WO2015041381A1 - Lithium secondary battery and lithium secondary battery system - Google Patents

Lithium secondary battery and lithium secondary battery system Download PDF

Info

Publication number
WO2015041381A1
WO2015041381A1 PCT/KR2013/008451 KR2013008451W WO2015041381A1 WO 2015041381 A1 WO2015041381 A1 WO 2015041381A1 KR 2013008451 W KR2013008451 W KR 2013008451W WO 2015041381 A1 WO2015041381 A1 WO 2015041381A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
negative electrode
secondary battery
lithium secondary
clause
Prior art date
Application number
PCT/KR2013/008451
Other languages
French (fr)
Korean (ko)
Inventor
김영식
Original Assignee
국립대학법인 울산과학기술대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 국립대학법인 울산과학기술대학교 산학협력단 filed Critical 국립대학법인 울산과학기술대학교 산학협력단
Priority to PCT/KR2013/008451 priority Critical patent/WO2015041381A1/en
Publication of WO2015041381A1 publication Critical patent/WO2015041381A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0416Methods of deposition of the material involving impregnation with a solution, dispersion, paste or dry powder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • a lithium secondary battery and a lithium secondary battery system More specifically, the present invention relates to a lithium secondary battery and a lithium secondary battery system using waste batteries.
  • a battery means generating power by using a material capable of electrochemical reactions at a positive electrode and a negative electrode.
  • a typical example of such a battery is a lithium secondary battery that generates electrical energy by a change in the chemical potential (chemi cal potent al) when lithium ions are intercalated / deintercalated at a positive electrode and a negative electrode.
  • the lithium secondary battery is prepared by using a material capable of reversible intercalation / deintercalation of lithium ions as a positive electrode and a negative electrode active material, and filling an organic electrolyte or a polymer electrolyte between the positive electrode and the negative electrode.
  • a lithium composite metal compound is used as a cathode active material of a lithium secondary battery.
  • the negative electrode active material of the lithium secondary battery carbon-based, silicon-based, lithium oxide-based, or the like may be used.
  • the organic electrolyte may include a lithium salt.
  • the lithium secondary battery is characterized by a decrease in use for a certain period of time will eventually be discarded.
  • lithium silver still remains in various forms as described above.
  • the present inventors have developed a new type of lithium secondary battery and lithium secondary battery system that can recover the lithium ions in the waste battery and at the same time utilize them. Detailed description thereof will be described later.
  • a liquid positive electrode portion including a lithium-containing solution and a positive electrode current collector impregnated in the lithium-containing solution
  • a negative electrode portion including a liquid organic electrolyte, a negative electrode current collector impregnated in the liquid organic electrolyte, and a negative electrode active material layer positioned on a surface of the negative electrode current collector;
  • a lithium secondary battery comprising a; solid electrolyte located between the positive electrode and the negative electrode.
  • the lithium-containing solution may be an aqueous lithium solution extracted from a spent battery.
  • the lithium aqueous solution may be a lithium aqueous solution in which residual lithium in the waste battery is extracted by pulverizing a waste battery and then putting the waste battery into aqueous solution.
  • the organic electrolyte in the negative electrode unit may include a non-aqueous organic solvent and / or a lithium salt.
  • the non-aqueous organic solvent may be a carbonate, ester, ether, ketone, alcohol, aprotic solvent, or a combination thereof.
  • the lithium salt is LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiC 4 F 9 S0 3 , LiC10 4) LiA10 2) LiAlCl 4 , LiN (C x F 2x + 1 S0 2 ) (CyF 2y + 1 S0 2 ) (Where x and y are natural numbers), LiCl, Li l, LiB (C 2 0 4 ) 2 (li thium bis (oxalato) borate; Li BOB) or a combination thereof have.
  • the negative electrode active material layer positioned on the surface of the negative electrode current collector includes a negative electrode active material, and the negative electrode active material includes a material capable of reversibly intercalating / deintercalating lithium ions, lithium metal, and lithium metal. Alloys, lithiumol-doped and undoped materials, transition metal oxides or combinations thereof.
  • the negative active material may be lithium titanium oxide.
  • the solid electrolyte is a material capable of fast moving of lithium ions and being stable with an aqueous solution and an organic solution, and includes an amorphous ion conductive material (phosphorus-based glass, oxide-based glass, oxide / sulfide based glass), and ceramic conductive material.
  • an amorphous ion conductive material phosphorus-based glass, oxide-based glass, oxide / sulfide based glass
  • ceramic conductive material phosphorus-based glass, oxide-based glass, oxide / sulfide based glass
  • ceramic conductive material phosphorus-based glass, oxide-based glass, oxide / sulfide based glass
  • ceramic conductive material phosphorus-based glass, oxide-based glass, oxide / sulfide based glass
  • ceramic conductive material phosphorus-based glass, oxide-based glass, oxide / sulfide based glass
  • ceramic conductive material phosphorus-based glass, oxide-based glass, oxide / sulfide
  • Such materials are described in US Pat. It is well stated in No. 4, 985,317.
  • the anode portion may further include a conductive additive.
  • the conductive additive may be a carbon-based material.
  • the carbonaceous material may be a carbonaceous material having a surface modified to improve dispersibility in a lithium-containing solution.
  • a liquid positive electrode portion including a lithium-containing solution and a positive electrode current collector impregnated in the lithium-containing solution
  • a negative electrode portion including a liquid organic electrolyte, a negative electrode current collector impregnated in the liquid organic electrolyte, and a negative electrode active material layer positioned on a surface of the negative electrode current collector; And between the anode portion and the cathode portion, between the anode portion and the cathode portion. It provides a lithium secondary battery system comprising a solid electrolyte;
  • the lithium-containing solution is an aqueous lithium solution extracted from a waste battery, and the lithium secondary battery system may reuse lithium present in the waste battery.
  • the lithium-containing solution may be a lithium aqueous solution in which residual lithium in the waste battery is extracted by pulverizing the waste battery and then putting it in an aqueous solution.
  • the organic electrolyte in the negative electrode unit may include a non-aqueous organic solvent and / or a lithium salt.
  • the negative electrode active material charge positioned on the surface of the negative electrode current collector includes a negative electrode active material, the negative electrode active material, a material capable of reversibly intercalating / deintercalating lithium ions, lithium metal, an alloy of lithium metal, And materials capable of doping and undoping lithium, transition metal oxides, or combinations thereof.
  • the negative active material may be lithium titanium oxide.
  • the solid electrolyte is a material capable of fast moving of lithium ions and being stable with an aqueous solution and an organic solution.
  • Ceramic ion conducting materials lithium beta-alumina, sodium beta-alumina), li super ionic conductor (LISICON), or nacicon (Na super ionic conductor, NASICON). More specific examples include UPON, Li 2 0-11A1 2 0 3 , Na 2 0-11A1 2 0 3 , Na 3 Zr 2 Si 2 P0 12 , Li 3 Zr 2 Si 2 P0 12 , Na 5 ZrP 3 0 12 , Na 5 TiP 3 2 , Na 3 Fe 2 P 3 0i 2 , Na-Si 1 icates, Li 03 La0 0 .
  • solid electrolyte Lh + x .Al.Ga Gei-yTiy
  • the anode portion may further include a conductive additive.
  • a lithium secondary battery and a lithium secondary battery system More specifically, the present invention relates to a lithium secondary battery and a lithium secondary battery system using waste batteries.
  • the recovery of lithium from the waste battery is easy.
  • the recovery step of lithium may be low power.
  • FIG. 1 is a schematic view of a lithium secondary battery according to one embodiment of the present invention.
  • Fig. 3 (a) is a layer discharge curve in O.lmA'cnf 2 using only stainless steel as the cathode.
  • 3B is a charge / discharge curve in which graphite is used for the negative electrode.
  • 4 is a layer discharge curve (a) and a discharge curve for each c-rate of a battery using 4 ⁇ 50 0 12 as a negative electrode active material.
  • a liquid positive electrode portion including a lithium-containing solution and a positive electrode current collector impregnated in the lithium-containing solution
  • a negative electrode portion including a liquid organic electrolyte, a negative electrode current collector impregnated in the liquid organic electrolyte, and a negative electrode active material layer positioned on a surface of the negative electrode current collector;
  • a lithium secondary battery comprising a; solid electrolyte located between the positive electrode and the negative electrode.
  • the lithium-containing solution may be an aqueous lithium solution extracted from a spent battery. That is, the lithium secondary battery may be more specifically a lithium secondary battery using a waste battery.
  • the recovery step of lithium may be low power.
  • the lithium aqueous solution may be a lithium aqueous solution in which residual lithium in the waste battery is extracted by pulverizing a waste battery and then putting the waste battery into aqueous solution.
  • the grinding method can be used without limitation as long as it is a general physical grinding method.
  • the aqueous solution may be ultra pure water (DI water). However, it is not limited thereto.
  • the organic electrolyte in the negative electrode unit may include a non-aqueous organic solvent and / or a lithium salt.
  • the non-aqueous organic solvent serves as a medium through which ions involved in the electrochemical reaction of the cell can move.
  • the non-aqueous organic solvent may be a carbonate, ester, ether, ketone, alcohol or aprotic solvent.
  • the carbonate solvents include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), methylpropyl carbonate (MPC), and ethyl propyl.
  • EPC Carbonate
  • MEC methylethyl carbonate
  • EC ethylene carbonate
  • PC propylene carbonate
  • BC butylene carbonate
  • the ester solvent is methyl acetate, ethyl acetate, n ⁇ propyl acetate , 1,1-Dimethyl 3 ⁇ 4 acetate, methylpropionate ethylpropionate, Y-butyrolactone, decanolide, valerolactone, mevalonolactone, caprolactone And the like can be used.
  • ether solvent dibutyl ether tetraglyme, diglyme, dimethoxyethane, 2-methyltetrahydrofuran tetrahydrofuran, and the like may be used.
  • ketone solvent cyclonucanon may be used.
  • the alcohol solvent may be used ethyl alcohol, isopropyl alcohol, etc.
  • the aprotic solvent is R-CN (R is a C2 to C20 linear, branched or cyclic hydrocarbon group, double Amides such as nitrile dimethylformamide, dioxolanes such as 1,3-dioxolane, and sul folane such as 1,3-dioxolane, and the like.
  • the non-aqueous organic solvent may be used alone or in combination of one or more, and the mixing ratio in the case of using one or more in combination can be appropriately adjusted according to the desired battery performance, which is widely understood by those skilled in the art. Can be.
  • the carbonate solvent it is preferable to use a cyclic carbonate and a chain carbonate in combination.
  • the cyclic carbonate and the chain carbonate are mixed and used in a volume ratio of about 1: 1 to about 1: 9, the performance of the electrolyte may be excellent.
  • the non-aqueous organic solvent may further include the aromatic hydrocarbon organic solvent in the carbonate solvent.
  • the carbonate-based solvent and the aromatic hydrocarbon-based organic solvent may be mixed in a volume ratio of about 1: 1 to about 30: 1.
  • an aromatic hydrocarbon compound of Formula 1 may be used as the aromatic hydrocarbon-based organic solvent. [Formula 1]
  • Ri to 3 ⁇ 4 are each independently hydrogen, halogen, alkyl group of C1 to C10, haloalkyl group of C1 to C10, or a combination thereof.
  • the aromatic hydrocarbon organic solvent is benzene, fluorobenzene, 1,2-difluorobenzene, 1, 3-difluorobenzene, 1, 4-difluorobenzene, 1,2,3—trifluorobenzene , 1,2,4-trifluorobenzene, chlorobenzene, 1, 2-dichlorobenzene 1,3-dichlorobenzene, 1,4-dichlorobenzene, 1,2,3-trichlorobenzene, 1,2,4 -Trichlorobenzene, iodobenzene, 1,2-diiodobenzene, 1,3-diiodobenzene, 1,4-dioiobenzene, 1,2,3-triiodobenzene, 1,2,4- Triiodobenzene, toluene, fluoroluene, 1,2-difluoroluene, 1,3-difluoroluene, 1,4-difluo
  • R 7 and R 8 are each independently hydrogen, halogen, cyano group (CN), nitro group (N0 2 ) or C1 to C5 fluoroalkyl group, at least one of R 7 and 3 ⁇ 4 Halogen group, cyano group (CN), nitro group (N0 2 ) or C1 to C5 fluoroalkyl group.
  • ethylene carbonate compounds include difluoro ethylene carbonate, chloroethylene carbonate, dichloroethylene carbonate, bromoethylene carbonate, dibromoethylene carbonate, nitroethylene carbonate, cyanoethylene carbonate, fluoroethylene carbonate, and the like. Can be. When the vinylene carbonate or the ethylene carbonate-based compound is further used, the amount thereof may be appropriately adjusted to improve life.
  • the lithium salt is dissolved in the non-aqueous organic solvent, and acts as a source of lithium ions in the battery to enable the operation of the basic lithium secondary battery, and serves to promote the movement of lithium ions between the positive electrode and the negative electrode to be.
  • Representative examples of the lithium salt are LiPF 6 , LiBF 4) LiSbFg, LiAsF 6 , LiC 4 F 9 S0 3 , LiC10 4 , LiA10 2 , LiAlCl 4 , (Where x and y are natural numbers), LiCl, Li l, LiB (C 2 0 4 ) 2 (lithium bis (oxalato) borate; LiBOB) or a combination thereof, These are included as supporting electrolyte salts, and the lithium salt concentration is preferably used within the range of 0.1 to 2.0 M.
  • the negative electrode active material layer positioned on the surface of the negative electrode current collector includes a negative electrode active material, and the negative electrode active material reversibly displaces lithium ions.
  • any carbon-based negative electrode active material generally used in a lithium ion secondary battery may be used, and representative examples thereof include crystalline carbon.
  • Amorphous carbon or a combination thereof may be used.
  • the crystalline carbon include amorphous, plate-like, flake, spherical or fibrous natural or artificial ones.
  • the amorphous carbon include soft carbon (soft carbon) Or hard carbon, mesophase pitch carbide, calcined coke, or the like.
  • alloy of the lithium metal examples include lithium and metals of Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, or Sn. Alloys can be used.
  • Examples of the material capable of doping and undoping lithium include Si, SiO x (0 ⁇ x ⁇ 2), Si-C composites, Si-Q alloys (wherein Q is an alkali metal, an alkaline earth metal, and a group 13 to 16 element). , Transition metals, rare earth elements or combinations thereof, not Si), Sn, Sn0 2 , Sn-C composites, Sn-R (wherein R is an alkali metal, an alkaline earth metal, an element of Group 13-16, a transition metal , Rare earth elements or combinations thereof, and not Sn).
  • Q and R include Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, 0s, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ti, Ge, P, As, Sb, Bi, S, Se, Te, Po, or a combination thereof is mentioned.
  • transition metal compound is an intercalation / de-inter illustration be materials that go lithium reversibly, such as Li 4 Ti 5 0i 2, LiV0 2, LiTiS 2, LiVS 2 (KNbsOis, K 6 Nb 10. 8 03o For example.
  • the negative electrode active material layer also includes a binder, and may optionally further include a conductive material.
  • the binder serves to adhere the negative electrode active material particles to each other well, and also to adhere the negative electrode active material to the current collector well, and representative examples thereof include polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, polyvinyl chloride, and carbon.
  • Compounded polyvinylchloride, polyvinylfluoride, polymers containing ethylene oxide, polyvinylpyridone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, styrene-butadiene rubber , Acrylated styrene-butadiene rubber, epoxy resin, nylon and the like may be used, but the present invention is not limited thereto.
  • the conductive material is used to impart conductivity to the electrode, and may be used as long as it is an electronic conductive material without causing chemical change in the battery to be constructed. Examples thereof include natural graphite, artificial graphite, carbon black, acetylene black, and ketjen. Carbon-based materials such as black and carbon fiber; Metal materials such as metal powder or metal fibers such as copper, nickel, aluminum and silver; Conductive polymers such as polyphenylene derivatives; Or an electroconductive material containing these mixture can be used.
  • the current collector may be copper foil, nickel foil, stainless steel foil, titanium foil, nickel foam (foam), copper foam, a polymer substrate coated with a conductive metal, or a combination thereof.
  • the negative electrode is prepared by mixing an active material, a binder, and a conductive material in a solvent mixture to prepare an active material composition, and applying the composition to a current collector. Since such an electrode manufacturing method is well known in the art, detailed description thereof will be omitted.
  • the solvent N-methylpyrrolidone may be used, but is not limited thereto.
  • the solid electrolyte is a material that can be fast to move the lithium ions and stable with the aqueous solution and organic solution, amorphous ion conductivity materials (phosphorus-based glass, oxide-based glass, oxide / sulf based glass ), Ceramic ion conducting material (li thium beta-alumina, sodium beta—alumina), re superconductor (Li super ionic conductor, LISICON), or It may be Na super ionic conductor (NASICON).
  • amorphous ion conductivity materials phosphorus-based glass, oxide-based glass, oxide / sulf based glass
  • Ceramic ion conducting material lai thium beta-alumina, sodium beta—alumina
  • re superconductor Li super ionic conductor, LISICON
  • It may be Na super ionic conductor (NASICON).
  • Such materials are described in US Pat. It is well stated in No. 4,985,317.
  • the anode portion may further include a conductive additive.
  • a conductive additive may facilitate electron transfer in the anode portion.
  • the conductive additive may be modified to have a good surface in the anode solution. In this case, the surface modification may use a method of introducing an organic functional group to the conductive additive surface.
  • a liquid positive electrode portion including a lithium-containing solution and a positive electrode current collector impregnated in the lithium-containing solution
  • a negative electrode portion including a liquid organic electrolyte, a negative electrode current collector impregnated in the liquid organic electrolyte, and a negative electrode active material layer positioned on a surface of the negative electrode current collector;
  • a solid electrolyte positioned between the positive electrode part and the negative electrode part and selectively transmitting lithium ions between the positive electrode part and the negative electrode part.
  • the lithium-containing solution may be a lithium aqueous solution extracted from a waste battery
  • the lithium secondary battery system may be a lithium secondary battery system in which lithium existing in a waste battery is reused.
  • a lithium secondary battery including a LiFeP04 anode, a graphite anode, and a 1M LiPF 6 -EC: DEC electrolyte was used.
  • the waste battery containing such a structure was crushed and put into aqueous solution.
  • a -ph_SO 3 H functional group was introduced to the surface of the carbon material (Vulcan XC— 72) as a conductive additive.
  • the prepared lithium-containing solution and the carbon paper current collector were used as the positive electrode portion.
  • Stainless steel itself was used as the negative electrode of the negative electrode portion, graphite was used as the negative electrode active material, or lithium titanium oxide (Li 4 Ti 5 0 12 ) was used as the negative electrode active material.
  • the solid electrolyte used was Li (1 + x + y) Ti (2 — x ) Al (x) P (3 - y) Si y 0 12 (0 ⁇ x ⁇ l, and 0 ⁇ y ⁇ l).
  • OHARA's LIC-GC G79-3 N49 was purchased.
  • the solid electrolyte must completely separate the organic electrolyte on the negative electrode side and the aqueous solution on the positive electrode side, so that the negative electrode side of the cell is solid with epoxy (Epoxy Adhesive Tube Kit, 1839 B / A Green, 3M Scotch-Weld). The complete seal was used.
  • the sealed epoxy must be chemically stable with both because it is in physical contact with the aqueous and organic solutions.
  • LiFePO 4 in the aqueous solution was found to be lithium ions extracted in about 3.5V region.
  • LiC 6 contained in the aqueous solution was confirmed that the lithium ion is extracted in about 3.7 V region.
  • the organic solution electrolyte mixed with the aqueous solution it was confirmed that the lithium ion is extracted in about 4.0V region.
  • the negative and organic electrolytes change the chemical composition due to the mixing of the aqueous solutions, but the lithium ions in them can still be extracted.
  • Fig. 3 (a) shows the layer discharge curve at lmA'cnf 2 using only stainless steel as the cathode. It can be seen that the first layer discharge time is longer than the next layer discharge time. This is because lithium and electrolyte side reactions occur at the first layer change and thin films are formed on the lithium surface. After the first layer charge (that is, after forming the lithium surface thin film), the charge and discharge can be repeated repeatedly.
  • 3B is a layer discharge curve in which graphite is used for the cathode. Like lithium metal, the charging time is long due to side reaction with the electrolyte during the first layer charge, and subsequent charge and discharge are relatively stable compared with lithium metal.
  • Li 4 is a layer discharge curve (a) and a discharge curve for each c ⁇ rate of a battery using 4 ⁇ 50 0 12 as a negative electrode active material.
  • Li 4 Ti 5 0 12 is stable with the electrolyte, so there is no side reaction. This side reaction was not found in the first charge. That is, it can be seen that the layer discharge characteristics are quite stable.
  • the present invention is not limited to the above embodiments, but may be manufactured in various forms, and a person of ordinary skill in the art to which the present invention pertains does not change the technical spirit or essential features of the present invention. It will be understood that it can be implemented as. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

A lithium secondary battery and a lithium secondary battery system are provided. The lithium secondary battery, comprising: a liquid cathode section including a lithium-containing solution and a cathode current collector impregnated with the lithium-containing solution; an anode section including a liquid organic electrolyte, an anode current collector impregnated with the liquid organic electrolyte, and an anode active material layer positioned on the surface of the anode current collector; and a solid electrolyte positioned between the cathode section and the anode section.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
리튬 이차 전지 및 리튬 이차 전지 시스템 【기술분야】  Lithium Secondary Battery and Lithium Secondary Battery System
리튬 이차 전지 및 리튬 이차 전지 시스템에 관한 것이다. 보다 구체적으로 폐전지를 이용한 리튬 이차 전지 및 리튬 이차 전지 시스템에 관한 것이다. 【배경기술】  A lithium secondary battery and a lithium secondary battery system. More specifically, the present invention relates to a lithium secondary battery and a lithium secondary battery system using waste batteries. Background Art
일반적으로 전지는 양극과 음극에 전기 화학 반응이 가능한 물질을 사용함으로써 전력을 발생시키는 것을 의미한다. 이러한 전지 중 대표적인 예로는 양극 및 음극에서 리튬 이온이 인터칼레이션 /디인터칼레이션될 때의 화학전위 (chemi cal potent i al )의 변화에 의하여 전기 에너지를 생성하는 리튬 이차 전지가 있다.  In general, a battery means generating power by using a material capable of electrochemical reactions at a positive electrode and a negative electrode. A typical example of such a battery is a lithium secondary battery that generates electrical energy by a change in the chemical potential (chemi cal potent al) when lithium ions are intercalated / deintercalated at a positive electrode and a negative electrode.
상기 리튬 이차 전지는 리튬 이온의 가역적인 인터칼레이션 /디인터칼레이션이 가능한 물질을 양극과 음극 활물질로 사용하고, 상기 양극과 음극 사이에 유기 전해액 또는 폴리머 전해액을 충전시켜 제조한다.  The lithium secondary battery is prepared by using a material capable of reversible intercalation / deintercalation of lithium ions as a positive electrode and a negative electrode active material, and filling an organic electrolyte or a polymer electrolyte between the positive electrode and the negative electrode.
보다 구체적으로, 리튬 이차 전지의 양극 활물질로는 리튬 복합금속 화합물이 사용되고 있으며, 그 예로 UCo02 , LiMn204 , LiNi02 , LiNi i- xCox02(0<x<l) , LiMn¾ 등의 복합금속 산화물들이 연구되고 있다. More specifically, a lithium composite metal compound is used as a cathode active material of a lithium secondary battery. For example, UCo0 2 , LiMn 2 0 4 , LiNi0 2 , LiNi i- x Co x 0 2 (0 <x <l), LiMn¾ Composite metal oxides such as are being studied.
보다 구체적으로 리튬 이차 전지의 음극 활물질로는 탄소계, 실리콘계, 리튬 산화물계 등이 사용될 수 있다. 또한, 유기 전해액에는 리튬염 등이 포함될 수 있다.  More specifically, as the negative electrode active material of the lithium secondary battery, carbon-based, silicon-based, lithium oxide-based, or the like may be used. In addition, the organic electrolyte may include a lithium salt.
이러한, 리튬 이차 전지는 일정한 기간을 사용하게 되면 특성이 감소하게 되어 결국 폐기되게 된다. 이렇게 폐기된 리튬 이차 전지에는 전술한 바와 같이 다양한 형태로 리륨 이은이 여전히 남아 있게 된다.  In this case, the lithium secondary battery is characterized by a decrease in use for a certain period of time will eventually be discarded. In the lithium secondary battery thus discarded, lithium silver still remains in various forms as described above.
폐전지 내 리튬 이온을 회수하기 위한 다양한 연구가 보고되고 있으나, 아직 상용화된 시스템은 보고된 바가 없다. Various studies have been reported to recover lithium ions in waste batteries. However, no commercial system has been reported.
【발명의 내용】 [Content of invention]
【해결하려는 과제】  [Problem to solve]
이에 본 발명자는 폐전지 내 리튬 이온을 회수함과 동시에 이를 활용할 수 있는 새로운 형태의 리튬 이차 전지 및 리튬 이차 전지 시스템을 개발하였다. 이에 대한 구체적인 설명은 후술하기로 한다.  Accordingly, the present inventors have developed a new type of lithium secondary battery and lithium secondary battery system that can recover the lithium ions in the waste battery and at the same time utilize them. Detailed description thereof will be described later.
【과제의 해결 수단】 [Measures of problem]
본 발명의 일 구현예에서는, 리튬 함유 용액 및 상기 리튬 함유 용액에 함침된 양극 집전체를 포함하는 액상의 양극부; 액상의 유기 전해질, 상기 액상의 유기 전해질에 함침된 음극 집전체 및 상기 음극 집전체 표면에 위치하는 음극 활물질 층을 포함하는 음극부; 및 상기 양극부와 상기 음극부 사이에 위치하는 고체 전해질;을 포함하는 리튬 이차 전지를 제공한다.  In one embodiment of the present invention, a liquid positive electrode portion including a lithium-containing solution and a positive electrode current collector impregnated in the lithium-containing solution; A negative electrode portion including a liquid organic electrolyte, a negative electrode current collector impregnated in the liquid organic electrolyte, and a negative electrode active material layer positioned on a surface of the negative electrode current collector; And it provides a lithium secondary battery comprising a; solid electrolyte located between the positive electrode and the negative electrode.
상기 리튬 함유 용액은, 폐전지로부터 추출된 리륨 수용액일 수 있다. 상기 리튬 수용액은, 폐전지를 분쇄시킨 후 이를 수용액 (aqueous water )에 투입하여 폐전지 내 잔여 리튬을 추출한 리튬 수용액일 수 있다. 상기 음극부 내 유기 전해질은, 비수성 유기 용매 및 /또는 리튬염을 포함할 수 있다.  The lithium-containing solution may be an aqueous lithium solution extracted from a spent battery. The lithium aqueous solution may be a lithium aqueous solution in which residual lithium in the waste battery is extracted by pulverizing a waste battery and then putting the waste battery into aqueous solution. The organic electrolyte in the negative electrode unit may include a non-aqueous organic solvent and / or a lithium salt.
상기 비수성 유기 용매는 카보네이트계, 에스테르계, 에테르계, 케톤계, 알코을계, 비양성자성 용매, 또는 이들의 조합일 수 있다.  The non-aqueous organic solvent may be a carbonate, ester, ether, ketone, alcohol, aprotic solvent, or a combination thereof.
상기 리튬염은 LiPF6, LiBF4, LiSbF6 , LiAsF6 , LiC4F9S03 , LiC104 ) LiA102 ) LiAlCl4 , LiN(CxF2x+1S02) (CyF2y+1S02) (여기서, x 및 y는 자연수임), LiCl , Li l , LiB(C204)2(리튬 비스옥살레이토 보레이트 ( l i thium bi s(oxalato) borate ; Li BOB) 또는 이들의 조합일 수 있다. The lithium salt is LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiC 4 F 9 S0 3 , LiC10 4) LiA10 2) LiAlCl 4 , LiN (C x F 2x + 1 S0 2 ) (CyF 2y + 1 S0 2 ) (Where x and y are natural numbers), LiCl, Li l, LiB (C 2 0 4 ) 2 (li thium bis (oxalato) borate; Li BOB) or a combination thereof have.
상기 음극 집전체 표면에 위치하는 음극 활물질 층은, 음극 활물질을 포함하고, 상기 음극 활물질은, 리튬 이온을 가역적으로 인터칼레이션 /디인터칼레이션할 수 있는 물질, 리튬 금속, 리튬 금속의 합금, 리튬올 도프 및 탈도프할 수 있는 물질, 전이 금속 산화물 또는 이들의 조합을 포함할 수 있다. The negative electrode active material layer positioned on the surface of the negative electrode current collector includes a negative electrode active material, and the negative electrode active material includes a material capable of reversibly intercalating / deintercalating lithium ions, lithium metal, and lithium metal. Alloys, lithiumol-doped and undoped materials, transition metal oxides or combinations thereof.
상기 음극 활물질은 리튬 티타늄 산화물일 수 있다.  The negative active material may be lithium titanium oxide.
상기 고체 전해질은 리튬 이온의 이동 속도가 빠르고 수용액 및 유기용액과 안정할 수 있는 물질로서, 비정질 이온 전도도 물질 (phosphorus-based glass, oxide-based glass, oxide/sulf ide based glass) , 세라믹 이은 전도도 물질 (lithium beta-alumina, sodium beta-alumina) , 리入 1콘 (Li super ionic conductor , LISICON) , 또는 나시콘 (Na super ionic conductor, NASICON)일 수 있다. 보다 구체적인 예로는 LiPON, Li20 - 11A1203, Na20 · 11A1203, Na3Zr2Si2P012, Li3Zr2Si2P0i2, Na5ZrP3012, Na5TiP30i2, N¾Fe2P3012, Na-Si 1 icates, Li0.3La00.5Ti03, Na5MSi4012 (M = Nd, Gd, Dy), Li4ZrP30i2, Li5TiP3012, Li3Fe2P3012, 또는
Figure imgf000004_0001
일 수 있다. 이러한 물질들은 U.S. Pat. No.4, 985,317 에 잘 명시 되어있다.
The solid electrolyte is a material capable of fast moving of lithium ions and being stable with an aqueous solution and an organic solution, and includes an amorphous ion conductive material (phosphorus-based glass, oxide-based glass, oxide / sulfide based glass), and ceramic conductive material. (lithium beta-alumina, sodium beta-alumina), Li super ionic conductor (LISICON), or Na super ionic conductor (NASICON). More specific examples include LiPON, Li 2 0 - 11A1 2 0 3, Na 2 0 · 11A1 2 0 3, Na 3 Zr 2 Si 2 P0 12, Li 3 Zr 2 Si 2 P0i 2, Na 5 ZrP 3 0 12, Na 5 TiP 3 0i 2 , N¾Fe 2 P 3 0 12 , Na-Si 1 icates, Li 0 . 3 La0 0 . 5 Ti0 3 , Na 5 MSi 4 0 12 (M = Nd, Gd, Dy), Li 4 ZrP 3 0i 2 , Li 5 TiP 3 0 12 , Li 3 Fe 2 P 3 0 12 , or
Figure imgf000004_0001
Can be. Such materials are described in US Pat. It is well stated in No. 4, 985,317.
보다 구체적으로, 상기 고체 전해질은, Li1+x(M,Al,Ga)x(Gei-yTiy)2- X(P04)3 (x < 0.8 and 0<y<1.0), M = Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and/or Yb, 를 포함할 수 있다. More specifically, the solid electrolyte, Li 1 + x (M, Al, Ga) x (G ei - y Ti y ) 2 - X (P0 4 ) 3 (x <0.8 and 0 <y <1.0), M = Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and / or Yb, may be included.
상기 고체 전해질은, Li1+x+yQxTi2xSiyP3-y012 (0<x<0.4 and 0<y<0.6), Q = Al or Ga, 를 포함할 수 있다. 이러한 물질들은 0HARA Coporation, Japan 에서 구입할수 있으며, 이러한 물질들은 U.S. Pat. Nos. 5,702,995, 6,030,909, 6,315,881 및 6, 485,622에 명시 되어 있다. The solid electrolyte may include Li 1 + x + y Q x Ti 2x Si y P 3 - y 0 12 (0 <x <0.4 and 0 <y <0.6), Q = Al or Ga, . These materials are available from 0HARA Coporation, Japan. These materials are described in US Pat. Nos. 5,702,995, 6,030,909, 6,315,881 and 6, 485,622.
상기 양극부는 전도성 첨가제를 더 포함할 수 있다.  The anode portion may further include a conductive additive.
상기 전도성 첨가제는 탄소계 물질일 수 있다.  The conductive additive may be a carbon-based material.
상기 탄소계 물질은, 리튬 함유 용액 내 분산성 개선을 위해 표면이 개질된 탄소계 물질일 수 있다.  The carbonaceous material may be a carbonaceous material having a surface modified to improve dispersibility in a lithium-containing solution.
본 발명의 다른 일 구현예에서는, 리튬 함유 용액 및 상기 리튬 함유 용액에 함침된 양극 집전체를 포함하는 액상의 양극부; 액상의 유기 전해질, 상기 액상의 유기 전해질에 함침된 음극 집전체 및 상기 음극 집전체 표면에 위치하는 음극 활물질 층을 포함하는 음극부; 및 상기 양극부와 상기 음극부 사이에 위치하고, 상기 양극부와 상기 음극부 사이로 선택적으로 리륨 이온을 투과시키는 고체 전해질;부를 포함하는 리튬 이차 전지 시스템을 제공한다 . In another embodiment of the present invention, a liquid positive electrode portion including a lithium-containing solution and a positive electrode current collector impregnated in the lithium-containing solution; A negative electrode portion including a liquid organic electrolyte, a negative electrode current collector impregnated in the liquid organic electrolyte, and a negative electrode active material layer positioned on a surface of the negative electrode current collector; And between the anode portion and the cathode portion, between the anode portion and the cathode portion. It provides a lithium secondary battery system comprising a solid electrolyte;
상기 리튬 함유 용액은 폐전지로부터 추출된 리튬 수용액으로 상기 리륨 이차 전지 시스템은 폐전지 내 존재하는 리튬을 재이용할 수 있다. 상기 리튬 함유 용액은, 폐전지를 분쇄시킨 후 이를 수용액에 투입하여 폐전지 내 잔여 리튬을 추출한 리튬 수용액일 수 있다.  The lithium-containing solution is an aqueous lithium solution extracted from a waste battery, and the lithium secondary battery system may reuse lithium present in the waste battery. The lithium-containing solution may be a lithium aqueous solution in which residual lithium in the waste battery is extracted by pulverizing the waste battery and then putting it in an aqueous solution.
상기 음극부 내 유기 전해질은, 비수성 유기 용매 및 /또는 리튬염을 포함할 수 있다.  The organic electrolyte in the negative electrode unit may include a non-aqueous organic solvent and / or a lithium salt.
상기 음극 집전체 표면에 위치하는 음극 활물질 충은, 음극 활물질을 포함하고, 상기 음극 활물질은, 리튬 이온을 가역적으로 인터칼레이션 /디인터칼레이션할 수 있는 물질, 리튬 금속, 리튬 금속의 합금, 리튬을 도프 및 탈도프할 수 있는 물질, 전이 금속 산화물 또는 이들의 조합을 포함할 수 있다.  The negative electrode active material charge positioned on the surface of the negative electrode current collector includes a negative electrode active material, the negative electrode active material, a material capable of reversibly intercalating / deintercalating lithium ions, lithium metal, an alloy of lithium metal, And materials capable of doping and undoping lithium, transition metal oxides, or combinations thereof.
상기 음극 활물질은 리튬 티타늄 산화물일 수 있다.  The negative active material may be lithium titanium oxide.
상기 고체 전해질은 리튬 이온의 이동 속도가 빠르고 수용액 및 유기용액과 안정할 수 있는 물질로서, 비정질 이은 전도도 물질 The solid electrolyte is a material capable of fast moving of lithium ions and being stable with an aqueous solution and an organic solution.
(phosphorus-based glass, oxide-based glass , oxide/sul fide based glass) 세라믹 이온 전도도 물질 (lithium beta-alumina, sodium beta-alumina) , 리시콘 (Li super ionic conductor , LISICON) , 또는 나시콘 (Na super ionic conductor, NASICON)일 수 있다. 보다 구체적인 예로는 UPON, Li20 - 11A1203, Na20 - 11A1203, Na3Zr2Si2P012, Li3Zr2Si2P012, Na5ZrP3012, Na5TiP3 2, Na3Fe2P30i2, Na-Si 1 icates, Li03La00.5Ti03, Na5MSi4(½ (M = Nd, Gd, Dy), Li4ZrP30i2, Li5TiP3012, Li3Fe2P3012, 또는 Li^bP^ 일 수 있다. 이러한 물질들은 U.S. Pat. o.4, 985,317 에 잘 명시 되어있다. (phosphorus-based glass, oxide-based glass, oxide / sul fide based glass) ceramic ion conducting materials (lithium beta-alumina, sodium beta-alumina), li super ionic conductor (LISICON), or nacicon (Na super ionic conductor, NASICON). More specific examples include UPON, Li 2 0-11A1 2 0 3 , Na 2 0-11A1 2 0 3 , Na 3 Zr 2 Si 2 P0 12 , Li 3 Zr 2 Si 2 P0 12 , Na 5 ZrP 3 0 12 , Na 5 TiP 3 2 , Na 3 Fe 2 P 3 0i 2 , Na-Si 1 icates, Li 03 La0 0 . 5 Ti0 3 , Na 5 MSi 4 (½ (M = Nd, Gd, Dy), Li 4 ZrP 3 0i 2, Li 5 TiP 3 0 12 , Li 3 Fe 2 P 3 0 12 , or Li ^ bP ^. These substances are well specified in US Pat. O. 4, 985,317.
보다 구체적으로, 상기 고체 전해질은, Lh+x .Al.Ga Gei-yTiy More specifically, the solid electrolyte, Lh + x .Al.Ga Gei-yTiy
X(P04)3 (x < 0.8 and 0<y<1.0), M = Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and/or Yb, 를 포함할 수 있다. It may include X (P0 4 ) 3 (x <0.8 and 0 <y <1.0), M = Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and / or Yb ,.
상기 고체 전해질은, Li1+x+yQxTi2xSiyP3y0i2 (0<x<0.4 and 0<y<0.6), Q = Al or Ga, 를 포함할 수 있다. 이러한 물질들은 0HARA Coporation, Japan 에서 구입할수 있으며, 이러한 물질들은 U.S. Pat. Nos. 5,702,995, 6,030,909, 6,315,881 및 6,485,622에 명시 되어 있다. The solid electrolyte may include Li 1 + x + y Q x Ti 2x Si y P 3y 0i 2 (0 <x <0.4 and 0 <y <0.6), Q = Al or Ga, . These substances are 0HARA Coporation, Japan, which is available from US Pat. Nos. 5,702,995, 6,030,909, 6,315,881 and 6,485,622.
상기 양극부는 전도성 첨가제를 더 포함할 수 있다. 【발명의 효과】  The anode portion may further include a conductive additive. 【Effects of the Invention】
리튬 이차 전지 및 리튬 이차 전지 시스템에 관한 것이다. 보다 구체적으로 폐전지를 이용한 리튬 이차 전지 및 리튬 이차 전지 시스템에 관한 것이다.  A lithium secondary battery and a lithium secondary battery system. More specifically, the present invention relates to a lithium secondary battery and a lithium secondary battery system using waste batteries.
보다 구체적으로, 리튬 이차 전지 및 리튬 이차 전지 시스템을 이용하는 경우, 폐전지로부터 리튬의 회수가 용이하다. 또한, 상기 리튬의 회수 단계는 저전력일 수 있다.  More specifically, when using a lithium secondary battery and a lithium secondary battery system, the recovery of lithium from the waste battery is easy. In addition, the recovery step of lithium may be low power.
이러한 전지 구성 및 시스템은 기존에 보고된 바가 없는 신규 시스템으로 추후 다양한 분야에 활용될 것으로 예상된다. 【도면의 간단한 설명】  These battery configurations and systems are new systems that have not been reported previously and are expected to be used in various fields in the future. [Brief Description of Drawings]
도 1은 본 발명의 일 구현예에 따른 리튬 이차 전지의 개략도이다. 도 2는 O.lmA'crrf2에서의 사용한 폐전지 내 리튬의 원료별로 충전 전압 평가 데이터 및 이러한 원료의 흔합시의 충전 전압 평가 데이터 (0.2mA'cm—2, the molar ratio of LiFeP04 : LiC6 : LiPF6 = 1 : 1 : 3)이다. 1 is a schematic view of a lithium secondary battery according to one embodiment of the present invention. FIG. 2 shows charging voltage evaluation data for each raw material of lithium in spent batteries in O.lmA'crrf 2 and charging voltage evaluation data when mixing these materials (0.2 mA'cm— 2 , the molar ratio of LiFeP0 4 : LiC 6 : LiPF 6 = 1: 1: 1).
도 3(a)은 스테인리스 스틸만을 음극에 사용한 O.lmA'cnf2에서의 층방전 곡선 이다. Fig. 3 (a) is a layer discharge curve in O.lmA'cnf 2 using only stainless steel as the cathode.
도 3(b) 는 그라파이트를 음극에 사용한 충방전 곡선이다.  3B is a charge / discharge curve in which graphite is used for the negative electrode.
도 4는 4^5012를 음극 활물질로 사용한 전지의 층방전 곡선 (a) 및 c-rate 별 방전 곡선이다. 4 is a layer discharge curve (a) and a discharge curve for each c-rate of a battery using 4 ^ 50 0 12 as a negative electrode active material.
【발명을 실시하기 위한 구체적인 내용】 [Specific contents to carry out invention]
이하, 본 발명의 구현예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구항의 범주에 의해 정의될 뿐이다. 본 발명의 일 구현예에서는, 리튬 함유 용액 및 상기 리튬 함유 용액에 함침된 양극 집전체를 포함하는 액상의 양극부; 액상의 유기 전해질, 상기 액상의 유기 전해질에 함침된 음극 집전체 및 상기 음극 집전체 표면에 위치하는 음극 활물질 층을 포함하는 음극부; 및 상기 양극부와 상기 음극부 사이에 위치하는 고체 전해질;을 포함하는 리튬 이차 전지를 제공한다. Hereinafter, embodiments of the present invention will be described in detail. However, this is presented as an example, whereby the present invention is not limited to this The invention is only defined by the scope of the claims which follow. In one embodiment of the present invention, a liquid positive electrode portion including a lithium-containing solution and a positive electrode current collector impregnated in the lithium-containing solution; A negative electrode portion including a liquid organic electrolyte, a negative electrode current collector impregnated in the liquid organic electrolyte, and a negative electrode active material layer positioned on a surface of the negative electrode current collector; And it provides a lithium secondary battery comprising a; solid electrolyte located between the positive electrode and the negative electrode.
상기 리튬 함유 용액은, 폐전지로부터 추출된 리튬 수용액일 수 있다. 즉, 상기 리튬 이차 전지는 보다 구체적으로 폐전지를 이용한 리튬 이차 전지일 수 있다.  The lithium-containing solution may be an aqueous lithium solution extracted from a spent battery. That is, the lithium secondary battery may be more specifically a lithium secondary battery using a waste battery.
보다 구체적으로, 리튬 이차 전지 및 리튬 이차 전지 시스템을 이용하는 경우, 폐전지로부터 리튬의 회수가 용이하다. 또한, 상기 리튬의 회수 단계는 저전력일 수 있다.  More specifically, when using a lithium secondary battery and a lithium secondary battery system, recovery of lithium from the waste battery is easy. In addition, the recovery step of lithium may be low power.
이러한 전지 구성 및 시스템은 기존에 보고된 바가 없는 신규 시스템으로 추후 다양한 분야에 활용될 것으로 예상된다.  These battery configurations and systems are new systems that have not been reported previously and are expected to be used in various fields in the future.
상기 리튬 수용액은, 폐전지를 분쇄시킨 후 이를 수용액 (aqueous water )에 투입하여 폐전지 내 잔여 리튬을 추출한 리튬 수용액일 수 있다. 분쇄 방법은 일반적인 물리적 분쇄 방법이면 제한 없이 이용 가능하다. 상기 수용액은 초순수 (DI water )일 수 있다. 다만, 이에 제한되는 것은 아니다.  The lithium aqueous solution may be a lithium aqueous solution in which residual lithium in the waste battery is extracted by pulverizing a waste battery and then putting the waste battery into aqueous solution. The grinding method can be used without limitation as long as it is a general physical grinding method. The aqueous solution may be ultra pure water (DI water). However, it is not limited thereto.
상기 음극부 내 유기 전해질은, 비수성 유기 용매 및 /또는 리튬염을 포함할 수 있다.  The organic electrolyte in the negative electrode unit may include a non-aqueous organic solvent and / or a lithium salt.
상기 비수성 유기 용매는 전지의 전기화학적 반웅에 관여하는 이온들이 이동할 수 있는 매질 역할을 한다.  The non-aqueous organic solvent serves as a medium through which ions involved in the electrochemical reaction of the cell can move.
상기 비수성 유기용매로는 카보네이트계, 에스테르계, 에테르계, 케톤계, 알코을계 또는 비양성자성 용매를 사용할 수 있다. 상기 카보네이트계 용매로는 디메틸 카보네이트 (DMC) , 디에틸 카보네이트 (DEC) , 디프로필 카보네이트 (DPC) , 메틸프로필 카보네이트 (MPC) , 에틸프로필 카보네이트 (EPC) , 메틸에틸 카보네이트 (MEC) , 에틸렌 카보네이트 (EC) 프로필렌 카보네이트 (PC) , 부틸렌 카보네이트 (BC) 등이 사용될 수 있으며 상기 에스테르계 용매로는 메틸 아세테이트, 에틸 아세테이트, nᅳ프로필 아세테이트, 1,1-디메틸에¾ 아세테이트, 메틸프로피오네이트 에틸프로피오네이트, Y -부티로락톤, 데카놀라이드 (decanol ide) 발레로락톤, 메발로노락톤 (mevalono lactone) , 카프로락톤 (caprolactone) 등이 사용될 수 있다. 상기 에테르계 용매로는 디부틸 에테르 테트라글라임, 디글라임, 디메록시에탄, 2-메틸테트라히드로퓨란 테트라히드로퓨란 등이 사용될 수 있으몌 상기 케톤계 용매로는 시클로핵사논 등이 사용될 수 있다. 또한 상기 알코을계 용매로는 에틸알코을, 이소프로필 알코올 등이 사용될 수 있으며, 상기 비양성자성 용매로는 R-CN(R은 C2 내지 C20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 ,니트릴류 디메틸포름아미드 등의 아미드류, 1 ,3-디옥솔란 등의 디옥솔란류 설포란 (sul folane)류 등이 사용될 수 있다. The non-aqueous organic solvent may be a carbonate, ester, ether, ketone, alcohol or aprotic solvent. Examples of the carbonate solvents include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), methylpropyl carbonate (MPC), and ethyl propyl. Carbonate (EPC), methylethyl carbonate (MEC), ethylene carbonate (EC) propylene carbonate (PC), butylene carbonate (BC) and the like can be used, and the ester solvent is methyl acetate, ethyl acetate, n ᅳ propyl acetate , 1,1-Dimethyl ¾ acetate, methylpropionate ethylpropionate, Y-butyrolactone, decanolide, valerolactone, mevalonolactone, caprolactone And the like can be used. As the ether solvent, dibutyl ether tetraglyme, diglyme, dimethoxyethane, 2-methyltetrahydrofuran tetrahydrofuran, and the like may be used. As the ketone solvent, cyclonucanon may be used. In addition, the alcohol solvent may be used ethyl alcohol, isopropyl alcohol, etc., the aprotic solvent is R-CN (R is a C2 to C20 linear, branched or cyclic hydrocarbon group, double Amides such as nitrile dimethylformamide, dioxolanes such as 1,3-dioxolane, and sul folane such as 1,3-dioxolane, and the like.
상기 비수성 유기 용매는 단독으로 또는 하나 이상 흔합하여 사용할 수 있으며, 하나 이상 흔합하여 사용하는 경우의 흔합 비율은 목적하는 전지 성능에 따라 적절하게 조절할 수 있고, 이는 당해 분야에 종사하는 사람들에게는 널리 이해될 수 있다.  The non-aqueous organic solvent may be used alone or in combination of one or more, and the mixing ratio in the case of using one or more in combination can be appropriately adjusted according to the desired battery performance, which is widely understood by those skilled in the art. Can be.
또한, 상기 카보네이트계 용매의 경우 환형 (cycl ic) 카보네이트와 사슬형 (chain) 카보네이트를 흔합하여 사용하는 것이 좋다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 약 1 : 1 내지 약 1 :9의 부피비로 흔합하여 사용하는 것이 전해액의 성능이 우수하게 나타날 수 있다.  In the case of the carbonate solvent, it is preferable to use a cyclic carbonate and a chain carbonate in combination. In this case, when the cyclic carbonate and the chain carbonate are mixed and used in a volume ratio of about 1: 1 to about 1: 9, the performance of the electrolyte may be excellent.
상기 비수성 유기용매는 상기 카보네이트계 용매에 상기 방향족 탄화수소계 유기용매를 더 포함할 수도 있다. 이때 상기 카보네이트계 용매와 상기 방향족 탄화수소계 유기용매는 약 1 : 1 내지 약 30 : 1의 부피비로 흔합될 수 있다.  The non-aqueous organic solvent may further include the aromatic hydrocarbon organic solvent in the carbonate solvent. In this case, the carbonate-based solvent and the aromatic hydrocarbon-based organic solvent may be mixed in a volume ratio of about 1: 1 to about 30: 1.
상기 방향족 탄화수소계 유기용매로는 하기 화학식 1의 방향족 탄화수소계 화합물이 사용될 수 있다. [화학식 1] As the aromatic hydrocarbon-based organic solvent, an aromatic hydrocarbon compound of Formula 1 may be used. [Formula 1]
Figure imgf000009_0001
상기 화학식 1에서, Ri 내지 ¾는 각각 독립적으로 수소, 할로겐, C1 내지 C10의 알킬기, C1 내지 C10의 할로알킬기 또는 이들의 조합이다.
Figure imgf000009_0001
In Formula 1, Ri to ¾ are each independently hydrogen, halogen, alkyl group of C1 to C10, haloalkyl group of C1 to C10, or a combination thereof.
상기 방향족 탄화수소계 유기용매는 벤젠, 플루오로벤젠, 1,2- 디플루오로벤젠, 1, 3-디플루오로벤젠, 1, 4-디플루오로벤젠, 1,2,3— 트리플루오로벤젠, 1,2,4-트리플루오로벤젠, 클로로벤젠, 1, 2-디클로로벤젠 1,3-디클로로벤젠, 1,4-디클로로벤젠, 1,2,3-트리클로로벤젠, 1,2,4- 트리클로로벤젠, 아이오도벤젠, 1,2-디아이오도벤젠, 1,3-디아이오도벤젠, 1,4-디아이오도벤젠, 1,2,3-트리아이오도벤젠, 1,2,4-트리아이오도벤젠, 를루엔, 플루오로를루엔, 1,2ᅳ디플루오로를루엔, 1,3-디플루오로를루엔, 1,4-디플루오로를루엔, 1,2,3-트리플루오로를루엔, 1,2,4- 트리플루오로를루엔, 클로로를루엔, 1,2-디클로로를루엔, 1,3- 디클로로를루엔, 1,4-디클로로를루엔, 1,2,3-트리클로로를루엔, 1,2,4- 트리클로로를루엔, 아이오도를루엔, 1,2-디아이오도를루엔, 1,3- 디아이오도를루엔, 1,4-디아이오도를루엔, 1,2,3-트리아이오도를루엔, 1,2 ,4-트리아이오도를루엔, 자일렌 또는 이들의 조합을 사용할 수 있다. 상기 비수성 전해질은 전지 수명을 향상시키기 위하여 비닐렌 카보네이트 또는 하기 화학식 2의 에틸렌 카보네이트계 화합물을 더욱 포함할 수도 있다.  The aromatic hydrocarbon organic solvent is benzene, fluorobenzene, 1,2-difluorobenzene, 1, 3-difluorobenzene, 1, 4-difluorobenzene, 1,2,3—trifluorobenzene , 1,2,4-trifluorobenzene, chlorobenzene, 1, 2-dichlorobenzene 1,3-dichlorobenzene, 1,4-dichlorobenzene, 1,2,3-trichlorobenzene, 1,2,4 -Trichlorobenzene, iodobenzene, 1,2-diiodobenzene, 1,3-diiodobenzene, 1,4-dioiobenzene, 1,2,3-triiodobenzene, 1,2,4- Triiodobenzene, toluene, fluoroluene, 1,2-difluoroluene, 1,3-difluoroluene, 1,4-difluoroluene, 1,2,3-trifluoro Chloroluene, 1,2,4-trifluoroluene, chloroluene, 1,2-dichloroluene, 1,3-dichloroluene, 1,4-dichloroluene, 1,2,3- Trichloroluene, 1,2,4-trichloroluene Iodoluene, 1,2-Diiodoluene, 1,3-Diiodoluene, 1,4-Diiodoluene, 1,2,3-triiodoluene, 1,2,4- Triiodoluene, xylene or a combination thereof can be used. The non-aqueous electrolyte may further include vinylene carbonate or an ethylene carbonate compound represented by the following Chemical Formula 2 to improve battery life.
[화학식 2]
Figure imgf000010_0001
상기 화학식 2에서, R7 및 R8는 각각 독립적으로 수소, 할로겐기, 시아노기 (CN) , 니트로기 (N02) 또는 C1 내지 C5의 플루오로알킬기이며, 상기 R7과 ¾중 적어도 하나는 할로겐기, 시아노기 (CN) , 니트로기 (N02) 또는 C1 내지 C5의 플루오로알킬기이다.
[Formula 2 ]
Figure imgf000010_0001
In Formula 2, R 7 and R 8 are each independently hydrogen, halogen, cyano group (CN), nitro group (N0 2 ) or C1 to C5 fluoroalkyl group, at least one of R 7 and ¾ Halogen group, cyano group (CN), nitro group (N0 2 ) or C1 to C5 fluoroalkyl group.
상기 에틸렌 카보네이트계 화합물의 대표적인 예로는 디플루오로 에틸렌카보네이트, 클로로에틸렌 카보네이트, 디클로로에틸렌 카보네이트, 브로모에틸렌 카보네이트, 디브로모에틸렌 카보네이트, 니트로에틸렌 카보네이트, 시아노에틸렌 카보네이트, 플루오로에틸렌 카보네이트 등을 들 수 있다. 상기 비닐렌 카보네이트 또는 상기 에틸렌 카보네이트계 화합물을 더욱 사용하는 경우 그 사용량을 적절하게 조절하여 수명을 향상시킬 수 있다.  Representative examples of the ethylene carbonate compounds include difluoro ethylene carbonate, chloroethylene carbonate, dichloroethylene carbonate, bromoethylene carbonate, dibromoethylene carbonate, nitroethylene carbonate, cyanoethylene carbonate, fluoroethylene carbonate, and the like. Can be. When the vinylene carbonate or the ethylene carbonate-based compound is further used, the amount thereof may be appropriately adjusted to improve life.
상기 리튬염은 상기 비수성 유기 용매에 용해되어, 전지 내에서 리튬 이온의 공급원으로 작용하여 기본적인 리튬 이차 전지의 작동을 가능하게 하고, 양극과 음극 사이의 리튬 이온의 이동을 촉진하는 역할을 하는 물질이다. 상기 리튬염의 대표적인 예로는 LiPF6, LiBF4 ) LiSbFg , LiAsF6, LiC4F9S03 , LiC104, LiA102 , LiAlCl4,
Figure imgf000010_0002
(여기서, x 및 y는 자연수임) , LiCl , Li l , LiB(C204)2(리튬 비스옥살레이토 보레이트 ( l ithium bis(oxalato) borate ; LiBOB) 또는 이들의 조합을 들 수 있으며, 이들을 지지 (support ing) 전해염으로 포함한다. 상기 리튬염의 농도는 0.1 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다. 상기 음극 집전체 표면에 위치하는 음극 활물질 층은, 음극 활물질을 포함하고, 상기 음극 활물질은, 리튬 이온을 가역적으로 인터칼레이션 /디인터칼레이션할 수 있는 물질, 리튬 금속, 리튬 금속의 합금, 리튬을 도프 및 탈도프할 수 있는 물질, 전이 금속 산화물 또는 이들의 조합을 포함할 수 있다.
The lithium salt is dissolved in the non-aqueous organic solvent, and acts as a source of lithium ions in the battery to enable the operation of the basic lithium secondary battery, and serves to promote the movement of lithium ions between the positive electrode and the negative electrode to be. Representative examples of the lithium salt are LiPF 6 , LiBF 4) LiSbFg, LiAsF 6 , LiC 4 F 9 S0 3 , LiC10 4 , LiA10 2 , LiAlCl 4 ,
Figure imgf000010_0002
(Where x and y are natural numbers), LiCl, Li l, LiB (C 2 0 4 ) 2 (lithium bis (oxalato) borate; LiBOB) or a combination thereof, These are included as supporting electrolyte salts, and the lithium salt concentration is preferably used within the range of 0.1 to 2.0 M. When the lithium salt concentration is included in the above range, the electrolyte has an appropriate conductivity and viscosity, and thus an excellent electrolyte. The negative electrode active material layer positioned on the surface of the negative electrode current collector includes a negative electrode active material, and the negative electrode active material reversibly displaces lithium ions. Intercalation / deintercalable materials, lithium metals, alloys of lithium metals, materials capable of doping and undoping lithium, transition metal oxides, or combinations thereof.
상기 리튬 이온을 가역적으로 인터칼레이션 /디인터칼레이션할 수 있는 물질로는 탄소 물질로서, 리튬 이온 이차 전지에서 일반적으로 사용되는 탄소계 음극 활물질은 어떠한 것도 사용할 수 있으며, 그 대표적인 예로는 결정질 탄소, 비정질 탄소 또는 이들의 조합을 사용할 수 있다. 상기 결정질 탄소의 예로는 무정형, 판상, 린편상 (flake), 구형 또는 섬유형의 천연 혹연 또는 인조 혹연과 같은 혹연을 들 수 있고, 상기 비정질 탄소의 예로는 소프트 카본 (soft carbon: 저온 소성 탄소) 또는 하드 카본 (hard carbon) , 메조페이스 피치 탄화물, 소성된 코크스 등을 들 수 있다.  As a material capable of reversibly intercalating / deintercalating the lithium ions, any carbon-based negative electrode active material generally used in a lithium ion secondary battery may be used, and representative examples thereof include crystalline carbon. Amorphous carbon or a combination thereof may be used. Examples of the crystalline carbon include amorphous, plate-like, flake, spherical or fibrous natural or artificial ones. Examples of the amorphous carbon include soft carbon (soft carbon) Or hard carbon, mesophase pitch carbide, calcined coke, or the like.
상기 리튬 금속의 합금으로는 리튬과 Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al 또는 Sn의 금속과의 합금이 사용될 수 있다.  Examples of the alloy of the lithium metal include lithium and metals of Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, or Sn. Alloys can be used.
상기 리튬을 도프 및 탈도프할 수 있는 물질로는 Si, SiOx(0 < x < 2), Si-C 복합체, Si-Q 합금 (상기 Q는 알칼리 금속, 알칼리 토금속, 13족 내지 16족 원소, 전이금속, 회토류 원소 또는 이들의 조합이며, Si은 아님), Sn, Sn02, Sn-C 복합체, Sn-R (상기 R은 알칼리 금속, 알칼리 토금속, 13족 내지 16족 원소, 전이금속, 회토류 원소 또는 이들의 조합이며, Sn은 아님) 등을 들 수 있다. 상기 Q 및 R의 구체적인 원소로는, Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf , Rf , V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, 0s, Hs, Rh, Ir, Pd, Pt , Cu, Ag, Au, Zn, Cd, B, Al , Ga, Sn, In, Ti, Ge, P, As, Sb, Bi, S, Se, Te, Po또는 이들의 조합을 들 수 있다. Examples of the material capable of doping and undoping lithium include Si, SiO x (0 <x <2), Si-C composites, Si-Q alloys (wherein Q is an alkali metal, an alkaline earth metal, and a group 13 to 16 element). , Transition metals, rare earth elements or combinations thereof, not Si), Sn, Sn0 2 , Sn-C composites, Sn-R (wherein R is an alkali metal, an alkaline earth metal, an element of Group 13-16, a transition metal , Rare earth elements or combinations thereof, and not Sn). Specific elements of Q and R include Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, 0s, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ti, Ge, P, As, Sb, Bi, S, Se, Te, Po, or a combination thereof is mentioned.
상기 전이 금속 화합물로는 리튬을 가역적으로 인터칼레이션 /디인터갈레이션 할수 있는 물질로서, Li4Ti50i2, LiV02, LiTiS2, LiVS2( KNbsOis, K6Nb10.803o등을 예로 들수 있다. To the transition metal compound is an intercalation / de-inter illustration be materials that go lithium reversibly, such as Li 4 Ti 5 0i 2, LiV0 2, LiTiS 2, LiVS 2 (KNbsOis, K 6 Nb 10. 8 03o For example.
상기 음극 활물질 층은 또한 바인더를 포함하며, 선택적으로 도전재를 더욱 포함할 수도 있다. 상기 바인더는 음극 활물질 입자들을 서로 잘 부착시키고, 또한 음극 활물질을 전류 집전체에 잘 부착시키는 역할을 하며, 그 대표적인 예로 폴리비닐알콜 , 카르복시메틸셀롤로즈, 히드록시프로필셀를로즈, 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 플리비닐플루오라이드, 에틸렌 옥사이드를 포함하는 폴리머, 폴리비닐피를리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴 폴루오라이드, 폴리에틸렌, 폴리프로필렌, 스티렌-부타디엔 러버, 아크릴레이티드 스티렌-부타디엔 러버, 에폭시 수지, 나일론 등을 사용할 수 있으나ᅳ 이에 한정되는 것은 아니다. The negative electrode active material layer also includes a binder, and may optionally further include a conductive material. The binder serves to adhere the negative electrode active material particles to each other well, and also to adhere the negative electrode active material to the current collector well, and representative examples thereof include polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, polyvinyl chloride, and carbon. Compounded polyvinylchloride, polyvinylfluoride, polymers containing ethylene oxide, polyvinylpyridone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, styrene-butadiene rubber , Acrylated styrene-butadiene rubber, epoxy resin, nylon and the like may be used, but the present invention is not limited thereto.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 갓도 사용가능하며, 그 예로 천연 흑연, 인조 혹연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유 등의 금속계 물질; 폴리페닐렌 유도체 등의 도전성 폴리머; 또는 이들의 흔합물을 포함하는 도전성 재료를 사용할 수 있다.  The conductive material is used to impart conductivity to the electrode, and may be used as long as it is an electronic conductive material without causing chemical change in the battery to be constructed. Examples thereof include natural graphite, artificial graphite, carbon black, acetylene black, and ketjen. Carbon-based materials such as black and carbon fiber; Metal materials such as metal powder or metal fibers such as copper, nickel, aluminum and silver; Conductive polymers such as polyphenylene derivatives; Or an electroconductive material containing these mixture can be used.
상기 집전체로는 구리 박, 니켈 박, 스테인레스강 박, 티타늄 박, 니켈 발포체 (foam) , 구리 발포체, 전도성 금속이 코팅된 폴리머 기재, 또는 이들의 조합을 사용할 수 있다.  The current collector may be copper foil, nickel foil, stainless steel foil, titanium foil, nickel foam (foam), copper foam, a polymer substrate coated with a conductive metal, or a combination thereof.
상기 음극은 활물질, 바인더, 및 도전재를 용매 증에서 흔합하여 활물질 조성물을 제조하고, 이 조성물을 전류 집전체에 도포하여 제조한다. 이와 같은 전극 제조 방법은 당해 분야에 널리 알려진 내용이므로 본 명세서에서 상세한 설명은 생략하기로 한다. 상기 용매로는 N- 메틸피를리돈 등을 사용할 수 있으나 이에 한정되는 것은 아니다.  The negative electrode is prepared by mixing an active material, a binder, and a conductive material in a solvent mixture to prepare an active material composition, and applying the composition to a current collector. Since such an electrode manufacturing method is well known in the art, detailed description thereof will be omitted. As the solvent, N-methylpyrrolidone may be used, but is not limited thereto.
상기 고체 전해질은, 상기 고체 전해질은 리튬 이온의 이동 속도가 빠르고 수용액 및 유기용액과 안정할 수 있는 물질로서, 비정질 이온 전도도 물질 (phosphorus-based glass , oxide-based glass , oxide/sul f ide based glass) , 세라믹 이온 전도도 물질 ( l i thium beta-alumina, sodium beta— alumina), 리入)콘 (Li super ionic conductor , LISICON) , 또는 나시콘 (Na super ionic conductor, NASICON)일 수 있다. 보다 구체적인 예로는 LiPON, Li20 - 11A1203> Na20 - 11A1203, Na3Zr2Si2P0i2, Li3Zr2Si2P0i2, Na5ZrP30i2> Na5TiP3012, Na3Fe2P3012, Na-Silicates, Li0.3La00.5Ti03, Na5MSi40i2 (M = Nd, Gd, Dy), Li4ZrP30i2, Li5TiP3012, Li3Fe2P3012, 또는 Li^bi^Oi일 수 있다. 이러한 물질들은 U.S. Pat. No.4,985, 317 에 잘 명시 되어있다. The solid electrolyte, the solid electrolyte is a material that can be fast to move the lithium ions and stable with the aqueous solution and organic solution, amorphous ion conductivity materials (phosphorus-based glass, oxide-based glass, oxide / sulf based glass ), Ceramic ion conducting material (li thium beta-alumina, sodium beta—alumina), re superconductor (Li super ionic conductor, LISICON), or It may be Na super ionic conductor (NASICON). More specific examples include LiPON, Li 2 0 - 11A1 2 0 3> Na 2 0 - 11A1 2 0 3, Na 3 Zr 2 Si 2 P0i 2, Li 3 Zr 2 Si 2 P0i 2, Na 5 ZrP 3 0i 2> Na 5 TiP 3 0 12 , Na 3 Fe 2 P 3 0 12 , Na-Silicates, Li 0 . 3 La0 0 . 5 Ti0 3 , Na 5 MSi 4 0i 2 (M = Nd, Gd, Dy), Li 4 ZrP 3 0i 2 , Li 5 TiP 3 0 12 , Li 3 Fe 2 P 3 0 12 , or Li ^ bi ^ Oi Can be. Such materials are described in US Pat. It is well stated in No. 4,985,317.
보다 구체적으로, 상기 고체 전해질은,
Figure imgf000013_0001
More specifically, the solid electrolyte,
Figure imgf000013_0001
X(P04)3 (x < 0.8 and 0<y<1.0), M = Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and/or Yb, 를 포함할 수 있다. X (P0 4 ) 3 (x <0.8 and 0 <y <1.0), M = Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and / or Yb, and the like.
상기 고체 전해질은, Li1+x+yQxTi2xSiyP3y012 (0<x<0.4 and 0<y<0.6), Q = Al or Ga, 를 포함할 수 있다. 이러한 물질들은 0HARA Coporation, Japan 에서 구입할수 있으며, 이러한 물질들은 U.S. Pat. Nos. 5,702,995, 6,030,909, 6,315,881 및 6,485,622에 명시 되어 있다. The solid electrolyte may include Li 1 + x + y Q x Ti 2x Si y P 3y 0 12 (0 <x <0.4 and 0 <y <0.6), Q = Al or Ga, . These materials are available from 0HARA Coporation, Japan. These materials are described in US Pat. Nos. 5,702,995, 6,030,909, 6,315,881 and 6,485,622.
상기 양극부는 전도성 첨가제를 더 포함할 수 있다. 이러한 전도성 첨가제는 양극부 내의 전자 이동을 용이하게 해줄 수 있다. 또한, 전도성 첨가제는 양극부 용액 내 분산이 잘 될 수 있도록 표면이 개질될 수 있다. 이때, 표면 개질은 유기 작용기를 상기 전도성 첨가제 표면에 도입하는 방법을 이용할 수 있다. 본 발명의 다른 일 구현예에서는, 리륨 함유 용액 및 상기 리튬 함유 용액에 함침된 양극 집전체를 포함하는 액상의 양극부; 액상의 유기 전해질, 상기 액상의 유기 전해질에 함침된 음극 집전체 및 상기 음극 집전체 표면에 위치하는 음극 활물질 층을 포함하는 음극부; 및 상기 양극부와 상기 음극부 사이에 위치하고, 상기 양극부와 상기 음극부 사이로 선택적으로 리륨 이온을 투과시키는 고체 전해질;부를 포함하는 리륨 이차 전지 시스템을 제공한다.  The anode portion may further include a conductive additive. Such conductive additives may facilitate electron transfer in the anode portion. In addition, the conductive additive may be modified to have a good surface in the anode solution. In this case, the surface modification may use a method of introducing an organic functional group to the conductive additive surface. In another embodiment of the present invention, a liquid positive electrode portion including a lithium-containing solution and a positive electrode current collector impregnated in the lithium-containing solution; A negative electrode portion including a liquid organic electrolyte, a negative electrode current collector impregnated in the liquid organic electrolyte, and a negative electrode active material layer positioned on a surface of the negative electrode current collector; And a solid electrolyte positioned between the positive electrode part and the negative electrode part and selectively transmitting lithium ions between the positive electrode part and the negative electrode part.
상기 리륨 함유 용액은 폐전지로부터 추출된 리튬 수용액으로, 상기 리륨 이차 전지 시스템은 폐전지 내 존재하는 리튬을 재이용하는 것인 리튬 이차 전지 시스템일 수 있다.  The lithium-containing solution may be a lithium aqueous solution extracted from a waste battery, and the lithium secondary battery system may be a lithium secondary battery system in which lithium existing in a waste battery is reused.
이러한 각 시스템의 구성에 대한 구체적인 설명은 전술한 본 발명의 일 구현예에 따른 라튬 이차 전지와 동일하기 때문에 그 설명을 생략하도록 한다. 이하 본 발명의 실시예 및 비교예를 기재한다. 그러한 하기한 실시예는 본 발명의 일 실시예일뿐 본 발명이 하기한 실시예에 한정되는 것은 아니다. 실시예: 리튬 이차 전자의 제조 Detailed description of the configuration of each of these systems described above of the present invention Since it is the same as the lithium secondary battery according to one embodiment, description thereof will be omitted. Hereinafter, examples and comparative examples of the present invention are described. Such following examples are only examples of the present invention, and the present invention is not limited to the following examples. Example: Preparation of Lithium Secondary Electronics
폐전지로 LiFeP04 양극, 그라파이트 음극, 및 1M LiPF6-EC:DEC 전해질을 포함하는 라튬 이차 전지를 이용하였다. 이러한 구성을 포함하는 폐전지를 분쇄하여 수용액에 투입하였다. 상기 과정을 통해 제조된 리튬 함유 용액에 전도성 첨가제로 탄소 물질 (Vulcan XC— 72)의 표면에 -ph_S03H 작용기를 도입하였다. As a waste battery, a lithium secondary battery including a LiFeP04 anode, a graphite anode, and a 1M LiPF 6 -EC: DEC electrolyte was used. The waste battery containing such a structure was crushed and put into aqueous solution. In the lithium-containing solution prepared through the above procedure, a -ph_SO 3 H functional group was introduced to the surface of the carbon material (Vulcan XC— 72) as a conductive additive.
상기 제조된 리튬 함유 용액, 및 탄소종이 집전체를 양극부로 사용하였다. 음극부의 음극으로는 스테인리스 스틸 자체를 사용하거나, 여기에 그라파이트를 음극 활물질로 사용하거나, 리튬 티타늄 산화물 (Li4Ti5012)을 음극 활물질로 사용하였다. The prepared lithium-containing solution and the carbon paper current collector were used as the positive electrode portion. Stainless steel itself was used as the negative electrode of the negative electrode portion, graphite was used as the negative electrode active material, or lithium titanium oxide (Li 4 Ti 5 0 12 ) was used as the negative electrode active material.
이 때 음극부 내 사용된 유기 전해질은 1M LiPF6 ( in EC:DEC=1 : 1)이다. 사용한 고체 전해질은 Li (1+x+y)Ti(2x)Al(x)P(3-y)Siy012(0≤x≤l, 및 0≤y≤l)이다. OHARA사의 LIC-GC G79-3 N49 한 제품을 구매하였다. 고체전해질은 음극쪽의 유기전해질과 양극쪽의 수용액을 완전히 물리적으로 분리를 해야하기때문에, 고체 전해질로 전지의 음극쪽을 에폭시 (Epoxy Adhesive Tube Ki t , 1839 B/A Green, 3M Scotch-Weld) 를 사용하여 완전 실링하였다. 실링된 에폭시는 수용액 및 유기 용액과 물리적으로 접촉이 되기 때문에 둘과 화학적으로 안정해야한다. 실험예 1: 폐전지 내 리튬원료별 층전 전압측정 At this time, the organic electrolyte used in the cathode portion is 1M LiPF 6 (in EC: DEC = 1: 1). The solid electrolyte used was Li (1 + x + y) Ti (2x ) Al (x) P (3 - y) Si y 0 12 (0 ≦ x ≦ l, and 0 ≦ y ≦ l). OHARA's LIC-GC G79-3 N49 was purchased. The solid electrolyte must completely separate the organic electrolyte on the negative electrode side and the aqueous solution on the positive electrode side, so that the negative electrode side of the cell is solid with epoxy (Epoxy Adhesive Tube Kit, 1839 B / A Green, 3M Scotch-Weld). The complete seal was used. The sealed epoxy must be chemically stable with both because it is in physical contact with the aqueous and organic solutions. Experimental Example 1: Measurement of Layered Voltage by Lithium Material in Waste Battery
도 2는 O. lmA'cm— 2에서의 사용한 폐전지 내 리튬의 원료별로 충전 전압 평가 데이터 및 이러한 원료의 흔합시의 층전 전압 평가 데이터 (0.2mA'cnf2 , the molar rat io of LiFeP04 : LiC6 : LiPF6 = 1 : 1 : 3)이다. 보다 구체적으로, 양극 (LiFeP04) , 음극 (LiC6) , 그리고 전해질 (1M LiPF6-EC:DEC) 물질 각각이 수용액 속에 있을 때, 리튬 이온이 전지 층전을 통해 추출될 수 있는지 여부를 측정하였다 (도 2(a) ) . 수용액 속에 있는 LiFeP04 는 약 3.5 V 영역에서 리튬 이온이 추출됨을 확인하였다. 수용액에 담겨진 LiC6 는 약 3.7 V 영역에서 리튬 이온이 추출됨을 확인하였다. 수용액과 흔합된 유기용액 전해질에서는 약 4.0V 영역에서 리튬이온이 추출됨을 확인하였다. 음극 및 유기용액 전해질이 수용액의 흔합으로 인해 화학성분이 바뀌게 되지만, 그속에 있는 리튬 이온들은 여전히 추출될 수 있는 것을 보여준다. Fig. 2 shows charge voltage evaluation data for each raw material of lithium in spent batteries in O. lmA'cm— 2 and layered voltage evaluation data for mixing these raw materials (0.2 mA'cnf 2 , the molar rat io of LiFeP0 4 : LiC 6 : LiPF 6 = 1: 1: 3). More specifically, when each of the positive electrode (LiFePO 4 ), the negative electrode (LiC 6 ), and the electrolyte (1M LiPF 6 -EC: DEC) material were in an aqueous solution, it was measured whether lithium ions can be extracted through battery layer charge. (FIG. 2 (a)). LiFePO 4 in the aqueous solution was found to be lithium ions extracted in about 3.5V region. LiC 6 contained in the aqueous solution was confirmed that the lithium ion is extracted in about 3.7 V region. In the organic solution electrolyte mixed with the aqueous solution, it was confirmed that the lithium ion is extracted in about 4.0V region. The negative and organic electrolytes change the chemical composition due to the mixing of the aqueous solutions, but the lithium ions in them can still be extracted.
양극 (LiFeP04) , 음극 (LiC6) , 및 전해질 (1M LiPF6-EC:DEC) 물질을 포함하는 폐전지를 수용액에 다 같이 넣은 다음 전지를 충전했을 때, 도 2(b) 에서 두 개의 뚜렷한 층전 커브를 보여주는데, 처음 것은 리튬 이온이 양극에서 나오는 것을 보여주며, 수용액 속에 있는 양극에서 리튬을 모두 추출한 뒤에는, 수용액 속에 흔합된 전해질 또는 LiC6 에서 리튬 이온 추출되는 것을 좀더 높은 방전전위에서 관찰할수 있다. 실험예 2: 음극활물질별 전지 특성 평가 When a spent battery containing a positive electrode (LiFeP0 4 ), a negative electrode (LiC 6 ), and an electrolyte (1M LiPF 6 -EC: DEC) material was put together in an aqueous solution and then charged, the two distinctive cells are shown in FIG. 2 (b). The first layer shows lithium ion evolution from the anode, and after all the lithium has been extracted from the anode in aqueous solution, the lithium ion extraction from the electrolyte mixed in the aqueous solution or LiC 6 can be observed at a higher discharge potential. . Experimental Example 2: Evaluation of Battery Characteristics by Negative Electrode Material
도 3(a)은 스테인리스 스틸만을 음극에 사용한 으 lmA'cnf2에서의 층방전 곡선 이다. 첫 번째 층전 시간이 그 다음에 일어나는 층방전 시간에 비해 긴 것 알 수 있다. 이것은 첫 층전 때 리륨과 전해질 부반웅이 일어나 리튬 표면에 박막이 형성되기 때문이다. 첫 층전 후부터는 (즉, 리튬 표면 박막 형성 후), 충방전은 반복적으로 지속될 수 있다. 도 3(b) 는 그라파이트를 음극에 사용한 층방전 곡선이다. 리튬 메탈과 마찬가지로, 첫 번째 층전 때 전해질과의 부반응으로 충전시간이 길어지고, 이후의 충방전은 리튬 메탈과 대비 비교적 안정적이다. Fig. 3 (a) shows the layer discharge curve at lmA'cnf 2 using only stainless steel as the cathode. It can be seen that the first layer discharge time is longer than the next layer discharge time. This is because lithium and electrolyte side reactions occur at the first layer change and thin films are formed on the lithium surface. After the first layer charge (that is, after forming the lithium surface thin film), the charge and discharge can be repeated repeatedly. 3B is a layer discharge curve in which graphite is used for the cathode. Like lithium metal, the charging time is long due to side reaction with the electrolyte during the first layer charge, and subsequent charge and discharge are relatively stable compared with lithium metal.
또한, 도 4는 4^5012를 음극 활물질로 사용한 전지의 층방전 곡선 (a) 및 cᅳ rate 별 방전 곡선이다. Li4Ti5012 는 전해질과 안정하므로, 기타 부반웅이 없다. 이러한 부반응은 첫 번째 충전에서도 발견되지 않았다. 즉, 층방전 특성이 상당히 안정적인 것을 알 수 있다. 본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것올 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 4 is a layer discharge curve (a) and a discharge curve for each c ᅳ rate of a battery using 4 ^ 50 0 12 as a negative electrode active material. Li 4 Ti 5 0 12 is stable with the electrolyte, so there is no side reaction. This side reaction was not found in the first charge. That is, it can be seen that the layer discharge characteristics are quite stable. The present invention is not limited to the above embodiments, but may be manufactured in various forms, and a person of ordinary skill in the art to which the present invention pertains does not change the technical spirit or essential features of the present invention. It will be understood that it can be implemented as. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive.

Claims

【특허청구범위】 【Patent Claims】
【청구항 1】 【Claim 1】
리튬 함유 용액 및 상기 리륨 함유 용액에 함침된 양극 집전체를 포함하는 액상의 양극부; A liquid positive electrode unit including a lithium-containing solution and a positive electrode current collector impregnated with the lithium-containing solution;
액상의 유기 전해질, 상기 액상의 유기 전해질에 함침된 음극 집전체 및 상기 음극 집전체 표면에 위치하는 음극 활물질 층을 포함하는 음극부; 상기 양극부와 상기 음극부 사이에 위치하는 고체 전해질;을 포함하는 리튬 이차 전지 . A negative electrode portion including a liquid organic electrolyte, a negative electrode current collector impregnated with the liquid organic electrolyte, and a negative electrode active material layer located on the surface of the negative electrode current collector; A lithium secondary battery comprising a solid electrolyte located between the positive electrode and the negative electrode.
【청구항 2】 【Claim 2】
제 1항에 있어서, In clause 1,
상기 리튬 함유 용액은, 폐전지로부터 추출된 리튬 수용액인 것인 리튬 이차 전지. The lithium-containing solution is a lithium secondary battery extracted from a waste battery.
【청구항 3】 【Claim 3】
제 2항에 있어서, In paragraph 2,
상기 리튬 수용액은 폐전지를 분쇄시킨 후 이를 수용액 (aqueous water)에 투입하여 폐전지 내 잔여 리튬을 추출한 리튬 수용액인 것인 리튬 이차 전지 . The lithium aqueous solution is a lithium aqueous solution obtained by crushing a waste battery and then adding it to aqueous water to extract the remaining lithium in the waste battery.
【청구항 4】 【Claim 4】
제 1항에 있어서, According to clause 1,
상기 음극부 내 유기 전해질은, 비수성 유기 용매 및 /또는 리튬염을 Ϊ함하는 것인 리튬 이차 전지. A lithium secondary battery in which the organic electrolyte in the negative electrode part contains a non-aqueous organic solvent and/or a lithium salt.
【청구항 5】 【Claim 5】
제 4항에 있어서, In clause 4,
상기 비수성 유기 용매는 카보네이트계, 에스테르계, 에테르계, 케톤계, 알코올계, 비양성자성 용매, 또는 이들의 조합인 것인 리튬 이차 전지 . The non-aqueous organic solvent is carbonate-based, ester-based, ether-based, A lithium secondary battery that is a ketone-based, alcohol-based, aprotic solvent, or a combination thereof.
【청구항 6] [Claim 6]
제 4항에 있어서, In clause 4,
상기 리튬염은 LiPF6, LiBF4, LiSbF6) LiAsF6, LiC4F9S03l L1CIO4, LiA102, LiAlCl4)
Figure imgf000018_0001
(여기서, x 및 y는 자연수임), LiCl, Lil, LiB(C204)2(리튬 비스옥살레이토 보레이트 (lithium bis(oxalato) borate; LiBOB) 또는 이들의 조합인 것인 리튬 이차 전지.
The lithium salt is LiPF 6 , LiBF 4 , LiSbF 6) LiAsF 6 , LiC 4 F 9 S0 3l L1CIO4, LiA10 2 , LiAlCl 4)
Figure imgf000018_0001
(Here, x and y are natural numbers), LiCl, Lil, LiB(C 2 0 4 ) 2 (lithium bis(oxalato) borate (LiBOB), or a combination thereof. A lithium secondary battery.
[청구항 7】 [Claim 7]
제 1항에 있어서, In clause 1,
상기 음극 집전체 표면에 위치하는 음극 활물질 층은, 음극 활물질을 포함하고, The negative electrode active material layer located on the surface of the negative electrode current collector includes a negative electrode active material,
상기 음극 활물질은 , 리튬 이온을 가역적으로 인터칼레이션 /디인터칼레이션할 수 있는 물질, 리튬 금속, 리튬 금속의 합금, 리튬을 도프 및 탈도프할 수 있는 물질, 전이 금속 산화물 또는 이들의 조합을 포함하는 것인 리륨 이차 전지. The negative electrode active material is a material capable of reversibly intercalating/deintercalating lithium ions, lithium metal, an alloy of lithium metal, a material capable of doping and dedoping lithium, a transition metal oxide, or a combination thereof. A lyrium secondary battery comprising:
【청구항 8】 — 【Claim 8】 —
제 7항에 있어서, According to clause 7,
상기 음극 활물질은 리튬 티타늄 산화물인 것인 리튬 이차 전지 . A lithium secondary battery wherein the negative electrode active material is lithium titanium oxide.
【청구항 9】 【Claim 9】
제 1항에 있어서, In clause 1,
상기 고체 전해질은, 비정질 이온 전도도 물질 (phosphor us-based glass, oxide-based glass, oxide/sulf ide based glass) , 세라믹 이온 전도도 물질 (lithium beta-alumina, sodium beta-alumina) , 리시콘 (Li super ionic conductor, LISICON) , 또는 나시콘 (Na super ionic conductor , NASICON)을 포함하는 것인 리튬 이차 전지. The solid electrolyte is an amorphous ion conductive material (phosphor us-based glass, oxide-based glass, oxide/sulf ide based glass), a ceramic ion conductive material (lithium beta-alumina, sodium beta-alumina), and Li super. ionic conductor, LISICON), or Na super ionic conductor, A lithium secondary battery containing NASICON).
【청구항 10】 【Claim 10】
제 1항에 있어서, In clause 1,
상기 양극부는 전도성 첨가제를 더 포함하는 것인 리튬 이차 전지. A lithium secondary battery wherein the positive electrode further includes a conductive additive.
【청구항 11】 【Claim 11】
제 10항에 있어서, In clause 10,
상기 전도성 첨가제는 탄소계 물질인 것인 리튬 이차 전지. A lithium secondary battery wherein the conductive additive is a carbon-based material.
【청구항 12] [Claim 12]
제 11항에 있어서, In clause 11,
상기 탄소계 물질은, 리튬 함유 용액 내 분산성 개선을 위해 표면이 개질된 탄소계 물질인 것인 리튬 이차 전지. The carbon-based material is a lithium secondary battery whose surface has been modified to improve dispersibility in a lithium-containing solution.
[청구항 13】 [Claim 13]
리튬 함유 용액 및 상기 리튬 함유 용액에 함침된 양극 집전체를 포함하는액상의 양극부; A liquid positive electrode unit comprising a lithium-containing solution and a positive electrode current collector impregnated with the lithium-containing solution;
액상의 유기 전해질, 상기 액상의 유기 전해질에 함침된 음극 집전체 및 상기 음극 집전체 표면에 위치하는 음극 활물질 층을 포함하는 음극부 ; 상기 양극부와 상기 음극부 사이에 위치하고, 상기 양극부와 상기 음극부 사이로 선택적으로 리륨 이온을 투과시키는 고체 전해질;부를 포함하는 리튬 이차 전지 시스템 . A negative electrode portion including a liquid organic electrolyte, a negative electrode current collector impregnated with the liquid organic electrolyte, and a negative electrode active material layer located on the surface of the negative electrode current collector; A lithium secondary battery system comprising: a solid electrolyte located between the anode portion and the cathode portion and selectively transmitting lithium ions between the anode portion and the cathode portion.
【청구항 14】 【Claim 14】
제 13항에 있어서, In clause 13,
상기 리튬 함유 용액은 폐전지로부터 추출된 리튬 수용액으로, 상기 리륨 이차 전지 시스템은 폐전지 내 존재하는 리튬을 재이용하는 것인 리튬 이차 전지 시스템 . The lithium-containing solution is a lithium aqueous solution extracted from a waste battery, and the lithium secondary battery system reuses the lithium present in the waste battery. Secondary battery system.
【청구항 15】 【Claim 15】
제 13항에 있어서, According to clause 13,
상기 리륨 함유 용액은, 폐전지를 분쇄시킨 후 이를 수용액에 투입하여 폐전지 내 잔여 리튬을 추출한 리튬 수용액인 것인 리튬 이차 전지 시스템. The lithium-containing solution is a lithium secondary battery system in which the remaining lithium in the waste battery is extracted by crushing the waste battery and adding it to an aqueous solution.
[청구항 16】 [Claim 16]
제 13항에 있어서' In clause 13'
상기 음극부 내 유기 전해질은, 비수성 유기 용매 및 /또는 리튬염을 포함하는 것인 리튬 이차 전지 시스템. A lithium secondary battery system in which the organic electrolyte in the negative electrode unit includes a non-aqueous organic solvent and/or a lithium salt.
【청구항 17】 【Claim 17】
제 13항에 있어서, In clause 13,
상기 음극 집전체 표면에 위치하는 음극 활물질 층은, 음극 활물질을 포함하고, The negative electrode active material layer located on the surface of the negative electrode current collector includes a negative electrode active material,
상기 음극 활물질은, 리튬 이온을 가역적으로 인터칼레이션 /디인터칼레이션할 수 있는 물질, 리튬 금속, 리튬 금속의 합금, 리튬을 도프 및 탈도프할 수 있는 물질, 전이 금속 산화물 또는 이들의 조합을 포함하는 것인 리튬 이차 전지 시스템. The negative electrode active material is a material capable of reversibly intercalating/deintercalating lithium ions, lithium metal, an alloy of lithium metal, a material capable of doping and dedoping lithium, a transition metal oxide, or a combination thereof. A lithium secondary battery system comprising:
【청구항 18】 【Claim 18】
제 13항에 있어서, According to clause 13,
상기 음극 활물질은 리튬 티타늄 산화물인 것인 리튬 이차 전지 시스템. A lithium secondary battery system wherein the negative electrode active material is lithium titanium oxide.
【청구항 19】 【Claim 19】
제 13항에 있어서, 상기 고체 전해질은, 비정질 이온 전도도 물질 (phosphorus-based glass, oxide-based glass, oxide/sulf ide based glass) , .세라믹 이은 전도도 물질 (lithium beta-alumina, sodium beta— alumina), 리시콘 (Li super ionic conductor, LISICON) , .또는 나시콘 (Na super ionic conductor , NASICON)올 포함하는 것인 리튬 이차 전지 시스템 . In clause 13, The solid electrolyte is an amorphous ion conductive material (phosphorus-based glass, oxide-based glass, oxide/sulf ide based glass), a ceramic conductive material (lithium beta-alumina, sodium beta—alumina), and Li Sicon (Li super). A lithium secondary battery system that includes an ionic conductor (LISICON), or Na super ionic conductor (NASICON).
【청구항 20】 【Claim 20】
제 13항에 있어서, According to clause 13,
상기 양극부는 전도성 첨가제를 더 포함하는 것인 리튬 이차 전지 시스템. A lithium secondary battery system in which the positive electrode further includes a conductive additive.
PCT/KR2013/008451 2013-09-17 2013-09-17 Lithium secondary battery and lithium secondary battery system WO2015041381A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2013/008451 WO2015041381A1 (en) 2013-09-17 2013-09-17 Lithium secondary battery and lithium secondary battery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2013/008451 WO2015041381A1 (en) 2013-09-17 2013-09-17 Lithium secondary battery and lithium secondary battery system

Publications (1)

Publication Number Publication Date
WO2015041381A1 true WO2015041381A1 (en) 2015-03-26

Family

ID=52689023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/008451 WO2015041381A1 (en) 2013-09-17 2013-09-17 Lithium secondary battery and lithium secondary battery system

Country Status (1)

Country Link
WO (1) WO2015041381A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030070468A (en) * 2002-02-25 2003-08-30 한국지질자원연구원 Method for recycling of spent lithium ion battery
KR20110065157A (en) * 2009-12-09 2011-06-15 부산대학교 산학협력단 Recycling method of used lithium ion secondary battery
KR20120030865A (en) * 2010-09-20 2012-03-29 한국과학기술연구원 Method of recovery and synthesis of metaloxidic cathodic active material for lithium ionsecondary battery
KR20120126946A (en) * 2011-05-13 2012-11-21 엘에스니꼬동제련 주식회사 Pretreatment method for recycling of lithium ion batteries
US20120302779A1 (en) * 2011-05-27 2012-11-29 Empire Technology Development Llc Effective recovery of lithium from lithium ion battery waste

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030070468A (en) * 2002-02-25 2003-08-30 한국지질자원연구원 Method for recycling of spent lithium ion battery
KR20110065157A (en) * 2009-12-09 2011-06-15 부산대학교 산학협력단 Recycling method of used lithium ion secondary battery
KR20120030865A (en) * 2010-09-20 2012-03-29 한국과학기술연구원 Method of recovery and synthesis of metaloxidic cathodic active material for lithium ionsecondary battery
KR20120126946A (en) * 2011-05-13 2012-11-21 엘에스니꼬동제련 주식회사 Pretreatment method for recycling of lithium ion batteries
US20120302779A1 (en) * 2011-05-27 2012-11-29 Empire Technology Development Llc Effective recovery of lithium from lithium ion battery waste

Similar Documents

Publication Publication Date Title
CN100521296C (en) Cathode for chargeable lithium cell and chargeable lithium cell adopting same
WO2015115699A1 (en) Cathode active material for lithium secondary battery, manufacturing method therefor and lithium secondary battery comprising same
WO2015083901A1 (en) Cathode active material for lithium secondary battery, method for producing same, and lithium secondary battery containing same
CN101908626A (en) Positive electrode active materials is with positive pole and comprise the lithium rechargeable battery that this is anodal
JP2011238586A (en) Cathode active material for lithium secondary battery and lithium secondary battery having the same
JP2015023021A (en) Positive active material for rechargeable lithium battery, method of manufacturing the same, and positive electrode and rechargeable lithium battery including the same
KR20120087540A (en) Positive electrode for rechargeable lithium battery and rechargeable lithium battery including same
KR101775543B1 (en) Positive active material for rechargeable lithium battery, method of manufacturing the same and rechargeable lithium battery using the same
KR20170134049A (en) Positive electrode for rechargeable lithium battery and rechargeable lithium battery including same
KR20150057730A (en) Negative electrode active material layer composition for rechargeable lithium battery, manufacturing method of the same, and negative electrode and rechargeable lithium battery including the same
CN105375026A (en) Positive active material for rechargeable lithium battery, method of preparing same, and rechargeable lithium battery including same
KR101093697B1 (en) Positive electrode for lithium rechargeable battery and lithium rechargeable battery including the same
KR101002652B1 (en) Electrolyte for rechargeable lithium battery and rechargeable lithium battery including the same
JP2016042462A (en) Positive electrode active material for lithium secondary battery and lithium secondary battery
WO2017150914A1 (en) Positive electrode active material for lithium secondary battery, method for producing same and lithium secondary battery comprising same
WO2017155240A1 (en) Positive electrode active material for lithium secondary battery, method for preparing same and lithium secondary battery comprising same
JP4776186B2 (en) Nonaqueous electrolyte secondary battery
KR20120101971A (en) Negative active material for rechargeable lithium battery, method of preparing same, and rechargeable lithium battery including same
KR20120047029A (en) Positive electrode for rechargeable lithium battery and rechargeable lithium battery including same
CN109755496B (en) Negative active material for rechargeable lithium battery and rechargeable lithium battery including the same
WO2015141949A1 (en) Cathode active material for lithium secondary battery, method for producing same, and lithium secondary battery comprising same
KR101601918B1 (en) Lithium secondary battery and lithium secondary battery system
KR20140095652A (en) Electrolyte for lithium rechargeable battery and lithium rechargeable battery including the electrolyte
CN113906585A (en) Electrode material comprising a layered oxide containing potassium and a metal, electrode comprising such a material and use thereof in electrochemistry
KR20170055823A (en) Positive active materials for rechargeable lithium battery, positive electrode including the same and rechargeable lithium battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13893894

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13893894

Country of ref document: EP

Kind code of ref document: A1