WO2015045210A1 - Organic el display apparatus - Google Patents

Organic el display apparatus Download PDF

Info

Publication number
WO2015045210A1
WO2015045210A1 PCT/JP2014/002660 JP2014002660W WO2015045210A1 WO 2015045210 A1 WO2015045210 A1 WO 2015045210A1 JP 2014002660 W JP2014002660 W JP 2014002660W WO 2015045210 A1 WO2015045210 A1 WO 2015045210A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
panel
chassis
display device
spacer
Prior art date
Application number
PCT/JP2014/002660
Other languages
French (fr)
Japanese (ja)
Inventor
小笠原 真也
南木 照男
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2015045210A1 publication Critical patent/WO2015045210A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/87Arrangements for heating or cooling

Definitions

  • the present disclosure relates to an organic EL display device including an organic EL panel that displays an image.
  • the organic EL (electroluminescence) display device includes an organic EL panel as a display panel for displaying an image. Further, the organic EL panel includes an organic EL element as a light emitting element that emits light based on a video signal input to the display device (see, for example, Patent Document 1).
  • the organic EL panel has a problem that it is easily affected by heat.
  • the present disclosure has been made in view of such a current situation, and an object thereof is to provide an organic EL display device capable of reducing the adverse effects of heat on the organic EL panel.
  • an organic EL display device includes at least one of an organic EL panel that displays an image on a front surface, a chassis that supports a back side of the organic EL panel, and a peripheral portion of the organic EL panel. And a spacer disposed between the chassis and the chassis, and the organic EL panel is at least partially curved convexly toward the back side, and located at the center side of the peripheral edge Is supported by the chassis in contact with the chassis.
  • FIG. 1 is a perspective view showing the appearance of the organic EL display device according to the first embodiment.
  • FIG. 2 is an exploded perspective view in which a part of the organic EL display device according to Embodiment 1 is disassembled.
  • FIG. 3 is a cross-sectional view illustrating an example of a schematic structure of an organic EL element serving as an RGB pixel portion in the organic EL panel included in the organic EL display device according to the first embodiment.
  • FIG. 4 is a circuit diagram showing an example of a circuit configuration for driving an organic EL element included in the organic EL display device according to the first embodiment.
  • FIG. 5 is a cross-sectional view showing a cross-sectional structure of the RGB sub-pixel portion in the organic EL display device according to the first embodiment.
  • FIG. 6 is a cross-sectional view of the organic EL display device of FIG. 1 along AA.
  • FIG. 7 is a diagram for explaining the effect that one of the spacers is bonded with weak adhesion in the organic EL display device according to the first embodiment.
  • FIG. 8 is an enlarged view of a main part in a longitudinal sectional view of the vicinity of the center of the organic EL display device according to the second embodiment.
  • FIG. 9 is an enlarged view of a main part in a longitudinal sectional view of the vicinity of the center of the organic EL display device according to the third embodiment.
  • the present inventors have found that the following problems occur with respect to the organic EL display device described in the “Background Art” column. That is, the present inventors have found that the adverse effect on the organic EL panel due to the heat generated by the organic EL panel itself is specifically the following problem.
  • the first problem is an adverse effect of heat on the organic EL panel due to a temperature difference in the temperature distribution of the organic EL panel.
  • the inventors have found that the organic EL panel has a temperature distribution in which the central portion of the organic EL panel becomes hotter than the peripheral portion during light emission.
  • the organic EL element generally includes a light emitting layer that emits light to display an image.
  • the characteristics of the light emitting layer are irreversibly deteriorated due to a temperature rise due to heat generation of the light emitting element itself.
  • the deterioration depending on the temperature generated in the organic EL panel that is, the degree at the substantially central portion and the peripheral portion is different, and It will progress.
  • the organic EL panel has a problem that the characteristics of the organic EL element are easily deteriorated by heat. For this reason, compared with PDP (plasma display panel) and LCD (liquid crystal display), the tolerance for temperature distribution is small. Therefore, in the organic EL display device, it is necessary to further reduce the temperature difference generated in the organic EL panel which is a display panel.
  • the temperature distribution of the organic EL panel becomes, for example, a temperature distribution of 40 ° C. to 20 ° C.
  • the uniform temperature distribution of about 40 ° C. as a whole is more uneven in the deterioration of characteristics due to the heat of the organic EL element.
  • the image quality uniformity of the entire screen can be realized, which is preferable.
  • the second problem is an adverse effect of heat on the organic EL panel due to the difference in thermal expansion between the organic EL panel and the chassis on which the organic EL panel is supported.
  • the organic EL panel is mainly made of glass
  • the chassis is made of metal (for example, mainly aluminum).
  • the organic EL panel and the chassis are often made of materials having different linear expansion coefficients. In such a case, when the organic EL panel and the chassis are firmly bonded, if a temperature change occurs, warping occurs due to a difference in linear expansion coefficient between the organic EL panel and the chassis. .
  • the linear expansion coefficient of aluminum is about three times the linear expansion coefficient of glass.
  • the chassis expands more than the organic EL panel due to the temperature rise. When the chassis expands in this way, the organic EL panel is pulled by the chassis, and there is a problem that the glass constituting the organic EL panel is easily damaged because it is weak against pulling.
  • FIG. 1 is a perspective view showing an appearance of an organic EL display device according to Embodiment 1 of the present invention.
  • FIG. 2 is an exploded perspective view in which a part of the organic EL display device according to Embodiment 1 of the present invention is disassembled.
  • FIG. 3 is a cross-sectional view showing an example of a schematic structure of an organic EL element serving as an RGB pixel portion in the organic EL panel included in the organic EL display device according to Embodiment 1 of the present invention.
  • FIG. 4 is a circuit diagram showing an example of a circuit configuration for driving an organic EL element included in the organic EL display device according to Embodiment 1 of the present invention.
  • FIG. 5 is a cross-sectional view showing a cross-sectional structure of the RGB sub-pixel portion in the organic EL display device according to Embodiment 1 of the present invention.
  • the organic EL display device 10 includes an organic EL panel 1, a chassis 2, an escutcheon frame 3, a back cover 4, a spacer 12, and a stand 50.
  • the same functions are denoted by the same reference numerals and the description thereof is omitted.
  • the surface on which the image is displayed on the organic EL panel 1 is the front side (display side), and the surface on which the electric circuit boards 5, 6, etc. on the back side of the organic EL panel 1 are installed is the back side ( (Non-display surface side).
  • the left-right direction is defined by the orientation when the organic EL display device is viewed from the front side, and the top and bottom are the top and bottom when the organic EL display device is installed as shown in FIGS. Define as
  • the organic EL panel 1 provided in the organic EL display device 10 includes, from the lower layer, a thin film transistor array device 101 in which a plurality of thin film transistors are arranged, an anode 102 which is a lower electrode, and an organic material.
  • the light emitting part is composed of a light emitting part including a light emitting part composed of a light emitting layer 103 and a cathode 104 which is a transparent upper electrode.
  • the light-emitting portion has a structure in which a light-emitting layer 103 is disposed between a pair of electrodes, that is, an anode 102 and a cathode 104, and a hole transport layer (see below) is provided between the anode 102 and the light-emitting layer 103. Are stacked, and an electron transport layer (see later) is stacked between the light emitting layer 103 and the transparent cathode 104.
  • the thin film transistor array device 101 has a plurality of pixels 105 arranged in a matrix.
  • Each pixel 105 is driven by a pixel circuit 106 provided therein.
  • the thin film transistor array device 101 includes a plurality of gate wirings 107 arranged in a row, a plurality of source wirings 108 as signal wirings arranged in a row so as to intersect the gate wirings 107, and a parallel to the source wiring 108. And a plurality of power supply wires 109 extending in the direction.
  • the gate wiring 107 connects the gate electrode 110g of the thin film transistor 110 operating as a switching element included in each pixel circuit 106 for each row.
  • the source wiring 108 connects the source electrodes 110 s of the thin film transistors 110 that operate as switching elements included in each of the pixel circuits 106 for each column.
  • the power supply wiring 109 connects the drain electrode 111d of the thin film transistor 111 operating as a driving element included in each pixel circuit 106 for each column.
  • the pixel circuit 106 includes a thin film transistor 110 that operates as a switching element, a thin film transistor 111 that operates as a driving element, and a capacitor 112 that stores data to be displayed in the corresponding pixel.
  • the thin film transistor 110 includes a gate electrode 110g connected to the gate wiring 107, a source electrode 110s connected to the source wiring 108, a drain electrode 110d connected to the gate electrode 111g of the capacitor 112 and the thin film transistor 111, and a semiconductor film (FIG. Not shown).
  • a voltage is applied to the connected gate wiring 107 and source wiring 108, the thin film transistor 110 stores the voltage value applied to the source wiring 108 in the capacitor 112 as display data.
  • the thin film transistor 111 includes a gate electrode 111g connected to the drain electrode 110d of the thin film transistor 110, a drain electrode 111d connected to the power supply wiring 109 and the capacitor 112, a source electrode 111s connected to the anode 102, and a semiconductor film (not shown). Z).
  • the thin film transistor 111 supplies a current corresponding to the voltage value held by the capacitor 112 from the power supply wiring 109 to the anode 102 through the source electrode 111s.
  • the organic EL panel 1 of the organic EL display device having the above configuration adopts an active matrix system in which display control is performed for each pixel 105 located at the intersection of the gate wiring 107 and the source wiring 108.
  • the light emitting portion that emits light of at least red, green, and blue emission colors includes a plurality of sub-pixels having at least red (R), green (G), and blue (B) light emitting layers.
  • a plurality of pixels are formed in a matrix.
  • the sub-pixels constituting each pixel are separated from each other by a bank.
  • the bank is provided by forming a ridge extending in parallel with the gate wiring 107 and a ridge extending in parallel with the source wiring 108 so as to intersect each other.
  • a subpixel having an RGB light emitting layer is formed in a portion surrounded by the protrusions, that is, an opening of the bank.
  • FIG. 5 is a cross-sectional view showing the cross-sectional structure of the RGB sub-pixel portion in the organic EL panel of the organic EL display device.
  • a thin film transistor array device 122 constituting the pixel circuit 106 described above is formed on a base substrate 121 such as a glass substrate or a flexible resin substrate.
  • an anode 123 which is a lower electrode, is formed through a planarization insulating film (not shown).
  • anode 123 On the anode 123, a hole transport layer 124, an RGB light emitting layer 125 made of an organic material, an electron transport layer 126, and a cathode 127, which is a transparent upper electrode, are sequentially stacked.
  • An EL light emitting unit is configured.
  • the light emitting layer 125 of the light emitting unit is formed in a region partitioned by the bank 128 which is an insulating layer.
  • the bank 128 is for ensuring insulation between the anode 123 and the cathode 127 and partitioning the light emitting region into a predetermined shape, and is made of, for example, a photosensitive resin such as silicon oxide or polyimide.
  • the hole transport layer 124 and the electron transport layer 126 are shown, but the hole transport layer 124 and the electron transport layer 126 are laminated with a hole injection layer and an electron injection layer, respectively. Is formed.
  • the light emitting unit configured in this manner is covered with a sealing layer 129 such as silicon nitride, and further, a sealing substrate such as a transparent glass substrate or flexible resin substrate is provided on the sealing layer 129 via an adhesive layer 130. 131 is sealed by being bonded over the entire surface.
  • a sealing layer 129 such as silicon nitride
  • a sealing substrate such as a transparent glass substrate or flexible resin substrate
  • the shape, material, size and the like of the base substrate 121 are not particularly limited and can be appropriately selected according to the purpose.
  • a glass material such as alkali-free glass or soda glass, a silicon substrate, or a metal substrate may be used.
  • Polyethylene terephthalate, polycarbonate, polyethylene naphthalate, polyamide, polyimide, etc. are suitable as the polymer material, but other known polymers such as acetate resin, acrylic resin, polyethylene, polypropylene, polyvinyl chloride resin, etc.
  • a substrate material may be used.
  • an organic EL light emitting element is formed after forming a polymer substrate on a rigid base material such as glass by a coating method or pasting, and then a rigid material such as glass is formed.
  • a manufacturing method is used to remove a substrate.
  • the anode 123 is a metal material having good electrical conductivity such as aluminum, aluminum alloy or copper, or a metal oxide or metal sulfide having high electrical conductivity such as light-transmitting IZO, ITO, tin oxide, indium oxide or zinc oxide. Etc.
  • a thin film forming method such as a vacuum deposition method, a sputtering method, or an ion plating method is used.
  • the hole transport layer 124 is made of a polyvinyl carbazole material, a polysilane material, a polysiloxane derivative, a phthalocyanine compound such as copper phthalocyanine, an aromatic amine compound, or the like.
  • a film forming method various coating methods can be used, and the film is formed to a thickness of about 10 nm to 200 nm.
  • the hole injection layer stacked on the hole transport layer 124 is a layer that enhances hole injection from the anode 123, and is a metal oxide such as molybdenum oxide, vanadium oxide, or aluminum oxide, a metal nitride, or a metal. Oxynitride is formed by sputtering.
  • the light emitting layer 125 is mainly composed of an organic material that emits fluorescence, phosphorescence, or the like, and a dopant is added as necessary to improve the characteristics.
  • a dopant is added as necessary to improve the characteristics.
  • a high molecular weight organic material suitable for the printing method a polyvinyl carbazole derivative, a polyparaphenylin derivative, a polyfluorene derivative, a polyphenylene vinylene derivative, or the like is used.
  • the dopant is used for shifting the emission wavelength and improving the light emission efficiency, and many dye-based and metal complex-based dopants have been developed.
  • a printing method is suitable, and the light emitting layer 125 having a thickness of about 20 nm to 200 nm is formed by using an ink jet method among various printing methods.
  • the electron transport layer 126 is made of a material such as a benzoquinone derivative, a polyquinoline derivative, or an oxadiazole derivative.
  • a film forming method a vacuum deposition method, a coating method, or the like is used, and the film is usually formed to a thickness of about 10 nm to 200 nm.
  • the electron injection layer is made of a material such as barium, phthalocyanine, or lithium fluoride, and is formed by a vacuum deposition method, a coating method, or the like.
  • the material of the cathode 127 differs depending on the light extraction direction.
  • a light-transmitting conductive material such as ITO, IZO, tin oxide, or zinc oxide is used.
  • a material such as platinum, gold, silver, copper, tungsten, aluminum, or an aluminum alloy is used.
  • a film forming method a sputtering method, a vacuum evaporation method, or the like is used, and the film is formed to a thickness of about 50 nm to 500 nm.
  • the bank 128 is a structure necessary for filling a sufficient amount of the solution containing the material of the light emitting layer 125 in the region, and is formed in a predetermined shape by a photolithography method.
  • the shape of the sub-pixel of the organic EL light emitting unit can be controlled by the shape of the bank 128.
  • the sealing layer 129 is formed by forming a silicon nitride film, and a CVD (chemical vapor deposition) method is used as the film forming method.
  • CVD chemical vapor deposition
  • the panel itself generates heat in order to emit light. Difference in temperature distribution occurs.
  • the following configuration is adopted to prevent a temperature difference between the central portion 1a and the peripheral portion 1b of the organic EL panel 1.
  • a configuration for reducing a difference in temperature distribution of the organic EL panel 1 in the present disclosure will be described.
  • FIG. 6 is an AA longitudinal sectional view of the organic EL display device of FIG.
  • the organic EL display device 10 includes, from the front side, an escutcheon frame 3, an organic EL panel 1, a spacer 12, a chassis 2, various electric circuit boards 5, 6 and a fan unit 11, and a back.
  • the cover 4 is combined in order.
  • the escutcheon frame 3 is a frame-like member that is fixed to the back cover 4 by pressing the peripheral edge of the organic EL panel 1 from the front side.
  • the organic EL panel 1 displays an image on the front.
  • the organic EL panel 1 is a self-luminous display panel.
  • the chassis 2 supports the back side of the organic EL panel 1.
  • the chassis 2 is a metal member that promotes heat dissipation of the organic EL panel 1 and also functions as an electrical ground, and generally has good thermal conductivity and electrical conductivity, and is made of, for example, aluminum. .
  • Various electrical circuit boards 5 and 6 are disposed in the chassis 2.
  • the spacer 12 is disposed between the four sides of the peripheral edge of the organic EL panel 1 and the chassis 2. That is, the spacer 12 is a heat insulating material that insulates between the peripheral edge portion 1 b of the organic EL panel 1 and the chassis 2.
  • the spacer 12 is mainly made of a resin having a thermal conductivity lower than that of a metal.
  • the spacer 12 has a long sheet shape, and both surfaces thereof are adhesive.
  • the spacer 12 has one surface (hereinafter referred to as “first surface 12a”) having weak adhesiveness and the other surface (hereinafter referred to as “second surface 12b”) having strong adhesiveness. is doing. That is, as for the spacer 12, the first surface 12a is more adhesive than the second surface 12b.
  • the spacer 12 is made of Nitto Denko Corporation's No. 5000 double-sided tape (or No. 7694 double-sided tape made by DIC Corporation) and DF8350 made by Toyo Ink Co., Ltd., which has weak adhesion. And a double-sided tape (or No. 7692 double-sided tape manufactured by Teraoka Seisakusho Co., Ltd.).
  • a double-sided tape or No. 7692 double-sided tape manufactured by Teraoka Seisakusho Co., Ltd.
  • the organic EL panel 1 is configured such that at least a part thereof is convexly curved toward the back side, and the central portion 1 a is in contact with the chassis 2 rather than the peripheral portion 1 b. 2 is supported.
  • the state in which the central portion 1a is in contact with the chassis 2 rather than the peripheral portion 1b means that the area in which the central portion 1a is in contact with the chassis is larger than the area in which the peripheral portion 1b is in contact with the chassis 2.
  • the pressure applied when the central portion 1a contacts the chassis may be greater than the pressure applied when the peripheral edge portion 1b contacts the chassis 2.
  • the organic EL panel 1 is supported by the chassis 2 by bonding the four sides of the peripheral edge portion 1b and the chassis 2 to each surface of the spacer 12.
  • the organic EL panel 1 is not bonded to the chassis 2 at the center 1a. That is, the organic EL panel 1 is not bonded to the chassis 2 except for the portion where the spacer 12 is disposed.
  • the organic EL panel 1 includes a bonding region R1 that is the peripheral portion 1b and a region bonded to the chassis 2 via the spacer 12, and a region on the center side of the bonding region R1. And a non-bonded region R2 which is a non-bonded region.
  • the fan unit 11 takes air from outside into the space between the back cover 4 and the chassis 2 as indicated by an arrow 20a, and the arrows 20b for air-cooling the various electric circuit boards 5 and 6 and the chassis 2.
  • An air flow as shown in Fig. 2 is generated.
  • the fan unit 11 draws in air heated by cooling the various electric circuit boards 5 and 6 and the chassis 2 as indicated by an arrow 20c, and from the space between the back cover 4 and the chassis 2. Discharge as shown by arrow 20d. In this way, the fan unit 11 can cool the various electric circuit boards 5 and 6 and the chassis 2 by performing forced ventilation in the space between the back cover 4 and the chassis 2.
  • the spacers 12 are arranged between the four sides of the peripheral edge 1 b of the organic EL panel 1 and the chassis 2, and from the peripheral edge 1 b of the organic EL panel 1. Also, the central portion 1 a on the central side is in contact with the chassis 2. For this reason, the heat generated in the peripheral portion 1b of the organic EL panel 1 can be hardly transmitted to the chassis 2, and the heat generated in the central portion 1a of the organic EL panel 1 can be easily transmitted to the chassis. Thereby, in the organic EL panel 1, the heat of the central portion 1a having a relatively high temperature can be radiated more efficiently than the heat of the peripheral portion 1b having a relatively low temperature. For this reason, the difference of the temperature distribution of the peripheral part 1b and the center part 1a which arises in the organic EL panel 1 can be reduced.
  • the spacer 12 is bonded to the organic EL panel 1 with weak adhesion and is bonded to the chassis 2 with strong adhesion.
  • FIG. 7 is a diagram for explaining the effect that one of the spacers is bonded with weak adhesion in the organic EL display device according to the first embodiment.
  • FIG. 7A is an enlarged view of a region A1 in FIG. 6 before the temperature rises (that is, at a normal temperature when the organic EL display device is not turned on).
  • FIG. 7B is an enlarged view of the region A1 in FIG. 6 after the temperature rise (that is, after a predetermined time has elapsed since the organic EL display device was turned on).
  • the chassis 2 is organic because the linear expansion coefficient of the aluminum chassis 2 is larger than that of the organic EL panel 1 mainly made of glass. Since it expands larger than the EL panel 1, it extends mainly in the surface direction of the chassis 2. In FIG. 7B, the chassis 2 extends upward from the organic EL panel 1. At this time, since the spacer 12 is adhered to the chassis 2 with strong adhesion on the second surface 12b, the spacer 12 moves upward as the chassis 2 expands.
  • the spacer 12 since the spacer 12 is bonded to the organic EL panel 1 with weak adhesion on the first surface 12 a, the spacer 12 does not follow the expansion of the chassis 2 and the first surface 12 a of the spacer 12. Slide with the organic EL panel 1 adhered. For this reason, even if a deviation due to a temperature change occurs between the organic EL panel 1 and the chassis 2, the deviation due to the difference in thermal expansion between the organic EL panel 1 and the chassis 2 is absorbed in the portion bonded with weak adhesion. can do. Thereby, generation
  • the organic EL panel 1 has the flatness of the chassis 2 and rough unevenness on the surface because the central portion 1a is not bonded to the chassis. Even if there exists, it can be made to be supported only by the convex part of the unevenness
  • FIG. 1 when the entire surface of the organic EL panel 1 is bonded to the chassis 2, the organic EL panel 1 is stuck on the concave portion of the chassis 2. Since only the peripheral edge 1b of the organic EL panel 1 is bonded without bonding the entire surface of the panel 1 to the chassis 2, the organic EL panel 1 is supported by the chassis 2 in a state in which the plane of the organic EL panel 1 is secured. Can do.
  • FIG. 8 is an enlarged view of a main part in a longitudinal sectional view of the vicinity of the center of the organic EL display device according to the second embodiment.
  • the organic EL display device 10a according to the second embodiment is different from the organic EL display device 10 according to the first embodiment in the cross-sectional shape of the escutcheon frame 13.
  • the configuration of the organic EL display device 10a other than the escutcheon frame 13 is the same as the configuration of the organic EL display device 10 according to Embodiment 1, and the same reference numerals as those of the organic EL display device 10 are given. Therefore, the description thereof is omitted.
  • the escutcheon frame 13 has a rear side so that the end 13 a on the opening side is in contact with a portion of the peripheral edge 1 b of the organic EL panel 1 that is convexly curved toward the back side. Bulges towards In other words, the escutcheon frame 13 is pressed from the front so that a portion of the organic EL panel 1 on the center side of the organic EL panel 1 is closer to the chassis 2 than a portion of the peripheral portion 1b outside the organic EL panel 1 is. .
  • FIG. 8 although it is a cross section of the upper part of the escutcheon frame 13, it has the same shape also about the cross section in the part of the upper and lower sides and right and left.
  • the escutcheon frame 13 holds the peripheral edge portion 1b of the organic EL panel 1 from the front so that the central portion is closer to the chassis 2 than the outer portion. Therefore, even if the center part 1a of the organic EL panel 1 is not bonded to the chassis 2, the center part 1a of the organic EL panel 1 can be configured to keep in contact with the chassis 2.
  • Embodiment 3 will be described with reference to FIG.
  • FIG. 9 is an enlarged view of a main part in a longitudinal sectional view of the vicinity of the center of the organic EL display device according to the third embodiment.
  • the organic EL display device 10b according to the third embodiment is different from the organic EL panel 1 according to the first embodiment in the configuration of the organic EL panel 60.
  • the configuration of the organic EL display device 10b other than the organic EL panel 60 is the same as the configuration of the organic EL display device 10 according to Embodiment 1, and the same reference numerals as those of the organic EL display device 10 are given. Therefore, the description is omitted.
  • the organic EL panel 60 includes a main panel 61 and an aluminum sheet 62 having the same configuration as the organic EL panel 1 described in the first and second embodiments.
  • the aluminum sheet 62 is affixed to the back side of the main panel 61 and is made of aluminum which is a material having a larger linear expansion coefficient than that of the main panel 61 made of glass.
  • the aluminum sheet 62 made of a material having a larger linear expansion coefficient than that of the main panel 61 is attached to the back side of the organic EL panel 60. For this reason, when the temperature rises due to self-heating of the main panel 61 of the organic EL panel 60, the organic EL panel 60 is warped to be convex toward the back side. For this reason, even if the center part of the organic EL panel 60 is not bonded to the chassis 2, the state in contact with the chassis 2 can be maintained.
  • the spacer 12 has the first surface 12 a having weak adhesion and the second surface 12 b has strong adhesion. Not limited to this.
  • both surfaces of the spacer 12 have strong adhesiveness, and the surface treatment of the one surface of the organic EL panel 1 and the chassis 2 that are in contact with the first surface is difficult to be adhered, and is in contact with the second surface. Surface processing that the other surfaces of the organic EL panel 1 and the chassis 2 to be easily adhered may be performed.
  • the surface of the organic EL panel 1 and the chassis 2 that contacts one spacer is subjected to surface processing that is less likely to adhere than the surface that contacts the other spacer, so that the spacer You may implement
  • the spacer 12 has different adhesiveness between the first surface 12 a and the second surface 12 b. It may be the same adhesiveness to the bonding partner. That is, if the central portion 1a of the organic EL panel 1 is in contact with the chassis 2 and the peripheral portion 1b of the organic EL panel is thermally insulated by the chassis 2 and the spacer 12, the temperature distribution in the organic EL panel 1 is increased. The occurrence of a difference can be reduced. In short, since at least the first problem can be solved, it is not essential that the bonding performance of the spacer 12 and the bonding partner on both sides thereof is different.
  • the central portion 1 a of the organic EL panel 1 is in contact with the chassis 2, but is not limited thereto, and is in contact with the chassis 2. It does not have to be. Specifically, if one of the peripheral edge 1b of the organic EL panel 1 and the chassis 2 is bonded with strong adhesion by the spacer 12, and the other is bonded with weak adhesion by the spacer 12, the organic EL panel 1 The generation of warp due to the difference in the amount of thermal expansion from the chassis 2 can be suppressed. In short, since at least the second problem can be solved, it is not essential that the central portion 1a of the organic EL panel 1 is in contact with the chassis.
  • the organic EL panel 1 is bonded to the chassis 2 with the spacer 12 at the four sides of the peripheral edge 1 b.
  • 2 are not limited to the four sides of the peripheral edge 1b.
  • the target portion to be bonded may be the two upper and lower sides of the organic EL panel 1 or the two left and right sides.
  • the target part to be bonded may be three sides excluding the upper side of the organic EL panel 1. As shown in FIG.
  • the spacer 12 may be appropriately disposed in a portion where the temperature of the organic EL panel 1 is likely to be lowered depending on conditions such as the installation state of the organic EL panel 1.
  • the said location may be directly adhere
  • the organic EL panel 1 is bonded to the chassis 2 with the spacers 12. Both surfaces of the spacers 12 have adhesiveness. It does not have to be. That is, if the spacer 12 is disposed between at least a part of the peripheral edge 1b of the organic EL panel 1 and the chassis 2, the spacer 12 does not need to have adhesiveness.
  • the organic EL panel 1 may be supported by the chassis 2 by providing a member that holds the organic EL panel 1 and the chassis 2, or the organic EL panel 1 and the chassis 2 are fastened by screws, rivets, or the like.
  • the organic EL panel 1 may be supported by a shape that fits into the chassis 2.
  • the organic EL panel 1 has a non-adhesion region R2 that is a region that is not bonded to the chassis 2 (that is, the organic EL display 1).
  • the central portion 1a is not bonded to the chassis 2), but is not limited thereto.
  • the center portion 1a of the organic EL panel 1 may be bonded to the chassis 2 if the flatness of the surface on the front side of the chassis 2 is sufficiently small.
  • the present disclosure is useful in providing an organic EL display device.

Abstract

An organic EL display apparatus (10) is provided with an organic EL panel (1) for displaying an image on a front screen, a chassis (2) for supporting the back-surface side of the organic EL panel (1), and a spacer (12) disposed between at least a part of the peripheral edge section (1b) of the organic EL panel (1) and the chassis (2). At least a part of the organic EL panel (1) is curved to protrude toward the back-surface side, and the center portion (1a), which is closer to the center than the peripheral edge section, (1b) is supported by the chassis (2) in a state of being in contact therewith.

Description

有機EL表示装置Organic EL display device
 本開示は、映像を表示する有機ELパネルを備えた有機EL表示装置に関する。 The present disclosure relates to an organic EL display device including an organic EL panel that displays an image.
 有機EL(エレクトロルミネセンス)表示装置は、映像を表示するための表示パネルとして、有機ELパネルを備える。さらにこの有機ELパネルは、表示装置に入力される映像信号に基づき発光する発光素子としての有機EL素子を備える(例えば特許文献1参照)。 The organic EL (electroluminescence) display device includes an organic EL panel as a display panel for displaying an image. Further, the organic EL panel includes an organic EL element as a light emitting element that emits light based on a video signal input to the display device (see, for example, Patent Document 1).
特開2013-97157号公報JP 2013-97157 A
 しかしながら、有機ELパネルは、熱による悪影響を受けやすいという問題がある。 However, the organic EL panel has a problem that it is easily affected by heat.
 本開示はこのような現状に鑑みなされたもので、有機ELパネルへの熱による悪影響を低減できる有機EL表示装置を提供することを目的とする。 The present disclosure has been made in view of such a current situation, and an object thereof is to provide an organic EL display device capable of reducing the adverse effects of heat on the organic EL panel.
 上記目的を実現するために本開示の有機EL表示装置は、前面に画像を表示する有機ELパネルと、前記有機ELパネルの背面側を支持するシャーシと、前記有機ELパネルの周縁部の少なくとも一部と前記シャーシとの間に配置されるスペーサと、を備え、前記有機ELパネルは、少なくとも一部が背面側に向けて凸に湾曲され、かつ、前記周縁部よりも中央側にある中央部が前記シャーシに接触した状態で、前記シャーシに支持されている。 In order to achieve the above object, an organic EL display device according to the present disclosure includes at least one of an organic EL panel that displays an image on a front surface, a chassis that supports a back side of the organic EL panel, and a peripheral portion of the organic EL panel. And a spacer disposed between the chassis and the chassis, and the organic EL panel is at least partially curved convexly toward the back side, and located at the center side of the peripheral edge Is supported by the chassis in contact with the chassis.
 本開示によれば、有機ELパネルへの熱による悪影響を低減できる。 According to the present disclosure, adverse effects of heat on the organic EL panel can be reduced.
図1は、実施の形態1による有機EL表示装置の外観を示す斜視図である。FIG. 1 is a perspective view showing the appearance of the organic EL display device according to the first embodiment. 図2は、実施の形態1による有機EL表示装置の一部を分解した分解斜視図である。FIG. 2 is an exploded perspective view in which a part of the organic EL display device according to Embodiment 1 is disassembled. 図3は、実施の形態1による有機EL表示装置が備える有機ELパネルにおけるRGBの画素部分となる有機EL素子の概略構造の一例を示す断面図である。FIG. 3 is a cross-sectional view illustrating an example of a schematic structure of an organic EL element serving as an RGB pixel portion in the organic EL panel included in the organic EL display device according to the first embodiment. 図4は、実施の形態1による有機EL表示装置が備える有機EL素子を駆動するための回路構成の一例を示す回路図である。FIG. 4 is a circuit diagram showing an example of a circuit configuration for driving an organic EL element included in the organic EL display device according to the first embodiment. 図5は、実施の形態1による有機EL表示装置において、RGBのサブピクセル部分の断面構造を示す断面図である。FIG. 5 is a cross-sectional view showing a cross-sectional structure of the RGB sub-pixel portion in the organic EL display device according to the first embodiment. 図6は、図1の有機EL表示装置のA-A縦断面図である。FIG. 6 is a cross-sectional view of the organic EL display device of FIG. 1 along AA. 図7は、実施の形態1による有機EL表示装置において、スペーサの一方が弱粘着で接着されていることの効果を説明するための図である。FIG. 7 is a diagram for explaining the effect that one of the spacers is bonded with weak adhesion in the organic EL display device according to the first embodiment. 図8は、実施の形態2による有機EL表示装置の中央近傍の縦断面図における要部拡大図である。FIG. 8 is an enlarged view of a main part in a longitudinal sectional view of the vicinity of the center of the organic EL display device according to the second embodiment. 図9は、実施の形態3による有機EL表示装置の中央近傍の縦断面図における要部拡大図である。FIG. 9 is an enlarged view of a main part in a longitudinal sectional view of the vicinity of the center of the organic EL display device according to the third embodiment.
 (本発明の基礎となった知見)
 本発明者らは、「背景技術」の欄において記載した、有機EL表示装置に関し、以下の問題が生じることを見出した。つまり、本発明者らは、有機ELパネル自身の発熱による有機ELパネルへの悪影響が、具体的には以下の問題であることを見出した。
(Knowledge that became the basis of the present invention)
The present inventors have found that the following problems occur with respect to the organic EL display device described in the “Background Art” column. That is, the present inventors have found that the adverse effect on the organic EL panel due to the heat generated by the organic EL panel itself is specifically the following problem.
 第一の課題は、有機ELパネルの温度分布に温度差が生じてしまうことによる、有機ELパネルへの熱による悪影響である。このように、発明者らは、有機ELパネルには、発光時に、それ自身の中央部が周縁部より熱くなるという温度分布が存在することを発見した。 The first problem is an adverse effect of heat on the organic EL panel due to a temperature difference in the temperature distribution of the organic EL panel. As described above, the inventors have found that the organic EL panel has a temperature distribution in which the central portion of the organic EL panel becomes hotter than the peripheral portion during light emission.
 有機EL素子は、一般的な構造として、画像を表示するために発光する発光層を備えるが、発光素子自身の発熱などによる温度上昇により当該発光層の特性が非可逆的に劣化してしまう。この結果、有機EL表示装置では、各画素を構成する有機EL素子において、有機ELパネルに生じる温度に応じた、すなわち、略中央部と周縁部とで程度が異なった劣化が発生し、かつ、進行してしまうことになる。その結果、画面全体の画質均一性が崩れ良好な画像表示が損なわれてしまうという問題を有する。つまり、有機ELパネルは、その有機EL素子が熱により特性劣化しやすいという問題を有している。このため、PDP(プラズマディスプレイパネル)やLCD(液晶ディスプレイ)に比べ、温度分布に対する許容範囲が小さい。したがって、有機EL表示装置においては、表示パネルである有機ELパネルで発生する温度差を、より小さくする必要がある。 The organic EL element generally includes a light emitting layer that emits light to display an image. However, the characteristics of the light emitting layer are irreversibly deteriorated due to a temperature rise due to heat generation of the light emitting element itself. As a result, in the organic EL display device, in the organic EL element constituting each pixel, the deterioration depending on the temperature generated in the organic EL panel, that is, the degree at the substantially central portion and the peripheral portion is different, and It will progress. As a result, there is a problem in that the image quality uniformity of the entire screen is lost and good image display is impaired. In other words, the organic EL panel has a problem that the characteristics of the organic EL element are easily deteriorated by heat. For this reason, compared with PDP (plasma display panel) and LCD (liquid crystal display), the tolerance for temperature distribution is small. Therefore, in the organic EL display device, it is necessary to further reduce the temperature difference generated in the organic EL panel which is a display panel.
 なお、本発明者が検討した結果、有機ELパネルとしては、無作為に有機EL表示装置全体を冷却することで、有機ELパネルの温度分布として、例えば40℃-20℃の温度分布となるよりも、略中央部と両端部とで積極的に冷却効果が異なるようにすることで、全体的に略40℃の均一な温度分布とする方が、有機EL素子の熱による特性劣化の不均一性が抑制され、もって画面全体の画質均一性が実現でき、好ましい、という知見を得ている。 As a result of the study by the present inventor, as the organic EL panel, by randomly cooling the entire organic EL display device, the temperature distribution of the organic EL panel becomes, for example, a temperature distribution of 40 ° C. to 20 ° C. However, if the cooling effect is positively different between the central part and both end parts, the uniform temperature distribution of about 40 ° C. as a whole is more uneven in the deterioration of characteristics due to the heat of the organic EL element. And the image quality uniformity of the entire screen can be realized, which is preferable.
 第二の課題は、有機ELパネルと、有機ELパネルが支持されているシャーシとの熱膨張の量が異なることによる、有機ELパネルへの熱による悪影響である。一般に、有機ELパネルは主にガラスから構成されており、シャーシは金属(例えば主にアルミニウム)から構成される。このように有機ELパネルとシャーシとは、線膨張係数が異なる材料で構成されることが多い。このような場合であって、有機ELパネルとシャーシとが、強固に接着されている場合、温度変化が生じれば、有機ELパネルとシャーシとの線膨張係数の違いによりソリが発生してしまう。 The second problem is an adverse effect of heat on the organic EL panel due to the difference in thermal expansion between the organic EL panel and the chassis on which the organic EL panel is supported. Generally, the organic EL panel is mainly made of glass, and the chassis is made of metal (for example, mainly aluminum). As described above, the organic EL panel and the chassis are often made of materials having different linear expansion coefficients. In such a case, when the organic EL panel and the chassis are firmly bonded, if a temperature change occurs, warping occurs due to a difference in linear expansion coefficient between the organic EL panel and the chassis. .
 また、上記のように有機ELパネルが主にガラスから構成され、シャーシが主にアルミニウムで構成される場合には、アルミニウムの線膨張係数がガラスの線膨張係数の約3倍であることから、温度上昇によりシャーシが有機ELパネルよりも膨張する。このようにシャーシが膨張した場合、有機ELパネルはシャーシにより引っ張られることになり、有機ELパネルを構成するガラスは引っ張りに弱いため破損しやすいという問題もある。 In addition, as described above, when the organic EL panel is mainly composed of glass and the chassis is mainly composed of aluminum, the linear expansion coefficient of aluminum is about three times the linear expansion coefficient of glass. The chassis expands more than the organic EL panel due to the temperature rise. When the chassis expands in this way, the organic EL panel is pulled by the chassis, and there is a problem that the glass constituting the organic EL panel is easily damaged because it is weak against pulling.
 本開示は、このような知見に基づいてなされたものであり、本発明者らが鋭意検討した結果、有機ELパネルへの熱による悪影響を低減させることが可能な有機EL表示装置の構造についての着想を得た。 The present disclosure has been made on the basis of such knowledge, and as a result of intensive studies by the present inventors, the structure of an organic EL display device capable of reducing the adverse effects of heat on the organic EL panel is disclosed. I got an idea.
 以下、適宜図面を参照しながら、実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。 Hereinafter, embodiments will be described in detail with reference to the drawings as appropriate. However, more detailed description than necessary may be omitted. For example, detailed descriptions of already well-known matters and repeated descriptions for substantially the same configuration may be omitted. This is to avoid the following description from becoming unnecessarily redundant and to facilitate understanding by those skilled in the art.
 なお、発明者は、当業者が本開示を十分に理解するために添付図面及び以下の説明を提供するのであって、これらによって請求の範囲に記載の主題を限定することを意図するものではない。 In addition, the inventor provides the accompanying drawings and the following description in order for those skilled in the art to fully understand the present disclosure, and is not intended to limit the subject matter described in the claims. .
 以下、本開示の一実施の形態による有機EL表示装置について図を用いて説明するが、本開示の実施の態様はこれに限定されるものではない。 Hereinafter, an organic EL display device according to an embodiment of the present disclosure will be described with reference to the drawings. However, the embodiment of the present disclosure is not limited to this.
 (実施の形態1)
 図1は、本発明の実施の形態1による有機EL表示装置の外観を示す斜視図である。図2は、本発明の実施の形態1による有機EL表示装置の一部を分解した分解斜視図である。図3は、本発明の実施の形態1による有機EL表示装置が備える有機ELパネルにおけるRGBの画素部分となる有機EL素子の概略構造の一例を示す断面図である。図4は、本発明の実施の形態1による有機EL表示装置が備える有機EL素子を駆動するための回路構成の一例を示す回路図である。図5は、本発明の実施の形態1による有機EL表示装置において、RGBのサブピクセル部分の断面構造を示す断面図である。
(Embodiment 1)
FIG. 1 is a perspective view showing an appearance of an organic EL display device according to Embodiment 1 of the present invention. FIG. 2 is an exploded perspective view in which a part of the organic EL display device according to Embodiment 1 of the present invention is disassembled. FIG. 3 is a cross-sectional view showing an example of a schematic structure of an organic EL element serving as an RGB pixel portion in the organic EL panel included in the organic EL display device according to Embodiment 1 of the present invention. FIG. 4 is a circuit diagram showing an example of a circuit configuration for driving an organic EL element included in the organic EL display device according to Embodiment 1 of the present invention. FIG. 5 is a cross-sectional view showing a cross-sectional structure of the RGB sub-pixel portion in the organic EL display device according to Embodiment 1 of the present invention.
 図1および図2に示すように、有機EL表示装置10は、有機ELパネル1、シャーシ2、エスカッションフレーム3、バックカバー4、スペーサ12、およびスタンド50を備える。以下、同一機能のものには同一符号を記して説明を省略する。 1 and FIG. 2, the organic EL display device 10 includes an organic EL panel 1, a chassis 2, an escutcheon frame 3, a back cover 4, a spacer 12, and a stand 50. Hereinafter, the same functions are denoted by the same reference numerals and the description thereof is omitted.
 有機EL表示装置10は、有機ELパネル1に画像を表示する面が前面側(表示面側)にあたり、有機ELパネル1の裏側の電気回路基板5、6等が設置される面が背面側(非表示面側)となる。以下、説明の都合上、左右方向については前面側から有機EL表示装置を見た際の向きで定義し、上下は図1および図2に示すように有機EL表示装置を設置した状態での上下として定義する。 In the organic EL display device 10, the surface on which the image is displayed on the organic EL panel 1 is the front side (display side), and the surface on which the electric circuit boards 5, 6, etc. on the back side of the organic EL panel 1 are installed is the back side ( (Non-display surface side). Hereinafter, for convenience of explanation, the left-right direction is defined by the orientation when the organic EL display device is viewed from the front side, and the top and bottom are the top and bottom when the organic EL display device is installed as shown in FIGS. Define as
 (有機ELパネルの構造)
 図3および図4に示すように、有機EL表示装置10が備える有機ELパネル1は、下層より、複数個の薄膜トランジスタを配置した薄膜トランジスタアレイ装置101と、下部電極である陽極102、有機材料からなる発光層103および透明な上部電極である陰極104からなる発光部との積層構造により構成され、前記発光部は薄膜トランジスタアレイ装置101により発光制御される。また、前記発光部は、一対の電極である陽極102と陰極104との間に発光層103を配置した構成であり、陽極102と発光層103との間には正孔輸送層(後述参照)が積層形成され、発光層103と透明な陰極104の間には電子輸送層(後述参照)が積層形成されている。薄膜トランジスタアレイ装置101には、複数の画素105がマトリックス状に配置されている。
(Structure of organic EL panel)
As shown in FIGS. 3 and 4, the organic EL panel 1 provided in the organic EL display device 10 includes, from the lower layer, a thin film transistor array device 101 in which a plurality of thin film transistors are arranged, an anode 102 which is a lower electrode, and an organic material. The light emitting part is composed of a light emitting part including a light emitting part composed of a light emitting layer 103 and a cathode 104 which is a transparent upper electrode. The light-emitting portion has a structure in which a light-emitting layer 103 is disposed between a pair of electrodes, that is, an anode 102 and a cathode 104, and a hole transport layer (see below) is provided between the anode 102 and the light-emitting layer 103. Are stacked, and an electron transport layer (see later) is stacked between the light emitting layer 103 and the transparent cathode 104. The thin film transistor array device 101 has a plurality of pixels 105 arranged in a matrix.
 各画素105は、それぞれに設けられた画素回路106によって駆動される。また、薄膜トランジスタアレイ装置101は、行状に配置される複数のゲート配線107と、ゲート配線107と交差するように列状に配置される複数の信号配線としてのソース配線108と、ソース配線108に平行に延びる複数の電源配線109とを備える。 Each pixel 105 is driven by a pixel circuit 106 provided therein. In addition, the thin film transistor array device 101 includes a plurality of gate wirings 107 arranged in a row, a plurality of source wirings 108 as signal wirings arranged in a row so as to intersect the gate wirings 107, and a parallel to the source wiring 108. And a plurality of power supply wires 109 extending in the direction.
 図4に示すように、ゲート配線107は、画素回路106のそれぞれに含まれるスイッチング素子として動作する薄膜トランジスタ110のゲート電極110gを行毎に接続する。ソース配線108は、画素回路106のそれぞれに含まれるスイッチング素子として動作する薄膜トランジスタ110のソース電極110sを列毎に接続する。電源配線109は、画素回路106のそれぞれに含まれる駆動素子として動作する薄膜トランジスタ111のドレイン電極111dを列毎に接続する。 As shown in FIG. 4, the gate wiring 107 connects the gate electrode 110g of the thin film transistor 110 operating as a switching element included in each pixel circuit 106 for each row. The source wiring 108 connects the source electrodes 110 s of the thin film transistors 110 that operate as switching elements included in each of the pixel circuits 106 for each column. The power supply wiring 109 connects the drain electrode 111d of the thin film transistor 111 operating as a driving element included in each pixel circuit 106 for each column.
 図4に示すように、画素回路106は、スイッチング素子として動作する薄膜トランジスタ110と、駆動素子として動作する薄膜トランジスタ111と、対応する画素に表示するデータを記憶するキャパシタ112とで構成される。 As shown in FIG. 4, the pixel circuit 106 includes a thin film transistor 110 that operates as a switching element, a thin film transistor 111 that operates as a driving element, and a capacitor 112 that stores data to be displayed in the corresponding pixel.
 薄膜トランジスタ110は、ゲート配線107に接続されるゲート電極110gと、ソース配線108に接続されるソース電極110sと、キャパシタ112および薄膜トランジスタ111のゲート電極111gに接続されるドレイン電極110dと、半導体膜(図示せず)とで構成される。この薄膜トランジスタ110は、接続されたゲート配線107およびソース配線108に電圧が印加されると、当該ソース配線108に印加された電圧値を表示データとしてキャパシタ112に保存する。 The thin film transistor 110 includes a gate electrode 110g connected to the gate wiring 107, a source electrode 110s connected to the source wiring 108, a drain electrode 110d connected to the gate electrode 111g of the capacitor 112 and the thin film transistor 111, and a semiconductor film (FIG. Not shown). When a voltage is applied to the connected gate wiring 107 and source wiring 108, the thin film transistor 110 stores the voltage value applied to the source wiring 108 in the capacitor 112 as display data.
 薄膜トランジスタ111は、薄膜トランジスタ110のドレイン電極110dに接続されるゲート電極111gと、電源配線109およびキャパシタ112に接続されるドレイン電極111dと、陽極102に接続されるソース電極111sと、半導体膜(図示せず)とで構成される。この薄膜トランジスタ111は、キャパシタ112が保持している電圧値に対応する電流を電源配線109からソース電極111sを通じて陽極102に供給する。すなわち、上記構成の有機EL表示装置の有機ELパネル1は、ゲート配線107とソース配線108との交点に位置する画素105毎に表示制御を行うアクティブマトリックス方式を採用している。 The thin film transistor 111 includes a gate electrode 111g connected to the drain electrode 110d of the thin film transistor 110, a drain electrode 111d connected to the power supply wiring 109 and the capacitor 112, a source electrode 111s connected to the anode 102, and a semiconductor film (not shown). Z). The thin film transistor 111 supplies a current corresponding to the voltage value held by the capacitor 112 from the power supply wiring 109 to the anode 102 through the source electrode 111s. In other words, the organic EL panel 1 of the organic EL display device having the above configuration adopts an active matrix system in which display control is performed for each pixel 105 located at the intersection of the gate wiring 107 and the source wiring 108.
 また、有機EL表示装置において、少なくとも赤色、緑色および青色の発光色で発光する発光部は、少なくとも赤色(R)、緑色(G)、および青色(B)の発光層を有するサブピクセルが複数個マトリクス状に配列されて複数個の画素が形成されている。各画素を構成するサブピクセルは、バンクによって互いに分離されている。このバンクは、ゲート配線107に平行に延びる突条と、ソース配線108に平行に延びる突条とが互いに交差するように形成することにより設けられる。そして、この突条で囲まれる部分、すなわちバンクの開口部にRGBの発光層を有するサブピクセルが形成されている。 In addition, in the organic EL display device, the light emitting portion that emits light of at least red, green, and blue emission colors includes a plurality of sub-pixels having at least red (R), green (G), and blue (B) light emitting layers. A plurality of pixels are formed in a matrix. The sub-pixels constituting each pixel are separated from each other by a bank. The bank is provided by forming a ridge extending in parallel with the gate wiring 107 and a ridge extending in parallel with the source wiring 108 so as to intersect each other. A subpixel having an RGB light emitting layer is formed in a portion surrounded by the protrusions, that is, an opening of the bank.
 図5は、有機EL表示装置の有機ELパネルにおいて、RGBのサブピクセル部分の断面構造を示す断面図である。図5に示すように、有機ELパネル1は、ガラス基板、フレキシブル樹脂基板などのベース基板121上に、上述した画素回路106を構成する薄膜トランジスタアレイ装置122を形成している。また、薄膜トランジスタアレイ装置122には、平坦化絶縁膜(図示せず)を介して下部電極である陽極123が形成されている。そして、陽極123上には、正孔輸送層124、有機材料からなるRGBに発光する発光層125、電子輸送層126、透明な上部電極である陰極127が順に積層形成され、これによりRGBの有機EL発光部が構成されている。 FIG. 5 is a cross-sectional view showing the cross-sectional structure of the RGB sub-pixel portion in the organic EL panel of the organic EL display device. As shown in FIG. 5, in the organic EL panel 1, a thin film transistor array device 122 constituting the pixel circuit 106 described above is formed on a base substrate 121 such as a glass substrate or a flexible resin substrate. In the thin film transistor array device 122, an anode 123, which is a lower electrode, is formed through a planarization insulating film (not shown). On the anode 123, a hole transport layer 124, an RGB light emitting layer 125 made of an organic material, an electron transport layer 126, and a cathode 127, which is a transparent upper electrode, are sequentially stacked. An EL light emitting unit is configured.
 また、前記発光部の発光層125は、絶縁層であるバンク128により区画された領域に形成されている。バンク128は、陽極123と陰極127との絶縁性を確保するとともに、発光領域を所定の形状に区画するためのものであり、例えば酸化シリコンまたはポリイミドなどの感光性樹脂により構成されている。 Further, the light emitting layer 125 of the light emitting unit is formed in a region partitioned by the bank 128 which is an insulating layer. The bank 128 is for ensuring insulation between the anode 123 and the cathode 127 and partitioning the light emitting region into a predetermined shape, and is made of, for example, a photosensitive resin such as silicon oxide or polyimide.
 なお、上記実施の形態においては、正孔輸送層124および電子輸送層126のみを示しているが、正孔輸送層124、電子輸送層126それぞれには、正孔注入層、電子注入層が積層形成されている。 In the above embodiment, only the hole transport layer 124 and the electron transport layer 126 are shown, but the hole transport layer 124 and the electron transport layer 126 are laminated with a hole injection layer and an electron injection layer, respectively. Is formed.
 このように構成された発光部は、窒化ケイ素などの封止層129により被覆され、さらにこの封止層129上に接着層130を介して透明なガラス基板、フレキシブル樹脂基板などの封止用基板131が全面にわたって貼り合わされることにより封止されている。 The light emitting unit configured in this manner is covered with a sealing layer 129 such as silicon nitride, and further, a sealing substrate such as a transparent glass substrate or flexible resin substrate is provided on the sealing layer 129 via an adhesive layer 130. 131 is sealed by being bonded over the entire surface.
 ここで、ベース基板121としては、その形状、材質、大きさ等については、特に制限はなく、目的に応じて適宜選択することができる。例えば、無アルカリガラス、ソーダガラスなどのガラス材料やシリコン基板でも金属基板でも良い。また、軽量化やフレキシブル化を目的として高分子系材料を用いてもよい。高分子系材料としては、ポリエチレンテレフタレート、ポリカーボネート、ポリエチレンナフタレート、ポリアミド、ポリイミドなどが適しているが、その他のアセテート系樹脂やアクリル系樹脂やポリエチレンやポリプロピレンやポリ塩化ビニル樹脂などの既知の高分子基板材料を用いてもよい。高分子系材料を基板として用いるときには、ガラスなどの剛性のある基材の上に高分子基板を塗布法や貼り付けなどで形成した後、有機EL発光素子を形成し、その後ガラスなどの剛性のある基材を除去する製造方法が用いられる。 Here, the shape, material, size and the like of the base substrate 121 are not particularly limited and can be appropriately selected according to the purpose. For example, a glass material such as alkali-free glass or soda glass, a silicon substrate, or a metal substrate may be used. Moreover, you may use a polymeric material for the purpose of weight reduction or flexibility. Polyethylene terephthalate, polycarbonate, polyethylene naphthalate, polyamide, polyimide, etc. are suitable as the polymer material, but other known polymers such as acetate resin, acrylic resin, polyethylene, polypropylene, polyvinyl chloride resin, etc. A substrate material may be used. When a polymer material is used as a substrate, an organic EL light emitting element is formed after forming a polymer substrate on a rigid base material such as glass by a coating method or pasting, and then a rigid material such as glass is formed. A manufacturing method is used to remove a substrate.
 陽極123は、アルミニウムやアルミニウム合金や銅などの導電性の良い金属材料や、光透過性のIZO、ITO、酸化スズ、酸化インジウム、酸化亜鉛などの電気伝導度の高い金属酸化物や金属硫化物などにより構成される。成膜方法としては、真空蒸着法やスパッタリング法やイオンプレーティング法などの薄膜形成法が用いられる。 The anode 123 is a metal material having good electrical conductivity such as aluminum, aluminum alloy or copper, or a metal oxide or metal sulfide having high electrical conductivity such as light-transmitting IZO, ITO, tin oxide, indium oxide or zinc oxide. Etc. As a film forming method, a thin film forming method such as a vacuum deposition method, a sputtering method, or an ion plating method is used.
 正孔輸送層124は、ポリビニルカルバゾール系材料、ポリシラン系材料、ポリシロキサン誘導体、銅フタロシアニンなどのフタロシアニン系化合物や芳香族アミン系化合物などが用いられる。成膜方法としては、各種の塗布工法を用いることが可能であり、10nm~200nm程度の厚みに形成される。また、正孔輸送層124に積層される正孔注入層は、陽極123からの正孔注入を高める層であり、酸化モリブデンや酸化バナジウムや酸化アルミニウムなどの金属酸化物、金属窒化物、または金属酸化窒化物をスパッタ法により形成される。 The hole transport layer 124 is made of a polyvinyl carbazole material, a polysilane material, a polysiloxane derivative, a phthalocyanine compound such as copper phthalocyanine, an aromatic amine compound, or the like. As a film forming method, various coating methods can be used, and the film is formed to a thickness of about 10 nm to 200 nm. The hole injection layer stacked on the hole transport layer 124 is a layer that enhances hole injection from the anode 123, and is a metal oxide such as molybdenum oxide, vanadium oxide, or aluminum oxide, a metal nitride, or a metal. Oxynitride is formed by sputtering.
 発光層125は、蛍光や燐光などを発光する有機系材料を主成分とし、必要に応じてドーパントを添加して特性を改善する。印刷法に適した高分子系有機材料としては、ポリビニルカルバゾール誘導体、ポリパラフェニリン誘導体、ポリフルオレン誘導体、ポリフェニレンビニレン誘導体などが用いられる。ドーパントは、発光波長のシフトや発光効率の改善のために用いられるものであり、色素系および金属錯体系のドーパントが数多く開発されている。また、大型基板に発光層125を形成する場合には印刷法が適しており、各種の印刷法の中でもインクジェット法が用いられることにより20nm~200nm程度の厚みの発光層125が形成される。 The light emitting layer 125 is mainly composed of an organic material that emits fluorescence, phosphorescence, or the like, and a dopant is added as necessary to improve the characteristics. As a high molecular weight organic material suitable for the printing method, a polyvinyl carbazole derivative, a polyparaphenylin derivative, a polyfluorene derivative, a polyphenylene vinylene derivative, or the like is used. The dopant is used for shifting the emission wavelength and improving the light emission efficiency, and many dye-based and metal complex-based dopants have been developed. In addition, when the light emitting layer 125 is formed over a large substrate, a printing method is suitable, and the light emitting layer 125 having a thickness of about 20 nm to 200 nm is formed by using an ink jet method among various printing methods.
 電子輸送層126は、ベンゾキノン誘導体、ポリキノリン誘導体、オキサジアゾール誘導体などの材料が用いられる。成膜方法としては、真空蒸着法、塗布法などが用いられ、通常10nm~200nm程度の厚みに形成される。また、電子注入層は、バリウム、フタロシアニン、フッ化リチウムなどの材料が用いられ、真空蒸着法、塗布法などにより形成される。 The electron transport layer 126 is made of a material such as a benzoquinone derivative, a polyquinoline derivative, or an oxadiazole derivative. As a film forming method, a vacuum deposition method, a coating method, or the like is used, and the film is usually formed to a thickness of about 10 nm to 200 nm. The electron injection layer is made of a material such as barium, phthalocyanine, or lithium fluoride, and is formed by a vacuum deposition method, a coating method, or the like.
 陰極127は、光の取り出し方向により材料が異なり、陰極127側から光を取り出す場合は、ITO、IZO、酸化スズ、酸化亜鉛などの光透光性の導電材料を用いる。陽極123側から光を取り出す場合は、白金、金、銀、銅、タングステン、アルミニウム、アルミニウム合金などの材料を用いる。成膜方法としては、スパッタ法、真空蒸着法などが用いられ、50nm~500nm程度の厚みに形成される。 The material of the cathode 127 differs depending on the light extraction direction. When light is extracted from the cathode 127 side, a light-transmitting conductive material such as ITO, IZO, tin oxide, or zinc oxide is used. When light is extracted from the anode 123 side, a material such as platinum, gold, silver, copper, tungsten, aluminum, or an aluminum alloy is used. As a film forming method, a sputtering method, a vacuum evaporation method, or the like is used, and the film is formed to a thickness of about 50 nm to 500 nm.
 バンク128は、領域内に発光層125の材料を含む溶液を十分な量で充填するために必要な構造物で、フォトリソ法によって所定の形状に形成される。バンク128の形状により、有機EL発光部のサブピクセルの形状を制御することができる。 The bank 128 is a structure necessary for filling a sufficient amount of the solution containing the material of the light emitting layer 125 in the region, and is formed in a predetermined shape by a photolithography method. The shape of the sub-pixel of the organic EL light emitting unit can be controlled by the shape of the bank 128.
 封止層129は、窒化ケイ素膜を成膜することにより形成され、成膜法としてはCVD(化学気相成長)法が用いられる。 The sealing layer 129 is formed by forming a silicon nitride film, and a CVD (chemical vapor deposition) method is used as the film forming method.
 上記の構成の有機ELパネル1では、自発光するためにパネルそのものが発熱し、有機ELパネル1の中央側の領域である中央部1aと、中央部1aの外側の領域である周縁部1bとにおける温度分布に差が生じる。本開示では、有機ELパネル1の中央部1aと周縁部1bとで温度差が生じることを防ぐために以下のような構成とした。以下、本開示における、有機ELパネル1の温度分布の差を低減するための構成について説明する。 In the organic EL panel 1 having the above-described configuration, the panel itself generates heat in order to emit light. Difference in temperature distribution occurs. In the present disclosure, the following configuration is adopted to prevent a temperature difference between the central portion 1a and the peripheral portion 1b of the organic EL panel 1. Hereinafter, a configuration for reducing a difference in temperature distribution of the organic EL panel 1 in the present disclosure will be described.
 図6は、図1の有機EL表示装置のA-A縦断面図である。 FIG. 6 is an AA longitudinal sectional view of the organic EL display device of FIG.
 図2および図6に示すように、有機EL表示装置10は、前面側から、エスカッションフレーム3、有機ELパネル1、スペーサ12、シャーシ2、各種電気回路基板5、6およびファンユニット11、並びにバックカバー4の順に組み合わせられて構成されている。 As shown in FIGS. 2 and 6, the organic EL display device 10 includes, from the front side, an escutcheon frame 3, an organic EL panel 1, a spacer 12, a chassis 2, various electric circuit boards 5, 6 and a fan unit 11, and a back. The cover 4 is combined in order.
 エスカッションフレーム3は、有機ELパネル1の周縁部を前面側から押さえて、バックカバー4に固定される枠状部材である。 The escutcheon frame 3 is a frame-like member that is fixed to the back cover 4 by pressing the peripheral edge of the organic EL panel 1 from the front side.
 有機ELパネル1は、前面に画像を表示する。有機ELパネル1は、自発光方式の表示パネルである。シャーシ2は、有機ELパネル1の背面側を支持する。シャーシ2は、有機ELパネル1の放熱を促し、かつ、電気的グラウンドとしても機能する、一般的に熱伝導性および電気伝導性の良好な金属製の部材であり、例えば、アルミニウムにより構成される。また、シャーシ2には、各種電気回路基板5、6が配置されている。 The organic EL panel 1 displays an image on the front. The organic EL panel 1 is a self-luminous display panel. The chassis 2 supports the back side of the organic EL panel 1. The chassis 2 is a metal member that promotes heat dissipation of the organic EL panel 1 and also functions as an electrical ground, and generally has good thermal conductivity and electrical conductivity, and is made of, for example, aluminum. . Various electrical circuit boards 5 and 6 are disposed in the chassis 2.
 スペーサ12は、有機ELパネル1の周縁部の四辺とシャーシ2との間に配置される。つまり、スペーサ12は、有機ELパネル1の周縁部1bとシャーシ2との間を断熱している断熱材である。スペーサ12は、熱伝導率が金属より低い樹脂を主材料とする。また、スペーサ12は、長尺シート状であり、かつ、その両面が粘着性を有している。また、スペーサ12は、一方の面(以下、「第一面12a」という)が弱粘着性を有しており、他方の面(以下、「第二面12b」という)が強粘着性を有している。つまり、スペーサ12は、第一面12aの方が第二面12bよりも粘着性が大きい。例えば、スペーサ12は、強粘着性を有する日東電工株式会社製の5000番の両面テープ(またはDIC株式会社製のNo.7694の両面テープ)と、弱粘着性を有する東洋インキ株式会社製のDF8350の両面テープ(または株式会社寺岡製作所製のNo.7692の両面テープ)とを貼り合わせることにより構成されてもよい。このように市販の両面テープを貼り合わせることにより、一方の面が強粘着性を有し、他方の面が弱粘着性を有するスペーサ12を構成することもできる。 The spacer 12 is disposed between the four sides of the peripheral edge of the organic EL panel 1 and the chassis 2. That is, the spacer 12 is a heat insulating material that insulates between the peripheral edge portion 1 b of the organic EL panel 1 and the chassis 2. The spacer 12 is mainly made of a resin having a thermal conductivity lower than that of a metal. The spacer 12 has a long sheet shape, and both surfaces thereof are adhesive. In addition, the spacer 12 has one surface (hereinafter referred to as “first surface 12a”) having weak adhesiveness and the other surface (hereinafter referred to as “second surface 12b”) having strong adhesiveness. is doing. That is, as for the spacer 12, the first surface 12a is more adhesive than the second surface 12b. For example, the spacer 12 is made of Nitto Denko Corporation's No. 5000 double-sided tape (or No. 7694 double-sided tape made by DIC Corporation) and DF8350 made by Toyo Ink Co., Ltd., which has weak adhesion. And a double-sided tape (or No. 7692 double-sided tape manufactured by Teraoka Seisakusho Co., Ltd.). Thus, by sticking a commercially available double-sided tape, the spacer 12 having one surface having strong adhesiveness and the other surface having weak adhesiveness can be constituted.
 ここで、有機ELパネル1は、図6に示すように、少なくとも一部が背面側に向けて凸に湾曲され、かつ、周縁部1bよりも中央部1aがシャーシ2に接触した状態で、シャーシ2に支持されている。なお、「周縁部1bよりも中央部1aがシャーシ2に接触した状態」とは、周縁部1bがシャーシ2に接触している面積よりも、中央部1aがシャーシに接触している面積が大きいとしてもよいし、周縁部1bがシャーシ2に接触することにより加えている圧力よりも、中央部1aがシャーシに接触することにより加えている圧力が大きいとしてもよい。 Here, as shown in FIG. 6, the organic EL panel 1 is configured such that at least a part thereof is convexly curved toward the back side, and the central portion 1 a is in contact with the chassis 2 rather than the peripheral portion 1 b. 2 is supported. Note that “the state in which the central portion 1a is in contact with the chassis 2 rather than the peripheral portion 1b” means that the area in which the central portion 1a is in contact with the chassis is larger than the area in which the peripheral portion 1b is in contact with the chassis 2. Alternatively, the pressure applied when the central portion 1a contacts the chassis may be greater than the pressure applied when the peripheral edge portion 1b contacts the chassis 2.
 より具体的には、有機ELパネル1は、周縁部1bの四辺とシャーシ2とがスペーサ12のそれぞれの面で接着されることにより、シャーシ2に支持されている。また、有機ELパネル1は、中央部1aがシャーシ2に対して接着されていない。つまり、有機ELパネル1は、スペーサ12が配置される以外の部分で、シャーシ2に対して接着されていない。さらに言い換えると、有機ELパネル1は、周縁部1bであってスペーサ12を介してシャーシ2と接着される領域である接着領域R1と、接着領域R1の中央側の領域であって、シャーシ2と接着されていない領域である非接着領域R2とを有する。 More specifically, the organic EL panel 1 is supported by the chassis 2 by bonding the four sides of the peripheral edge portion 1b and the chassis 2 to each surface of the spacer 12. The organic EL panel 1 is not bonded to the chassis 2 at the center 1a. That is, the organic EL panel 1 is not bonded to the chassis 2 except for the portion where the spacer 12 is disposed. Furthermore, in other words, the organic EL panel 1 includes a bonding region R1 that is the peripheral portion 1b and a region bonded to the chassis 2 via the spacer 12, and a region on the center side of the bonding region R1. And a non-bonded region R2 which is a non-bonded region.
 なお、ファンユニット11は、バックカバー4とシャーシ2との間の空間に外部からの空気を矢印20aに示すように取り込んで、各種電気回路基板5、6およびシャーシ2を空冷するための矢印20bに示すような空気流を発生させる。そして、ファンユニット11は、各種電気回路基板5、6およびシャーシ2を冷却することにより加熱された空気を、矢印20cに示すように吸気して、バックカバー4とシャーシ2との間の空間から矢印20dに示すように排出する。このようにして、ファンユニット11は、バックカバー4とシャーシ2との間の空間において強制換気を行うことで、各種電気回路基板5、6およびシャーシ2を冷却可能である。 The fan unit 11 takes air from outside into the space between the back cover 4 and the chassis 2 as indicated by an arrow 20a, and the arrows 20b for air-cooling the various electric circuit boards 5 and 6 and the chassis 2. An air flow as shown in Fig. 2 is generated. The fan unit 11 draws in air heated by cooling the various electric circuit boards 5 and 6 and the chassis 2 as indicated by an arrow 20c, and from the space between the back cover 4 and the chassis 2. Discharge as shown by arrow 20d. In this way, the fan unit 11 can cool the various electric circuit boards 5 and 6 and the chassis 2 by performing forced ventilation in the space between the back cover 4 and the chassis 2.
 (特徴)
 本実施の形態1に係る有機EL表示装置10によれば、有機ELパネル1の周縁部1bの四辺とシャーシ2との間にスペーサ12が配置され、かつ、有機ELパネル1の周縁部1bよりも中央側の中央部1aがシャーシ2と接触している。このため、有機ELパネル1の周縁部1bにおいて発生した熱をシャーシ2に伝わりにくくでき、かつ、有機ELパネル1の中央部1aにおいて発生した熱をシャーシに伝えやすくできる。これにより、有機ELパネル1において、相対的に温度が高い中央部1aの熱を、相対的に温度が低い周縁部1bの熱よりも効率よく放熱させることができる。このため、有機ELパネル1に生じる周縁部1bと中央部1aとの温度分布の差を軽減することができる。
(Characteristic)
According to the organic EL display device 10 according to the first embodiment, the spacers 12 are arranged between the four sides of the peripheral edge 1 b of the organic EL panel 1 and the chassis 2, and from the peripheral edge 1 b of the organic EL panel 1. Also, the central portion 1 a on the central side is in contact with the chassis 2. For this reason, the heat generated in the peripheral portion 1b of the organic EL panel 1 can be hardly transmitted to the chassis 2, and the heat generated in the central portion 1a of the organic EL panel 1 can be easily transmitted to the chassis. Thereby, in the organic EL panel 1, the heat of the central portion 1a having a relatively high temperature can be radiated more efficiently than the heat of the peripheral portion 1b having a relatively low temperature. For this reason, the difference of the temperature distribution of the peripheral part 1b and the center part 1a which arises in the organic EL panel 1 can be reduced.
 また、本実施の形態1に係る有機EL表示装置10によれば、スペーサ12は有機ELパネル1と弱粘着で接着され、かつ、シャーシ2と強粘着で接着されている。 Further, according to the organic EL display device 10 according to the first embodiment, the spacer 12 is bonded to the organic EL panel 1 with weak adhesion and is bonded to the chassis 2 with strong adhesion.
 ここで、図7は、本実施の形態1による有機EL表示装置において、スペーサの一方が弱粘着で接着されていることの効果を説明するための図である。具体的には、図7の(a)は、温度上昇が起こる前(つまり有機EL表示装置に電源が入れられていない常温の状態)での、図6のおける領域A1の拡大図である。図7の(b)は、温度上昇が起こった後(つまり有機EL表示装置に電源が入れられて所定時間経過後)での、図6における領域A1の拡大図である。 Here, FIG. 7 is a diagram for explaining the effect that one of the spacers is bonded with weak adhesion in the organic EL display device according to the first embodiment. Specifically, FIG. 7A is an enlarged view of a region A1 in FIG. 6 before the temperature rises (that is, at a normal temperature when the organic EL display device is not turned on). FIG. 7B is an enlarged view of the region A1 in FIG. 6 after the temperature rise (that is, after a predetermined time has elapsed since the organic EL display device was turned on).
 図7の(a)に示すように、常温の状態では、有機ELパネル1とシャーシ2との間にズレは発生していない。しかし、図7の(b)に示すように、温度上昇が発生した後では、アルミニウム製のシャーシ2の線膨張係数が主にガラスから成る有機ELパネル1よりも大きいことにより、シャーシ2が有機ELパネル1よりも大きく膨張するため、主にシャーシ2の面方向に延びる。図7の(b)では、シャーシ2は有機ELパネル1よりも上方向に延びる。このとき、スペーサ12は、シャーシ2に対しては第二面12bにおいて強粘着で接着されているため、シャーシ2の膨張とともに上方向に移動する。一方で、スペーサ12は、有機ELパネル1に対しては第一面12aにおいて弱粘着で接着されているため、シャーシ2の膨張に対しては追従せずに、スペーサ12の第一面12aと有機ELパネル1とが接着された状態でスライドする。このため、有機ELパネル1とシャーシ2との間に温度変化によるズレが生じたとしても、弱粘着で接着されている部分において有機ELパネル1とシャーシ2との熱膨張の差によるズレを吸収することができる。これにより、温度変化したときにおける、有機ELパネル1とシャーシ2との線膨張係数の違いによるソリの発生を、防ぐことができる。また、温度上昇したときに、有機ELパネル1がシャーシ2により引っ張られることによって破損することを防ぐことができる。 As shown in FIG. 7A, there is no deviation between the organic EL panel 1 and the chassis 2 at room temperature. However, as shown in FIG. 7B, after the temperature rise, the chassis 2 is organic because the linear expansion coefficient of the aluminum chassis 2 is larger than that of the organic EL panel 1 mainly made of glass. Since it expands larger than the EL panel 1, it extends mainly in the surface direction of the chassis 2. In FIG. 7B, the chassis 2 extends upward from the organic EL panel 1. At this time, since the spacer 12 is adhered to the chassis 2 with strong adhesion on the second surface 12b, the spacer 12 moves upward as the chassis 2 expands. On the other hand, since the spacer 12 is bonded to the organic EL panel 1 with weak adhesion on the first surface 12 a, the spacer 12 does not follow the expansion of the chassis 2 and the first surface 12 a of the spacer 12. Slide with the organic EL panel 1 adhered. For this reason, even if a deviation due to a temperature change occurs between the organic EL panel 1 and the chassis 2, the deviation due to the difference in thermal expansion between the organic EL panel 1 and the chassis 2 is absorbed in the portion bonded with weak adhesion. can do. Thereby, generation | occurrence | production of the warp by the difference in the linear expansion coefficient of the organic EL panel 1 and the chassis 2 at the time of a temperature change can be prevented. Moreover, when the temperature rises, the organic EL panel 1 can be prevented from being damaged by being pulled by the chassis 2.
 また、本実施の形態1に係る有機EL表示装置10によれば、有機ELパネル1は、中央部1aがシャーシに対して接着されていないため、シャーシ2の平面度が大きく、表面に粗い凹凸があっても、シャーシ2の凹凸のうちの凸の部分のみで支持されるようにすることができる。要するに、有機ELパネル1の全面をシャーシ2に対して接着する場合では、シャーシ2の凹の部分にも貼り付けることになってしまうため、有機ELパネル1の平面を確保しにくいが、有機ELパネル1の全面をシャーシ2に対して接着せずに有機ELパネル1の周縁部1bのみを接着させるため、有機ELパネル1の平面を確保した状態で有機ELパネル1をシャーシ2に支持させることができる。 In addition, according to the organic EL display device 10 according to the first embodiment, the organic EL panel 1 has the flatness of the chassis 2 and rough unevenness on the surface because the central portion 1a is not bonded to the chassis. Even if there exists, it can be made to be supported only by the convex part of the unevenness | corrugation of the chassis 2. FIG. In short, when the entire surface of the organic EL panel 1 is bonded to the chassis 2, the organic EL panel 1 is stuck on the concave portion of the chassis 2. Since only the peripheral edge 1b of the organic EL panel 1 is bonded without bonding the entire surface of the panel 1 to the chassis 2, the organic EL panel 1 is supported by the chassis 2 in a state in which the plane of the organic EL panel 1 is secured. Can do.
 (実施の形態2)
 以下、図8を用いて実施の形態2を説明する。
(Embodiment 2)
Hereinafter, the second embodiment will be described with reference to FIG.
 図8は、実施の形態2による有機EL表示装置の中央近傍の縦断面図における要部拡大図である。 FIG. 8 is an enlarged view of a main part in a longitudinal sectional view of the vicinity of the center of the organic EL display device according to the second embodiment.
 実施の形態2に係る有機EL表示装置10aは、エスカッションフレーム13の断面形状が実施の形態1に係る有機EL表示装置10とは異なる。なお、エスカッションフレーム13以外の有機EL表示装置10aの構成については、実施の形態1に係る有機EL表示装置10の構成と同一であり、また、有機EL表示装置10の構成と同じ符号を付しているため、その説明を省略する。 The organic EL display device 10a according to the second embodiment is different from the organic EL display device 10 according to the first embodiment in the cross-sectional shape of the escutcheon frame 13. The configuration of the organic EL display device 10a other than the escutcheon frame 13 is the same as the configuration of the organic EL display device 10 according to Embodiment 1, and the same reference numerals as those of the organic EL display device 10 are given. Therefore, the description thereof is omitted.
 エスカッションフレーム13は、図8に示すように、開口側の端部13aが有機ELパネル1の周縁部1bのうちの背面側に向かって凸に湾曲している部分に当接するように、背面側に向かって膨出している。つまり、エスカッションフレーム13は、有機ELパネル1の周縁部1bにおける有機ELパネル1中央側の部分が、周縁部1bにおける有機ELパネル1外側の部分よりもシャーシ2に近づくように前面から押さえている。なお、図8では、エスカッションフレーム13の上部の断面であるが、上下左右の部分における断面についても同様の形状となっている。 As shown in FIG. 8, the escutcheon frame 13 has a rear side so that the end 13 a on the opening side is in contact with a portion of the peripheral edge 1 b of the organic EL panel 1 that is convexly curved toward the back side. Bulges towards In other words, the escutcheon frame 13 is pressed from the front so that a portion of the organic EL panel 1 on the center side of the organic EL panel 1 is closer to the chassis 2 than a portion of the peripheral portion 1b outside the organic EL panel 1 is. . In addition, in FIG. 8, although it is a cross section of the upper part of the escutcheon frame 13, it has the same shape also about the cross section in the part of the upper and lower sides and right and left.
 本実施の形態2に係る有機EL表示装置10aによれば、エスカッションフレーム13が有機ELパネル1の周縁部1bを、中央側の部分が外側の部分よりもシャーシ2に近づくように前面から押さえているため、有機ELパネル1の中央部1aがシャーシ2に接着されていなくても、有機ELパネル1の中央部1aがシャーシ2に接触した状態を保つように構成することができる。 According to the organic EL display device 10a according to the second embodiment, the escutcheon frame 13 holds the peripheral edge portion 1b of the organic EL panel 1 from the front so that the central portion is closer to the chassis 2 than the outer portion. Therefore, even if the center part 1a of the organic EL panel 1 is not bonded to the chassis 2, the center part 1a of the organic EL panel 1 can be configured to keep in contact with the chassis 2.
 (実施の形態3)
 以下、図9を用いて実施の形態3を説明する。
(Embodiment 3)
Hereinafter, Embodiment 3 will be described with reference to FIG.
 図9は、実施の形態3による有機EL表示装置の中央近傍の縦断面図における要部拡大図である。 FIG. 9 is an enlarged view of a main part in a longitudinal sectional view of the vicinity of the center of the organic EL display device according to the third embodiment.
 本実施の形態3に係る有機EL表示装置10bは、有機ELパネル60の構成が実施の形態1の有機ELパネル1とは異なる。なお、有機ELパネル60以外の有機EL表示装置10bの構成については、実施の形態1に係る有機EL表示装置10の構成と同一であり、また、有機EL表示装置10の構成と同じ符号を付しているため、その説明を省略する。 The organic EL display device 10b according to the third embodiment is different from the organic EL panel 1 according to the first embodiment in the configuration of the organic EL panel 60. The configuration of the organic EL display device 10b other than the organic EL panel 60 is the same as the configuration of the organic EL display device 10 according to Embodiment 1, and the same reference numerals as those of the organic EL display device 10 are given. Therefore, the description is omitted.
 有機ELパネル60は、実施の形態1および2に記載の有機ELパネル1と同様の構成である主パネル61と、アルミシート62とを有する。アルミシート62は、主パネル61の背面側に貼り付けられており、ガラス製の主パネル61よりも線膨張係数が大きい素材であるアルミニウムからなる。 The organic EL panel 60 includes a main panel 61 and an aluminum sheet 62 having the same configuration as the organic EL panel 1 described in the first and second embodiments. The aluminum sheet 62 is affixed to the back side of the main panel 61 and is made of aluminum which is a material having a larger linear expansion coefficient than that of the main panel 61 made of glass.
 本実施の形態3に係る有機EL表示装置10bによれば、有機ELパネル60の背面側には、主パネル61よりも線膨張係数が大きい素材からなるアルミシート62が貼り付けられている。このため、有機ELパネル60の主パネル61の自己発熱により温度が上昇した場合に、有機ELパネル60は、背面側に向かって凸になるように反ることになる。このため、有機ELパネル60の中央部がシャーシ2に接着されていなくても、シャーシ2に接触した状態を保つように構成することができる。 According to the organic EL display device 10b according to the third embodiment, the aluminum sheet 62 made of a material having a larger linear expansion coefficient than that of the main panel 61 is attached to the back side of the organic EL panel 60. For this reason, when the temperature rises due to self-heating of the main panel 61 of the organic EL panel 60, the organic EL panel 60 is warped to be convex toward the back side. For this reason, even if the center part of the organic EL panel 60 is not bonded to the chassis 2, the state in contact with the chassis 2 can be maintained.
 (変形例)
 (1)
 上記実施の形態1~3に係る有機EL表示装置10、10a、10bでは、スペーサ12は、第一面12aが弱粘着性を有し、第二面12bが強粘着性を有するとしているが、これに限らない。例えば、スペーサ12の両面は強粘着性を有しており、第一面と接触する有機ELパネル1およびシャーシ2の一方の表面が粘着されにくい表面加工が施されており、第二面と接触する有機ELパネル1およびシャーシ2の他方の表面が粘着されやすい表面加工が施されていてもよい。つまり、有機ELパネル1およびシャーシ2の一方のスペーサに接触する表面が、他方のスペーサに接触する表面よりも接着されにくい表面加工が施されていることにより、スペーサは、有機ELパネルおよびシャーシの一方と強粘着で接着されており、他方と弱粘着で接着されている構成を実現してもよい。
(Modification)
(1)
In the organic EL display devices 10, 10 a, and 10 b according to the first to third embodiments, the spacer 12 has the first surface 12 a having weak adhesion and the second surface 12 b has strong adhesion. Not limited to this. For example, both surfaces of the spacer 12 have strong adhesiveness, and the surface treatment of the one surface of the organic EL panel 1 and the chassis 2 that are in contact with the first surface is difficult to be adhered, and is in contact with the second surface. Surface processing that the other surfaces of the organic EL panel 1 and the chassis 2 to be easily adhered may be performed. That is, the surface of the organic EL panel 1 and the chassis 2 that contacts one spacer is subjected to surface processing that is less likely to adhere than the surface that contacts the other spacer, so that the spacer You may implement | achieve the structure adhere | attached with one side by strong adhesion and the other and weak adhesion.
 (2)
 上記実施の形態1~3に係る有機EL表示装置10、10a、10bでは、スペーサ12は、第一面12aと第二面12bとで粘着性が異なるが、これに限らずに、両方ともが接着相手に対して同じ粘着性であってもよい。つまり、有機ELパネル1の中央部1aがシャーシ2と接触されており、かつ、有機ELパネルの周縁部1bがシャーシ2とスペーサ12によって断熱されていれば、有機ELパネル1の温度分布に温度差が生じることを低減できる。要するに、少なくとも第一の課題を解決できるため、スペーサ12とその両面それぞれの接着相手との接着性能が異なることは必須ではない。
(2)
In the organic EL display devices 10, 10 a, and 10 b according to the first to third embodiments, the spacer 12 has different adhesiveness between the first surface 12 a and the second surface 12 b. It may be the same adhesiveness to the bonding partner. That is, if the central portion 1a of the organic EL panel 1 is in contact with the chassis 2 and the peripheral portion 1b of the organic EL panel is thermally insulated by the chassis 2 and the spacer 12, the temperature distribution in the organic EL panel 1 is increased. The occurrence of a difference can be reduced. In short, since at least the first problem can be solved, it is not essential that the bonding performance of the spacer 12 and the bonding partner on both sides thereof is different.
 (3)
 上記実施の形態1~3に係る有機EL表示装置10、10a、10bでは、有機ELパネル1の中央部1aがシャーシ2に接触しているが、これに限らずに、シャーシ2に接触していなくてもよい。具体的には、有機ELパネル1の周縁部1bとシャーシ2との一方がスペーサ12により強粘着で接着されており、他方がスペーサ12により弱粘着で接着されていれば、有機ELパネル1と、シャーシ2との熱膨張の量の差を原因とするソリの発生を抑制できる。要するに、少なくとも第二の課題を解決できるため、有機ELパネル1の中央部1aがシャーシに接触することは必須ではない。
(3)
In the organic EL display devices 10, 10 a, and 10 b according to the first to third embodiments, the central portion 1 a of the organic EL panel 1 is in contact with the chassis 2, but is not limited thereto, and is in contact with the chassis 2. It does not have to be. Specifically, if one of the peripheral edge 1b of the organic EL panel 1 and the chassis 2 is bonded with strong adhesion by the spacer 12, and the other is bonded with weak adhesion by the spacer 12, the organic EL panel 1 The generation of warp due to the difference in the amount of thermal expansion from the chassis 2 can be suppressed. In short, since at least the second problem can be solved, it is not essential that the central portion 1a of the organic EL panel 1 is in contact with the chassis.
 (4)
 上記実施の形態1~3に係る有機EL表示装置10、10a、10bでは、有機ELパネル1は、周縁部1bの四辺がスペーサ12によりシャーシ2に接着されているが、有機ELパネル1のシャーシ2にスペーサ12で接着される対象の部分は、周縁部1bの四辺に限らない。例えば、周縁部1bの互いに対向する二辺がスペーサ12によりシャーシ2に接着されるようにしてもよい。なお、この場合、当該接着される対象の部分は、有機ELパネル1の上下の二辺であってもよいし、左右の二辺であってもよい。また、当該接着される対象の部分は、有機ELパネル1の上辺を除く三辺としてもよい。これは、図1などに示すように、有機ELパネル1が少なくとも上下方向に平行になるように、有機EL表示装置10が設置されている場合であれば、有機ELパネル1の上部の方が空気の対流により下部よりも温度が高くなりやすいという観点から、温度分布の差を解消する目的にかなっている。このように、有機ELパネル1の設置状況などの条件に応じて、有機ELパネル1の温度が低くなりやすい部分にスペーサ12を適宜配置するようにしてもよい。
(4)
In the organic EL display devices 10, 10 a, and 10 b according to Embodiments 1 to 3 described above, the organic EL panel 1 is bonded to the chassis 2 with the spacer 12 at the four sides of the peripheral edge 1 b. 2 are not limited to the four sides of the peripheral edge 1b. For example, two opposite sides of the peripheral edge 1 b may be bonded to the chassis 2 by the spacer 12. In this case, the target portion to be bonded may be the two upper and lower sides of the organic EL panel 1 or the two left and right sides. Further, the target part to be bonded may be three sides excluding the upper side of the organic EL panel 1. As shown in FIG. 1 and the like, if the organic EL display device 10 is installed so that the organic EL panel 1 is parallel to at least the vertical direction, the upper part of the organic EL panel 1 is more upward. From the viewpoint that the temperature tends to be higher than the lower part due to the convection of air, it serves the purpose of eliminating the difference in temperature distribution. As described above, the spacer 12 may be appropriately disposed in a portion where the temperature of the organic EL panel 1 is likely to be lowered depending on conditions such as the installation state of the organic EL panel 1.
 なお、有機ELパネル1の周縁部1bのうちでスペーサが配置されない箇所がある場合には、当該箇所はシャーシ2に直接接着されていてもよいし、下記変形例(5)のように物理的にシャーシ2に支持されるような形態としてもよいし、スペーサで接着されている部分のみで強度が確保できている場合には当該箇所で支持されていない形態としてもよい。 In addition, when there exists a location in which the spacer is not arrange | positioned among the peripheral part 1b of the organic electroluminescent panel 1, the said location may be directly adhere | attached on the chassis 2, and it is physical like the following modification (5). It is good also as a form supported by the chassis 2, and when intensity | strength is ensured only in the part currently adhere | attached with the spacer, it is good also as a form which is not supported at the said location.
 (5)
 上記実施の形態1~3に係る有機EL表示装置10、10a、10bでは、有機ELパネル1は、シャーシ2に対してスペーサ12により接着されているが、スペーサ12の両面が粘着性を有していなくてもよい。つまり、有機ELパネル1の周縁部1bの少なくとも一部と、シャーシ2との間にスペーサ12が配置されれば、スペーサ12が粘着性を有している必要はない。例えば、有機ELパネル1とシャーシ2とを把持する部材を設けることにより、シャーシ2に有機ELパネル1を支持させてもよいし、有機ELパネル1とシャーシ2とをビス、リベットなどの締結部材で締結させてもよいし、有機ELパネル1がシャーシ2に対して嵌まり込むような形状で支持させてもよい。
(5)
In the organic EL display devices 10, 10 a, and 10 b according to the first to third embodiments, the organic EL panel 1 is bonded to the chassis 2 with the spacers 12. Both surfaces of the spacers 12 have adhesiveness. It does not have to be. That is, if the spacer 12 is disposed between at least a part of the peripheral edge 1b of the organic EL panel 1 and the chassis 2, the spacer 12 does not need to have adhesiveness. For example, the organic EL panel 1 may be supported by the chassis 2 by providing a member that holds the organic EL panel 1 and the chassis 2, or the organic EL panel 1 and the chassis 2 are fastened by screws, rivets, or the like. The organic EL panel 1 may be supported by a shape that fits into the chassis 2.
 (6)
 上記実施の形態1~3に係る有機EL表示装置10、10a、10bでは、有機ELパネル1は、シャーシ2と接着されていない領域である非接着領域R2を有している(つまり、有機ELパネル1は、中央部1aがシャーシ2に対して接着されていない)が、これに限らない。要するに、シャーシ2の前面側の表面の平面度が十分に小さければ、有機ELパネル1は、中央部1aがシャーシ2に対して接着されていてもよい。
(6)
In the organic EL display devices 10, 10a, and 10b according to the first to third embodiments, the organic EL panel 1 has a non-adhesion region R2 that is a region that is not bonded to the chassis 2 (that is, the organic EL display 1). In the panel 1, the central portion 1a is not bonded to the chassis 2), but is not limited thereto. In short, the center portion 1a of the organic EL panel 1 may be bonded to the chassis 2 if the flatness of the surface on the front side of the chassis 2 is sufficiently small.
 以上のように、本開示における技術の例示として、実施の形態を説明した。そのために、添付図面および詳細な説明を提供した。 As described above, the embodiments have been described as examples of the technology in the present disclosure. For this purpose, the accompanying drawings and detailed description are provided.
 したがって、添付図面および詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、上記技術を例示するために、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が添付図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきではない。 Accordingly, among the components described in the accompanying drawings and the detailed description, not only the components essential for solving the problem, but also the components not essential for solving the problem in order to illustrate the above technique. May also be included. Therefore, it should not be immediately recognized that these non-essential components are essential as those non-essential components are described in the accompanying drawings and detailed description.
 また、上述の実施の形態は、本開示における技術を例示するためのものであるから、請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。 In addition, since the above-described embodiment is for illustrating the technique in the present disclosure, various modifications, replacements, additions, omissions, and the like can be performed within the scope of the claims or an equivalent scope thereof.
 以上のように本開示は、有機EL表示装置を提供する上で有用である。 As described above, the present disclosure is useful in providing an organic EL display device.
  1、60 有機ELパネル
  1a 中央部
  1b 周縁部
  2 シャーシ
  3、13 エスカッションフレーム
  4 バックカバー
  5、6 電気回路基板
 10、10a、10b 有機EL表示装置
 11 ファンユニット
 12 スペーサ
 12a 第一面
 12b 第二面
 13a 端部
 20a~20d 矢印
 50 スタンド
 61 主パネル
 62 アルミシート
101 薄膜トランジスタアレイ装置
102 陽極
103 発光層
104 陰極
105 画素
106 画素回路
107 ゲート配線
108 ソース配線
109 電源配線
110 薄膜トランジスタ
110g ゲート電極
110s ソース電極
110d ドレイン電極
111 薄膜トランジスタ
111d ドレイン電極
111g ゲート電極
111s ソース電極
112 キャパシタ
121 ベース基板
122 薄膜トランジスタアレイ装置
123 陽極
124 正孔輸送層
125 発光層
126 電子輸送層
127 陰極
128 バンク
129 封止層
130 接着層
131 封止用基板
 R1 接着領域
 R2 非接着領域
DESCRIPTION OF SYMBOLS 1,60 Organic EL panel 1a Center part 1b Peripheral part 2 Chassis 3, 13 Escussion frame 4 Back cover 5, 6 Electric circuit board 10, 10a, 10b Organic EL display device 11 Fan unit 12 Spacer 12a First surface 12b Second surface 13a End 20a to 20d Arrow 50 Stand 61 Main panel 62 Aluminum sheet 101 Thin film transistor array device 102 Anode 103 Light emitting layer 104 Cathode 105 Pixel 106 Pixel circuit 107 Gate wiring 108 Source wiring 109 Power supply wiring 110 Thin film transistor 110g Gate electrode 110s Source electrode 110d Drain Electrode 111 Thin film transistor 111d Drain electrode 111g Gate electrode 111s Source electrode 112 Capacitor 121 Base substrate 122 Thin film transistor array device 23 anode 124 hole transport layer 125 luminescent layer 126 electron-transporting layer 127 cathode 128 bank 129 sealing 130 adhesive layer 131 sealing substrate R1 bonded regions R2 unbonded regions

Claims (8)

  1.  前面に画像を表示する有機ELパネルと、
     前記有機ELパネルの背面側を支持するシャーシと、
     前記有機ELパネルの周縁部の少なくとも一部と前記シャーシとの間に配置されるスペーサと、
     を備え、
     前記有機ELパネルは、少なくとも一部が背面側に向けて凸に湾曲され、かつ、前記周縁部よりも中央側にある中央部が前記シャーシに接触した状態で、前記シャーシに支持されている
     有機EL表示装置。
    An organic EL panel that displays an image on the front;
    A chassis that supports the back side of the organic EL panel;
    A spacer disposed between at least a part of a peripheral edge of the organic EL panel and the chassis;
    With
    The organic EL panel is supported by the chassis in a state where at least part of the organic EL panel is convexly curved toward the back side, and a central portion that is closer to the center than the peripheral edge is in contact with the chassis. EL display device.
  2.  前記スペーサは、シート状であり、かつ、その両面が粘着性を有しており、
     前記有機ELパネルは、矩形状であり、かつ、前記周縁部のうちの少なくとも対向する二辺と、前記シャーシとが前記スペーサのそれぞれの面で接着されることにより、前記シャーシに支持されている
     請求項1に記載の有機EL表示装置。
    The spacer is in the form of a sheet, and both surfaces thereof are adhesive.
    The organic EL panel has a rectangular shape, and is supported by the chassis by adhering at least two opposing sides of the peripheral portion and the chassis to each surface of the spacer. The organic EL display device according to claim 1.
  3.  前記有機ELパネルは、前記周縁部の四辺と前記シャーシとが前記スペーサのそれぞれの面で接着されることにより、前記シャーシに支持されている
     請求項2に記載の有機EL表示装置。
    The organic EL display device according to claim 2, wherein the organic EL panel is supported by the chassis by bonding the four sides of the peripheral edge portion and the chassis to each surface of the spacer.
  4.  前記スペーサは、前記有機ELパネルおよび前記シャーシの一方と強粘着で接着されており、他方と弱粘着で接着されている
     請求項2または3に記載の有機EL表示装置。
    The organic EL display device according to claim 2, wherein the spacer is bonded to one of the organic EL panel and the chassis with strong adhesion, and is bonded to the other with weak adhesion.
  5.  前記有機ELパネルは、前記中央部が前記シャーシに対して接着されていない
     請求項1から4のいずれか1項に記載の有機EL表示装置。
    The organic EL display device according to any one of claims 1 to 4, wherein the central portion of the organic EL panel is not bonded to the chassis.
  6.  さらに、
     前記有機ELパネルの前記周縁部を、中央側の部分が外側の部分よりも前記シャーシに近づくように前面から押さえる枠状部材を備える
     請求項1から5のいずれか1項に記載の有機EL表示装置。
    further,
    6. The organic EL display according to claim 1, further comprising a frame-like member that presses the peripheral edge portion of the organic EL panel from the front face so that a central portion is closer to the chassis than an outer portion. apparatus.
  7.  前記有機ELパネルは、背面側に、前記有機ELパネルよりも線膨張係数が大きい素材のシートが貼り付けられている
     請求項1から6のいずれか1項に記載の有機EL表示装置。
    The organic EL display device according to claim 1, wherein a sheet made of a material having a larger linear expansion coefficient than the organic EL panel is attached to the back side of the organic EL panel.
  8.  前面に画像を表示する有機ELパネルと、
     前記有機ELパネルの背面側を支持するシャーシと、
     前記有機ELパネルの周縁部と前記シャーシとの間に配置されるスペーサと、
     を備え、
     前記有機ELパネルは、前記周縁部であって前記スペーサを介して前記シャーシと接着されている領域である接着領域と、前記接着領域の中央側の領域であって、前記シャーシと接着されていない領域である非接着領域とを有し、
     前記スペーサは、前記有機ELパネルの前記接着領域および前記シャーシの一方と強粘着で接着されており、他方と弱粘着で接着されている
     有機EL表示装置。
    An organic EL panel that displays an image on the front;
    A chassis that supports the back side of the organic EL panel;
    A spacer disposed between a peripheral portion of the organic EL panel and the chassis;
    With
    The organic EL panel is a peripheral area and an adhesion area that is an area bonded to the chassis via the spacer, and a central area of the adhesion area, and is not bonded to the chassis. A non-adhesive region that is a region,
    The said spacer is adhere | attached with the said adhesion | attachment area | region of the said organic electroluminescent panel, and one of the said chassis by strong adhesion, The organic EL display apparatus is adhere | attached with the other by weak adhesion.
PCT/JP2014/002660 2013-09-30 2014-05-21 Organic el display apparatus WO2015045210A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-205729 2013-09-30
JP2013205729 2013-09-30

Publications (1)

Publication Number Publication Date
WO2015045210A1 true WO2015045210A1 (en) 2015-04-02

Family

ID=52742394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002660 WO2015045210A1 (en) 2013-09-30 2014-05-21 Organic el display apparatus

Country Status (1)

Country Link
WO (1) WO2015045210A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004117937A (en) * 2002-09-27 2004-04-15 Sharp Corp Display device
JP2005107487A (en) * 2003-09-26 2005-04-21 Samsung Sdi Co Ltd Display apparatus and plasma display apparatus
JP2005234574A (en) * 2004-02-20 2005-09-02 Samsung Sdi Co Ltd Plasma display device
JP2006139262A (en) * 2004-11-10 2006-06-01 Samsung Sdi Co Ltd Heat dissipation structure of display panel, and display module with the same
WO2013077279A1 (en) * 2011-11-24 2013-05-30 シャープ株式会社 Backlight unit and liquid crystal display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004117937A (en) * 2002-09-27 2004-04-15 Sharp Corp Display device
JP2005107487A (en) * 2003-09-26 2005-04-21 Samsung Sdi Co Ltd Display apparatus and plasma display apparatus
JP2005234574A (en) * 2004-02-20 2005-09-02 Samsung Sdi Co Ltd Plasma display device
JP2006139262A (en) * 2004-11-10 2006-06-01 Samsung Sdi Co Ltd Heat dissipation structure of display panel, and display module with the same
WO2013077279A1 (en) * 2011-11-24 2013-05-30 シャープ株式会社 Backlight unit and liquid crystal display device

Similar Documents

Publication Publication Date Title
US9351349B2 (en) Organic EL device having improved sealing property
JP6105911B2 (en) OLED display panel
US20160013251A1 (en) El display device
US20060113905A1 (en) Display device
JP2007265968A (en) Organic el element panel
JP2007026970A (en) Organic light emitting display device
WO2015087498A1 (en) Display device
KR20110111746A (en) Organic light emitting diode display
CN107068724B (en) OLED display panel, preparation method thereof and OLED display
KR102035251B1 (en) Organic light emitting diode display
JP2007164184A (en) Display device
US9704925B2 (en) EL display device
US8076843B2 (en) Organic electroluminescence display device
US9337440B2 (en) Organic luminescent display device
US20190058024A1 (en) Organic light emitting diode display panel and method for manufacturing same
JP5418328B2 (en) Organic EL panel
JPWO2014174803A1 (en) Method for manufacturing EL display device
WO2015045210A1 (en) Organic el display apparatus
US9293740B2 (en) Method of manufacturing EL display device
WO2015087461A1 (en) Display device
US20210337706A1 (en) Display device
JP2015225092A (en) Display device
KR100631121B1 (en) Organic Electro Luminescence Display Device And Method For Fabricating Thereof
JP2015118825A (en) Organic EL panel
JP2011187217A (en) Organic el module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14848784

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14848784

Country of ref document: EP

Kind code of ref document: A1