on the data line and the scanning line between the pixels, and is formed wide so that the spread of the electric field between the adjacent pixels is suppressed, and between the pixels. Therefore, a clear color change is possible.
 さらに、エレクトロクロミック方式において、本発明はさらに解像度の高いパネル(100ppi以上)においても隣り合う画素間での電界の広がりを抑えることができるので、解像度の高いパネルで高画質の画像を表示することができる。 Furthermore, in the electrochromic method, the present invention can suppress the spread of the electric field between adjacent pixels even in a panel with higher resolution (100 ppi or more), so that a high-quality image can be displayed on the panel with high resolution. Can do.
 このような構成とすることでエレクトロクロミック方式の表示媒体における画素面積の拡張、低画質表示という課題を容易に改善するエレクトロクロミック方式表示媒体を作製することができる。 With such a configuration, an electrochromic display medium that easily improves the problems of expansion of pixel area and low image quality display in an electrochromic display medium can be manufactured.
図1は、エレクトロクロミック表示パネルの画像表示領域を構成するマトリクス状に形成された複数画素における各種素子及び配線等の等価回路である。FIG. 1 is an equivalent circuit of various elements and wirings in a plurality of pixels formed in a matrix that forms an image display region of an electrochromic display panel. 図2は、データ線、走査線、シールド電極及び画素電極が形成されたTFT基板の隣接する複数画素の平面図である。FIG. 2 is a plan view of a plurality of adjacent pixels on a TFT substrate on which data lines, scanning lines, shield electrodes, and pixel electrodes are formed. 図3は、図2内のデータ線、走査線、シールド電極及び画素電極の関係を示すための要素を抜き出した平面図である。FIG. 3 is a plan view in which elements for showing the relationship among the data lines, scanning lines, shield electrodes, and pixel electrodes in FIG. 2 are extracted. 図4は、図2のA-A’断面図であり、本発明によるエレクトロクロミック材料を用いた場合の一実施形態に係わるエレクトロクロミック表示パネルの断面図である。FIG. 4 is a cross-sectional view taken along the line A-A 'of FIG. 2, and is a cross-sectional view of an electrochromic display panel according to an embodiment in which the electrochromic material according to the present invention is used. 図5は、図2のA-A’断面図であり、シールド電極上に隔壁を形成した場合の断面図である。FIG. 5 is a cross-sectional view taken along the line A-A ′ of FIG. 2, and is a cross-sectional view when a partition wall is formed on the shield electrode.
 以下では、本発明の実施形態について図を参照しつつ説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 本発明のエレクトロクロミック表示パネルは、データ線、走査線、画素電極及び薄膜トランジスタが備えられていることにより、アクティブマトリクス駆動が可能である。 The electrochromic display panel of the present invention can be driven in an active matrix by being provided with data lines, scanning lines, pixel electrodes, and thin film transistors.
 まず、本発明の第1実施形態におけるエレクトロクロミック表示パネルの画素部における構成について図1から図5を参照して説明する。まず、図1はエレクトロクロミック表示パネルの画像表示領域を構成するマトリクス状に形成された複数画素における各種素子及び配線等の等価回路である。図2は、データ線、走査線、シールド電極及び画素電極が形成されたTFT基板に隣接する複数画素の平面図であり、図3は、図2内のデータ線、走査線、シールド電極及び画素電極の関係を示すための要素を抜き出した平面図である。 First, the configuration of the pixel portion of the electrochromic display panel according to the first embodiment of the present invention will be described with reference to FIGS. First, FIG. 1 is an equivalent circuit of various elements and wirings in a plurality of pixels formed in a matrix that constitutes an image display region of an electrochromic display panel. FIG. 2 is a plan view of a plurality of pixels adjacent to a TFT substrate on which data lines, scanning lines, shield electrodes, and pixel electrodes are formed. FIG. 3 is a plan view of data lines, scanning lines, shield electrodes, and pixels in FIG. It is the top view which extracted the element for showing the relationship of an electrode.
 図4は、図2のA-A’断面図である。また、図5は、シールド電極上に隔壁を形成した場合の断面図である。なお、図4、図5においては各層厚・部材を図面上で認識可能な大きさとするため、各層及び部材は縮尺を変更してある。 FIG. 4 is a cross-sectional view taken along the line A-A ′ of FIG. FIG. 5 is a cross-sectional view when a partition wall is formed on the shield electrode. In FIGS. 4 and 5, the scale of each layer and member is changed in order to make each layer thickness and member recognizable on the drawing.
 図1において、本実施形態における画像表示領域を構成するマトリクス状に形成された複数画素には、それぞれ、画素電極6aと当該画素電極6aをON・OFF制御するためのTFT20が形成されており、画像信号が供給されるデータ線3aが当該TFT20のドレインに電気的に接続されている。 In FIG. 1, each of a plurality of pixels formed in a matrix that forms an image display area in the present embodiment is formed with a pixel electrode 6 a and a TFT 20 for ON / OFF control of the pixel electrode 6 a. A data line 3 a to which an image signal is supplied is electrically connected to the drain of the TFT 20.
 データ線3aに書き込む画像信号は、D1、D2、・・・、Dnの順に線順次供給される。 The image signal to be written to the data line 3a is supplied in the order of D1, D2,..., Dn.
 また、TFT20のゲートに走査線1aが電気的に接続され、所定のパルスで走査信号G1、G2、・・・、Gnの順に線順次で電圧を印加するよう構成されている。また、画素電極6aは、TFT20のソースに電気的に接続されており、スイッチング素子であるTFT20を一定期間だけスイッチをONにすることで、データ線3aから供給される画像信号をD1、D2、・・・、Dnを所定のタイミングで書き込む。 Further, the scanning line 1a is electrically connected to the gate of the TFT 20, and the voltage is applied line-sequentially in the order of the scanning signals G1, G2,. The pixel electrode 6a is electrically connected to the source of the TFT 20, and by turning on the TFT 20 as a switching element for a certain period, the image signal supplied from the data line 3a is converted to D1, D2,. ..., Dn is written at a predetermined timing.
 画素電極6aを介してエレクトロクロミック表示パネルに書き込まれた画像信号D1、D2、・・・、Dnは、対向基板の表示領域全面に渡って形成された対向電極との間で保持される。 The image signals D1, D2,..., Dn written to the electrochromic display panel via the pixel electrode 6a are held between the counter electrodes formed over the entire display area of the counter substrate.
 ここで画像信号を保持するために、画素電極6aと対向電極との間に形成されたエレクトロクロミック表示素子容量と並列に容量30を付加する。この容量30は、定電位に固定された電極200を含む。 Here, in order to hold the image signal, a capacitor 30 is added in parallel with the electrochromic display element capacitor formed between the pixel electrode 6a and the counter electrode. The capacitor 30 includes an electrode 200 fixed at a constant potential.
 以下では、走査線1a、データ線3a、TFT20等による上述のような回路動作が実現されるエレクトロクロミック表示パネルの実際の構成について、図2乃至図4を参照して説明する。 Hereinafter, the actual configuration of the electrochromic display panel that realizes the above-described circuit operation by the scanning line 1a, the data line 3a, the TFT 20, and the like will be described with reference to FIGS.
 まず、図2、図3において、画素電極6aは、TFTアレイ基板10上にマトリクス状に複数設けられており、その複数設けられた画素電極6aの縦横に沿うように走査線1a及びデータ線3aが設けられ、走査線1a及びデータ線3a上にはシールド電極12aが各々に設けられている。 2 and 3, a plurality of pixel electrodes 6a are provided in a matrix on the TFT array substrate 10, and the scanning lines 1a and data lines 3a are arranged along the vertical and horizontal directions of the plurality of pixel electrodes 6a. The shield electrode 12a is provided on each of the scanning line 1a and the data line 3a.
 走査線1a、データ線3a及びシールド電極12aは導電膜からなる。また、走査線1aは、斜線領域で示したチャネル領域9aを含み、走査線1aはゲート電極として機能する。走査線1aとデータ線3aとが交差する近傍にそれぞれチャネル領域9aが設けられ、そこに走査線1aの本線のゲート電極が配置された画素スイッチング用TFT20が設けられている。シールド電極12aは、150nm以上400nm以下の厚みで、TFT20上に遮光するように配置されている。 The scanning line 1a, the data line 3a, and the shield electrode 12a are made of a conductive film. The scanning line 1a includes a channel region 9a indicated by a hatched region, and the scanning line 1a functions as a gate electrode. Channel regions 9a are respectively provided in the vicinity of the intersection of the scanning line 1a and the data line 3a, and a pixel switching TFT 20 in which the main gate electrode of the scanning line 1a is disposed is provided. The shield electrode 12a has a thickness of 150 nm or more and 400 nm or less and is disposed on the TFT 20 so as to shield light.
 エレクトロクロミック表示パネルは、図2中のA-A’断面を図4に示すように、ガラス基板からなるTFTアレイが配置された基板、TFTアレイ基板10と、これに対向配置される透明な基板からなる対向基板18とを備えている。 2, the electrochromic display panel includes a substrate on which a TFT array made of a glass substrate is disposed, a TFT array substrate 10 and a transparent substrate disposed opposite to the substrate, as shown in FIG. And a counter substrate 18 made of
 TFTアレイ基板10側には、図4に示すように画素電極6aが設けられており、その上に電荷蓄積層14が施されている。画素電極6aは、例えば、アルミニウム膜等からなり、対向基板18側には、その表示領域全面に渡ってITO膜等の透明導電性膜からなる対向電極17が設けられており、その下側には表示層16が設けられている。このように対向配置されたTFTアレイ基板10及び対向基板18の間には、電解質層15が設けられ、エレクトロクロミック表示層19が形成される。 On the TFT array substrate 10 side, a pixel electrode 6a is provided as shown in FIG. 4, and a charge storage layer 14 is provided thereon. The pixel electrode 6a is made of, for example, an aluminum film, and the counter substrate 18 side is provided with a counter electrode 17 made of a transparent conductive film such as an ITO film over the entire display area, and below that. Is provided with a display layer 16. An electrolyte layer 15 is provided between the TFT array substrate 10 and the counter substrate 18 arranged so as to face each other, and an electrochromic display layer 19 is formed.
 TFTアレイ基板10上には、画素電極6aを含む各構成が積層構造をなして備えられている。走査線1aとデータ線3aとの間には第1層間絶縁膜11、走査線1a及びデータ線3aとシールド電極12aとの間には第2層間絶縁膜12、がそれぞれ設けられており、第2層間絶縁膜12の幅をシールド電極12aの幅よりも大きく形成することで前述の各要素間が短絡することを防止している。また、図示しないが、シールド電極12aの表面上に絶縁膜を設けてもよい。 On the TFT array substrate 10, each component including the pixel electrode 6a is provided in a laminated structure. A first interlayer insulating film 11 is provided between the scanning line 1a and the data line 3a, and a second interlayer insulating film 12 is provided between the scanning line 1a and the data line 3a and the shield electrode 12a. By forming the width of the two-layer insulating film 12 larger than the width of the shield electrode 12a, the above-described elements are prevented from being short-circuited. Although not shown, an insulating film may be provided on the surface of the shield electrode 12a.
 エレクトロクロミック表示層19は、画素電極6aと対向電極17との間に正負の電圧を印加または電流を流すことができ、データ線3aの電圧を変動させることにより、エレクトロクロミック表示層19に電界が発生し、表示層16及び電荷蓄積層14が酸化還元される。 The electrochromic display layer 19 can apply a positive or negative voltage or a current to flow between the pixel electrode 6a and the counter electrode 17, and an electric field is generated in the electrochromic display layer 19 by changing the voltage of the data line 3a. As a result, the display layer 16 and the charge storage layer 14 are oxidized and reduced.
 画素電極6aが正極のとき、電荷蓄積層14は電子を失い酸化され、対極となる対向電極17の表示層16には電子が供与され還元される。反対に、画素電極6aが負極のとき、電荷蓄積層14には電子が供与され還元、表示層16は電子を失い酸化される。 When the pixel electrode 6a is a positive electrode, the charge storage layer 14 loses electrons and is oxidized, and electrons are donated and reduced to the display layer 16 of the counter electrode 17 serving as a counter electrode. On the contrary, when the pixel electrode 6a is a negative electrode, electrons are donated to the charge storage layer 14 and reduced, and the display layer 16 loses electrons and is oxidized.
 この表示層の酸化還元に伴い、可視光の吸収波長域が現れ、または移動することで色が変化する。 As the display layer is oxidized and reduced, the visible light absorption wavelength region appears or changes color as it moves.
 表示層に可視光吸収なく無色透明な場合は、電解質層15に分散されている反射材料による発色が観察される。 When the display layer is colorless and transparent without absorbing visible light, coloration by the reflective material dispersed in the electrolyte layer 15 is observed.
 さらに本発明の効果について図4を用いて説明する。 Further, the effect of the present invention will be described with reference to FIG.
 一般的な隣り合う画素構成において、一方に電流を流し表示層の着色変化を促すと、画素電極6aと対向電極17との垂直方向に印加された電界以外に、基板面に対して平行な横方向電界の影響を受けてしまい、表示層の着色変化の範囲が隣接画素の表示領域にまで広がり、隣接画素の領域が着色変化したり、隣接画素との明確な表示境界が現れないなどの現象が発生する恐れがある。 In a general adjacent pixel configuration, when a current is applied to one side to promote a color change in the display layer, in addition to the electric field applied in the vertical direction between the pixel electrode 6a and the counter electrode 17, a horizontal direction parallel to the substrate surface is obtained. Phenomenon such as the influence of the directional electric field, the range of color change in the display layer extends to the display area of the adjacent pixel, the color of the adjacent pixel changes, or a clear display boundary with the adjacent pixel does not appear May occur.
 図4のように本発明による構成において、画素間に対向電極17と同電位もしくは任意の電位を外部駆動回路より与えられるよう外部用端子に接続されたシールド電極12aを配置し、ある一方のみの画素に電流を流すと、画素間にある表示層は着色変化及び電界の広がりは、隣接する画素の電界に左右されることなくシールド電極上で抑制される。その結果、画素電極に対応した表示層のみが着色変化を起すこととなり、着色変化を促した画素電極に隣接する画素電極の表示領域には着色変化は起こらず、隣接画素との明確な表示領域が現れ、高画質の画像が表示される。 As shown in FIG. 4, in the configuration according to the present invention, the shield electrode 12a connected to the external terminal is arranged between the pixels so that the same potential as the counter electrode 17 or an arbitrary potential can be applied from the external drive circuit. When a current is passed through the pixel, the color change and the spread of the electric field in the display layer between the pixels are suppressed on the shield electrode without being influenced by the electric field of the adjacent pixel. As a result, only the display layer corresponding to the pixel electrode undergoes a color change, and the color change does not occur in the display area of the pixel electrode adjacent to the pixel electrode that promoted the color change, and a clear display area with the adjacent pixel Appears and a high-quality image is displayed.
 シールド電極12aは、データ線3a及び走査線1aよりも2μm以上4μm以下の幅広に形成することが好ましい。走査線1a、データ線3a及びTFT20領域のエッジからシールド電極12aのエッジまでが2μm未満の場合、シールド電極12a形成工程のエッチング時におけるダメージ(エッチング剤等)により膜減りを起こし、光漏れによるTFT特性の劣化や電界抑制効果を損なう恐れがある。また、走査線1a、データ線3a及びTFT20領域のエッジからシールド電極12aのエッジまでが4μmよりも幅広に形成した場合、解像度の高いパネル(100ppi以上)の適用において開口率が犠牲になる可能性がある。 The shield electrode 12a is preferably formed wider than the data line 3a and the scanning line 1a by 2 μm to 4 μm. When the scanning line 1a, the data line 3a, and the edge of the TFT 20 region to the edge of the shield electrode 12a are less than 2 μm, the film is reduced due to damage (etchant, etc.) during etching in the shield electrode 12a formation process, and the TFT due to light leakage There is a risk of deteriorating characteristics and the effect of suppressing electric field. Further, when the width from the edge of the scanning line 1a, the data line 3a, and the TFT 20 region to the edge of the shield electrode 12a is formed wider than 4 μm, the aperture ratio may be sacrificed in the application of a high resolution panel (100 ppi or more). There is.
 図5のように本発明の構成において、シールド電極12a上に厚膜の隔壁40を設けることで、隣接する画素間を三次元的に分離し、さらに効果的に電界を抑制することができる。 As shown in FIG. 5, in the configuration of the present invention, by providing a thick partition 40 on the shield electrode 12a, adjacent pixels can be separated three-dimensionally and the electric field can be more effectively suppressed.
 上記実施形態では、画素毎に薄膜トランジスタを備えたアクティブマトリクス方式のエレクトロクロミック表示パネルであるが、本発明は、これに限らない。例えば、パッシブマトリクス方式のエレクトロクロミック表示パネルであっても良い。 In the above embodiment, the active matrix electrochromic display panel includes a thin film transistor for each pixel. However, the present invention is not limited to this. For example, a passive matrix electrochromic display panel may be used.
 以下に本発明に使用する材料、部材およびその構成について説明する。 Hereinafter, materials, members, and structures used in the present invention will be described.
 エレクトロクロミック表示層の形成にはエレクトロクロミック材料、支持電解質、反射材料および電荷蓄積材料からなる。 The electrochromic display layer is formed of an electrochromic material, a supporting electrolyte, a reflective material, and a charge storage material.
 エレクトロクロミック材料は、一般的な有機、無機化合物を用いることができる。具体的には、ビオロゲン類、フェノチアジン類、アントラキノン類、スチリルスピロピラン類、ピラゾリン類、フルオラン類、スチリルスピロピラン色素、フタロシアニン類等の低分子系有機エレクトロクロミック化合物、ポリアニリン、ポリチオフェン、ポリピロール等の導電性高分子化合物、酸化チタン、酸化モリブデン、酸化ニオブ、酸化イリジウム、酸化バナジウム、酸化タングステン、酸化インジウム、酸化イリジウム、酸化ニッケル、プルシアンブルー、また配位金属を鉄以外に置換したプルシアンブルー類似体等の無機系エレクトロクロミック化合物が挙げられる。 General organic and inorganic compounds can be used for the electrochromic material. Specifically, low molecular organic electrochromic compounds such as viologens, phenothiazines, anthraquinones, styryl spiropyrans, pyrazolines, fluorans, styryl spiropyran dyes, phthalocyanines, polyaniline, polythiophene, polypyrrole, etc. Inorganic compounds such as molecular compounds, titanium oxide, molybdenum oxide, niobium oxide, iridium oxide, vanadium oxide, tungsten oxide, indium oxide, iridium oxide, nickel oxide, Prussian blue, and Prussian blue analogues in which the coordination metal is replaced by other than iron Based electrochromic compounds.
 さらに、一般に電気供与性有機物であるロイコ染料も電気的に発色、消色が可能であることが分かっている。 Furthermore, it has been found that leuco dyes, which are generally electricity-donating organic substances, can also be electrically colored and decolored.
 例えば、ロイコオーラミン類、ジアリールフタリド類、ポリアリールカルビノール類、アシルオーラミン類、アリールオーラミン類、ローダミンBラクタム類、インドリン類、スピロピラン類、及びフルオラン類等の電子供与性染料前駆体が挙げられる。 For example, electron-donating dye precursors such as leucooramines, diarylphthalides, polyarylcarbinols, acylauramines, arylolamines, rhodamine B-lactams, indolines, spiropyrans, and fluorans Is mentioned.
 低分子の材料については、電極層上に酸化チタンなどの鉱物で多孔質構造の層を形成し、吸着させてもよい。 For low-molecular materials, a porous layer made of a mineral such as titanium oxide may be formed on the electrode layer and adsorbed.
 表示層の形成方法としては、前記に挙げたエレクトロクロミック材料を直接、またはバインダーを混ぜて塗料にして、スクリーン印刷、マイクログラビアコーター、キスコーター、コンマコーター、ダイコーター、バーコーター、スピンコーターなどの一般的な塗布手法を用いることができる。 As a method for forming the display layer, the electrochromic material listed above is used directly or mixed with a binder to form a paint, and screen printing, micro gravure coater, kiss coater, comma coater, die coater, bar coater, spin coater, etc. A typical coating technique can be used.
 また画素電極に合わせた凸部の形成は、スクリーン印刷やインクジェット印刷などのパターンニング可能な塗布方法により形成される。 Further, the projections matched to the pixel electrodes are formed by a coating method that can be patterned such as screen printing or ink jet printing.
 支持塩としては、例えば、アルカリ金属塩、アルカリ土類金属塩等の無機イオン塩、4級アンモニウム塩や酸類、アルカリ類等が挙げられる。支持塩の更なる具体的な例としては、LiClO、LiBF、LiAsF、LiPF、LiCFSO、CFCOOLi、KCl、NaClO、NaCl、NaBF、NaSCN、KBF、Mg(ClO、Mg(BF等が挙げられる。 Examples of the supporting salt include inorganic ion salts such as alkali metal salts and alkaline earth metal salts, quaternary ammonium salts, acids and alkalis. Further specific examples of the supporting salt include LiClO 4 , LiBF 4 , LiAsF 6 , LiPF 6 , LiCF 3 SO 3 , CF 3 COOLi, KCl, NaClO 3 , NaCl, NaBF 4 , NaSCN, KBF 4 , Mg ( ClO 4 ) 2 , Mg (BF 4 ) 2 and the like.
 電解質層に分散する反射材料として、白色材料には例えば酸化マグネシウム、硫酸バリウム、酸化チタンなどが挙げられる。また黒色材料には、例えば、ランプブラックやボーンブラックなどの炭素からなるカーボンブラックや無機材料によるチタンブラック粉末などが挙げられる。さらに、青色であれば、アルミ酸コバルト、コバルトクロム青、フタロシアニン類、赤色であればアントラキノンやアゾ化合物などが挙げられる。反射材料を電解質層に分散させるため、電解質層にアクリル樹脂やウレタン樹脂などの高分子材料を溶解させることで電解質層の粘度を高めても良い。または、分散剤や界面活性剤を添加しても良い。 As the reflective material dispersed in the electrolyte layer, examples of the white material include magnesium oxide, barium sulfate, and titanium oxide. Examples of the black material include carbon black made of carbon such as lamp black and bone black, and titanium black powder made of an inorganic material. Furthermore, if it is blue, cobalt aluminate, cobalt chrome blue, phthalocyanines, and if it is red, anthraquinone and azo compounds may be mentioned. In order to disperse the reflective material in the electrolyte layer, the viscosity of the electrolyte layer may be increased by dissolving a polymer material such as an acrylic resin or a urethane resin in the electrolyte layer. Alternatively, a dispersant or a surfactant may be added.
 電荷蓄積材料はエレクトロクロミック材料と同じ材料を活用することが出来る。ただし、プルシアンブルーやフェロセンのような酸化体、還元体の両状態で他化合物と反応しにくい安定している材料が好ましい。 The same material as the electrochromic material can be used as the charge storage material. However, a stable material that is unlikely to react with other compounds in both oxidized and reduced forms such as Prussian blue and ferrocene is preferable.
 対向基板は透明基材上に透明電極が形成された構造である。透明基材としてはポリエチレンテレフタレート(PET)やポリカーボネート、ポリイミド、ポリエチレンナフタレート、ポリエーテルスルホン、アクリル樹脂、ポリ塩化ビニル等のプラスチックフィルム、あるいはガラス等を使用することができる。透明電極材として使用することができるものは、例えばITO等の酸化インジウム系、酸化スズ系、酸化亜鉛系のような透明性を有する導電性酸化物等である。この透明電極の形成には蒸着法、スパッタ法、CVD法などの従来技術を用いることができる。 The counter substrate has a structure in which a transparent electrode is formed on a transparent base material. As the transparent substrate, polyethylene terephthalate (PET), polycarbonate, polyimide, polyethylene naphthalate, polyethersulfone, acrylic resin, polyvinyl chloride or other plastic film, glass, or the like can be used. What can be used as the transparent electrode material is a conductive oxide having transparency such as indium oxide, tin oxide and zinc oxide such as ITO. Conventional techniques such as vapor deposition, sputtering, and CVD can be used to form the transparent electrode.
 TFTアレイ基板は、一般的な液晶パネルの駆動に採用されているアモルファスシリコンまたは多結晶シリコンを用いた薄型トランジスタを配置したアクティブマトリックス型の電極板を用いることができる。または、プリント基板の前面に格子状に多数の電極を配置して電極ごとに貫通孔を通して裏面に配線を敷くことにより大型のアクティブマトリックス駆動が可能な背面電極板を用いてもよい。 The TFT array substrate can be an active matrix type electrode plate in which thin transistors using amorphous silicon or polycrystalline silicon, which are used for driving general liquid crystal panels, are arranged. Alternatively, a back electrode plate capable of large-scale active matrix driving may be used by arranging a large number of electrodes in a grid pattern on the front surface of the printed circuit board and laying wiring on the back surface through through holes for each electrode.
 シールド電極の配線は、公知の材料及び形成方法を用いて形成することができ、その材料や形成方法に限定はなく、該シールド電極材料としては、例えば、タンタル(Ta)、アルミニウム(Al)、銅(Cu)等が挙げられる。 The shield electrode wiring can be formed using a known material and a forming method, and the material and the forming method are not limited. Examples of the shield electrode material include tantalum (Ta), aluminum (Al), Copper (Cu) etc. are mentioned.
 また、該シールド電極が薄膜トランジスタ上に形成されることにより、TFTに光が入射することが抑制され、光によるTFTの特性変化を低減することができる。 Further, since the shield electrode is formed on the thin film transistor, it is possible to suppress the light from entering the TFT, and to reduce the change in characteristics of the TFT due to the light.
 隔壁は、公知の材料及び形成方法を用いて形成することができ、その材料や形成方法に限定はなく、該隔壁材料としては、例えば、厚膜用のフォトレジスト等が上げられる。また、該隔壁の高さに関して、エレクトロクロミック表示層の総厚に対して、50%以上にすることが好ましい。 The barrier rib can be formed using a known material and a forming method, and the material and the forming method are not limited. Examples of the barrier rib material include a thick film photoresist. The height of the partition wall is preferably 50% or more with respect to the total thickness of the electrochromic display layer.
 以下、実施例及び比較例を示して本発明を詳細に説明する。ただし、本発明は以下の記載によって限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples. However, the present invention is not limited by the following description.
[実施例1]
<前面電極基板の作製>
 100mm□のガラス上に酸化インジウム錫を電極として成膜された透明電極基板上に、エレクトロクロミック材料として水溶性プルシアンブルー分散液1.0mol/lを分散した分散液をスピンコーターで塗布し、100℃5分間の乾燥により約0.5μmの塗膜を有する前面電極基板を得た。
[Example 1]
<Preparation of front electrode substrate>
A dispersion obtained by dispersing 1.0 mol / l of a water-soluble Prussian blue dispersion as an electrochromic material on a transparent electrode substrate formed using indium tin oxide as an electrode on 100 mm square glass was applied with a spin coater. A front electrode substrate having a coating film of about 0.5 μm was obtained by drying at 5 ° C. for 5 minutes.
 続き、純水に0.5mol/lプルシアンブルーとポリエチレングリコールとを混合した塗液を調合しインクジェット印刷により、250μm□のパターンを前面基板上に印刷し、幅約10μmで塗膜から平均0.4μmの段差のある段差前面電極基板を得た。 Subsequently, a coating solution prepared by mixing 0.5 mol / l Prussian blue and polyethylene glycol in pure water was prepared, and a 250 μm square pattern was printed on the front substrate by ink jet printing. A stepped front electrode substrate with a step of 4 μm was obtained.
<背面電極基板の作製>
 背面電極板であるガラス上の素子形成として、スパッタ、蒸着法或いはCVD法等による成膜工程、フォトリソグラフィー法等といったマスク工程、エッチング法といった薄膜の形状加工工程を適宜行うことによって、第1の電極をパターニング形成するとともに、第1の層間絶縁膜を成膜、画素ごとにスイッチング素子(TFT)をパターニング形成した後、第2の電極をパターニング形成する。この際、第1の電極と第2の電極が接続されるようにコンタクトホールをあらかじめパターニング形成しておく。
<Preparation of back electrode substrate>
As the element formation on the glass which is the back electrode plate, a film forming process by sputtering, vapor deposition or CVD, a mask process such as photolithography, and a thin film shape processing process such as etching are appropriately performed. The electrodes are formed by patterning, a first interlayer insulating film is formed, a switching element (TFT) is formed by patterning for each pixel, and then the second electrode is formed by patterning. At this time, a contact hole is formed in advance so as to connect the first electrode and the second electrode.
 ここでのTFT(水素化アモルファスシリコン(a-Si:H))は、一般にプラズマCVD法又は反応性スパッタリング法等により形成される。例えば、プラズマCVD法によってn型の水素化アモルファスシリコンを形成する場合には、モノシラン(SiH)又は高級シランとホスフィン(PH)を原料ガスとし、これらをRF放電によって分解して温度200℃以上300℃以下に保持された基板の上に堆積させている。 The TFT (hydrogenated amorphous silicon (a-Si: H)) here is generally formed by a plasma CVD method or a reactive sputtering method. For example, when n-type hydrogenated amorphous silicon is formed by plasma CVD, monosilane (SiH 4 ) or higher silane and phosphine (PH 3 ) are used as source gases, and these are decomposed by RF discharge to a temperature of 200 ° C. It is deposited on the substrate held at 300 ° C. or lower.
 このような方法によって形成した水素化アモルファスシリコンの中には、水素が10atm%~20atm%程含まれており、この水素が水素化アモルファスシリコンの性質決定に重要な影響を与えている。この水素化アモルファスシリコン中に含まれる水素は、ダングリングボンドを除去する直接的な役割を持っている。それだけでなく、水素化アモルファスシリコンの膜を形成する際の表面プロセスにおける役割や、ネットワークの構造緩和剤としての役割も持ち、これらの役割による効果が基板の温度による熱的効果と相まって、間接的にもダングリングボンドを減少させている。  The hydrogenated amorphous silicon formed by such a method contains about 10 atm% to 20 atm% of hydrogen, and this hydrogen has an important influence on the characterization of the hydrogenated amorphous silicon. Hydrogen contained in this hydrogenated amorphous silicon has a direct role of removing dangling bonds. In addition, it has a role in the surface process when forming a film of hydrogenated amorphous silicon and a role as a structural relaxation agent for the network, and the effects of these roles are coupled indirectly with the thermal effect due to the temperature of the substrate. It also reduces dangling bonds.
 即ち、水素化アモルファスシリコン中のSi-H結合が、不安定なダングリングボンドを減少させて構造機敏性を実現させ、P(リン、V族)、B(ホウ素、III族)によって結晶Siと同様な置換型ドーピングによるpn接合を実現する。水素化アモルファスシリコンにおける水素のこのような性質は、ダイオードやトランジスタへの水素化アモルファスシリコンの応用を可能にする応用上重要な性質である。 In other words, Si—H bonds in hydrogenated amorphous silicon reduce unstable dangling bonds and realize structural agility, and crystalline Si and P are formed by P (phosphorus, V group) and B (boron, III group). A pn junction by similar substitutional doping is realized. Such a property of hydrogen in hydrogenated amorphous silicon is an important property in application that enables application of hydrogenated amorphous silicon to diodes and transistors.
 続き、第2の電極形成後、スパッタ、蒸着法或いはCVD法等といった成膜工程、フォトリソグラフィー法等といったマスク工程、エッチング法といった薄膜の形状加工工程を行うことによってTFT上に第2の層間絶縁膜をパターニング形成し、データ線及び走査線となる電極上にシールド電極を、データ線及び走査線よりも2μm幅広にパターニング形成する。 Subsequently, after forming the second electrode, a second interlayer insulation is formed on the TFT by performing a film forming process such as sputtering, vapor deposition or CVD, a mask process such as photolithography, and a thin film shape processing process such as etching. A film is formed by patterning, and a shield electrode is formed by patterning 2 μm wider than the data line and the scanning line on the electrode to be the data line and the scanning line.
 ここで、上記背面電極板は、解像度の高いパネルの適用性を評価するため解像度102ppi(画素サイズ250μm□)で電極間距離15μmのTFT基板とする。準備したプルシアンブルー分散液を前面電極基板と同様にスピンコーターにより塗布し、プルシアンブルーを電荷保持層とする背面電極基板を得た。 Here, the back electrode plate is a TFT substrate having a resolution of 102 ppi (pixel size 250 μm □) and an interelectrode distance of 15 μm in order to evaluate the applicability of a high-resolution panel. The prepared Prussian blue dispersion was applied by a spin coater in the same manner as the front electrode substrate to obtain a back electrode substrate using Prussian blue as a charge retention layer.
 さらに、炭酸プロピレンに対し電解質として0.1Mのヘキサフルオロ燐酸カリウム及びPMMA(和光純薬)、酸化チタン(R-830、石原産業製)を分散させて電解液を調合した。 Furthermore, 0.1 M potassium hexafluorophosphate, PMMA (Wako Pure Chemicals) and titanium oxide (R-830, manufactured by Ishihara Sangyo) were dispersed as electrolytes in propylene carbonate to prepare an electrolyte solution.
<評価用基板の作製>
 背面電極基板の端部に、直径約100μmのビーズを混合した紫外線硬化型樹脂(TB3026E、スリーボンド製)をディスペンサーにより塗布し、ダムを形成した。続いて、調合した電解液でダムを満たし、段差前面電極基板の段差部と画素間部とのアライメントを合わせるように貼り合わせ、500mJ/cm(420nm)の光を照射し接着した。
<Production of evaluation substrate>
An ultraviolet curable resin (TB3026E, manufactured by ThreeBond) mixed with beads having a diameter of about 100 μm was applied to the end portion of the back electrode substrate with a dispenser to form a dam. Subsequently, the dam was filled with the prepared electrolytic solution, and the dam was bonded so that the stepped portion of the stepped front electrode substrate was aligned with the interpixel portion, and was irradiated with light of 500 mJ / cm 2 (420 nm) and bonded.
<作製基板の評価>
(駆動評価)
 完成した基板にLSIを実装し、背面電極の1つの画素に2秒間、1.5Vを印加して、青色から透明に着色変化するかどうか確認した。問題なく着色変化した場合を「++」とし、一部のみ着色変化、または着色変化しなかった場合を「-」として評価した。
(電極膜状態評価)
 走査線、データ線及びTFT領域のエッジからシールド電極のエッジについて顕微鏡観察した。電極膜の形成状態について、ダメージや膜減りなどの欠陥が観察されない場合を「++」とし、ダメージや膜減りなどの欠陥が観察された場合を「-」として評価した。
(パネルへの適用評価)
 それぞれの線幅を有するパネルについて、作製したパネルの開口率から解像度の高いパネルへの適用について評価した。ここでは、評価としてそれぞれのパネルの開口率からパネルに実用上問題なく適用できる場合を「++」とし、実用上問題ないが開口率が犠牲になる場合を「+」とし、実用上問題が発生し開口率が犠牲になる場合を「-」として評価した。
(総合評価)
 各評価項目の結果をもとに、総合評価を行った。評価基準は以下に示す。評価基準は「++」を「良」、「-」を「不可」とし、「++」を合格とした。
<Evaluation of fabrication substrate>
(Drive evaluation)
An LSI was mounted on the completed substrate, and 1.5 V was applied to one pixel of the back electrode for 2 seconds to check whether the color changed from blue to transparent. The case where the color changed without any problem was evaluated as “++”, and the case where only a part of the color changed or the color did not change was evaluated as “−”.
(Electrode film state evaluation)
The edge of the shield electrode was observed with a microscope from the edge of the scanning line, data line, and TFT region. Regarding the formation state of the electrode film, the case where defects such as damage and film reduction were not observed was evaluated as “++”, and the case where defects such as damage and film reduction were observed was evaluated as “−”.
(Application evaluation to panels)
About the panel which has each line width, application to the panel with high resolution was evaluated from the aperture ratio of the produced panel. Here, as an evaluation, “++” indicates that the panel can be applied to the panel without any practical problem from the aperture ratio of each panel, and “+” indicates that there is no practical problem but the aperture ratio is sacrificed. The case where the aperture ratio was sacrificed was evaluated as “−”.
(Comprehensive evaluation)
Based on the result of each evaluation item, comprehensive evaluation was performed. Evaluation criteria are shown below. Evaluation criteria were “++” as “good”, “−” as “impossible”, and “++” as acceptable.
[実施例2]
 データ線及び走査線となる電極上にシールド電極を、データ線及び走査線よりも2.5μm幅広にパターニング形成した点以外は、実施例1と同様とした。
[Example 2]
Example 2 was the same as Example 1 except that the shield electrode was formed by patterning on the electrodes to be the data line and the scanning line so as to be 2.5 μm wider than the data line and the scanning line.
[実施例3]
 データ線及び走査線となる電極上にシールド電極を、データ線及び走査線よりも3μm幅広にパターニング形成した点以外は、実施例1と同様とした。
[Example 3]
Example 1 was the same as Example 1 except that a shield electrode was formed by patterning 3 μm wider than the data line and the scanning line on the electrode to be the data line and the scanning line.
[実施例4]
 データ線及び走査線となる電極上にシールド電極を、データ線及び走査線よりも3.5μm幅広にパターニング形成した点以外は、実施例1と同様とした。
[Example 4]
Example 1 was the same as Example 1 except that a shield electrode was formed by patterning on the electrodes to be the data line and the scanning line so as to be 3.5 μm wider than the data line and the scanning line.
[実施例5]
 データ線及び走査線となる電極上にシールド電極を、データ線及び走査線よりも4μm幅広にパターニング形成した点以外は、実施例1と同様とした。
[Example 5]
Example 1 was the same as Example 1 except that a shield electrode was formed by patterning 4 μm wider than the data line and the scan line on the data line and the scan line.
[比較例1]
 データ線及び走査線となる電極上にシールド電極を、データ線及び走査線よりも1μm幅広にパターニング形成した点以外は、実施例1と同様とした。
[Comparative Example 1]
Example 1 was the same as Example 1 except that the shield electrode was formed by patterning 1 μm wider than the data line and the scanning line on the data line and scanning line.
[比較例2]
 データ線及び走査線となる電極上にシールド電極を、データ線及び走査線よりも5μm幅広にパターニング形成した点以外は、実施例1と同様とした。
[Comparative Example 2]
Example 1 was the same as Example 1 except that a shield electrode was formed by patterning 5 μm wider than the data line and the scanning line on the data line and the scanning line.
[比較例3]
 データ線及び走査線となる電極上にシールド電極を、データ線及び走査線よりも6μm幅広にパターニング形成した点以外は、実施例1と同様とした。
[Comparative Example 3]
Example 1 was the same as Example 1 except that the shield electrode was formed by patterning 6 μm wider than the data line and the scanning line on the electrode to be the data line and the scanning line.
 表1に実施例1~5と比較例1~3との評価結果を示す。 Table 1 shows the evaluation results of Examples 1 to 5 and Comparative Examples 1 to 3.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1から5、比較例1から3で作製した基板にLSIを実装し、背面電極の1つの画素に2秒間、1.5Vを印加して青から透明に着色変化を促したところ、画素は前記段差をエッジとする約250μm□の透明部へと変化し、電解液の酸化チタンにより、白色画素として観察された。さらに隣り合う2つの画素について青色から透明に着色変化を促したところ、画素間の段差も透明に変化し、連続した白画素として観察された。比較例1では、着色変化していない部分が観察された。 When an LSI was mounted on the substrates produced in Examples 1 to 5 and Comparative Examples 1 to 3, 1.5 V was applied to one pixel of the back electrode for 2 seconds to promote a color change from blue to transparent. Changed to a transparent part of about 250 μm square with the step as an edge, and was observed as a white pixel by the titanium oxide of the electrolytic solution. Further, when the adjacent two pixels were promoted to change in color from blue to transparent, the level difference between the pixels also changed to transparent and was observed as a continuous white pixel. In Comparative Example 1, a portion where the color did not change was observed.
 また、電極膜を顕微鏡観察した結果、実施例1から5と比較例2及び3の電極膜はダメージや膜減りといった欠陥は観察されなかったが、比較例1ではシールド電極形成工程のエッチング時におけるダメージ(エッチング剤等)による膜減りが観察された。この膜減りは光漏れによるTFT特性の劣化や電界抑制効果を損なうため品質上好ましくない。 Further, as a result of microscopic observation of the electrode film, no defects such as damage and film loss were observed in the electrode films of Examples 1 to 5 and Comparative Examples 2 and 3, but in Comparative Example 1 during the etching in the shield electrode forming process Film loss due to damage (such as an etchant) was observed. This film reduction is undesirable in terms of quality because it deteriorates TFT characteristics due to light leakage and impairs the electric field suppression effect.
 次に、パネルへの適用評価を行ったところ、実施例1から5では、開口率を犠牲にすることなくパネル化することができた。比較例1では膜ダメージが観察されたためパネルへの適用評価を実施しなかった(評価不能)。比較例2及び3ではシールド電極がパネルへの適用許容以上の幅広に形成されているので、本パネルに適用するには開口率を犠牲にして作製する必要があった。 Next, when an application evaluation to a panel was performed, in Examples 1 to 5, it was possible to form a panel without sacrificing the aperture ratio. In Comparative Example 1, film damage was observed, so application evaluation to the panel was not performed (evaluation is impossible). In Comparative Examples 2 and 3, since the shield electrode is formed to be wider than allowable for application to the panel, it has been necessary to produce it at the expense of the aperture ratio in order to be applied to this panel.
 以上の結果から、総合評価として、データ線及び走査線となる電極上にシールド電極を、データ線及び走査線よりも2μm以上4μm以下にわたって幅広にパターニング形成したものを「++(良)」と評価し、4μmよりも幅広にパターニング形成したものは開口率を犠牲する必要があると判断し「-(不可)」と評価し、2μmよりも狭くパターニング形成したものは電極膜のダメージが確認されたため「-(不可)」と評価した。シールド電極をデータ線及び走査線よりも2μm以上4μm以下にわたって幅広にパターニング形成することにより、解像度102ppiで良好な特性を得たことを確認した。 Based on the above results, as a comprehensive evaluation, a shield electrode formed on a data line and a scanning line, and a patterning pattern that is wider than 2 μm and 4 μm from the data line and the scanning line, is evaluated as “++ (good)”. The patterning pattern wider than 4 μm is judged to require sacrificing the aperture ratio, and is evaluated as “-(impossible)”. The patterning pattern narrower than 2 μm is confirmed to be damaged by the electrode film. Evaluated as “-(impossible)”. It was confirmed that good characteristics were obtained at a resolution of 102 ppi by patterning the shield electrode wider than the data line and the scanning line over 2 μm to 4 μm.
 実施例6から10では、実施例1から5よりもさらに解像度の高いパネルとして、解像度150.3ppi(画素サイズ169μm□)のパネルにおける評価を行った。
[実施例6]
<前面電極基板の作製>
 純水に0.5mol/lプルシアンブルーとポリエチレングリコールを混合した塗液を調合しインクジェット印刷により、169μm□のパターンを印刷する以外は、実施例1と同様の方法で段差前面電極基板を作製した。
<背面電極基板の作製>
 データ線及び走査線となる電極上にシールド電極を、データ線及び走査線よりも2μm幅広にパターニング形成し、背面電極板は解像度150.3ppi(画素サイズ169μm)で画素間距離15μmのTFT基板を使用した以外は、実施例1と同様に背面電極基板を作製した。
<評価用基板の作製>
 実施例1と同様に作製した。
In Examples 6 to 10, the panel having a resolution of 150.3 ppi (pixel size: 169 μm □) was evaluated as a panel having a higher resolution than those of Examples 1 to 5.
[Example 6]
<Preparation of front electrode substrate>
A stepped front electrode substrate was prepared in the same manner as in Example 1 except that a coating solution in which 0.5 mol / l Prussian blue and polyethylene glycol were mixed in pure water was prepared and a pattern of 169 μm □ was printed by inkjet printing. .
<Preparation of back electrode substrate>
A shield electrode is formed on the data line and scan line electrode by patterning 2 μm wider than the data line and scan line, and the back electrode plate is a TFT substrate having a resolution of 150.3 ppi (pixel size 169 μm) and a distance between pixels of 15 μm. A back electrode substrate was produced in the same manner as in Example 1 except that it was used.
<Production of evaluation substrate>
It was produced in the same manner as in Example 1.
<作製基板の評価>
 実施例1と同様の評価項目で同様の評価を行った。
<Evaluation of fabrication substrate>
The same evaluation was performed using the same evaluation items as in Example 1.
[実施例7]
 データ線及び走査線となる電極上にシールド電極を、データ線及び走査線よりも2.5μm幅広にパターニング形成した点以外は、実施例6と同様とした。
[Example 7]
Example 6 was the same as Example 6 except that the shield electrode was formed by patterning on the electrodes to be the data line and the scanning line so as to be 2.5 μm wider than the data line and the scanning line.
[実施例8]
 データ線及び走査線となる電極上にシールド電極を、データ線及び走査線よりも3μm幅広にパターニング形成した点以外は、実施例6と同様とした。
[Example 8]
Example 6 was the same as Example 6 except that the shield electrode was formed by patterning 3 μm wider than the data line and the scanning line on the electrode to be the data line and the scanning line.
[実施例9]
 データ線及び走査線となる電極上にシールド電極を、データ線及び走査線よりも3.5μm幅広にパターニング形成した点以外は、実施例6と同様とした。
[Example 9]
Example 6 was the same as Example 6 except that the shield electrode was formed by patterning on the electrodes to be the data line and the scanning line so as to be 3.5 μm wider than the data line and the scanning line.
[実施例10]
 データ線及び走査線となる電極上にシールド電極を、データ線及び走査線よりも4μm幅広にパターニング形成した点以外は、実施例6と同様とした。
[Example 10]
Example 6 was the same as Example 6 except that the shield electrode was formed by patterning 4 μm wider than the data line and the scanning line on the data line and the scanning line.
[比較例4]
 データ線及び走査線となる電極上にシールド電極を、データ線及び走査線よりも1μm幅広にパターニング形成した点以外は、実施例6と同様とした。
[Comparative Example 4]
Example 6 was the same as Example 6 except that the shield electrode was formed by patterning 1 μm wider than the data line and the scanning line on the electrode serving as the data line and the scanning line.
[比較例5]
 データ線及び走査線となる電極上にシールド電極を、データ線及び走査線よりも5μm幅広にパターニング形成した点以外は、実施例6と同様とした。
[Comparative Example 5]
Example 6 was the same as Example 6 except that a shield electrode was formed by patterning 5 μm wider than the data line and the scan line on the data line and the scan line.
[比較例6]
 データ線及び走査線となる電極上にシールド電極を、データ線及び走査線よりも6μm幅広にパターニング形成した点以外は、実施例6と同様とした。
[Comparative Example 6]
Example 6 was the same as Example 6 except that the shield electrode was formed by patterning 6 μm wider than the data line and the scanning line on the electrode serving as the data line and the scanning line.
 表2に実施例6~10と比較例4~6との評価結果を示す。 Table 2 shows the evaluation results of Examples 6 to 10 and Comparative Examples 4 to 6.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例6から10、比較例4から6で作製した基板にLSIを実装し、背面電極の1つの画素に2秒間、1.5Vを印加して青から透明に着色変化を促したところ、画素は前記段差をエッジとする約250μm□の透明部へと変化し、電解液の酸化チタンにより、白色画素として観察された。さらに隣り合う2つの画素について青色から透明に着色変化を促したところ、画素間の段差も透明に変化し、連続した白画素として観察された。比較例4では、着色変化していない部分が観察された。 When an LSI was mounted on the substrates produced in Examples 6 to 10 and Comparative Examples 4 to 6, and 1.5 V was applied to one pixel of the back electrode for 2 seconds to promote a color change from blue to transparent. Changed to a transparent part of about 250 μm square with the step as an edge, and was observed as a white pixel by the titanium oxide of the electrolytic solution. Further, when the adjacent two pixels were promoted to change in color from blue to transparent, the level difference between the pixels also changed to transparent and was observed as a continuous white pixel. In Comparative Example 4, a portion where the color did not change was observed.
 また、電極膜を顕微鏡観察した結果、実施例6から10と比較例5及び6の電極膜はダメージや膜減りといった欠陥は観察されなかったが、比較例4ではシールド電極形成工程のエッチング時におけるダメージ(エッチング剤等)による膜減りが観察された。この膜減りは光漏れによるTFT特性の劣化や電界抑制効果を損なうため品質上好ましくない。 Further, as a result of microscopic observation of the electrode film, no defects such as damage and film loss were observed in the electrode films of Examples 6 to 10 and Comparative Examples 5 and 6, but in Comparative Example 4, the shield electrode was formed during the etching process. Film loss due to damage (such as an etchant) was observed. This film reduction is undesirable in terms of quality because it deteriorates TFT characteristics due to light leakage and impairs the electric field suppression effect.
 次に、パネルへの適用評価を行ったところ、実施例6から10では、開口率を犠牲にすることなくパネル化することができた。比較例4では膜ダメージが観察されたためパネルへの適用評価を実施しなかった(評価不能)。比較例5及び6ではシールド電極がパネルへの適用許容以上の幅広に形成されているので、本パネルに適用するには開口率を犠牲にして作製する必要があった。 Next, when the application evaluation to the panel was performed, in Examples 6 to 10, it was possible to form a panel without sacrificing the aperture ratio. In Comparative Example 4, film damage was observed, so application evaluation to the panel was not performed (evaluation not possible). In Comparative Examples 5 and 6, since the shield electrode is formed to be wider than the panel application allowance, in order to apply to this panel, it was necessary to make it at the sacrifice of the aperture ratio.
 以上の結果から、総合評価として、データ線及び走査線となる電極上にシールド電極を、データ線及び走査線よりも2μm以上4μm以下にわたって幅広にパターニング形成したものを「++(良)」と評価し、4μmよりも幅広にパターニング形成したものは開口率を犠牲する必要があると判断し「-(不可)」と評価し、2μmよりも狭くパターニング形成したものは電極膜のダメージが確認されたため「-(不可)」と評価した。シールド電極をデータ線及び走査線よりも2μm以上4μm以下にわたって幅広にパターニング形成することにより、解像度150.3ppiで良好な特性を得たことを確認した。 Based on the above results, as a comprehensive evaluation, a shield electrode formed on a data line and a scanning line, and a patterning pattern that is wider than 2 μm and 4 μm from the data line and the scanning line, is evaluated as “++ (good)”. The patterning pattern wider than 4 μm is judged to require sacrificing the aperture ratio, and is evaluated as “-(impossible)”. The patterning pattern narrower than 2 μm is confirmed to be damaged by the electrode film. Evaluated as “-(impossible)”. It was confirmed that good characteristics were obtained at a resolution of 150.3 ppi by patterning the shield electrode wider than the data line and the scanning line over 2 μm to 4 μm.
 また、実施例6と同様の方法によりシールド電極までを形成しその後、厚膜用のフォトレジストを用いて、フォトリソグラフィー法等によりパターニング形成し、焼成を行うことで隔壁を形成したものについても同様の評価を行ったところ、今回と同様の結果を得たことを確認した。 The same applies to the case where the shield electrode is formed by the same method as in Example 6 and then patterned using a thick film photoresist by a photolithography method or the like and baked to form a partition wall. As a result of the evaluation, it was confirmed that the same result as this time was obtained.
 上記結果より、エレクトロクロミックパネルにおいて、解像度の高いパネル(100ppi以上)での駆動評価、電極膜状態評価、適用評価で異常がないことを確認し、さらに表示性能においても隣接画素への電界の影響は確認されず、解像度の高いパネルで良好な表示特性を得ることが確認された。 From the above results, in electrochromic panels, it was confirmed that there was no abnormality in drive evaluation, electrode film state evaluation, and application evaluation in a high resolution panel (100 ppi or more), and the influence of the electric field on adjacent pixels also in display performance It was confirmed that good display characteristics were obtained with a high-resolution panel.
 以上説明したように、本発明によれば、例えば以下のような効果が得られる。すなわち、シールド電極が画素間のデータ線及び走査線上に備えられ、かつ、幅広に形成されていることにより、隣り合う画素間での電界の広がりを抑え、画素間での着色変化が少なく、明確な着色変化が可能になる。 As described above, according to the present invention, for example, the following effects can be obtained. In other words, the shield electrode is provided on the data line and the scanning line between the pixels, and is formed wide so that the spread of the electric field between the adjacent pixels is suppressed, and the color change between the pixels is small and clear. Color change is possible.
 さらに、エレクトロクロミック方式において、本発明はさらに解像度の高いパネル(100ppi以上)においても隣り合う画素間での電界の広がりを抑えることができるので、解像度の高いパネルで高画質の画像を表示することができる。 Furthermore, in the electrochromic method, the present invention can suppress the spread of the electric field between adjacent pixels even in a panel with higher resolution (100 ppi or more), so that a high-quality image can be displayed on the panel with high resolution. Can do.
 このような構成とすることでエレクトロクロミック方式の表示媒体における画素面積の拡張、低画質表示という課題を容易に改善するエレクトロクロミック方式表示媒体を作製することができる。 With such a configuration, an electrochromic display medium that easily improves the problems of expansion of pixel area and low image quality display in an electrochromic display medium can be manufactured.
 本発明は、電子ペーパー等の表示装置等に有用である。 The present invention is useful for display devices such as electronic paper.
 1a  走査線
 3a  データ線
 6a  画素電極
 9a  チャネル領域
 10  TFTアレイ基板
 11  第1層間絶縁膜
 12  第2層間絶縁膜
 12a  シールド電極
 14  電荷蓄積層
 15  電解質層
 16  表示層
 17  対向電極
 18  対向基板
 19  エレクトロクロミック表示層
 20  TFT
 30  容量
 40  隔壁
 200 電極
1a scanning line 3a data line 6a pixel electrode 9a channel region 10 TFT array substrate 11 first interlayer insulating film 12 second interlayer insulating film 12a shield electrode 14 charge accumulation layer 15 electrolyte layer 16 display layer 17 counter electrode 18 counter substrate 19 electrochromic Display layer 20 TFT
30 Capacity 40 Bulkhead 200 Electrode

Claims (7)

  1.  基板上に、第1方向に延在するデータ線及び該データ線に交差する第2方向に延在する走査線、並びに、前記データ線及び前記走査線の交差領域に対応するように配置された画素電極及び薄膜トランジスタが積層構造の一部をなして備えられたエレクトロクロミック表示パネルにおいて、
     前記データ線及び前記走査線上から覆い、かつ、前記データ線及び前記走査線よりも2μm以上4μm以下の幅広に形成されたシールド電極を備える、エレクトロクロミック表示パネル。
    On the substrate, the data lines extending in the first direction, the scanning lines extending in the second direction intersecting the data lines, and the intersecting regions of the data lines and the scanning lines are arranged. In an electrochromic display panel provided with a pixel electrode and a thin film transistor as part of a laminated structure,
    An electrochromic display panel comprising a shield electrode that covers the data line and the scanning line and is formed wider than the data line and the scanning line by 2 μm to 4 μm.
  2.  前記走査線、並びに前記データ線の表面上には、絶縁膜が備えられている、請求項1に記載のエレクトロクロミック表示パネル。 The electrochromic display panel according to claim 1, wherein an insulating film is provided on a surface of the scanning line and the data line.
  3.  前記走査線及び前記データ線上に形成される前記絶縁膜の幅は、前記走査線及び前記データ線上のシールド電極の幅よりも大きく形成されている、請求項2に記載のエレクトロクロミック表示パネル。 3. The electrochromic display panel according to claim 2, wherein a width of the insulating film formed on the scanning line and the data line is formed larger than a width of a shield electrode on the scanning line and the data line.
  4.  前記シールド電極は、前記薄膜トランジスタ上に遮光するように配置されている、請求項1ないし3の何れかに記載のエレクトロクロミック表示パネル。 4. The electrochromic display panel according to claim 1, wherein the shield electrode is disposed on the thin film transistor so as to shield light.
  5.  前記シールド電極の厚さは、150nm以上400nm以下である、請求項1ないし4の何れかに記載のエレクトロクロミック表示パネル。 The electrochromic display panel according to any one of claims 1 to 4, wherein a thickness of the shield electrode is 150 nm or more and 400 nm or less.
  6.  前記シールド電極の表面上には、絶縁膜が備えられている、請求項1ないし5の何れかに記載のエレクトロクロミック表示パネル。 The electrochromic display panel according to claim 1, wherein an insulating film is provided on the surface of the shield electrode.
  7.  前記シールド電極の表面上には、隣り合う画素間を仕切る隔壁が備えられている、請求項1ないし5の何れかに記載のエレクトロクロミック表示パネル。 The electrochromic display panel according to any one of claims 1 to 5, further comprising a partition wall for partitioning adjacent pixels on the surface of the shield electrode.
PCT/JP2014/004922 2013-09-27 2014-09-25 Electrochromic display panel WO2015045398A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015538910A JPWO2015045398A1 (en) 2013-09-27 2014-09-25 Electrochromic display panel

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-201471 2013-09-27
JP2013201471 2013-09-27
JP2014-051403 2014-03-14
JP2014051403 2014-03-14

Publications (1)

Publication Number Publication Date
WO2015045398A1 true WO2015045398A1 (en) 2015-04-02

Family

ID=52742567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/004922 WO2015045398A1 (en) 2013-09-27 2014-09-25 Electrochromic display panel

Country Status (3)

Country Link
JP (1) JPWO2015045398A1 (en)
TW (1) TW201516549A (en)
WO (1) WO2015045398A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109557711A (en) * 2018-12-29 2019-04-02 武汉华星光电技术有限公司 Display panel and display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6424232A (en) * 1987-07-20 1989-01-26 Fujitsu Ltd Thin film transistor matrix
JP2003503749A (en) * 1999-06-25 2003-01-28 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Organic electroluminescent display
JP2005531025A (en) * 2002-06-24 2005-10-13 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Electrochromic display panel with electrodes for adjusting crosstalk
JP2007178733A (en) * 2005-12-28 2007-07-12 Konica Minolta Holdings Inc Electrochromic display element and method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6424232A (en) * 1987-07-20 1989-01-26 Fujitsu Ltd Thin film transistor matrix
JP2003503749A (en) * 1999-06-25 2003-01-28 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Organic electroluminescent display
JP2005531025A (en) * 2002-06-24 2005-10-13 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Electrochromic display panel with electrodes for adjusting crosstalk
JP2007178733A (en) * 2005-12-28 2007-07-12 Konica Minolta Holdings Inc Electrochromic display element and method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109557711A (en) * 2018-12-29 2019-04-02 武汉华星光电技术有限公司 Display panel and display device
WO2020134090A1 (en) * 2018-12-29 2020-07-02 武汉华星光电技术有限公司 Display panel and display apparatus
CN109557711B (en) * 2018-12-29 2021-04-02 武汉华星光电技术有限公司 Display device

Also Published As

Publication number Publication date
TW201516549A (en) 2015-05-01
JPWO2015045398A1 (en) 2017-03-09

Similar Documents

Publication Publication Date Title
KR102031943B1 (en) Electrochromic device, display device and driving method thereof
US8736941B2 (en) Electrochromic display apparatus and method of manufacturing the same
JP5487709B2 (en) Electrochromic display device, manufacturing method and driving method thereof
JP6046412B2 (en) Electrochromic device, pixel structure, and electronic device
TWI402597B (en) Electrochromic display apparatus
US11796870B2 (en) Array substrate, light control panel, and display device
US20120139825A1 (en) Electrochromic display device
JP2016027361A (en) Electrochromic display device, and manufacturing method and driving method of the same
DE102014116263B4 (en) Organic light emitting display device
JP6244710B2 (en) Electrochromic display device, manufacturing method thereof, and driving method
CN115942779A (en) Display device
CN101802700A (en) Electrochromic display device and method for manufacturing the same
CN104238223A (en) Electrochromic grating, preparing method of electrochromic grating and 3D (three-dimensional) display device
US6633353B1 (en) Color filter substrate and manufacturing process therefor, liquid crystal device and manufacturing process therefor, and electronic apparatus
WO2015169030A1 (en) Parallax barrier and preparation method therefor, display panel and display device
KR20120009911A (en) Electrophoretic display device and method for manufacturing the same
JP2005049772A (en) Electrochromic display device
WO2005012993A1 (en) Electrochromic display
WO2015045398A1 (en) Electrochromic display panel
JP2016042138A (en) Electrochromic display panel
JP2013117689A (en) Electrochromic display device and manufacturing method for electrochromic display device
CN105549244A (en) Hook-face liquid crystal display panel and array substrate thereof
JP2016109853A (en) Electrochromic display device and drive method of the same
WO2005012995A1 (en) Electrochromic display
US20170336671A1 (en) Display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14849416

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015538910

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14849416

Country of ref document: EP

Kind code of ref document: A1