WO2015041471A1 - Method for preparing alkanol - Google Patents

Method for preparing alkanol Download PDF

Info

Publication number
WO2015041471A1
WO2015041471A1 PCT/KR2014/008666 KR2014008666W WO2015041471A1 WO 2015041471 A1 WO2015041471 A1 WO 2015041471A1 KR 2014008666 W KR2014008666 W KR 2014008666W WO 2015041471 A1 WO2015041471 A1 WO 2015041471A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound
carbon atoms
group
butanol
Prior art date
Application number
PCT/KR2014/008666
Other languages
French (fr)
Korean (ko)
Inventor
남현
김진수
최용진
최선혁
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201480050869.5A priority Critical patent/CN105555746A/en
Priority to US14/917,167 priority patent/US9624150B2/en
Priority to JP2016544289A priority patent/JP6301481B2/en
Priority to EP14845165.1A priority patent/EP3048090B1/en
Priority claimed from KR1020140123680A external-priority patent/KR101659163B1/en
Publication of WO2015041471A1 publication Critical patent/WO2015041471A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/14Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of a —CHO group

Definitions

  • the present application relates to a method and apparatus for producing alkanol.
  • Alkanols such as n-butanol
  • n-butanol is used in a variety of applications as solvents and intermediates in the chemical industry.
  • n-butanol is used as a raw material for a solvent, butyl acetate, a medicine, a perfume, a plasticizer, and a stabilizer.
  • the present application aims to provide a method and apparatus for producing alkanol.
  • the present application relates to a method for preparing alkanol. According to the above-described production method of the present application, it is possible to produce alkanol economically and stably by a simple process compared to the conventional method using a high-pressure hydrogen gas.
  • the hydrogen production reaction and the production process of alkanol can be performed simultaneously.
  • secondary alcohols such as isopropyl alcohol and cyclohexanol are decomposed into acetone and hydrogen, cyclohexanone and hydrogen, respectively, under a Raney nickel catalyst to generate hydrogen, and the generated hydrogen is n.
  • n-butanol can be prepared by reducing the aldehyde group of -butylaldehyde, problems such as process risks caused by using a high-pressure hydrogen gas can be improved, and n-butanol can be economically produced.
  • the preparation method of alkanol of the present application includes a reaction step of reacting a compound of Formula 1 and a compound of Formula 2 below.
  • R 1 represents a linear, branched or cyclic alkyl group having 1 to 12 carbon atoms, or represents alkenyl having 1 to 12 carbon atoms.
  • R 1 represents an alkyl group having 1 to 10 carbon atoms, 1 to 8 carbon atoms, 1 to 6 carbon atoms, or 1 to 4 carbon atoms, or 1 to 10 carbon atoms, 1 to 8 carbon atoms, 1 to 6 carbon atoms, or carbon atoms.
  • Alkenyl of 1 to 4 and in one example, R 1 may be a methyl group, an ethyl group, a propyl group, a butyl group, or a vinyl group, but is not limited thereto.
  • R 2 , R 3, and R 4 are each independently hydrogen, an alkyl group having 1 to 12 carbon atoms, or an aryl group having 6 to 24 carbon atoms, and at least one of R 2 , R 3, and R 4 is hydrogen. to be.
  • R 3 and R 4 are each independently hydrogen, 1 to 12 carbon atoms, for example, 1 to 10 carbon atoms, 1 to 8 carbon atoms, 1 to 6 carbon atoms, 1 carbon atoms It may be an alkyl group of 4 to 4 or an aryl group having 6 to 24 carbon atoms, for example, 6 to 18 carbon atoms, 6 to 12 carbon atoms, when R 3 is hydrogen, R 2 and R 4 is hydrogen, 1 to 12, for example, an alkyl group having 1 to 10 carbon atoms, 1 to 8 carbon atoms, 1 to 6 carbon atoms, or 1 to 4 carbon atoms, or an aryl having 6 to 24 carbon atoms, for example, 6 to 18 carbon atoms or 6 to 12 carbon atoms.
  • R 4 is hydrogen
  • R 2 and R 3 is hydrogen
  • an alkyl group having 1 to 12 carbon atoms for example, 1 to 10 carbon atoms, 1 to 8 carbon atoms, 1 to 6 carbon atoms, 1 to 4 carbon atoms or It may be an aryl group having 6 to 24 carbon atoms, for example, 6 to 18 carbon atoms and 6 to 12 carbon atoms.
  • the alkyl group may be a linear, branched or cyclic alkyl group, and is not particularly limited.
  • R 2 and R 3 each independently represent hydrogen, an alkyl group having 1 to 12 carbon atoms or an aryl group having 6 to 24 carbon atoms, in which case at least one of R 2 and R 3 is hydrogen, R 4 may be an alkyl group having 1 to 12 carbon atoms or an aryl group having 6 to 24 carbon atoms.
  • R 3 is hydrogen, an alkyl group having 1 to 12 carbon atoms, for example, 1 to 10 carbon atoms, 1 to 8 carbon atoms, 1 to 6 carbon atoms, or 1 to 4 carbon atoms, or It may be an aryl group having 6 to 24 carbon atoms, for example, 6 to 18 carbon atoms, 6 to 12 carbon atoms, and when R 3 is hydrogen, R 2 is hydrogen, 1 to 12 carbon atoms, for example, 1 to 12 carbon atoms It may be an alkyl group having 10, 1 to 8 carbon atoms, 1 to 6 carbon atoms, 1 to 4 carbon atoms or an aryl group having 6 to 24 carbon atoms, for example, 6 to 18 carbon atoms, 6 to 12 carbon atoms.
  • the alkyl group having 1 to 12 carbon atoms may be, for example, a methyl group, an ethyl group, a propyl group, or a butyl group, and the aryl group having 6 to 24 carbon atoms may be, for example, a phenyl group, tolyl group, xylyl group, or naphthyl group.
  • the compound of Formula 2 may be methanol, primary alcohol or secondary alcohol, for example, primary alcohol or secondary alcohol, preferably secondary alcohol.
  • R 2 to R 4 are all alkyl groups, the compound of Formula 2 is a tertiary alcohol, and the tertiary alcohol may not generate hydrogen in the presence of a metal catalyst.
  • the reaction step can be carried out in the presence of a metal catalyst.
  • the metal catalyst is used in the preparation method of the present application in order to increase the reaction rate and reaction efficiency of the dehydrogenation reaction to decompose the compound of Formula 2 to generate hydrogen and the reduction reaction of aldehyde using the produced hydrogen.
  • the metal catalyst may be at least one selected from the group consisting of copper, cobalt, molybdenum, nickel, nickel-aluminum alloy, nickel-molybdenum alloy, Raney cobalt, Raney nickel, and zinc-chromium alloy, Preferably Raney nickel.
  • the Raney nickel catalyst is particularly excellent in substrate specificity or catalytic specificity for secondary alcohols.
  • substrate specificity or “catalyst specificity” means the effect of the catalytic activity with respect to a specific compound.
  • substrate specificity or “catalyst specificity” means the effect of the catalytic activity with respect to a specific compound.
  • R 1 may be an alkyl group having 2 to 6 carbon atoms or an alkenyl having 4 to 10 carbon atoms.
  • the compound of Formula 1 may be, for example, n-butylaldehyde or 2-ethyl-2-hexenal.
  • the compound of Formula 2 is not particularly limited as long as it satisfies Formula 2, and may be, for example, a primary alcohol or a secondary alcohol, preferably a secondary alcohol.
  • a primary alcohol or a secondary alcohol preferably a secondary alcohol.
  • the tertiary alcohol cannot produce hydrogen for reducing the compound of formula 1 to alkanol in the presence of a metal catalyst in molecular structure.
  • the primary alcohol although hydrogen may be generated in the presence of a catalyst, when the primary alcohol generates hydrogen, it is converted into an aldehyde compound such as Chemical Formula 1, and the aldehyde compound receives hydrogen again. Since it is reduced to a primary alcohol, it can be difficult to provide hydrogen to the compound of formula (1).
  • the secondary alcohol may be a compound of formula (3).
  • R 5 and R 6 each independently represent an alkyl group having 1 to 12 carbon atoms or an aryl group having 6 to 24 carbon atoms, or R 5 and R 6 together form a cycloalkyl group having 3 to 16 carbon atoms can do.
  • each of R 5 and R 6 independently represents an alkyl group having 1 to 10 carbon atoms, 1 to 8 carbon atoms, 1 to 6 carbon atoms or 1 to 4 carbon atoms, or 6 to 24 carbon atoms or 6 to 18 carbon atoms.
  • an aryl group having 6 to 12 carbon atoms may be a methyl group, an ethyl group, a propyl group, a butyl group, a phenyl group, a tolyl group, a xylyl group, or a naphthyl group, but is not limited thereto.
  • R 5 and R 6 may together form a cycloalkyl group having 3 to 16 carbon atoms, for example, a cycloalkyl group having 4 to 12 carbon atoms or 5 to 8 carbon atoms, and may form a cyclohexyl group, for example. have.
  • the compound of Formula 3 is isopropyl alcohol, 2-butanol, 2-pentanol, 2-hexanol, 2-heptanol, glycerol, 3-methyl-2-butanol, ⁇ -phenylethanol, di 1 selected from the group consisting of phenylmethanol, 3-pentanol, 3,3-dimethyl-2-butanol, 4-phenyl-2-butanol, 1,2,3,4-tetrahydro-1-naphthol and cyclohexanol It may include more than one compound, preferably may include isopropyl alcohol, and / or cyclohexanol.
  • the reaction step may include a dehydrogenation step in which the compound of Formula 2 is dehydrogenated in the presence of a metal catalyst, in particular, Raney nickel catalyst, the dehydrogenation step,
  • a metal catalyst in particular, Raney nickel catalyst
  • the compound of Formula 2 may include being decomposed into a ketone compound and hydrogen in the presence of a Raney nickel catalyst.
  • dehydrogenation refers to a reaction in which a compound containing hydrogen is decomposed to generate hydrogen.
  • a secondary alcohol a compound of Formula 2
  • ketone in the presence of a metal catalyst. It may mean decomposed into a compound and hydrogen.
  • the ketone compound formed in the dehydrogenation step is acetone, cyclohexanone, butanone, 2-pentanone, 2-hexanone, 2-heptanone, dihydroxyacetone, methyl isopropyl ketone, It may include one or more compounds selected from the group consisting of acetophenone, benzophenone, 3-pentanone, 3,3-dimethyl-2-butanone, 4-phenyl-2-butanone and tetralone, When the compound of 2 is isopropyl alcohol and / or cyclohexanol, the ketone compound may be acetone and / or cyclohexanone.
  • the preparation method of the present application may further include a reduction step in which hydrogen decomposed from the compound of Formula 2 reduces the compound of Formula 1.
  • a reduction step hydrogen decomposed from the compound of Formula 2 in the dehydrogenation step of the reaction step to reduce the compound of Formula 1 by reducing the compound of Formula 1, according to the formula 1
  • the alkanol may be produced by reducing the compound of.
  • the reduction step may be performed after the above-described reaction step or at the same time as the reaction step, and may also be performed after the dehydrogenation step or simultaneously with the dehydrogenation step.
  • both the dehydrogenation step and the reduction step may be carried out under a metal catalyst, in particular a Raney nickel catalyst, in which case the metal catalyst decomposes the compound of formula 2 into a ketone compound and hydrogen in the dehydrogenation step.
  • a metal catalyst in particular a Raney nickel catalyst
  • the metal catalyst decomposes the compound of formula 2 into a ketone compound and hydrogen in the dehydrogenation step.
  • the hydrogen decomposed from the compound of Formula 2 may promote the reaction to reduce the compound of Formula 1.
  • the metal catalyst can be carried out at the same time the production reaction of hydrogen and the production process of alkanol, it is possible to improve the economics and stability of the process.
  • the metal catalyst may be present in an amount of 50 to 500 parts by weight, for example 100 to 450 parts by weight, 200 to 400 parts by weight or 250 to 350 parts by weight, based on 100 parts by weight of the compound of Formula 1.
  • the metal catalyst is present in the content in the above range, it is possible to produce alkanol with excellent efficiency.
  • the metal catalyst is present in less than 50 parts by weight based on 100 parts by weight of the compound of Formula 1, the degree of catalyst activity may be low to slow the reaction, or the conversion or selectivity may be low.
  • the metal catalyst when the metal catalyst is present in excess of 500 parts by weight based on 100 parts by weight of the compound of Formula 1, the catalyst content is increased, making the purification process difficult after the reaction and not having a high catalytic activity efficiency compared to the catalyst content. This can be.
  • the secondary alcohol used in the preparation method is 100 to 2000 parts by weight, for example 300 to 1800 parts by weight, 500 to 1600 parts by weight, 700 to 1400 parts by weight based on 100 parts by weight of the compound of Formula 1 900 to 1200 parts by weight or 1000 to 1100 parts by weight can be reacted.
  • the reaction amount of the secondary alcohol is less than 100 parts by weight, the yield of n-butanol produced may be reduced because hydrogen cannot be provided sufficiently, and when it exceeds 2000 parts by weight, the cost increases due to the excessive amount of use, Difficult problems can arise.
  • the method for preparing alkanol may be performed in a state in which the compound of Formula 1 and the compound of Formula 2 are dissolved in an organic solvent.
  • an organic solvent in the compound of Formula 1 and the compound of Formula 2 as described above it is possible to more easily mix the compound of Formula 1 and the compound of Formula 2 as a reactant, and maintain the concentration of the compound of Formula 2 optimally The reaction efficiency can be further improved.
  • the organic solvent may be an alcohol compound, an aromatic compound, a hydrocarbon compound, a heterocyclic compound, an ether compound.
  • the alcohol compound may be exemplified by a primary alcohol having 1 to 12 carbon atoms
  • the aromatic compound may be benzene, toluene or xylene
  • the heterocyclic compound may be tetrahydro.
  • Furan, 1,4-dioxane, and the like can be exemplified
  • the ether compound can be exemplified by diethyl ether, methyl-t-butyl ether, and the like.
  • the reaction step of reacting the compound of Formula 1 and the compound of Formula 2 is 50 to 150 °C, for example 60 to 120 °C, 65 to 100 °C, 70 to 90 °C or 75 to It may be carried out at a temperature of 85 °C. Accordingly, by adjusting the process temperature in the above range it is possible to obtain a high reaction efficiency in the reaction step of the compound of Formula 1 and the compound of Formula 2. For example, when the reaction step is performed at less than 50 ° C., the compound of Formula 1 and the compound of Formula 2 may not sufficiently react, thereby greatly reducing the effect of the reaction or reducing the amount of alkanol produced. In addition, when the reaction temperature exceeds 100 °C, there is a disadvantage that the unnecessary side reaction occurs excessively, the conversion or selectivity to alkanol is greatly reduced.
  • an aldehyde compound such as n-butylaldehyde by hydrogen dehydrogenated and decomposed to secondary alcohol, in particular isopropyl alcohol and / or cyclohexanol Since it can be reduced to alkanols, such as n-butanol, since the high-pressure hydrogen gas is not separately included as a reaction material as in the conventional method, the risk of the reaction process is low, and the production process equipment can be simplified. Moreover, according to the manufacturing method of this invention, since the economics of a process can be improved, mass production of n-butanol can be made possible.
  • the present application also relates to an apparatus for producing alkanol for use in the above production method.
  • Alkanol production apparatus of the present application may include a reactor and a reactant supply device.
  • the reactor is filled with a metal catalyst
  • the reactant supply device may be a device for supplying a compound of Formula 1 and a compound of Formula 2 to the reactor.
  • R 1 represents a linear, branched or cyclic alkyl group having 1 to 12 carbon atoms, or represents alkenyl having 1 to 12 carbon atoms
  • R 2 , R 3 and R 4 are each independently , Hydrogen, a linear, branched or cyclic alkyl group having 1 to 12 carbon atoms or an aryl group having 6 to 24 carbon atoms, at least one of R 2 , R 3 and R 4 is hydrogen.
  • Detailed description of the formula (1) and formula (2) is the same as described in the manufacturing method will be omitted.
  • the reactor is a device for reacting the compound of Formula 1 and the compound of Formula 2, the compound of Formula 1 and the compound of Formula 2 may be introduced into the reactor.
  • the inside of the reactor is filled with a metal catalyst, the compound of Formula 1 and the compound of Formula 2 may be maintained under appropriate conditions for causing a reaction.
  • the type of the reactor included in the production apparatus is not particularly limited as long as it is commonly used in compound synthesis, etc., and may be used by determining the size, form and type of the reactor in consideration of the reaction conditions, the amount of reactants and the product. For example, a three-necked flask equipped with a condenser and a stirrer may be used.
  • the compound of Formula 1 and the compound of Formula 2 are supplied to the reactor through the reactant supply device, the reactor may be filled with a metal catalyst.
  • the compound of Formula 1 and the compound of Formula 2 may react in the presence of the metal catalyst, the compound of Formula 2 may be dehydrogenated and decomposed into ketone compounds and hydrogen.
  • alkanol may be prepared by reducing hydrogen decomposed from the compound of Formula 2 with the compound of Formula 1.
  • the metal catalyst charged in the reactor may be Raney nickel, in this case, a high conversion rate due to the dehydrogenation and reduction reaction in the reaction step of the compound of Formula 1 and the compound of Formula 2 Alkanols can be prepared. Detailed description thereof is the same as described in the above-described method for preparing alkanol, and thus will be omitted.
  • the compound of Formula 1 is not particularly limited as long as it satisfies Formula 1.
  • R 1 may be an alkyl group having 2 to 6 carbon atoms or an alkenyl number of 4 to 10 carbon atoms. And preferably n-butylaldehyde or 2-ethyl-2-hexenal.
  • the compound of Formula 2 is not particularly limited as long as it satisfies Formula 2, and may be, for example, a secondary alcohol.
  • the secondary alcohol may be a compound of formula (3).
  • R 5 and R 6 each independently represent an alkyl group having 1 to 12 carbon atoms or an aryl group having 6 to 24 carbon atoms, or R 5 and R 6 together form a cycloalkyl group having 3 to 16 carbon atoms can do.
  • Detailed description of the formula (3) is the same as described in the manufacturing method will be omitted.
  • the compound of Formula 3 is isopropyl alcohol, 2-butanol, 2-pentanol, 2-hexanol, 2-heptanol, glycerol, 3-methyl-2-butanol, ⁇ -phenylethanol, di 1 selected from the group consisting of phenylmethanol, 3-pentanol, 3,3-dimethyl-2-butanol, 4-phenyl-2-butanol, 1,2,3,4-tetrahydro-1-naphthol and cyclohexanol It may comprise more than one compound, preferably may include isopropyl alcohol and / or cyclohexanol.
  • high-purity n-butanol can be produced at high conversion rate, and since high-pressure hydrogen gas is not used as a reaction material, economical efficiency and stability of the process can be improved.
  • n-butanol may be produced without using high pressure hydrogen gas as a reaction material at a reaction condition of about 70 to 100 ° C., in particular, Examples As shown in FIG. 1, when the temperature of the process and the content of the compound are properly adjusted, it can be seen that n-butanol can be prepared at a very high conversion rate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The present application relates to a method and an apparatus for preparing alkanol, the method and apparatus according to the present application improving the preparation process to be more economical and stable, and allowing the mass production of alkanol.

Description

알칸올의 제조방법Method for preparing alkanol
본 출원은 알칸올의 제조방법 및 제조장치에 관한 것이다.The present application relates to a method and apparatus for producing alkanol.
n-부탄올(n-butanol)과 같은 알칸올은 화학 산업에서 용매 및 중간체로서 다양한 용도에 사용되고 있다. 예를 들어, n-부탄올은 용제, 초산부틸, 의약품, 향료, 가소제, 안정제의 원료로서 사용되고 있다. Alkanols, such as n-butanol, are used in a variety of applications as solvents and intermediates in the chemical industry. For example, n-butanol is used as a raw material for a solvent, butyl acetate, a medicine, a perfume, a plasticizer, and a stabilizer.
상기 알칸올의 제조에 있어서, 공정 조건 및 제조 비용 등의 문제는 매우 중요한 과제로 남아있다. 예를 들어, 종래의 알칸올의 제조 공정에서는, 고온 및 고압의 수소기체를 사용하여 알데히드기를 환원시키는 수소화 공정이 요구되었으며, 이에 따라, 고비용의 공정설비가 필요할 뿐만 아니라, 공정상의 안정성에도 문제점이 존재하였다. In the production of the alkanol, problems such as process conditions and production costs remain a very important problem. For example, in the conventional alkanol production process, a hydrogenation process for reducing an aldehyde group using a hydrogen gas of high temperature and high pressure is required, and therefore, expensive process equipment is required, and there is also a problem in process stability. Existed.
따라서, 보다 안정적이며, 공정 투자 비용을 줄일 수 있는 상기 알칸올의 제조 공정이 요구되고 있다. 또한, 상기 알칸올이 다양한 산업 분야에서 사용되기 위하여, 대량생산이 가능한 공정이 요구된다.Therefore, there is a need for a process for producing the alkanol, which is more stable and can reduce the process investment cost. In addition, in order for the alkanol to be used in various industrial fields, a process capable of mass production is required.
본 출원은 알칸올의 제조방법 및 제조장치를 제공하는 것을 목적으로 한다.The present application aims to provide a method and apparatus for producing alkanol.
본 출원은 알칸올의 제조방법에 관한 것이다. 예시적인 본 출원의 상기 제조방법에 의하면, 고압의 수소 기체를 사용하는 기존의 방식에 비해 간단한 공정에 의하여 경제적이고, 안정적으로 알칸올을 제조할 수 있다. 하나의 예시에서, 본 출원의 제조방법에서는, 특정 촉매를 사용함으로써 수소 생성 반응 및 알칸올의 생산 공정을 동시에 수행할 수 있다. 예를 들어, 상기 제조방법에서는, 이소프로필 알코올과 시클로헥산올 등의 2차 알코올이 라니 니켈 촉매 하에서 각각 아세톤과 수소로, 시클로헥사논과 수소로 분해되면서 수소를 생성하고, 상기 생성된 수소가 n-부틸알데히드의 알데히드기를 환원시켜 n-부탄올을 제조할 수 있으므로, 종래 고압의 수소 기체를 사용함으로써 야기되었던 공정상의 위험성 등의 문제점을 개선할 수 있으며, 경제적으로 n-부탄올을 제조할 수 있다. The present application relates to a method for preparing alkanol. According to the above-described production method of the present application, it is possible to produce alkanol economically and stably by a simple process compared to the conventional method using a high-pressure hydrogen gas. In one example, in the production method of the present application, by using a specific catalyst, the hydrogen production reaction and the production process of alkanol can be performed simultaneously. For example, in the above production method, secondary alcohols such as isopropyl alcohol and cyclohexanol are decomposed into acetone and hydrogen, cyclohexanone and hydrogen, respectively, under a Raney nickel catalyst to generate hydrogen, and the generated hydrogen is n. Since n-butanol can be prepared by reducing the aldehyde group of -butylaldehyde, problems such as process risks caused by using a high-pressure hydrogen gas can be improved, and n-butanol can be economically produced.
본 출원의 알칸올의 제조방법은 하기 화학식 1의 화합물 및 하기 화학식 2의 화합물을 반응시키는 반응단계를 포함한다. The preparation method of alkanol of the present application includes a reaction step of reacting a compound of Formula 1 and a compound of Formula 2 below.
[화학식 1][Formula 1]
Figure PCTKR2014008666-appb-I000001
Figure PCTKR2014008666-appb-I000001
[화학식 2][Formula 2]
Figure PCTKR2014008666-appb-I000002
Figure PCTKR2014008666-appb-I000002
상기 화학식 1에서, R1은, 탄소수 1 내지 12의 선형, 분지형 또는 고리형의 알킬기를 나타내거나 또는 탄소수 1 내지 12의 알케닐을 나타낸다. 예를 들어, 상기 R1은, 탄소수 1 내지 10, 탄소수 1 내지 8, 탄소수 1 내지 6 또는 탄소수 1 내지 4의 알킬기를 나타내거나 또는 탄소수 1 내지 10, 탄소수 1 내지 8, 탄소수 1 내지 6 또는 탄소수 1 내지 4의 알케닐을 나타내며, 하나의 예시에서, 상기 R1은 메틸기, 에틸기, 프로필기, 부틸기 또는 비닐기일 수 있으나, 이에 제한되는 것은 아니다.In Formula 1, R 1 represents a linear, branched or cyclic alkyl group having 1 to 12 carbon atoms, or represents alkenyl having 1 to 12 carbon atoms. For example, R 1 represents an alkyl group having 1 to 10 carbon atoms, 1 to 8 carbon atoms, 1 to 6 carbon atoms, or 1 to 4 carbon atoms, or 1 to 10 carbon atoms, 1 to 8 carbon atoms, 1 to 6 carbon atoms, or carbon atoms. Alkenyl of 1 to 4, and in one example, R 1 may be a methyl group, an ethyl group, a propyl group, a butyl group, or a vinyl group, but is not limited thereto.
상기 화학식 2에서, R2, R3 및 R4는 각각 독립적으로, 수소, 탄소수 1 내지 12의 알킬기 또는 탄소수 6 내지 24의 아릴기이며, 상기 R2, R3 및 R4 중 적어도 하나는 수소이다. 예를 들어, 상기 R2가 수소일 경우, 상기 R3 및 R4는 각각 독립적으로 수소, 탄소수 1 내지 12, 예를 들어, 탄소수 1 내지 10, 탄소수 1 내지 8, 탄소수 1 내지 6, 탄소수 1 내지 4의 알킬기이거나 또는 탄소수 6 내지 24, 예를 들어, 탄소수 6 내지 18, 탄소수 6 내지 12의 아릴기일 수 있으며, 상기 R3이 수소일 경우, 상기 R2 및 R4는 수소, 탄소수 1 내지 12, 예를 들어, 탄소수 1 내지 10, 탄소수 1 내지 8, 탄소수 1 내지 6, 탄소수 1 내지 4의 알킬기이거나, 또는 탄소수 6 내지 24, 예를 들어, 탄소수 6 내지 18, 탄소수 6 내지 12의 아릴기일 수 있다. 또한, R4가 수소일 경우, 상기 R2 및 R3은 수소, 탄소수 1 내지 12, 예를 들어, 탄소수 1 내지 10, 탄소수 1 내지 8, 탄소수 1 내지 6, 탄소수 1 내지 4의 알킬기이거나 또는 탄소수 6 내지 24, 예를 들어, 탄소수 6 내지 18, 탄소수 6 내지 12의 아릴기일 수 있다. 상기에서 알킬기는 선형, 분지형 또는 고리형의 알킬기일 수 있으며, 특별히 제한되는 것은 아니다. In Formula 2, R 2 , R 3, and R 4 are each independently hydrogen, an alkyl group having 1 to 12 carbon atoms, or an aryl group having 6 to 24 carbon atoms, and at least one of R 2 , R 3, and R 4 is hydrogen. to be. For example, when R 2 is hydrogen, R 3 and R 4 are each independently hydrogen, 1 to 12 carbon atoms, for example, 1 to 10 carbon atoms, 1 to 8 carbon atoms, 1 to 6 carbon atoms, 1 carbon atoms It may be an alkyl group of 4 to 4 or an aryl group having 6 to 24 carbon atoms, for example, 6 to 18 carbon atoms, 6 to 12 carbon atoms, when R 3 is hydrogen, R 2 and R 4 is hydrogen, 1 to 12, for example, an alkyl group having 1 to 10 carbon atoms, 1 to 8 carbon atoms, 1 to 6 carbon atoms, or 1 to 4 carbon atoms, or an aryl having 6 to 24 carbon atoms, for example, 6 to 18 carbon atoms or 6 to 12 carbon atoms. It may be a flag. In addition, when R 4 is hydrogen, R 2 and R 3 is hydrogen, an alkyl group having 1 to 12 carbon atoms, for example, 1 to 10 carbon atoms, 1 to 8 carbon atoms, 1 to 6 carbon atoms, 1 to 4 carbon atoms or It may be an aryl group having 6 to 24 carbon atoms, for example, 6 to 18 carbon atoms and 6 to 12 carbon atoms. The alkyl group may be a linear, branched or cyclic alkyl group, and is not particularly limited.
하나의 예시에서, R2 및 R3은 각각 독립적으로, 수소, 탄소수 1 내지 12의 알킬기 또는 탄소수 6 내지 24의 아릴기를 나타내고, 이 경우, 상기 R2 및 R3 중 적어도 하나는 수소이며, R4는 탄소수 1 내지 12의 알킬기 또는 탄소수 6 내지 24의 아릴기일 수 있다. 예를 들어, 상기 R2가 수소일 경우, 상기 R3은 수소, 탄소수 1 내지 12, 예를 들어, 탄소수 1 내지 10, 탄소수 1 내지 8, 탄소수 1 내지 6, 탄소수 1 내지 4의 알킬기이거나 또는 탄소수 6 내지 24, 예를 들어, 탄소수 6 내지 18, 탄소수 6 내지 12의 아릴기일 수 있으며, 상기 R3이 수소일 경우, 상기 R2는 수소, 탄소수 1 내지 12, 예를 들어, 탄소수 1 내지 10, 탄소수 1 내지 8, 탄소수 1 내지 6, 탄소수 1 내지 4의 알킬기이거나 또는 탄소수 6 내지 24, 예를 들어, 탄소수 6 내지 18, 탄소수 6 내지 12의 아릴기일 수 있다. 상기 탄소수 1 내지 12의 알킬기는, 예를 들어, 메틸기, 에틸기, 프로필기, 부틸기일 수 있으며, 상기 탄소수 6 내지 24의 아릴기는 예를 들어, 페닐기, 톨릴기, 자일릴기 또는 나프틸기일 수 있으나, 이에 제한되는 것은 아니다. 이에 따라, 상기 화학식 2의 화합물은 메탄올, 1차 알코올 또는 2차 알코올일 수 있고, 예를 들어, 1차 알코올 또는 2차 알코올, 바람직하게는 2차 알코올일 수 있다. 상기 R2 내지 R4가 모두 알킬기일 경우, 상기 화학식 2의 화합물은 3차 알코올이며, 상기 3차 알코올은 금속 촉매의 존재 하에서 수소를 생성할 수 없다. 상기 반응단계는 금속 촉매의 존재 하에서 수행될 수 있다. 상기 금속 촉매는 상기 화학식 2의 화합물을 분해하여 수소를 생성하는 탈수소화 반응 및 상기 생성된 수소를 사용한 알데히드의 환원반응의 반응 속도 및 반응 효율을 높이기 위하여, 본 출원의 제조방법에서 사용된다. In one example, R 2 and R 3 each independently represent hydrogen, an alkyl group having 1 to 12 carbon atoms or an aryl group having 6 to 24 carbon atoms, in which case at least one of R 2 and R 3 is hydrogen, R 4 may be an alkyl group having 1 to 12 carbon atoms or an aryl group having 6 to 24 carbon atoms. For example, when R 2 is hydrogen, R 3 is hydrogen, an alkyl group having 1 to 12 carbon atoms, for example, 1 to 10 carbon atoms, 1 to 8 carbon atoms, 1 to 6 carbon atoms, or 1 to 4 carbon atoms, or It may be an aryl group having 6 to 24 carbon atoms, for example, 6 to 18 carbon atoms, 6 to 12 carbon atoms, and when R 3 is hydrogen, R 2 is hydrogen, 1 to 12 carbon atoms, for example, 1 to 12 carbon atoms It may be an alkyl group having 10, 1 to 8 carbon atoms, 1 to 6 carbon atoms, 1 to 4 carbon atoms or an aryl group having 6 to 24 carbon atoms, for example, 6 to 18 carbon atoms, 6 to 12 carbon atoms. The alkyl group having 1 to 12 carbon atoms may be, for example, a methyl group, an ethyl group, a propyl group, or a butyl group, and the aryl group having 6 to 24 carbon atoms may be, for example, a phenyl group, tolyl group, xylyl group, or naphthyl group. However, the present invention is not limited thereto. Accordingly, the compound of Formula 2 may be methanol, primary alcohol or secondary alcohol, for example, primary alcohol or secondary alcohol, preferably secondary alcohol. When R 2 to R 4 are all alkyl groups, the compound of Formula 2 is a tertiary alcohol, and the tertiary alcohol may not generate hydrogen in the presence of a metal catalyst. The reaction step can be carried out in the presence of a metal catalyst. The metal catalyst is used in the preparation method of the present application in order to increase the reaction rate and reaction efficiency of the dehydrogenation reaction to decompose the compound of Formula 2 to generate hydrogen and the reduction reaction of aldehyde using the produced hydrogen.
하나의 예시에서, 상기 금속 촉매는, 구리, 코발트, 몰리브덴, 니켈, 니켈-알루미늄 합금, 니켈-몰리브덴 합금, 라니 코발트, 라니 니켈, 및 아연-크롬 합금으로 이루어진 군으로부터 선택된 1종 이상일 수 있으며, 바람직하게는 라니 니켈일 수 있다. In one example, the metal catalyst may be at least one selected from the group consisting of copper, cobalt, molybdenum, nickel, nickel-aluminum alloy, nickel-molybdenum alloy, Raney cobalt, Raney nickel, and zinc-chromium alloy, Preferably Raney nickel.
상기 라니 니켈 촉매는 특히, 2차 알코올에 대하여 기질 특이성(substrate specificity) 또는 촉매 특이성(catalytic specificity)이 우수하다. 상기 「기질 특이성」 또는 「촉매 특이성」은, 특정 화합물에 대한 촉매활성의 효과를 의미한다. 예를 들어, 알칸올의 제조방법에서 화학식 2의 화합물로써 2차 알코올을 사용하고, 상기 금속 촉매로서 라니 니켈을 사용하는 경우, 상기 화학식 2의 화합물의 탈수소화 반응 및 상기 화학식 1의 화합물의 환원 반응을 촉진시키는 효과를 극대화할 수 있고, 높은 전환율로 알칸올을 제조할 수 있다. The Raney nickel catalyst is particularly excellent in substrate specificity or catalytic specificity for secondary alcohols. Said "substrate specificity" or "catalyst specificity" means the effect of the catalytic activity with respect to a specific compound. For example, when a secondary alcohol is used as the compound of Formula 2 and Raney nickel is used as the metal catalyst in the method for preparing alkanol, dehydrogenation of the compound of Formula 2 and reduction of the compound of Formula 1 The effect of promoting the reaction can be maximized and alkanol can be prepared at high conversion.
상기 화학식 1의 화합물은 상기 화학식 1을 만족하는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 상기 화학식 1에서 R1은 탄소수 2 내지 6의 알킬기 또는 탄소수 4 내지 10의 알케닐일 수 있다. 상기 화학식 1의 화합물은, 예를 들어, n-부틸알데히드 또는 2-에틸-2-헥센알(2-ethyl-2-hexenal)일 수 있다. The compound of Formula 1 is not particularly limited as long as it satisfies Formula 1. For example, in Formula 1, R 1 may be an alkyl group having 2 to 6 carbon atoms or an alkenyl having 4 to 10 carbon atoms. The compound of Formula 1 may be, for example, n-butylaldehyde or 2-ethyl-2-hexenal.
상기 화학식 2의 화합물은 상기 화학식 2를 만족하는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 1차 알코올(primary alcohol) 또는 2차 알코올(secondary alcohol), 바람직하게는 2차 알코올일 수 있다. 3차 알코올(tertiary alcohol)을 사용하는 경우에는, 전술한 바와 같이, 상기 3차 알코올은 분자 구조상 금속 촉매의 존재 하에서 화학식 1의 화합물을 알칸올로 환원시키기 위한 수소를 생성할 수 없다. 또한, 1차 알코올의 경우, 촉매의 존재 하에서 수소를 생성할 수는 있지만, 1차 알코올이 수소를 생성하게 될 경우, 상기 화학식 1과 같은 알데히드 화합물로 전환 되며, 상기 알데히드 화합물은 다시 수소를 받아 환원되어 1차 알코올이 되므로, 화학식 1의 화합물에 수소를 제공하기 어려울 수 있다. 그러나 2차 알코올의 경우, 금속 촉매, 특히 라니 니켈 촉매의 존재 하에서 수소를 생성하고 케톤 화합물로 전환되며, 상기 케톤 화합물은 라니 니켈 촉매의 존재 하에서, 수소에 의하여 환원되지 않으므로, 상기 화학식 1의 화합물이 환원되기에 충분한 수소를 제공할 수 있다. 따라서, 상기 화학식 2의 화합물로써 2차 알코올을 사용하는 경우에 높은 효율로 알칸올을 제조할 수 있다. The compound of Formula 2 is not particularly limited as long as it satisfies Formula 2, and may be, for example, a primary alcohol or a secondary alcohol, preferably a secondary alcohol. When tertiary alcohol is used, as described above, the tertiary alcohol cannot produce hydrogen for reducing the compound of formula 1 to alkanol in the presence of a metal catalyst in molecular structure. In addition, in the case of the primary alcohol, although hydrogen may be generated in the presence of a catalyst, when the primary alcohol generates hydrogen, it is converted into an aldehyde compound such as Chemical Formula 1, and the aldehyde compound receives hydrogen again. Since it is reduced to a primary alcohol, it can be difficult to provide hydrogen to the compound of formula (1). However, in the case of secondary alcohols, hydrogen is produced and converted into ketone compounds in the presence of a metal catalyst, in particular a Raney nickel catalyst, and the ketone compound is not reduced by hydrogen, in the presence of a Raney nickel catalyst, thereby Sufficient hydrogen may be provided for this reduction. Therefore, alkanol can be prepared with high efficiency when using a secondary alcohol as the compound of Formula 2.
하나의 예시에서, 상기 2차 알코올은 하기 화학식 3의 화합물일 수 있다. In one example, the secondary alcohol may be a compound of formula (3).
[화학식 3][Formula 3]
Figure PCTKR2014008666-appb-I000003
Figure PCTKR2014008666-appb-I000003
상기 화학식 3에서, R5 및 R6은 각각 독립적으로, 탄소수 1 내지 12의 알킬기 또는 탄소수 6 내지 24의 아릴기를 나타내거나, 또는 상기 R5 및 R6은 함께 탄소수 3 내지 16의 시클로 알킬기를 형성할 수 있다. 하나의 예시에서, 상기 R5 및 R6은 각각 독립적으로, 탄소수 1 내지 10, 탄소수 1 내지 8, 탄소수 1 내지 6 또는 탄소수 1 내지 4의 알킬기를 나타내거나 또는 탄소수 6 내지 24, 탄소수 6 내지 18 또는 탄소수 6 내지 12의 아릴기를 나타낼 수 있으며, 예를 들어, 메틸기, 에틸기, 프로필기, 부틸기, 페닐기, 톨릴기, 자일릴기 또는 나프틸기일 수 있으나, 이에 제한되는 것은 아니다. 또한, R5 및 R6은 함께 탄소수 3 내지 16의 시클로 알킬기, 예를 들면, 탄소수 4 내지 12 또는 탄소수 5 내지 8의 시클로 알킬기를 형성할 수 있으며, 예를 들어, 시클로 헥실기를 형성할 수 있다. In Formula 3, R 5 and R 6 each independently represent an alkyl group having 1 to 12 carbon atoms or an aryl group having 6 to 24 carbon atoms, or R 5 and R 6 together form a cycloalkyl group having 3 to 16 carbon atoms can do. In one example, each of R 5 and R 6 independently represents an alkyl group having 1 to 10 carbon atoms, 1 to 8 carbon atoms, 1 to 6 carbon atoms or 1 to 4 carbon atoms, or 6 to 24 carbon atoms or 6 to 18 carbon atoms. Or an aryl group having 6 to 12 carbon atoms, and for example, may be a methyl group, an ethyl group, a propyl group, a butyl group, a phenyl group, a tolyl group, a xylyl group, or a naphthyl group, but is not limited thereto. In addition, R 5 and R 6 may together form a cycloalkyl group having 3 to 16 carbon atoms, for example, a cycloalkyl group having 4 to 12 carbon atoms or 5 to 8 carbon atoms, and may form a cyclohexyl group, for example. have.
하나의 예시에서, 상기 화학식 3의 화합물은 이소프로필 알코올, 2-부탄올, 2-펜탄올, 2-헥산올, 2-헵탄올, 글리세롤, 3-메틸-2-부탄올, α-페닐에탄올, 디페닐메탄올, 3-펜탄올, 3,3-디메틸-2-부탄올, 4-페닐-2-부탄올, 1,2,3,4-테트라하이드로-1-나프톨 및 시클로헥산올로 이루어진 군으로부터 선택된 1종 이상의 화합물을 포함할 수 있으며, 바람직하게는 이소프로필 알코올, 및/또는 시클로헥산올을 포함할 수 있다. In one example, the compound of Formula 3 is isopropyl alcohol, 2-butanol, 2-pentanol, 2-hexanol, 2-heptanol, glycerol, 3-methyl-2-butanol, α-phenylethanol, di 1 selected from the group consisting of phenylmethanol, 3-pentanol, 3,3-dimethyl-2-butanol, 4-phenyl-2-butanol, 1,2,3,4-tetrahydro-1-naphthol and cyclohexanol It may include more than one compound, preferably may include isopropyl alcohol, and / or cyclohexanol.
본 출원의 제조방법의 일 구현예에 있어서, 상기 반응단계는 화학식 2의 화합물이 금속 촉매, 특히, 라니 니켈 촉매의 존재 하에서 탈수소화되는 탈수소화 단계를 포함할 수 있으며, 상기 탈수소화 단계는, 상기 화학식 2의 화합물이 라니 니켈 촉매의 존재 하에서 케톤 화합물 및 수소로 분해되는 것을 포함할 수 있다. In one embodiment of the production method of the present application, the reaction step may include a dehydrogenation step in which the compound of Formula 2 is dehydrogenated in the presence of a metal catalyst, in particular, Raney nickel catalyst, the dehydrogenation step, The compound of Formula 2 may include being decomposed into a ketone compound and hydrogen in the presence of a Raney nickel catalyst.
상기에서 용어 「탈수소화」는 수소를 포함하는 화합물이 분해되어 수소가 생성되는 반응을 의미하고, 예를 들어, 상기 탈수소화 단계에서는, 화학식 2의 화합물인 2차 알코올이 금속 촉매의 존재 하에서 케톤 화합물 및 수소로 분해되는 것을 의미할 수 있다. As used herein, the term "dehydrogenation" refers to a reaction in which a compound containing hydrogen is decomposed to generate hydrogen. For example, in the dehydrogenation step, a secondary alcohol, a compound of Formula 2, is ketone in the presence of a metal catalyst. It may mean decomposed into a compound and hydrogen.
하나의 예시에서, 상기 탈수소화되는 단계에서 형성되는 케톤 화합물은 아세톤, 시클로헥사논, 부타논, 2-펜타논, 2-헥사논, 2-헵타논, 디하이드록시아세톤, 메틸이소프로필케톤, 아세토페논, 벤조페논, 3-펜타논, 3,3-디메틸-2-부탄논, 4-페닐-2-부타논 및 테트라론으로 이루어진 군으로부터 선택된 1종 이상의 화합물을 포함할 수 있으며, 상기 화학식 2의 화합물이 이소프로필 알코올 및/또는 시클로헥산올일 경우, 상기 케톤 화합물은 아세톤 및/또는 시클로헥사논일 수 있다.In one example, the ketone compound formed in the dehydrogenation step is acetone, cyclohexanone, butanone, 2-pentanone, 2-hexanone, 2-heptanone, dihydroxyacetone, methyl isopropyl ketone, It may include one or more compounds selected from the group consisting of acetophenone, benzophenone, 3-pentanone, 3,3-dimethyl-2-butanone, 4-phenyl-2-butanone and tetralone, When the compound of 2 is isopropyl alcohol and / or cyclohexanol, the ketone compound may be acetone and / or cyclohexanone.
본 출원의 제조방법은, 상기 화학식 2의 화합물로부터 분해된 수소가 화학식 1의 화합물을 환원시키는 환원 단계를 추가로 포함할 수 있다. 상기 환원 단계는, 상기 반응단계의 탈수소화 단계에서 상기 화학식 2의 화합물로부터 분해된 수소가 화학식 1의 화합물의 환원반응을 유도하여 상기 화학식 1의 화합물을 환원시키는 단계이며, 이에 따라, 상기 화학식 1의 화합물이 환원됨으로써 알칸올이 생성될 수 있다. 상기 환원단계는 전술한 반응단계 후에 또는 상기 반응단계와 동시에 진행될 수 있으며, 또한, 상기 탈수소화 단계 후에 또는 상기 탈수소화 단계와 동시에 진행될 수 있다. 전술한 바와 같이, 상기 탈수소화 단계 및 환원 단계는 모두 금속 촉매, 특히 라니 니켈 촉매 하에서 수행될 수 있다, 이 경우, 상기 금속 촉매는 탈수소화 단계에서 상기 화학식 2의 화합물을 케톤 화합물 및 수소로 분해하여 수소의 생성을 촉진시키며, 상기 화학식 2의 화합물로부터 분해된 수소가 상기 화학식 1의 화합물을 환원시키는 반응을 촉진시킬 수 있다. 또한, 상기 금속 촉매를 사용함으로써 수소의 생성 반응 및 알칸올의 제조 공정을 동시에 수행할 수 있으므로, 공정의 경제성 및 안정성을 향상시킬 수 있다. The preparation method of the present application may further include a reduction step in which hydrogen decomposed from the compound of Formula 2 reduces the compound of Formula 1. In the reducing step, hydrogen decomposed from the compound of Formula 2 in the dehydrogenation step of the reaction step to reduce the compound of Formula 1 by reducing the compound of Formula 1, according to the formula 1 The alkanol may be produced by reducing the compound of. The reduction step may be performed after the above-described reaction step or at the same time as the reaction step, and may also be performed after the dehydrogenation step or simultaneously with the dehydrogenation step. As described above, both the dehydrogenation step and the reduction step may be carried out under a metal catalyst, in particular a Raney nickel catalyst, in which case the metal catalyst decomposes the compound of formula 2 into a ketone compound and hydrogen in the dehydrogenation step. By promoting the production of hydrogen, the hydrogen decomposed from the compound of Formula 2 may promote the reaction to reduce the compound of Formula 1. In addition, by using the metal catalyst can be carried out at the same time the production reaction of hydrogen and the production process of alkanol, it is possible to improve the economics and stability of the process.
상기 금속 촉매는 화학식 1의 화합물 100 중량부에 대하여 50 내지 500 중량부, 예를 들면 100 내지 450 중량부, 200 내지 400 중량부 또는 250 내지 350 중량부의 함량으로 존재할 수 있다. 상기 금속 촉매가 상기 범위의 함량으로 존재하는 경우, 우수한 효율로 알칸올의 제조가 가능하다. 예를 들어, 상기 금속 촉매가 화학식 1의 화합물 100 중량부에 대하여 50 중량부 미만으로 존재하는 경우에는 촉매 활성 정도가 낮아 반응이 느려지거나, 전환율 또는 선택도가 낮아질 수 있다. 한편, 상기 금속 촉매가 화학식 1의 화합물 100 중량부에 대하여 500 중량부를 초과하여 존재하는 경우에는, 촉매 함량이 증가하여 반응 이후의 정제 공정이 어려울 뿐만 아니라, 촉매 함량 대비 촉매 활성 효율이 높지 않은 단점이 있을 수 있다.The metal catalyst may be present in an amount of 50 to 500 parts by weight, for example 100 to 450 parts by weight, 200 to 400 parts by weight or 250 to 350 parts by weight, based on 100 parts by weight of the compound of Formula 1. When the metal catalyst is present in the content in the above range, it is possible to produce alkanol with excellent efficiency. For example, when the metal catalyst is present in less than 50 parts by weight based on 100 parts by weight of the compound of Formula 1, the degree of catalyst activity may be low to slow the reaction, or the conversion or selectivity may be low. On the other hand, when the metal catalyst is present in excess of 500 parts by weight based on 100 parts by weight of the compound of Formula 1, the catalyst content is increased, making the purification process difficult after the reaction and not having a high catalytic activity efficiency compared to the catalyst content. This can be.
하나의 예시에서, 상기 제조방법에 사용되는 2차 알코올은 화학식 1의 화합물 100 중량부에 대하여 100 내지 2000 중량부, 예를 들면 300 내지 1800 중량부, 500 내지 1600 중량부, 700 내지 1400 중량부, 900 내지 1200 중량부 또는 1000 내지 1100 중량부를 포함하여 반응시킬 수 있다. 상기 2차 알코올의 반응량이 100 중량부 미만인 경우, 수소가 충분히 제공될 수 없어 제조되는 n-부탄올의 수율이 감소할 수 있으며, 2000 중량부를 초과하는 경우, 과도한 사용량으로 인하여 원가가 상승하고 정제가 어려운 문제가 발생할 수 있다. In one example, the secondary alcohol used in the preparation method is 100 to 2000 parts by weight, for example 300 to 1800 parts by weight, 500 to 1600 parts by weight, 700 to 1400 parts by weight based on 100 parts by weight of the compound of Formula 1 900 to 1200 parts by weight or 1000 to 1100 parts by weight can be reacted. When the reaction amount of the secondary alcohol is less than 100 parts by weight, the yield of n-butanol produced may be reduced because hydrogen cannot be provided sufficiently, and when it exceeds 2000 parts by weight, the cost increases due to the excessive amount of use, Difficult problems can arise.
본 출원의 다른 구현예에서, 알칸올의 제조방법은 상기 화학식 1의 화합물 및 화학식 2의 화합물을 유기 용매에 용해시킨 상태에서 수행될 수 있다. 상기와 같이 화학식 1의 화합물 및 화학식 2의 화합물에 유기 용매를 더 포함함으로써, 반응물인 화학식 1의 화합물 및 화학식 2의 화합물을 보다 용이하게 혼합할 수 있고, 화학식 2의 화합물의 농도를 최적으로 유지하여 반응 효율을 더욱 향상시킬 수 있다. In another embodiment of the present application, the method for preparing alkanol may be performed in a state in which the compound of Formula 1 and the compound of Formula 2 are dissolved in an organic solvent. By further comprising an organic solvent in the compound of Formula 1 and the compound of Formula 2 as described above, it is possible to more easily mix the compound of Formula 1 and the compound of Formula 2 as a reactant, and maintain the concentration of the compound of Formula 2 optimally The reaction efficiency can be further improved.
하나의 예시에서, 상기 유기 용매로는 알코올계 화합물, 방향족계 화합물, 탄화수소계 화합물, 헤테로고리 화합물, 에테르계 화합물을 사용할 수 있다. 예를 들어, 상기 알코올계 화합물로는 탄소수 1 내지 12의 1차 알코올이 예시될 수 있고, 상기 방향족계 화합물로는 벤젠, 톨루엔 또는 자일렌이 예시될 수 있으며, 상기 헤테로고리 화합물로는 테트라하이드로퓨란, 1,4-디옥산 등이 예시될 수 있고, 상기 에테르계 화합물로는 디에틸에테르, 매틸-t-부틸 에테르 등이 예시될 수 있다. In one example, the organic solvent may be an alcohol compound, an aromatic compound, a hydrocarbon compound, a heterocyclic compound, an ether compound. For example, the alcohol compound may be exemplified by a primary alcohol having 1 to 12 carbon atoms, and the aromatic compound may be benzene, toluene or xylene, and the heterocyclic compound may be tetrahydro. Furan, 1,4-dioxane, and the like can be exemplified, and the ether compound can be exemplified by diethyl ether, methyl-t-butyl ether, and the like.
본 출원의 알칸올의 제조 방법에서, 화학식 1의 화합물 및 화학식 2의 화합물을 반응시키는 반응 단계는 50 내지 150℃, 예를 들면 60 내지 120℃, 65 내지 100℃, 70 내지 90℃ 또는 75 내지 85℃의 온도에서 수행될 수 있다. 이에 따라, 상기와 같은 범위로 공정 온도를 조절함으로써 화학식 1의 화합물 및 화학식 2의 화합물의 반응단계에서 높은 반응 효율을 얻을 수 있다. 예를 들어, 상기 반응단계가 50℃ 미만에서 이루어지는 경우에는 화학식 1의 화합물 및 화학식 2의 화합물이 충분히 반응하지 못함으로써 반응의 효과가 크게 저하되거나 생성되는 알칸올의 양이 줄어들 수 있다. 또한, 상기 반응 온도가 100℃를 초과하게 되면, 불필요한 부반응이 과도하게 일어남으로써 알칸올로의 전환율 또는 선택도가 크게 저하되는 단점이 있다. In the preparation method of the alkanol of the present application, the reaction step of reacting the compound of Formula 1 and the compound of Formula 2 is 50 to 150 ℃, for example 60 to 120 ℃, 65 to 100 ℃, 70 to 90 ℃ or 75 to It may be carried out at a temperature of 85 ℃. Accordingly, by adjusting the process temperature in the above range it is possible to obtain a high reaction efficiency in the reaction step of the compound of Formula 1 and the compound of Formula 2. For example, when the reaction step is performed at less than 50 ° C., the compound of Formula 1 and the compound of Formula 2 may not sufficiently react, thereby greatly reducing the effect of the reaction or reducing the amount of alkanol produced. In addition, when the reaction temperature exceeds 100 ℃, there is a disadvantage that the unnecessary side reaction occurs excessively, the conversion or selectivity to alkanol is greatly reduced.
본 출원의 제조방법에서는 금속 촉매, 특히, 라니 니켈 촉매의 존재하에서, 2차 알코올, 특히, 이소프로필 알코올 및/또는 시클로헥산올이 탈수소화되어 분해된 수소에 의해서 n-부틸알데히드 등의 알데히드 화합물을 n-부탄올 등의 알칸올로 환원시킬 수 있으므로, 종래의 방법과 같이 고압의 수소 기체를 반응 물질로서 별도로 포함시키지 않으므로, 반응 공정의 위험성이 낮으며, 생산 공정 설비를 단순화할 수 있다. 또한, 본 발명의 제조방법에 따르면, 공정의 경제성을 향상시킬 수 있으므로, n-부탄올의 대량생산을 가능하게 할 수 있다.In the production method of the present application, in the presence of a metal catalyst, in particular, a Raney nickel catalyst, an aldehyde compound such as n-butylaldehyde by hydrogen dehydrogenated and decomposed to secondary alcohol, in particular isopropyl alcohol and / or cyclohexanol Since it can be reduced to alkanols, such as n-butanol, since the high-pressure hydrogen gas is not separately included as a reaction material as in the conventional method, the risk of the reaction process is low, and the production process equipment can be simplified. Moreover, according to the manufacturing method of this invention, since the economics of a process can be improved, mass production of n-butanol can be made possible.
본 출원은 또한, 상기 제조방법에 사용되기 위한 알칸올의 제조장치에 관한 것이다.The present application also relates to an apparatus for producing alkanol for use in the above production method.
본 출원의 알칸올의 제조장치는 반응기 및 반응물 공급 장치를 포함할 수 있다. 하나의 예시에서, 상기 반응기에는 금속 촉매가 충진되어 있으며, 상기 반응물 공급 장치는 상기 반응기로 하기 화학식 1의 화합물 및 하기 화학식 2의 화합물을 공급하는 장치일 수 있다. Alkanol production apparatus of the present application may include a reactor and a reactant supply device. In one example, the reactor is filled with a metal catalyst, the reactant supply device may be a device for supplying a compound of Formula 1 and a compound of Formula 2 to the reactor.
[화학식 1][Formula 1]
Figure PCTKR2014008666-appb-I000004
Figure PCTKR2014008666-appb-I000004
[화학식 2][Formula 2]
Figure PCTKR2014008666-appb-I000005
Figure PCTKR2014008666-appb-I000005
상기 화학식 1 및 2에서, R1은 탄소수 1 내지 12의 선형, 분지형 또는 고리형의 알킬기를 나타내거나 또는 탄소수 1 내지 12의 알케닐을 나타내고, R2, R3 및 R4는 각각 독립적으로, 수소, 탄소수 1 내지 12의 선형, 분지형 또는 고리형의 알킬기 또는 탄소수 6 내지 24의 아릴기이며, 상기 R2, R3 및 R4 중 적어도 하나는 수소이다. 상기 화학식 1 및 화학식 2에 관한 구체적인 설명은 상기 제조방법에서 설명한 바와 동일하므로 생략하기로 한다. In Formulas 1 and 2, R 1 represents a linear, branched or cyclic alkyl group having 1 to 12 carbon atoms, or represents alkenyl having 1 to 12 carbon atoms, and R 2 , R 3 and R 4 are each independently , Hydrogen, a linear, branched or cyclic alkyl group having 1 to 12 carbon atoms or an aryl group having 6 to 24 carbon atoms, at least one of R 2 , R 3 and R 4 is hydrogen. Detailed description of the formula (1) and formula (2) is the same as described in the manufacturing method will be omitted.
하나의 예시에서, 상기 반응기는 상기 화학식 1의 화합물 및 화학식 2의 화합물을 반응시키기 위한 장치로서, 상기 반응기로는 화학식 1의 화합물 및 화학식 2의 화합물이 유입될 수 있다. 또한, 상기 반응기 내부는 금속 촉매가 충진되어 있으며, 상기 화학식 1의 화합물 및 화학식 2의 화합물이 반응을 일으키기 위한 적절한 조건으로 유지될 수 있다. 상기 제조장치에 포함되는 반응기의 형태는 화합물 합성 등에 통상적으로 사용되는 것이라면 특별히 한정되지 않고, 반응 조건, 반응물 및 생성물의 양을 고려하여 반응기의 크기, 형태 및 종류를 결정하여 사용할 수 있으며, 예를 들어, 응결기 및 교반기가 설치된 삼구 플라스크를 사용할 수 있다.In one example, the reactor is a device for reacting the compound of Formula 1 and the compound of Formula 2, the compound of Formula 1 and the compound of Formula 2 may be introduced into the reactor. In addition, the inside of the reactor is filled with a metal catalyst, the compound of Formula 1 and the compound of Formula 2 may be maintained under appropriate conditions for causing a reaction. The type of the reactor included in the production apparatus is not particularly limited as long as it is commonly used in compound synthesis, etc., and may be used by determining the size, form and type of the reactor in consideration of the reaction conditions, the amount of reactants and the product. For example, a three-necked flask equipped with a condenser and a stirrer may be used.
본 출원의 알칸올 제조 장치의 일 구현예에서, 상기 반응물 공급 장치를 통해서 상기 화학식 1의 화합물 및 상기 화학식 2의 화합물이 상기 반응기로 공급되며, 상기 반응기에는 금속 촉매가 충진되어 있을 수 있다.In one embodiment of the alkanol production apparatus of the present application, the compound of Formula 1 and the compound of Formula 2 are supplied to the reactor through the reactant supply device, the reactor may be filled with a metal catalyst.
이 경우, 상기 화학식 1의 화합물 및 상기 화학식 2의 화합물은 상기 금속 촉매의 존재 하에 반응할 수 있으며, 상기 화학식 2의 화합물은 탈수소화 되어 케톤 화합물 및 수소로 분해될 수 있다. 또한, 상기 화학식 2의 화합물로부터 분해된 수소가 상기 화학식 1의 화합물을 환원시킴으로써 알칸올을 제조할 수 있다. 하나의 예시에서, 상기 반응기에 충진되어 있는 금속 촉매는 라니 니켈일 수 있으며, 이 경우, 상기 화학식 1의 화합물 및 상기 화학식 2의 화합물의 반응단계에서 탈수소화 반응 및 환원 반응이 잘 일어남으로써 높은 전환율로 알칸올을 제조할 수 있다. 이에 대한 자세한 설명은, 전술한 알칸올의 제조방법에서 설명한 바와 동일하므로, 생략한다.In this case, the compound of Formula 1 and the compound of Formula 2 may react in the presence of the metal catalyst, the compound of Formula 2 may be dehydrogenated and decomposed into ketone compounds and hydrogen. In addition, alkanol may be prepared by reducing hydrogen decomposed from the compound of Formula 2 with the compound of Formula 1. In one example, the metal catalyst charged in the reactor may be Raney nickel, in this case, a high conversion rate due to the dehydrogenation and reduction reaction in the reaction step of the compound of Formula 1 and the compound of Formula 2 Alkanols can be prepared. Detailed description thereof is the same as described in the above-described method for preparing alkanol, and thus will be omitted.
하나의 예시에서, 상기 화학식 1의 화합물은 상기 화학식 1을 만족하는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 상기 화학식 1에서 R1은 탄소수 2 내지 6의 알킬기 또는 탄소수 4 내지 10의 알케닐일 수 있고, 바람직하게는 n-부틸알데히드 또는 2-에틸-2-헥센알일 수 있다. In one example, the compound of Formula 1 is not particularly limited as long as it satisfies Formula 1. For example, in Formula 1, R 1 may be an alkyl group having 2 to 6 carbon atoms or an alkenyl number of 4 to 10 carbon atoms. And preferably n-butylaldehyde or 2-ethyl-2-hexenal.
또한, 상기 화학식 2의 화합물은 상기 화학식 2를 만족하는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 2차 알코올일 수 있다. 하나의 예시에서, 상기 2차 알코올은 하기 화학식 3의 화합물일 수 있다. In addition, the compound of Formula 2 is not particularly limited as long as it satisfies Formula 2, and may be, for example, a secondary alcohol. In one example, the secondary alcohol may be a compound of formula (3).
[화학식 3][Formula 3]
Figure PCTKR2014008666-appb-I000006
Figure PCTKR2014008666-appb-I000006
상기 화학식 3에서, R5 및 R6은 각각 독립적으로, 탄소수 1 내지 12의 알킬기 또는 탄소수 6 내지 24의 아릴기를 나타내거나, 또는 상기 R5 및 R6은 함께 탄소수 3 내지 16의 시클로 알킬기를 형성할 수 있다. 상기 화학식 3에 관한 구체적인 설명은 상기 제조방법에서 설명한 바와 동일하므로 생략하기로 한다.In Formula 3, R 5 and R 6 each independently represent an alkyl group having 1 to 12 carbon atoms or an aryl group having 6 to 24 carbon atoms, or R 5 and R 6 together form a cycloalkyl group having 3 to 16 carbon atoms can do. Detailed description of the formula (3) is the same as described in the manufacturing method will be omitted.
하나의 예시에서, 상기 화학식 3의 화합물은 이소프로필 알코올, 2-부탄올, 2-펜탄올, 2-헥산올, 2-헵탄올, 글리세롤, 3-메틸-2-부탄올, α-페닐에탄올, 디페닐메탄올, 3-펜탄올, 3,3-디메틸-2-부탄올, 4-페닐-2-부탄올, 1,2,3,4-테트라하이드로-1-나프톨 및 시클로헥산올로 이루어진 군으로부터 선택된 1종 이상의 화합물을 포함할 수 있으며, 바람직하게는 이소프로필 알코올 및/또는 시클로헥산올을 포함할 수 있다.In one example, the compound of Formula 3 is isopropyl alcohol, 2-butanol, 2-pentanol, 2-hexanol, 2-heptanol, glycerol, 3-methyl-2-butanol, α-phenylethanol, di 1 selected from the group consisting of phenylmethanol, 3-pentanol, 3,3-dimethyl-2-butanol, 4-phenyl-2-butanol, 1,2,3,4-tetrahydro-1-naphthol and cyclohexanol It may comprise more than one compound, preferably may include isopropyl alcohol and / or cyclohexanol.
본 출원의 제조 방법 및 장치에 의하면, 높은 전환율로 고순도의 n-부탄올을 제조할 수 있고, 고압의 수소 기체를 반응 물질로 사용하지 않으므로, 공정의 경제성 및 안정성을 향상시킬 수 있다.According to the production method and apparatus of the present application, high-purity n-butanol can be produced at high conversion rate, and since high-pressure hydrogen gas is not used as a reaction material, economical efficiency and stability of the process can be improved.
본 출원에 의한 제조방법 및 제조장치에 의하면, 제조 공정의 경제성 및 안정성을 향상시킬 수 있으며, 알칸올의 대량 생산이 가능하다.According to the manufacturing method and the manufacturing apparatus according to the present application, it is possible to improve the economics and stability of the manufacturing process, it is possible to mass-produce alkanol.
이하 본 발명에 따르는 실시예 및 본 발명에 따르지 않는 비교예를 통하여 본 발명을 보다 상세히 설명하나, 본 발명의 범위가 하기 제시된 실시예에 의해 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to examples according to the present invention and comparative examples not according to the present invention, but the scope of the present invention is not limited to the following examples.
실시예 1Example 1
응결기와 교반기를 설치한 100mL 삼구 플라스크에 2.0g의 n-부틸알데히드, 이소프로필 알코올 39.3g, 라니 니켈 6.0g을 넣고, 플라스크 내부 온도를 80℃로 승온시키고, 3시간 동안 반응시켰다. 반응 후 생성된 혼합물을 GC로 분석한 결과, 전환율은 100%였으며, 아세톤 3%, 이소프로필 알코올 74% 및 n-부탄올 23%(GC %area)로 구성됨을 확인하였다.2.0 g of n-butylaldehyde, 39.3 g of isopropyl alcohol, and 6.0 g of Raney nickel were placed in a 100 mL three-necked flask equipped with a condenser and a stirrer, and the flask internal temperature was raised to 80 ° C. and reacted for 3 hours. The resulting mixture was analyzed by GC, and the conversion was 100%. It was confirmed that the mixture was composed of 3% acetone, 74% isopropyl alcohol, and 23% n-butanol (GC% area).
실시예 2Example 2
응결기와 교반기를 설치한 100mL 삼구 플라스크에 2.0g의 n-부틸알데히드, 시클로헥산올 48.1g, 라니 니켈 6.0g을 넣고, 플라스크 내부 온도를 86℃로 승온시키고, 3시간 동안 반응시켰다. 상기 반응 후 생성된 생성물 및 플라스크 내부에 잔존하는 반응물의 혼합물을 GC로 분석한 결과, 전환율은 100%였으며, n-부탄올 2%, 시클로헥산올 97% 및 시클로헥사논 1%(GC %area)로 구성됨을 확인하였다.Into a 100 mL three-necked flask equipped with a condenser and a stirrer, 2.0 g of n-butylaldehyde, 48.1 g of cyclohexanol, and 6.0 g of Raney nickel were added, and the flask internal temperature was raised to 86 ° C. and reacted for 3 hours. As a result of analyzing the mixture of the product produced after the reaction and the reaction remaining in the flask by GC, the conversion was 100%, n-butanol 2%, cyclohexanol 97% and cyclohexanone 1% (GC% area) It was confirmed that the configuration.
실시예 3Example 3
응결기와 교반기를 설치한 100mL 삼구 플라스크에 2.0g의 n-부틸알데히드, 이소프로필 알코올 39.3g, 시클로헥산올 24.1g, 라니 니켈 6.0g을 넣고, 플라스크 내부 온도를 75℃로 승온시키고, 3.5시간 동안 반응시켰다. 상기 반응 후 생성된 생성물 및 플라스크 내부에 잔존하는 반응물의 혼합물을 GC로 분석한 결과, 전환율은 100%였으며, 아세톤 2%, 이소프로필 알코올 56%, n-부탄올 2%, 시클로헥산올 39% 및 시클로헥사논 1%(GC %area)로 구성됨을 확인하였다.In a 100 mL three-necked flask equipped with a condenser and agitator, 2.0 g of n-butylaldehyde, 39.3 g of isopropyl alcohol, 24.1 g of cyclohexanol, and 6.0 g of Raney nickel were added, and the temperature of the flask was raised to 75 ° C. for 3.5 hours. Reacted. As a result of analyzing the mixture of the product produced after the reaction and the reactant remaining in the flask by GC, the conversion was 100%, acetone 2%, isopropyl alcohol 56%, n-butanol 2%, cyclohexanol 39% and It was confirmed that the composition consists of 1% of cyclohexanone (GC% area).
실시예 4Example 4
응결기와 교반기를 설치한 100mL 삼구 플라스크에 2.0g의 n-부틸알데히드, 톨루엔 21.8g, 이소프로필알코올 19.7g, 라니 니켈 6.0g을 넣고, 플라스크 내부 온도를 74℃로 승온시키고, 3.5시간 동안 반응시켰다. 상기 반응 후 생성된 생성물 및 플라스크 내부에 잔존하는 반응물의 혼합물을 GC로 분석한 결과, 전환율은 100%였으며, 아세톤 1%, 이소프로필 알코올 27%, n-부탄올 3% 및 톨루엔 69%(GC %area)로 구성됨을 확인하였다.In a 100 mL three-necked flask equipped with a condenser and a stirrer, 2.0 g of n-butylaldehyde, 21.8 g of toluene, 19.7 g of isopropyl alcohol, and 6.0 g of Raney nickel were added, and the temperature of the flask was raised to 74 ° C. and reacted for 3.5 hours. . As a result of analyzing the mixture of the product produced after the reaction and the reactant remaining in the flask by GC, the conversion was 100%, and acetone 1%, isopropyl alcohol 27%, n-butanol 3% and toluene 69% (GC% area).
실시예 5Example 5
응결기와 교반기를 설치한 100mL 삼구 플라스크에 2.0g의 n-부틸알데히드, 톨루엔 43.5g, 시클로헥산올 24.1g, 라니 니켈 6.0g을 넣고, 플라스크 내부 온도를 100℃로 승온시키고, 3시간 동안 반응시켰다. 상기 반응 후 생성된 생성물 및 플라스크 내부에 잔존하는 반응물의 혼합물을 GC로 분석한 결과, 전환율은 100%였으며, n-부탄올 1%, 톨루엔 76%, 시클로헥산올 22% 및 시클로헥사논 1%(GC %area)로 구성됨을 확인하였다.2.0 g of n-butylaldehyde, toluene 43.5 g, cyclohexanol 24.1 g, Raney nickel 6.0 g were added to a 100 mL three-neck flask equipped with a condenser and a stirrer, and the flask internal temperature was raised to 100 ° C. and reacted for 3 hours. . After the reaction, the resultant mixture and the mixture of reactants remaining in the flask were analyzed by GC. As a result, the conversion was 100%, n-butanol 1%, toluene 76%, cyclohexanol 22%, and cyclohexanone 1% ( GC% area).
실시예 6Example 6
응결기와 교반기를 설치한 100mL 삼구 플라스크에 2.0g의 n-부틸알데히드, 톨루엔 26.1g, 이소프로필알코올 7.9g, 시클로헥산올 9.6g, 라니 니켈 6.0g을 넣고, 플라스크 내부 온도를 79℃로 승온시키고, 4시간 동안 반응시켰다. 상기 반응 후 생성된 생성물 및 플라스크 내부에 잔존하는 반응물의 혼합물을 GC로 분석한 결과, 전환율은 100%였으며, 아세톤 및 이소프로필 알코올 6%, n-부탄올 3%, 톨루엔 67%, 시클로헥산올 23% 및 시클로헥사논 1%(GC %area)로 구성됨을 확인하였다.Into a 100 mL three-necked flask equipped with a condenser and agitator, 2.0 g of n-butylaldehyde, 26.1 g of toluene, 7.9 g of isopropyl alcohol, 9.6 g of cyclohexanol, and 6.0 g of Raney nickel were added, and the temperature of the flask was raised to 79 ° C. The reaction was carried out for 4 hours. After the reaction, the resultant mixture and the mixture of reactants remaining in the flask were analyzed by GC, and the conversion was 100%. Acetone and isopropyl alcohol 6%, n-butanol 3%, toluene 67%, cyclohexanol 23 It was confirmed that the composition consists of% and cyclohexanone 1% (GC% area).
실시예 7Example 7
응결기와 교반기를 설치한 100 mL 삼구 플라스크에 2.0g의 2-에틸-2-헥센알, 이소프로필알코올 39.3g, 라니 니켈 6.0g을 넣고, 플라스크 내부 온도를 80℃로 승온시키고, 2시간 동안 반응시켰다. 상기 반응 후 생성된 생성물 및 플라스크 내부에 잔존하는 반응물의 혼합물을 GC로 분석한 결과, 전환율은 100%였으며, 아세톤 2%, 이소프로필 알코올 71%, 2-에틸 헥산올 27%(GC %area)로 구성됨을 확인하였다Into a 100 mL three-necked flask equipped with a condenser and a stirrer, 2.0 g of 2-ethyl-2-hexenal, 39.3 g of isopropyl alcohol, and 6.0 g of Raney nickel were added, and the temperature of the flask was raised to 80 ° C., followed by reaction for 2 hours. I was. After the reaction, the resultant mixture and the mixture of reactants remaining in the flask were analyzed by GC. The conversion was 100%. Acetone 2%, isopropyl alcohol 71%, 2-ethyl hexanol 27% (GC% area) Confirmed to consist of
비교예 1Comparative Example 1
응결기와 교반기를 설치한 100mL 삼구 플라스크에 2.0g의 n-부틸알데히드, 이소프로필 알코올 39.3g, Pd/C(palladium on carbon) 촉매 0.50g을 넣고, 플라스크 내부 온도를 76℃로 승온시키고, 4시간 동안 반응시켰다. 상기 반응 후 생성된 생성물 및 플라스크 내부에 잔존하는 반응물의 혼합물을 GC로 분석한 결과, n-부탄올의 생성은 관찰할 수 없었다.In a 100 mL three-necked flask equipped with a condenser and a stirrer, 2.0 g of n-butylaldehyde, 39.3 g of isopropyl alcohol, and 0.50 g of Pd / C (palladium on carbon) catalyst were added, and the temperature of the flask was raised to 76 ° C. for 4 hours. Reacted for a while. As a result of analyzing the mixture of the product produced after the reaction and the reactant remaining in the flask by GC, the production of n-butanol could not be observed.
비교예 2Comparative Example 2
응결기와 교반기를 설치한 100 mL 삼구 플라스크에 2.0g의 n-부틸알데히드, 이소프로필 알코올 19.7g, Ni/SiO2-Al2O3 촉매 0.50g을 넣고, 플라스크 내부 온도를 76℃로 승온시키고, 3.5시간 동안 반응시켰다. 상기 반응 후 생성된 생성물 및 플라스크 내부에 잔존하는 반응물의 혼합물을 GC로 분석한 결과, n-부탄올의 생성은 관찰할 수 없었다.In a 100 mL three-necked flask equipped with a condenser and agitator, 2.0 g of n-butylaldehyde, 19.7 g of isopropyl alcohol, and 0.50 g of Ni / SiO 2 -Al 2 O 3 catalyst were added, and the temperature of the flask was raised to 76 ° C., for 3.5 hours. Reacted for a while. As a result of analyzing the mixture of the product produced after the reaction and the reactant remaining in the flask by GC, the production of n-butanol could not be observed.
본 출원의 실시예에 의한 n-부탄올의 제조방법에 따르면, 약 70 내지 100 ℃의 반응 조건에서 고압의 수소 기체를 반응 물질로 사용하지 않으면서 n-부탄올을 생성할 수 있으며, 특히, 실시예 1과 같이, 공정의 온도 및 화합물의 함량을 적절히 조절할 경우, 매우 높은 전환율로 n-부탄올을 제조할 수 있음을 확인할 수 있다. According to the method for preparing n-butanol according to an embodiment of the present application, n-butanol may be produced without using high pressure hydrogen gas as a reaction material at a reaction condition of about 70 to 100 ° C., in particular, Examples As shown in FIG. 1, when the temperature of the process and the content of the compound are properly adjusted, it can be seen that n-butanol can be prepared at a very high conversion rate.
한편, 비교예 1 및 2 와 같이 라니 니켈 촉매가 아닌 촉매를 사용하는 경우에는, n-부탄올이 생성되지 않는 것을 확인할 수 있다.On the other hand, when using a catalyst other than a Raney nickel catalyst like Comparative Examples 1 and 2, it can be confirmed that n-butanol is not produced.

Claims (21)

  1. 하기 화학식 1의 화합물을 금속 촉매의 존재 하에서 하기 화학식 2의 화합물과 반응시키는 반응단계를 포함하는 알칸올의 제조방법:A method for preparing an alkanol, comprising: reacting a compound of Formula 1 with a compound of Formula 2 in the presence of a metal catalyst:
    [화학식 1][Formula 1]
    Figure PCTKR2014008666-appb-I000007
    Figure PCTKR2014008666-appb-I000007
    [화학식 2][Formula 2]
    Figure PCTKR2014008666-appb-I000008
    Figure PCTKR2014008666-appb-I000008
    상기 화학식 1 및 2에서, R1은 탄소수 1 내지 12의 알킬기 또는 탄소수 1 내지 12의 알케닐이고, R2, R3 및 R4는 각각 독립적으로, 수소, 탄소수 1 내지 12의 알킬기 또는 탄소수 6 내지 24의 아릴기이며, 상기 R2, R3 및 R4 중 적어도 하나는 수소이다.In Formulas 1 and 2, R 1 is an alkyl group having 1 to 12 carbon atoms or alkenyl having 1 to 12 carbon atoms, and R 2 , R 3 and R 4 are each independently hydrogen, an alkyl group having 1 to 12 carbon atoms or 6 carbon atoms. To aryl group of 24, wherein at least one of R 2 , R 3 and R 4 is hydrogen.
  2. 제 1 항에 있어서, 금속 촉매는 구리, 코발트, 몰리브덴, 니켈, 니켈-알루미늄 합금, 니켈-몰리브덴 합금, 라니 코발트, 라니 니켈, 및 아연-크롬 합금으로 이루어진 군으로부터 선택된 1종 이상인 알칸올의 제조방법.The preparation of alkanol according to claim 1, wherein the metal catalyst is at least one selected from the group consisting of copper, cobalt, molybdenum, nickel, nickel-aluminum alloy, nickel-molybdenum alloy, Raney cobalt, Raney nickel, and zinc-chromium alloy. Way.
  3. 제 2 항에 있어서, 금속 촉매는 라니 니켈인 알칸올의 제조방법.The method of claim 2, wherein the metal catalyst is Raney nickel.
  4. 제 1 항에 있어서, 화학식 1에서 R1은 탄소수 2 내지 6의 알킬기 또는 탄소수 4 내지 10의 알케닐인 알칸올의 제조방법.The method of claim 1, wherein in Formula 1, R 1 is an alkyl group having 2 to 6 carbon atoms or alkenyl having 4 to 10 carbon atoms.
  5. 제 1 항에 있어서, 화학식 2의 화합물은 2차 알코올인 알칸올의 제조방법.The method of claim 1, wherein the compound of formula 2 is a secondary alcohol.
  6. 제 5 항에 있어서, 2차 알코올은 하기 화학식 3의 화합물인 알칸올의 제조방법:The method of claim 5, wherein the secondary alcohol is a compound of Formula 3:
    [화학식 3][Formula 3]
    Figure PCTKR2014008666-appb-I000009
    Figure PCTKR2014008666-appb-I000009
    상기 화학식 3에서, R5 및 R6은 각각 독립적으로, 탄소수 1 내지 12의 알킬기 또는 탄소수 6 내지 24의 아릴기를 나타내거나, 또는 R5 및 R6은 함께 탄소수 3 내지 16의 시클로 알킬기를 형성한다.In Formula 3, R 5 and R 6 each independently represent an alkyl group having 1 to 12 carbon atoms or an aryl group having 6 to 24 carbon atoms, or R 5 and R 6 together form a cycloalkyl group having 3 to 16 carbon atoms. .
  7. 제 6 항에 있어서, 화학식 3의 화합물은 이소프로필 알코올, 2-부탄올, 2-펜탄올, 2-헥산올, 2-헵탄올, 글리세롤, 3-메틸-2-부탄올, α-페닐에탄올, 디페닐메탄올, 3-펜탄올, 3,3-디메틸-2-부탄올, 4-페닐-2-부탄올, 1,2,3,4-테트라하이드로-1-나프톨 및 시클로헥산올로 이루어진 군으로부터 선택된 1종 이상의 화합물을 포함하는 알칸올의 제조방법.A compound according to claim 6, wherein the compound of formula 3 is isopropyl alcohol, 2-butanol, 2-pentanol, 2-hexanol, 2-heptanol, glycerol, 3-methyl-2-butanol, α-phenylethanol, di 1 selected from the group consisting of phenylmethanol, 3-pentanol, 3,3-dimethyl-2-butanol, 4-phenyl-2-butanol, 1,2,3,4-tetrahydro-1-naphthol and cyclohexanol Method for producing an alkanol comprising at least a compound.
  8. 제 3 항에 있어서, 반응단계는, 화학식 2의 화합물이 라니 니켈의 존재 하에서 탈수소화되는 탈수소화 단계를 포함하는 알칸올의 제조방법.The method of claim 3, wherein the reaction step includes a dehydrogenation step in which the compound of Formula 2 is dehydrogenated in the presence of Raney nickel.
  9. 제 8 항에 있어서, 탈수소화 단계는 화학식 2의 화합물이 라니 니켈의 존재 하에서 케톤 화합물 및 수소로 분해되는 것을 포함하는 알칸올의 제조방법.The method of claim 8, wherein the dehydrogenation step comprises the decomposition of the compound of Formula 2 to a ketone compound and hydrogen in the presence of Raney nickel.
  10. 제 9 항에 있어서, 케톤 화합물은 아세톤, 시클로헥사논, 부타논, 2-펜타논, 2-헥사논, 2-헵타논, 디하이드록시아세톤, 메틸이소프로필케톤, 아세토페논, 벤조페논, 3-펜타논, 3,3-디메틸-2-부탄논, 4-페닐-2-부타논 및 테트라론으로 이루어진 군으로부터 선택된 1종 이상의 화합물을 포함하는 알칸올의 제조방법.10. The ketone compound of claim 9, wherein the ketone compound is acetone, cyclohexanone, butanone, 2-pentanone, 2-hexanone, 2-heptanone, dihydroxyacetone, methylisopropylketone, acetophenone, benzophenone, 3 A process for producing an alkanol comprising at least one compound selected from the group consisting of -pentanone, 3,3-dimethyl-2-butanone, 4-phenyl-2-butanone and tetraron.
  11. 제 9 항에 있어서, 화학식 2의 화합물로부터 분해된 수소가 화학식 1의 화합물을 환원시키는 환원 단계를 추가로 포함하는 알칸올의 제조방법.10. The method of claim 9, wherein the hydrogen decomposed from the compound of Formula 2 further comprises a reducing step of reducing the compound of Formula 1.
  12. 제 1 항에 있어서, 금속 촉매는 화학식 1의 화합물 100 중량부에 대하여 50 내지 500 중량부의 함량으로 존재하는 알칸올의 제조방법.The method of claim 1, wherein the metal catalyst is present in an amount of 50 to 500 parts by weight based on 100 parts by weight of the compound of Formula 1.
  13. 제 5 항에 있어서, 화학식 1의 화합물 100 중량부에 대하여 2차 알코올 100 내지 2000 중량부를 반응시키는 알칸올의 제조방법.The method of claim 5, wherein 100 to 2000 parts by weight of the secondary alcohol is reacted with respect to 100 parts by weight of the compound of Formula 1.
  14. 제 1 항에 있어서, 반응시키는 단계는, 화학식 1의 화합물 및 화학식 2의 화합물을 유기 용매에 용해시킨 상태에서 수행되는 알칸올의 제조방법.The method of claim 1, wherein the reacting is performed in a state in which the compound of Formula 1 and the compound of Formula 2 are dissolved in an organic solvent.
  15. 제 1 항에 있어서, 반응시키는 단계는 50 내지 150℃의 온도에서 수행되는 알칸올의 제조방법. The method of claim 1, wherein the step of reacting is carried out at a temperature of 50 to 150 ℃.
  16. 금속 촉매가 충진되어 있는 반응기; 상기 반응기로 화학식 1의 화합물 및 하기 화학식 2의 화합물을 공급하는 반응물 공급 장치를 포함하는 알칸올의 제조장치:A reactor filled with a metal catalyst; An apparatus for producing an alkanol comprising a reactant supply device for supplying a compound of Formula 1 and a compound of Formula 2 to the reactor:
    [화학식 1][Formula 1]
    Figure PCTKR2014008666-appb-I000010
    Figure PCTKR2014008666-appb-I000010
    [화학식 2][Formula 2]
    Figure PCTKR2014008666-appb-I000011
    Figure PCTKR2014008666-appb-I000011
    상기 화학식 1 및 2에서, R1은 탄소수 1 내지 12의 알킬기 또는 탄소수 1 내지 12의 알케닐이고, R2, R3 및 R4는 각각 독립적으로, 수소, 탄소수 1 내지 12의 알킬기 또는 탄소수 6 내지 24의 아릴기이며, 상기 R2, R3 및 R4 중 적어도 하나는 수소이다.In Formulas 1 and 2, R 1 is an alkyl group having 1 to 12 carbon atoms or alkenyl having 1 to 12 carbon atoms, and R 2 , R 3 and R 4 are each independently hydrogen, an alkyl group having 1 to 12 carbon atoms or 6 carbon atoms. To aryl group of 24, wherein at least one of R 2 , R 3 and R 4 is hydrogen.
  17. 제 16 항에 있어서, 금속 촉매는 라니 니켈인 알칸올의 제조장치.The apparatus of claim 16, wherein the metal catalyst is Raney nickel.
  18. 제 16 항에 있어서, 화학식 1에서 R1은 탄소수 2 내지 6의 알킬기 또는 탄소수 4 내지 10의 알케닐인 알칸올의 제조장치.The apparatus of claim 16, wherein in Formula 1, R 1 is an alkyl group having 2 to 6 carbon atoms or alkenyl having 4 to 10 carbon atoms.
  19. 제 16 항에 있어서, 화학식 2의 화합물은 2차 알코올인 알칸올의 제조장치.The apparatus of claim 16, wherein the compound of Formula 2 is a secondary alcohol.
  20. 제 19 항에 있어서, 2차 알코올은 하기 화학식 3의 화합물인 알칸올의 제조장치:20. The apparatus for preparing alkanol according to claim 19, wherein the secondary alcohol is a compound of Formula 3:
    [화학식 3][Formula 3]
    Figure PCTKR2014008666-appb-I000012
    Figure PCTKR2014008666-appb-I000012
    상기 화학식 3에서, R5 및 R6은 각각 독립적으로, 탄소수 1 내지 12의 알킬기 또는 탄소수 6 내지 24의 아릴기를 나타내거나, 또는 R5 및 R6은 함께 탄소수 3 내지 16의 시클로 알킬기를 형성한다.In Formula 3, R 5 and R 6 each independently represent an alkyl group having 1 to 12 carbon atoms or an aryl group having 6 to 24 carbon atoms, or R 5 and R 6 together form a cycloalkyl group having 3 to 16 carbon atoms. .
  21. 제 20 항에 있어서, 화학식 3의 화합물은 이소프로필 알코올, 2-부탄올, 2-펜탄올, 2-헥산올, 2-헵탄올, 글리세롤, 3-메틸-2-부탄올, α-페닐에탄올, 디페닐메탄올, 3-펜탄올, 3,3-디메틸-2-부탄올, 4-페닐-2-부탄올, 1,2,3,4-테트라하이드로-1-나프톨 및 시클로헥산올로 이루어진 군으로부터 선택된 1종 이상의 화합물을 포함하는 알칸올의 제조장치.A compound according to claim 20, wherein the compound of formula 3 is isopropyl alcohol, 2-butanol, 2-pentanol, 2-hexanol, 2-heptanol, glycerol, 3-methyl-2-butanol, α-phenylethanol, di 1 selected from the group consisting of phenylmethanol, 3-pentanol, 3,3-dimethyl-2-butanol, 4-phenyl-2-butanol, 1,2,3,4-tetrahydro-1-naphthol and cyclohexanol Apparatus for producing alkanol containing at least a compound.
PCT/KR2014/008666 2013-09-17 2014-09-17 Method for preparing alkanol WO2015041471A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480050869.5A CN105555746A (en) 2013-09-17 2014-09-17 Method for producing unsaturated aldehyde and/or unsaturated carboxylic acid
US14/917,167 US9624150B2 (en) 2013-09-17 2014-09-17 Method of preparing alkanol
JP2016544289A JP6301481B2 (en) 2013-09-17 2014-09-17 Process for producing alkanol
EP14845165.1A EP3048090B1 (en) 2013-09-17 2014-09-17 Method for preparing alkanol

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20130111558 2013-09-17
KR10-2013-0111558 2013-09-17
KR1020140123680A KR101659163B1 (en) 2013-09-17 2014-09-17 Preparing method of alkanol
KR10-2014-0123680 2014-09-17

Publications (1)

Publication Number Publication Date
WO2015041471A1 true WO2015041471A1 (en) 2015-03-26

Family

ID=52689080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/008666 WO2015041471A1 (en) 2013-09-17 2014-09-17 Method for preparing alkanol

Country Status (1)

Country Link
WO (1) WO2015041471A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5922921A (en) * 1997-10-27 1999-07-13 Celanese International Corporation Process for the production of n-butanol
KR20050000528A (en) * 2002-05-10 2005-01-05 옥세노 올레핀케미 게엠베하 Method for producing C13-alcohol mixtures
JP2007223947A (en) * 2006-02-23 2007-09-06 Daicel Chem Ind Ltd Alcohol production method
US20070287868A1 (en) * 2006-06-07 2007-12-13 Arredondo Victor M Processes for converting glycerol to amino alcohols
JP2010159212A (en) * 2008-12-11 2010-07-22 Daicel Chem Ind Ltd Method for separating alcohol

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5922921A (en) * 1997-10-27 1999-07-13 Celanese International Corporation Process for the production of n-butanol
KR20050000528A (en) * 2002-05-10 2005-01-05 옥세노 올레핀케미 게엠베하 Method for producing C13-alcohol mixtures
JP2007223947A (en) * 2006-02-23 2007-09-06 Daicel Chem Ind Ltd Alcohol production method
US20070287868A1 (en) * 2006-06-07 2007-12-13 Arredondo Victor M Processes for converting glycerol to amino alcohols
JP2010159212A (en) * 2008-12-11 2010-07-22 Daicel Chem Ind Ltd Method for separating alcohol

Similar Documents

Publication Publication Date Title
US20040106818A1 (en) Process for the preparation of cyclohexanol derivatives
RU2313531C1 (en) Method for preparing 1-ethyl-3,4-di-(7-octenyl)-aluminacyclopentane
CN109331872A (en) Application of n-butyllithium in catalytic hydroboration of imine and borane
WO2014209068A1 (en) Method for producing allyl alcohol and allyl alcohol produced thereby
CN110156645A (en) A kind of preparation method of florfenicol midbody
WO2015041471A1 (en) Method for preparing alkanol
JP6301481B2 (en) Process for producing alkanol
CN118146249A (en) Synthesis process of cresol trazotrisiloxane
CN101003456B (en) Method for preparing Beta, Gamma unsaturated ester
CN108276356B (en) Preparation method of 3, 5-disubstituted thiazolidine-2-thioketone compound
WO2020130280A1 (en) Methods for recovering and reusing selective homogeneous hydrogenation catalyst
WO2020085613A1 (en) Method for manufacturing dimethylolbutanal and method for manufacturing trimethylolpropane using same
CN102120726B (en) New preparation method of (2E)-2-cyano-3-(3,4-dihydroxy-5-nitrobenzene)-N,N-diethyl-2-acrylamide
JP5754133B2 (en) Method for producing carboxylic acid tertiary butyl ester
CN114213443B (en) Method for preparing alkyl boron ester from alkenyl boron ester
WO2021132876A1 (en) Method for producing 1,4-cyclohexanedimethanol
WO2015050291A1 (en) Method for preparing aromatic carbonate
CN112939920B (en) A kind of preparation method of dragon's blood erythromycin A or dragon's blood erythromycin B
WO2018216934A1 (en) Alkyl carboxylate preparation method and preparation apparatus
CN114632552B (en) Buchwald pre-catalyst, preparation method and application thereof
JPS62185032A (en) Method for producing 1-(1-hydroxyethyl)-alkylcyclohexane
CN115784908B (en) Synthesis method of m-dialkylaminophenol
CN115011974B (en) A kind of electrocatalytic method for preparing trans-allyl benzene compound
CN112266360B (en) Synthesis method of high-purity histamine dihydrochloride
CN112724042B (en) Synthesis method of one-pot polysubstituted decalin derivative

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480050869.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14845165

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014845165

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14917167

Country of ref document: US

Ref document number: 2014845165

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016544289

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE