WO2015045331A1 - Permanent magnet electric motor, hermetic compressor, and refrigerating cycle device - Google Patents

Permanent magnet electric motor, hermetic compressor, and refrigerating cycle device Download PDF

Info

Publication number
WO2015045331A1
WO2015045331A1 PCT/JP2014/004777 JP2014004777W WO2015045331A1 WO 2015045331 A1 WO2015045331 A1 WO 2015045331A1 JP 2014004777 W JP2014004777 W JP 2014004777W WO 2015045331 A1 WO2015045331 A1 WO 2015045331A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
terminal
permanent magnet
phase
magnet motor
Prior art date
Application number
PCT/JP2014/004777
Other languages
French (fr)
Japanese (ja)
Inventor
一夫 柴田
Original Assignee
東芝キヤリア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝キヤリア株式会社 filed Critical 東芝キヤリア株式会社
Publication of WO2015045331A1 publication Critical patent/WO2015045331A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/22Auxiliary parts of casings not covered by groups H02K5/06-H02K5/20, e.g. shaped to form connection boxes or terminal boxes
    • H02K5/225Terminal boxes or connection arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/52Fastening salient pole windings or connections thereto
    • H02K3/521Fastening salient pole windings or connections thereto applicable to stators only
    • H02K3/522Fastening salient pole windings or connections thereto applicable to stators only for generally annular cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2203/00Specific aspects not provided for in the other groups of this subclass relating to the windings
    • H02K2203/06Machines characterised by the wiring leads, i.e. conducting wires for connecting the winding terminations

Definitions

  • Embodiments of the present invention relate to a permanent magnet motor, a hermetic compressor using the permanent magnet motor, and a refrigeration cycle apparatus using the hermetic compressor.
  • connection of the three terminal wires to the lead wires of each phase is performed by soldering or welding.
  • connection work by soldering or welding may impair the performance of the permanent magnet motor due to the work variation.
  • An object of the present invention is to provide a permanent magnet motor, a hermetic compressor, and a refrigeration cycle apparatus capable of simplifying a winding connection structure in a permanent magnet motor having a 9-slot concentrated winding stator. .
  • the permanent magnet motor according to the embodiment is a permanent magnet motor having a 9-slot concentrated winding stator having three windings for each phase, and the three windings for each phase are alternately changed in the winding direction.
  • the connecting wire between the two windings and the terminal wire of the other winding are connected to each end of the lead wire side for each phase.
  • the hermetic compressor includes the permanent magnet motor, a compression mechanism that compresses the working fluid by being connected to a rotation shaft of the permanent magnet motor, the permanent magnet motor, and the compression mechanism. And a hermetically sealed case that houses the container.
  • the refrigeration cycle apparatus includes the hermetic compressor, a condenser connected to the hermetic compressor, an expansion device connected to the condenser, and between the expansion device and the hermetic compressor. And an evaporator connected to.
  • a permanent magnet motor a hermetic compressor, and a refrigeration cycle apparatus that can simplify the connection structure of windings in a permanent magnet motor having a 9-slot concentrated winding stator.
  • FIG. 1 shows a refrigeration cycle apparatus 1.
  • the refrigeration cycle apparatus 1 includes a compressor body 2 and an accumulator 3, and includes a hermetic compressor 4 that compresses a gas refrigerant as a working fluid, and a compressor body. 2, a condenser 5 that condenses the high-pressure gas refrigerant discharged from the compressor body 2 to form a liquid refrigerant, an expansion device 6 that is connected to the condenser 5 to decompress the liquid refrigerant, and an expansion device 6. And an accumulator 3, and an evaporator 7 for evaporating the liquid refrigerant.
  • the accumulator 3 and the compressor body 2 are connected by a suction pipe 8 through which a gas refrigerant flows.
  • the compressor body 2 has a sealed case 9 formed in a cylindrical shape, and a permanent magnet motor 10 positioned on the upper side and a compression mechanism unit 11 positioned on the lower side are accommodated in the sealed case 9. ing.
  • the permanent magnet motor 10 is provided with a rotating shaft 12 having a center line along the vertical direction, and a compression mechanism 11 is connected to the rotating shaft 12.
  • the permanent magnet motor 10 is a part that drives the compression mechanism unit 11, and a concentrated winding that is fixed to the inner surface of the sealing case 9 and is disposed at a position surrounding the rotor 13. And a stator 14.
  • the compression mechanism unit 11 is a part that compresses the gas refrigerant, and has a compression element (not shown) that compresses the gas refrigerant sucked through the suction pipe 8.
  • This compression element is a cylinder having a cylinder chamber into which a gas refrigerant flows, a roller that is fitted in an eccentric portion of the rotary shaft 12 and rotates eccentrically in the cylinder chamber, and a tip portion that is slidable by contacting the outer peripheral surface of the roller. Is provided with a blade that divides the cylinder chamber into a gas refrigerant suction chamber and a compression chamber. The gas refrigerant compressed to a high pressure in the compression mechanism unit 11 is discharged into the sealed case 9.
  • FIG. 2 is a horizontal sectional view showing the permanent magnet motor 10.
  • This permanent magnet motor 10 is of a three-phase six-pole nine-slot type, and has a rotor 13 and a concentrated winding stator 14 disposed on the outer periphery of the rotor 13.
  • the rotor 13 has a rotor core 15 formed in a cylindrical shape by laminating thin steel plates, and the rotor core 15 is fixed to the rotating shaft 12.
  • the rotor core 15 six plate-like permanent magnets 16 are installed at equal intervals along the circumferential direction of the rotor core 15.
  • the concentrated winding stator 14 has a stator core 17 formed in a cylindrical shape by laminating thin steel plates, and the stator core 17 has nine slots along the circumferential direction of the stator core 17. 18 are formed at equal intervals, and magnetic pole teeth 19 projecting in the inner peripheral direction are formed at portions between adjacent slots 18. A winding 20 is wound around each magnetic pole tooth 19. The winding 20 is continuously wound with three windings 20 alternately changing the winding direction for every three phases (U phase, V phase, W phase).
  • the three windings 20U1, 20U2, and 20U3 are continuously wound, and the winding direction of the winding 20U2 is opposite (left-handed) to the winding direction of the winding 20U1 (for example, right-handed). Furthermore, the winding direction of the winding 20U3 is reversed (right-handed) with respect to the winding direction (left-handed) of the winding 20U2.
  • winding direction of the winding 20V2 is reversed (left-handed) with respect to the winding direction of the winding 20V1 (for example, right-handed).
  • winding direction of the winding 20V3 is reversed (right-handed) with respect to the winding direction (left-handed) of the winding 20V2.
  • winding direction of the winding 20W2 is reversed (left-handed) with respect to the winding direction of the winding 20W1 (eg, right-handed).
  • winding direction of the winding 20W3 is reversed (right-handed) with respect to the winding direction (left-handed) of the winding 20W2.
  • FIG. 3 is a connection diagram showing a connection state of the three-phase winding 20.
  • the connecting wire 21U between the two U-phase windings 20U1 and 20U2 and the terminal wire 22U of the winding 20U3 are connected to form an end on the lead wire 23U side.
  • the connecting wire 21V between the two V-phase windings 20V1 and 20V2 and the terminal wire 22V of the winding 20V3 are connected to form an end on the lead wire 23V side.
  • the connecting wire 21W between the two windings W1, W2 of the W phase and the terminal wire 22W of the winding 20W3 are connected to form an end on the lead wire 23W side.
  • the lead wire 25W connected to 24W and the terminal wire 26W of the W-phase winding 20W1 are connected.
  • FIG. 4 shows a pressure contact terminal 27 used when connecting the connecting wire 21 and the terminal wire 22 (the connecting wire 21U and the terminal wire 22U, 21V and 22V, 21W and 22W).
  • the pressure contact terminal 27 includes three pressure contact protrusions 28, two pressure contact slots 29 that are located between adjacent pressure contact protrusions 28 and cut into a U shape, and lead wires 23 ( 23U, 23V, and 23W) are formed.
  • FIG. 5 is a plan view showing a wiring state of the connecting wire 21 and the terminal wire 22 connected using the press contact terminal 27.
  • a winding receiver 32 is fixed to the end face side of the stator core 17, and a holding portion 33 for holding the jumper wire 21 and the terminal wire 22 and a pressing contact projection 28 of the press contact terminal 27 are provided on the winding receiver 32.
  • An insertion portion 34 to be inserted is formed.
  • FIG. 6 shows a connection state between the connecting wire 21 and the terminal wire 22 by the press contact terminal 27.
  • the pressure contact protrusion 28 of the pressure contact terminal 27 is inserted into the insertion portion 34 of the winding receiver 32, and the crossover wire 21 and the terminal wire 22 held by the holding portion 33 are press-fitted into the pressure contact slot 29. Furthermore, a lead wire 23 is connected to the tab 30.
  • a blade portion is formed on the peripheral edge of the pressure contact slot 29, and the coating of the crossover wire 21 and the terminal wire 22 is broken by the blade portion when the crossover wire 21 and the terminal wire 22 are press-fitted into the pressure contact slot 29.
  • the crossover wire 21 and the terminal wire 22 are electrically connected via the press contact terminal 27.
  • the hermetic compressor 4 when the permanent magnet motor 10 is energized, the rotary shaft 12 rotates around the center line, and the rotation of the rotary shaft 12 drives the compression mechanism unit 11, The gas refrigerant is compressed in the compression mechanism 11.
  • the compressed gas refrigerant is discharged from the compression mechanism 11 into the sealed case 9, and the high-pressure gas refrigerant discharged into the sealed case 9 passes again through the condenser 5, the expansion device 6, and the evaporator 7 in order.
  • a refrigeration cycle is performed by circulating to the compression mechanism 11.
  • the connecting wire 21 (21U) and one of the two windings 20 for example, 20U1 and 20U2. Since the terminal wire 22 (22U) of the winding 20 (20U3) is connected to the lead wire 23 (23U), the number of wires connected to the lead wire 23 is reduced, and the connection work is facilitated. .
  • connection between the crossover wire 21 and the terminal wire 22 is performed using the pressure contact terminal 27 having two pressure contact slots 29, it is not necessary to peel off the film of the crossover wire 21 and the terminal wire 22, and the connection is made. Work can be done without much effort.
  • the basic configuration of the second embodiment is the same as that of the first embodiment.
  • the second embodiment is different from the first embodiment in order to connect the crossover line 21 and the terminal line 22.
  • the fusing terminal 41 is used instead of the press contact terminal 27.
  • the fusing terminal 41 is formed with a fusing portion 42 that sandwiches the connecting wire 21 and the terminal wire 22 to be connected, and a tab 30 for connecting the lead wire 23. ing.
  • the connecting wire 21 and the terminal wire 22 are arranged in parallel and sandwiched by the fusing portion 42, and the fusing portion 42 is pressurized. This is done by passing an electric current and welding the connecting wire 21, the terminal wire 22, and the fusing terminal 41.
  • the fusing terminal 41 may be provided in the routing path of the crossover wire 21 and can be attached to, for example, the outer flange of the insulator provided in the concentrated winding stator 14.
  • connection using the fusing terminal 41 it is possible to connect without peeling off the film of the crossover wire 21 and the terminal wire 22, and the labor for removing the film is reduced.
  • a third embodiment will be described with reference to FIG.
  • the basic configuration of the third embodiment is the same as that of the first embodiment, and the difference between the third embodiment and the first embodiment is the connection structure between the jumper wire 21 and the terminal line 22. is there.
  • the connecting wire 21, the terminal wire 22, and the core wire of the lead wire 23 are arranged in parallel, and the connecting wire 21, the terminal wire 22, and the core wire of the lead wire 23 are connected to the crimp terminal 51.
  • the connecting wire 21 and the terminal wire 22 are placed on the outer flange portion of the insulator 52 provided in the concentrated winding stator 14.
  • the crimp terminal 51 is formed in a substantially V shape with one end side expanded, and a groove 53 is formed inside thereof.
  • the connecting wire 21, the terminal wire 22 and the core wire of the lead wire 23 are electrically connected.
  • the connecting wire 21 of the two windings 20 and the terminal wire 22 of the one winding 20 are connected.
  • the core wire of the lead wire 23 may be crimped by the crimp terminal 51, and the number of wires to be crimped is reduced, so that a highly reliable connection state can be obtained.
  • the crossover 21, the terminal wire 22 and the core wire of the lead wire 23 can be connected at the same time, and the lead wire 23 is connected to the crossover wire 21 and the terminal wire 22 previously connected. It is no longer necessary to connect the devices later, and the number of steps of connection work can be reduced.
  • the first neutral point 61 is formed by connecting at least two crossover lines 24U, 24V, and 24W on the neutral point side, and the remaining terminal lines 26U, 26V, and 26W are connected. Is connected to the second neutral point 62.
  • connection of the connecting wires 24U, 24V, 24W is performed using a crimp terminal 51 as shown in FIG.
  • FIG. 11 shows a connection pressure contact terminal 63 for connecting the terminal lines 26U, 26V, and 26W.
  • the connecting press contact terminal 63 is formed by connecting two press contact terminals 64 with a connecting portion 65.
  • Each press contact terminal 64 is formed with two press contact slots 29 and three press contact projections 28, similarly to the press contact terminal 27 shown in FIG. 4.
  • FIG. 12 is a plan view showing a wiring state of the three terminal lines 26U, 26V, and 26W connected by using the connecting pressure contact terminal 63.
  • FIG. A winding receiver 66 is fixed to the end face side of the stator core 17, and a holding portion 67 for holding the three terminal wires 26U, 26V, and 26W and a pressing contact projection 28 are inserted into the winding receiver 66.
  • the insertion portion 68 is formed.
  • the connection press-contact terminal having four press-contact slots 29 is provided. Even if the three terminal lines 26U, 26V, and 26W are connected using 63, a balanced connection state can be obtained. Moreover, when the terminal line 26W is press-fitted across the pressure contact slots 29 of the two pressure contact terminals 64, the terminal line 26W functions as a connection line for the two pressure contact terminals 64, and The cross-sectional area of the conductor can be supplemented.

Abstract

[Problem] To provide, in a 6-pole 9-slot permanent magnet electric motor having a concentrated winding stator, a permanent magnet electric motor, the coil connection structure of which is simplified, a hermetic compressor, and refrigerating cycle device. [Solution] A permanent magnet electric motor has a 9-slot concentrated winding stator (14) having three coils (20) per phase. In the permanent magnet electric motor, the three coils (20) of each phase are continuously wound while alternately changing the winding direction, and in each phase, a jumper line (21) between the two coils (20) and a terminal wire (22) of the remaining coil (20) are connected to form a lead wire (23)-side end portion.

Description

永久磁石電動機、密閉型圧縮機及び冷凍サイクル装置Permanent magnet motor, hermetic compressor and refrigeration cycle apparatus
 本発明の実施形態は、永久磁石電動機、この永久磁石電動機を用いた密閉型圧縮機及びこの密閉型圧縮機を用いた冷凍サイクル装置に関する。 Embodiments of the present invention relate to a permanent magnet motor, a hermetic compressor using the permanent magnet motor, and a refrigeration cycle apparatus using the hermetic compressor.
 従来、固定子鉄心の磁極歯に巻線を巻装した永久磁石電動機としては、種々の構造のものが知られている(下記特許文献1、2参照)。 Conventionally, as permanent magnet motors in which windings are wound around magnetic pole teeth of a stator core, those having various structures are known (see Patent Documents 1 and 2 below).
 このような永久磁石電動機において各相の巻線を並列接続する場合に、その永久磁石電動機が3相6極9スロットタイプであると、各相(U相、V相、W相)ごとに6本、合計で18本の端末線が発生する。 In such a permanent magnet motor, when the windings of each phase are connected in parallel, if the permanent magnet motor is a three-phase six-pole nine-slot type, six for each phase (U phase, V phase, W phase). A total of 18 terminal lines are generated.
 そして、各相の口出線に対するそれぞれ3本の端末線の接続は、ハンダ付けや溶着により行われている。 And the connection of the three terminal wires to the lead wires of each phase is performed by soldering or welding.
 また、中性点側の端末線の接続においては、1箇所に接続する場合は9本の端末線を接続する必要がある。 In addition, when connecting the terminal line on the neutral point side, it is necessary to connect nine terminal lines when connecting to one place.
特開2001-275291号公報JP 2001-275291 A 特開2000-232745号公報JP 2000-232745 A
 しかしながら、各相の口出線に端末線を3本ずつ接続する場合には、接続する端末線の本数が多くなるため、手間がかかっている。 However, when three terminal wires are connected to the lead wire of each phase, the number of terminal wires to be connected increases, which is troublesome.
 そして、これらの接続をハンダ付けや溶着で行う場合には、端末線の被覆を剥離する必要があり、剥離した被膜片が永久磁石電動機の回転部の隙間に入り込み、永久磁石電動機の性能を損なう場合がある。さらに、ハンダ付けや溶着した接続部に絶縁体を被せ、どこかに固定するという対策をとる必要がある。また、ハンダ付けや溶着による接続作業は、作業のバラツキにより永久磁石電動機の性能を損なう場合がある。 And when these connections are made by soldering or welding, it is necessary to peel off the coating of the terminal wire, and the peeled piece of film enters the gap of the rotating part of the permanent magnet motor, thereby improving the performance of the permanent magnet motor. It may be damaged. Furthermore, it is necessary to take a measure of covering the soldered or welded connecting portion with an insulator and fixing it to somewhere. Moreover, the connection work by soldering or welding may impair the performance of the permanent magnet motor due to the work variation.
 また、中性点の接続においても、1箇所に接続する場合は9本の端末線を接続する必要があり、被膜を剥離しての溶着あるいはハンダ付けとなり、端末線の引き回し処理と合わせて多大な工数を要する。 In addition, when connecting to a neutral point, it is necessary to connect nine terminal wires when connecting to one place, and welding or soldering is performed by peeling off the coating, which is a great deal in conjunction with the terminal wire routing process. Requires a lot of man-hours.
 本発明の目的は、9スロットの集中巻固定子を有する永久磁石電動機において、巻線の接続構造を簡単化することができる永久磁石電動機、密閉型圧縮機及び冷凍サイクル装置を提供するものである。 An object of the present invention is to provide a permanent magnet motor, a hermetic compressor, and a refrigeration cycle apparatus capable of simplifying a winding connection structure in a permanent magnet motor having a 9-slot concentrated winding stator. .
 実施形態の永久磁石電動機は、各相3個の巻線を有する9スロットの集中巻固定子を有する永久磁石電動機において、各相の3個の巻線が交互に巻方向を変えて連続して巻装され、各相ごとに2個の巻線間の渡り線と他の巻線の端末線とが接続されて口出線側端部とされていることを特徴とする。 The permanent magnet motor according to the embodiment is a permanent magnet motor having a 9-slot concentrated winding stator having three windings for each phase, and the three windings for each phase are alternately changed in the winding direction. The connecting wire between the two windings and the terminal wire of the other winding are connected to each end of the lead wire side for each phase.
 また、密閉型圧縮機は、上記永久磁石電動機と、前記永久磁石電動機の回転軸に連結されて駆動されることにより作動流体を圧縮する圧縮機構部と、前記永久磁石電動機と前記圧縮機構部とを収容する密閉ケースと、を備えることを特徴とする。 Further, the hermetic compressor includes the permanent magnet motor, a compression mechanism that compresses the working fluid by being connected to a rotation shaft of the permanent magnet motor, the permanent magnet motor, and the compression mechanism. And a hermetically sealed case that houses the container.
 更に、冷凍サイクル装置は、前記密閉型圧縮機と、前記密閉型圧縮機に接続される凝縮器と、前記凝縮器に接続される膨張装置と、前記膨張装置と前記密閉型圧縮機との間に接続される蒸発器とを備えることを特徴とする。 Further, the refrigeration cycle apparatus includes the hermetic compressor, a condenser connected to the hermetic compressor, an expansion device connected to the condenser, and between the expansion device and the hermetic compressor. And an evaporator connected to.
 本発明によれば、9スロットの集中巻固定子を有する永久磁石電動機において、巻線の接続構造を簡単化することができる永久磁石電動機、密閉型圧縮機及び冷凍サイクル装置を提供できる。 According to the present invention, it is possible to provide a permanent magnet motor, a hermetic compressor, and a refrigeration cycle apparatus that can simplify the connection structure of windings in a permanent magnet motor having a 9-slot concentrated winding stator.
第1の実施形態における、断面で示した密閉型圧縮機を含む冷凍サイクル装置の構成図である。It is a block diagram of the refrigerating-cycle apparatus containing the hermetic type compressor shown in the cross section in 1st Embodiment. 永久磁石電動機の水平断面図である。It is a horizontal sectional view of a permanent magnet motor. 永久磁石電動機の3相の巻線の接続状態を示す結線図である。It is a connection diagram which shows the connection state of the three-phase coil | winding of a permanent magnet motor. 圧接端子を示す正面図である。It is a front view which shows a press-contact terminal. 圧接端子を用いて接続される渡り線と端末線との配線状態を示す平面図である。It is a top view which shows the wiring state of the connecting wire connected using a press-contact terminal, and a terminal line. 圧接端子による渡り線と端末線との接続状態を示す正面図である。It is a front view which shows the connection state of the connecting wire and terminal wire by a press-contact terminal. 第2の実施形態における、ヒュージング端子を用いて渡り線と端末線とが接続された状態を示す正面図である。It is a front view which shows the state in which the connecting wire and the terminal line were connected using the fusing terminal in 2nd Embodiment. ヒュージング端子を用いて渡り線と端末線とが接続された状態を示す側面図である。It is a side view which shows the state in which the crossover and the terminal line were connected using the fusing terminal. 第3の実施形態における、圧着端子を用いて渡り線と端末線と口出線とが接続された状態を示す説明図である。It is explanatory drawing which shows the state in which the connecting wire, the terminal wire, and the lead wire were connected using the crimp terminal in 3rd Embodiment. 第4の実施形態における、永久磁石電動機の3相の巻線の接続状態を示す結線図である。It is a connection diagram which shows the connection state of the three-phase coil | winding of a permanent magnet motor in 4th Embodiment. 圧接端子を示す正面図である。It is a front view which shows a press-contact terminal. 圧接端子を用いて接続される3本の端末線の配線状態を示す平面図である。It is a top view which shows the wiring state of the three terminal wires connected using a press-contact terminal.
 (第1の実施形態)
 第1の実施形態について、図1ないし図6に基づいて説明する。図1は冷凍サイクル装置1を示しており、この冷凍サイクル装置1は、圧縮機本体2とアキュムレータ3とを有して作動流体であるガス冷媒を圧縮する密閉型圧縮機4と、圧縮機本体2に接続されて圧縮機本体2から吐出された高圧のガス冷媒を凝縮して液冷媒にする凝縮器5と、凝縮器5に接続されて液冷媒を減圧する膨張装置6と、膨張装置6とアキュムレータ3との間に接続されて液冷媒を蒸発させる蒸発器7と、を有している。アキュムレータ3と圧縮機本体2とは、ガス冷媒が流れる吸込管8により接続されている。
(First embodiment)
1st Embodiment is described based on FIG. 1 thru | or FIG. FIG. 1 shows a refrigeration cycle apparatus 1. The refrigeration cycle apparatus 1 includes a compressor body 2 and an accumulator 3, and includes a hermetic compressor 4 that compresses a gas refrigerant as a working fluid, and a compressor body. 2, a condenser 5 that condenses the high-pressure gas refrigerant discharged from the compressor body 2 to form a liquid refrigerant, an expansion device 6 that is connected to the condenser 5 to decompress the liquid refrigerant, and an expansion device 6. And an accumulator 3, and an evaporator 7 for evaporating the liquid refrigerant. The accumulator 3 and the compressor body 2 are connected by a suction pipe 8 through which a gas refrigerant flows.
 圧縮機本体2は、円筒状に形成された密閉ケース9を有し、密閉ケース9内には、上部側に位置する永久磁石電動機10と、下部側に位置する圧縮機構部11とが収容されている。永久磁石電動機10には上下方向に沿う中心線を有する回転軸12が設けられており、この回転軸12に圧縮機構部11が連結されている。 The compressor body 2 has a sealed case 9 formed in a cylindrical shape, and a permanent magnet motor 10 positioned on the upper side and a compression mechanism unit 11 positioned on the lower side are accommodated in the sealed case 9. ing. The permanent magnet motor 10 is provided with a rotating shaft 12 having a center line along the vertical direction, and a compression mechanism 11 is connected to the rotating shaft 12.
 永久磁石電動機10は、圧縮機構部11を駆動する部分であり、回転軸12に固定された回転子13と、密閉ケース9の内面に固定されて回転子13を囲む位置に配置された集中巻固定子14とを有している。 The permanent magnet motor 10 is a part that drives the compression mechanism unit 11, and a concentrated winding that is fixed to the inner surface of the sealing case 9 and is disposed at a position surrounding the rotor 13. And a stator 14.
 圧縮機構部11は、ガス冷媒を圧縮する部分であり、吸込管8を介して吸込まれるガス冷媒を圧縮する圧縮要素(図示せず)を有している。この圧縮要素は、ガス冷媒が流入するシリンダ室を有するシリンダ、回転軸12の偏心部に嵌合されてシリンダ室内を偏心回転するローラ、先端部をローラの外周面に当接させて摺動可能に設けられることによりシリンダ室内をガス冷媒の吸込室と圧縮室とに区画するブレード等により構成されている。圧縮機構部11において圧縮されて高圧になったガス冷媒は、密閉ケース9内に吐出される。 The compression mechanism unit 11 is a part that compresses the gas refrigerant, and has a compression element (not shown) that compresses the gas refrigerant sucked through the suction pipe 8. This compression element is a cylinder having a cylinder chamber into which a gas refrigerant flows, a roller that is fitted in an eccentric portion of the rotary shaft 12 and rotates eccentrically in the cylinder chamber, and a tip portion that is slidable by contacting the outer peripheral surface of the roller. Is provided with a blade that divides the cylinder chamber into a gas refrigerant suction chamber and a compression chamber. The gas refrigerant compressed to a high pressure in the compression mechanism unit 11 is discharged into the sealed case 9.
 図2は、永久磁石電動機10を示す水平断面図である。この永久磁石電動機10は、3相6極9スロットタイプのものであり、回転子13と回転子13の外周部に配置された集中巻固定子14とを有している。 FIG. 2 is a horizontal sectional view showing the permanent magnet motor 10. This permanent magnet motor 10 is of a three-phase six-pole nine-slot type, and has a rotor 13 and a concentrated winding stator 14 disposed on the outer periphery of the rotor 13.
 回転子13は、薄板状の鉄板を積層して円筒状に形成された回転子鉄心15を有し、この回転子鉄心15が回転軸12に固定されている。回転子鉄心15の内部には、6個の板状の永久磁石16が回転子鉄心15の周方向に沿って等間隔に設置されている。 The rotor 13 has a rotor core 15 formed in a cylindrical shape by laminating thin steel plates, and the rotor core 15 is fixed to the rotating shaft 12. In the rotor core 15, six plate-like permanent magnets 16 are installed at equal intervals along the circumferential direction of the rotor core 15.
 集中巻固定子14は、薄板状の鉄板を積層して円筒状に形成された固定子鉄心17を有し、固定子鉄心17には、固定子鉄心17の周方向にそって9個のスロット18が等間隔で形成されており、隣合って位置するスロット18の間の部分に内周方向に向けて突出する磁極歯19が形成される。各磁極歯19には、それぞれ巻線20が巻装されている。巻線20は、3個の相(U相、V相、W相)ごとに3個の巻線20が交互に巻方向を変えて連続して巻装されている。 The concentrated winding stator 14 has a stator core 17 formed in a cylindrical shape by laminating thin steel plates, and the stator core 17 has nine slots along the circumferential direction of the stator core 17. 18 are formed at equal intervals, and magnetic pole teeth 19 projecting in the inner peripheral direction are formed at portions between adjacent slots 18. A winding 20 is wound around each magnetic pole tooth 19. The winding 20 is continuously wound with three windings 20 alternately changing the winding direction for every three phases (U phase, V phase, W phase).
 すなわち、U相は、20U1、20U2、20U3の3個の巻線20が連続して巻装され、巻線20U1の巻方向(例えば右巻き)に対し、巻線20U2の巻方向は逆(左巻き)にされ、さらに、巻線20U2の巻方向(左巻き)に対して、巻線20U3の巻方向は逆(右巻き)にされている。 That is, in the U phase, the three windings 20U1, 20U2, and 20U3 are continuously wound, and the winding direction of the winding 20U2 is opposite (left-handed) to the winding direction of the winding 20U1 (for example, right-handed). Furthermore, the winding direction of the winding 20U3 is reversed (right-handed) with respect to the winding direction (left-handed) of the winding 20U2.
 V相は、20V1、20V2、20V3の3個の巻線20が連続して巻装され、巻線20V1の巻方向(例えば右巻き)に対し、巻線20V2の巻方向は逆(左巻き)にされ、さらに、巻線20V2の巻方向(左巻き)に対して、巻線20V3の巻方向は逆(右巻き)にされている。 In the V phase, three windings 20 of 20V1, 20V2, and 20V3 are continuously wound, and the winding direction of the winding 20V2 is reversed (left-handed) with respect to the winding direction of the winding 20V1 (for example, right-handed). Further, the winding direction of the winding 20V3 is reversed (right-handed) with respect to the winding direction (left-handed) of the winding 20V2.
 W相は、20W1、20W2、20W3の3個の巻線20が連続して巻装され、巻線20W1の巻方向(例えば右巻き)に対し、巻線20W2の巻方向は逆(左巻き)にされ、さらに、巻線20W2の巻方向(左巻き)に対して、巻線20W3の巻方向は逆(右巻き)にされている。 In the W phase, three windings 20 of 20W1, 20W2, and 20W3 are continuously wound, and the winding direction of the winding 20W2 is reversed (left-handed) with respect to the winding direction of the winding 20W1 (eg, right-handed). Further, the winding direction of the winding 20W3 is reversed (right-handed) with respect to the winding direction (left-handed) of the winding 20W2.
 ここで、巻線20、後述する渡り線、端末線、リード線、口出線については、各相との関係を説明する場合には各相を意味するU、V、Wの符号を付けて説明するが、各相との関連を説明する必要がない場合には、必要に応じてU、V、Wの符号は省略する。 Here, regarding the winding 20, the connecting wire, the terminal wire, the lead wire, and the lead wire, which will be described later, when explaining the relationship with each phase, the reference numerals U, V, and W representing each phase are attached. As will be described, if it is not necessary to explain the relationship with each phase, U, V, and W symbols are omitted as necessary.
 図3は、3相の巻線20の接続状態を示す結線図である。電源側においては、U相の2個の巻線20U1、20U2の間の渡り線21Uと巻線20U3の端末線22Uとが接続されて口出線23U側の端部とされている。 FIG. 3 is a connection diagram showing a connection state of the three-phase winding 20. On the power supply side, the connecting wire 21U between the two U-phase windings 20U1 and 20U2 and the terminal wire 22U of the winding 20U3 are connected to form an end on the lead wire 23U side.
 同様に、V相においても、V相の2個の巻線20V1、20V2の間の渡り線21Vと巻線20V3の端末線22Vとが接続されて口出線23V側の端部とされている。同様に、W相においても、W相の2個の巻線W1、W2の間の渡り線21Wと巻線20W3の端末線22Wとが接続されて口出線23W側の端部とされている。 Similarly, also in the V phase, the connecting wire 21V between the two V-phase windings 20V1 and 20V2 and the terminal wire 22V of the winding 20V3 are connected to form an end on the lead wire 23V side. . Similarly, also in the W phase, the connecting wire 21W between the two windings W1, W2 of the W phase and the terminal wire 22W of the winding 20W3 are connected to form an end on the lead wire 23W side. .
 中性点側においては、U相の2個の巻線20U2、20U3の間の渡り線24Uに接続されたリード線25Uと、U相の巻線20U1の端末線26Uと、V相の2個の巻線20V2、20V3の間の渡り線24Vに接続されたリード線25Vと、V相の巻線20V1の端末線26Vと、W相の2個の巻線20W2、20W3との間の渡り線24Wに接続されたリード線25Wと、W相の巻線20W1の端末線26Wとが、接続されている。 On the neutral point side, the lead wire 25U connected to the connecting wire 24U between the two U-phase windings 20U2 and 20U3, the terminal wire 26U of the U-phase winding 20U1, and the two V-phase wires 25V connected to the connecting wire 24V between the windings 20V2 and 20V3, the terminal wire 26V of the V-phase winding 20V1, and the connecting wire between the two W-phase windings 20W2 and 20W3 The lead wire 25W connected to 24W and the terminal wire 26W of the W-phase winding 20W1 are connected.
 図4は、渡り線21と端末線22とを接続する場合(渡り線21Uと端末線22U、21Vと22V、21Wと22W)に使用する圧接端子27である。圧接端子27には、3個の圧接用突部28と、隣り合う圧接用突部28の間に位置してU字状に切り込まれた2個の圧接スロット29と、口出線23(23U、23V、23W)を接続するためのタブ30とが形成されている。 FIG. 4 shows a pressure contact terminal 27 used when connecting the connecting wire 21 and the terminal wire 22 (the connecting wire 21U and the terminal wire 22U, 21V and 22V, 21W and 22W). The pressure contact terminal 27 includes three pressure contact protrusions 28, two pressure contact slots 29 that are located between adjacent pressure contact protrusions 28 and cut into a U shape, and lead wires 23 ( 23U, 23V, and 23W) are formed.
 図5は、圧接端子27を用いて接続される渡り線21と端末線22との配線状態を示す平面図である。固定子鉄心17の端面側には巻線受け32が固定され、この巻線受け32には渡り線21と端末線22とを保持する保持部33と、圧接端子27の圧接用突部28が挿入される挿入部34とが形成されている。 FIG. 5 is a plan view showing a wiring state of the connecting wire 21 and the terminal wire 22 connected using the press contact terminal 27. A winding receiver 32 is fixed to the end face side of the stator core 17, and a holding portion 33 for holding the jumper wire 21 and the terminal wire 22 and a pressing contact projection 28 of the press contact terminal 27 are provided on the winding receiver 32. An insertion portion 34 to be inserted is formed.
 図6は、圧接端子27による渡り線21と端末線22との接続状態を示している。圧接端子27の圧接用突部28が巻線受け32の挿入部34に挿入されるとともに、保持部33に保持された渡り線21と端末線22とが圧接スロット29に圧入されている。さらに、タブ30に口出線23が接続されている。 FIG. 6 shows a connection state between the connecting wire 21 and the terminal wire 22 by the press contact terminal 27. The pressure contact protrusion 28 of the pressure contact terminal 27 is inserted into the insertion portion 34 of the winding receiver 32, and the crossover wire 21 and the terminal wire 22 held by the holding portion 33 are press-fitted into the pressure contact slot 29. Furthermore, a lead wire 23 is connected to the tab 30.
 圧接スロット29の周縁には刃部が形成されており、渡り線21と端末線22とが圧接スロット29に圧入されることにより渡り線21と端末線22との被膜が刃部により破られ、渡り線21と端末線22とが圧接端子27を介して電気的に接続される。 A blade portion is formed on the peripheral edge of the pressure contact slot 29, and the coating of the crossover wire 21 and the terminal wire 22 is broken by the blade portion when the crossover wire 21 and the terminal wire 22 are press-fitted into the pressure contact slot 29. The crossover wire 21 and the terminal wire 22 are electrically connected via the press contact terminal 27.
 このような構成において、この密閉型圧縮機4においては、永久磁石電動機10に通電されることにより回転軸12が中心線回りに回転し、回転軸12の回転により圧縮機構部11が駆動され、圧縮機構部11においてガス冷媒が圧縮される。 In such a configuration, in the hermetic compressor 4, when the permanent magnet motor 10 is energized, the rotary shaft 12 rotates around the center line, and the rotation of the rotary shaft 12 drives the compression mechanism unit 11, The gas refrigerant is compressed in the compression mechanism 11.
 圧縮されたガス冷媒は圧縮機構部11から密閉ケース9内に吐出され、密閉ケース9内に吐出された高圧のガス冷媒は、凝縮器5、膨張装置6、蒸発器7を順に経由して再び圧縮機構部11へ循環することにより、冷凍サイクルが実行される。 The compressed gas refrigerant is discharged from the compression mechanism 11 into the sealed case 9, and the high-pressure gas refrigerant discharged into the sealed case 9 passes again through the condenser 5, the expansion device 6, and the evaporator 7 in order. A refrigeration cycle is performed by circulating to the compression mechanism 11.
 ここで、3相の永久磁石電動機10の巻線20を通電側の口出線23に接続する場合において、2個の巻線20(例えば20U1と20U2)の渡り線21(21U)と1個の巻線20(20U3)の端末線22(22U)とを口出線23(23U)に接続しているため、口出線23に接続する配線の本数が少なくなり、接続作業が容易になる。 Here, in the case where the winding 20 of the three-phase permanent magnet motor 10 is connected to the lead wire 23 on the energization side, the connecting wire 21 (21U) and one of the two windings 20 (for example, 20U1 and 20U2). Since the terminal wire 22 (22U) of the winding 20 (20U3) is connected to the lead wire 23 (23U), the number of wires connected to the lead wire 23 is reduced, and the connection work is facilitated. .
 しかも、渡り線21と端末線22との接続を、2個の圧接スロット29を有する圧接端子27を用いて行っているため、渡り線21と端末線22の皮膜を剥離する必要がなく、接続作業を手間をかけず行うことができる。 In addition, since the connection between the crossover wire 21 and the terminal wire 22 is performed using the pressure contact terminal 27 having two pressure contact slots 29, it is not necessary to peel off the film of the crossover wire 21 and the terminal wire 22, and the connection is made. Work can be done without much effort.
 しかも、被膜を剥離することによる被膜片の発生がなく、発生した被膜片が永久磁石電動機10の回転部の隙間に入り込み、永久磁石電動機10の性能を損なうということが発生しない。 In addition, there is no occurrence of a film piece due to peeling of the film, and the generated film piece does not enter the gap in the rotating portion of the permanent magnet electric motor 10 and impair the performance of the permanent magnet electric motor 10.
 (第2の実施形態)
 第2の実施形態について、図7及び図8に基づいて説明する。なお、第2の実施形態以降の各実施形態において、第1の実施形態において説明した構成要素と同じ構成要素には同じ符号を付け、重複する説明は省略する。
(Second Embodiment)
A second embodiment will be described with reference to FIGS. Note that, in each of the embodiments after the second embodiment, the same components as those described in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.
 第2の実施形態の基本的な構成は第1の実施形態と同じであり、第2の実施形態が第1の実施形態と異なる点は、渡り線21と端末線22とを接続するために、圧接端子27に代えてヒュージング端子41を用いた点である。 The basic configuration of the second embodiment is the same as that of the first embodiment. The second embodiment is different from the first embodiment in order to connect the crossover line 21 and the terminal line 22. The fusing terminal 41 is used instead of the press contact terminal 27.
 図7及び図8に示すように、ヒュージング端子41には、接続する渡り線21と端末線22とを挟み込むヒュージング部42と、口出線23を接続するためのタブ30とが形成されている。 As shown in FIGS. 7 and 8, the fusing terminal 41 is formed with a fusing portion 42 that sandwiches the connecting wire 21 and the terminal wire 22 to be connected, and a tab 30 for connecting the lead wire 23. ing.
 ヒュージング端子41を用いた渡り線21と端末線22との接続は、渡り線21と端末線22とを平行に重ねて配列してヒュージング部42で挟み込み、ヒュージング部42を加圧するとともに電流を流し、渡り線21と端末線22とヒュージング端子41とを溶着することにより行われている。 In connecting the connecting wire 21 and the terminal wire 22 using the fusing terminal 41, the connecting wire 21 and the terminal wire 22 are arranged in parallel and sandwiched by the fusing portion 42, and the fusing portion 42 is pressurized. This is done by passing an electric current and welding the connecting wire 21, the terminal wire 22, and the fusing terminal 41.
 ヒュージング端子41は渡り線21の引き回し経路に設ければよく、例えば、集中巻固定子14に設けられている絶縁体の外側鍔部に取付けることができる。 The fusing terminal 41 may be provided in the routing path of the crossover wire 21 and can be attached to, for example, the outer flange of the insulator provided in the concentrated winding stator 14.
 このような構成のヒュージング端子41を用いて配線を接続する場合において、接続する配線の本数が3本以上になると、加圧や電流のバラツキにより接続不良が発生しやすくなる。しかし本実施形態では、3相の永久磁石電動機10の巻線20を通電側の口出線23に接続する場合において、2個の巻線20の渡り線21と1個の巻線20の端末線22とをヒュージング端子41を用いて接続しているため、ヒュージング端子41を用いて接続する配線の本数が2本となり、溶着不良を生じることなく信頼性の高い接続状態を得ることができる。 In the case of connecting the wiring using the fusing terminal 41 having such a configuration, if the number of wirings to be connected is three or more, poor connection is likely to occur due to pressure and current variations. However, in this embodiment, when connecting the winding 20 of the three-phase permanent magnet motor 10 to the lead wire 23 on the energization side, the connecting wire 21 of the two windings 20 and the terminal of the one winding 20 are used. Since the wires 22 are connected using the fusing terminals 41, the number of wirings connected using the fusing terminals 41 is two, and a highly reliable connection state can be obtained without causing poor welding. it can.
 また、ヒュージング端子41を用いた接続では、渡り線21や端末線22の皮膜を剥がすことなく接続することができ、被膜を剥がす手間が軽減される。 Further, in the connection using the fusing terminal 41, it is possible to connect without peeling off the film of the crossover wire 21 and the terminal wire 22, and the labor for removing the film is reduced.
 (第3の実施形態)
 第3の実施形態について、図9に基づいて説明する。第3の実施形態の基本的な構成は第1の実施形態と同じであり、第3の実施形態と第1の実施形態との異なる点は、渡り線21と端末線22との接続構造である。
(Third embodiment)
A third embodiment will be described with reference to FIG. The basic configuration of the third embodiment is the same as that of the first embodiment, and the difference between the third embodiment and the first embodiment is the connection structure between the jumper wire 21 and the terminal line 22. is there.
 第3の実施形態では、渡り線21と端末線22と口出線23の芯線とが平行に並べて配置され、これらの渡り線21と端末線22と口出線23の芯線とが圧着端子51により圧着接続されている。渡り線21と端末線22とは、例えば、集中巻固定子14に設けられている絶縁体52の外側鍔部に這わせておく。 In the third embodiment, the connecting wire 21, the terminal wire 22, and the core wire of the lead wire 23 are arranged in parallel, and the connecting wire 21, the terminal wire 22, and the core wire of the lead wire 23 are connected to the crimp terminal 51. Are connected by crimping. For example, the connecting wire 21 and the terminal wire 22 are placed on the outer flange portion of the insulator 52 provided in the concentrated winding stator 14.
 圧着端子51は、図9に示すように一端側が拡開された略V字形に形成されており、その内側には溝53が形成されている。圧着端子51の内側に渡り線21と端末線22と、口出線23の芯線とを位置させて拡開側をかしめることにより、溝53により渡り線21と端末線22との被膜が破られ、渡り線21と端末線22と口出線23の芯線とが電気的に接続される。 As shown in FIG. 9, the crimp terminal 51 is formed in a substantially V shape with one end side expanded, and a groove 53 is formed inside thereof. By positioning the connecting wire 21, the terminal wire 22 and the core wire of the lead wire 23 inside the crimp terminal 51 and caulking the expansion side, the coating of the connecting wire 21 and the terminal wire 22 is broken by the groove 53. The connecting wire 21, the terminal wire 22, and the core wire of the lead wire 23 are electrically connected.
 このような構成の3相永久磁石電動機10の巻線20を通電側の口出線23に接続する場合において、2個の巻線20の渡り線21と1個の巻線20の端末線22と、口出線23の芯線とを圧着端子51で圧着すればよく、圧着する配線の数が少なくなるため信頼性の高い接続状態を得ることができる。 When the winding 20 of the three-phase permanent magnet motor 10 having such a configuration is connected to the lead wire 23 on the energization side, the connecting wire 21 of the two windings 20 and the terminal wire 22 of the one winding 20 are connected. The core wire of the lead wire 23 may be crimped by the crimp terminal 51, and the number of wires to be crimped is reduced, so that a highly reliable connection state can be obtained.
 また、圧着端子51による接続では、渡り21と端末線22と口出線23の芯線とを同時に接続することができ、先に接続した渡り線21と端末線22とに対して口出線23を後から接続するという必要がなくなり、接続作業の工程数を少なくすることができる。 Moreover, in the connection by the crimp terminal 51, the crossover 21, the terminal wire 22 and the core wire of the lead wire 23 can be connected at the same time, and the lead wire 23 is connected to the crossover wire 21 and the terminal wire 22 previously connected. It is no longer necessary to connect the devices later, and the number of steps of connection work can be reduced.
 (第4の実施形態)
 本発明の第4の実施形態を図10乃至図12に基づいて説明する。第4の実施形態の基本的な構成は第1の実施形態と同じであり、第4の実施形態と第1の実施形態との異なる点は、中性点側の結線構造である。
(Fourth embodiment)
A fourth embodiment of the present invention will be described with reference to FIGS. The basic configuration of the fourth embodiment is the same as that of the first embodiment, and the difference between the fourth embodiment and the first embodiment is a connection structure on the neutral point side.
 図10に示すように、中性点側の3本の渡り線24U、24V、24Wを少なくとも2箇所で接続することにより第1の中性点61とされ、残りの端末線26U、26V、26Wを接続することにより第2の中性点62とされている。 As shown in FIG. 10, the first neutral point 61 is formed by connecting at least two crossover lines 24U, 24V, and 24W on the neutral point side, and the remaining terminal lines 26U, 26V, and 26W are connected. Is connected to the second neutral point 62.
 渡り線24U、24V、24Wの接続は、図9に示したような圧着端子51を用いて行われている。 Connection of the connecting wires 24U, 24V, 24W is performed using a crimp terminal 51 as shown in FIG.
 図11は、端末線26U、26V、26Wを接続する連結圧接端子63を示している。この連結圧接端子63は、2個の圧接端子64を連結部65で連結ことにより形成されている。各圧接端子64には、図4に示した圧接端子27と同様に、2個の圧接スロット29と3個の圧接用突部28とが形成されている。 FIG. 11 shows a connection pressure contact terminal 63 for connecting the terminal lines 26U, 26V, and 26W. The connecting press contact terminal 63 is formed by connecting two press contact terminals 64 with a connecting portion 65. Each press contact terminal 64 is formed with two press contact slots 29 and three press contact projections 28, similarly to the press contact terminal 27 shown in FIG. 4.
 図12は、連結圧接端子63を用いて接続される3本の端末線26U、26V、26Wの配線状態を示す平面図である。固定子鉄心17の端面側には巻線受け66が固定され、この巻線受け66には3本の端末線26U、26V、26Wを保持する保持部67と、圧接用突部28が挿入される挿入部68とが形成されている。1本の端末線26Wは、2箇所で保持されるように引き回して配線され、圧接用突部28が巻線受け66の挿入部68に挿入された場合、端末線26Wは2個の圧接スロット29に圧入される。 FIG. 12 is a plan view showing a wiring state of the three terminal lines 26U, 26V, and 26W connected by using the connecting pressure contact terminal 63. FIG. A winding receiver 66 is fixed to the end face side of the stator core 17, and a holding portion 67 for holding the three terminal wires 26U, 26V, and 26W and a pressing contact projection 28 are inserted into the winding receiver 66. The insertion portion 68 is formed. When one terminal wire 26W is routed and wired so as to be held at two locations, and the pressure contact projection 28 is inserted into the insertion portion 68 of the winding receiver 66, the terminal wire 26W has two pressure contact slots. 29 is press-fitted.
 このような構成において、第1の中性点61(図10参照)においては、2本の渡り線24を圧着端子51を用いて接続する構成であるので、圧着する配線の数が少なくなり信頼性の高い接続状態を得ることができる。 In such a configuration, at the first neutral point 61 (see FIG. 10), since the two connecting wires 24 are connected using the crimp terminals 51, the number of wires to be crimped is reduced and the reliability is improved. A highly connected state can be obtained.
 第2の中性点62においては、1本の端末線26Wを各圧接端子64の圧接スロット29に圧入されるように引き回して配線されているため、4個の圧接スロット29を有する連結圧接端子63を用いて3本の端末線26U、26V、26Wを接続しても、バランスのよい接続状態とすることができる。しかも、端末線26Wが2個の圧接端子64の圧接スロット29に跨って圧入されることにより、この端末線26Wが2個の圧接端子64の連結線として機能することになり、連結部65の導体断面積を補うことができる。 In the second neutral point 62, since one terminal line 26W is routed so as to be press-fitted into the press-contact slot 29 of each press-contact terminal 64, the connection press-contact terminal having four press-contact slots 29 is provided. Even if the three terminal lines 26U, 26V, and 26W are connected using 63, a balanced connection state can be obtained. Moreover, when the terminal line 26W is press-fitted across the pressure contact slots 29 of the two pressure contact terminals 64, the terminal line 26W functions as a connection line for the two pressure contact terminals 64, and The cross-sectional area of the conductor can be supplemented.
 以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これらの実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although several embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the invention described in the claims and equivalents thereof as well as included in the scope and gist of the invention.
 1…冷凍サイクル装置、4…密閉型圧縮機、5…凝縮器、6…膨張装置、7…蒸発器、9…密閉ケース、10…永久磁石電動機、11…圧縮機構部、14…集中巻固定子、20…巻線、21…渡り線、22…端末線、23…口出線、24…渡り線、26…端末線、27…圧接端子、29…圧接スロット、51…圧着端子、61…第1の中性点、62…第2の中性点、63…連結圧接端子、64…圧接端子 DESCRIPTION OF SYMBOLS 1 ... Refrigeration cycle apparatus, 4 ... Sealed compressor, 5 ... Condenser, 6 ... Expansion device, 7 ... Evaporator, 9 ... Sealed case, 10 ... Permanent magnet motor, 11 ... Compression mechanism part, 14 ... Concentrated winding fixing Child, 20 ... Winding, 21 ... Crossover, 22 ... Terminal wire, 23 ... Lead wire, 24 ... Crossover, 26 ... Terminal wire, 27 ... Pressure contact terminal, 29 ... Pressure contact slot, 51 ... Crimp terminal, 61 ... 1st neutral point, 62 ... 2nd neutral point, 63 ... Connection pressure contact terminal, 64 ... Pressure contact terminal

Claims (7)

  1.  各相3個の巻線を有する9スロットの集中巻固定子を有する永久磁石電動機において、
     各相の3個の前記巻線が交互に巻方向を変えて連続して巻装され、
     各相ごとに2個の前記巻線間の渡り線と他の前記巻線の端末線とが接続されて口出線側端部とされていることを特徴とする永久磁石電動機。
    In a permanent magnet motor having a 9-slot concentrated winding stator with 3 windings in each phase,
    Three windings of each phase are wound continuously by alternately changing the winding direction,
    A permanent magnet electric motor characterized in that a connecting wire between two windings and a terminal wire of another winding are connected to each lead wire side end for each phase.
  2.  前記渡り線と前記端末線とは、これらの渡り線と端末線とが圧入される2個の圧接スロットを有する圧接端子により接続されていることを特徴とする請求項1記載の永久磁石電動機。 2. The permanent magnet motor according to claim 1, wherein the connecting wire and the terminal wire are connected by a press contact terminal having two press contact slots into which the connecting wire and the terminal wire are press-fitted.
  3.  前記渡り線と前記端末線と口出線の芯線とが並べて配置され、これらの各線が圧着端子により接続されていることを特徴とする請求項1記載の永久磁石電動機。 The permanent magnet motor according to claim 1, wherein the connecting wire, the terminal wire, and the lead wire core wire are arranged side by side, and each wire is connected by a crimp terminal.
  4.  各相3個の巻線を有する9スロットの集中巻固定子を有する永久磁石電動機において、
     各相の3個の前記巻線が交互に巻方向を変えて連続して巻装され、
     各相の2個の前記巻線間の渡り線と他の前記巻線の端末線とが接続されて口出線側端部とされ、
     各相の残りの渡り線同士が少なくとも2箇所で接続されて第1の中性点とされ、
     各相の残りの端末線の3本が接続されて第2の中性点とされていることを特徴とする永久磁石電動機。
    In a permanent magnet motor having a 9-slot concentrated winding stator with 3 windings in each phase,
    Three windings of each phase are wound continuously by alternately changing the winding direction,
    The connecting wire between the two windings of each phase and the terminal wire of the other winding are connected to be the lead wire side end,
    The remaining crossovers of each phase are connected at least two places to be the first neutral point,
    A permanent magnet motor characterized in that three of the remaining terminal wires of each phase are connected to form a second neutral point.
  5.  各相の残りの前記端末線の3本は、2個の圧接スロットを有する圧接端子を2つ連結した構造の連結圧接端子により接続され、1本の前記端末線は2個の前記圧接端子の前記圧接スロットにまたがって引き回されていることを特徴とする請求項4記載の永久磁石電動機。 The remaining three terminal wires of each phase are connected by a connected pressure contact terminal having a structure in which two pressure contact terminals having two pressure contact slots are connected, and one terminal wire is connected to two pressure contact terminals. The permanent magnet motor according to claim 4, wherein the permanent magnet motor is routed across the press contact slot.
  6.  請求項1ないし5のいずれか一項に記載の永久磁石電動機と、
     前記永久磁石電動機の回転軸に連結されて駆動されることにより作動流体を圧縮する圧縮機構部と、
     前記永久磁石電動機と前記圧縮機構部とを収容する密閉ケースと、
    を備えることを特徴とする密閉型圧縮機。
    The permanent magnet motor according to any one of claims 1 to 5,
    A compression mechanism that compresses the working fluid by being coupled to and driven by the rotating shaft of the permanent magnet motor;
    A sealed case that houses the permanent magnet motor and the compression mechanism;
    A hermetic compressor comprising:
  7.  請求項6記載の密閉型圧縮機と、前記密閉型圧縮機に接続される凝縮器と、前記凝縮器に接続される膨張装置と、前記膨張装置と前記密閉型圧縮機との間に接続される蒸発器とを備えることを特徴とする冷凍サイクル装置。 The hermetic compressor according to claim 6, a condenser connected to the hermetic compressor, an expansion device connected to the condenser, and an expansion device connected between the expansion device and the hermetic compressor. A refrigeration cycle apparatus comprising: an evaporator.
PCT/JP2014/004777 2013-09-27 2014-09-17 Permanent magnet electric motor, hermetic compressor, and refrigerating cycle device WO2015045331A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013200860A JP2015070652A (en) 2013-09-27 2013-09-27 Permanent magnet motor, sealed compressor, and refrigeration cycle device
JP2013-200860 2013-09-27

Publications (1)

Publication Number Publication Date
WO2015045331A1 true WO2015045331A1 (en) 2015-04-02

Family

ID=52742504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/004777 WO2015045331A1 (en) 2013-09-27 2014-09-17 Permanent magnet electric motor, hermetic compressor, and refrigerating cycle device

Country Status (2)

Country Link
JP (1) JP2015070652A (en)
WO (1) WO2015045331A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6727457B1 (en) * 2019-03-27 2020-07-22 三菱電機株式会社 Stator and electric motor
WO2021019751A1 (en) * 2019-07-31 2021-02-04 東芝キヤリア株式会社 Electric motor, compressor, refrigeration circuit device, and manufacturing method for electric motor
EP3975388A4 (en) * 2019-05-20 2022-07-13 Gree Electric Appliances, Inc. of Zhuhai Magnetic levitation bearing, stator, winding and manufacturing method therefor, motor, and compressor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11005325B2 (en) * 2016-07-08 2021-05-11 Mitsubishi Electric Corporation Rotating electric machine, stator of rotating electric machine, and compressor
JP6777239B2 (en) 2017-08-03 2020-10-28 三菱電機株式会社 Stator, electric motor and sealed compressor
JP7270158B2 (en) * 2018-02-22 2023-05-10 パナソニックIpマネジメント株式会社 Compressor motor, compressor, and method for manufacturing compressor motor
DE102019116257A1 (en) * 2019-06-14 2020-12-17 Nidec Gpm Gmbh Connection element for a winding of a stator on a printed circuit board with at least two insulation displacement contacts

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001275292A (en) * 2000-03-27 2001-10-05 Mitsubishi Electric Corp Three-phase motor
JP2002153003A (en) * 2000-11-13 2002-05-24 Nippon Densan Corp Stator for motor
JP2003189525A (en) * 2001-12-20 2003-07-04 Hitachi Ltd Dynamo-electric machine
JP2003230257A (en) * 2001-11-30 2003-08-15 Sanko Kiki Co Ltd Winding method for stator core
JP2005130586A (en) * 2003-10-23 2005-05-19 Mitsubishi Electric Corp Stator of motor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001275292A (en) * 2000-03-27 2001-10-05 Mitsubishi Electric Corp Three-phase motor
JP2002153003A (en) * 2000-11-13 2002-05-24 Nippon Densan Corp Stator for motor
JP2003230257A (en) * 2001-11-30 2003-08-15 Sanko Kiki Co Ltd Winding method for stator core
JP2003189525A (en) * 2001-12-20 2003-07-04 Hitachi Ltd Dynamo-electric machine
JP2005130586A (en) * 2003-10-23 2005-05-19 Mitsubishi Electric Corp Stator of motor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6727457B1 (en) * 2019-03-27 2020-07-22 三菱電機株式会社 Stator and electric motor
CN113615047A (en) * 2019-03-27 2021-11-05 三菱电机株式会社 Stator and motor
CN113615047B (en) * 2019-03-27 2022-05-06 三菱电机株式会社 Stator and motor
EP3975388A4 (en) * 2019-05-20 2022-07-13 Gree Electric Appliances, Inc. of Zhuhai Magnetic levitation bearing, stator, winding and manufacturing method therefor, motor, and compressor
WO2021019751A1 (en) * 2019-07-31 2021-02-04 東芝キヤリア株式会社 Electric motor, compressor, refrigeration circuit device, and manufacturing method for electric motor
JPWO2021019751A1 (en) * 2019-07-31 2021-02-04
JP7225407B2 (en) 2019-07-31 2023-02-20 東芝キヤリア株式会社 Electric motor, compressor, refrigerating cycle device, and method for manufacturing electric motor
EP4007127A4 (en) * 2019-07-31 2023-04-19 Toshiba Carrier Corporation Electric motor, compressor, refrigeration circuit device, and manufacturing method for electric motor

Also Published As

Publication number Publication date
JP2015070652A (en) 2015-04-13

Similar Documents

Publication Publication Date Title
WO2015045331A1 (en) Permanent magnet electric motor, hermetic compressor, and refrigerating cycle device
JP5407991B2 (en) Electric compressor
JP5772296B2 (en) Electric compressor
JP5637112B2 (en) Electric compressor
JP2009112094A (en) Interphase insulating sheet in rotating electrical machine and electric compressor
US8841806B2 (en) Electric motor and motor-driven compressor using the same
JP4178558B2 (en) Rotating electric machine
JP5713975B2 (en) Electric motor stator, electric motor, hermetic compressor and rotating machine
JP7285097B2 (en) Open wound motors, compressors, and refrigeration cycle equipment
JP2009077583A (en) Interphase insulating sheet in dynamo-electric machine, method of manufacturing interphase insulating sheet, and electric compressor
JP5950873B2 (en) Three-phase motor, hermetic compressor, and refrigeration cycle apparatus
WO2018008150A1 (en) Stator of rotary electric machine, rotary electric machine, and compressor
JP7225407B2 (en) Electric motor, compressor, refrigerating cycle device, and method for manufacturing electric motor
JP5679833B2 (en) Rotating electric machine stator, rotating electric machine and compressor
WO2020059586A1 (en) Motor and compressor
JP2015116086A (en) Dynamo-electric machine, and on-vehicle motor compressor
JP2020072579A (en) Compressor
CN111247719B (en) Stator, motor and compressor
JP6368143B2 (en) Hermetic compressor and refrigeration cycle apparatus
JP2022150517A (en) Motor, compressor, and refrigeration cycle device
JP6005296B2 (en) Electric motor or compressor using the same
KR20200089486A (en) Compressor including coil connection structure
JP2011130635A (en) Terminal module
JP2009077584A (en) Interphase insulating sheet in dynamo-electric machine, and electric compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14847712

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14847712

Country of ref document: EP

Kind code of ref document: A1