WO2015045388A1 - Communication device using beacon signals - Google Patents

Communication device using beacon signals Download PDF

Info

Publication number
WO2015045388A1
WO2015045388A1 PCT/JP2014/004912 JP2014004912W WO2015045388A1 WO 2015045388 A1 WO2015045388 A1 WO 2015045388A1 JP 2014004912 W JP2014004912 W JP 2014004912W WO 2015045388 A1 WO2015045388 A1 WO 2015045388A1
Authority
WO
WIPO (PCT)
Prior art keywords
route
communication
signal
beacon
meter
Prior art date
Application number
PCT/JP2014/004912
Other languages
French (fr)
Japanese (ja)
Inventor
西尾 昭彦
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2015045388A1 publication Critical patent/WO2015045388A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2803Home automation networks
    • H04L12/2823Reporting information sensed by appliance or service execution status of appliance services in a home automation network
    • H04L12/2827Reporting to a device within the home network; wherein the reception of the information reported automatically triggers the execution of a home appliance functionality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • H04B3/544Setting up communications; Call and signalling arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5429Applications for powerline communications
    • H04B2203/5433Remote metering

Definitions

  • the present invention relates to a communication apparatus and a communication method using a beacon signal for a network such as a personal area network (hereinafter referred to as PAN).
  • PAN is, for example, a communication network between a meter reading device and a HEMS (Home Energy Management System) control device, or a communication network between a meter reading device and a system device of an electric power company that is an electric power company.
  • HEMS Home Energy Management System
  • meter reading device Commercial power from an electric power company that is an electric power company is distributed to a distribution board of each consumer via a so-called smart meter called meter reading device with communication function (hereinafter referred to as meter reading device).
  • the meter-reading device measures the power that is distributed, and communicates with a power company system device (hereinafter referred to as a power company system device) via a power line such as a power distribution line. Transmit to the power company system device to enable remote medical examination.
  • a power company system device hereinafter referred to as a power company system device
  • communication between the meter-reading device and the power company system device is realized by power line communication (also called power line carrier communication) or wireless communication.
  • the communication route of the PAN is referred to as A route (for example, refer to Patent Document 1).
  • the distribution board is often provided with a HEMS control device built-in or externally.
  • the HEMS control device transmits the power consumption information of each load to the power company system device via the meter-reading device, or based on the signal from the power company system device in order to suppress the peak of energy demand. Control the load.
  • Communication between the HEMS control device and the meter-reading device is realized by power line communication or wireless communication.
  • the communication route of the PAN is referred to as a B route (see, for example, Patent Document 1).
  • a beacon request signal is transmitted to the meter-reading device that is the coordinator of the PAN, and in response thereto, the meter-reading device transmits a beacon signal.
  • the HEMS control device performs a communication procedure for entry with the meter-reading device in response to the beacon signal (see, for example, Non-Patent Document 1).
  • ITU-T Telecommunication Standardization Sector of ITU
  • Series G Transmission systems and Media, Digital Systems and Networks, Access Networks-In Premises Networks, Narrowband orthogonal frequency division multiplex ", Recommendations ITU-T G.9903, pp.96-98, October 2012.
  • the meter reading device cannot determine whether the beacon request signal is the A route beacon request signal or the B route beacon request signal.
  • the meter-reading device can be connected to a coordinator, other communication devices can be connected to the following communication devices, and communication between lower and higher communication devices can be relayed.
  • the HEMS control device that desires to enter does not respond, and thus there is a problem that communication for entering cannot be performed.
  • the object of the present invention is to solve the above-mentioned problems, and in a communication device belonging to a network of two routes, in response to a beacon request signal from the communication device of the other party of each route, reliably communicate with the other communication device.
  • An object of the present invention is to provide a communication device and a communication method that can be used.
  • the communication device is a communication device belonging to a communication network of two routes, and transmits both beacon signals of two routes when a beacon request signal is received. To do.
  • the communication device is a communication device that is a coordinator of the communication networks of the first and second routes.
  • the communication apparatus receives the beacon request signal, the communication apparatus first transmits one of the beacon signal of the first route and the beacon signal of the second route. And a communication apparatus transmits the beacon signal of the route different from the route
  • a communication method is a communication method for a communication device that is a coordinator of a communication network of two routes, and when the communication device receives a beacon request signal, Send both.
  • the communication method according to the fourth aspect is a communication method for a communication device that is a coordinator of the communication networks of the first and second routes.
  • the communication apparatus receives the beacon request signal, the communication apparatus first transmits one of the beacon signal of the first route and the beacon signal of the second route. Then, a beacon signal of a route different from the route of the transmitted beacon signal is transmitted only when the response signal is not received within a predetermined time from the transmission.
  • both beacon signals of two routes are transmitted. Therefore, in the communication device that is the coordinator of the network of the two routes, communication with the communication device of the other party can be reliably performed in response to the beacon request signal from the communication device of the other party of each route.
  • the communication device and the communication method according to the present invention when a beacon request signal is received, one of the beacon signal of the first route and the beacon signal of the second route is transmitted. . Then, a beacon signal of a route different from the route of the transmitted beacon signal is transmitted only when the response signal is not received within a predetermined time from the transmission. Therefore, it is possible to reduce the collision and congestion of communication signals in the networks of the first route and the second route.
  • FIG. 1 It is a block diagram which shows the structure of the power distribution system which contains the meter-reading apparatus in the two consumers adjacent to each other according to Embodiment 1, and the distribution board provided with the HEMS control apparatus. It is a figure which shows the communication procedure for the terminal new entry used in the power distribution system of FIG. It is a figure which shows the communication procedure for the terminal new entry used in the power distribution system which concerns on the 1st modification of Embodiment 1. FIG. It is a figure which shows the 1st example of the communication procedure for the terminal new entry used in the power distribution system which concerns on the 2nd modification of Embodiment 1. FIG. It is a figure which shows the 2nd example of the communication procedure for the terminal new entry used in the power distribution system which concerns on the 2nd modification of Embodiment 1.
  • FIG. It is a figure which shows the modification of the communication procedure of FIG. 4A. It is a block diagram which shows the structure of the power distribution system containing the meter-reading apparatus in the two consumers which adjoin each other based on Embodiment 2, and the distribution board provided with the HEMS control apparatus. It is a figure which shows the communication procedure for the terminal new entry used in the power distribution system of FIG. It is a block diagram which shows the structure of the power distribution system which concerns on another modification of Embodiment 1. FIG. It is a block diagram which shows the structure of the power distribution system which concerns on another modification of Embodiment 2.
  • FIG. 1 is a block diagram illustrating a configuration of a power distribution system including meter reading devices SM1 and SM2 in two customers 1 and 2 adjacent to each other and a distribution board DB1 including a HEMS control device HC1 according to the first embodiment. is there.
  • FIG. 1 commercial power is supplied from a substation via pole transformer 4, power line PL3, meter reading devices SM1 and SM2 of each customer 1 and 2 and power lines PL1 and Pl2. Power is distributed to distribution boards DB1 and DB2.
  • the consumer 1 is provided with a meter reading device SM1 and a distribution board DB1
  • the customer 2 is provided with a meter reading device SM2 and a distribution board DB2.
  • the meter-reading device SM1 is a meter-reading device with a communication function called a so-called smart meter, and includes a control unit 10, an A route PLC communication unit 11, and a B route PLC communication unit 12.
  • the meter reading device SM2 includes a control unit 20, an A route PLC communication unit 21, and a B route PLC communication unit 22.
  • the meter-reading device SM1 belongs to the PAN of the A route and the B route, and is a communication device that is a coordinator of the PAN of the B route.
  • the distribution board DB1 includes a distribution board circuit 32 connected to the power line PL1, and a HEMS control device HC1 that manages and controls the energy of the customer 1, and the HEMS control device HC1 is connected to the control unit 30 and the PLC.
  • the communication unit 31 is provided.
  • the distribution board circuit 32 is connected to each load 33, such as household appliances.
  • the distribution board DB2 includes a distribution board circuit 42 connected to the power line PL2, and a HEMS control device HC2 that manages and controls the energy of the customer 1, and the HEMS control device HC2 is configured by the control unit 40. And a PLC communication unit 41.
  • the distribution board circuit 42 is connected to each load 43, such as household appliances.
  • the control unit 10 of the meter-reading device SM1 controls the meter-reading process of the meter-reading device SM1, and controls the operations of the A route PLC communication unit 11 and the B route PLC communication unit 12.
  • the A route PLC communication unit 11 is connected to the power company system device 3 via the power line PL3, and can perform remote medical examination by transmitting the meter reading data, which is a measurement result of the meter reading device SM1, to the power company system device 3 by power line communication.
  • the B route PLC communication unit 12 is connected to the HEMS control device HC1 via the power line PL1.
  • the B route PLC communication unit 12 receives the power consumption information and the like of each load 33 from the HEMS control device HC1 and transmits it to the power company system device 3 via the A route PLC communication unit 11.
  • the B route PLC communication unit 12 transfers the signal received from the power company system device 3 via the A route PLC communication unit 11 to the HEMS control device HC1 in order to suppress the peak of energy demand.
  • the control unit 30 of the HEMS control device HC1 collects power consumption information and the like of each load 33, manages and controls the energy of each load 33, and controls the operation of the PLC communication unit 31.
  • the PLC communication unit 31 transmits a signal including power consumption information of each load 33 collected by the control unit 30 to the power company system apparatus 3 via the B route PLC communication unit 12 and the A route PLC communication unit 11.
  • the PLC communication part 31 receives the signal for suppressing the peak of energy demand transmitted in the reverse direction, outputs it to the control part 30, and the control part 30 of the HEMS control apparatus HC1 is based on the said signal.
  • Each load 33 is controlled.
  • the control unit 20 of the meter-reading device SM2 controls the meter-reading processing of the meter-reading device SM2, and controls the operations of the A route PLC communication unit 21 and the B route PLC communication unit 22.
  • the A route PLC communication unit 21 is connected to the power company system device 3 through the power line PL3, and can perform remote medical examination by transmitting the meter reading data, which is the measurement result of the meter reading device SM2, to the power company system device 3 through the power line communication.
  • the B route PLC communication unit 22 is connected to the HEMS control device HC2 via the power line PL2.
  • the B route PLC communication unit 22 receives the power consumption information and the like of each load 43 from the HEMS control device HC2 and transmits it to the power company system device 3 via the A route PLC communication unit 21.
  • the B route PLC communication unit 22 transfers the signal received from the power company system device 3 via the A route PLC communication unit 21 to the HEMS control device HC2 in order to suppress the peak of energy demand.
  • the control unit 40 of the HEMS control device HC2 collects power consumption information and the like of each load 43, manages and controls the energy of each load 43, and controls the operation of the PLC communication unit 41.
  • the PLC communication unit 41 transmits a signal including power consumption information of each load 43 collected by the control unit 40 to the power company system apparatus 3 via the B route PLC communication unit 22 and the A route PLC communication unit 21.
  • the PLC communication part 41 receives the signal for suppressing the peak of energy demand transmitted in the reverse direction, outputs it to the control part 40, and the control part 40 of the HEMS control apparatus HC2 is based on the said signal.
  • Each load 43 is controlled.
  • an A-route PAN is configured between the power company system device 3 and the meter-reading devices SM1 and SM2.
  • a B-route PAN is configured between the meter-reading device SM1 and the HEMS control device HC1, and between the meter-reading device SM2 and the HEMS control device HC2.
  • FIG. 2 is a diagram showing a communication procedure used by the HEMS control device HC1 for newly entering a terminal in the B-route PAN used in the power distribution system of FIG.
  • the meter-reading device SM1 that has received the beacon request signal transmits both a beacon signal having a PAN-ID of A route and a beacon signal having a PAN-ID of B route.
  • PAN-ID PAN identification code
  • the meter reading device SM1 serves as a PAN coordinator for the A route and the B route.
  • the HEMS control device HC1 which is an entry terminal, transmits a beacon request signal.
  • the meter-reading device SM1 which is the PAN coordinator, transmits both the beacon signal having the PAN-ID “A1” of the A route and the beacon signal having the PAN-ID “B1” of the B route. Send.
  • the HEMS control device HC1 When receiving the beacon signal having the PAN-ID “B1” of the B route, the HEMS control device HC1 returns a response signal including an entry message for entry.
  • the HEMS control device HC1 communicates with the meter-reading device SM1 using a known LBP (LoWPAN (Low (power Wireless Personal Area Network) Bootstrapping Protocol) procedure (for example, see Non-Patent Document 1), and newly enters the terminal. Perform authentication process for.
  • LBP Low (power Wireless Personal Area Network) Bootstrapping Protocol
  • the meter-reading device SM1 which is a PAN coordinator, transmits both a beacon signal having a PAN-ID of A route and a beacon signal having a PAN-ID of B route. Send. Therefore, the HEMS control device HC1 can reliably receive the beacon signal having the PAN-ID of the B route. Thereby, even if meter-reading apparatus SM1 is in charge of the coordinator of the network of A route and B route, it responds to the beacon request signal from the terminal device of each route, and communicates with the said terminal device Can do.
  • FIG. 3 is a diagram illustrating a communication procedure used in the power distribution system according to the first modification of the first embodiment for the meter reading device SM2 to newly enter a terminal in the PAN of the A route.
  • the meter-reading device SM1 is a PAN coordinator for the A route and the B route.
  • the meter-reading device SM1 that has received the beacon request signal includes a beacon signal having a PAN-ID of A route and a beacon signal having a PAN-ID of B route. It is characterized by transmitting both.
  • meter-reading device SM2 which is an entry terminal transmits a beacon request signal.
  • the meter-reading device SM1 which is the PAN coordinator, transmits both the beacon signal having the PAN-ID “A1” of the A route and the beacon signal having the PAN-ID “B1” of the B route.
  • Send the meter reading device SM2 receives a beacon signal having the PAN-ID “A1” of the A route, the meter reading device SM2 returns a response signal including an entry message for entry, and then uses a predetermined entry authentication procedure to To perform authentication processing for new terminal entry.
  • the meter-reading device SM1 which is the PAN coordinator, has a beacon signal having a PAN-ID for the A route and a PAN-ID for the B route. Send both beacon signals. Therefore, the meter-reading device SM2 can reliably receive the beacon signal having the PAN-ID of the A route. Thereby, even if meter-reading apparatus SM1 is in charge of the coordinator of the network of A route and B route, it responds to the beacon request signal from the terminal device of each route, and communicates with the said terminal device Can do.
  • the A route communication and the B route communication are performed on the same communication medium such as the same power line communication. Is called.
  • a communication device such as the HEMS control device HC1 or the meter-reading device SM2 transmits a beacon signal. Therefore, beacon signals frequently occur and communication signals used in communication of each route interfere with each other. For this reason, a communication state becomes worse compared with the case where each communication system of only A route or only B route is used.
  • communication signals may collide with each other or be congested due to transmission of beacon signals for both the A route and the B route from the same communication device of the meter-reading device or the HEMS control device.
  • a communication procedure according to the second modification of the first embodiment will be described below.
  • FIG. 4A is a diagram illustrating a first example of a communication procedure used in the power distribution system according to the second modification of the first embodiment for the HEMS control device HC1 to newly enter a terminal in the B-route PAN.
  • FIG. 4B is a figure which shows the 2nd example of the communication procedure for using in the power distribution system which concerns on the 2nd modification of Embodiment 1 for a terminal new entry.
  • the meter-reading device SM1 is a PAN coordinator for the A route and the B route.
  • the meter-reading device SM1 that has received the beacon request signal first transmits a beacon signal having a PAN-ID of one of the routes (for example, the B route). Then, if the meter reading device SM1 does not receive a response signal for a predetermined time, it transmits a beacon signal having the PAN-ID of the other route (for example, route A). And if the meter-reading apparatus SM1 receives a response signal within predetermined time, it will make non-transmission of the beacon signal which has PAN-ID of the other route (for example, A route).
  • the HEMS control device HC1 which is an entry terminal transmits a beacon request signal.
  • meter-reading device SM1 which is a PAN coordinator, transmits a beacon signal having a PAN-ID “B1” of the B route.
  • meter-reading apparatus SM1 receives the response signal of the entry message from HEMS control apparatus HC1 within predetermined time from transmission of a beacon signal, the beacon signal which has PAN-ID "A1" of the other route, for example, A route Is not sent.
  • the meter-reading device SM1 performs the LBP procedure between the HEMS control device HC1 and the meter-reading device SM1 after receiving the response signal of the entry message from the HEMS control device HC1.
  • the HEMS control device HC1 which is an entry terminal transmits a beacon request signal.
  • meter-reading device SM1 which is a PAN coordinator, transmits a beacon signal having PAN-ID “A1” of A route.
  • the PAN-ID “B1 of the B route after the predetermined time from the transmission of the beacon signal. ”Is transmitted.
  • meter-reading apparatus SM1 performs the said LBP procedure between HEMS control apparatus HC1 and meter-reading apparatus SM1, after receiving the response signal of the entry message from HEMS control apparatus HC1.
  • the meter-reading device SM1 transmits the beacon signal of the other route only when it does not receive a response signal from the HEMS control device HC1, Packet collision and congestion can be reduced.
  • FIG. 4C is a diagram showing a modification of the communication procedure of FIG. 4A. 4C, the meter-reading device SM1 decreases the transmission power of the beacon signal having the PAN-ID of the B route in response to the beacon request signal from the HEMS control device HC1, and sets the PAN-ID of the A route. It transmits before the beacon signal which has.
  • the HEMS control device HC1 which is the entry terminal, transmits a beacon request signal.
  • the meter-reading device SM1 receives a beacon signal having a PAN-ID “B1” of the B route, which is lower than a predetermined specified value, but is a limit value of a received signal level that can be received by the HEMS control device HC1.
  • transmission is first performed with transmission power corresponding to a neighborhood value higher than that.
  • meter-reading apparatus SM1 performs the said LBP procedure between HEMS control apparatus HC1 and meter-reading apparatus SM1, after receiving the response signal of the entry message from HEMS control apparatus HC1.
  • the transmission power may be a transmission power corresponding to a received signal level that is lower than a predetermined specified value but is not less than a limit value of the received signal level that can be received by the HEMS control device HC1.
  • the transmission power of the B route beacon signal is reduced to, for example, the transmission power corresponding to the limit value of the received signal level that can be received by the HEMS control device HC1 or a nearby value higher than the A route.
  • the transmission power is smaller than the transmission power for the A route.
  • FIG. 5 is a block diagram illustrating a configuration of a power distribution system including a meter reading device in two customers adjacent to each other and a distribution board equipped with a HEMS control device according to the second embodiment.
  • a sub-distribution panel is added, or a plurality of HEMS control devices exist in one consumer such as a two-family house.
  • the second embodiment is characterized by further including a distribution board DB1A including a HEMS control device HC1A, as compared with the first embodiment of FIG.
  • Other configurations are the same as those of the first embodiment.
  • the HEMS control device HC1 also needs to transmit a beacon signal for the HEMS control device HC1A that is a new entry terminal.
  • the distribution board DB1A includes a distribution board circuit 32A connected to the power line PL1, and a HEMS control device HC1A that manages and controls energy related to the distribution board DB1A of the customer 1.
  • the HEMS control device HC1A includes a control unit 30A and a PLC communication unit 31A.
  • the HEMS control device HC1 manages and controls energy related to the distribution board DB1A of the customer 1.
  • distribution board circuit 32A is connected to each load 33A, such as household appliances.
  • the control unit 30A of the HEMS control device HC1A collects power consumption information and the like of each load 33A, manages and controls the energy of each load 33A, and controls the operation of the PLC communication unit 31A.
  • the PLC communication unit 31A transmits a signal including the power consumption information and the like of each load 33A collected by the control unit 30A to the power company system apparatus 3 via the B route PLC communication unit 12 and the A route PLC communication unit 11. Further, the PLC communication unit 31A receives a signal transmitted in the opposite direction for suppressing the peak of energy demand and outputs the signal to the control unit 30A.
  • the control unit 30A of the HEMS control device HC1A is based on the signal. Each load 33A is controlled.
  • FIG. 6 is a diagram illustrating a communication procedure for new terminal entry into which the meter-reading device SM2 and the HEMS control device HC1A enter the power distribution system shown in FIG. Also in FIG. 6, the meter-reading device SM1 is a coordinator of the A route and the B route PAN, and the HEMS control device HC1 is a coordinator of the newly entered HEMS control device HC1A.
  • the HEMS control device HC1 returns a beacon signal only after receiving a beacon request signal having the same sequence number a predetermined number of times within a predetermined time.
  • the meter-reading device SM2 which is the entry terminal, transmits a beacon request signal.
  • the meter-reading device SM1 which is the PAN coordinator, transmits both the beacon signal having the PAN-ID “A1” of the A route and the beacon signal having the PAN-ID “B1” of the B route.
  • Send the meter reading device SM2 receives a beacon signal having the PAN-ID “A1” of the A route
  • the meter reading device SM2 returns a response signal including an entry message for entry, and then uses a predetermined entry authentication procedure to To perform authentication processing for new terminal entry.
  • the HEMS control device HC1 receives the beacon request signal having the PAN-ID “B1” from the meter-reading device SM1 once, it does not transmit the beacon signal.
  • the HEMS control device HC1A which is an entry terminal, transmits a beacon request signal having the same sequence number a predetermined N times.
  • meter-reading device SM1 which is a PAN coordinator, transmits a beacon signal having PAN-ID “B1” of the B route.
  • the HEMS control device HC1A receives the beacon signal having the PAN-ID “B1” of the B route, the HEMS control device HC1A returns a response signal including an entry message for entry.
  • the HEMS control device HC1A communicates with the HEMS control device HC1 using the LBP procedure, and performs an authentication process for newly entering a terminal.
  • the HEMS control device HC1 does not transmit a beacon signal with a single beacon request signal, but when receiving a beacon request signal having the same sequence number for a predetermined N times, the beacon signal is received. Reply signal. Accordingly, the HEMS control device HC1 does not transmit a useless beacon signal by reacting to the beacon request signal transmitted from the meter-reading device SM2 or the HEMS control device outside the home each time, thus reducing collision and congestion of communication signals. it can.
  • the case where the transmission of the beacon signal of the HEMS control device is a rare case of relaying to another HEMS control device in the home, and a plurality of beacon request signals from another HEMS control device in the home is a problem. do not become.
  • the second embodiment it is possible to respond to a beacon request signal by changing the number of transmissions of a beacon request signal having the same sequence number for each consumer or for each power distribution range in one consumer. Area can be limited.
  • the HEMS control device HC1 returns a beacon signal when receiving a beacon request signal having the same sequence number a predetermined N times.
  • the present invention is not limited to this, and may be another coordinator device such as the meter-reading device SM1.
  • the distribution board DB1A has been described as being directly connected to SM1.
  • the present invention is not limited to this, and the distribution board DB1A may be connected to the SM1 via the distribution board DB1.
  • FIG. 7 is a block diagram illustrating a configuration of a power distribution system according to another modification of the first embodiment.
  • FIG. 8 is a block diagram illustrating a configuration of a power distribution system according to another modification of the second embodiment.
  • each of the RF communication units 11R, 12R, 21R, 22R, 31R, 41R, and 31RA includes antennas 11A, 12A, 21A, 22A, 31A, 41A, and 31RAA.
  • Wireless communication is performed using a wireless signal such as
  • each consumer may be, for example, each dwelling unit, office, factory, etc. of an apartment house.
  • the distribution boards DB1, DB2, and DB1A incorporate the HEMS control devices HC1, HC2, and HC1A, but the present invention is not limited to this and may be externally attached.
  • the A-route PAN that performs communication between the meter-reading device and the power company system device and the B-route PAN that performs communication between the meter-reading device and the HEMS control device are described.
  • the present invention is not limited to this, and can be applied to a communication system in the case where two or more communication networks are configured between the respective communication devices.
  • the meter-reading device SM1 which is the communication device according to the first aspect, belongs to the communication network of the A route and the B route, is a coordinator of the communication network of the B route, and when receiving the beacon request signal, Both of the B route beacon signals are transmitted.
  • the meter-reading device SM1 which is a communication device according to the second aspect, belongs to the communication network of the A route and the B route, and is a coordinator of the communication network of the B route.
  • the meter-reading device SM1 receives the beacon request signal, the meter-reading device SM1 first transmits one of the A route beacon signal and the B route beacon signal. And meter-reading apparatus SM1 transmits the beacon signal of a different route from the route of the beacon signal transmitted only when the response signal is not received within a predetermined time from the transmission.
  • the beacon signal for the B route to be transmitted first is transmitted from the beacon signal for the A route. Also send first.
  • the beacon signal to be transmitted first has a transmission power lower than a predetermined specified value, and the transmission corresponds to a reception signal level equal to or higher than a limit value of the reception signal level that can be received by the HEMS control device HC1 that is the counterpart communication device. Have power.
  • the meter-reading device SM1 or the HEMS control device HC1 according to the fourth mode is a beacon signal only when the meter-reading device SM1 according to the second or third mode receives a beacon request signal having the same sequence number a predetermined number of times. Send.
  • the meter-reading device SM1 or the HEMS control device HC1 according to the fifth aspect performs transmission or reception by power line communication or wireless communication in the meter-reading device SM1 according to any one of the first to fourth aspects.
  • the communication method according to the sixth aspect is a communication method for the meter-reading device SM1, which belongs to the A-route and B-route communication networks and is a communication device that is a coordinator of the B-route communication network.
  • the meter-reading device SM1 receives a beacon request signal, the meter-reading device SM1 transmits both the A route and the B route beacon signals.
  • the communication method according to the seventh aspect is a communication method for the meter-reading device SM1, which belongs to the A-route and B-route communication networks and is a communication device that is a coordinator of the B-route communication network.
  • the meter-reading device SM1 receives the beacon request signal, the meter-reading device SM1 first transmits one of the A route beacon signal and the B route beacon signal. Then, a beacon signal of a route different from the route of the transmitted beacon signal is transmitted only when the response signal is not received within a predetermined time from the transmission.
  • the communication method according to the eighth aspect is the communication method according to the seventh aspect, wherein when the meter-reading device SM1 receives the beacon request signal, the beacon signal for the B route that is transmitted first is more than the beacon signal for the A route. Send first.
  • the beacon signal to be transmitted first has a transmission power lower than a predetermined specified value, and the beacon signal has a transmission power corresponding to a reception signal level equal to or higher than a limit value of the reception signal level that can be received by the counterpart HEMS control device HC1.
  • the communication method according to the ninth aspect is the communication method according to the seventh or eighth aspect, wherein the meter-reading device SM1 or the HEMS control device HC1 receives a beacon request signal having the same sequence number a predetermined number of times. Only send a beacon signal.
  • the meter-reading device SM1 or the HEMS control device HC1 performs transmission or reception by power line communication or wireless communication.

Abstract

A meter reading device (SM1) belonging to the communication network of a route A and to the communication network of a route B transmits, upon reception of a beacon request signal from an HEMS control device (HC1), both a beacon signal of the route A and a beacon signal of the route B. Alternatively, the meter reading device (SM1) transmits, upon reception of the beacon request signal, one of the beacon signal of the route A or the beacon signal of the route B, and transmits, only if no response signal has been received since that transmittal for a predetermined time, the beacon signal of the route different from the route of that transmitted beacon signal.

Description

ビーコン信号を用いた通信装置Communication device using beacon signal
 本発明は、パーソナルエリアネットワーク(以下、PANという、)等のネットワークのための、ビーコン信号を用いた通信装置及び通信方法に関する。ここで、PANは、例えば、検針装置とHEMS(Home Energy Management System)制御装置との間の通信ネットワーク、又は検針装置と電気事業者である電力会社のシステム装置との間の通信ネットワークである。 The present invention relates to a communication apparatus and a communication method using a beacon signal for a network such as a personal area network (hereinafter referred to as PAN). Here, the PAN is, for example, a communication network between a meter reading device and a HEMS (Home Energy Management System) control device, or a communication network between a meter reading device and a system device of an electric power company that is an electric power company.
 電気事業者である電力会社から商用電力は、いわゆるスマートメータと呼ばれる通信機能付き検針装置(以下、検針装置という。)を介して各需要家の分電盤に商用電力が配電されている。検針装置は配電される電力を測定して、電力会社のシステム装置(以下、電力会社システム装置という。)と例えば配電線などの電力線を介して通信を行うことにより、測定結果である検針データを電力会社システム装置に送信して遠隔検診等を可能にする。ここで、検針装置と電力会社システム装置との間の通信は、電力線通信(電力線搬送通信とも呼ばれる)又は無線通信により実現される。当該PANの通信ルートをAルートという(例えば、特許文献1参照)。 Commercial power from an electric power company that is an electric power company is distributed to a distribution board of each consumer via a so-called smart meter called meter reading device with communication function (hereinafter referred to as meter reading device). The meter-reading device measures the power that is distributed, and communicates with a power company system device (hereinafter referred to as a power company system device) via a power line such as a power distribution line. Transmit to the power company system device to enable remote medical examination. Here, communication between the meter-reading device and the power company system device is realized by power line communication (also called power line carrier communication) or wireless communication. The communication route of the PAN is referred to as A route (for example, refer to Patent Document 1).
 また、分電盤には、需要家のエネルギーを管理して制御するために、HEMS制御装置を内蔵又は外付けで設ける場合が多くなっている。ここで、HEMS制御装置は、各負荷の電力消費情報等を検針装置経由で電力会社システム装置に送信し、もしくは、エネルギー需要のピークを抑制するために、電力会社システム装置からの信号に基づいて負荷を制御する。HEMS制御装置と検針装置との間の通信は、電力線通信又は無線通信により実現される。当該PANの通信ルートをBルートという(例えば、特許文献1参照)。 Moreover, in order to manage and control the energy of consumers, the distribution board is often provided with a HEMS control device built-in or externally. Here, the HEMS control device transmits the power consumption information of each load to the power company system device via the meter-reading device, or based on the signal from the power company system device in order to suppress the peak of energy demand. Control the load. Communication between the HEMS control device and the meter-reading device is realized by power line communication or wireless communication. The communication route of the PAN is referred to as a B route (see, for example, Patent Document 1).
 例えばHEMS制御装置が新たにBルートのPANに参入するとき、PANのコーディネータである検針装置に対してビーコン要求信号を送信して、それに応答して、当該検針装置がビーコン信号を送信する。このとき、HEMS制御装置は、当該ビーコン信号に応答して、当該検針装置との間で参入のための通信手順を行う(例えば、非特許文献1参照)。 For example, when the HEMS control device newly enters the B-route PAN, a beacon request signal is transmitted to the meter-reading device that is the coordinator of the PAN, and in response thereto, the meter-reading device transmits a beacon signal. At this time, the HEMS control device performs a communication procedure for entry with the meter-reading device in response to the beacon signal (see, for example, Non-Patent Document 1).
特開2013-171453号公報JP 2013-171453 A
 しかしながら、前記検針装置がAルートとBルートの両方のPANに属する場合、当該検針装置は、前記ビーコン要求信号がAルートのビーコン要求信号であるか、Bルートのビーコン要求信号かを判断できない。ここで、前記検針装置はAルートにおいて、コーディネータに接続し、下記の通信装置にも他の通信装置を接続させることができ、下位と上位の通信装置間の通信を中継することができる。上記の場合において、前記検針装置がAルートのビーコン信号を送信した場合、参入を希望するHEMS制御装置は応答しないので、参入するための通信を行うことができないという問題点があった。 However, when the meter reading device belongs to both the A route and the B route PAN, the meter reading device cannot determine whether the beacon request signal is the A route beacon request signal or the B route beacon request signal. Here, in the A route, the meter-reading device can be connected to a coordinator, other communication devices can be connected to the following communication devices, and communication between lower and higher communication devices can be relayed. In the above case, when the meter-reading device transmits the A route beacon signal, the HEMS control device that desires to enter does not respond, and thus there is a problem that communication for entering cannot be performed.
 本発明の目的は上記課題を解決し、2つのルートのネットワークに属する通信装置において各ルートの相手方の通信装置からのビーコン要求信号に応答して相手方の通信装置との通信を確実に行うことができる通信装置及び通信方法を提供することにある。 The object of the present invention is to solve the above-mentioned problems, and in a communication device belonging to a network of two routes, in response to a beacon request signal from the communication device of the other party of each route, reliably communicate with the other communication device. An object of the present invention is to provide a communication device and a communication method that can be used.
 上記課題を解決するために、第1の態様に係る通信装置は、2つのルートの通信ネットワークに属する通信装置であって、ビーコン要求信号を受信したとき、2つのルートのビーコン信号の両方を送信する。 In order to solve the above-described problem, the communication device according to the first aspect is a communication device belonging to a communication network of two routes, and transmits both beacon signals of two routes when a beacon request signal is received. To do.
 第2の態様に係る通信装置は、第1及び第2のルートの通信ネットワークのコーディネータである通信装置である。通信装置は、ビーコン要求信号を受信したとき、第1のルートのビーコン信号と、第2のルートのビーコン信号とのうちのいずれか1つを最初に送信する。そして、通信装置は、当該送信から所定時間内に応答信号を受信しないときのみ送信したビーコン信号のルートとは異なるルートのビーコン信号を送信する。 The communication device according to the second aspect is a communication device that is a coordinator of the communication networks of the first and second routes. When the communication apparatus receives the beacon request signal, the communication apparatus first transmits one of the beacon signal of the first route and the beacon signal of the second route. And a communication apparatus transmits the beacon signal of the route different from the route | root of the beacon signal transmitted only when the response signal is not received within the predetermined time from the said transmission.
 第3の態様に係る通信方法は、2つのルートの通信ネットワークのコーディネータである通信装置のための通信方法であって、通信装置が、ビーコン要求信号を受信したとき、2つのルートのビーコン信号の両方を送信する。 A communication method according to a third aspect is a communication method for a communication device that is a coordinator of a communication network of two routes, and when the communication device receives a beacon request signal, Send both.
 第4の態様に係る通信方法は、第1及び第2のルートの通信ネットワークのコーディネータである通信装置のための通信方法である。通信装置が、ビーコン要求信号を受信したとき、第1のルートのビーコン信号と、第2のルートのビーコン信号とのうちのいずれか1つを最初に送信する。そして、当該送信から所定時間内に応答信号を受信しないときのみ送信したビーコン信号のルートとは異なるルートのビーコン信号を送信する。 The communication method according to the fourth aspect is a communication method for a communication device that is a coordinator of the communication networks of the first and second routes. When the communication apparatus receives the beacon request signal, the communication apparatus first transmits one of the beacon signal of the first route and the beacon signal of the second route. Then, a beacon signal of a route different from the route of the transmitted beacon signal is transmitted only when the response signal is not received within a predetermined time from the transmission.
 本発明に係る通信装置及び通信方法によれば、ビーコン要求信号を受信したとき、2つのルートのビーコン信号の両方を送信する。従って、2つのルートのネットワークのコーディネータである通信装置において、各ルートの相手方の通信装置からのビーコン要求信号に応答して、当該相手方の通信装置との通信を確実に行うことができる。 According to the communication device and the communication method of the present invention, when a beacon request signal is received, both beacon signals of two routes are transmitted. Therefore, in the communication device that is the coordinator of the network of the two routes, communication with the communication device of the other party can be reliably performed in response to the beacon request signal from the communication device of the other party of each route.
 また、本発明に係る通信装置及び通信方法によれば、ビーコン要求信号を受信したとき、第1のルートのビーコン信号と、第2のルートのビーコン信号とのうちのいずれか1つを送信する。そして、当該送信から所定時間内に応答信号を受信しないときのみ送信したビーコン信号のルートとは異なるルートのビーコン信号を送信する。従って、第1のルート及び第2のルートのネットワークの通信信号の衝突及び輻輳を軽減できる。 In addition, according to the communication device and the communication method according to the present invention, when a beacon request signal is received, one of the beacon signal of the first route and the beacon signal of the second route is transmitted. . Then, a beacon signal of a route different from the route of the transmitted beacon signal is transmitted only when the response signal is not received within a predetermined time from the transmission. Therefore, it is possible to reduce the collision and congestion of communication signals in the networks of the first route and the second route.
実施形態1に係る、互いに隣接する2つの需要家における検針装置と、HEMS制御装置を備えた分電盤とを含む配電システムの構成を示すブロック図である。It is a block diagram which shows the structure of the power distribution system which contains the meter-reading apparatus in the two consumers adjacent to each other according to Embodiment 1, and the distribution board provided with the HEMS control apparatus. 図1の配電システムにおいて用いる、端末新規参入のための通信手順を示す図である。It is a figure which shows the communication procedure for the terminal new entry used in the power distribution system of FIG. 実施形態1の第1の変形例に係る配電システムにおいて用いる、端末新規参入のための通信手順を示す図である。It is a figure which shows the communication procedure for the terminal new entry used in the power distribution system which concerns on the 1st modification of Embodiment 1. FIG. 実施形態1の第2の変形例に係る配電システムにおいて用いる、端末新規参入のための通信手順の第1の例を示す図である。It is a figure which shows the 1st example of the communication procedure for the terminal new entry used in the power distribution system which concerns on the 2nd modification of Embodiment 1. FIG. 実施形態1の第2の変形例に係る配電システムにおいて用いる、端末新規参入のための通信手順の第2の例を示す図である。It is a figure which shows the 2nd example of the communication procedure for the terminal new entry used in the power distribution system which concerns on the 2nd modification of Embodiment 1. FIG. 図4Aの通信手順の変形例を示す図である。It is a figure which shows the modification of the communication procedure of FIG. 4A. 実施形態2に係る、互いに隣接する2つの需要家における検針装置と、HEMS制御装置を備えた分電盤とを含む配電システムの構成を示すブロック図である。It is a block diagram which shows the structure of the power distribution system containing the meter-reading apparatus in the two consumers which adjoin each other based on Embodiment 2, and the distribution board provided with the HEMS control apparatus. 図5の配電システムにおいて用いる、端末新規参入のための通信手順を示す図である。It is a figure which shows the communication procedure for the terminal new entry used in the power distribution system of FIG. 実施形態1の別の変形例に係る配電システムの構成を示すブロック図である。It is a block diagram which shows the structure of the power distribution system which concerns on another modification of Embodiment 1. FIG. 実施形態2の別の変形例に係る配電システムの構成を示すブロック図である。It is a block diagram which shows the structure of the power distribution system which concerns on another modification of Embodiment 2.
 以下、本発明に係る実施形態について図面を参照して説明する。なお、以下の各実施形態において、同様の構成要素については同一の符号を付している。 Embodiments according to the present invention will be described below with reference to the drawings. In addition, in each following embodiment, the same code | symbol is attached | subjected about the same component.
実施形態1.
 図1は実施形態1に係る、互いに隣接する2つの需要家1,2における検針装置SM1,SM2と、HEMS制御装置HC1を備えた分電盤DB1とを含む配電システムの構成を示すブロック図である。
Embodiment 1. FIG.
FIG. 1 is a block diagram illustrating a configuration of a power distribution system including meter reading devices SM1 and SM2 in two customers 1 and 2 adjacent to each other and a distribution board DB1 including a HEMS control device HC1 according to the first embodiment. is there.
 図1において、商用電力は変電所から需要家1,2の近傍に設けられた柱上変圧器4、電力線PL3、各需要家1,2の検針装置SM1,SM2及び電力線PL1,Pl2を介して分電盤DB1,DB2に配電される。需要家1には検針装置SM1と分電盤DB1とが設けられ、需要家2には検針装置SM2と分電盤DB2とが設けられる。検針装置SM1はいわゆるスマートメータと呼ばれる通信機能付き検針装置であって、制御部10と、AルートPLC通信部11と、BルートPLC通信部12とを備えて構成される。また、検針装置SM2は検針装置SM1と同様に、制御部20と、AルートPLC通信部21と、BルートPLC通信部22とを備えて構成される。ここで、検針装置SM1は、Aルート及びBルートのPANに属しており、BルートのPANのコーディネータである通信装置である。 In FIG. 1, commercial power is supplied from a substation via pole transformer 4, power line PL3, meter reading devices SM1 and SM2 of each customer 1 and 2 and power lines PL1 and Pl2. Power is distributed to distribution boards DB1 and DB2. The consumer 1 is provided with a meter reading device SM1 and a distribution board DB1, and the customer 2 is provided with a meter reading device SM2 and a distribution board DB2. The meter-reading device SM1 is a meter-reading device with a communication function called a so-called smart meter, and includes a control unit 10, an A route PLC communication unit 11, and a B route PLC communication unit 12. Similarly to the meter reading device SM1, the meter reading device SM2 includes a control unit 20, an A route PLC communication unit 21, and a B route PLC communication unit 22. Here, the meter-reading device SM1 belongs to the PAN of the A route and the B route, and is a communication device that is a coordinator of the PAN of the B route.
 分電盤DB1は、電力線PL1に接続された分電盤回路32と、需要家1のエネルギーを管理して制御するHEMS制御装置HC1を備えて構成され、HEMS制御装置HC1は制御部30とPLC通信部31とを備えて構成される。ここで、分電盤回路32は家電機器などの各負荷33に接続される。また、分電盤DB2は、電力線PL2に接続された分電盤回路42と、需要家1のエネルギーを管理して制御するHEMS制御装置HC2を備えて構成され、HEMS制御装置HC2は制御部40とPLC通信部41とを備えて構成される。ここで、分電盤回路42は家電機器などの各負荷43に接続される。 The distribution board DB1 includes a distribution board circuit 32 connected to the power line PL1, and a HEMS control device HC1 that manages and controls the energy of the customer 1, and the HEMS control device HC1 is connected to the control unit 30 and the PLC. The communication unit 31 is provided. Here, the distribution board circuit 32 is connected to each load 33, such as household appliances. The distribution board DB2 includes a distribution board circuit 42 connected to the power line PL2, and a HEMS control device HC2 that manages and controls the energy of the customer 1, and the HEMS control device HC2 is configured by the control unit 40. And a PLC communication unit 41. Here, the distribution board circuit 42 is connected to each load 43, such as household appliances.
 検針装置SM1の制御部10は、検針装置SM1の検針処理などを制御し、AルートPLC通信部11及びBルートPLC通信部12の動作を制御する。AルートPLC通信部11は、電力線PL3を介して電力会社システム装置3に接続され、検針装置SM1の測定結果である検針データを電力線通信により電力会社システム装置3に送信して遠隔検診等を可能にする。BルートPLC通信部12は、電力線PL1を介してHEMS制御装置HC1に接続される。BルートPLC通信部12は、HEMS制御装置HC1からの各負荷33の電力消費情報等を受信してAルートPLC通信部11を介して電力会社システム装置3に送信する。BルートPLC通信部12は、エネルギー需要のピークを抑制するために、電力会社システム装置3からAルートPLC通信部11を介して受信した信号をHEMS制御装置HC1に転送する。 The control unit 10 of the meter-reading device SM1 controls the meter-reading process of the meter-reading device SM1, and controls the operations of the A route PLC communication unit 11 and the B route PLC communication unit 12. The A route PLC communication unit 11 is connected to the power company system device 3 via the power line PL3, and can perform remote medical examination by transmitting the meter reading data, which is a measurement result of the meter reading device SM1, to the power company system device 3 by power line communication. To. The B route PLC communication unit 12 is connected to the HEMS control device HC1 via the power line PL1. The B route PLC communication unit 12 receives the power consumption information and the like of each load 33 from the HEMS control device HC1 and transmits it to the power company system device 3 via the A route PLC communication unit 11. The B route PLC communication unit 12 transfers the signal received from the power company system device 3 via the A route PLC communication unit 11 to the HEMS control device HC1 in order to suppress the peak of energy demand.
 HEMS制御装置HC1の制御部30は、各負荷33の電力消費情報等を収集し、各負荷33のエネルギーを管理して制御し、PLC通信部31の動作を制御する。PLC通信部31は、制御部30により収集された各負荷33の電力消費情報等を含む信号をBルートPLC通信部12及びAルートPLC通信部11を介して電力会社システム装置3に送信する。また、PLC通信部31はその逆方向で送信される、エネルギー需要のピークを抑制するための信号を受信して制御部30に出力し、HEMS制御装置HC1の制御部30は当該信号に基づいて各負荷33を制御する。 The control unit 30 of the HEMS control device HC1 collects power consumption information and the like of each load 33, manages and controls the energy of each load 33, and controls the operation of the PLC communication unit 31. The PLC communication unit 31 transmits a signal including power consumption information of each load 33 collected by the control unit 30 to the power company system apparatus 3 via the B route PLC communication unit 12 and the A route PLC communication unit 11. Moreover, the PLC communication part 31 receives the signal for suppressing the peak of energy demand transmitted in the reverse direction, outputs it to the control part 30, and the control part 30 of the HEMS control apparatus HC1 is based on the said signal. Each load 33 is controlled.
 検針装置SM2の制御部20は、検針装置SM2の検針処理などを制御し、AルートPLC通信部21及びBルートPLC通信部22の動作を制御する。AルートPLC通信部21は、電力線PL3を介して電力会社システム装置3に接続され、検針装置SM2の測定結果である検針データを電力線通信により電力会社システム装置3に送信して遠隔検診等を可能にする。BルートPLC通信部22は、電力線PL2を介してHEMS制御装置HC2に接続される。BルートPLC通信部22は、HEMS制御装置HC2からの各負荷43の電力消費情報等を受信してAルートPLC通信部21を介して電力会社システム装置3に送信する。BルートPLC通信部22は、エネルギー需要のピークを抑制するために、電力会社システム装置3からAルートPLC通信部21を介して受信した信号をHEMS制御装置HC2に転送する。 The control unit 20 of the meter-reading device SM2 controls the meter-reading processing of the meter-reading device SM2, and controls the operations of the A route PLC communication unit 21 and the B route PLC communication unit 22. The A route PLC communication unit 21 is connected to the power company system device 3 through the power line PL3, and can perform remote medical examination by transmitting the meter reading data, which is the measurement result of the meter reading device SM2, to the power company system device 3 through the power line communication. To. The B route PLC communication unit 22 is connected to the HEMS control device HC2 via the power line PL2. The B route PLC communication unit 22 receives the power consumption information and the like of each load 43 from the HEMS control device HC2 and transmits it to the power company system device 3 via the A route PLC communication unit 21. The B route PLC communication unit 22 transfers the signal received from the power company system device 3 via the A route PLC communication unit 21 to the HEMS control device HC2 in order to suppress the peak of energy demand.
 HEMS制御装置HC2の制御部40は、各負荷43の電力消費情報等を収集し、各負荷43のエネルギーを管理して制御し、PLC通信部41の動作を制御する。PLC通信部41は、制御部40により収集された各負荷43の電力消費情報等を含む信号をBルートPLC通信部22及びAルートPLC通信部21を介して電力会社システム装置3に送信する。また、PLC通信部41はその逆方向で送信される、エネルギー需要のピークを抑制するための信号を受信して制御部40に出力し、HEMS制御装置HC2の制御部40は当該信号に基づいて各負荷43を制御する。 The control unit 40 of the HEMS control device HC2 collects power consumption information and the like of each load 43, manages and controls the energy of each load 43, and controls the operation of the PLC communication unit 41. The PLC communication unit 41 transmits a signal including power consumption information of each load 43 collected by the control unit 40 to the power company system apparatus 3 via the B route PLC communication unit 22 and the A route PLC communication unit 21. Moreover, the PLC communication part 41 receives the signal for suppressing the peak of energy demand transmitted in the reverse direction, outputs it to the control part 40, and the control part 40 of the HEMS control apparatus HC2 is based on the said signal. Each load 43 is controlled.
 以上のように構成された配電システムでは、電力会社システム装置3と検針装置SM1,SM2との間のAルートのPANが構成される。また、各需要家1,2においてそれぞれ検針装置SM1とHEMS制御装置HC1との間、並びに検針装置SM2とHEMS制御装置HC2との間においてBルートのPANが構成される。 In the power distribution system configured as described above, an A-route PAN is configured between the power company system device 3 and the meter-reading devices SM1 and SM2. In each customer 1 and 2, a B-route PAN is configured between the meter-reading device SM1 and the HEMS control device HC1, and between the meter-reading device SM2 and the HEMS control device HC2.
 図2は図1の配電システムにおいて用いる、HEMS制御装置HC1がBルートのPANに端末新規参入するための通信手順を示す図である。実施形態1に係る通信手順は、ビーコン要求信号を受信した検針装置SM1は、AルートのPAN-IDを有するビーコン信号と、BルートのPAN-IDを有するビーコン信号との両方を送信することを特徴とする。なお、検針装置SM1,SM2と電力会社システム装置との間のAルートのPANにおいてPAN識別符号(以下、PAN-IDという。)として、例えば0~999のうちの1つの番号である「A1」が予め付与されている。また、検針装置SM1とHEMS制御装置HC1との間のBルートのPANにおいてPAN-IDとして、例えば1000~1999のうちの1つの番号である「B1」が予め付与されているものとする。また、Aルートの通信と、Bルートの通信とが、同一の電力線通信などの同一の通信媒体で行われる場合、検針装置SM1がAルート及びBルートのPANのコーディネータとなる。 FIG. 2 is a diagram showing a communication procedure used by the HEMS control device HC1 for newly entering a terminal in the B-route PAN used in the power distribution system of FIG. In the communication procedure according to the first embodiment, the meter-reading device SM1 that has received the beacon request signal transmits both a beacon signal having a PAN-ID of A route and a beacon signal having a PAN-ID of B route. Features. In the PAN of the A route between the meter-reading devices SM1 and SM2 and the power company system device, for example, “A1” which is one number from 0 to 999 as a PAN identification code (hereinafter referred to as PAN-ID). Is given in advance. In addition, it is assumed that “B1”, for example, one number from 1000 to 1999 is assigned in advance as the PAN-ID in the PAN of the B route between the meter-reading device SM1 and the HEMS control device HC1. When the A route communication and the B route communication are performed using the same communication medium such as the same power line communication, the meter reading device SM1 serves as a PAN coordinator for the A route and the B route.
 図2において、参入端末であるHEMS制御装置HC1は、ビーコン要求信号を送信する。当該ビーコン要求信号に応答して、PANのコーディネータである検針装置SM1は、AルートのPAN-ID「A1」を有するビーコン信号と、BルートのPAN-ID「B1」を有するビーコン信号との両方を送信する。HEMS制御装置HC1は、BルートのPAN-ID「B1」を有するビーコン信号を受信したとき、参入のための参入メッセージを含む応答信号を返信する。次いで、HEMS制御装置HC1は公知のLBP(LoWPAN(Low power Wireless Personal Area Network)Bootstrapping Protocol)手順(例えば、非特許文献1参照)を用いて検針装置SM1との間で通信を行って端末新規参入のための認証処理を行う。 In FIG. 2, the HEMS control device HC1, which is an entry terminal, transmits a beacon request signal. In response to the beacon request signal, the meter-reading device SM1, which is the PAN coordinator, transmits both the beacon signal having the PAN-ID “A1” of the A route and the beacon signal having the PAN-ID “B1” of the B route. Send. When receiving the beacon signal having the PAN-ID “B1” of the B route, the HEMS control device HC1 returns a response signal including an entry message for entry. Next, the HEMS control device HC1 communicates with the meter-reading device SM1 using a known LBP (LoWPAN (Low (power Wireless Personal Area Network) Bootstrapping Protocol) procedure (for example, see Non-Patent Document 1), and newly enters the terminal. Perform authentication process for.
 以上のように構成された実施形態1によれば、PANのコーディネータである検針装置SM1は、AルートのPAN-IDを有するビーコン信号と、BルートのPAN-IDを有するビーコン信号との両方を送信する。従って、HEMS制御装置HC1はBルートのPAN-IDを有するビーコン信号を確実に受信できる。これにより、検針装置SM1がAルート及びBルートのネットワークのコーディネータを担当する場合であっても、それぞれのルートの端末装置からのビーコン要求信号に応答して、当該端末装置との通信を行うことができる。 According to the first embodiment configured as described above, the meter-reading device SM1, which is a PAN coordinator, transmits both a beacon signal having a PAN-ID of A route and a beacon signal having a PAN-ID of B route. Send. Therefore, the HEMS control device HC1 can reliably receive the beacon signal having the PAN-ID of the B route. Thereby, even if meter-reading apparatus SM1 is in charge of the coordinator of the network of A route and B route, it responds to the beacon request signal from the terminal device of each route, and communicates with the said terminal device Can do.
 図3は実施形態1の第1の変形例に係る配電システムにおいて用いる、検針装置SM2がAルートのPANに端末新規参入するための通信手順を示す図である。図3においても、検針装置SM1がAルート及びBルートのPANのコーディネータである。実施形態1の第1の変形例に係る通信手順は、ビーコン要求信号を受信した検針装置SM1は、AルートのPAN-IDを有するビーコン信号と、BルートのPAN-IDを有するビーコン信号との両方を送信することを特徴とする。 FIG. 3 is a diagram illustrating a communication procedure used in the power distribution system according to the first modification of the first embodiment for the meter reading device SM2 to newly enter a terminal in the PAN of the A route. Also in FIG. 3, the meter-reading device SM1 is a PAN coordinator for the A route and the B route. In the communication procedure according to the first modification of the first embodiment, the meter-reading device SM1 that has received the beacon request signal includes a beacon signal having a PAN-ID of A route and a beacon signal having a PAN-ID of B route. It is characterized by transmitting both.
 図3において、参入端末である検針装置SM2は、ビーコン要求信号を送信する。当該ビーコン要求信号に応答して、PANのコーディネータである検針装置SM1は、AルートのPAN-ID「A1」を有するビーコン信号と、BルートのPAN-ID「B1」を有するビーコン信号との両方を送信する。検針装置SM2は、AルートのPAN-ID「A1」を有するビーコン信号を受信したとき、参入のための参入メッセージを含む応答信号を返信した後、所定の参入認証手順を用いて検針装置SM1との間で通信を行って、端末新規参入のための認証処理を行う。 In FIG. 3, meter-reading device SM2 which is an entry terminal transmits a beacon request signal. In response to the beacon request signal, the meter-reading device SM1, which is the PAN coordinator, transmits both the beacon signal having the PAN-ID “A1” of the A route and the beacon signal having the PAN-ID “B1” of the B route. Send. When the meter reading device SM2 receives a beacon signal having the PAN-ID “A1” of the A route, the meter reading device SM2 returns a response signal including an entry message for entry, and then uses a predetermined entry authentication procedure to To perform authentication processing for new terminal entry.
 以上のように構成された実施形態1の第1の変形例によれば、PANのコーディネータである検針装置SM1は、AルートのPAN-IDを有するビーコン信号と、BルートのPAN-IDを有するビーコン信号との両方を送信する。従って、検針装置SM2はAルートのPAN-IDを有するビーコン信号を確実に受信できる。これにより、検針装置SM1がAルート及びBルートのネットワークのコーディネータを担当する場合であっても、それぞれのルートの端末装置からのビーコン要求信号に応答して、当該端末装置との通信を行うことができる。 According to the first modification of the first embodiment configured as described above, the meter-reading device SM1, which is the PAN coordinator, has a beacon signal having a PAN-ID for the A route and a PAN-ID for the B route. Send both beacon signals. Therefore, the meter-reading device SM2 can reliably receive the beacon signal having the PAN-ID of the A route. Thereby, even if meter-reading apparatus SM1 is in charge of the coordinator of the network of A route and B route, it responds to the beacon request signal from the terminal device of each route, and communicates with the said terminal device Can do.
 以上の実施形態1とその第1の変形例では、例えば互いに隣接する2つの需要家においてそれぞれ、Aルートの通信と、Bルートの通信とが、同一の電力線通信などの同一の通信媒体で行われる。この場合において、図2の101及び図3の102で示すように、ビーコン要求信号に応答して、例えばHEMS制御装置HC1又は検針装置SM2などの通信装置がビーコン信号を送信する。従って、ビーコン信号が多発して各ルートの通信で用いられる通信信号が互いに干渉する。このため、Aルートのみの通信、もしくはBルートのみのそれぞれ単独の通信システムを用いる場合に比較して、通信状態が悪くなる。特に、検針装置又はHEMS制御装置の同一の通信装置からのAルートとBルートの両方のビーコン信号の送信により、通信信号が互いに衝突又は輻輳する場合がある。この問題点を解決するために、実施形態1の第2の変形例に係る通信手順について以下に説明する。 In the first embodiment and the first modification thereof, for example, in two customers adjacent to each other, the A route communication and the B route communication are performed on the same communication medium such as the same power line communication. Is called. In this case, as shown by 101 in FIG. 2 and 102 in FIG. 3, in response to the beacon request signal, for example, a communication device such as the HEMS control device HC1 or the meter-reading device SM2 transmits a beacon signal. Therefore, beacon signals frequently occur and communication signals used in communication of each route interfere with each other. For this reason, a communication state becomes worse compared with the case where each communication system of only A route or only B route is used. In particular, communication signals may collide with each other or be congested due to transmission of beacon signals for both the A route and the B route from the same communication device of the meter-reading device or the HEMS control device. In order to solve this problem, a communication procedure according to the second modification of the first embodiment will be described below.
 図4Aは実施形態1の第2の変形例に係る配電システムにおいて用いる、HEMS制御装置HC1がBルートのPANに端末新規参入するための通信手順の第1の例を示す図である。また、図4Bは実施形態1の第2の変形例に係る配電システムにおいて用いる、端末新規参入するための通信手順の第2の例を示す図である。 FIG. 4A is a diagram illustrating a first example of a communication procedure used in the power distribution system according to the second modification of the first embodiment for the HEMS control device HC1 to newly enter a terminal in the B-route PAN. Moreover, FIG. 4B is a figure which shows the 2nd example of the communication procedure for using in the power distribution system which concerns on the 2nd modification of Embodiment 1 for a terminal new entry.
 図4Aにおいても、検針装置SM1がAルート及びBルートのPANのコーディネータである。実施形態1の第2の変形例は、ビーコン要求信号を受信した検針装置SM1はいずれか一方のルート(例えばBルート)のPAN-IDを有するビーコン信号を先に送信する。そして、検針装置SM1は所定時間応答信号を受信しなければ他方のルート(例えばAルート)のPAN-IDを有するビーコン信号を送信することを特徴とする。そして、検針装置SM1は、所定時間内に応答信号を受信すれば他方のルート(例えばAルート)のPAN-IDを有するビーコン信号を非送信とする。 Also in FIG. 4A, the meter-reading device SM1 is a PAN coordinator for the A route and the B route. In the second modification of the first embodiment, the meter-reading device SM1 that has received the beacon request signal first transmits a beacon signal having a PAN-ID of one of the routes (for example, the B route). Then, if the meter reading device SM1 does not receive a response signal for a predetermined time, it transmits a beacon signal having the PAN-ID of the other route (for example, route A). And if the meter-reading apparatus SM1 receives a response signal within predetermined time, it will make non-transmission of the beacon signal which has PAN-ID of the other route (for example, A route).
 Bルートのビーコン信号を先に送信する第1の例を示す図4Aにおいて、参入端末であるHEMS制御装置HC1は、ビーコン要求信号を送信する。当該ビーコン要求信号に応答して、PANのコーディネータである検針装置SM1は、BルートのPAN-ID「B1」を有するビーコン信号を送信する。そして、検針装置SM1は、ビーコン信号の送信から所定時間内にHEMS制御装置HC1からの参入メッセージの応答信号を受信すれば他方のルートである例えばAルートのPAN-ID「A1」を有するビーコン信号を非送信とする。なお、検針装置SM1は、HEMS制御装置HC1からの参入メッセージの応答信号を受信した後、HEMS制御装置HC1と検針装置SM1との間で前記LBP手順を行う。 In FIG. 4A showing a first example in which a B route beacon signal is transmitted first, the HEMS control device HC1 which is an entry terminal transmits a beacon request signal. In response to the beacon request signal, meter-reading device SM1, which is a PAN coordinator, transmits a beacon signal having a PAN-ID “B1” of the B route. And if meter-reading apparatus SM1 receives the response signal of the entry message from HEMS control apparatus HC1 within predetermined time from transmission of a beacon signal, the beacon signal which has PAN-ID "A1" of the other route, for example, A route Is not sent. The meter-reading device SM1 performs the LBP procedure between the HEMS control device HC1 and the meter-reading device SM1 after receiving the response signal of the entry message from the HEMS control device HC1.
 Aルートのビーコン信号を先に送信する第2の例を示す図4Bにおいて、参入端末であるHEMS制御装置HC1は、ビーコン要求信号を送信する。当該ビーコン要求信号に応答して、PANのコーディネータである検針装置SM1は、AルートのPAN-ID「A1」を有するビーコン信号を送信する。このとき、検針装置SM1は、ビーコン信号の送信から所定時間内にHEMS制御装置HC1からの参入メッセージの応答信号を受信しないので、ビーコン信号の送信から所定時間後、BルートのPAN-ID「B1」を有するビーコン信号を送信する。そして、検針装置SM1は、HEMS制御装置HC1からの参入メッセージの応答信号を受信した後、HEMS制御装置HC1と検針装置SM1との間で前記LBP手順を行う。 In FIG. 4B showing a second example in which the A route beacon signal is transmitted first, the HEMS control device HC1 which is an entry terminal transmits a beacon request signal. In response to the beacon request signal, meter-reading device SM1, which is a PAN coordinator, transmits a beacon signal having PAN-ID “A1” of A route. At this time, since the meter-reading device SM1 does not receive the response signal of the entry message from the HEMS control device HC1 within a predetermined time from the transmission of the beacon signal, the PAN-ID “B1 of the B route after the predetermined time from the transmission of the beacon signal. ”Is transmitted. And meter-reading apparatus SM1 performs the said LBP procedure between HEMS control apparatus HC1 and meter-reading apparatus SM1, after receiving the response signal of the entry message from HEMS control apparatus HC1.
 以上説明したように実施形態1の第2の変形例によれば、検針装置SM1はHEMS制御装置HC1から応答信号を受信しなかった場合のみ他方のルートのビーコン信号を送信するため、伝送路上でのパケットの衝突及び輻輳を軽減できる。 As described above, according to the second modification of the first embodiment, the meter-reading device SM1 transmits the beacon signal of the other route only when it does not receive a response signal from the HEMS control device HC1, Packet collision and congestion can be reduced.
 図4Cは図4Aの通信手順の変形例を示す図である。図4Cの変形例は、検針装置SM1は、HEMS制御装置HC1からのビーコン要求信号に応答して、BルートのPAN-IDを有するビーコン信号の送信電力を下げて、AルートのPAN-IDを有するビーコン信号よりも先に送信することを特徴とする。 FIG. 4C is a diagram showing a modification of the communication procedure of FIG. 4A. 4C, the meter-reading device SM1 decreases the transmission power of the beacon signal having the PAN-ID of the B route in response to the beacon request signal from the HEMS control device HC1, and sets the PAN-ID of the A route. It transmits before the beacon signal which has.
 図4Cにおいて、参入端末であるHEMS制御装置HC1は、ビーコン要求信号を送信する。当該ビーコン要求信号に応答して、検針装置SM1は、BルートのPAN-ID「B1」を有するビーコン信号を、所定の規定値より低いがHEMS制御装置HC1により受信可能な受信信号レベルの限界値又はそれ以上の近傍値に対応する送信電力で最初に送信する。そして、検針装置SM1は、HEMS制御装置HC1からの参入メッセージの応答信号を受信した後、HEMS制御装置HC1と検針装置SM1との間で前記LBP手順を行う。ここで、送信電力は、所定の規定値より低いがHEMS制御装置HC1により受信可能な受信信号レベルの限界値以上の受信信号レベルに対応する送信電力であってもよい。 In FIG. 4C, the HEMS control device HC1, which is the entry terminal, transmits a beacon request signal. In response to the beacon request signal, the meter-reading device SM1 receives a beacon signal having a PAN-ID “B1” of the B route, which is lower than a predetermined specified value, but is a limit value of a received signal level that can be received by the HEMS control device HC1. Alternatively, transmission is first performed with transmission power corresponding to a neighborhood value higher than that. And meter-reading apparatus SM1 performs the said LBP procedure between HEMS control apparatus HC1 and meter-reading apparatus SM1, after receiving the response signal of the entry message from HEMS control apparatus HC1. Here, the transmission power may be a transmission power corresponding to a received signal level that is lower than a predetermined specified value but is not less than a limit value of the received signal level that can be received by the HEMS control device HC1.
 以上の構成によれば、Bルートのビーコン信号の送信電力を例えば、HEMS制御装置HC1により受信可能な受信信号レベルの限界値又はそれ以上の近傍値に対応する送信電力に低下させて、Aルートのビーコン信号よりも先に送信する。ここで、一般に検針装置SM1とHEMS制御装置HC1は近い距離に配置されるため前記の送信電力はAルート向けの送信電力よりも小さい。これにより、実際はAルートからのビーコン要求信号であった場合でも、Bルートのビーコン信号によるAルートへの干渉を低減することができる。 According to the above configuration, the transmission power of the B route beacon signal is reduced to, for example, the transmission power corresponding to the limit value of the received signal level that can be received by the HEMS control device HC1 or a nearby value higher than the A route. Before the beacon signal. Here, since the meter-reading device SM1 and the HEMS control device HC1 are generally arranged at a short distance, the transmission power is smaller than the transmission power for the A route. Thereby, even if it is a beacon request signal from the A route, interference to the A route due to the beacon signal of the B route can be reduced.
実施形態2.
 図5は実施形態2に係る、互いに隣接する2つの需要家における検針装置と、HEMS制御装置を備えた分電盤とを含む配電システムの構成を示すブロック図である。第2の実施形態は、例えばサブ分電盤を追加した場合、又は二世帯住宅などの1つの需要家に複数のHEMS制御装置が存在する場合である。第2の実施形態は、図1の第1の実施形態に比較して、HEMS制御装置HC1Aを備えた分電盤DB1Aをさらに備えたことを特徴とする。その他の構成は実施形態1と同様である。この場合において、HEMS制御装置HC1も新規参入端末であるHEMS制御装置HC1Aのために、ビーコン信号を送信する必要がある。まず、図5を参照して、図1に対する構成の相違点について以下に説明する。
Embodiment 2. FIG.
FIG. 5 is a block diagram illustrating a configuration of a power distribution system including a meter reading device in two customers adjacent to each other and a distribution board equipped with a HEMS control device according to the second embodiment. In the second embodiment, for example, a sub-distribution panel is added, or a plurality of HEMS control devices exist in one consumer such as a two-family house. The second embodiment is characterized by further including a distribution board DB1A including a HEMS control device HC1A, as compared with the first embodiment of FIG. Other configurations are the same as those of the first embodiment. In this case, the HEMS control device HC1 also needs to transmit a beacon signal for the HEMS control device HC1A that is a new entry terminal. First, with reference to FIG. 5, the difference of the structure with respect to FIG. 1 will be described below.
 図5において、分電盤DB1Aは、電力線PL1に接続された分電盤回路32Aと、需要家1の分電盤DB1Aに係るエネルギーを管理して制御するHEMS制御装置HC1Aを備えて構成される。HEMS制御装置HC1Aは制御部30AとPLC通信部31Aとを備えて構成される。なお、HEMS制御装置HC1は需要家1の分電盤DB1Aに係るエネルギーを管理して制御する。ここで、分電盤回路32Aは家電機器などの各負荷33Aに接続される。 In FIG. 5, the distribution board DB1A includes a distribution board circuit 32A connected to the power line PL1, and a HEMS control device HC1A that manages and controls energy related to the distribution board DB1A of the customer 1. . The HEMS control device HC1A includes a control unit 30A and a PLC communication unit 31A. The HEMS control device HC1 manages and controls energy related to the distribution board DB1A of the customer 1. Here, distribution board circuit 32A is connected to each load 33A, such as household appliances.
 HEMS制御装置HC1Aの制御部30Aは、各負荷33Aの電力消費情報等を収集し、各負荷33Aのエネルギーを管理して制御し、PLC通信部31Aの動作を制御する。PLC通信部31Aは、制御部30Aにより収集された各負荷33Aの電力消費情報等を含む信号をBルートPLC通信部12及びAルートPLC通信部11を介して電力会社システム装置3に送信する。また、PLC通信部31Aはその逆方向で送信される、エネルギー需要のピークを抑制するための信号を受信して制御部30Aに出力し、HEMS制御装置HC1Aの制御部30Aは当該信号に基づいて各負荷33Aを制御する。 The control unit 30A of the HEMS control device HC1A collects power consumption information and the like of each load 33A, manages and controls the energy of each load 33A, and controls the operation of the PLC communication unit 31A. The PLC communication unit 31A transmits a signal including the power consumption information and the like of each load 33A collected by the control unit 30A to the power company system apparatus 3 via the B route PLC communication unit 12 and the A route PLC communication unit 11. Further, the PLC communication unit 31A receives a signal transmitted in the opposite direction for suppressing the peak of energy demand and outputs the signal to the control unit 30A. The control unit 30A of the HEMS control device HC1A is based on the signal. Each load 33A is controlled.
 図6は図5の配電システムにおいて用いる、検針装置SM2及びHEMS制御装置HC1Aが参入する端末新規参入のための通信手順を示す図である。図6においても、検針装置SM1がAルート及びBルートのPANのコーディネータであり、HEMS制御装置HC1は新規参入するHEMS制御装置HC1Aのコーディネータとなる。HEMS制御装置HC1は、同一のシーケンス番号を有するビーコン要求信号を所定時間内に所定の複数回数受信したら初めてビーコン信号を返信することを特徴とする。 FIG. 6 is a diagram illustrating a communication procedure for new terminal entry into which the meter-reading device SM2 and the HEMS control device HC1A enter the power distribution system shown in FIG. Also in FIG. 6, the meter-reading device SM1 is a coordinator of the A route and the B route PAN, and the HEMS control device HC1 is a coordinator of the newly entered HEMS control device HC1A. The HEMS control device HC1 returns a beacon signal only after receiving a beacon request signal having the same sequence number a predetermined number of times within a predetermined time.
 図6において、参入端末である検針装置SM2は、ビーコン要求信号を送信する。当該ビーコン要求信号に応答して、PANのコーディネータである検針装置SM1は、AルートのPAN-ID「A1」を有するビーコン信号と、BルートのPAN-ID「B1」を有するビーコン信号との両方を送信する。検針装置SM2は、AルートのPAN-ID「A1」を有するビーコン信号を受信したとき、参入のための参入メッセージを含む応答信号を返信した後、所定の参入認証手順を用いて検針装置SM1との間で通信を行って、端末新規参入のための認証処理を行う。ここで、HEMS制御装置HC1は検針装置SM1からのPAN-ID「B1」を有するビーコン要求信号を1回受信してもビーコン信号を送信しない。 In FIG. 6, the meter-reading device SM2, which is the entry terminal, transmits a beacon request signal. In response to the beacon request signal, the meter-reading device SM1, which is the PAN coordinator, transmits both the beacon signal having the PAN-ID “A1” of the A route and the beacon signal having the PAN-ID “B1” of the B route. Send. When the meter reading device SM2 receives a beacon signal having the PAN-ID “A1” of the A route, the meter reading device SM2 returns a response signal including an entry message for entry, and then uses a predetermined entry authentication procedure to To perform authentication processing for new terminal entry. Here, even if the HEMS control device HC1 receives the beacon request signal having the PAN-ID “B1” from the meter-reading device SM1 once, it does not transmit the beacon signal.
 次いで、参入端末であるHEMS制御装置HC1Aは、同一のシーケンス番号を有するビーコン要求信号を所定の複数N回送信する。当該N回のビーコン要求信号に応答して、PANのコーディネータである検針装置SM1は、BルートのPAN-ID「B1」を有するビーコン信号を送信する。HEMS制御装置HC1Aは、BルートのPAN-ID「B1」を有するビーコン信号を受信したとき、参入のための参入メッセージを含む応答信号を返信する。次いで、HEMS制御装置HC1Aは、前記LBP手順を用いてHEMS制御装置HC1との間で通信を行って、端末新規参入のための認証処理を行う。 Next, the HEMS control device HC1A, which is an entry terminal, transmits a beacon request signal having the same sequence number a predetermined N times. In response to the N times of beacon request signals, meter-reading device SM1, which is a PAN coordinator, transmits a beacon signal having PAN-ID “B1” of the B route. When the HEMS control device HC1A receives the beacon signal having the PAN-ID “B1” of the B route, the HEMS control device HC1A returns a response signal including an entry message for entry. Next, the HEMS control device HC1A communicates with the HEMS control device HC1 using the LBP procedure, and performs an authentication process for newly entering a terminal.
 以上説明したように実施形態2によれば、HEMS制御装置HC1は1回のビーコン要求信号ではビーコン信号を送信しないが、所定の複数N回同一のシーケンス番号を有するビーコン要求信号受信するときにビーコン信号を返信する。従って、HEMS制御装置HC1は、宅外の検針装置SM2又はHEMS制御装置が送信するビーコン要求信号にその都度反応して無駄なビーコン信号を送信することがなくなるため、通信信号の衝突及び輻輳を軽減できる。なお、HEMS制御装置のビーコン信号の送信が必要なケースは宅内の別のHEMS制御装置向けに中継するという稀なケースであり、宅内の別のHEMS制御装置からの複数回のビーコン要求信号は問題にならない。 As described above, according to the second embodiment, the HEMS control device HC1 does not transmit a beacon signal with a single beacon request signal, but when receiving a beacon request signal having the same sequence number for a predetermined N times, the beacon signal is received. Reply signal. Accordingly, the HEMS control device HC1 does not transmit a useless beacon signal by reacting to the beacon request signal transmitted from the meter-reading device SM2 or the HEMS control device outside the home each time, thus reducing collision and congestion of communication signals. it can. In addition, the case where the transmission of the beacon signal of the HEMS control device is a rare case of relaying to another HEMS control device in the home, and a plurality of beacon request signals from another HEMS control device in the home is a problem. do not become.
 以上の実施形態2において、同一のシーケンス番号を有するビーコン要求信号の送信回数を需要家毎に、もしくは、1つの需要家内の分電範囲毎に異ならせることにより、ビーコン要求信号に対して応答可能なエリアを限定することができる。 In the second embodiment, it is possible to respond to a beacon request signal by changing the number of transmissions of a beacon request signal having the same sequence number for each consumer or for each power distribution range in one consumer. Area can be limited.
 以上の実施形態2において、HEMS制御装置HC1は、所定の複数N回同一のシーケンス番号を有するビーコン要求信号受信するときにビーコン信号を返信する。しかし、本発明はこれに限らず、検針装置SM1などの別のコーディネータ装置であってもよい。 In the second embodiment described above, the HEMS control device HC1 returns a beacon signal when receiving a beacon request signal having the same sequence number a predetermined N times. However, the present invention is not limited to this, and may be another coordinator device such as the meter-reading device SM1.
 また、以上の実施形態2において、分電盤DB1AはSM1に直接接続されているものとして説明した。しかし、本発明はこれに限らず、分電盤DB1Aは分電盤DB1を介してSM1に接続されていてもよい。 Further, in the above embodiment 2, the distribution board DB1A has been described as being directly connected to SM1. However, the present invention is not limited to this, and the distribution board DB1A may be connected to the SM1 via the distribution board DB1.
変形例.
 実施形態1及び2並びにそれらの変形例においては、PLC通信部11,12,21,22,31,41,31Aを用いて電力線通信によりビーコン信号を用いた通信装置、通信システム及び通信方法を開示する。しかし、本発明はこれに限らず、図7及び図8に示すように、PLC通信部11,12,21,22,31,41,31Aに代えてそれぞれ、RF通信部11R,12R,21R,22R,31R,41R,31RAを用いてもよい。図7は実施形態1の別の変形例に係る配電システムの構成を示すブロック図である。また、図8は実施形態2の別の変形例に係る配電システムの構成を示すブロック図である。図7及び図8において、RF通信部11R,12R,21R,22R,31R,41R,31RAはそれぞれアンテナ11A,12A,21A,22A,31A,41A,31RAAを備えて構成され、例えば特定小電力無線などの無線信号を用いて無線通信を行う。
Modified example.
In the first and second embodiments and their modifications, a communication device, a communication system, and a communication method using a beacon signal by power line communication using the PLC communication units 11, 12, 21, 22, 31, 41, 31A are disclosed. To do. However, the present invention is not limited to this, and as shown in FIGS. 7 and 8, instead of the PLC communication units 11, 12, 21, 22, 31, 41, 31A, RF communication units 11R, 12R, 21R, 22R, 31R, 41R, 31RA may be used. FIG. 7 is a block diagram illustrating a configuration of a power distribution system according to another modification of the first embodiment. FIG. 8 is a block diagram illustrating a configuration of a power distribution system according to another modification of the second embodiment. 7 and 8, each of the RF communication units 11R, 12R, 21R, 22R, 31R, 41R, and 31RA includes antennas 11A, 12A, 21A, 22A, 31A, 41A, and 31RAA. Wireless communication is performed using a wireless signal such as
 以上の実施形態においては、隣接する2つの需要家について説明しているが、本発明はこれに限らず、各需要家は例えば集合住宅の各住戸、事務所、工場などであってもよい。 In the above embodiment, two adjacent consumers are described. However, the present invention is not limited to this, and each consumer may be, for example, each dwelling unit, office, factory, etc. of an apartment house.
 以上の実施形態において、分電盤DB1,DB2、DB1AはHEMS制御装置HC1,HC2,HC1Aを内蔵しているが、本発明はこれに限らず、外付けであってもよい。 In the above embodiment, the distribution boards DB1, DB2, and DB1A incorporate the HEMS control devices HC1, HC2, and HC1A, but the present invention is not limited to this and may be externally attached.
 以上の実施形態においては、検針装置と電力会社システム装置との間の通信を行うAルートのPANと、検針装置とHEMS制御装置との間の通信を行うBルートのPANとについて説明している。しかし、本発明はこれに限らず、それぞれ各通信装置間で2つ又はそれ以上の通信ネットワークを構成する場合の通信システムに適用することができる。 In the above embodiment, the A-route PAN that performs communication between the meter-reading device and the power company system device and the B-route PAN that performs communication between the meter-reading device and the HEMS control device are described. . However, the present invention is not limited to this, and can be applied to a communication system in the case where two or more communication networks are configured between the respective communication devices.
実施形態のまとめ.
 第1の態様に係る通信装置である検針装置SM1は、Aルート及びBルートの通信ネットワークに属しており、Bルートの通信ネットワークのコーディネータであって、ビーコン要求信号を受信したとき、Aルート及びBルートのビーコン信号の両方を送信する。
Summary of embodiments.
The meter-reading device SM1, which is the communication device according to the first aspect, belongs to the communication network of the A route and the B route, is a coordinator of the communication network of the B route, and when receiving the beacon request signal, Both of the B route beacon signals are transmitted.
 第2の態様に係る通信装置である検針装置SM1は、Aルート及びBルートの通信ネットワークに属しており、Bルートの通信ネットワークのコーディネータである。検針装置SM1は、ビーコン要求信号を受信したとき、Aルートのビーコン信号と、Bルートのビーコン信号とのうちのいずれか1つを最初に送信する。そして、検針装置SM1は、当該送信から所定時間内に応答信号を受信しないときのみ送信したビーコン信号のルートとは異なるルートのビーコン信号を送信する。 The meter-reading device SM1, which is a communication device according to the second aspect, belongs to the communication network of the A route and the B route, and is a coordinator of the communication network of the B route. When the meter-reading device SM1 receives the beacon request signal, the meter-reading device SM1 first transmits one of the A route beacon signal and the B route beacon signal. And meter-reading apparatus SM1 transmits the beacon signal of a different route from the route of the beacon signal transmitted only when the response signal is not received within a predetermined time from the transmission.
 第3の態様に係る通信装置である検針装置SM1は、第2の態様に係る検針装置SM1において、ビーコン要求信号を受信したとき、最初に送信するBルートのビーコン信号をAルートのビーコン信号よりも先に送信する。最初に送信するビーコン信号は、所定の規定値よりも低い送信電力であって、相手方の通信装置であるHEMS制御装置HC1により受信可能な受信信号レベルの限界値以上の受信信号レベルに対応する送信電力を有する。 When the meter-reading device SM1 which is a communication device according to the third aspect receives a beacon request signal in the meter-reading device SM1 according to the second aspect, the beacon signal for the B route to be transmitted first is transmitted from the beacon signal for the A route. Also send first. The beacon signal to be transmitted first has a transmission power lower than a predetermined specified value, and the transmission corresponds to a reception signal level equal to or higher than a limit value of the reception signal level that can be received by the HEMS control device HC1 that is the counterpart communication device. Have power.
 第4の態様に係る検針装置SM1又はHEMS制御装置HC1は、第2又は第3の態様に係る検針装置SM1において、同一のシーケンス番号を有するビーコン要求信号を所定の複数回受信したときのみビーコン信号を送信する。 The meter-reading device SM1 or the HEMS control device HC1 according to the fourth mode is a beacon signal only when the meter-reading device SM1 according to the second or third mode receives a beacon request signal having the same sequence number a predetermined number of times. Send.
 第5の態様に係る検針装置SM1又はHEMS制御装置HC1は、第1から第4の態様のうちのいずれか1つに係る検針装置SM1において、電力線通信又は無線通信により送信又は受信を行う。 The meter-reading device SM1 or the HEMS control device HC1 according to the fifth aspect performs transmission or reception by power line communication or wireless communication in the meter-reading device SM1 according to any one of the first to fourth aspects.
 第6の態様に係る通信方法は、Aルート及びBルートの通信ネットワークに属しており、Bルートの通信ネットワークのコーディネータである通信装置である検針装置SM1のための通信方法である。検針装置SM1が、ビーコン要求信号を受信したとき、Aルート及びBルートのビーコン信号の両方を送信することを特徴とする。 The communication method according to the sixth aspect is a communication method for the meter-reading device SM1, which belongs to the A-route and B-route communication networks and is a communication device that is a coordinator of the B-route communication network. When the meter-reading device SM1 receives a beacon request signal, the meter-reading device SM1 transmits both the A route and the B route beacon signals.
 第7の態様に係る通信方法は、Aルート及びBルートの通信ネットワークに属しており、Bルートの通信ネットワークのコーディネータである通信装置である検針装置SM1のための通信方法である。検針装置SM1が、ビーコン要求信号を受信したとき、Aルートのビーコン信号と、Bルートのビーコン信号とのうちのいずれか1つを最初に送信する。そして、当該送信から所定時間内に応答信号を受信しないときのみ送信したビーコン信号のルートとは異なるルートのビーコン信号を送信する。 The communication method according to the seventh aspect is a communication method for the meter-reading device SM1, which belongs to the A-route and B-route communication networks and is a communication device that is a coordinator of the B-route communication network. When the meter-reading device SM1 receives the beacon request signal, the meter-reading device SM1 first transmits one of the A route beacon signal and the B route beacon signal. Then, a beacon signal of a route different from the route of the transmitted beacon signal is transmitted only when the response signal is not received within a predetermined time from the transmission.
 第8の態様に係る通信方法は、第7の態様に係る通信方法において、検針装置SM1が、ビーコン要求信号を受信したとき、最初に送信するBルートのビーコン信号をAルートのビーコン信号よりも先に送信する。最初に送信するビーコン信号は、所定の規定値よりも低い送信電力であって、相手方のHEMS制御装置HC1により受信可能な受信信号レベルの限界値以上の受信信号レベルに対応する送信電力でビーコン信号を有する。 The communication method according to the eighth aspect is the communication method according to the seventh aspect, wherein when the meter-reading device SM1 receives the beacon request signal, the beacon signal for the B route that is transmitted first is more than the beacon signal for the A route. Send first. The beacon signal to be transmitted first has a transmission power lower than a predetermined specified value, and the beacon signal has a transmission power corresponding to a reception signal level equal to or higher than a limit value of the reception signal level that can be received by the counterpart HEMS control device HC1. Have
 第9の態様に係る通信方法は、第7又は第8の態様に係る通信方法において、検針装置SM1又はHEMS制御装置HC1が、同一のシーケンス番号を有するビーコン要求信号を所定の複数回受信したときのみビーコン信号を送信する。 The communication method according to the ninth aspect is the communication method according to the seventh or eighth aspect, wherein the meter-reading device SM1 or the HEMS control device HC1 receives a beacon request signal having the same sequence number a predetermined number of times. Only send a beacon signal.
 第10の態様に係る通信方法は、第6から第9の態様のいずれか1つに係る通信方法において、検針装置SM1又はHEMS制御装置HC1が、電力線通信又は無線通信により送信又は受信を行う。 In the communication method according to the tenth aspect, in the communication method according to any one of the sixth to ninth aspects, the meter-reading device SM1 or the HEMS control device HC1 performs transmission or reception by power line communication or wireless communication.
1,2…需要家、
3…電力会社システム装置、
10,20,30,40,30A…制御部、
11,21…AルートPLC通信部、
12,22…BルートPLC通信部、
31,41,31A…PLC通信部、
11R,21R…AルートRF通信部、
12R,22R…BルートRF通信部、
31R,41R,31RA…RF通信部、
11A,12A,21A,22A,31RA,41A,31RAA…アンテナ、
32,42,32A…分電盤回路、
33,43,33A…負荷、
SM1,SM2…検針装置、
DB1,DB2,DB1A…分電盤、
HC1,HC2,HC1A…HEMS制御装置、
PL1,PL2,PL3…電力線。
1, 2 ... consumers,
3 ... Power company system equipment,
10, 20, 30, 40, 30A ... control unit,
11, 21 ... A route PLC communication unit,
12, 22 ... B route PLC communication section,
31, 41, 31A ... PLC communication unit,
11R, 21R ... A route RF communication part,
12R, 22R ... B route RF communication unit,
31R, 41R, 31RA ... RF communication unit,
11A, 12A, 21A, 22A, 31RA, 41A, 31RAA ... antenna,
32, 42, 32A ... distribution board circuit,
33, 43, 33A ... load,
SM1, SM2 ... Meter reading device,
DB1, DB2, DB1A ... distribution board,
HC1, HC2, HC1A ... HEMS control device,
PL1, PL2, PL3 ... power lines.

Claims (10)

  1.  2つのルートの通信ネットワークに属する通信装置であって、
     前記通信装置は、ビーコン要求信号を受信したとき、前記2つのルートのビーコン信号の両方を送信することを特徴とする通信装置。
    A communication device belonging to a two-route communication network,
    When the communication device receives a beacon request signal, the communication device transmits both beacon signals of the two routes.
  2.  第1及び第2のルートの通信ネットワークに属する通信装置であって、
     前記通信装置は、ビーコン要求信号を受信したとき、前記第1のルートのビーコン信号と、前記第2のルートのビーコン信号とのうちのいずれか1つを最初に送信し、当該送信から所定時間内に応答信号を受信しないときのみ前記送信したビーコン信号のルートとは異なるルートのビーコン信号を送信することを特徴とする通信装置。
    A communication device belonging to the communication networks of the first and second routes,
    When the communication device receives a beacon request signal, the communication device first transmits one of the beacon signal of the first route and the beacon signal of the second route, and the communication device transmits a predetermined time from the transmission. A beacon signal of a route different from the route of the transmitted beacon signal is transmitted only when no response signal is received.
  3.  前記通信装置は、前記ビーコン要求信号を受信したとき、所定の規定値よりも低い送信電力であって、相手方の通信装置により受信可能な受信信号レベルの限界値以上の受信信号レベルに対応する送信電力で、前記最初に送信するビーコン信号を送信することを特徴とする請求項2記載の通信装置。 When the communication device receives the beacon request signal, the communication device has a transmission power that is lower than a predetermined specified value and that corresponds to a received signal level that is equal to or higher than a limit value of a received signal level that can be received by the other communication device. The communication apparatus according to claim 2, wherein the beacon signal to be transmitted first is transmitted with power.
  4.  前記通信装置は、同一のシーケンス番号を有するビーコン要求信号を所定の複数回受信したときのみ前記ビーコン信号を送信することを特徴とする請求項2又は3記載の通信装置。 The communication device according to claim 2 or 3, wherein the communication device transmits the beacon signal only when a beacon request signal having the same sequence number is received a predetermined number of times.
  5.  前記通信装置は、電力線通信又は無線通信により送信又は受信を行うことを特徴とする請求項1から4のうちのいずれか1つに記載の通信装置。 5. The communication apparatus according to claim 1, wherein the communication apparatus performs transmission or reception by power line communication or wireless communication.
  6.  2つのルートの通信ネットワークに属する通信装置のための通信方法であって、
     前記通信装置が、ビーコン要求信号を受信したとき、前記2つのルートのビーコン信号の両方を送信することを特徴とする通信方法。
    A communication method for a communication device belonging to a two-route communication network,
    When the communication device receives a beacon request signal, the communication device transmits both beacon signals of the two routes.
  7.  第1及び第2のルートの通信ネットワークに属する通信装置のための通信方法であって、
     前記通信装置が、ビーコン要求信号を受信したとき、前記第1のルートのビーコン信号と、前記第2のルートのビーコン信号とのうちのいずれか1つを最初に送信し、当該送信から所定時間内に応答信号を受信しないときのみ前記送信したビーコン信号のルートとは異なるルートのビーコン信号を送信することを特徴とする通信方法。
    A communication method for a communication device belonging to a communication network of first and second routes,
    When the communication device receives a beacon request signal, the communication device first transmits one of the beacon signal of the first route and the beacon signal of the second route, and a predetermined time from the transmission. A beacon signal of a route different from the route of the transmitted beacon signal is transmitted only when no response signal is received.
  8.  前記通信装置が、前記ビーコン要求信号を受信したとき、所定の規定値よりも低い送信電力であって、相手方の通信装置により受信可能な受信信号レベルの限界値以上の受信信号レベルに対応する送信電力で、前記最初に送信するビーコン信号を送信することを特徴とする請求項7記載の通信方法。 When the communication device receives the beacon request signal, the transmission power is lower than a predetermined specified value and corresponds to a received signal level that is equal to or higher than a limit value of a received signal level that can be received by the counterpart communication device. The communication method according to claim 7, wherein the first transmitted beacon signal is transmitted with power.
  9.  前記通信装置が、同一のシーケンス番号を有するビーコン要求信号を所定の複数回受信したときのみ前記ビーコン信号を送信することを特徴とする請求項7又は8記載の通信方法。 The communication method according to claim 7 or 8, wherein the beacon signal is transmitted only when the communication device receives a beacon request signal having the same sequence number a predetermined number of times.
  10.  前記通信装置が、電力線通信又は無線通信により送信又は受信を行うことを特徴とする請求項6から9のうちのいずれか1つに記載の通信方法。 10. The communication method according to claim 6, wherein the communication device performs transmission or reception by power line communication or wireless communication.
PCT/JP2014/004912 2013-09-27 2014-09-25 Communication device using beacon signals WO2015045388A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013202019A JP2015070410A (en) 2013-09-27 2013-09-27 Communication apparatus using beacon signal and communication method
JP2013-202019 2013-09-27

Publications (1)

Publication Number Publication Date
WO2015045388A1 true WO2015045388A1 (en) 2015-04-02

Family

ID=52742557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/004912 WO2015045388A1 (en) 2013-09-27 2014-09-25 Communication device using beacon signals

Country Status (2)

Country Link
JP (1) JP2015070410A (en)
WO (1) WO2015045388A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9813785B2 (en) 2016-02-24 2017-11-07 Lsis Co., Ltd. Telemetry system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6870923B2 (en) * 2015-12-08 2021-05-12 旭化成ホームズ株式会社 Housing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009049500A (en) * 2007-08-14 2009-03-05 Oki Electric Ind Co Ltd Wireless communication device, wireless communication method, wireless communication program, node, and network restoration system
WO2009130905A1 (en) * 2008-04-25 2009-10-29 パナソニック株式会社 Communication terminal device and communication method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009049500A (en) * 2007-08-14 2009-03-05 Oki Electric Ind Co Ltd Wireless communication device, wireless communication method, wireless communication program, node, and network restoration system
WO2009130905A1 (en) * 2008-04-25 2009-10-29 パナソニック株式会社 Communication terminal device and communication method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9813785B2 (en) 2016-02-24 2017-11-07 Lsis Co., Ltd. Telemetry system

Also Published As

Publication number Publication date
JP2015070410A (en) 2015-04-13

Similar Documents

Publication Publication Date Title
Usman et al. Evolution of communication technologies for smart grid applications
US10237807B2 (en) System and method for mixed-mesh wireless networking
US11831358B2 (en) Coexistence primitives in power line communication networks
US10791020B2 (en) Distributed 802.11S mesh network using transformer module hardware for the capture and transmission of data
US20140176340A1 (en) Method and system for powerline to meshed network for power meter infra-structure
EP2958273A1 (en) Power line carrier communication terminal and meter reading terminal
WO2015045388A1 (en) Communication device using beacon signals
WO2013054415A1 (en) Radio terminal apparatus and wireless communication system
Sanz et al. Narrowband power line communications evaluation in complex distribution networks
JP6180851B2 (en) Automatic meter reading system
JP5346222B2 (en) Remote meter reading system
EP2897299B1 (en) Improved communication in smart grid networks
JP2014072733A (en) Communication system, communication terminal, and management device
JP2012070367A (en) Multi-hop communication method, multi-hop communication system, and communication terminal
EP3138207B1 (en) Mimo communication channel identification in a power line communication network
JP2010087655A (en) Communication system
JP5621032B2 (en) Remote meter reading system, terminal station used in it, master station
WO2014156156A1 (en) Electric power meter, electric power meter system
JP5347130B2 (en) Communications system
JP2015115855A (en) Communication apparatus, communication system and communication method
Zhu et al. Hybrid Wireless-Power Line Communications for Indoor IoT Networks
JP6259984B2 (en) Power line communication system
JP6365814B2 (en) Meter reading device, communication method, management device, and communication system
JP2015032946A (en) Automatic meter reading system
JP2019176361A (en) Mesh network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14849385

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14849385

Country of ref document: EP

Kind code of ref document: A1