WO2015045288A1 - Thin film transistor - Google Patents

Thin film transistor Download PDF

Info

Publication number
WO2015045288A1
WO2015045288A1 PCT/JP2014/004565 JP2014004565W WO2015045288A1 WO 2015045288 A1 WO2015045288 A1 WO 2015045288A1 JP 2014004565 W JP2014004565 W JP 2014004565W WO 2015045288 A1 WO2015045288 A1 WO 2015045288A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
thin film
organic semiconductor
film transistor
drain electrode
Prior art date
Application number
PCT/JP2014/004565
Other languages
French (fr)
Japanese (ja)
Inventor
ちひろ 今村
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Publication of WO2015045288A1 publication Critical patent/WO2015045288A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/468Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics
    • H10K10/471Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics the gate dielectric comprising only organic materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/15Deposition of organic active material using liquid deposition, e.g. spin coating characterised by the solvent used
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole

Definitions

  • the present invention relates to a thin film transistor.
  • a general flat and thin image display device is driven by an active matrix of a thin film transistor using amorphous silicon or polycrystalline silicon as a semiconductor layer.
  • the manufacture of the above-described thin film transistor using silicon requires a relatively high temperature thermal process and is generally difficult to form directly on a resin substrate having low heat resistance.
  • organic semiconductors have the advantage that they can be patterned by printing methods. Furthermore, a thin film transistor using an organic semiconductor can be formed by printing not only the semiconductor layer but also the electrodes and the gate insulating layer by selecting materials that can be formed by a printing method, so that all layers constituting the thin film transistor can be formed by printing. .
  • Non-Patent Documents 1 and 2 The most common electrode material for thin film transistors is silver (Non-Patent Documents 1 and 2). However, when the organic semiconductor material is applied onto the silver electrode, the wettability between the organic semiconductor material and the silver electrode is poor, and the organic semiconductor material and the silver electrode are not sufficiently in contact.
  • the organic semiconductor material and the silver electrode are not in sufficient contact, the on-current of the thin film transistor is reduced, and desired characteristics cannot be obtained in operating the device.
  • An object of the present invention is to provide a thin film transistor in which a contact area between an organic semiconductor layer and a source electrode and a drain electrode is wide and a high on-current can be obtained.
  • the present invention provides a thin film transistor having at least a gate electrode, a gate insulating layer, a source electrode and a drain electrode, and an organic semiconductor layer on an insulating substrate, wherein the source electrode and the drain electrode are at least one metal.
  • the organic semiconductor layer contains a compound that binds to ions of the metal constituting the source electrode and the drain electrode, thereby increasing the contact area between the organic semiconductor layer and the source electrode and the drain electrode, and a high on-current.
  • a transistor from which can be obtained is provided.
  • the adjacent organic semiconductor material can be drawn near the electrode surface and physically contacted.
  • one of the metals constituting the source electrode and the drain electrode is made of silver, an electrode having higher conductivity and lower cost can be formed as compared with gold and copper.
  • the contact area between the organic semiconductor layer and the source and drain electrodes is increased, a high on-current can be obtained.
  • FIG. 1 is a schematic diagram showing a cross-sectional structure of a thin film transistor of Example 1 and Comparative Example 1 showing an embodiment of the present invention.
  • FIG. 2 is a schematic view showing the surface side of the thin film transistor of FIG.
  • FIG. 1 and 2 show an example of the thin film transistor of the present invention.
  • This is a bottom gate-bottom contact thin film transistor having a gate electrode 11, a gate insulating layer 12, a source electrode 13 and a drain electrode 14, and an organic semiconductor layer 15 on an insulating substrate 10.
  • a glass substrate or a resin substrate can be used as the insulating substrate 10 of the present invention.
  • a resin substrate for example, polyimide, polymethyl methacrylate, polyacrylate, polycarbonate, polystyrene, polyethylene sulfide, polyethersulfone (PES), polyolefin, polyethylene terephthalate, polyethylene naphthalate (PEN), cycloolefin polymer, polyethersulfene Triacetyl cellulose, polyvinyl fluoride film, ethylene-tetrafluoroethylene copolymer resin, glass fiber reinforced acrylic resin film, glass fiber reinforced polycarbonate, fluorine resin, cyclic polyolefin resin, and the like can be used.
  • These substrates can be used alone, or a composite substrate in which two or more kinds are laminated can be used.
  • the gate electrode 11 of the present invention is formed by applying a low resistance metal material such as Ag, Cu, Au or the like in the form of an ink or paste by screen printing, transfer printing, letterpress printing, an ink jet method, or the like, and baking it. Can be formed.
  • a conductive organic material such as PEDOT (polyethylenedioxythiophene) can also be used. Further, it can be formed by depositing a low resistance metal material such as Mo, Al, Cu or the like in vacuum and patterning using photolithography, but is not limited thereto.
  • the gate insulating layer 12 of the present invention for example, a polymer solution such as polyvinylphenol, polymethyl methacrylate, polyimide, polyvinyl alcohol, parylene, fluororesin, epoxy resin, a solution in which particles such as alumina and silica gel are dispersed, Alternatively, a precursor solution of an inorganic material such as silicon oxide, silicon nitride, silicon oxynitride, aluminum oxide, tantalum oxide, yttrium oxide, hafnium oxide, zirconium oxide, titanium oxide, or the like is applied using a spin coating method, a slit die coating method, or the like. It can be formed by coating and baking. In addition, the inorganic material can be formed by using a vacuum film forming method and patterned by a photolithography method, but is not limited thereto.
  • a polymer solution such as polyvinylphenol, polymethyl methacrylate, polyimide, polyvinyl alcohol, parylene, fluororesin, epoxy
  • a low resistance metal material such as Ag, Cu, Au or the like formed in an ink form or a paste form is applied by screen printing, transfer printing, letterpress printing, an inkjet method or the like, although it can be formed by firing, it is particularly preferable that Ag is formed into an ink or paste from the viewpoint of low resistance and low cost. Further, it can be formed by depositing a low resistance metal material such as Mo, Al, Cu or the like in vacuum and patterning using photolithography, but is not limited thereto.
  • Examples of the material of the organic semiconductor layer 15 of the present invention include high-molecular organic semiconductor materials such as polythiophene, fluorenebithiophene copolymers, and derivatives thereof, and low molecular weights such as pentacene, tetracene, copper phthalocyanine, and derivatives thereof.
  • Molecular organic semiconductor materials can be used.
  • carbon compounds such as carbon nanotubes or fullerenes, semiconductor nanoparticle dispersions, and the like can also be used as the material of the organic semiconductor layer 15, but are not limited thereto.
  • These organic semiconductor materials can be dissolved or dispersed in an aromatic solvent such as toluene and used as an ink-like solution or dispersion. You may add additives, such as a suitable dispersing agent and a stabilizer, to a solvent.
  • the organic semiconductor layer 15 of the present invention contains a compound that binds to metal ions.
  • a benzotrial type or triazine type compound can be mentioned.
  • the benzotriazole series is based on benzotrial represented by Chemical Formula 1, and in addition, 1H-benzotriazole-1-methanol (Chemical Formula 2), which is an adduct of methanol, and an alkyl group added to the triazole side (Chemical Formula) 3) and those obtained by adding an alkyl group to the benzene side (Chemical Formula 4).
  • the basic skeleton of triazine is represented by Chemical Formula 5, and examples thereof include 2,4-diamino-6-vinyl-S-triazine represented by Chemical Formula 6.
  • the organic semiconductor layer 15 As a method for forming the organic semiconductor layer 15, known methods such as gravure printing, offset printing, screen printing, and inkjet method can be used. In general, since the organic semiconductor has a low solubility in a solvent, it is desirable to use flexographic printing, transfer printing, an inkjet method, and a dispenser suitable for printing a low viscosity solution.
  • Example 1 In Example 1, a thin film transistor element as shown below was produced. On the polyethylene naphthalate (PEN) film used as the insulating substrate 10, Mo was formed into a film with a thickness of 100 nm by sputtering, and the gate electrode 11 was produced using a photolithography method. Next, polyvinyl phenol to be the gate insulating layer 12 was formed on the insulating substrate 10 including the gate electrode 11 by spin coating, and baked at 180 ° C. for 1 hour to obtain a gate insulating layer 12 having a thickness of 1 ⁇ m. . Subsequently, nano silver ink is formed on the gate insulating film 12 as a source electrode 13 and a drain electrode 14 using a transfer method, and after baking at 180 ° C.
  • PEN polyethylene naphthalate
  • the source electrode 13 and the drain electrode 14 having a thickness of 100 nm are formed. Obtained. Further, a self-assembled monolayer was formed on the source electrode 13 and the drain electrode 14 by immersing in a solution of pentafluorothiophenol diluted to 1% by weight with isopropyl alcohol for 30 minutes.
  • the device characteristics of the thin film transistor manufactured as described above were an off current of 1.1 ⁇ 10 ⁇ 12 A and an on current of 2.6 ⁇ 10 ⁇ 6 A, and a thin film transistor having a high on current was obtained.
  • the coverage of the surface of the source and drain electrodes in the vicinity of the channel of the organic semiconductor material was 85%.
  • Example 2 In Example 2, a thin film transistor element as shown below was produced.
  • PEN polyethylene naphthalate
  • Mo was formed into a film with a thickness of 100 nm by sputtering, and the gate electrode 11 was produced using a photolithography method.
  • polyvinyl phenol to be the gate insulating layer 12 was formed on the insulating substrate 10 including the gate electrode 11 by spin coating, and baked at 180 ° C. for 1 hour to obtain a gate insulating layer 12 having a thickness of 1 ⁇ m. .
  • nano silver ink is formed on the gate insulating film 12 as a source electrode 13 and a drain electrode 14 using a transfer method, and after baking at 180 ° C. for 1 hour, the source electrode 13 and the drain electrode 14 having a thickness of 100 nm are formed. Obtained. Further, a self-assembled monolayer was formed on the source electrode 13 and the drain electrode 14 by immersing in a solution of pentafluorothiophenol diluted to 1% by weight with isopropyl alcohol for 30 minutes.
  • a triazine compound is mixed with a semiconductor material (solid content) in a weight ratio of 1:13 in a solution in which 6,13-bis (triisopropylsilylethynyl) pentacene, which is an organic semiconductor material, is dissolved in tetralin to 2% by weight.
  • a relief printing method printing is performed between the source and drain electrodes so as to cover a part of the source electrode 13 and the drain electrode 14, and dried at 100 ° C. for 60 minutes.
  • An organic semiconductor layer 15 was formed.
  • the manufactured transistor has a channel length of 20 ⁇ m and a channel width of 250 ⁇ m.
  • the device characteristics of the thin film transistor manufactured as described above were an off current of 1.3 ⁇ 10 ⁇ 12 A and an on current of 2.2 ⁇ 10 ⁇ 6 A, and a thin film transistor having a high on current was obtained.
  • the coverage of the surface of the source and drain electrodes in the vicinity of the channel of the organic semiconductor material was 80%.
  • Comparative Example 1 a thin film transistor element as shown below was produced.
  • PEN polyethylene naphthalate
  • Mo was formed into a film with a thickness of 100 nm by sputtering, and the gate electrode 11 was produced using a photolithography method.
  • polyvinyl phenol to be the gate insulating layer 12 was formed on the insulating substrate 10 including the gate electrode 11 by spin coating, and baked at 180 ° C. for 1 hour to obtain a gate insulating layer 12 having a thickness of 1 ⁇ m. .
  • nano silver ink is formed on the gate insulating film 12 as a source electrode 13 and a drain electrode 14 using a transfer method, and after baking at 180 ° C. for 1 hour, the source electrode 13 and the drain electrode 14 having a thickness of 100 nm are formed. Obtained. Further, a self-assembled monolayer was formed on the source electrode 13 and the drain electrode 14 by immersing in a solution of pentafluorothiophenol diluted to 1% by weight with isopropyl alcohol for 30 minutes.
  • the element characteristics of the thin film transistor manufactured without adding a compound that binds to metal ions to the organic semiconductor layer as described above are as follows: off-current 1.3 ⁇ 10 ⁇ 12 A, on-current 7.0 ⁇ 10 ⁇ 7 A In comparison with Example 1, the value of the on-current was 1/3 or less. Further, the coverage of the surface of the source and drain electrodes in the vicinity of the channel of the organic semiconductor material was 30%.
  • a thin film transistor having at least a gate electrode, a gate insulating layer, a source electrode and a drain electrode, and an organic semiconductor layer on an insulating substrate, and the source electrode and the drain electrode are made of at least one metal.
  • the contact area between the organic semiconductor layer, the source electrode, and the drain electrode is increased, and a high on-current can be obtained.
  • a transistor can be provided.
  • the compound contained in the organic semiconductor layer when the compound contained in the organic semiconductor layer is combined with the source electrode and the drain electrode, it is possible to draw the organic semiconductor material existing adjacent to the vicinity of the electrode surface and make physical contact therewith.
  • one of the metals constituting the source electrode and the drain electrode is made of silver, an electrode having higher conductivity and lower cost can be formed as compared with gold and copper.
  • a thin film transistor having at least a gate electrode, a gate insulating layer, a source electrode and a drain electrode, and an organic semiconductor layer on an insulating substrate, wherein the source electrode and the drain electrode are made of at least one kind of metal,
  • a thin film transistor With a large contact area between the semiconductor layer and the source electrode and the drain electrode can be provided.
  • Such a thin film transistor can be used as a switching element such as flexible electronic paper and a pressure sensor.

Abstract

The purpose of the present invention is to provide a thin film transistor, which has a large contact area between an organic semiconductor layer, and a source electrode and a drain electrode, and which makes it possible to obtain a high on-current. This thin film transistor at least has, on an insulating substrate, a gate electrode, a gate insulating layer, a source electrode and a drain electrode, and an organic semiconductor layer. The source electrode and the drain electrode are configured from at least one kind of metal, and the organic semiconductor layer contains a compound that combines with metal ions that constitute the source electrode and the drain electrode.

Description

薄膜トランジスタThin film transistor
 本発明は、薄膜トランジスタに関する。 The present invention relates to a thin film transistor.
 現在、一般的な平面薄型画像表示装置は非晶質シリコンや多結晶シリコンを半導体層に用いた薄膜トランジスタのアクティブマトリックスにより駆動されている。 Currently, a general flat and thin image display device is driven by an active matrix of a thin film transistor using amorphous silicon or polycrystalline silicon as a semiconductor layer.
 一方、平面薄型画像表示装置のさらなる薄型化、軽量化、耐破損性の向上を求めて、ガラス基板の替わりに樹脂基板を用いる試みが近年なされている。 On the other hand, attempts have been made in recent years to use a resin substrate instead of a glass substrate in order to further reduce the thickness, weight, and breakage resistance of flat and thin image display devices.
 しかし、上述のシリコンを用いる薄膜トランジスタの製造は、比較的高温の熱工程を要し、一般的に耐熱性の低い樹脂基板上に直接形成することは困難である。 However, the manufacture of the above-described thin film transistor using silicon requires a relatively high temperature thermal process and is generally difficult to form directly on a resin substrate having low heat resistance.
 そこで、低温形成が可能な有機半導体を用いた薄膜トランジスタの開発が活発に行われている。 Therefore, development of a thin film transistor using an organic semiconductor that can be formed at a low temperature is being actively conducted.
 また、有機半導体は印刷法によってパターニングが可能であるという長所を有する。さらに、有機半導体を用いた薄膜トランジスタは半導体層だけでなく、電極やゲート絶縁層も印刷法によって形成可能な材料を選択することにより、薄膜トランジスタを構成する層を全て印刷により形成することも可能である。 Also, organic semiconductors have the advantage that they can be patterned by printing methods. Furthermore, a thin film transistor using an organic semiconductor can be formed by printing not only the semiconductor layer but also the electrodes and the gate insulating layer by selecting materials that can be formed by a printing method, so that all layers constituting the thin film transistor can be formed by printing. .
 印刷法を用いることにより、真空成膜・フォトリソグラフィーにより製造されるシリコン系薄膜とトランジスタと比較して製造コストの大幅な削減が期待される。 By using the printing method, a significant reduction in manufacturing costs is expected compared to silicon-based thin films and transistors manufactured by vacuum film formation and photolithography.
 薄膜トランジスタの電極材料としては銀が用いられることが最も一般的である(非特許文献1、2)。しかし、有機半導体材料を銀電極上へ塗布した際に、有機半導体材料と銀電極との濡れ性が悪く、有機半導体材料と銀電極が十分に接触していないことが問題となっている。 The most common electrode material for thin film transistors is silver (Non-Patent Documents 1 and 2). However, when the organic semiconductor material is applied onto the silver electrode, the wettability between the organic semiconductor material and the silver electrode is poor, and the organic semiconductor material and the silver electrode are not sufficiently in contact.
 有機半導体材料と銀電極が十分に接触しなければ、薄膜トランジスタのオン電流が減少し、デバイスを動作させる上で所望の特性が得られないこととなる。 If the organic semiconductor material and the silver electrode are not in sufficient contact, the on-current of the thin film transistor is reduced, and desired characteristics cannot be obtained in operating the device.
 本発明は、有機半導体層とソース電極及びドレイン電極との接触面積が広く、高いオン電流が得られる薄膜トランジスタを提供することを目的とする。 An object of the present invention is to provide a thin film transistor in which a contact area between an organic semiconductor layer and a source electrode and a drain electrode is wide and a high on-current can be obtained.
 そこで本発明は、絶縁基板上に少なくともゲート電極と、ゲート絶縁層と、ソース電極及びドレイン電極と、有機半導体層とを有する薄膜トランジスタであって、該ソース電極及びドレイン電極は少なくとも1種以上の金属から構成され、該有機半導体層に該ソース電極及びドレイン電極を構成する金属のイオンと結合する化合物を含有させることで、有機半導体層とソース電極及びドレイン電極の接触面積を増加させ、高いオン電流が得られるトランジスタを提供する。 Therefore, the present invention provides a thin film transistor having at least a gate electrode, a gate insulating layer, a source electrode and a drain electrode, and an organic semiconductor layer on an insulating substrate, wherein the source electrode and the drain electrode are at least one metal. And the organic semiconductor layer contains a compound that binds to ions of the metal constituting the source electrode and the drain electrode, thereby increasing the contact area between the organic semiconductor layer and the source electrode and the drain electrode, and a high on-current. A transistor from which can be obtained is provided.
 有機半導体層中に含まれる化合物がソース電極及びドレイン電極と結合した際に、隣接して存在する有機半導体材料を電極表面近傍に引き寄せ、物理的に接触させることが可能となる。 When the compound contained in the organic semiconductor layer is combined with the source electrode and the drain electrode, the adjacent organic semiconductor material can be drawn near the electrode surface and physically contacted.
 また、ソース電極及びドレイン電極を構成する金属の1種を銀とすることで、金、銅と比較し高導電性かつ低コストの電極を形成することができる。 In addition, when one of the metals constituting the source electrode and the drain electrode is made of silver, an electrode having higher conductivity and lower cost can be formed as compared with gold and copper.
 特に、有機半導体層に含有させる金属イオンと結合する化合物をベンゾトリアゾール系またはトリアジン系化合物とすることで、化合物と銀電極の結合が強固となり、半導体層と電極が十分に接触する薄膜トランジスタを形成することが可能となる。 In particular, by using a benzotriazole-based or triazine-based compound as a compound that binds to metal ions contained in the organic semiconductor layer, the bond between the compound and the silver electrode becomes strong, and a thin film transistor in which the semiconductor layer and the electrode are in sufficient contact is formed. It becomes possible.
 本発明によれば、有機半導体層とソース電極及びドレイン電極の接触面積を増加させるので、高いオン電流が得られる。 According to the present invention, since the contact area between the organic semiconductor layer and the source and drain electrodes is increased, a high on-current can be obtained.
図1は、本発明の一実施形態を示す実施例1及び比較例1の薄膜トランジスタの断面構造を表す概略図である。FIG. 1 is a schematic diagram showing a cross-sectional structure of a thin film transistor of Example 1 and Comparative Example 1 showing an embodiment of the present invention. 図2は、図1の薄膜トランジスタの表面側を示す概略図である。FIG. 2 is a schematic view showing the surface side of the thin film transistor of FIG.
 以下、本発明の実施の形態を、図面を参照しつつ説明する。実施の形態において、同一構成要素には同一符号を付け、実施の形態の間において重複する説明は省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the embodiments, the same components are denoted by the same reference numerals, and redundant description among the embodiments is omitted.
 図1及び図2に本発明の薄膜トランジスタの一例を示す。絶縁基板10上にゲート電極11、ゲート絶縁層12、ソース電極13およびドレイン電極14、有機半導体層15を備えたボトムゲート-ボトムコンタクト構造の薄膜トランジスタである。 1 and 2 show an example of the thin film transistor of the present invention. This is a bottom gate-bottom contact thin film transistor having a gate electrode 11, a gate insulating layer 12, a source electrode 13 and a drain electrode 14, and an organic semiconductor layer 15 on an insulating substrate 10.
 本発明の絶縁基板10としてガラス基板または樹脂基板を用いることができる。樹脂基板の場合、例えば、ポリイミド、ポリメチルメタクリレート、ポリアクリレート、ポリカーボネート、ポリスチレン、ポリエチレンサルファイド、ポリエーテルスルホン(PES)、ポリオレフィン、ポリエチレンテレフタレート、ポリエチレンナフタレート(PEN)、シクロオレフィンポリマー、ポリエーテルサルフェン、トリアセチルセルロース、ポリビニルフルオライドフィルム、エチレン-テトラフルオロエチレン共重合樹脂、ガラス繊維強化アクリル樹脂フィルム、ガラス繊維強化ポリカーボネート、フッ素系樹脂、環状ポリオレフィン系樹脂等を使用することができる。これらの基板は単独で使用することもでき、2種以上を積層した複合基板を使用することもできる。 A glass substrate or a resin substrate can be used as the insulating substrate 10 of the present invention. In the case of a resin substrate, for example, polyimide, polymethyl methacrylate, polyacrylate, polycarbonate, polystyrene, polyethylene sulfide, polyethersulfone (PES), polyolefin, polyethylene terephthalate, polyethylene naphthalate (PEN), cycloolefin polymer, polyethersulfene Triacetyl cellulose, polyvinyl fluoride film, ethylene-tetrafluoroethylene copolymer resin, glass fiber reinforced acrylic resin film, glass fiber reinforced polycarbonate, fluorine resin, cyclic polyolefin resin, and the like can be used. These substrates can be used alone, or a composite substrate in which two or more kinds are laminated can be used.
 本発明のゲート電極11には、Ag、Cu、Auなどの低抵抗金属材料をインキ状、ペースト状にしたものをスクリーン印刷、転写印刷、凸版印刷、インクジェット法等で塗布し、焼成することにより形成することができる。PEDOT(ポリエチレンジオキシチフェン)等の導電性有機材料を用いることもできる。また、Mo、Al、Cuなどの低抵抗金属材料を真空成膜し、フォトリソグラフィーを用いてパターニングすることにより形成することもできるが、これらに限定されるものではない。 The gate electrode 11 of the present invention is formed by applying a low resistance metal material such as Ag, Cu, Au or the like in the form of an ink or paste by screen printing, transfer printing, letterpress printing, an ink jet method, or the like, and baking it. Can be formed. A conductive organic material such as PEDOT (polyethylenedioxythiophene) can also be used. Further, it can be formed by depositing a low resistance metal material such as Mo, Al, Cu or the like in vacuum and patterning using photolithography, but is not limited thereto.
 本発明のゲート絶縁層12としては、例えば、ポリビニルフェノール、ポリメタクリル酸メチル、ポリイミド、ポリビニルアルコール、パリレン、フッ素樹脂、エポキシ樹脂などの高分子溶液、アルミナやシリカゲル等の粒子を分散させた溶液、または酸化シリコン、窒化シリコン、シリコンオキシナイトライド、酸化アルミニウム、酸化タンタル、酸化イットリウム、酸化ハフニウム、酸化ジルコニウム、酸化チタン等の無機材料の前駆体溶液を、スピンコート法やスリットダイコート法等を用いて塗布し、焼成することにより形成することができる。また、上記無機材料を真空成膜法を用いて形成し、フォトリソグラフィー法でパターニングすることにより形成することもできるが、これらに限定されるものではない。 As the gate insulating layer 12 of the present invention, for example, a polymer solution such as polyvinylphenol, polymethyl methacrylate, polyimide, polyvinyl alcohol, parylene, fluororesin, epoxy resin, a solution in which particles such as alumina and silica gel are dispersed, Alternatively, a precursor solution of an inorganic material such as silicon oxide, silicon nitride, silicon oxynitride, aluminum oxide, tantalum oxide, yttrium oxide, hafnium oxide, zirconium oxide, titanium oxide, or the like is applied using a spin coating method, a slit die coating method, or the like. It can be formed by coating and baking. In addition, the inorganic material can be formed by using a vacuum film forming method and patterned by a photolithography method, but is not limited thereto.
 本発明のソース電極13及びドレイン電極14としては、Ag、Cu、Auなどの低抵抗金属材料をインキ状、ペースト状にしたものをスクリーン印刷、転写印刷、凸版印刷、インクジェット法等で塗布し、焼成することにより形成することができるが、特にAgをインキ状またはペースト状にしたものが、低抵抗および低コストという観点から好ましい。またMo、Al、Cuなどの低抵抗金属材料を真空成膜し、フォトリソグラフィーを用いてパターニングすることにより形成することもできるが、これらに限定されるものではない。 As the source electrode 13 and the drain electrode 14 of the present invention, a low resistance metal material such as Ag, Cu, Au or the like formed in an ink form or a paste form is applied by screen printing, transfer printing, letterpress printing, an inkjet method or the like, Although it can be formed by firing, it is particularly preferable that Ag is formed into an ink or paste from the viewpoint of low resistance and low cost. Further, it can be formed by depositing a low resistance metal material such as Mo, Al, Cu or the like in vacuum and patterning using photolithography, but is not limited thereto.
 本発明の有機半導体層15の材料としては、ポリチオフェン、フルオレンビチオフェン共重合体、およびそれらの誘導体のような高分子有機半導体材料、およびペンタセン、テトラセン、銅フタロシアニン、およびそれらの誘導体のような低分子有機半導体材料を用いることができる。また、カーボンナノチューブあるいはフラーレンなどの炭素化合物や半導体ナノ粒子分散液なども有機半導体層15の材料として用いることができるがこれらに限定されるものではない。これらの有機半導体材料はトルエンなどの芳香族系の溶媒に溶解又は分散させてインキ状の溶液又は分散液として用いることができる。溶媒に適当な分散剤や安定剤等の添加剤を加えてもよい。 Examples of the material of the organic semiconductor layer 15 of the present invention include high-molecular organic semiconductor materials such as polythiophene, fluorenebithiophene copolymers, and derivatives thereof, and low molecular weights such as pentacene, tetracene, copper phthalocyanine, and derivatives thereof. Molecular organic semiconductor materials can be used. Further, carbon compounds such as carbon nanotubes or fullerenes, semiconductor nanoparticle dispersions, and the like can also be used as the material of the organic semiconductor layer 15, but are not limited thereto. These organic semiconductor materials can be dissolved or dispersed in an aromatic solvent such as toluene and used as an ink-like solution or dispersion. You may add additives, such as a suitable dispersing agent and a stabilizer, to a solvent.
 本発明の有機半導体層15には金属イオンと結合する化合物を含有する。例えばベンゾトリアール系またはトリアジン系の化合物が挙げられる。 The organic semiconductor layer 15 of the present invention contains a compound that binds to metal ions. For example, a benzotrial type or triazine type compound can be mentioned.
 ベンゾトリアゾール系は化学式1に示されるベンゾトリアールが基本形であり、他にメタノールの付加物である1H-ベンゾトリアゾール-1-メタノール(化学式2)や、トリアゾール側にアルキル基を付加したもの(化学式3)や、ベンゼン側にアルキル基を付加したものが挙げられる(化学式4)。 The benzotriazole series is based on benzotrial represented by Chemical Formula 1, and in addition, 1H-benzotriazole-1-methanol (Chemical Formula 2), which is an adduct of methanol, and an alkyl group added to the triazole side (Chemical Formula) 3) and those obtained by adding an alkyl group to the benzene side (Chemical Formula 4).
 トリアジンの基本骨格は化学式5に示されるものであり、例えば化学式6に示される2、4-ジアミノ-6-ビニル-S-トリアジン等が挙げられる。 The basic skeleton of triazine is represented by Chemical Formula 5, and examples thereof include 2,4-diamino-6-vinyl-S-triazine represented by Chemical Formula 6.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 有機半導体層15の形成方法としては、グラビア印刷、オフセット印刷、スクリーン印刷およびインクジェット法など、公知の方法を用いることができる。一般に、上記の有機半導体に関しては、溶剤に対する溶解度が低いため、低粘度溶液の印刷に適したフレキソ印刷、転写印刷、インクジェット法、ディスペンサを用いることが望ましい。 As a method for forming the organic semiconductor layer 15, known methods such as gravure printing, offset printing, screen printing, and inkjet method can be used. In general, since the organic semiconductor has a low solubility in a solvent, it is desirable to use flexographic printing, transfer printing, an inkjet method, and a dispenser suitable for printing a low viscosity solution.
 以下、本発明に係る薄膜トランジスタの具体的な実施例について説明する。なお、本発明は各実施例に限るものではない。 Hereinafter, specific examples of the thin film transistor according to the present invention will be described. Note that the present invention is not limited to each embodiment.
 以下本発明に関わる薄膜トランジスタの具体的な実施例及び比較例について説明する。 Hereinafter, specific examples and comparative examples of the thin film transistor according to the present invention will be described.
(実施例1)
 実施例1では以下に示すような薄膜トランジスタ素子を作製した。
 絶縁基板10となるポリエチレンナフタレート(PEN)フィルム上に、Moをスパッタリングにて100nm成膜し、フォトリソグラフィー法を用いてゲート電極11を作製した。次に、ゲート絶縁層12となるポリビニルフェノールを、ゲート電極11を含む絶縁基板10上にスピンコート法により成膜し、180℃で1時間ベーク後、膜厚1μmのゲート絶縁層12を得た。続いて、ゲート絶縁膜12上にソース電極13及びドレイン電極14として、ナノ銀インキを転写法を用いて形成し、180℃で1時間ベーク後、膜厚100nmのソース電極13及びドレイン電極14を得た。さらにソース電極13及びドレイン電極14上にペンタフルオロチオフェノールをイソプロピルアルコールで1重量%に希釈した溶液に30分浸漬させ、自己組織化単分子膜を形成した。最後に有機半導体材料である6,13-ビス(トリイソプロピルシリルエチニル)ペンタセンをテトラリンで2重量%になるように溶解させた溶液に、ベンゾトリアゾール系化合物を半導体材料(固形分)と重量比1.5:1として添加し、凸版印刷法を用いて、ソース電極13及びドレイン電極14上の一部を覆うようにしてソース・ドレイン電極間に印刷し、100℃で60分乾燥させて、膜厚50nmの有機半導体層15を形成した。作製したトランジスタのチャネル長は20μm、チャネル幅は250μmである。
Example 1
In Example 1, a thin film transistor element as shown below was produced.
On the polyethylene naphthalate (PEN) film used as the insulating substrate 10, Mo was formed into a film with a thickness of 100 nm by sputtering, and the gate electrode 11 was produced using a photolithography method. Next, polyvinyl phenol to be the gate insulating layer 12 was formed on the insulating substrate 10 including the gate electrode 11 by spin coating, and baked at 180 ° C. for 1 hour to obtain a gate insulating layer 12 having a thickness of 1 μm. . Subsequently, nano silver ink is formed on the gate insulating film 12 as a source electrode 13 and a drain electrode 14 using a transfer method, and after baking at 180 ° C. for 1 hour, the source electrode 13 and the drain electrode 14 having a thickness of 100 nm are formed. Obtained. Further, a self-assembled monolayer was formed on the source electrode 13 and the drain electrode 14 by immersing in a solution of pentafluorothiophenol diluted to 1% by weight with isopropyl alcohol for 30 minutes. Finally, in a solution in which 6,13-bis (triisopropylsilylethynyl) pentacene, which is an organic semiconductor material, is dissolved in tetralin to 2% by weight, the benzotriazole compound is mixed with the semiconductor material (solid content) in a weight ratio of 1 .5: 1, and printing is performed between the source electrode and the drain electrode so as to cover a part of the source electrode 13 and the drain electrode 14 using a relief printing method, and dried at 100 ° C. for 60 minutes to form a film. An organic semiconductor layer 15 having a thickness of 50 nm was formed. The manufactured transistor has a channel length of 20 μm and a channel width of 250 μm.
 以上のようにして作製した薄膜トランジスタの素子特性はオフ電流1.1×10-12A、オン電流2.6×10-6Aであり、高いオン電流を有する薄膜トランジスタが得られた。また有機半導体材料のチャネル近傍のソース電極及びドレイン電極表面の被覆率は85%であった。 The device characteristics of the thin film transistor manufactured as described above were an off current of 1.1 × 10 −12 A and an on current of 2.6 × 10 −6 A, and a thin film transistor having a high on current was obtained. The coverage of the surface of the source and drain electrodes in the vicinity of the channel of the organic semiconductor material was 85%.
(実施例2)
 実施例2では以下に示すような薄膜トランジスタ素子を作製した。
 絶縁基板10となるポリエチレンナフタレート(PEN)フィルム上に、Moをスパッタリングにて100nm成膜し、フォトリソグラフィー法を用いてゲート電極11を作製した。次に、ゲート絶縁層12となるポリビニルフェノールを、ゲート電極11を含む絶縁基板10上にスピンコート法により成膜し、180℃で1時間ベーク後、膜厚1μmのゲート絶縁層12を得た。続いて、ゲート絶縁膜12上にソース電極13及びドレイン電極14として、ナノ銀インキを転写法を用いて形成し、180℃で1時間ベーク後、膜厚100nmのソース電極13及びドレイン電極14を得た。さらにソース電極13及びドレイン電極14上にペンタフルオロチオフェノールをイソプロピルアルコールで1重量%に希釈した溶液に30分浸漬させ、自己組織化単分子膜を形成した。最後に有機半導体材料である6,13-ビス(トリイソプロピルシリルエチニル)ペンタセンをテトラリンで2重量%になるように溶解させた溶液に、トリアジン系化合物を半導体材料(固形分)と重量比1:1として添加し、凸版印刷法を用いて、ソース電極13及びドレイン電極14上の一部を覆うようにしてソース・ドレイン電極間に印刷し、100℃で60分乾燥させて、膜厚50nmの有機半導体層15を形成した。作製したトランジスタのチャネル長は20μm、チャネル幅は250μmである。
(Example 2)
In Example 2, a thin film transistor element as shown below was produced.
On the polyethylene naphthalate (PEN) film used as the insulating substrate 10, Mo was formed into a film with a thickness of 100 nm by sputtering, and the gate electrode 11 was produced using a photolithography method. Next, polyvinyl phenol to be the gate insulating layer 12 was formed on the insulating substrate 10 including the gate electrode 11 by spin coating, and baked at 180 ° C. for 1 hour to obtain a gate insulating layer 12 having a thickness of 1 μm. . Subsequently, nano silver ink is formed on the gate insulating film 12 as a source electrode 13 and a drain electrode 14 using a transfer method, and after baking at 180 ° C. for 1 hour, the source electrode 13 and the drain electrode 14 having a thickness of 100 nm are formed. Obtained. Further, a self-assembled monolayer was formed on the source electrode 13 and the drain electrode 14 by immersing in a solution of pentafluorothiophenol diluted to 1% by weight with isopropyl alcohol for 30 minutes. Finally, a triazine compound is mixed with a semiconductor material (solid content) in a weight ratio of 1:13 in a solution in which 6,13-bis (triisopropylsilylethynyl) pentacene, which is an organic semiconductor material, is dissolved in tetralin to 2% by weight. 1 and using a relief printing method, printing is performed between the source and drain electrodes so as to cover a part of the source electrode 13 and the drain electrode 14, and dried at 100 ° C. for 60 minutes. An organic semiconductor layer 15 was formed. The manufactured transistor has a channel length of 20 μm and a channel width of 250 μm.
 以上のようにして作製した薄膜トランジスタの素子特性はオフ電流1.3×10-12A、オン電流2.2×10-6Aであり、高いオン電流を有する薄膜トランジスタが得られた。また有機半導体材料のチャネル近傍のソース電極及びドレイン電極表面の被覆率は80%であった。 The device characteristics of the thin film transistor manufactured as described above were an off current of 1.3 × 10 −12 A and an on current of 2.2 × 10 −6 A, and a thin film transistor having a high on current was obtained. The coverage of the surface of the source and drain electrodes in the vicinity of the channel of the organic semiconductor material was 80%.
(比較例1)
 比較例では以下に示すような薄膜トランジスタ素子を作製した。
 絶縁基板10となるポリエチレンナフタレート(PEN)フィルム上に、Moをスパッタリングにて100nm成膜し、フォトリソグラフィー法を用いてゲート電極11を作製した。次に、ゲート絶縁層12となるポリビニルフェノールを、ゲート電極11を含む絶縁基板10上にスピンコート法により成膜し、180℃で1時間ベーク後、膜厚1μmのゲート絶縁層12を得た。続いて、ゲート絶縁膜12上にソース電極13及びドレイン電極14として、ナノ銀インキを転写法を用いて形成し、180℃で1時間ベーク後、膜厚100nmのソース電極13及びドレイン電極14を得た。さらにソース電極13及びドレイン電極14上にペンタフルオロチオフェノールをイソプロピルアルコールで1重量%に希釈した溶液に30分浸漬させ、自己組織化単分子膜を形成した。最後に有機半導体材料である6,13-ビス(トリイソプロピルシリルエチニル)ペンタセンをテトラリンで2重量%になるように溶解させた溶液を、凸版印刷法を用いて、ソース電極13及びドレイン電極14上の一部を覆うようにしてソース・ドレイン電極間に印刷し、100℃で60分乾燥させて、膜厚50nmの有機半導体層15を形成した。作製したトランジスタのチャネル長は20μm、チャネル幅は250μmである。
(Comparative Example 1)
In the comparative example, a thin film transistor element as shown below was produced.
On the polyethylene naphthalate (PEN) film used as the insulating substrate 10, Mo was formed into a film with a thickness of 100 nm by sputtering, and the gate electrode 11 was produced using a photolithography method. Next, polyvinyl phenol to be the gate insulating layer 12 was formed on the insulating substrate 10 including the gate electrode 11 by spin coating, and baked at 180 ° C. for 1 hour to obtain a gate insulating layer 12 having a thickness of 1 μm. . Subsequently, nano silver ink is formed on the gate insulating film 12 as a source electrode 13 and a drain electrode 14 using a transfer method, and after baking at 180 ° C. for 1 hour, the source electrode 13 and the drain electrode 14 having a thickness of 100 nm are formed. Obtained. Further, a self-assembled monolayer was formed on the source electrode 13 and the drain electrode 14 by immersing in a solution of pentafluorothiophenol diluted to 1% by weight with isopropyl alcohol for 30 minutes. Finally, a solution in which 6,13-bis (triisopropylsilylethynyl) pentacene, which is an organic semiconductor material, is dissolved in tetralin so as to be 2% by weight is formed on the source electrode 13 and the drain electrode 14 using a relief printing method. The organic semiconductor layer 15 having a film thickness of 50 nm was formed by printing between the source and drain electrodes so as to cover a part of the film and drying at 100 ° C. for 60 minutes. The manufactured transistor has a channel length of 20 μm and a channel width of 250 μm.
 以上のようにして有機半導体層に、金属イオンと結合する化合物を添加せずに作製した薄膜トランジスタの素子特性はオフ電流1.3×10-12A、オン電流7.0×10-7Aであり、実施例1と比較するとオン電流の値は3分の1以下であった。また有機半導体材料のチャネル近傍のソース電極及びドレイン電極表面の被覆率は30%であった。 The element characteristics of the thin film transistor manufactured without adding a compound that binds to metal ions to the organic semiconductor layer as described above are as follows: off-current 1.3 × 10 −12 A, on-current 7.0 × 10 −7 A In comparison with Example 1, the value of the on-current was 1/3 or less. Further, the coverage of the surface of the source and drain electrodes in the vicinity of the channel of the organic semiconductor material was 30%.
 本発明によれば、以下の少なくとも1つの効果が得られる。すなわち、絶縁基板上に少なくともゲート電極と、ゲート絶縁層と、ソース電極及びドレイン電極と、有機半導体層とを有する薄膜トランジスタであって、該ソース電極及びドレイン電極は少なくとも1種以上の金属から構成され、該有機半導体層に該ソース電極及びドレイン電極を構成する金属のイオンと結合する化合物を含有させることで、有機半導体層とソース電極及びドレイン電極の接触面積を増加させ、高いオン電流が得られるトランジスタを提供することができる。 According to the present invention, at least one of the following effects can be obtained. That is, a thin film transistor having at least a gate electrode, a gate insulating layer, a source electrode and a drain electrode, and an organic semiconductor layer on an insulating substrate, and the source electrode and the drain electrode are made of at least one metal. By adding a compound that binds to metal ions constituting the source electrode and the drain electrode in the organic semiconductor layer, the contact area between the organic semiconductor layer, the source electrode, and the drain electrode is increased, and a high on-current can be obtained. A transistor can be provided.
 また、有機半導体層中に含まれる化合物がソース電極及びドレイン電極と結合した際に、隣接して存在する有機半導体材料を電極表面近傍に引き寄せ、物理的に接触させることが可能となる。 In addition, when the compound contained in the organic semiconductor layer is combined with the source electrode and the drain electrode, it is possible to draw the organic semiconductor material existing adjacent to the vicinity of the electrode surface and make physical contact therewith.
 また、ソース電極及びドレイン電極を構成する金属の1種を銀とすることで、金、銅と比較し高導電性かつ低コストの電極を形成することができる。 In addition, when one of the metals constituting the source electrode and the drain electrode is made of silver, an electrode having higher conductivity and lower cost can be formed as compared with gold and copper.
 また、有機半導体層に含有させる金属イオンと結合する化合物をベンゾトリアゾール系またはトリアジン系化合物とすることで、化合物と銀電極の結合が強固となり、半導体層と電極が十分に接触する薄膜トランジスタを形成することが可能となる。 In addition, by using a benzotriazole-based or triazine-based compound as a compound that is bonded to a metal ion contained in the organic semiconductor layer, the bond between the compound and the silver electrode becomes strong, and a thin film transistor in which the semiconductor layer and the electrode are in sufficient contact is formed. It becomes possible.
 また、有機半導体層とソース電極及びドレイン電極の接触面積を増加させるので、高いオン電流が得られる。 Also, since the contact area between the organic semiconductor layer and the source and drain electrodes is increased, a high on-current can be obtained.
 絶縁基板上に少なくともゲート電極、ゲート絶縁層、ソース電極及びドレイン電極、有機半導体層を有する薄膜トランジスタであって、該ソース電極及びドレイン電極は少なくとも1種以上の金属から構成され、該有機半導体層は該ソース電極及びドレイン電極を構成する金属イオンと結合する化合物を含有することで、半導体層とソース電極及びドレイン電極の接触面積が広く、オン電流の高い薄膜トランジスタを提供することができる。このような薄膜トランジスタは、フレキシブル電子ペーパー、圧力センサ等のスイッチング素子として利用できる。 A thin film transistor having at least a gate electrode, a gate insulating layer, a source electrode and a drain electrode, and an organic semiconductor layer on an insulating substrate, wherein the source electrode and the drain electrode are made of at least one kind of metal, By containing the compound that binds to the metal ions constituting the source electrode and the drain electrode, a thin film transistor with a large contact area between the semiconductor layer and the source electrode and the drain electrode can be provided. Such a thin film transistor can be used as a switching element such as flexible electronic paper and a pressure sensor.
 10 絶縁基板
 11 ゲート電極
 12 ゲート絶縁層
 13 ソース電極
 14 ドレイン電極
 15 有機半導体層
DESCRIPTION OF SYMBOLS 10 Insulating substrate 11 Gate electrode 12 Gate insulating layer 13 Source electrode 14 Drain electrode 15 Organic-semiconductor layer

Claims (3)

  1.  絶縁基板上に少なくともゲート電極と、ゲート絶縁層と、ソース電極及びドレイン電極と、有機半導体層とを有する薄膜トランジスタであって、
     該ソース電極及びドレイン電極は少なくとも1種以上の金属から構成され、該有機半導体層は該ソース電極及びドレイン電極を構成する金属イオンと結合する化合物を含有する、薄膜トランジスタ。
    A thin film transistor having at least a gate electrode, a gate insulating layer, a source electrode and a drain electrode, and an organic semiconductor layer on an insulating substrate,
    The thin film transistor, wherein the source electrode and the drain electrode are made of at least one metal, and the organic semiconductor layer contains a compound that binds to metal ions constituting the source electrode and the drain electrode.
  2.  前記ソース電極及びドレイン電極を構成する金属の1種が銀である、請求項1に記載の薄膜トランジスタ。 The thin film transistor according to claim 1, wherein one of the metals constituting the source electrode and the drain electrode is silver.
  3.  前記有機半導体層に含有される金属イオンと結合する化合物はベンゾトリアゾール系またはトリアジン系である、請求項1または2に記載の薄膜トランジスタ。 The thin film transistor according to claim 1 or 2, wherein the compound that binds to the metal ion contained in the organic semiconductor layer is a benzotriazole-based or triazine-based compound.
PCT/JP2014/004565 2013-09-25 2014-09-04 Thin film transistor WO2015045288A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013198561A JP6303358B2 (en) 2013-09-25 2013-09-25 Thin film transistor
JP2013-198561 2013-09-25

Publications (1)

Publication Number Publication Date
WO2015045288A1 true WO2015045288A1 (en) 2015-04-02

Family

ID=52742463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/004565 WO2015045288A1 (en) 2013-09-25 2014-09-04 Thin film transistor

Country Status (3)

Country Link
JP (1) JP6303358B2 (en)
TW (1) TW201519451A (en)
WO (1) WO2015045288A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9837407B1 (en) 2016-09-06 2017-12-05 International Business Machines Corporation Semiconductor device with increased source/drain area

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004158710A (en) * 2002-11-07 2004-06-03 Asahi Kasei Corp Organic semiconductor thin film and its producing process
JP2006077171A (en) * 2004-09-10 2006-03-23 Tokyo Institute Of Technology Benzotriazole structure-containing polymer, method for producing the same and charge transport material and organic electronic device
JP2008124164A (en) * 2006-11-10 2008-05-29 Sony Corp Semiconductor device and its manufacturing method
JP2013520811A (en) * 2010-02-25 2013-06-06 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Electrode processing method for organic electronic devices

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004158710A (en) * 2002-11-07 2004-06-03 Asahi Kasei Corp Organic semiconductor thin film and its producing process
JP2006077171A (en) * 2004-09-10 2006-03-23 Tokyo Institute Of Technology Benzotriazole structure-containing polymer, method for producing the same and charge transport material and organic electronic device
JP2008124164A (en) * 2006-11-10 2008-05-29 Sony Corp Semiconductor device and its manufacturing method
JP2013520811A (en) * 2010-02-25 2013-06-06 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Electrode processing method for organic electronic devices

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9837407B1 (en) 2016-09-06 2017-12-05 International Business Machines Corporation Semiconductor device with increased source/drain area

Also Published As

Publication number Publication date
JP2015065317A (en) 2015-04-09
JP6303358B2 (en) 2018-04-04
TW201519451A (en) 2015-05-16

Similar Documents

Publication Publication Date Title
Ju et al. Transparent active matrix organic light-emitting diode displays driven by nanowire transistor circuitry
US9978841B2 (en) Graphene-based laminate and method of preparing the same
US8963141B2 (en) Thin-film transistor, fabrication method thereof, and image display device
JP2008258608A (en) Bipolar transistor design
TWI677104B (en) Thin film transistor, method for manufacturing thin film transistor, and image display device using thin film transistor
JP2008085315A (en) Thin film transistor and manufacturing method thereof
WO2014050457A1 (en) Electronic device, image display device, sensor and method for manufacturing electronic device
KR101203970B1 (en) Organic field effect transistor
JP2007273594A (en) Field-effect transistor
CN102194998B (en) Organic semiconductor element and organic electrode
JP5760360B2 (en) THIN FILM TRANSISTOR AND METHOD FOR PRODUCING THIN FILM TRANSISTOR
JP6303358B2 (en) Thin film transistor
JP6369098B2 (en) Thin film transistor manufacturing method
JP5098159B2 (en) Thin film transistor manufacturing method
JP6446850B2 (en) Thin film transistor
JP6492523B2 (en) Organic semiconductor thin film transistor element
JP2016163029A (en) Thin film transistor array, thin film transistor array manufacturing method and pixel display device
JP2017195315A (en) Thin-film transistor
JP6123413B2 (en) Thin film transistor array and image display device
JP6330408B2 (en) Thin film transistor and manufacturing method thereof
JP2007234974A (en) Organic thin film transistor
JP2020088026A (en) Organic semiconductor thin film transistor element
JP2017034024A (en) Thin film transistor sheet
JP2016197621A (en) Thin film transistor and method for manufacturing the same
JP2020088096A (en) Thin film transistor and image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14849003

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14849003

Country of ref document: EP

Kind code of ref document: A1