WO2015043365A1 - 调度授权的控制方法、用户设备和网络设备 - Google Patents

调度授权的控制方法、用户设备和网络设备 Download PDF

Info

Publication number
WO2015043365A1
WO2015043365A1 PCT/CN2014/085863 CN2014085863W WO2015043365A1 WO 2015043365 A1 WO2015043365 A1 WO 2015043365A1 CN 2014085863 W CN2014085863 W CN 2014085863W WO 2015043365 A1 WO2015043365 A1 WO 2015043365A1
Authority
WO
WIPO (PCT)
Prior art keywords
authorization
value
authorization value
receiving
user equipment
Prior art date
Application number
PCT/CN2014/085863
Other languages
English (en)
French (fr)
Inventor
花梦
焦淑蓉
周涵
马雪利
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP14849670.6A priority Critical patent/EP3035761A4/en
Publication of WO2015043365A1 publication Critical patent/WO2015043365A1/zh
Priority to US15/081,174 priority patent/US10154516B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/08Access security
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows

Definitions

  • the present invention relates to the field of communications, and more particularly, to a control method for scheduling authorization, a user equipment, and a network device.
  • the base station uses the scheduling grant to indicate that the UE (User Equipment) is in the uplink data transmission channel E-DPDCH (E-DCH Dedicated Physical Data Channel).
  • E-DPDCH E-DCH Dedicated Physical Data Channel
  • the UE determines the data block size of each TTI (Transmission Timing Interval) transmitted on the uplink data transmission channel E-DPDCH according to the received authorization value and its own remaining transmission power.
  • TTI Transmission Timing Interval
  • the base station delivers the absolute value of the grant value through the E-AGCH (E-DCH Absolute Grant Channel).
  • E-AGCH E-DCH Absolute Grant Channel
  • the UE determines, according to the pre-agreed effective time, which TTI of the uplink data transmission channel E-DPDCH uses the power indicated by the new authorization value to transmit the HSUPA uplink data, initiates the transmission of the HSUPA uplink data, or stops transmitting the HSUPA uplink data.
  • This method is not flexible enough. Especially when the TDM (Time Division Multiplexing) scheduling mode is introduced in the HSUPA system, the scheduling performance encounters a bottleneck.
  • the embodiment of the invention provides a control method for scheduling authorization, a user equipment and a network device, which can improve the flexibility of the selection effective time.
  • the first aspect provides a control method for scheduling authorization, including: receiving authorization information sent by a network device, where the authorization information indicates an authorization value of the user equipment to send data on the uplink data channel; and according to the authorization value and the authorization information received Receiving time, determining the effective time of the authorization information; when it is in effect And adjusting the transmission of the data on the uplink data channel based on the authorization value; wherein the authorization value belongs to one of the multiple authorization value sets, and there is no intersection between the multiple authorization value sets, and the effective time corresponding to the authorization value in the same authorization value set is
  • the timing relationship between the receiving times is defined by the same timing relationship.
  • the timing relationship between the effective time and the receiving time corresponding to the authorized values in different sets of authorization values is defined by different timing relationships.
  • the multiple authorization value set includes a first authorization value set and a second authorization value set, where the first authorization value set includes a non-zero value authorization value, and the second authorization
  • the set of values includes a zero value authorization value and a deactivation authorization value; or the plurality of authorization value sets includes a first authorization value set and a second authorization value set, the first authorization value set including a non-zero value authorization value and a zero value authorization value,
  • the set of two authorization values includes a deactivation authorization value.
  • the uplink data channel is an enhanced dedicated channel dedicated physical data channel
  • the data is a high speed uplink packet access HSUPA uplink data
  • the authorization value and the receiving Determining the effective time of the authorization information at the time of receiving the authorization information, including: when the authorization value belongs to the first authorization value set, determining to start transmitting the high speed on the qth subframe of the system frame number p of the enhanced dedicated channel dedicated physical data channel
  • No. q indicates the subframe number of the system frame number corresponding to the effective time, i is the system frame number corresponding to the receiving time, s 1 is the first system frame number increment, and t 1 is the first subframe offset in the system frame.
  • T 1 represents an effective time increment
  • T 2 T 1 + ⁇ T
  • ⁇ T is a positive or negative integer of an integer multiple of the transmission time interval TTI
  • j represents a subframe number of the system frame number corresponding to the reception time
  • ⁇ DPCH n represents the timing offset value of the downlink DPCCH channel.
  • control method further includes: receiving T 1 and ⁇ T sent by the network device; or receiving T 2 and ⁇ T sent by the network device; or Receive T 1 and T 2 sent by the network device.
  • the determining method further includes: receiving, before determining an effective time of the authorization information according to the authorization information and the receiving moment of receiving the authorization information
  • the configuration signaling sent by the network device is used to indicate that the activation time of the authorization information is determined according to the authorization information and the receiving moment of receiving the authorization information.
  • the second aspect provides a control method for scheduling authorization, including: determining authorization information corresponding to the user equipment, the authorization information indicating an authorization value of the user equipment to send data on the uplink data channel, and the authorization value can be used by the user equipment. Determining the effective time of the authorization information; sending the authorization information to the user equipment, by using the authorization value to schedule the user equipment to adjust the data transmission on the uplink data channel based on the authorization value at the effective time; wherein the authorization value belongs to one of the multiple authorization value sets, There is no intersection between multiple authorization value sets, and the timing relationship between the effective time corresponding to the authorization value in the same authorization value set and the reception time when the user equipment receives the authorization information is defined by the same timing relationship, and the authorization in different authorization value sets The timing relationship between the effective time and the receiving time corresponding to the value is defined by different timing relationships.
  • the multiple authorization value set includes a first authorization value set and a second authorization value set, where the first authorization value set includes a non-zero value authorization value, and the second authorization
  • the set of values includes a zero value authorization value and a deactivation authorization value; or the plurality of authorization value sets includes a first authorization value set and a second authorization value set, the first authorization value set including a non-zero value authorization value and a zero value authorization value,
  • the set of two authorization values includes a deactivation authorization value.
  • control method further includes: sending configuration signaling to the user equipment, where the configuration signaling is used to indicate that the user equipment is activated according to the authorization information and the receiving The time at which the authorization information is valid is determined at the time of receiving the authorization information.
  • a third aspect provides a user equipment, including: a receiving unit, configured to receive authorization information sent by a network device, where the authorization information indicates an authorization value of the user equipment to send data on an uplink data channel; and a determining unit, configured to perform authorization according to the authorization The value and the receiving moment of receiving the authorization information, determining the effective time of the authorization information; the adjusting unit, configured to adjust the sending of the data on the uplink data channel based on the authorized value at the effective time; wherein the authorization value belongs to one of the multiple authorized value sets The intersection of the multiple authorization value sets has no intersection, and the timing relationship between the effective time and the reception time corresponding to the authorization value in the same authorization value set is defined by the same timing relationship, and the effective time corresponding to the authorization value in the different authorization value sets is The timing relationship between reception times is defined by different timing relationships.
  • the multiple authorization value set includes a first authorization value set and a second authorization value set, where the first authorization value set includes a non-zero value authorization value, and the second authorization
  • the set of values includes a zero value authorization value and a deactivation authorization value; or the plurality of authorization value sets includes a first authorization value set and a second authorization value set, the first authorization value set including a non-zero value authorization value and a zero value authorization value,
  • the set of two authorization values includes a deactivation authorization value.
  • the uplink data channel is an enhanced dedicated channel dedicated physical data channel, and the data is a high speed uplink packet access HSUPA uplink data;
  • the determining unit is specifically configured to:
  • T 1 represents an effective time increment
  • T 2 T 1 + ⁇ T
  • ⁇ T is a positive or negative integer of an integer multiple of the transmission time interval TTI
  • j represents a subframe number of the system frame number corresponding to the reception time
  • ⁇ DPCH n represents the timing offset value of the downlink DPCCH channel.
  • the receiving unit is further configured to: receive T 1 and ⁇ T sent by the network device, or receive T 2 and ⁇ T sent by the network device, or Receive T 1 and T 2 sent by the network device.
  • the receiving unit is further configured to: receive configuration signaling sent by the network device, where the configuration signaling is used to indicate that the activation according to the authorization information and the receiving The time at which the authorization information is valid is determined at the time of receiving the authorization information.
  • the fourth aspect provides a network device, including: a determining unit, configured to determine authorization information corresponding to the user equipment, where the authorization information indicates an authorization value of the user equipment to send data on the uplink data channel, and the authorization value can be used by the user equipment.
  • the sending unit is configured to send the authorization information to the user equipment, to schedule, by using the authorization value, the user equipment to adjust the data transmission on the uplink data channel based on the authorization value at the effective time; wherein the authorization value belongs to the One of the set of authorization values, there is no intersection between the sets of multiple authorization values, and the timing relationship between the effective time corresponding to the authorization value in the same authorization value set and the reception time when the user equipment receives the authorization information is defined by the same timing relationship.
  • the timing relationship between the effective time and the receiving time corresponding to the authorization value in the different authorization value sets is defined by different timing relationships.
  • the multiple authorization value set includes a first authorization value set and a second authorization value set, where the first authorization value set includes a non-zero value authorization value, and the second authorization The set of values includes a zero value authorization value and a deactivation authorization value; or the plurality of authorization value sets includes a first authorization value set and a second authorization value set, the first authorization value set including a non-zero value authorization value and a zero value grant The weight, the second set of authorization values includes a deactivation authorization value.
  • the sending unit is further configured to: send configuration signaling to the user equipment, where the configuration signaling is used to indicate that the user equipment is activated according to the authorization information and the receiving The time at which the authorization information is valid is determined at the time of receiving the authorization information.
  • the UE may flexibly select different effective moments according to different authorization information.
  • the embodiment of the present invention provides an applicable implementation manner for further improving scheduling performance.
  • FIG. 1 is a schematic flowchart of a method for controlling scheduling authorization according to an embodiment of the present invention.
  • FIG. 2 is a schematic flowchart of a method for controlling scheduling authorization according to another embodiment of the present invention.
  • FIG. 3 is a schematic timing diagram of a method for controlling scheduling authorization according to an embodiment of the present invention.
  • FIG. 4 is a schematic block diagram of a UE according to an embodiment of the present invention.
  • FIG. 5 is a schematic block diagram of a network device according to an embodiment of the present invention.
  • FIG. 6 is a schematic block diagram of a UE according to another embodiment of the present invention.
  • FIG. 7 is a schematic block diagram of a network device according to another embodiment of the present invention.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA wideband code “Wideband Code Division Multiple Access”
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • a user equipment may be called a terminal (Terminal), a mobile station (Mobile Station, referred to as “MS”), and a mobile terminal (Mobile Terminal).
  • the user equipment can communicate with one or more core networks via a Radio Access Network (“RAN"), for example, the user equipment can be a mobile phone (or "cellular" phone)
  • RAN Radio Access Network
  • the user equipment can be a mobile phone (or "cellular" phone)
  • a computer with a mobile terminal, etc. for example, the user device can also be a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges voice and/or data with the wireless access network.
  • the network device may be a base station (Base Transceiver Station, abbreviated as "BTS”) in GSM or CDMA, or may be a base station (NodeB, abbreviated as “NB”) in WCDMA or a radio network controller.
  • BTS Base Transceiver Station
  • NodeB base station
  • RNC Radio Network Controller
  • Evolutional Node B referred to as "ENB or e-NodeB”
  • FIG. 1 is a schematic flowchart of a method for controlling scheduling authorization according to an embodiment of the present invention.
  • the method 100 of Figure 1 can be performed by a UE.
  • the timing relationship between the effective time and the receiving time is defined by the same timing relationship.
  • the timing relationship between the effective time and the receiving time corresponding to the authorized value in the different authorized value sets is defined by different timing relationships.
  • the UE may flexibly select different effective moments according to different authorization information.
  • the embodiment of the present invention provides an applicable implementation manner for further improving scheduling performance.
  • the receiving time and the effective time of the authorization information respectively correspond to the frame numbers in the communication system.
  • the reception time and the effective time correspond to a system frame number and a corresponding subframe number, respectively.
  • one transmission subframe is the length of one TTI.
  • the receiving time and the effective time respectively correspond to a system frame number.
  • the TDM scheduling mechanism when the TDM scheduling mechanism is introduced in the HSUPA system, according to the embodiment of the present invention, it may be predefined that the time for transmitting the authorization information to the first user equipment (corresponding to the de-authorized user equipment) in one scheduling is later than to the second user.
  • the first user equipment and the second user equipment can determine the effective time of the authorization information according to the received authorization information and the receiving moment of receiving the authorization information.
  • the first user equipment stops transmitting the HSUPA uplink data, and the second user equipment starts to send the HSUPA uplink data, thereby avoiding the transmission caused by the foregoing operations not occurring at the same time. Gap gaps or mutual interference, thereby improving scheduling performance.
  • the multiple authorization value set includes a first authorization value set and a second authorization value set, the first authorization value set includes a non-zero value authorization value, and the second authorization value set includes a zero value authorization value and Deactivating the authorization value; or the plurality of authorization value sets includes a first authorization value set and a second authorization value set, the first authorization value set includes a non-zero value authorization value and a zero value authorization value, and the second authorization value set includes a deactivation authorization value.
  • the non-zero value authorization value indicates that the maximum power ratio of the dedicated channel dedicated physical data channel (E-DPDCH) and the dedicated physical control channel is non-zero during the transmission of the HSUPA uplink scheduling data by the UE on the corresponding TTI.
  • the zero-valued authorization value indicates that the maximum power ratio of the dedicated dedicated channel dedicated physical data channel to the dedicated physical control channel is less than any non-zero value authorized value during the HSUPA uplink scheduling data transmission on the corresponding TTI, and the value may be zero, Can not be zero.
  • the deactivation authorization value indicates that the UE cannot perform HSUPA uplink scheduling data transmission in the corresponding TTI. It should also be understood that the corresponding TTI is the TTI corresponding to the effective time of the authorization information.
  • Table 1 and Table 2 respectively define an index and an absolute authorization worth correspondence
  • the authorization information may include an index
  • the UE determines an absolute authorization value according to the index.
  • the absolute authorization value corresponding to indexes 2 to 31 is a non-zero value authorization value
  • the absolute authorization value corresponding to index 1 (ZERO_GRANT*) is a zero value authorization value
  • the absolute authorization value corresponding to index 0 is a deactivation authorization value (INACTIVE*).
  • Absolute authorization value index (168/15) 2 x6 31 (150/15) 2 x6 30 (168/15) 2 x4 29 (150/15) 2 x4 28 (134/15) 2 x4 27 (119/15) 2 x4 26 (150/15) 2 x2 25 (95/15) 2 x4 twenty four (168/15) 2 twenty three (150/15) 2 twenty two (134/15) 2 twenty one (119/15) 2 20 (106/15) 2 19 (95/15) 2 18 (84/15) 2 17 (75/15) 2 16 (67/15) 2 15 (60/15) 2 14 (53/15) 2 13 (47/15) 2 12 (42/15) 2 11 (38/15) 2 10 (34/15) 2 9
  • the uplink data channel is an enhanced dedicated channel dedicated physical data channel
  • the data is a high speed uplink packet access HSUPA uplink data.
  • first system frame number increment and the second system frame number increment respectively represent the system frame number increment or offset on the enhanced dedicated channel dedicated physical data channel
  • first subframe offset and the second The sub-frame offsets respectively represent sub-frame numbers within a system frame number on the enhanced dedicated channel dedicated physical data channel. Frame number offset.
  • T 1 represents an effective time increment
  • T 2 T 1 + ⁇ T
  • ⁇ T is a positive or negative integer of an integer multiple of the transmission time interval TTI
  • j represents a subframe number of the system frame number corresponding to the reception time
  • ⁇ DPCH n represents the timing offset value of the downlink DPCCH channel.
  • T 1 , T 2 and ⁇ T are all time units with a spreading factor of 256
  • ⁇ DPCH, n is a chip in time units
  • ⁇ DPCH, n is divided by 256 and is also symbolized.
  • Time unit a TTI of 30 symbols.
  • F-DPCH Fractional Dedicated Physical Channel
  • the UE may further receive T 1 and ⁇ T sent by the network device; or receive T 2 and ⁇ T sent by the network device; or receive T 1 and T 2 sent by the network device.
  • the network device may agree with the user equipment T 1 and ⁇ T, T 2 and ⁇ T, or T 1 and T 2 , or may agree to ⁇ T, and the user equipment receives the T 1 or T 2 sent by the network device, and should all fall.
  • the network device may agree with the user equipment T 1 and ⁇ T, T 2 and ⁇ T, or T 1 and T 2 , or may agree to ⁇ T, and the user equipment receives the T 1 or T 2 sent by the network device, and should all fall.
  • the UE may further receive configuration signaling sent by the network device, where the configuration signaling is used to indicate that the activation of the authorization information is determined according to the authorization information and the receiving moment of receiving the authorization information.
  • the operation of the moment the UE can flexibly select according to the configuration signaling to determine the effective time of the authorization information according to the authorization information and the receiving moment of receiving the authorization information, or determine the effective time of the authorization information according to the receiving moment of receiving the authorization information.
  • the UE may determine, according to the authorization information and the receiving moment of receiving the authorization information, the effective time of the authorization information.
  • the UE may determine not to determine the effective time of the authorization information according to the authorization information and the receiving moment of receiving the authorization information.
  • FIG. 2 is a schematic flowchart of a method for controlling scheduling authorization according to another embodiment of the present invention.
  • the method 200 of Figure 2 can be performed by a network device.
  • the device sends the authorization information to the user equipment to adjust, by using the authorization value, the user equipment to adjust the data transmission on the uplink data channel based on the authorization value, where the authorization value belongs to one of the multiple authorization value sets, and the multiple authorization value set. If there is no intersection, the timing relationship between the effective time corresponding to the authorization value in the same authorization value set and the receiving time of the user equipment receiving the authorization information is defined by the same timing relationship, and the effective time corresponding to the authorization value in the different authorization value set The timing relationship is different from the timing of the reception by the timing relationship.
  • the UE may flexibly select different effective moments according to different authorization information.
  • the embodiment of the present invention provides an applicable implementation manner for further improving scheduling performance.
  • the receiving time and the effective time of the authorization information respectively correspond to the frame numbers in the communication system.
  • the reception time and the effective time correspond to a system frame number and a corresponding subframe number, respectively.
  • one transmission subframe is the length of one TTI.
  • the receiving time and the effective time respectively correspond to a system frame number.
  • the TDM scheduling mechanism when the TDM scheduling mechanism is introduced in the HSUPA system, according to the embodiment of the present invention, it may be predefined that the time for transmitting the authorization information to the first user equipment (corresponding to the de-authorized user equipment) in one scheduling is later than to the second user.
  • the first user equipment and the second user equipment can determine the effective time of the authorization information according to the received authorization information and the receiving moment of receiving the authorization information.
  • the first user equipment stops transmitting the HSUPA uplink data, and the second user equipment starts to send the HSUPA uplink data, thereby avoiding the transmission caused by the foregoing operations not occurring at the same time.
  • Gap gap or mutual interference thus improving scheduling performance.
  • the multiple authorization value set includes a first authorization value set and a second authorization value set, the first authorization value set includes a non-zero value authorization value, and the second authorization value set includes a zero value authorization value and Deactivating the authorization value; or the plurality of authorization value sets includes a first authorization value set and a second authorization value set, the first authorization value set includes a non-zero value authorization value and a zero value authorization value, and the second authorization value set includes a deactivation authorization value.
  • the non-zero value authorization value indicates that the maximum power ratio of the dedicated channel dedicated physical data channel (E-DPDCH) and the dedicated physical control channel is non-zero during the transmission of the HSUPA uplink scheduling data by the UE on the corresponding TTI.
  • the zero-valued authorization value indicates that the maximum power ratio of the dedicated dedicated channel dedicated physical data channel to the dedicated physical control channel is less than any non-zero value authorized value during the HSUPA uplink scheduling data transmission on the corresponding TTI, and the value may be zero, Can not be zero.
  • the deactivation authorization value indicates that the UE cannot perform HSUPA uplink scheduling data transmission in the corresponding TTI. It should also be understood that the corresponding TTI is the TTI corresponding to the effective time of the authorization information.
  • the network device may further send configuration signaling to the user equipment, where the configuration signaling is used to indicate that the user equipment starts to determine the effective time of the authorization information according to the authorization information and the receiving moment of receiving the authorization information. operating.
  • the UE can flexibly select according to the configuration signaling to determine the effective time of the authorization information according to the authorization information and the receiving moment of receiving the authorization information, or determine the effective time of the authorization information according to the receiving moment of receiving the authorization information.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • FIG. 3 is a schematic timing diagram of a method for controlling scheduling authorization according to an embodiment of the present invention.
  • FIG. 3 shows a sequence in which the network device sends an absolute grant value to UE A and UE B through the channel E-AGCH, and corresponding operations are performed after UE A and UE B receive the absolute grant value. It is assumed that UE A performs HSUPA uplink data transmission at the current time according to the authorization information delivered by the network device.
  • a non-zero grant value issued UE B indicating the uplink HSUPA UE B starts data transmission at a second time (i corresponding to the system frame number of the subframe j 2 2) made zero grant value to the UE a or deactivation grant value indicating the UE a to stop the uplink HSUPA data transmission.
  • the non-zero grant value is issued one bit earlier than the zero grant value/deactivation grant value.
  • the time at which UE B receives the non-zero grant value is earlier than the time at which UE A receives the zero grant value/deactivation grant value.
  • UE B can determine the effective time of the non-zero authorization value according to formula (3), that is, the time when UE B starts HSUPA uplink data transmission:
  • UE B system frame number i 1 + HSUPA uplink data transmission starts on the first T 1 s 1 subframe.
  • UE A may determine the effective time of the zero grant value/deactivation grant value according to formula (4), that is, the moment when UE A stops the HSUPA uplink data transmission:
  • UE A stops timing HSUPA uplink data transmission on the second system frame number t i 2 + s 2 2 subframes.
  • control method for scheduling authorization according to an embodiment of the present invention is described in detail above with reference to FIG. 1 to FIG. 3.
  • the UE and the network device according to the embodiment of the present invention will be described below with reference to FIG. 4 to FIG.
  • the UE 40 of FIG. 4 includes a receiving unit 401 and a determining unit 402.
  • the receiving unit 401 is configured to receive authorization information sent by the network device, where the authorization information indicates the user The authorized value of the device transmitting data on the upstream data channel.
  • the determining unit 402 is configured to determine an effective time of the authorization information according to the authorization value and the receiving moment of receiving the authorization information.
  • the adjusting unit 403 is configured to adjust, according to the authorization value, the sending of the data on the uplink data channel according to the authorization value, where the authorization value belongs to one of the multiple authorization value sets, and there is no intersection between the multiple authorization value sets, and the same authorization value set is included.
  • the timing relationship between the effective time and the receiving time corresponding to the authorized value is defined by the same timing relationship, and the timing relationship between the effective time and the receiving time corresponding to the authorized value in the different authorized value sets is defined by different timing relationships.
  • the UE may flexibly select different effective moments according to different authorization information.
  • the embodiment of the present invention provides an applicable implementation manner for further improving scheduling performance.
  • the receiving time and the effective time of the authorization information respectively correspond to the frame numbers in the communication system.
  • the reception time and the effective time correspond to a system frame number and a corresponding subframe number, respectively.
  • one transmission subframe is the length of one TTI.
  • the receiving time and the effective time respectively correspond to a system frame number.
  • the TDM scheduling mechanism when the TDM scheduling mechanism is introduced in the HSUPA system, according to the embodiment of the present invention, it may be predefined that the time for transmitting the authorization information to the first user equipment (corresponding to the de-authorized user equipment) in one scheduling is later than to the second user.
  • the first user equipment and the second user equipment can determine the effective time of the authorization information according to the received authorization information and the receiving moment of receiving the authorization information.
  • the first user equipment stops transmitting the HSUPA uplink data, and the second user equipment starts to send the HSUPA uplink data, thereby avoiding the transmission caused by the foregoing operations not occurring at the same time. Gap gaps or mutual interference, thereby improving scheduling performance.
  • the multiple authorization value set includes a first authorization value set and a second authorization value set, the first authorization value set includes a non-zero value authorization value, and the second authorization value set includes a zero value authorization value and Deactivating an authorization value; or the plurality of authorization value sets includes a first authorization value set and a second authorization value set, the first authorization value set including a non-zero value authorization value and a zero value authorization value, and the second authorization value set Includes deactivation of the authorization value.
  • the non-zero value authorization value indicates that the maximum power ratio of the dedicated channel dedicated physical data channel (E-DPDCH) and the dedicated physical control channel is non-zero during the transmission of the HSUPA uplink scheduling data by the UE on the corresponding TTI.
  • the zero-valued authorization value indicates that the maximum power ratio of the dedicated dedicated channel dedicated physical data channel to the dedicated physical control channel is less than any non-zero value authorized value during the HSUPA uplink scheduling data transmission on the corresponding TTI, and the value may be zero, Can not be zero.
  • the deactivation authorization value indicates that the UE cannot perform HSUPA uplink scheduling data transmission in the corresponding TTI. It should also be understood that the corresponding TTI is the TTI corresponding to the effective time of the authorization information.
  • the uplink data channel is an enhanced dedicated channel dedicated physical data channel
  • the data is a high speed uplink packet access HSUPA uplink data
  • the determining unit 402 is specifically configured to: when the authorization value belongs to the first authorized value set.
  • s 1 is the first system frame number increment
  • t 1 is the first subframe offset in the system frame
  • s 2 is the second system frame number. Incremental
  • t 2 is the second subframe offset within the system frame.
  • first system frame number increment and the second system frame number increment respectively represent the system frame number increment or offset on the enhanced dedicated channel dedicated physical data channel
  • first subframe offset and the second The subframe offsets represent the subframe number offsets within a system frame number on the enhanced dedicated channel dedicated physical data channel, respectively.
  • the determining unit 402 is specifically configured to:
  • T 1 represents an effective time increment
  • T 2 T 1 + ⁇ T
  • ⁇ T is a positive or negative integer of an integer multiple of the transmission time interval TTI
  • j represents a subframe number of the system frame number corresponding to the reception time
  • ⁇ DPCH n represents the timing offset value of the downlink DPCCH channel.
  • T 1 , T 2 and ⁇ T are all time units with a spreading factor of 256
  • ⁇ DPCH, n is a chip in time units
  • ⁇ DPCH, n is divided by 256 and is also symbolized.
  • Time unit a TTI of 30 symbols.
  • the receiving unit 401 is further configured to: receive T 1 and ⁇ T sent by the network device, or receive T 2 and ⁇ T sent by the network device, or receive T 1 and T 2 sent by the network device.
  • the network device may agree with the user equipment T 1 and ⁇ T, T 2 and ⁇ T, or T 1 and T 2 , or may agree to ⁇ T, and the user equipment receives the T 1 or T 2 sent by the network device, and should all fall.
  • the network device may agree with the user equipment T 1 and ⁇ T, T 2 and ⁇ T, or T 1 and T 2 , or may agree to ⁇ T, and the user equipment receives the T 1 or T 2 sent by the network device, and should all fall.
  • the receiving unit 401 is further configured to: receive configuration signaling sent by the network device, where the configuration signaling is used to indicate that the activation time of the authorization information is determined according to the authorization information and the receiving moment of receiving the authorization information. Operation.
  • the UE can flexibly select according to the configuration signaling to determine the effective time of the authorization information according to the authorization information and the receiving moment of receiving the authorization information, or determine the effective time of the authorization information according to the receiving moment of receiving the authorization information.
  • the UE may determine, according to the authorization information and the receiving moment of receiving the authorization information, the effective time of the authorization information.
  • the UE may determine that the effective time of the authorization information is not determined according to the authorization information and the receiving moment of receiving the authorization information.
  • FIG. 5 is a schematic block diagram of a network device according to an embodiment of the present invention.
  • the network device 50 of FIG. 5 includes a determining unit 501 and a transmitting unit 502.
  • the determining unit 501 is configured to determine authorization information corresponding to the user equipment, where the authorization information indicates an authorization value of the user equipment to send data on the uplink data channel, and the authorization value can be used by the user equipment to determine the authorization The moment when the information is effective.
  • the sending unit 502 is configured to send the authorization information to the user equipment, to schedule, by using the authorization value, the user equipment to adjust, according to the authorization value, the sending of the data on the uplink data channel, where
  • the authorization value belongs to one of the multiple authorization value sets, and there is no intersection between the multiple authorization value sets, and the timing relationship between the effective time corresponding to the authorization value in the same authorization value set and the reception time of the user equipment receiving the authorization information is the same.
  • the timing relationship defines that the timing relationship between the effective time and the receiving time corresponding to the authorized value in the different authorization value sets is defined by different timing relationships.
  • the UE may flexibly select different effective moments according to different authorization information.
  • the embodiment of the present invention provides an applicable implementation manner for further improving scheduling performance.
  • the receiving time and the effective time of the authorization information respectively correspond to the frame numbers in the communication system.
  • the reception time and the effective time correspond to a system frame number and a corresponding subframe number, respectively.
  • one transmission subframe is the length of one TTI.
  • the receiving time and the effective time respectively correspond to a system frame number.
  • the TDM scheduling mechanism when the TDM scheduling mechanism is introduced in the HSUPA system, according to the embodiment of the present invention, it may be predefined that the time for transmitting the authorization information to the first user equipment (corresponding to the de-authorized user equipment) in one scheduling is later than to the second user.
  • the first user equipment and the second user equipment can determine the effective time of the authorization information according to the received authorization information and the receiving moment of receiving the authorization information.
  • the first user equipment stops transmitting the HSUPA uplink data, and the second user equipment starts to send the HSUPA uplink data, thereby avoiding the transmission caused by the foregoing operations not occurring at the same time. Gap gaps or mutual interference, thereby improving scheduling performance.
  • the multiple authorization value set includes a first authorization value set and a second authorization value set, the first authorization value set includes a non-zero value authorization value, and the second authorization value set includes a zero value authorization value and Deactivating the authorization value; or the plurality of authorization value sets includes a first authorization value set and a second authorization value set, the first authorization value set includes a non-zero value authorization value and a zero value authorization value, and the second authorization value set includes a deactivation authorization value.
  • the non-zero value grant value indicates that the UE performs HSUPA uplink scheduling on the corresponding TTI.
  • the maximum power ratio of the dedicated channel-specific physical data channel (E-DPDCH) to the dedicated physical control channel is increased to a non-zero value during transmission.
  • the zero-valued authorization value indicates that the maximum power ratio of the dedicated dedicated channel dedicated physical data channel to the dedicated physical control channel is less than any non-zero value authorized value during the HSUPA uplink scheduling data transmission on the corresponding TTI, and the value may be zero, Can not be zero.
  • the deactivation authorization value indicates that the UE cannot perform HSUPA uplink scheduling data transmission in the corresponding TTI.
  • the corresponding TTI is the TTI corresponding to the effective time of the authorization information.
  • the sending unit 502 is further configured to send configuration signaling to the user equipment, where the configuration signaling is used to indicate that the user equipment starts to determine the validity of the authorization information according to the authorization information and the receiving moment of receiving the authorization information. The operation of the moment.
  • the UE can flexibly select according to the configuration signaling to determine the effective time of the authorization information according to the authorization information and the receiving moment of receiving the authorization information, or determine the effective time of the authorization information according to the receiving moment of receiving the authorization information.
  • FIG. 6 is a schematic block diagram of a UE according to another embodiment of the present invention.
  • the UE 60 of FIG. 6 can be used to implement the steps and methods in the foregoing method embodiments.
  • the UE 60 can be applied to various communication systems.
  • UE 60 includes an antenna 601, a transmit circuit 602, a receive circuit 603, a processor 604, and a memory 605.
  • Processor 604 controls the operation of UE 60 and can be used to process signals.
  • Memory 605 can include read only memory and random access memory and provides instructions and data to processor 604.
  • Transmit circuit 602 and receive circuit 603 can be coupled to antenna 601.
  • the various components of UE 60 are coupled together by a bus system 606, which in addition to the data bus includes a power bus, a control bus, and a status signal bus. However, for clarity of description, various buses are labeled as bus system 606 in the figure.
  • memory 605 can store instructions that cause processor 604 to perform the following process:
  • the authorization information indicating the authorization value of the user equipment to send data on the uplink data channel; determining the effective time of the authorization information according to the authorization value and the receiving time of receiving the authorization information; and determining the authorization time based on the authorization time Adjusting the transmission of the data on the uplink data channel, wherein the authorization value belongs to one of the multiple authorization value sets, and there is no intersection between the multiple authorization value sets, and the authorization time corresponding to the authorization value in the same authorization value set is between the effective time and the receiving time.
  • the timing relationship is defined by the same timing relationship.
  • the timing relationship between the effective time and the receiving time corresponding to the authorized value in the different authorization value sets is defined by different timing relationships.
  • the UE may flexibly select different effective moments according to different authorization information. especially in When the TDM scheduling mechanism is introduced in the HSUPA system, the embodiment of the present invention provides an applicable implementation manner for further improving scheduling performance.
  • the receiving time and the effective time of the authorization information respectively correspond to the frame numbers in the communication system.
  • the reception time and the effective time correspond to a system frame number and a corresponding subframe number, respectively.
  • one transmission subframe is the length of one TTI.
  • the receiving time and the effective time respectively correspond to a system frame number.
  • the TDM scheduling mechanism when the TDM scheduling mechanism is introduced in the HSUPA system, according to the embodiment of the present invention, it may be predefined that the time for transmitting the authorization information to the first user equipment (corresponding to the de-authorized user equipment) in one scheduling is later than to the second user.
  • the first user equipment and the second user equipment can determine the effective time of the authorization information according to the received authorization information and the receiving moment of receiving the authorization information.
  • the first user equipment stops transmitting the HSUPA uplink data, and the second user equipment starts to send the HSUPA uplink data, thereby avoiding the transmission caused by the foregoing operations not occurring at the same time. Gap gaps or mutual interference, thereby improving scheduling performance.
  • the memory 605 may also store instructions that cause the processor 604 to perform the following process:
  • the plurality of authorization value sets includes a first authorization value set and a second authorization value set, the first authorization value set includes a non-zero value authorization value, and the second authorization value set includes a zero value authorization value and a deactivation authorization value; or multiple authorizations
  • the set of values includes a first set of authorization values and a second set of authorization values, the first set of authorization values comprising a non-zero value authorization value and a zero value authorization value, the second set of authorization values comprising a deactivation authorization value.
  • the non-zero value authorization value indicates that the maximum power ratio of the dedicated channel dedicated physical data channel (E-DPDCH) and the dedicated physical control channel is non-zero during the transmission of the HSUPA uplink scheduling data by the UE on the corresponding TTI.
  • the zero-valued authorization value indicates that the maximum power ratio of the dedicated dedicated channel dedicated physical data channel to the dedicated physical control channel is less than any non-zero value authorized value during the HSUPA uplink scheduling data transmission on the corresponding TTI, and the value may be zero, Can not be zero.
  • the deactivation authorization value indicates that the UE cannot perform HSUPA uplink scheduling data transmission in the corresponding TTI. It should also be understood that the corresponding TTI is the TTI corresponding to the effective time of the authorization information.
  • the memory 605 can also store instructions that cause the processor 604 to perform the following process:
  • the uplink data channel is an enhanced dedicated channel dedicated physical data channel, and the data is a high speed uplink packet access HSUPA uplink data, and according to the authorization value and the receiving time of receiving the authorization information, when the effective time of the authorization information is determined,
  • p represents the system frame number corresponding to the effective time
  • s 2 is the second system frame number increment
  • t 2 is the second subframe offset in the system frame.
  • first system frame number increment and the second system frame number increment respectively represent the system frame number increment or offset on the enhanced dedicated channel dedicated physical data channel
  • first subframe offset and the second The subframe offsets represent the subframe number offsets within a system frame number on the enhanced dedicated channel dedicated physical data channel, respectively.
  • the memory 605 can also store instructions that cause the processor 604 to perform the following process:
  • T 1 represents an effective time increment
  • T 2 T 1 + ⁇ T
  • ⁇ T is a positive or negative integer of an integer multiple of the transmission time interval TTI
  • j represents a subframe number of the system frame number corresponding to the reception time
  • ⁇ DPCH n represents the timing offset value of the downlink DPCCH channel.
  • T 1 , T 2 and ⁇ T are all time units with a spreading factor of 256
  • ⁇ DPCH, n is a chip in time units
  • ⁇ DPCH, n is divided by 256 and is also symbolized.
  • Time unit a TTI of 30 symbols.
  • the memory 605 can also store instructions that cause the processor 604 to perform the following process:
  • the memory 605 can also store instructions that cause the processor 604 to perform the following process:
  • Receiving configuration signaling sent by the network device where the configuration signaling is used to indicate that the activation is determined according to the authorization information and the receiving moment of receiving the authorization information, before determining the effective time of the authorization information according to the authorization information and the receiving time of the authorization information. The operation of the information at the moment of its inception.
  • the UE can flexibly select according to the configuration signaling to determine the effective time of the authorization information according to the authorization information and the receiving moment of receiving the authorization information, or determine the effective time of the authorization information according to the receiving moment of receiving the authorization information.
  • FIG. 7 is a schematic block diagram of a network device according to another embodiment of the present invention.
  • the network device 70 of FIG. 7 can be used to implement the steps and methods in the foregoing method embodiments.
  • Network device 70 is applicable to a variety of communication systems.
  • network device 70 includes an antenna 701, a transmit circuit 702, a receive circuit 703, a processor 704, and a memory 705.
  • Processor 704 controls the operation of network device 70 and can be used to process signals.
  • Memory 705 can include read only memory and random access memory and provides instructions and data to processor 704.
  • Transmit circuit 702 and receive circuit 703 can be coupled to antenna 701.
  • the various components of network device 70 are coupled together by a bus system 706, which in addition to the data bus includes a power bus, a control bus, and a status signal bus. However, for clarity of description, various buses are labeled as bus system 706 in the figure.
  • memory 705 can store instructions that cause processor 704 to perform the following process:
  • Determining the authorization information corresponding to the user equipment, the authorization information indicating the authorization value of the user equipment to send data on the uplink data channel, and the authorization value can be used by the user equipment to determine the effective time of the authorization information; sending the authorization information to the user equipment to pass
  • the authorization value scheduling user equipment adjusts the transmission of data on the uplink data channel based on the authorization value at the effective time, wherein the authorization value belongs to one of the multiple authorization value sets, and there is no intersection between the multiple authorization value sets, and the same authorization value set
  • the timing relationship between the effective time corresponding to the authorization value and the receiving time of the user equipment receiving the authorization information is the same as the timing relationship, and the authorization value corresponding to the authorization value in the different authorization value set is between the effective time and the receiving time. Timing relationships are defined by different timing relationships.
  • the UE may flexibly select different effective moments according to different authorization information.
  • the embodiment of the present invention provides an applicable implementation manner for further improving scheduling performance.
  • the receiving time and the effective time of the authorization information respectively correspond to the frame numbers in the communication system.
  • the reception time and the effective time correspond to a system frame number and a corresponding subframe number, respectively.
  • one transmission subframe is the length of one TTI.
  • the receiving time and the effective time respectively correspond to a system frame number.
  • the TDM scheduling mechanism when the TDM scheduling mechanism is introduced in the HSUPA system, according to the embodiment of the present invention, it may be predefined that the time for transmitting the authorization information to the first user equipment (corresponding to the de-authorized user equipment) in one scheduling is later than to the second user.
  • the first user equipment and the second user equipment can determine the effective time of the authorization information according to the received authorization information and the receiving moment of receiving the authorization information.
  • the first user equipment stops transmitting the HSUPA uplink data, and the second user equipment starts to send the HSUPA uplink data, thereby avoiding the transmission caused by the foregoing operations not occurring at the same time. Gap gaps or mutual interference, thereby improving scheduling performance.
  • the memory 705 may also store instructions that cause the processor 704 to perform the following process:
  • the plurality of authorization value sets includes a first authorization value set and a second authorization value set, the first authorization value set includes a non-zero value authorization value, and the second authorization value set includes a zero value authorization value and a deactivation authorization value; or multiple authorizations
  • the set of values includes a first set of authorization values and a second set of authorization values, the first set of authorization values comprising a non-zero value authorization value and a zero value authorization value, the second set of authorization values comprising a deactivation authorization value.
  • the non-zero value authorization value indicates that the maximum power ratio of the dedicated channel dedicated physical data channel (E-DPDCH) and the dedicated physical control channel is non-zero during the transmission of the HSUPA uplink scheduling data by the UE on the corresponding TTI.
  • the zero-valued authorized value indicates that the maximum power ratio of the dedicated dedicated channel dedicated physical data channel to the dedicated physical control channel is less than any non-zero value authorized value during the HSUPA uplink scheduling data transmission on the corresponding TTI, and the value may be zero. Also Not zero.
  • the deactivation authorization value indicates that the UE cannot perform HSUPA uplink scheduling data transmission in the corresponding TTI. It should also be understood that the corresponding TTI is the TTI corresponding to the effective time of the authorization information.
  • the memory 705 may also store instructions that cause the processor 704 to perform the following process:
  • the configuration signaling is sent to the user equipment, and the configuration signaling is used to indicate that the user equipment starts the operation of determining the effective time of the authorization information according to the authorization information and the receiving moment of receiving the authorization information.
  • the UE can flexibly select according to the configuration signaling to determine the effective time of the authorization information according to the authorization information and the receiving moment of receiving the authorization information, or determine the effective time of the authorization information according to the receiving moment of receiving the authorization information.
  • the term "and/or” is merely an association relationship describing an associated object, indicating that there may be three relationships.
  • a and/or B may indicate that A exists separately, and A and B exist simultaneously, and B cases exist alone.
  • the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention contributes in essence or to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种调度授权的控制方法、用户设备和网络设备。该方法包括:接收网络设备发送的授权信息,授权信息指示了用户设备在上行数据信道上发送数据的授权值;根据授权值和接收到授权信息的接收时刻,确定授权信息的生效时刻;在生效时刻基于授权值在上行数据信道上调整数据的发送。基于上述技术方案,在本发明实施例的调度授权的控制方法中,UE接收到授权信息后,可以根据不同的授权信息灵活地选择不同的生效时刻。尤其在HSUPA系统中引入TDM调度机制时,本发明实施例为进一步提高调度性能提供了一种可应用的实现方式。

Description

调度授权的控制方法、用户设备和网络设备
本申请要求于2013年9月26日提交中国专利局、申请号为201310447000.1、发明名称为“调度授权的控制方法、用户设备和网络设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信领域,并且更具体地,涉及一种调度授权的控制方法、用户设备和网络设备。
背景技术
在HSUPA(High Speed Uplink Packet Access,高速上行分组接入)系统中,基站使用调度授权的方式来指示UE(User Equipment,用户设备)在上行数据传输信道E-DPDCH(E-DCH Dedicated Physical Data Channel,增强专用信道专用物理数据信道)上可以使用的最大发射功率。UE根据接收到的授权值,结合自己的剩余发射功率,确定在上行数据传输信道E-DPDCH上每个TTI(Transmission Timing Interval,传输时间间隔)传输的数据块大小。
基站通过E-AGCH(E-DCH Absolute Grant Channel,增强专用信道绝对授权信道)下发授权值的绝对大小。UE接收到授权值后根据预先约定的生效时刻,确定在上行数据传输信道E-DPDCH的哪一个TTI使用新授权值指示的功率传输HSUPA上行数据、启动传输HSUPA上行数据或停止传输HSUPA上行数据,此方法不够灵活。尤其在HSUPA系统中引入TDM(Time Division Multiplexing,时分复用)调度方式时,调度性能遇到瓶颈。
发明内容
本发明实施例提供了一种调度授权的控制方法、用户设备和网络设备,能够提高选择生效时刻的灵活性。
第一方面,提供了一种调度授权的控制方法,包括:接收网络设备发送的授权信息,授权信息指示了用户设备在上行数据信道上发送数据的授权值;根据授权值和接收到授权信息的接收时刻,确定授权信息的生效时刻;在生效时 刻基于授权值在上行数据信道上调整数据的发送;其中,授权值属于多个授权值集合之一,多个授权值集合之间没有交集,同一授权值集合中的授权值对应的生效时刻与接收时刻之间的定时关系由同一定时关系定义,不同授权值集合中的授权值对应的生效时刻与接收时刻之间的定时关系由不同定时关系定义。
结合第一方面,在第一方面的第一种实现方式中,多个授权值集合包括第一授权值集合和第二授权值集合,第一授权值集合包括非零数值授权值,第二授权值集合包括零数值授权值和去激活授权值;或多个授权值集合包括第一授权值集合和第二授权值集合,第一授权值集合包括非零数值授权值和零数值授权值,第二授权值集合包括去激活授权值。
结合第一方面及其上述实现方式,在第一方面的第二种实现方式中,上行数据信道为增强专用信道专用物理数据信道,数据为高速上行分组接入HSUPA上行数据;根据授权值和接收到授权信息的接收时刻,确定授权信息的生效时刻,包括:当授权值属于第一授权值集合时,确定在增强专用信道专用物理数据信道的系统帧号p的第q个子帧上开始发送高速上行分组接入HSUPA上行数据,其中,p=i+s1,q=t1,定义了生效时刻与接收时刻之间的定时关系,p表示生效时刻对应的增强专用信道绝对授权信道的系统帧号,q表示生效时刻对应的系统帧号的子帧号,i为接收时刻对应的系统帧号,s1为第一系统帧号增量,t1为系统帧内的第一子帧偏移量;当授权值属于第二授权值集合时,确定在增强专用信道专用物理数据信道的系统帧号p的第q个子帧上停止发送HSUPA上行数据,其中,p=i+s2,q=t2,定义了生效时刻与接收时刻之间的定时关系,s2为第二系统帧号增量,t2为系统帧内的第二子帧偏移量。
结合第一方面及其上述实现方式,在第一方面的第三种实现方式中,根据以下公式确定s1和t1
Figure PCTCN2014085863-appb-000001
根据以下公式确定s2和t2
Figure PCTCN2014085863-appb-000002
其中,T1表示生效时刻增量,T2=T1+ΔT,ΔT为传输时间间隔TTI长度整数倍的正数或负数,j表示接收时刻对应的系统帧号的子帧号,τDPCH,n表示下行DPCCH信道的定时偏置值。
结合第一方面及其上述实现方式,在第一方面的第四种实现方式中,该控制方法还包括:接收网络设备发送的T1和ΔT;或接收网络设备发送的T2和ΔT;或接收网络设备发送的T1和T2
结合第一方面及其上述实现方式,在第一方面的第五种实现方式中,在根据授权信息和接收到授权信息的接收时刻,确定授权信息的生效时刻之前,该控制方法还包括:接收网络设备发送的配置信令,配置信令用于指示启动根据授权信息和接收到授权信息的接收时刻确定授权信息的生效时刻。
第二方面,提供了一种调度授权的控制方法,包括:确定用户设备对应的授权信息,授权信息指示了用户设备在上行数据信道上发送数据的授权值,且授权值能够被用户设备用于确定授权信息的生效时刻;向用户设备发送授权信息,以通过授权值调度用户设备在生效时刻基于授权值在上行数据信道上调整数据的发送;其中,授权值属于多个授权值集合之一,多个授权值集合之间没有交集,同一授权值集合中的授权值对应的生效时刻与用户设备接收到授权信息的接收时刻之间的定时关系由同一定时关系定义,不同授权值集合中的授权值对应的生效时刻与接收时刻之间的定时关系由不同定时关系定义。
结合第二方面,在第二方面的第一种实现方式中,多个授权值集合包括第一授权值集合和第二授权值集合,第一授权值集合包括非零数值授权值,第二授权值集合包括零数值授权值和去激活授权值;或多个授权值集合包括第一授权值集合和第二授权值集合,第一授权值集合包括非零数值授权值和零数值授权值,第二授权值集合包括去激活授权值。
结合第二方面及其上述实现方式,在第二方面的第二种实现方式中,该控制方法还包括:向用户设备发送配置信令,配置信令用于指示用户设备启动根据授权信息和接收到授权信息的接收时刻确定授权信息的生效时刻。
第三方面,提供了一种用户设备,包括:接收单元,用于接收网络设备发送的授权信息,授权信息指示了用户设备在上行数据信道上发送数据的授权值;确定单元,用于根据授权值和接收到授权信息的接收时刻,确定授权信息的生效时刻;调整单元,用于在生效时刻基于授权值在上行数据信道上调整数据的发送;其中,授权值属于多个授权值集合之一,多个授权值集合之间没有交集,同一授权值集合中的授权值对应的生效时刻与接收时刻之间的定时关系由同一定时关系定义,不同授权值集合中的授权值对应的生效时刻与接收时刻之间的定时关系由不同定时关系定义。
结合第三方面,在第三方面的第一种实现方式中,多个授权值集合包括第一授权值集合和第二授权值集合,第一授权值集合包括非零数值授权值,第二授权值集合包括零数值授权值和去激活授权值;或多个授权值集合包括第一授权值集合和第二授权值集合,第一授权值集合包括非零数值授权值和零数值授权值,第二授权值集合包括去激活授权值。
结合第三方面及其上述实现方式,在第三方面的第二种实现方式中,上行数据信道为增强专用信道专用物理数据信道,数据为高速上行分组接入HSUPA上行数据;确定单元具体用于,当授权信息表示的授权值属于第一授权值集合时,确定在增强专用信道专用物理数据信道的系统帧号p的第q个子帧上开始发送高速上行分组接入HSUPA上行数据,其中,p=i+s1,q=t1,定义了生效时刻与接收时刻之间的定时关系,p表示生效时刻对应的系统帧号,q表示生效时刻对应的系统帧号的子帧号,i为接收时刻对应的增强专用信道绝对授权信道的系统帧号,s1为第一系统帧号增量,t1为系统帧内的第一子帧偏移量;当授权值属于第二授权值集合时,确定在增强专用信道专用物理数据信道的系统帧号p的第q个子帧上停止发送HSUPA上行数据,其中,p=i+s2,q=t2,定义了生效时刻与接收时刻之间的定时关系,s2为第二系统帧号增量,t2为系统帧内的第二子帧偏移量。
结合第三方面及其上述实现方式,在第三方面的第三种实现方式中,确定单元具体用于,
根据以下公式确定s1和t1
Figure PCTCN2014085863-appb-000003
根据以下公式确定s2和t2
Figure PCTCN2014085863-appb-000004
其中,T1表示生效时刻增量,T2=T1+ΔT,ΔT为传输时间间隔TTI长度整数倍的正数或负数,j表示接收时刻对应的系统帧号的子帧号,τDPCH,n表示下行DPCCH信道的定时偏置值。
结合第三方面及其上述实现方式,在第三方面的第四种实现方式中,接收单元还用于,接收网络设备发送的T1和ΔT,或接收网络设备发送的T2和ΔT,或接收网络设备发送的T1和T2
结合第三方面及其上述实现方式,在第三方面的第五种实现方式中,,接收单元还用于,接收网络设备发送的配置信令,配置信令用于指示启动根据授权信息和接收到授权信息的接收时刻确定授权信息的生效时刻。
第四方面,提供了一种网络设备,包括:确定单元,用于确定用户设备对应的授权信息,授权信息指示了用户设备在上行数据信道上发送数据的授权值,且授权值能够被用户设备用于确定授权信息的生效时刻;发送单元,用于向用户设备发送授权信息,以通过授权值调度用户设备在生效时刻基于授权值在上行数据信道上调整数据的发送;其中,授权值属于多个授权值集合之一,多个授权值集合之间没有交集,同一授权值集合中的授权值对应的生效时刻与用户设备接收到授权信息的接收时刻之间的定时关系由同一定时关系定义,不同授权值集合中的授权值对应的生效时刻与接收时刻之间的定时关系由不同定时关系定义。
结合第四方面,在第四方面的第一种实现方式中,多个授权值集合包括第一授权值集合和第二授权值集合,第一授权值集合包括非零数值授权值,第二授权值集合包括零数值授权值和去激活授权值;或多个授权值集合包括第一授权值集合和第二授权值集合,第一授权值集合包括非零数值授权值和零数值授 权值,第二授权值集合包括去激活授权值。
结合第四方面及其上述实现方式,在第四方面的第二种实现方式中,发送单元还用于,向用户设备发送配置信令,配置信令用于指示用户设备启动根据授权信息和接收到授权信息的接收时刻确定授权信息的生效时刻。
基于上述技术方案,在本发明实施例的调度授权的控制方法中,UE接收到授权信息后,可以根据不同的授权信息灵活地选择不同的生效时刻。尤其在HSUPA系统中引入TDM调度机制时,本发明实施例为进一步提高调度性能提供了一种可应用的实现方式。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一个实施例的调度授权的控制方法的示意性流程图。
图2是本发明另一实施例的调度授权的控制方法的示意性流程图。
图3是本发明一个实施例的调度授权的控制方法的示意性时序图。
图4是本发明一个实施例的UE的示意性框图。
图5是本发明一个实施例的网络设备的示意性框图。
图6是本发明另一实施例的UE的示意性框图。
图7是本发明另一实施例的网络设备的示意性框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
应理解,本发明实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,简称为“GSM”)系统、码分多址(Code Division Multiple Access,简称为“CDMA”)系统、宽带码 分多址(Wideband Code Division Multiple Access,简称为“WCDMA”)系统、通用分组无线业务(General Packet Radio Service,简称为“GPRS”)、长期演进(Long Term Evolution,简称为“LTE”)系统、LTE频分双工(Frequency Division Duplex,简称为“FDD”)系统、LTE时分双工(Time Division Duplex,简称为“TDD”)、通用移动通信系统(Universal Mobile Telecommunication System,简称为“UMTS”)、全球互联微波接入(Worldwide Interoperability for Microwave Access,简称为“WiMAX”)通信系统等。
还应理解,在本发明实施例中,用户设备(User Equipment,简称为“UE”)可称之为终端(Terminal)、移动台(Mobile Station,简称为“MS”)、移动终端(Mobile Terminal)等,该用户设备可以经无线接入网(Radio Access Network,简称为“RAN”)与一个或多个核心网进行通信,例如,用户设备可以是移动电话(或称为“蜂窝”电话)、具有移动终端的计算机等,例如,用户设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语音和/或数据。
在本发明实施例中,网络设备可以是GSM或CDMA中的基站(Base Transceiver Station,简称为“BTS”),也可以是WCDMA中的基站(NodeB,简称为“NB”)或无线网络控制器(Radio Network Controller,简称“RNC”),还可以是LTE中的演进型基站(Evolutional Node B,简称为“ENB或e-NodeB”),本发明并不限定。
图1是本发明一个实施例的调度授权的控制方法的示意性流程图。图1的方法100可以由UE执行。
110,接收网络设备发送的授权信息,授权信息指示了用户设备在上行数据信道上发送数据的授权值。
120,根据授权值和接收到授权信息的接收时刻,确定授权信息的生效时刻。
130,在生效时刻基于授权值在上行数据信道上调整数据的发送,其中,授权值属于多个授权值集合之一,多个授权值集合之间没有交集,同一授权值集合中的授权值对应的生效时刻与接收时刻之间的定时关系由同一定时关系定义,不同授权值集合中的授权值对应的生效时刻与接收时刻之间的定时关系由不同定时关系定义。
基于上述技术方案,在本发明实施例的调度授权的控制方法中,UE接收到授权信息后,可以根据不同的授权信息灵活地选择不同的生效时刻。尤其在HSUPA系统中引入TDM调度机制时,本发明实施例为进一步提高调度性能提供了一种可应用的实现方式。
应理解,在本发明实施例中,授权信息的接收时刻和生效时刻分别对应于本通信系统中的帧号。例如,本发发明实施例应用于HSUPA配置为2ms TTI的通信系统时,接收时刻和生效时刻分别对应于一个系统帧号及相应的子帧号。通常,一个传输子帧为一个TTI的长度。本发明实施例应用于HSUPA配置为10ms TTI的通信系统时,接收时刻和生效时刻分别对应于一个系统帧号。
例如,在HSUPA系统中引入TDM调度机制时,根据本发明实施例,可以预定义在一次调度中向第一用户设备(对应于取消授权的用户设备)发送授权信息的时刻晚于向第二用户设备(对应于授权发送HSUPA上行数据的用户设备)发送授权信息的时刻一个时间段。这样,第一用户设备和第二用户设备可以根据接收到的授权信息和接收到该授权信息的接收时刻确定该授权信息的生效时刻。这样可以实现在同一时刻(对应于系统帧号和子帧号),第一用户设备停止发送HSUPA上行数据,第二用户设备开始发送HSUPA上行数据,避免了前述操作不在同一时刻发生而带来的传输缝隙gap或相互干扰,从而提高了调度性能。
可选地,作为一个实施例,多个授权值集合包括第一授权值集合和第二授权值集合,第一授权值集合包括非零数值授权值,第二授权值集合包括零数值授权值和去激活授权值;或多个授权值集合包括第一授权值集合和第二授权值集合,第一授权值集合包括非零数值授权值和零数值授权值,第二授权值集合包括去激活授权值。
应理解,非零数值授权值表示UE在相应的TTI上进行HSUPA上行调度数据的传输过程中增强专用信道专用物理数据信道(E-DPDCH)与专用物理控制信道的最大功率比值为非零的数值。零数值授权值表示在相应的TTI上进行HSUPA上行调度数据传输的过程中增强专用信道专用物理数据信道与专用物理控制信道的最大功率比值小于任何非零数值授权值,该值可以为零,也可以不为零。去激活授权值表示UE在相应的TTI不能进行HSUPA上行调度数据传输。也应理解,相应的TTI为授权信息的生效时刻对应的TTI。
例如,表一和表二分别定义了索引与绝对授权值得对应关系,授权信息可以包括索引,UE根据索引确定绝对授权值。其中,索引2~31对应的绝对授权值为非零数值授权值,索引1对应的绝对授权值(ZERO_GRANT*)为零数值授权值,索引0对应的绝对授权值为去激活授权值(INACTIVE*)。
表一
绝对授权值 索引
(168/15)2x6 31
(150/15)2x6 30
(168/15)2x4 29
(150/15)2x4 28
(134/15)2x4 27
(119/15)2x4 26
(150/15)2x2 25
(95/15)2x4 24
(168/15)2 23
(150/15)2 22
(134/15)2 21
(119/15)2 20
(106/15)2 19
(95/15)2 18
(84/15)2 17
(75/15)2 16
(67/15)2 15
(60/15)2 14
(53/15)2 13
(47/15)2 12
(42/15)2 11
(38/15)2 10
(34/15)2 9
(30/15)2 8
(27/15)2 7
(24/15)2 6
(19/15)2 5
(15/15)2 4
(11/15)2 3
(7/15)2 2
ZERO_GRANT* 1
INACTIVE* 0
表二
绝对授权值 索引
(377/15)2x4 31
(237/15)2x6 30
(168/15)2*6 29
(150/15)2*6 28
(168/15)2*4 27
(150/15)2x4 26
(134/15)2x4 25
(119/15)2x4 24
(150/15)2x2 23
(95/15)2x4 22
(168/15)2 21
(150/15)2 20
(134/15)2 19
(119/15)2 18
(106/15)2 17
(95/15)2 16
(84/15)2 15
(75/15)2 14
(67/15)2 13
(60/15)2 12
(53/15)2 11
(47/15)2 10
(42/15)2 9
(38/15)2 8
(34/15)2 7
(30/15)2 6
(27/15)2 5
(24/15)2 4
(19/15)2 3
(15/15)2 2
ZERO_GRANT* 1
INACTIVE* 0
可选地,作为另一实施例,在步骤120中,上行数据信道为增强专用信道专用物理数据信道,数据为高速上行分组接入HSUPA上行数据。根据授权值和接收到授权信息的接收时刻,确定授权信息的生效时刻时,当授权值属于第一授权值集合时,确定在增强专用信道专用物理数据信道的系统帧号p的第q个子帧上开始发送高速上行分组接入HSUPA上行数据,其中,p=i+s1,q=t1,定义了生效时刻与接收时刻之间的定时关系,p表示生效时刻对应的系统帧号,q表示生效时刻对应的增强专用信道绝对授权信道的系统帧号的子帧号,i为接收时刻对应的系统帧号,s1为第一系统帧号增量,t1为系统帧内的第一子帧偏移量;当授权值属于第二授权值集合时,确定在系统帧号p的第q个子帧上停止发送HSUPA上行数据,其中,p=i+s2,q=t2,定义了生效时刻与接收时刻之间的定时关系,s2为第二系统帧号增量,t2为系统帧内的第二子帧偏移量。
应理解,第一系统帧号增量与第二系统帧号增量分别表示在增强专用信道专用物理数据信道上的系统帧号增加量或偏移量,第一子帧偏移量与第二子帧偏移量分别表示在增强专用信道专用物理数据信道上的一个系统帧号内的子 帧号偏移。
可选地,作为另一实施例,根据公式(1)确定s1和t1
Figure PCTCN2014085863-appb-000005
根据公式(2)确定s2和t2
Figure PCTCN2014085863-appb-000006
其中,T1表示生效时刻增量,T2=T1+ΔT,ΔT为传输时间间隔TTI长度整数倍的正数或负数,j表示接收时刻对应的系统帧号的子帧号,τDPCH,n表示下行DPCCH信道的定时偏置值。
应理解,30j、T1、T2和ΔT都是以扩频因子为256时的符号为时间单位,τDPCH,n以码片为时间单位,τDPCH,n除以256以后也以符号为时间单位,一个TTI为30个符号。当UE所在小区配置了F-DPCH(Fractional Dedicated Physical Channel,部分专用物理信道)信道时,τDPCH,n=τF-DPCH,n
可选地,作为另一实施例,UE还可以接收网络设备发送的T1和ΔT;或接收网络设备发送的T2和ΔT;或接收网络设备发送的T1和T2
可选地,网络设备可以与用户设备约定T1和ΔT、T2和ΔT、或T1和T2,也可以约定ΔT,同时用户设备接收网络设备发送的T1或T2,都应落在本发明实施例的保护范围内。
可选地,作为另一实施例,在步骤120之前,UE还可以接收网络设备发送的配置信令,配置信令用于指示启动根据授权信息和接收到授权信息的接收时刻确定授权信息的生效时刻的操作。这样,UE可以根据配置信令灵活地选择根据授权信息和接收到授权信息的接收时刻确定该授权信息的生效时刻,还是根据接收到授权信息的接收时刻确定该授权信息的生效时刻。
可选地,由传统HSUPA系统切换至引入TDM调度模式的HSUPA系统,或者切换到预设的上行载波上时,UE可以确定根据授权信息和接收到授权信息的接收时刻确定授权信息的生效时刻。由引入TDM调度模式的HSUPA系统切换至 传统HSUPA系统,或者切换到预设的上行载波时,UE可以确定不根据授权信息和接收到授权信息的接收时刻确定授权信息的生效时刻。
图2是本发明另一实施例的调度授权的控制方法的示意性流程图。图2的方法200可以由网络设备执行。
210,确定用户设备对应的授权信息,授权信息指示了用户设备在上行数据信道上发送数据的授权值,且授权值能够被用户设备用于确定授权信息的生效时刻。
220,向用户设备发送授权信息,以通过授权值调度用户设备在生效时刻基于授权值在上行数据信道上调整数据的发送,其中,授权值属于多个授权值集合之一,多个授权值集合之间没有交集,同一授权值集合中的授权值对应的生效时刻与用户设备接收到授权信息的接收时刻之间的定时关系由同一定时关系定义,不同授权值集合中的授权值对应的生效时刻与接收时刻之间的由定时关系不同定时关系定义。
基于上述技术方案,在本发明实施例的调度授权的控制方法中,UE接收到授权信息后,可以根据不同的授权信息灵活地选择不同的生效时刻。尤其在HSUPA系统中引入TDM调度机制时,本发明实施例为进一步提高调度性能提供了一种可应用的实现方式。
应理解,在本发明实施例中,授权信息的接收时刻和生效时刻分别对应于本通信系统中的帧号。例如,本发发明实施例应用于HSUPA配置为2ms TTI的通信系统时,接收时刻和生效时刻分别对应于一个系统帧号及相应的子帧号。通常,一个传输子帧为一个TTI的长度。本发明实施例应用于HSUPA配置为10ms TTI的通信系统时,接收时刻和生效时刻分别对应于一个系统帧号。
例如,在HSUPA系统中引入TDM调度机制时,根据本发明实施例,可以预定义在一次调度中向第一用户设备(对应于取消授权的用户设备)发送授权信息的时刻晚于向第二用户设备(对应于授权发送HSUPA上行数据的用户设备)发送授权信息的时刻一个时间段。这样,第一用户设备和第二用户设备可以根据接收到的授权信息和接收到该授权信息的接收时刻确定该授权信息的生效时刻。这样可以实现在同一时刻(对应于系统帧号和子帧号),第一用户设备停止发送HSUPA上行数据,第二用户设备开始发送HSUPA上行数据,避免了前述操作不在同一时刻发生而带来的传输缝隙gap或相互干扰,从而提高了调度 性能。
可选地,作为一个实施例,多个授权值集合包括第一授权值集合和第二授权值集合,第一授权值集合包括非零数值授权值,第二授权值集合包括零数值授权值和去激活授权值;或多个授权值集合包括第一授权值集合和第二授权值集合,第一授权值集合包括非零数值授权值和零数值授权值,第二授权值集合包括去激活授权值。
应理解,非零数值授权值表示UE在相应的TTI上进行HSUPA上行调度数据的传输过程中增强专用信道专用物理数据信道(E-DPDCH)与专用物理控制信道的最大功率比值为非零的数值。零数值授权值表示在相应的TTI上进行HSUPA上行调度数据传输的过程中增强专用信道专用物理数据信道与专用物理控制信道的最大功率比值小于任何非零数值授权值,该值可以为零,也可以不为零。去激活授权值表示UE在相应的TTI不能进行HSUPA上行调度数据传输。也应理解,相应的TTI为授权信息的生效时刻对应的TTI。
可选地,作为另一实施例,网络设备还可以向用户设备发送配置信令,该配置信令用于指示用户设备启动根据授权信息和接收到授权信息的接收时刻确定授权信息的生效时刻的操作。这样,UE可以根据配置信令灵活地选择根据授权信息和接收到授权信息的接收时刻确定该授权信息的生效时刻,还是根据接收到授权信息的接收时刻确定该授权信息的生效时刻。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
下面将结合具体的例子详细描述本发明实施例。应注意,这些例子只是为了帮助本领域技术人员更好地理解本发明实施例,而非限制本发明实施例的范围。
图3是本发明一个实施例的调度授权的控制方法的示意性时序图。
图3中示出了网络设备通过信道E-AGCH分别向UE A和UE B下发绝对授权值,及UE A和UE B接收到绝对授权值后相应操作的时序。假设根据网络设备下发的授权信息,UE A在当前时刻正在进行HSUPA上行数据传输。当网络设备根据调度需要,在第一时刻(对应于系统帧号i1上的第j1个子帧)向UE B下发非零授权值,指示UE B开始HSUPA上行数据传输,在第二时刻(对应于 系统帧号i2上的第j2个子帧)向UE A下发零授权值或去激活授权值,指示UE A停止HSUPA上行数据传输。如图3中示出的,非零授权值早于零授权值/去激活授权值一个TTI下发。这样,UE B接收到非零授权值的时刻早于UE A接收到零授权值/去激活授权值的时刻一个TTI。
这时,UE B可以根据公式(3)确定非零授权值的生效时刻,也即UE B开始HSUPA上行数据传输的时刻:
Figure PCTCN2014085863-appb-000007
根据公式(3)的计算结果,UE B在系统帧号i1+s1的第t1个子帧上开始HSUPA上行数据传输。
UE A可以根据公式(4)确定零授权值/去激活授权值的生效时刻,也即UE A停止HSUPA上行数据传输的时刻:
Figure PCTCN2014085863-appb-000008
根据公式(4)的计算结果,UE A在系统帧号i2+s2的第t2个子帧上停止HSUPA上行数据传输的时刻。
根据前文所述的,系统帧号i1上的第j1个子帧早于系统帧号i2上的第j2个子帧一个TTI,结合上述公式(3)和(4)得到的生效时刻满足:i1+s1=i2+s2,t1=t2。这样,在同一时刻,UE A停止HSUPA上行数据传输,UE B开始HSUPA上行数据传输,避免了前述操作不在同一时刻发生而带来的传输缝隙gap或相互干扰,从而提高了调度性能。
上文中结合图1至图3,详细描述了根据本发明实施例调度授权的控制方法,下面将结合图4至图7,描述根据本发明实施例的UE和网络设备。
图4是本发明一个实施例的UE的示意性框图。图4的UE 40包括接收单元401和确定单元402。
接收单元401,用于接收网络设备发送的授权信息,授权信息指示了用户 设备在上行数据信道上发送数据的授权值。
确定单元402,用于根据授权值和接收到授权信息的接收时刻,确定授权信息的生效时刻。
调整单元403,用于在生效时刻基于授权值在上行数据信道上调整数据的发送,其中,授权值属于多个授权值集合之一,多个授权值集合之间没有交集,同一授权值集合中的授权值对应的生效时刻与接收时刻之间的定时关系由同一定时关系定义,不同授权值集合中的授权值对应的生效时刻与接收时刻之间的定时关系由不同定时关系定义。
基于上述技术方案,在本发明实施例的调度授权的控制方法中,UE接收到授权信息后,可以根据不同的授权信息灵活地选择不同的生效时刻。尤其在HSUPA系统中引入TDM调度机制时,本发明实施例为进一步提高调度性能提供了一种可应用的实现方式。
应理解,在本发明实施例中,授权信息的接收时刻和生效时刻分别对应于本通信系统中的帧号。例如,本发发明实施例应用于HSUPA配置为2ms TTI的通信系统时,接收时刻和生效时刻分别对应于一个系统帧号及相应的子帧号。通常,一个传输子帧为一个TTI的长度。本发明实施例应用于HSUPA配置为10ms TTI的通信系统时,接收时刻和生效时刻分别对应于一个系统帧号。
例如,在HSUPA系统中引入TDM调度机制时,根据本发明实施例,可以预定义在一次调度中向第一用户设备(对应于取消授权的用户设备)发送授权信息的时刻晚于向第二用户设备(对应于授权发送HSUPA上行数据的用户设备)发送授权信息的时刻一个时间段。这样,第一用户设备和第二用户设备可以根据接收到的授权信息和接收到该授权信息的接收时刻确定该授权信息的生效时刻。这样可以实现在同一时刻(对应于系统帧号和子帧号),第一用户设备停止发送HSUPA上行数据,第二用户设备开始发送HSUPA上行数据,避免了前述操作不在同一时刻发生而带来的传输缝隙gap或相互干扰,从而提高了调度性能。
可选地,作为一个实施例,多个授权值集合包括第一授权值集合和第二授权值集合,第一授权值集合包括非零数值授权值,第二授权值集合包括零数值授权值和去激活授权值;或多个授权值集合包括第一授权值集合和第二授权值集合,第一授权值集合包括非零数值授权值和零数值授权值,第二授权值集合 包括去激活授权值。
应理解,非零数值授权值表示UE在相应的TTI上进行HSUPA上行调度数据的传输过程中增强专用信道专用物理数据信道(E-DPDCH)与专用物理控制信道的最大功率比值为非零的数值。零数值授权值表示在相应的TTI上进行HSUPA上行调度数据传输的过程中增强专用信道专用物理数据信道与专用物理控制信道的最大功率比值小于任何非零数值授权值,该值可以为零,也可以不为零。去激活授权值表示UE在相应的TTI不能进行HSUPA上行调度数据传输。也应理解,相应的TTI为授权信息的生效时刻对应的TTI。
可选地,作为另一实施例,上行数据信道为增强专用信道专用物理数据信道,数据为高速上行分组接入HSUPA上行数据,确定单元402具体用于,当授权值属于第一授权值集合时,确定在增强专用信道专用物理数据信道的系统帧号p的第q个子帧上开始发送高速上行分组接入HSUPA上行数据,其中,p=i+s1,q=t1,定义了生效时刻与接收时刻之间的定时关系,p表示生效时刻对应的增强专用信道绝对授权信道的系统帧号,q表示生效时刻对应的系统帧号的子帧号,i为接收时刻对应的系统帧号,s1为第一系统帧号增量,t1为系统帧内的第一子帧偏移量;当授权值属于第二授权值集合时,确定在增强专用信道专用物理数据信道的系统帧号p的第q个子帧上停止发送HSUPA上行数据,其中,p=i+s2,q=t2,定义了生效时刻与接收时刻之间的定时关系,s2为第二系统帧号增量,t2为系统帧内的第二子帧偏移量。
应理解,第一系统帧号增量与第二系统帧号增量分别表示在增强专用信道专用物理数据信道上的系统帧号增加量或偏移量,第一子帧偏移量与第二子帧偏移量分别表示在增强专用信道专用物理数据信道上的一个系统帧号内的子帧号偏移。
可选地,作为另一实施例,确定单元402具体用于,
根据公式(5)确定s1和t1
Figure PCTCN2014085863-appb-000009
根据公式(6)确定s2和t2
Figure PCTCN2014085863-appb-000010
其中,T1表示生效时刻增量,T2=T1+ΔT,ΔT为传输时间间隔TTI长度整数倍的正数或负数,j表示接收时刻对应的系统帧号的子帧号,τDPCH,n表示下行DPCCH信道的定时偏置值。
应理解,30j、T1、T2和ΔT都是以扩频因子为256时的符号为时间单位,τDPCH,n以码片为时间单位,τDPCH,n除以256以后也以符号为时间单位,一个TTI为30个符号。当UE所在小区配置了F-DPCH信道时,τDPCH,n=τF-DPCH,n
可选地,作为另一实施例,接收单元401还用于,接收网络设备发送的T1和ΔT,或接收网络设备发送的T2和ΔT,或接收网络设备发送的T1和T2
可选地,网络设备可以与用户设备约定T1和ΔT、T2和ΔT、或T1和T2,也可以约定ΔT,同时用户设备接收网络设备发送的T1或T2,都应落在本发明实施例的保护范围内。
可选地,作为另一实施例,接收单元401还用于,接收网络设备发送的配置信令,配置信令用于指示启动根据授权信息和接收到授权信息的接收时刻确定授权信息的生效时刻的操作。这样,UE可以根据配置信令灵活地选择根据授权信息和接收到授权信息的接收时刻确定该授权信息的生效时刻,还是根据接收到授权信息的接收时刻确定该授权信息的生效时刻。
可选地,由传统HSUPA系统切换至引入TDM调度模式的HSUPA系统,或者切换到预设的上行载波上时,UE可以确定根据授权信息和接收到授权信息的接收时刻确定授权信息的生效时刻。由引入TDM调度模式的HSUPA系统切换至传统HSUPA系统,或者切换到预设的上行载波时,UE可以确定不根据授权信息和接收到授权信息的接收时刻确定授权信息的生效时刻。
图5是本发明一个实施例的网络设备的示意性框图。图5的网路设备50包括确定单元501和发送单元502。
确定单元501,用于确定用户设备对应的授权信息,所述授权信息指示了用户设备在上行数据信道上发送数据的授权值,且所述授权值能够被所述用户设备用于确定所述授权信息的生效时刻。
发送单元502,用于向用户设备发送授权信息,以通过所述授权值调度所述用户设备在所述生效时刻基于所述授权值在所述上行数据信道上调整所述数据的发送,其中,授权值属于多个授权值集合之一,多个授权值集合之间没有交集,同一授权值集合中的授权值对应的生效时刻与用户设备接收到授权信息的接收时刻之间的定时关系由同一定时关系定义,不同授权值集合中的授权值对应的生效时刻与接收时刻之间的定时关系由不同定时关系定义。
基于上述技术方案,在本发明实施例的调度授权的控制方法中,UE接收到授权信息后,可以根据不同的授权信息灵活地选择不同的生效时刻。尤其在HSUPA系统中引入TDM调度机制时,本发明实施例为进一步提高调度性能提供了一种可应用的实现方式。
应理解,在本发明实施例中,授权信息的接收时刻和生效时刻分别对应于本通信系统中的帧号。例如,本发发明实施例应用于HSUPA配置为2ms TTI的通信系统时,接收时刻和生效时刻分别对应于一个系统帧号及相应的子帧号。通常,一个传输子帧为一个TTI的长度。本发明实施例应用于HSUPA配置为10ms TTI的通信系统时,接收时刻和生效时刻分别对应于一个系统帧号。
例如,在HSUPA系统中引入TDM调度机制时,根据本发明实施例,可以预定义在一次调度中向第一用户设备(对应于取消授权的用户设备)发送授权信息的时刻晚于向第二用户设备(对应于授权发送HSUPA上行数据的用户设备)发送授权信息的时刻一个时间段。这样,第一用户设备和第二用户设备可以根据接收到的授权信息和接收到该授权信息的接收时刻确定该授权信息的生效时刻。这样可以实现在同一时刻(对应于系统帧号和子帧号),第一用户设备停止发送HSUPA上行数据,第二用户设备开始发送HSUPA上行数据,避免了前述操作不在同一时刻发生而带来的传输缝隙gap或相互干扰,从而提高了调度性能。
可选地,作为一个实施例,多个授权值集合包括第一授权值集合和第二授权值集合,第一授权值集合包括非零数值授权值,第二授权值集合包括零数值授权值和去激活授权值;或多个授权值集合包括第一授权值集合和第二授权值集合,第一授权值集合包括非零数值授权值和零数值授权值,第二授权值集合包括去激活授权值。
应理解,非零数值授权值表示UE在相应的TTI上进行HSUPA上行调度数 据的传输过程中增强专用信道专用物理数据信道(E-DPDCH)与专用物理控制信道的最大功率比值为非零的数值。零数值授权值表示在相应的TTI上进行HSUPA上行调度数据传输的过程中增强专用信道专用物理数据信道与专用物理控制信道的最大功率比值小于任何非零数值授权值,该值可以为零,也可以不为零。去激活授权值表示UE在相应的TTI不能进行HSUPA上行调度数据传输。也应理解,相应的TTI为授权信息的生效时刻对应的TTI。
可选地,作为另一实施例,发送单元502还用于,向用户设备发送配置信令,配置信令用于指示用户设备启动根据授权信息和接收到授权信息的接收时刻确定授权信息的生效时刻的操作。这样,UE可以根据配置信令灵活地选择根据授权信息和接收到授权信息的接收时刻确定该授权信息的生效时刻,还是根据接收到授权信息的接收时刻确定该授权信息的生效时刻。
图6是本发明另一实施例的UE的示意性框图。
图6的UE60可用于实现上述方法实施例中各步骤及方法。UE60可应用于各种通信系统。图6的实施例中,UE60包括天线601、发射电路602、接收电路603、处理器604和存储器605。处理器604控制UE60的操作,并可用于处理信号。存储器605可以包括只读存储器和随机存取存储器,并向处理器604提供指令和数据。发射电路602和接收电路603可以耦合到天线601。UE60的各个组件通过总线系统606耦合在一起,其中总线系统606除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图中将各种总线都标为总线系统606。
具体地,存储器605可存储使得处理器604执行以下过程的指令:
接收网络设备发送的授权信息,授权信息指示了用户设备在上行数据信道上发送数据的授权值;根据授权值和接收到授权信息的接收时刻,确定授权信息的生效时刻;在生效时刻基于授权值在上行数据信道上调整数据的发送,其中,授权值属于多个授权值集合之一,多个授权值集合之间没有交集,同一授权值集合中的授权值对应的生效时刻与接收时刻之间的定时关系由同一定时关系定义,不同授权值集合中的授权值对应的生效时刻与接收时刻之间的定时关系由不同定时关系定义。
基于上述技术方案,在本发明实施例的调度授权的控制方法中,UE接收到授权信息后,可以根据不同的授权信息灵活地选择不同的生效时刻。尤其在 HSUPA系统中引入TDM调度机制时,本发明实施例为进一步提高调度性能提供了一种可应用的实现方式。
应理解,在本发明实施例中,授权信息的接收时刻和生效时刻分别对应于本通信系统中的帧号。例如,本发发明实施例应用于HSUPA配置为2ms TTI的通信系统时,接收时刻和生效时刻分别对应于一个系统帧号及相应的子帧号。通常,一个传输子帧为一个TTI的长度。本发明实施例应用于HSUPA配置为10ms TTI的通信系统时,接收时刻和生效时刻分别对应于一个系统帧号。
例如,在HSUPA系统中引入TDM调度机制时,根据本发明实施例,可以预定义在一次调度中向第一用户设备(对应于取消授权的用户设备)发送授权信息的时刻晚于向第二用户设备(对应于授权发送HSUPA上行数据的用户设备)发送授权信息的时刻一个时间段。这样,第一用户设备和第二用户设备可以根据接收到的授权信息和接收到该授权信息的接收时刻确定该授权信息的生效时刻。这样可以实现在同一时刻(对应于系统帧号和子帧号),第一用户设备停止发送HSUPA上行数据,第二用户设备开始发送HSUPA上行数据,避免了前述操作不在同一时刻发生而带来的传输缝隙gap或相互干扰,从而提高了调度性能。
可选地,作为一个实施例,存储器605还可存储使得处理器604执行以下过程的指令:
多个授权值集合包括第一授权值集合和第二授权值集合,第一授权值集合包括非零数值授权值,第二授权值集合包括零数值授权值和去激活授权值;或多个授权值集合包括第一授权值集合和第二授权值集合,第一授权值集合包括非零数值授权值和零数值授权值,第二授权值集合包括去激活授权值。
应理解,非零数值授权值表示UE在相应的TTI上进行HSUPA上行调度数据的传输过程中增强专用信道专用物理数据信道(E-DPDCH)与专用物理控制信道的最大功率比值为非零的数值。零数值授权值表示在相应的TTI上进行HSUPA上行调度数据传输的过程中增强专用信道专用物理数据信道与专用物理控制信道的最大功率比值小于任何非零数值授权值,该值可以为零,也可以不为零。去激活授权值表示UE在相应的TTI不能进行HSUPA上行调度数据传输。也应理解,相应的TTI为授权信息的生效时刻对应的TTI。
可选地,存储器605还可存储使得处理器604执行以下过程的指令:
上行数据信道为增强专用信道专用物理数据信道,数据为高速上行分组接入HSUPA上行数据,根据授权值和接收到授权信息的接收时刻,确定授权信息的生效时刻时,
当授权值属于第一授权值集合时,确定在增强专用信道专用物理数据信道的系统帧号p的第q个子帧上开始发送高速上行分组接入HSUPA上行数据,其中,p=i+s1,q=t1,定义了生效时刻与接收时刻之间的定时关系,p表示生效时刻对应的增强专用信道绝对授权信道的系统帧号,q表示生效时刻对应的系统帧号的子帧号,i为接收时刻对应的系统帧号,s1为第一系统帧号增量,t1为系统帧内的第一子帧偏移量;
当授权值属于第二授权值集合时,确定在增强专用信道专用物理数据信道的系统帧号p的第q个子帧上停止发送HSUPA上行数据,其中,p=i+s2,q=t2,定义了生效时刻与接收时刻之间的定时关系,p表示生效时刻对应的系统帧号,s2为第二系统帧号增量,t2为系统帧内的第二子帧偏移量。
应理解,第一系统帧号增量与第二系统帧号增量分别表示在增强专用信道专用物理数据信道上的系统帧号增加量或偏移量,第一子帧偏移量与第二子帧偏移量分别表示在增强专用信道专用物理数据信道上的一个系统帧号内的子帧号偏移。
可选地,存储器605还可存储使得处理器604执行以下过程的指令:
根据公式(7)确定s1和t1
Figure PCTCN2014085863-appb-000011
根据公式(8)确定s2和t2
Figure PCTCN2014085863-appb-000012
其中,T1表示生效时刻增量,T2=T1+ΔT,ΔT为传输时间间隔TTI长度整数倍的正数或负数,j表示接收时刻对应的系统帧号的子帧号,τDPCH,n表示下行DPCCH信道的定时偏置值。
应理解,30j、T1、T2和ΔT都是以扩频因子为256时的符号为时间单位,τDPCH,n以码片为时间单位,τDPCH,n除以256以后也以符号为时间单位,一个TTI为30个符号。当UE所在小区配置了F-DPCH信道时,τDPCH,n=τF-DPCH,n
可选地,存储器605还可存储使得处理器604执行以下过程的指令:
接收网络设备发送的T1和ΔT,或接收网络设备发送的T2和ΔT,或接收网络设备发送的T1和T2
可选地,存储器605还可存储使得处理器604执行以下过程的指令:
在根据授权信息和接收到授权信息的接收时刻,确定授权信息的生效时刻之前,接收网络设备发送的配置信令,配置信令用于指示启动根据授权信息和接收到授权信息的接收时刻确定授权信息的生效时刻的操作。
这样,UE可以根据配置信令灵活地选择根据授权信息和接收到授权信息的接收时刻确定该授权信息的生效时刻,还是根据接收到授权信息的接收时刻确定该授权信息的生效时刻。
图7是本发明另一实施例的网络设备的示意性框图。
图7的网络设备70可用于实现上述方法实施例中各步骤及方法。网络设备70可应用于各种通信系统。图7的实施例中,网络设备70包括天线701、发射电路702、接收电路703、处理器704和存储器705。处理器704控制网络设备70的操作,并可用于处理信号。存储器705可以包括只读存储器和随机存取存储器,并向处理器704提供指令和数据。发射电路702和接收电路703可以耦合到天线701。网络设备70的各个组件通过总线系统706耦合在一起,其中总线系统706除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图中将各种总线都标为总线系统706。
具体地,存储器705可存储使得处理器704执行以下过程的指令:
确定用户设备对应的授权信息,授权信息指示了用户设备在上行数据信道上发送数据的授权值,且授权值能够被用户设备用于确定授权信息的生效时刻;向用户设备发送授权信息,以通过授权值调度用户设备在生效时刻基于授权值在上行数据信道上调整数据的发送,其中,授权值属于多个授权值集合之一,多个授权值集合之间没有交集,同一授权值集合中的授权值对应的生效时刻与用户设备接收到授权信息的接收时刻之间的定时关系同一定时关系定义,不同授权值集合中的授权值对应的授权值对应的生效时刻与接收时刻之间的 定时关系由不同定时关系定义。
基于上述技术方案,在本发明实施例的调度授权的控制方法中,UE接收到授权信息后,可以根据不同的授权信息灵活地选择不同的生效时刻。尤其在HSUPA系统中引入TDM调度机制时,本发明实施例为进一步提高调度性能提供了一种可应用的实现方式。
应理解,在本发明实施例中,授权信息的接收时刻和生效时刻分别对应于本通信系统中的帧号。例如,本发发明实施例应用于HSUPA配置为2ms TTI的通信系统时,接收时刻和生效时刻分别对应于一个系统帧号及相应的子帧号。通常,一个传输子帧为一个TTI的长度。本发明实施例应用于HSUPA配置为10ms TTI的通信系统时,接收时刻和生效时刻分别对应于一个系统帧号。
例如,在HSUPA系统中引入TDM调度机制时,根据本发明实施例,可以预定义在一次调度中向第一用户设备(对应于取消授权的用户设备)发送授权信息的时刻晚于向第二用户设备(对应于授权发送HSUPA上行数据的用户设备)发送授权信息的时刻一个时间段。这样,第一用户设备和第二用户设备可以根据接收到的授权信息和接收到该授权信息的接收时刻确定该授权信息的生效时刻。这样可以实现在同一时刻(对应于系统帧号和子帧号),第一用户设备停止发送HSUPA上行数据,第二用户设备开始发送HSUPA上行数据,避免了前述操作不在同一时刻发生而带来的传输缝隙gap或相互干扰,从而提高了调度性能。
可选地,作为一个实施例,存储器705还可存储使得处理器704执行以下过程的指令:
多个授权值集合包括第一授权值集合和第二授权值集合,第一授权值集合包括非零数值授权值,第二授权值集合包括零数值授权值和去激活授权值;或多个授权值集合包括第一授权值集合和第二授权值集合,第一授权值集合包括非零数值授权值和零数值授权值,第二授权值集合包括去激活授权值。
应理解,非零数值授权值表示UE在相应的TTI上进行HSUPA上行调度数据的传输过程中增强专用信道专用物理数据信道(E-DPDCH)与专用物理控制信道的最大功率比值为非零的数值,零数值授权值表示在相应的TTI上进行HSUPA上行调度数据传输的过程中增强专用信道专用物理数据信道与专用物理控制信道的最大功率比值小于任何非零数值授权值,该值可以为零,也可以 不为零。去激活授权值表示UE在相应的TTI不能进行HSUPA上行调度数据传输。也应理解,相应的TTI为授权信息的生效时刻对应的TTI。
可选地,作为一个实施例,存储器705还可存储使得处理器704执行以下过程的指令:
向用户设备发送配置信令,配置信令用于指示用户设备启动根据授权信息和接收到授权信息的接收时刻确定授权信息的生效时刻的操作。
这样,UE可以根据配置信令灵活地选择根据授权信息和接收到授权信息的接收时刻确定该授权信息的生效时刻,还是根据接收到授权信息的接收时刻确定该授权信息的生效时刻。
应理解,在本发明实施例中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (18)

  1. 一种调度授权的控制方法,其特征在于,包括:
    接收网络设备发送的授权信息,所述授权信息指示了用户设备在上行数据信道上发送数据的授权值;
    根据所述授权值和接收到所述授权信息的接收时刻,确定所述授权信息的生效时刻;
    在所述生效时刻基于所述授权值在所述上行数据信道上调整所述数据的发送;
    其中,所述授权值属于多个授权值集合之一,所述多个授权值集合之间没有交集,同一授权值集合中的授权值对应的生效时刻与所述接收时刻之间的定时关系由同一定时关系定义,不同授权值集合中的授权值对应的生效时刻与所述接收时刻之间的定时关系由不同定时关系定义。
  2. 根据权利要求1所述的控制方法,其特征在于,
    所述多个授权值集合包括第一授权值集合和第二授权值集合,所述第一授权值集合包括非零数值授权值,所述第二授权值集合包括零数值授权值和去激活授权值;或
    所述多个授权值集合包括第一授权值集合和第二授权值集合,所述第一授权值集合包括非零数值授权值和零数值授权值,所述第二授权值集合包括去激活授权值。
  3. 根据权利要求2所述的控制方法,其特征在于,所述上行数据信道为增强专用信道专用物理数据信道,所述数据为高速上行分组接入HSUPA上行数据;
    所述根据所述授权值和接收到所述授权信息的接收时刻,确定所述授权信息的生效时刻,包括:
    当所述授权值属于第一授权值集合时,确定在增强专用信道专用物理数据信道的系统帧号p的第q个子帧上开始发送所述HSUPA上行数据,其中,p=i+s1,q=t1,定义了所述生效时刻与所述接收时刻之间的定时关系,p表示所述生效时刻对应的系统帧号,q表示所述生效时刻对应的系统帧号的子帧号,i为所述接收时刻对应的增强专用信道绝对授权信道的系统帧号,s1为第一系统帧号增量,t1为系统帧内的第一子帧偏移量;
    当所述授权值属于第二授权值集合时,确定在增强专用信道专用物理数据信道的系统帧号p的第q个子帧上停止发送所述HSUPA上行数据,其中,p=i+s2,q=t2,定义了所述生效时刻与所述接收时刻之间的定时关系,s2为第二系统帧号增量,t2为系统帧内的第二子帧偏移量。
  4. 根据权利要求3所述的控制方法,其特征在于,
    根据以下公式确定s1和t1
    Figure PCTCN2014085863-appb-100001
    根据以下公式确定s2和t2
    Figure PCTCN2014085863-appb-100002
    其中,T1表示生效时刻增量,T2=T1+ΔT,ΔT为传输时间间隔TTI长度整数倍的正数或负数,j表示所述接收时刻对应的系统帧号的子帧号,τDPCH,n表示下行DPCCH信道的定时偏置值。
  5. 根据权利要求4所述的控制方法,其特征在于,还包括:
    接收网络设备发送的T1和ΔT;或
    接收网络设备发送的T2和ΔT;或
    接收网络设备发送的T1和T2
  6. 根据权利要求1至5任一项所述的控制方法,其特征在于,在所述根据所述授权信息和接收到所述授权信息的接收时刻,确定所述授权信息的生效时刻之前,还包括:
    接收网络设备发送的配置信令,所述配置信令用于指示启动根据所述授权信息和接收到所述授权信息的接收时刻确定所述授权信息的生效时刻的操作。
  7. 一种调度授权的控制方法,其特征在于,包括:
    确定用户设备对应的授权信息,所述授权信息指示了用户设备在上行数据信道上发送数据的授权值,且所述授权值能够被所述用户设备用于确定所述授权信息的生效时刻;
    向所述用户设备发送所述授权信息,以通过所述授权值调度所述用户设备在所述生效时刻基于所述授权值在所述上行数据信道上调整所述数据的发送;
    其中,所述授权值属于多个授权值集合之一,所述多个授权值集合之间没有交集,同一授权值集合中的授权值对应的生效时刻与所述用户设备接收到所述授权信息的接收时刻之间的定时关系由同一定时关系定义,不同授权值集合中的授权值对应的生效时刻与所述接收时刻之间的定时关系由不同定时关系定义。
  8. 根据权利要求7所述的控制方法,其特征在于,
    所述多个授权值集合包括第一授权值集合和第二授权值集合,所述第一授权值集合包括非零数值授权值,所述第二授权值集合包括零数值授权值和去激活授权值;或
    所述多个授权值集合包括第一授权值集合和第二授权值集合,所述第一授权值集合包括非零数值授权值和零数值授权值,所述第二授权值集合包括去激活授权值。
  9. 根据权利要求7或8所述的控制方法,其特征在于,还包括:
    向所述用户设备发送配置信令,所述配置信令用于指示所述用户设备启动根据所述授权信息和接收到所述授权信息的接收时刻确定所述授权信息的生效时刻的操作。
  10. 一种用户设备,其特征在于,包括:
    接收单元,用于接收网络设备发送的授权信息,所述授权信息指示了用户设备在上行数据信道上发送数据的授权值;
    确定单元,用于根据所述授权值和接收到所述授权信息的接收时刻,确定所述授权信息的生效时刻;
    调整单元,用于在所述生效时刻基于所述授权值在所述上行数据信道上调整所述数据的发送;
    其中,所述授权值属于多个授权值集合之一,所述多个授权值集合之间没有交集,同一授权值集合中的授权值对应的生效时刻与所述接收时刻之间的定时关系由同一定时关系定义,不同授权值集合中的授权值对应的生效时刻与所述接收时刻之间的定时关系由不同定时关系定义。
  11. 根据权利要求10所述的用户设备,其特征在于,
    所述多个授权值集合包括第一授权值集合和第二授权值集合,所述第一授权值集合包括非零数值授权值,所述第二授权值集合包括零数值授权值和去激活授权值;或
    所述多个授权值集合包括第一授权值集合和第二授权值集合,所述第一授权值集合包括非零数值授权值和零数值授权值,所述第二授权值集合包括去激活授权值。
  12. 根据权利要求11所述的用户设备,其特征在于,所述上行数据信道为增强专用信道专用物理数据信道,所述数据为高速上行分组接入HSUPA上行数据;
    所述确定单元具体用于,
    当所述授权值属于第一授权值集合时,确定在增强专用信道专用物理数据信道的系统帧号p的第q个子帧上开始发送所述HSUPA上行数据,其中,p=i+s1,q=t1,定义了所述生效时刻与所述接收时刻之间的定时关系,p表示所述生效时刻对应的系统帧号,q表示所述生效时刻对应的系统帧号的子帧号,i为所述接收时刻对应的增强专用信道绝对授权信道的系统帧号,s1为第一系统帧号增量,t1为系统帧内的第一子帧偏移量;
    当所述授权值属于第二授权值集合时,确定在增强专用信道专用物理数据信道的系统帧号p的第q个子帧上停止发送所述HSUPA上行数据,其中, p=i+s2,q=t2,定义了所述生效时刻与所述接收时刻之间的定时关系,s2为第二系统帧号增量,t2为系统帧内的第二子帧偏移量。
  13. 根据权利要求12所述的用户设备,其特征在于,所述确定单元具体用于,
    根据以下公式确定s1和t1
    Figure PCTCN2014085863-appb-100003
    根据以下公式确定s2和t2
    Figure PCTCN2014085863-appb-100004
    其中,T1表示生效时刻增量,T2=T1+ΔT,ΔT为传输时间间隔TTI长度整数倍的正数或负数,j表示所述接收时刻对应的系统帧号的子帧号,τDPCH,n表示下行DPCCH信道的定时偏置值。
  14. 根据权利要求13所述的用户设备,其特征在于,所述接收单元还用于,接收网络设备发送的T1和ΔT,或接收网络设备发送的T2和ΔT,或接收网络设备发送的T1和T2
  15. 根据权利要求10至14任一项所述的用户设备,其特征在于,所述接收单元还用于,接收网络设备发送的配置信令,所述配置信令用于指示启动根据所述授权信息和接收到所述授权信息的接收时刻确定所述授权信息的生效时刻的操作。
  16. 一种网络设备,其特征在于,包括:
    确定单元,用于确定用户设备对应的授权信息,所述授权信息指示了用户设备在上行数据信道上发送数据的授权值,且所述授权值能够被所述用户设备用于确定所述授权信息的生效时刻;
    发送单元,用于向所述用户设备发送所述授权信息,以通过所述授权值调度所述用户设备在所述生效时刻基于所述授权值在所述上行数据信道上调整所述数据的发送;
    其中,所述授权值属于多个授权值集合之一,所述多个授权值集合之间没有交集,同一授权值集合中的授权值对应的生效时刻与所述用户设备接收到所述授权信息的接收时刻之间的定时关系由同一定时关系定义,不同授权值集合中的授权值对应的生效时刻与所述接收时刻之间的定时关系由不同定时关系定义。
  17. 根据权利要求16所述的网络设备,其特征在于,
    所述多个授权值集合包括第一授权值集合和第二授权值集合,所述第一授权值集合包括非零数值授权值,所述第二授权值集合包括零数值授权值和去激活授权值;或
    所述多个授权值集合包括第一授权值集合和第二授权值集合,所述第一授权值集合包括非零数值授权值和零数值授权值,所述第二授权值集合包括去激活授权值。
  18. 根据权利要求16或17所述的网络设备,其特征在于,所述发送单元还用于,向所述用户设备发送配置信令,所述配置信令用于指示所述用户设备启动根据所述授权信息和接收到所述授权信息的接收时刻确定所述授权信息的生效时刻的操作。
PCT/CN2014/085863 2013-09-26 2014-09-03 调度授权的控制方法、用户设备和网络设备 WO2015043365A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14849670.6A EP3035761A4 (en) 2013-09-26 2014-09-03 METHOD FOR REGULATING PLANNING PERMITS, USER DEVICE AND NETWORK DEVICE
US15/081,174 US10154516B2 (en) 2013-09-26 2016-03-25 Scheduling grant control method, user equipment, and network device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310447000.1A CN104519587B (zh) 2013-09-26 2013-09-26 调度授权的控制方法、用户设备和网络设备
CN201310447000.1 2013-09-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/081,174 Continuation US10154516B2 (en) 2013-09-26 2016-03-25 Scheduling grant control method, user equipment, and network device

Publications (1)

Publication Number Publication Date
WO2015043365A1 true WO2015043365A1 (zh) 2015-04-02

Family

ID=52742016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/085863 WO2015043365A1 (zh) 2013-09-26 2014-09-03 调度授权的控制方法、用户设备和网络设备

Country Status (4)

Country Link
US (1) US10154516B2 (zh)
EP (1) EP3035761A4 (zh)
CN (2) CN104519587B (zh)
WO (1) WO2015043365A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10172155B2 (en) * 2015-07-29 2019-01-01 Qualcomm Incorporated Bundling and hybrid automatic repeat request operation for enhanced machine-type communication
CN107734675B (zh) * 2016-08-12 2023-07-04 中兴通讯股份有限公司 一种传输间隔指示方法及装置
US11477730B2 (en) * 2019-11-01 2022-10-18 Qualcomm Incorporated Coordinated access point spatial reuse

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102761942A (zh) * 2011-04-29 2012-10-31 华为技术有限公司 状态切换方法、非激活定时器启动方法和用户设备
CN103220104A (zh) * 2012-01-20 2013-07-24 北京三星通信技术研究有限公司 一种pusch的传输方法
CN103298130A (zh) * 2012-02-27 2013-09-11 鼎桥通信技术有限公司 上行数据传输方法、终端及通信系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102246572B (zh) * 2008-11-25 2015-06-03 交互数字专利控股公司 使用多个上行链路载波和多个下行链路载波的方法和设备
CN101925156B (zh) * 2009-06-10 2012-12-19 中兴通讯股份有限公司 上行导频信道位置改变过程中保证数据传输的方法及系统
CN102378347B (zh) * 2010-08-20 2016-06-29 中兴通讯股份有限公司 一种终端及其授权处理方法
WO2014022512A1 (en) * 2012-08-01 2014-02-06 Interdigital Patent Holdings, Inc. Control of uplink transmission
EP2995157B1 (en) * 2013-05-08 2022-01-05 Nokia Solutions and Networks Oy Optimization of signalling of absolute grants for uplink transmission using time-division multiplexing
GB2515110B (en) * 2013-06-14 2015-11-18 Broadcom Corp Method and apparatus for communication using a shared uplink wireless communication channel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102761942A (zh) * 2011-04-29 2012-10-31 华为技术有限公司 状态切换方法、非激活定时器启动方法和用户设备
CN103220104A (zh) * 2012-01-20 2013-07-24 北京三星通信技术研究有限公司 一种pusch的传输方法
CN103298130A (zh) * 2012-02-27 2013-09-11 鼎桥通信技术有限公司 上行数据传输方法、终端及通信系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3035761A4 *

Also Published As

Publication number Publication date
CN104519587B (zh) 2018-10-02
EP3035761A4 (en) 2016-08-31
EP3035761A1 (en) 2016-06-22
CN109104771A (zh) 2018-12-28
US20160212763A1 (en) 2016-07-21
CN109104771B (zh) 2022-04-05
CN104519587A (zh) 2015-04-15
US10154516B2 (en) 2018-12-11

Similar Documents

Publication Publication Date Title
US11122606B2 (en) Terminal, base station, and scheduling request transmission method
CN106664702B (zh) 一种数据传输方法、装置及系统
EP3731583B1 (en) Sounding reference signal transmission method and terminal device
US20190159186A1 (en) Method, User Equipment, and Base Station for Transmitting Information
EP3116259A1 (en) Terminal device, base station device, communication system, control method, and integrated circuit
EP3133875B1 (en) Power distribution method and device
EP3641454B1 (en) Communication methods, network device, terminal device, computer readable storage medium and computer program product
EP3496481B1 (en) Methods and devices for dynamically determining transmission locations of ul dmrs
EP2850891B1 (en) Multireceiver timing advance provisioning
US10251135B2 (en) Method for controlling power of carrier signal, user equipment, and base station
WO2015043365A1 (zh) 调度授权的控制方法、用户设备和网络设备
US10264577B2 (en) Communications device and discontinuous transmission method
EP3883164A1 (en) Communication method for carrier aggregation system, terminal, and network apparatus
EP3386257B1 (en) Radio communication method and equipment
US20210153192A1 (en) User equipment and radio base station
US10834707B2 (en) Scheduling a data channel corresponding to a control channel
CN113228749A (zh) 上行链路传输中的功率控制

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14849670

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014849670

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE