WO2015042787A1 - 恒流驱动电路及其使用方法 - Google Patents

恒流驱动电路及其使用方法 Download PDF

Info

Publication number
WO2015042787A1
WO2015042787A1 PCT/CN2013/084138 CN2013084138W WO2015042787A1 WO 2015042787 A1 WO2015042787 A1 WO 2015042787A1 CN 2013084138 W CN2013084138 W CN 2013084138W WO 2015042787 A1 WO2015042787 A1 WO 2015042787A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
capacitor unit
load
drive circuit
constant current
Prior art date
Application number
PCT/CN2013/084138
Other languages
English (en)
French (fr)
Inventor
朱文运
Original Assignee
朱文运
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 朱文运 filed Critical 朱文运
Priority to PCT/CN2013/084138 priority Critical patent/WO2015042787A1/zh
Publication of WO2015042787A1 publication Critical patent/WO2015042787A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/395Linear regulators
    • H05B45/397Current mirror circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • the present invention relates to a constant current driving circuit and a method of using the same, particularly in the field of LED/OLED driving power supplies.
  • a light-emitting diode is a semiconductor light-emitting device that converts electrical energy into light energy.
  • LEDs are current-driven devices.
  • a light emitting diode is a special type of diode. Like ordinary diodes, LEDs consist of semiconductor chips that are pre-passed through processes such as implantation or doping to create p, n structures. Like other diodes, the current in the LED can easily flow from the p-pole (anode) to the n-pole (negative), but not in the opposite direction. Two different carriers: Holes and electrons flow from the electrode to the p, n structure under different electrode voltages. When a hole and an electron meet to recombine, the electrons will fall to a lower energy level, while releasing energy in the photon mode.
  • Organic light emitting diode OLED The principle of illumination is the same as that of a light-emitting diode, except that the illuminant semiconductor is an organic compound (organic semiconductor) such as an organic polymer.
  • the OLED process is simple and low in cost, and can be manufactured by inexpensive production methods such as printing.
  • the LED load carried by the LED driver can be composed of multiple LEDs connected in series, in parallel, or in series and in parallel. And now LED packaging technology can already pack multiple LED crystals in the same LED chip. The output voltage selection range of the LED driver has also become wider.
  • LED applications are now powered by AC, such as traffic lights, indoor lighting, landscape lighting, and electronic transformer-powered lighting.
  • some dimming functions are often accompanied, such as phase-cut angle dimming. (triac dimming), 0-10V dimming, PWM dimming, wireless control dimming, etc., among which wireless control dimming has Bluetooth, RF, zigbee, wifi, infrared and other control methods. They ultimately adjust the LED light output by adjusting the average drive current on the LED. Now more and more driver chips are beginning to reserve dimming.
  • the existing LED dimming control methods can be roughly divided into two categories.
  • the first major category is the control method including 0-10V dimming and almost all wireless dimming methods. They will eventually control the brightness of the LED. The signal is converted into a voltage signal, which is then used to control the current of the LED.
  • Another major category is phase-cut dimming (tnac dimming), a traditional dimming method that is mostly designed for traditional resistive lamps, such as incandescent lamps.
  • This type of dimmer is connected between the input and the lamp, by controlling the three-terminal double The on and off of the thyristor switching element of the conductive switch "cuts off" part of the input voltage, thereby reducing the effective value of the input voltage, thereby reducing the brightness of the pure resistive lamp.
  • Today's LED indoor lighting is still in the stage of replacing traditional lamps, so some LED lights need to be compatible with phase-cut angle dimmers.
  • For thyristors in phase-cut angle dimmers it has a minimum holding current requirement, so for LED driver designs that require compatible phase-cut angle dimmers, they must be within a large input phase angle.
  • PWM pulse width modulation
  • a constant current driving circuit the driving circuit comprises a capacitor unit charging controller and a capacitor unit, wherein the capacitor unit charging controller controls when the AC input voltage charges the capacitor unit, the capacitor unit supplies power to the load, and the load current is constant;
  • the capacitor unit charge controller directly controls the input voltage to supply power to the load, and the average current of the load is constant.
  • the capacitor unit charging controller comprises a charging amount calculating unit and a feedback circuit, wherein the charging amount calculating unit uses the charging time sampling and/or the charging current sampling.
  • the capacitor unit charging controller controls the charging current by using the AC input voltage of each period to charge the capacitor unit or the discharge time of the load in the case where the AC input voltage or the load voltage changes.
  • the size which controls the amount of charge per cycle.
  • the capacitor unit charging controller comprises a load current sampling unit and a capacitor unit charging control unit, and the capacitor unit charging control unit obtains a load current sampling signal through a load current sampling unit, directly or after being processed, to control The amount of charge of the capacitor unit or directly power the load The amount of power supplied.
  • the capacitor unit charging controller samples the input voltage, and directly or after processing the sampled signal to control the amount of charge of the capacitor unit or the amount of discharge to the load.
  • the capacitor unit further includes means for controlling the direction of current to control the direction of charging or discharging.
  • the driving circuit further comprises a rectifier bridge, and the AC input voltage is connected to the capacitor unit charging controller after passing through the rectifier bridge.
  • the load is an LED or an OLED.
  • the capacitor unit charging controller receives a direct or processed dimming signal to affect the capacitor unit charging controller in a dimming application of an LED or an OLED, thereby causing the capacitor unit to be
  • the charge controller controls the charging of the capacitor unit or the discharge of the load.
  • the capacitor in the capacitor unit performs switching of series charging, parallel charging, and series-parallel hybrid charging;
  • the load described is switched between series power supply, parallel power supply, and series-parallel hybrid power supply.
  • the invention has the advantages that the constant current driving circuit disclosed in the invention does not need to use a transformer and an inductor, has low production cost and high driving efficiency, and solves the problem that the cost of the LED driver is high while improving the performance; the electromagnetic interference is completely solved. (EMI) problem, no EMI filter circuit required; improved dimming compatibility of LED and OLED triac and completely solved the noise problem in triac dimming, especially in LED and OLED fields.
  • EMI EMI
  • 1 is a schematic structural view of a constant current driving circuit.
  • FIG. 2 is a schematic structural view of a capacitor unit charging controller of a constant current driving circuit.
  • FIG. 3 is a schematic diagram of a linear constant current source, a charging time sampling, and a charging current sampling in a capacitor unit charging controller of a constant current driving circuit.
  • Figure 4 is a schematic diagram showing the principle of a multiplier and divider in a capacitor unit charge controller of a constant current drive circuit.
  • Figure 5 is a schematic diagram showing the principle of a feedback loop in a capacitor unit charge controller of a constant current drive circuit.
  • Figure 6 is a schematic diagram showing the principle of a capacitor unit, a charging line and a load discharging circuit of a constant current driving circuit. detailed description
  • a constant current driving circuit includes a capacitor unit charging controller and a capacitor unit.
  • the capacitor unit charging controller controls when the AC voltage charges the capacitor unit, and the capacitor unit supplies power to the load, and the load current is constant.
  • the capacitor unit may be one of a series capacitor, a parallel capacitor, and a series-parallel capacitor.
  • the capacitor charge controller charges the capacitor by the AC voltage, and strictly controls the amount of charge in each AC cycle. Since the charge and discharge of the capacitor are equal in each cycle in the steady state, the discharge of the capacitor by the charge capacitor is discharged. The amount is also controlled to achieve the effect of load constant current.
  • the capacitor acts both as a storage device and as an energy source for the load.
  • the average value of the current of the load can be constant at the required current value as long as the voltage at which the load reaches the required current is less than the maximum value of the A C input.
  • Figure 1 is an example of a constant current driving circuit including an AC input voltage, a rectifier bridge, a capacitor unit charge controller, a capacitor unit and a load, but the rectifier bridge and the capacitor unit are not indispensable elements of the present invention.
  • the capacitor unit charge controller can be connected to the positive or negative terminal of the rectifier bridge output.
  • the capacitor unit charge controller directly controls the input voltage to discharge the load.
  • Figure 2 is an example of a capacitor unit charge controller of Figure 1, including a linear constant current source, charge time sampling, charge current sampling, multiplier divider, dimming signal, and feedback loop.
  • the voltage after the rectifier bridge charges the capacitor unit through the linear constant current source, and samples the time and charging current for charging the capacitor unit, multiplies the two values by the multiplier and divides the dimming signal to obtain the value.
  • M in the feedback circuit, the value M is used to compare with a set value, the difference is amplified, and used to feedback the current of the linear constant current source, and finally the M value is The settings are equal.
  • the charging of the sampling capacitor unit or the discharge time of the load or the peak value of the charging voltage, and the magnitude of the charging or discharging current is controlled by the charging time or the peak value of the charging voltage.
  • the charge current and the charge current are equalized in each cycle to achieve constant current.
  • Adjust the charging current of the capacitor unit charging controller by sampling the load current, or comparing the load current with a certain set value, so that the average value of the load current is constant.
  • One implementation is as follows. First, the average value of the load current is sampled, and then this voltage and a set voltage are respectively connected to the op amp or the comparator for comparison, and the comparison signal is used to control the charging current. size. For example, if an op amp is used, the output voltage of the op amp can be used to participate in the charging control unit. If the load current is greater than the set voltage, then the charging circuit is turned down. If the load current is smaller than the set voltage, Then increase the charging current, and finally the circuit will balance the average value of the load current with the set voltage. Thereby achieving a constant current.
  • the measured voltage is directly or after being processed, and is used to control the charging of the capacitor unit or the discharge current to the load, so that the average value of the load current is constant.
  • One implementation is as follows.
  • the control circuit for charging the input capacitor unit or discharging the current to the load by sampling the input voltage, or by dividing or after other processing a simple example is shown in FIG. 3, Q1 and Q2.
  • R2 is the sampling resistor for charging the capacitor unit or discharging current to the load. Then we sample the voltage and add the processed signal to R4. The size of this signal can be used to control the flow.
  • Figure 3 includes the linear constant current source of Figure 2, charge time sampling, and charge current sampling.
  • Q1 and Q2 form a linear constant current source.
  • Ql's Vbe is kept at 0.7V
  • g ⁇ VR2+VR4 0.7V
  • ie lcharge (0.7 -Feedback *R4/( R4+R5))/R2: It can be seen that the size of Icharge is controlled by the feedback.
  • FIG. 3 contains the charging current sampling circuit.
  • the charging current of the capacitor unit flows through R2.
  • the voltage X on R2 is used as the sampling of the charging current, and R2 is the sampling resistor of the current.
  • FIG. 3 includes a charging time sampling circuit.
  • an auxiliary linear constant current circuit is composed of Q3 and Q4, which is used to generate a constant small current when the AC voltage is charged to the capacitor unit, and is constant for C2.
  • Stream charging, Ml and M2 discharge C2 every cycle, that is, when the voltage after the rectifier bridge is lower than a certain value, M2 is turned off, and Ml is turned on, ensuring that the voltage on C2 is zero at the beginning of the next cycle.
  • Figure 4 is an example of the multiplier and divider in Figure 2.
  • X and Y are the input ports of the multiplier, Z is the input port of the divisor, and M is the output of the multiplier.
  • the LED/OLED has dimming requirements, or the output load current needs to be adjustable, it can be achieved by changing the voltage of the divider.
  • Figure 5 is an example of the feedback loop of Figure 2, using an op amp to compare the output voltage M of the multiplier and divider with the voltage of the set V6 to obtain a voltage feedback.
  • the output voltage M of the multiplier is connected to the + stage of the operational amplifier, and the -stage of the operational amplifier is a set reference voltage.
  • M is greater than the reference voltage V6
  • the feedback voltage becomes high, thereby reducing the linear constant current source.
  • the current on the current is reduced by X. Since the multiplier is calculated in real time, M will become smaller.
  • Icharge*Tcharge is a constant that is linearly controlled by Z.
  • C8, C9 and R21 are used to adjust the phase and gain of the loop.
  • FIG. 6 is an example of a capacitor unit, a capacitor unit charging line, and a capacitor unit discharge circuit.
  • C1 and C7 in Fig. 6 are capacitors for energy storage in the capacitor unit, D12 connected in parallel to C1 and D13 connected in parallel to C7 are load LEDs.
  • a method for using the constant current driving circuit wherein the constant current driving circuit is used for charging a series of capacitors in a phase-cut angle dimming mode, charging in parallel, or directly supplying power to the load in parallel
  • the method of charging the capacitor unit in series to increase the conduction angle of the AC input terminal, thereby achieving high compatibility of the phase-cut angle dimmer.
  • the method of increasing the conduction angle of the AC input can increase the power factor of the input.
  • the load is LED
  • the result is a constant current accuracy of ⁇ 3%
  • the LED ripple current is less than peak-peak/average ⁇ 30%, g ⁇ LED current.
  • the peak-to-peak value divided by the average is less than 30%. This parameter becomes lower after increasing the capacitance of the capacitor unit.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

本发明提出了一种恒流驱动电路及其使用方法。该驱动电路包括电容单元充电控制器、电容单元,电容单元充电控制器在AC输入电压对电容单元进行充电时进行控制,电容单元对负载供电,负载电流恒定;或电容单元充电控制器直接控制输入电压对负载供电,负载的平均电流恒定。一种恒流驱动电路的使用方法,恒流驱动电路在应用于切相角调光时,根据AC输入电压的变化,电容单元中的电容进行串联充电,并联充电和串并联混合充电的切换;负载进行串联供电,并联供电和串并联混合供电的切换。本发明公开的恒流驱动电路无需使用变压器和电感,生产成本低,驱动效率高;解决了电磁干扰问题;提高了LED和OLED切相角调光的兼容性以及解决了调光时的噪声问题。

Description

恒流驱动电路及其使用方法
技术领域
本发明涉及一种恒流驱动电路及其使用方法, 尤其是在 LED/OLED驱动电 源领域。
背景技术
发光二极管 (LED) 是一种半导体发光器件, 可将电能转化成光能, 通常 来说 LED属于电流驱动器件。
发光二极管 (LED) 是一种特殊的二极管。 和普通的二极管一样, 发光二 极管由半导体芯片组成, 这些半导体材料会预先透过注入或搀杂等工艺以产生 p、 n架构。 与其它二极管一样, 发光二极管中电流可以轻易地从 p极 (阳极) 流向 n极 (负极), 而相反方向则不能。 两种不同的载流子: 空穴和电子在不同 的电极电压作用下从电极流向 p、 n架构。 当空穴和电子相遇而产生复合, 电子 会跌落到较低的能阶, 同时以光子的模式释放出能量。
有机发光二极管 OLED。其发光原理跟发光二极管一样,不同之处是其发光 物半导体是有机化合物 (有机半导体), 例如有机聚合物等。 OLED制程简单, 成本也较低, 可以用印刷等廉价生产方法制造。
目前的 LED应用中, LED驱动器所带的 LED负载可以由多颗 LED串联, 并联,或者串联和并联结合组成。并且现在的 LED封装技术已经可以将多颗 LED 晶原封装在同一 LED芯片中。 LED驱动器的输出电压选择范围也变得更加宽广。
现在很多的 LED的应用, 是由交流电来供电的, 比如交通灯, 室内照明, 景观照明, 电子变压器供电的照明, 在这些应用中, 常常会伴随一些调光的功 能, 比如切相角调光 (triac调光), 0-10V调光, PWM调光, 无线控制调光等 等, 其中无线控制调光又有蓝牙, 射频, zigbee, wifi, 红外线等控制方式。 它 们最终都是通过调节 LED上的驱动电流平均值来调节 LED光输出的大小。现在 越来越多的驱动芯片也开始预留调光功能。
对于现有的 LED 调光控制方式, 大致可以分为两类, 第一个大类是包括 0-10V调光和几乎所有无线调光方式在内的控制方式, 它们最终是将控制 LED 亮度的信号转换成电压信号, 然后用电压信号去控制 LED的电流。 另一个大类 是切相角调光 (tnac调光), 这是一种传统的调光方式, 大部分针对传统的电阻 性的灯设计, 比如白炽灯。 这类调光器接在输入端和灯之间, 通过控制三端双 向导通的可控硅开关元件的开和关来 "切掉"部分输入电压, 从而减小输入电 压的有效值, 达到降低纯阻性灯的亮度的效果。 现在的 LED室内照明还处在替 代传统灯的阶段, 因此, 部分的 LED灯需要兼容切相角调光器。 对于切相角调 光器中的可控硅来说, 它有最小维持电流的要求, 所以, 对于要求兼容切相角 调光器的 LED 驱动的设计, 必须在一个较大的输入相角内都要保持一个大约 20-40mA的电流。 也就是说 AC (交流) 输入端的导通角要比较大, 并且导通 电流要在 20mA以上。
现在最主流的 LED驱动器还是使用脉宽调制技术 (PWM) , 利用电感和电 容两个储能元器件, 通过调节开关的占空比来达到恒流的效果, 常用的拓扑有 buck, boost, 反激 (flayback) 等等。 这种驱动器的优点是设计灵活, 恒流精度 高, 负载的选择广, 能够做到很高的功率因数, 缺点在于有电磁干扰(EMI) 问 题, 成本高, 设计复杂。
如今市场上出现了不少线性的方案, 成本很低, 在低端市场使用率很高。 不过这些方案存在 LED亮度随输入电压变化大、驱动效率低、或者 LED低频纹 波电流非常大等缺点。 因此各种线性驱动方案没有办法普及, 更没有办法进入 中高端市场。
随着 LED越来越广泛的应用, 市场需要一种真正低成本, 并且不牺牲性能 的驱动方案。
发明内容
为了克服现有技术的不足, 本发明提出了一种恒流驱动电路及其使用方法。 一种恒流驱动电路, 该驱动电路包括电容单元充电控制器、 电容单元, 电 容单元充电控制器在 AC输入电压对电容单元进行充电时进行控制,电容单元对 负载供电, 负载电流恒定; 或所述的电容单元充电控制器直接控制输入电压对 负载供电, 负载的平均电流恒定。
优选地, 所述的电容单元充电控制器包括充电量计算单元、 反馈电路, 所 述的充电量计算单元利用充电时间采样和 /或利用充电电流采样。
优选地,所述的电容单元充电控制器在所述的 AC输入电压或负载电压变化 的情况下,利用每个周期 AC输入电压对电容单元充电时间或对负载放电时间的 大小来控制充电电流的大小, 从而控制每个周期的充电电量。
优选地, 所述的电容单元充电控制器包括负载电流采样单元、 电容单元充 电控制单元, 所述的电容单元充电控制单元通过负载电流采样单元获得负载电 流采样信号, 直接或经过处理后, 来控制电容单元的充电量或直接对负载供电 的供电量。
优选地, 所述的电容单元充电控制器采样输入电压, 利用采样所得的信号 直接或经过处理后, 来控制电容单元充电控制器对电容单元的充电量或对负载 放电量的大小。
优选地, 所述的电容单元进一歩包括控制电流方向的器件, 来控制充电或 者放电的方向。
优选地, 所述的驱动电路进一歩包括整流桥, AC输入电压经过所述的整流 桥后与所述的电容单元充电控制器相连。
优选地, 所述的负载为 LED或 OLED。
优选地, 所述的电容单元充电控制器, 在 LED或 OLED的调光应用中, 接 受直接或者经过处理后的调光信号来影响所述的电容单元充电控制器, 从而使 得所述的电容单元充电控制器对电容单元的充电或对负载的放电进行控制。
优选地,所述的恒流驱动电路在应用于切相角调光时,根据 AC输入电压的 变化, 所述的电容单元中的电容进行串联充电、 并联充电、 串并联混合充电的 切换; 所述的负载进行串联供电、 并联供电、 串并联混合供电的切换。
本发明的有益效果: 本发明公开的恒流驱动电路无需使用变压器和电感, 生产成本低, 驱动效率高, 另外在提高性能的同时解决了 LED驱动器成本居高 不下的问题; 彻底解决了电磁干扰 (EMI) 问题, 无需 EMI滤波电路; 提高了 LED 和 OLED triac的调光兼容性以及彻底解决了 triac调光时的噪声问题,尤其 适用于 LED和 OLED领域。 不过, 本发明的任一技术方案不一定能全部实现以 上有益效果。
附图说明
附图 1是恒流驱动电路的结构示意图。
附图 2是恒流驱动电路的电容单元充电控制器的结构示意图。
附图 3 是恒流驱动电路的电容单元充电控制器之中的线性恒流源, 充电时 间采样, 充电电流采样的原理示意图。
附图 4 是恒流驱动电路的电容单元充电控制器之中的一个乘除法器的原理 示意图。
附图 5 是恒流驱动电路的电容单元充电控制器之中的反馈环路的原理示意 图。
附图 6 是恒流驱动电路的电容单元, 充电线路和负载放电回路的原理示意 图。 具体实施方式
以下结合附图和具体实施方式对本发明做进一歩的说明。 本实例只是该发 明的一个例子, 不作为该发明的限制。
一种恒流驱动电路, 该驱动电路包括电容单元充电控制器、 电容单元, 电 容单元充电控制器在 AC电压对电容单元进行充电时进行控制,电容单元对负载 供电, 负载电流恒定。 所述的电容单元可以为串联的电容器、 并联的电容器、 串并联结合的电容器中的一种。 电容充电控制器通过 AC电压对电容进行充电, 对每个 AC周期内的充电量进行严格的控制,由于电容器在稳态下每个周期的充 放电的电量相等, 因此被充电电容对负载的放电量也得到了控制, 从而达到了 负载恒流的效果。
从能量传输的角度来看, 电容同时起到了储能的作用和为负载提供能量的 作用。
从负载特性的角度来看, 由于控制的是电容充电的电量, 那么只要负载达 到需要电流时的电压小于 A C输入的电压最大值, 理论上负载的电流平均值都 能够恒定在需要的电流值。
各方面的好处可以通过接下来的具体附图说明来体现, 附图说明的唯一目 的是用来作为这个发明的例证, 而不是用来定义这个发明的限制。 该发明的其 他特点和优点可以通过接下来的描述所体现。
附图 1是一个恒流驱动电路的例子, 其中包括 AC输入电压, 整流桥, 电容 单元充电控制器, 电容单元和负载, 但是整流桥及电容单元不是本发明不可缺 少的元素。 电容单元充电控制器可以与整流桥输出的正极或负极相连。
AC电压经过整流桥整流以后, 得到了单边的正弦波, 该电压经由电容单元 充电控制器对电容单元进行充电, 负载并联在电容单元上或电容单元的一部分 上, 由电容单元的电容对负载进行放电。
当没有电容单元时, 电容单元充电控制器直接控制输入电压对负载进行放 电。
附图 2是附图 1 中电容单元充电控制器的一个例子, 其中包括了线性恒流 源, 充电时间采样, 充电电流采样, 乘除法器, 调光信号和反馈环路。
整流桥后的电压通过线性恒流源对电容单元进行充电, 并且采样对电容单元 充电的时间和充电电流, 通过乘除法器将两个值相乘, 再除以调光信号, 就可 以得到值 M, 在反馈电路中, 值 M被用来和一个设定好的值进行比较, 将比较 出来差值放大, 并用来反馈调节线性恒流源的电流大小, 最终使得 M值与被 设定值相等。
另外可行的三种控制方式:
1、 采样电容单元的充电或对负载的放电时间或者充电电压的峰值, 通过充电 时间或充电电压的峰值大小来控制充电或放电电流的大小。 使得每个周期内充 电时间和充电电流乘积相等, 从而实现恒流。
一种实现方式是以采样电容单元的充电时间为例, 将电容单元充电时间乘 以充电电流需要等于每个周期所设定的充电量, 那么充电电流大小就和充电时 间的关系为: 充电电流 =c * i/充电时间。 其中 C为常数, 由设定负载电流决定, 那么, 由于充电时间已经确定, c可以通过设定的负载电流计算, 充电电流也 就确定了。
2、 通过采样负载电流, 或者比较负载电流和某个设定值的大小来调整所述的 电容单元充电控制器的充电电流大小, 从而使得负载电流平均值恒定。
一种实现方式如下, 先对负载电流的平均值进行采样, 然后将这个电压和 一个设定好的电压分别接到运放或者比较器两端进行比较, 使用这个比较的信 号来控制充电电流的大小。 比如使用运放, 运放的输出电压可以被用来参与充 电控制单元, 如果负载电流较上述设定好的电压大, 那么就调小充电电路, 如 果负载电流较上述设定好的电压小, 那么就调大充电电流, 最终这个电路会平 衡在负载电流平均值采样值与上述设定好的电压相等。 从而实现了恒流。
3、 通过采样输入电压, 将采得的电压直接或经过处理后, 用来控制电容单元的 充电或对负载放电电流大小, 从而使得负载电流平均值恒定。
一种实现方式如下, 通过对输入电压的采样, 或分压或经过其他处理后, 接入控制电容单元充电或对负载放电电流大小的控制电路中,简单的例子如图 3 中, Q1和 Q2组成一个简单的线性恒流源, R2为对电容单元充电或对负载放电 电流的采样电阻, 那么我们将电压采样, 经过处理后的信号加在 R4上, 这个信 号的大小就可以用来控制流过 Q2的电流, 当输入电压变大的时候, 对电容单元 充电或对负载放电的时间增加, 需要降低充电电流来使得负载电流不变, R4上 的电压随输入电压增大而增大, 那么流过 Q2的电流就会相应减小, 可以较为准 确地使负载电流平均值恒定。
以上三种控制方式对于本领域技术人员来说均可实现恒流控制, 实现方式 相对简单, 就不一一进行具体举例。
附图 3包括附图 2中的线性恒流源、 充电时间采样、 充电电流采样。
附图 3中 Q1和 Q2组成了一个线性恒流源, 当输入电压给电容单元充电时, Ql 的 Vbe 保持在 0.7V, g卩 VR2+VR4=0.7V, 设充电电流为 Icharge, Icharge*R2+Feedback*R4/(R4+R5)=0.7,即 lcharge=(0.7 -Feedback *R4/(R4+R5))/R2: 可以看出, Icharge的大小由 Feedback来控制。
附图 3中包含充电电流采样电路, 电容单元的充电电流流经 R2, R2上的电 压 X 被用来作为充电电流的采样, R2 为电流的采样电阻。 采样函数为: Icharge=X/R2
附图 3 中包含充电时间采样电路, 充电时间采样电路中, 一个辅助的线性 恒流电路由 Q3和 Q4组成, 用来在 AC电压给电容单元充电时产生一个恒定的 小电流, 对 C2进行恒流充电, Ml和 M2每个周期对 C2进行放电, 即当整流桥 后的电压低于一定的值以后, M2关断, Ml开通, 保证下一周期开始时, C2上 的电压为零。 C2 上峰值电压 VC2=Ilinea*Tcharge/C2,所以充电时间 Tcharge=R7*VC2*C2/0.7。 D6的存在是为了抵消 D7上的电压降, 即在 C2传输 能量给 C3 的线路上, VC3=VC2+VD6-VD7, 这样才能保证 VC3=VC2。 C3和 R9是保持电路, 当 C2电压峰值在上升的时候, D7开通, C3电压跟随 C2上升; 当 C2电压峰值在下降的时候, R9帮助 C3缓慢放电, 直到 D7开通且 C3上冲 放电均衡为止。 所以 Y 值就是充电时间的采样。 采样函数为: Tcharge= Y*R7*C2/0.7。
附图 4是附图 2中乘除法器的一个例子。 X和 Y为乘数的输入端口, Z为 除数的输入端口, M为该乘除法器的输出。
该乘除法器的传递函数为 M=X*Y/Z,当 LED/OLED不需要调光时, 或者输 出的负载电流不需要可以调节时, 除法输入口被设置成 1, 即 M=X*Y, 也就是 说在非调光的情况下, 可以使用乘法器来替代乘除法器。 当 LED/OLED有调光 要求, 或者输出的负载电流需要可以调节时, 可以通过改变除法口的电压来实 现。
附图 5是附图 2中反馈环路的一个例子, 使用运放来将乘除法器的输出电 压 M和设定好的 V6的电压进行比较, 得到一个电压 Feedback。
乘除法器的输出电压 M接运放的 +级, 运放的-级是一个被设定好的基准电 压, 当 M大于基准电压 V6时, Feedback电压变高, 从而减小线性恒流源的上 的电流, 即减小 X, 由于乘除法器是实时计算的, 所以 M会随之变小; 当小于 基准电压 V6时, Feedback电压变低, 从而增大线性恒流源的电流, 即增大 X, 所以 M会随之变大, 最终, 经过反馈电路的调整, M的电压值会等于 V6的电 压, 达到每个周期充电电量的恒定。 从表达式来看, V6=M=X*Y/Z=Icharge*R2*0.7*Tcharge/(R7*C2*Z), 即
Icharge*Tcharge=V6*R7 *C2 *Z/(0.7 *R2), 从这个表达式中可以看出,
Icharge*Tcharge的值是一个被 Z线性控制的常数。 C8, C9和 R21用来调整环路 的相位和增益。
附图 6是电容单元, 电容单元充电线路和电容单元放电回路的一个例子。 附图 6中的 C1和 C7是电容单元中储能的电容器, 并联在 C1上的 D12和 并联在 C7上的 D13为负载 LED。
附图 6中, 当整流桥后的电压高于 C1和 C7上的电压, 并且小于 C1+C7的 电压时: Q11和 Q9; Q10和 Q12分别组成的两个线性恒流电路开始工作, 这时 候 C7的充电电流为 0.7/Rl,Cl的充电电流为 0.7/R19-0.7/R1,特别的在 R19=Rl/2 的时候, 两路充电相等。 这部分电路的目的是加大输入电流的导通角, 提高输 入功率因数, 使 AC输入电流在每个 AC周期内有一个比较大的导通角度, 并在 这个角度内都有一定的电流, 有了这个电路的加入, 就能够兼容切相角调光器。 由于这部分电流大小远小于线性恒流源产生的电流大小, 所以 Feedback电压很 低, 在这个阶段反馈环路不会调整充电电流。
附图 6中, 当整流桥后的电压高于 C1+C7的电压时: 电容单元充电控制器 中给电容单元充电的线性恒流源开始工作, 由于主线性恒流源产生的电流远大 于 0.7/R19, 所以 R1和 R19上电压均大于 0.7V, 所以线性恒流电路 Q11+Q9和 Q10+Q12均截止, 每个周期充电的电量被采样和反馈电路控制。
一种所述的恒流驱动电路的使用方法, 所述的恒流驱动电路在应用于切相 角调光时, 对电容单元进行串联充电, 并联也充电的方式, 或者对负载直接进 行并联供电, 对电容单元进行串联充电的方法, 来增大 AC输入端的导通角, 从 而达到较高的切相角调光器的兼容性。
所述的增大 AC输入端导通角的方法可以提高输入的功率因数。
实施例 1
按照图 3, 4, 5, 6所示的原理图为例, 负载为 LED, 结果是负载恒流精度 为 ±3%, LED纹波电流小于 peak-peak/average<30%, g卩 LED电流的峰峰值除 以平均值小于 30%, 该参数在增加电容单元电容容量后会变得更低。

Claims

权 利 要 求 书
1、 一种恒流驱动电路, 其特征在于, 该驱动电路包括电容单元充电控制器、 电 容单元, 电容单元充电控制器在 AC输入电压对电容单元进行充电时进行控制, 电容单元对负载供电, 负载电流恒定; 或
所述的电容单元充电控制器直接控制输入电压对负载供电, 负载的平均电 流恒定。
2、 根据权利要求 1所述的恒流驱动电路, 其特征在于, 所述的电容单元充电控 制器包括充电量计算单元、 反馈电路, 所述的充电量计算单元利用充电时间采 样和 /或利用充电电流采样。
3、 根据权利要求 1所述的恒流驱动电路, 其特征在于, 所述的电容单元充电控 制器在所述的 AC输入电压或负载电压变化的情况下,利用每个周期 AC输入电 压对电容单元充电时间或对负载放电时间的大小来控制充电电流的大小, 从而 控制每个周期的充电电量。
4、 根据权利要求 1所述的恒流驱动电路, 其特征在于, 所述的电容单元充电控 制器包括负载电流采样单元、 电容单元充电控制单元, 所述的电容单元充电控 制单元通过负载电流采样单元获得负载电流采样信号, 直接或经过处理后, 来 控制电容单元的充电量或直接对负载供电的供电量。
5、 根据权利要求 1所述的恒流驱动电路, 其特征在于, 所述的电容单元充电控 制器采样输入电压, 利用采样所得的信号直接或经过处理后, 来控制电容单元 充电控制器对电容单元的充电量或对负载放电量的大小。
6、 根据权利要求 1所述的恒流驱动电路, 其特征在于, 所述的电容单元进一歩 包括控制电流方向的器件, 来控制充电或者放电的方向。
7、 根据权利要求 1所述的恒流驱动电路, 其特征在于, 所述的驱动电路进一歩 包括整流桥, AC输入电压经过所述的整流桥后与所述的电容单元充电控制器相 连。
8、 根据权利要求 1所述的恒流驱动电路, 其特征在于, 所述的负载为 LED或 OLED。
9、 根据权利要求 1所述的恒流驱动电路, 其特征在于, 所述的电容单元充电控 制器, 在 LED或 OLED的调光应用中, 接受直接或者经过处理后的调光信号来 影响所述的电容单元充电控制器, 从而使得所述的电容单元充电控制器对电容 单元的充电或对负载的放电进行控制。
10、 根据权利要求 1 所述的恒流驱动电路, 其特征在于, 所述的恒流驱动电路 在应用于切相角调光时,根据 AC输入电压的变化,所述的电容单元中的电容进 行串联充电、 并联充电、 串并联混合充电的切换; 所述的负载进行串联供电、 并联供电、 串并联混合供电的切换。
PCT/CN2013/084138 2013-09-25 2013-09-25 恒流驱动电路及其使用方法 WO2015042787A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/084138 WO2015042787A1 (zh) 2013-09-25 2013-09-25 恒流驱动电路及其使用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/084138 WO2015042787A1 (zh) 2013-09-25 2013-09-25 恒流驱动电路及其使用方法

Publications (1)

Publication Number Publication Date
WO2015042787A1 true WO2015042787A1 (zh) 2015-04-02

Family

ID=52741743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/084138 WO2015042787A1 (zh) 2013-09-25 2013-09-25 恒流驱动电路及其使用方法

Country Status (1)

Country Link
WO (1) WO2015042787A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109327934A (zh) * 2018-10-22 2019-02-12 横店集团得邦照明股份有限公司 一种电容快速放电电路及其实现方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101436690A (zh) * 2008-12-10 2009-05-20 深圳华为通信技术有限公司 一种充电时间的确定方法、装置和终端设备
CN201568830U (zh) * 2009-12-22 2010-09-01 铼阔光电(上海)有限公司 Led恒流射灯
EP2410818A2 (en) * 2010-07-21 2012-01-25 Advanced Connectek Inc. Direct current driving circuit of a light emitting device
CN102811530A (zh) * 2011-06-02 2012-12-05 海洋王照明科技股份有限公司 一种升压型led驱动电路及灯具
CN202857092U (zh) * 2012-10-25 2013-04-03 上海占空比电子科技有限公司 一种兼容可控硅调光器的调光电路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101436690A (zh) * 2008-12-10 2009-05-20 深圳华为通信技术有限公司 一种充电时间的确定方法、装置和终端设备
CN201568830U (zh) * 2009-12-22 2010-09-01 铼阔光电(上海)有限公司 Led恒流射灯
EP2410818A2 (en) * 2010-07-21 2012-01-25 Advanced Connectek Inc. Direct current driving circuit of a light emitting device
CN102811530A (zh) * 2011-06-02 2012-12-05 海洋王照明科技股份有限公司 一种升压型led驱动电路及灯具
CN202857092U (zh) * 2012-10-25 2013-04-03 上海占空比电子科技有限公司 一种兼容可控硅调光器的调光电路

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109327934A (zh) * 2018-10-22 2019-02-12 横店集团得邦照明股份有限公司 一种电容快速放电电路及其实现方法
CN109327934B (zh) * 2018-10-22 2024-01-23 横店集团得邦照明股份有限公司 一种电容快速放电电路及其实现方法

Similar Documents

Publication Publication Date Title
CN108633126B (zh) 线性高功率因素恒流无频闪led驱动电路及方法
CN107094329B (zh) Led驱动电路
CN103503563B (zh) 可调光led驱动器及其控制方法
TWI523569B (zh) Adjustable LED driver circuit and drive method
JP6048943B2 (ja) 駆動回路、照明用光源、及び、照明装置
US20120081009A1 (en) Apparatus, Method and System for Providing AC Line Power to Lighting Devices
US20080211417A1 (en) Stepless Dimming Fluorescent Lamp and Ballast Thereof
WO2020073359A1 (zh) 调光调色无频闪筒灯电路设计
WO2021128743A1 (zh) Led恒流驱动系统及方法
WO2016045644A1 (zh) 一种母线电流控制电路、恒流驱动控制器及led光源
JP2013118164A (ja) 発光ダイオード駆動装置及びその方法
KR101683438B1 (ko) 조명 시스템 및 그의 제어 회로
CN102685989A (zh) 高压直流集中供电led恒流源pwm调光方法及电路
CN107635313A (zh) 一种基于电容自均流实现调光的多路led驱动器
WO2015042787A1 (zh) 恒流驱动电路及其使用方法
TWI556681B (zh) Light emitting diode switch circuit
CN106163013A (zh) 基于2.4g的色温调制的led驱动电路
CN107734784B (zh) 一种led恒流源系统的控制方法
Liu et al. A valley-fill driver with current balancing for parallel LED strings used for high-frequency ac power distribution of vehicle
KR101488682B1 (ko) Led 조명의 디밍 제어 회로
CN107404784B (zh) 调光模块、调光方法以及照明装置
Wang et al. Design and implementation of a single-stage high-efficacy LED driver with dynamic voltage regulation
US20180007752A1 (en) Drive Device for Illuminating Device, Illumination Device, Lighting System and Method for Controlling the Lighting System
Kim et al. 12.8 synchronized floating current mirror for maximum LED utilization in multiple-string linear LED drivers
CN208273304U (zh) 一种led控制装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13894124

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13894124

Country of ref document: EP

Kind code of ref document: A1