WO2015041363A1 - Method for producing oxime - Google Patents

Method for producing oxime Download PDF

Info

Publication number
WO2015041363A1
WO2015041363A1 PCT/JP2014/075335 JP2014075335W WO2015041363A1 WO 2015041363 A1 WO2015041363 A1 WO 2015041363A1 JP 2014075335 W JP2014075335 W JP 2014075335W WO 2015041363 A1 WO2015041363 A1 WO 2015041363A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
catalyst
compound
metal element
titanium
Prior art date
Application number
PCT/JP2014/075335
Other languages
French (fr)
Japanese (ja)
Inventor
翔 辻内
博嗣 鹿野
孝 真木
正大 星野
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2015041363A1 publication Critical patent/WO2015041363A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C249/00Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C249/04Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton of oximes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/16Clays or other mineral silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/033Using Hydrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/12Silica and alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/035Precipitation on carriers

Definitions

  • an oxime represented by the formula (II) described below [hereinafter sometimes referred to as an oxime compound (II). ] About the method of manufacturing.
  • Oxime is useful as a raw material for lactam, and as a raw material for synthetic fibers.
  • a method for producing the oxime compound (II) for example, International Publication No. 2005/009613 (Patent Document 1) includes a hydrazyl radical or a hydrazine compound and a coexistence of an oxidation accelerator such as titanium oxide. A method of oxidizing a primary amine with oxygen has been proposed.
  • An object of the present invention is to provide a novel method capable of producing the oxime compound (II) with good selectivity. Under such circumstances, as a result of intensive studies, the present inventors have completed the present invention. That is, this invention consists of the following structures.
  • R 1 and R 2 each independently represent a hydrogen atom, a hydrocarbon group optionally having one or more substituents, or a heterocyclic group optionally having one or more substituents. (Wherein R 1 and R 2 are not both hydrogen atoms), or R 1 and R 2 together represent one or more together with the carbon atom to which R 1 and R 2 are bonded. An alicyclic hydrocarbon group having 3 to 12 carbon atoms which may have a substituent is formed.
  • a method for producing an oxime represented by the following (hereinafter sometimes referred to as oxime compound (II)), In the presence of at least one catalyst selected from the group consisting of the following (A), (B), (C) and (D): Formula (I) (In the formula, R 1 and R 2 each have the same meaning as described above.) An amine represented by the following (hereinafter sometimes referred to as amine compound (I)); A method of contacting oxygen.
  • a titanium-supported catalyst obtained by contact-treating a support with a titanium compound and then heat-treated at 150 ° C. or higher.
  • B A catalyst containing at least one selected from the group consisting of tungsten and molybdenum and tin
  • C Inosilicate Catalyst
  • D Amorphous titanosilicate catalyst
  • the inosilicate catalyst is at least one catalyst selected from the group consisting of a sepiolite catalyst and a palygorskite catalyst.
  • the inosilicate catalyst includes a Group 4 metal element, a Group 5 metal element, a Group 6 metal element, germanium, an oxide of a Group 4 metal element, an oxide of a Group 5 metal element, 4.
  • the amorphous titanosilicate catalyst is an amorphous mesoporous titanosilicate catalyst.
  • R 1 and R 2 each independently represent a hydrogen atom, a hydrocarbon group optionally having one or more substituents, or a heterocyclic group optionally having one or more substituents. Wherein R 1 and R 2 are not both hydrogen atoms, or R 1 and R 2 together represent a nitrogen atom to which R 1 is bonded and a carbon to which R 2 is bonded. Together with the atom, an aliphatic heterocycle having 3 to 12 carbon atoms which may have one or more substituents is formed.
  • An amide represented by the formula [hereinafter sometimes referred to as an amide compound (III).
  • an amine compound (II) is produced by bringing I) into contact with oxygen.
  • a titanium-supported catalyst obtained by contact-treating a support with a titanium compound and then heat-treated at 150 ° C. or higher.
  • B A catalyst containing at least one selected from the group consisting of tungsten and molybdenum and tin
  • C Inosilicate Catalyst
  • D Amorphous titanosilicate catalyst
  • R 1 and R 2 are each independently a hydrogen atom, an optionally substituted hydrocarbon group or one or more substituents.
  • R 1 and R 2 are not both hydrogen atoms.
  • “may have one or more substituents” means that a part or all of the hydrogen atoms in the hydrocarbon group or heterocyclic group may be substituted with other substituents.
  • examples of the hydrocarbon group include an alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group, a cycloalkenyl group, and an aryl group.
  • an alkyl group having 1 to 24 carbon atoms is preferable.
  • the alkenyl group is preferably an alkenyl group having 2 to 24 carbon atoms, such as a vinyl group, an allyl group, a 2-methylallyl group, an isopropenyl group, a 1-propenyl group, a 1-butenyl group, a 2-butenyl group, 3 -Butenyl group, 1-methyl-1-propenyl group, 1-methyl-2-propenyl group, 2-methyl-1-propenyl group, 2-methyl-2-propenyl group, 1-pentenyl group, 2-pentenyl group, 3-pentenyl group, 4-pentenyl group, 1-methyl-1-butenyl group, 2-methyl-1-butenyl group, 3-methyl-1-butenyl group, 1-methyl-2-butenyl group, 2-methyl- 2-butenyl group, 3-methyl-2-butenyl group, 1-hexenyl group, 2-hexenyl group, 3-hexenyl group, 4-hexenyl group, 5-hexen
  • the alkynyl group is preferably an alkynyl group having 2 to 24 carbon atoms.
  • the cycloalkyl group is preferably a cycloalkyl group having 3 to 8 carbon atoms, and examples thereof include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group.
  • the cycloalkenyl group is preferably a cycloalkenyl group having 3 to 8 carbon atoms, and examples thereof include a cyclopropenyl group, a cyclobutenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, and a cyclooctenyl group.
  • the aryl group is preferably an aryl group having 6 to 14 carbon atoms, and examples thereof include a phenyl group, a naphthyl group, an anthracenyl group, a phenanthryl group, a tolyl group, and a xylyl group.
  • the hydrocarbon group may have one or more substituents.
  • substituents include halogen atoms such as fluorine, chlorine and bromine; cyclopropyl group, 1-methylcyclopropyl group, cyclobutyl group, cyclopentyl group, A cycloalkyl group having 3 to 6 carbon atoms such as 1-methylcyclopentyl group, cyclohexyl group; methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, s-butoxy group, isobutoxy group, t-butoxy group, etc.
  • R 1 and R 2 when the hydrocarbon group is a cycloalkyl group, a cycloalkenyl group or an aryl group, examples of the substituent include the halogen atom described above, a cycloalkyl group having 3 to 6 carbon atoms, Is an alkoxy group having 1 to 4 carbon atoms, a thioalkoxy group having 1 to 4 carbon atoms, an alkenyloxy group having 3 to 4 carbon atoms, an aralkyloxy group having 7 to 20 carbon atoms, an aryl group having 6 to 18 carbon atoms , Aryloxy group, alkanoyl group having 2 to 7 carbon atoms, allyloyl group having 7 to 19 carbon atoms, alkoxycarbonyl group having 1 to 6 carbon atoms, methyl group, ethyl group, propyl group, isopropyl group, butyl Group, isobutyl group, s-butyl group, t-but
  • examples of the heterocyclic group include a heteroaryl group and a heteroaralkyl group.
  • the heteroaryl group is preferably a heteroaryl group having 3 to 9 carbon atoms, and examples thereof include a pyridyl group, a quinonyl group, a pyrrolyl group, an imidazolyl group, a furyl group, an indolyl group, a thienyl group, and an oxazolyl group.
  • the heteroaralkyl group is preferably a heteroaralkyl group having 5 to 10 carbon atoms, and examples thereof include a pyridylmethyl group, a quinolylmethyl group, an indolylmethyl group, a furylmethyl group, and a pyrrolylmethyl group.
  • the heterocyclic group may have one or more substituents.
  • substituents in the heterocyclic group include the above-described halogen atom, a cycloalkyl group having 3 to 6 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a thioalkoxy group having 1 to 4 carbon atoms, and a carbon number
  • alkenyloxy groups having 3 to 4 carbon atoms aralkyloxy groups having 7 to 20 carbon atoms, aryl groups having 6 to 18 carbon atoms, aryloxy groups, alkanoyl groups having 2 to 7 carbon atoms, 7 to 19 carbon atoms
  • the amine compound (I) is, for example, , Methylamine, ethylamine, n-propylamine, isopropylamine, n-butylamine, isobutylamine, s-butylamine, t-butylamine, pentylamine, hexylamine, heptylamine, octylamine, nonylamine, decylamine, undecylamine, dodecyl Amine, tridecylamine, tetradecylamine, pentadecylamine, hexadecylamine, heptadecylamine, octadecylamine, nonadecylamine, icosylamine, eicosylamine, henecosylamine, henecosylamine, docosy
  • R 1 and R 2 together may have one or more substituents together with the carbon atom to which R 1 and R 2 are bonded.
  • the number of carbon atoms is preferably 6-12.
  • the alicyclic hydrocarbon group having 3 to 12 carbon atoms refers to a 3 to 12-membered alicyclic hydrocarbon group, and “may have one or more substituents” This means an alicyclic hydrocarbon group in which part or all of the hydrogen atoms in the methylene group in the alicyclic hydrocarbon group may be substituted with other substituents.
  • the carbon number of the substituent is not included in the carbon number of the alicyclic hydrocarbon group having 3 to 12 carbon atoms.
  • substituent in the alicyclic hydrocarbon group having 3 to 12 carbon atoms include, for example, the above-described halogen atom, a cycloalkyl group having 3 to 6 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, and 1 carbon atom.
  • R 1 and R 2 are combined together, and the carbon atom to which R 1 and R 2 are bonded together with one or more substituents, the alicyclic ring having 3 to 12 carbon atoms
  • examples of the amine compound (I) include cyclohexylamine, cyclooctylamine, cyclopentylamine, cycloheptylamine, cyclododecylamine, 2-methylcyclohexylamine, 4-methylcyclohexylamine and the like. Can be mentioned.
  • cyclohexylamine when cyclohexylamine is used as a raw material, the method of the present invention is advantageously employed in that cyclohexanone oxime is finally obtained in a high yield.
  • the cyclohexylamine may be obtained, for example, by hydrogenating aniline, nitrobenzene, nitrocyclohexane, or the like, or obtained by amination reaction of cyclohexene or cyclohexanol with ammonia. May be.
  • oxygen-containing gas As the oxygen used for the production of the oxime compound (II) of the present invention, it is preferable to use an oxygen-containing gas.
  • the oxygen-containing gas may be, for example, air, pure oxygen, or air or pure oxygen diluted with an inert gas such as nitrogen, argon, or helium. Good. Further, oxygen-enriched air obtained by adding pure oxygen to air can also be used.
  • the oxygen concentration is preferably 1 to 30% by volume.
  • Titanium-supported catalyst The titanium-supported catalyst is obtained by heat-treating the support at 150 ° C. or higher after contact-treating the support with a titanium compound.
  • the titanium compound used in the contact treatment include an inorganic compound of titanium and an organic compound of titanium.
  • Titanium halides such as titanium tetranitrate (Ti (NO 3 ) 4 ); Titanium sulfates such as titanium disulfate (Ti (SO 4 ) 2 ); Titanium phosphate (Ti 3 (PO 4 ) Titanium phosphates such as 4 ); and the like.
  • titanium organic compounds examples include titanium alkoxide compounds such as Ti (OR ′) 4 (hereinafter, R ′ represents an alkyl group having 1 to 4 carbon atoms); TiCl (OR ′) 3 , TiCl 2 (OR ') 2, TiCl 3 (OR ') halide alkoxide compounds of titanium, and the like; tetraacetic acid titanium (Ti (CH 3 COO) 4 ) acetate titanium and the like; and the like.
  • the titanium compound may use the hydrate as needed, and may use 2 or more types thereof.
  • titanium halide, titanium sulfate, and titanium alkoxide compound are preferable, and titanium halide is more preferable.
  • Examples of the carrier used for the contact treatment include oxides such as silica, alumina, silica-alumina, and magnesia; carbons such as activated carbon, graphite, and hard carbon; alkaline earth metal carbonates such as calcium carbonate, strontium carbonate, and barium carbonate. Salt; and the like. Of these, oxides are preferable, and silica-alumina is more preferable.
  • the titanium compound is preferably used as a solution containing a titanium compound.
  • the solvent used for preparing the solution containing the titanium compound include water, methanol, ethanol, propanol, tetrahydrofuran, toluene, hexane and the like. Only 1 type may be used for a solvent and it may use 2 or more types together.
  • the temperature during the treatment is preferably 0 to 200 ° C.
  • Such contact treatment can be performed in an air atmosphere or in an inert gas atmosphere such as nitrogen, helium, argon, or oxygen dioxide.
  • Examples of the contact treatment include impregnation and immersion.
  • Examples of the method for bringing the carrier into contact with the titanium compound include (a) a method in which the carrier is impregnated with a solution containing the titanium compound, and (b) a method in which the carrier is immersed in a solution containing the titanium compound. Such impregnation or immersion may be performed with stirring.
  • the treated product after the contact treatment is subjected to treatment such as washing and drying as necessary before heat treatment at 150 ° C. or higher.
  • the solid When the mixture obtained after the contact treatment is in a slurry state, the solid may be recovered by drying the slurry, or separated by filtration, decantation, etc., washed as necessary, and dried.
  • the solid may be recovered. Washing is preferably performed after the contact treatment in that a titanium-supported catalyst exhibiting high catalytic activity can be obtained.
  • Such drying can be performed under normal pressure or reduced pressure, the drying temperature is preferably 20 to 200 ° C., and the drying time is preferably 0.5 to 100 hours.
  • the drying may be performed in an atmosphere of an oxygen-containing gas such as air, or may be performed in an atmosphere of an inert gas such as nitrogen, helium, argon, or oxygen dioxide.
  • the heat treatment temperature is preferably 150 to 600 ° C, more preferably 250 to 500 ° C.
  • the heat treatment time is preferably 0.1 to 100 hours.
  • the heat treatment may be performed in an atmosphere of an oxygen-containing gas such as air, or may be performed in an atmosphere of an inert gas such as nitrogen, helium, argon, or oxygen dioxide. Water vapor may be contained in the oxygen-containing gas or the inert gas. Further, the heat treatment may be performed in multiple stages in an atmosphere of oxygen-containing gas or inert gas.
  • the heat treatment may be performed in a fluidized bed type or a fixed bed type.
  • the apparatus used for the heat treatment is not particularly limited as long as it can be heated. For example, a hot-air circulating firing furnace, a stationary firing furnace, a tunnel furnace, a rotary kiln, a far infrared furnace, a microwave heating furnace, or the like is used. can do.
  • the titanium content relative to the total amount of the catalyst is preferably 0.1 to 50% by weight, more preferably 0.5 to 50% by weight.
  • the titanium-supported catalyst may be used after being molded using a binder as necessary.
  • Such forming treatment may be performed at the time of preparing the carrier, may be performed after the contact treatment, or may be performed after the heat treatment.
  • the molding process can be performed by a method such as extrusion, compression, tableting, flow, rolling, spraying, etc., and a desired shape, for example, granular, pellet, spherical, cylindrical, plate, ring, clover It can be formed into a shape or the like.
  • a catalyst containing tin and at least one selected from the group consisting of tungsten and molybdenum are each a metal. It may be included in the form of a simple substance or may be included in the form of a compound. When included in the form of compounds, the compounds include oxoacids, oxoacid salts, oxides, hydroxides, nitrates, carbonates, hydroxides, halides, isopolyacids, isopolyacid salts, heteropolyacids, heteropolyacids. Examples include acid salts.
  • Examples of the method for preparing a catalyst containing tin and at least one selected from the group consisting of tungsten and molybdenum include an adsorption method, an impregnation method, a coprecipitation method, and a sol-gel method.
  • Preparation by the adsorption method or impregnation method is, for example, after contacting a solution obtained by mixing at least one compound selected from the group consisting of a tungsten compound and a molybdenum compound and a solvent with a solid tin compound, If necessary, it can be performed by washing and drying. After the drying, firing may be performed as necessary.
  • Preparation by the coprecipitation method or the sol-gel method is performed by, for example, mixing at least one compound selected from the group consisting of a tungsten compound and a molybdenum compound, a tin compound, and a solvent, and adjusting pH and temperature as necessary.
  • the solids in the resulting slurry can be recovered by performing operations such as addition of other components, and drying after washing as necessary. After the drying, firing may be performed as necessary.
  • Examples of the tungsten compound used as a raw material compound for the preparation of the catalyst containing tin and at least one selected from the group consisting of tungsten and molybdenum include tungsten oxide, tungsten oxytetrachloride, tungstic acid, tungstate, and tungsten.
  • tungstic acid and tungstate are preferable.
  • tungstate include sodium tungstate, zinc tungstate, cobalt tungstate, cesium tungstate, manganese tungstate, and ammonium tungstate.
  • Examples of the molybdenum compound used as a raw material compound for the preparation of a catalyst containing at least one selected from the group consisting of tungsten and molybdenum and tin include molybdenum oxide, molybdenum chloride, molybdenum 2-ethylhexanoate, and hexacarbonylmolybdenum.
  • molybdic acid and molybdate are preferable.
  • molybdate include sodium molybdate, zinc molybdate, cobalt molybdate, cesium molybdate, manganese molybdate, and ammonium molybdate.
  • Examples of the tin compound used as a raw material compound in the preparation of a catalyst containing tin and at least one selected from the group consisting of tungsten and molybdenum include, for example, stannous chloride, stannic chloride, stannous oxide, and oxidation.
  • a hydrate can also be used when stannic etc. are mentioned and those hydrates exist.
  • the drying can be performed under normal pressure or reduced pressure, the drying temperature is preferably 0 to 200 ° C., and the drying time is 0.5 to 100 hours. Is preferred.
  • the drying may be performed in an atmosphere of an oxygen-containing gas such as air, or may be performed in an atmosphere of an inert gas such as nitrogen, helium, argon, or carbon dioxide. Water vapor may be contained in the oxygen-containing gas or the inert gas.
  • the drying may be performed in multiple stages under an atmosphere of oxygen-containing gas or inert gas.
  • the drying may be performed in a fluidized bed type or a fixed bed type.
  • the apparatus used for the drying is not particularly limited as long as it can be dried. For example, a hot-air circulating firing furnace, a stationary firing furnace, a tunnel furnace, a rotary kiln, a far infrared furnace, a microwave heating furnace, or the like is used. can do.
  • the content of at least one selected from the group consisting of tungsten and molybdenum in the catalyst containing tin and at least one selected from the group consisting of tungsten and molybdenum is based on the total amount of the catalyst in terms of metal elements. 1 to 60% by weight is preferable, and 5 to 50% by weight is more preferable. When tungsten and molybdenum are contained in the catalyst, the total content may be in the above range.
  • the tin content in the catalyst is preferably 30 to 80% by weight, more preferably 40 to 75% by weight, based on the total amount of the catalyst, in terms of metal elements.
  • the content of tin in the catalyst is preferably 1 to 15 moles with respect to at least one mole selected from the group consisting of tungsten and molybdenum in the catalyst.
  • the content of tin may be in the above range with respect to the total number of moles.
  • the catalyst containing tin and at least one selected from the group consisting of tungsten and molybdenum may be used after being molded using a binder as necessary, or may be used by being supported on a carrier. Good.
  • the molding process can be performed by a method such as extrusion, compression, tableting, flow, rolling, spraying, etc., and a desired shape, for example, granular, pellet, spherical, cylindrical, plate, ring, clover It can be formed into a shape or the like.
  • the inosilicate catalyst has a chain crystal structure in which SiO 4 tetrahedrons share two oxygens and are connected indefinitely.
  • the inosilicate catalyst include magnesium inosilicate catalyst such as sepiolite catalyst and palygorskite catalyst; calcium inosilicate catalyst such as wollastonite catalyst and the like. It can also be used.
  • a magnesium inosilicate catalyst is preferable, and among the magnesium inosilicate catalysts, at least one catalyst selected from the group consisting of a sepiolite catalyst and a palygorskite catalyst in terms of the selectivity of the oxime compound (II) to be obtained. preferable.
  • the inosilicate catalyst may be a natural product, a synthetic product synthesized artificially, or a mixture thereof.
  • the magnesium inosilicate catalyst has a ribbon structure (chain structure) by periodically reversing the apex oxygen of the SiO tetrahedral sheet, and the direction of the apex oxygen of the tetrahedron sheet is the period of the ribbon width. In order to reverse, characteristic voids are formed in the structure. Moreover, the form has a fibrous form.
  • the inosilicate catalyst may be used for contacting the amine compound (I) and oxygen after calcination.
  • the firing temperature is preferably 150 to 600 ° C., and the firing time is preferably 0.1 to 100 hours.
  • the firing may be performed in an atmosphere of an oxygen-containing gas such as air, or may be performed in an atmosphere of an inert gas such as nitrogen, helium, argon, or oxygen dioxide. Water vapor may be contained in the oxygen-containing gas or the inert gas.
  • the calcination may be performed in multiple stages in an atmosphere of an oxygen-containing gas or an inert gas.
  • the firing may be performed in a fluidized bed type or a fixed bed type.
  • the apparatus used for the firing is not particularly limited as long as it can be heated. For example, a hot-air circulating firing furnace, a stationary firing furnace, a tunnel furnace, a rotary kiln, a far infrared furnace, a microwave heating furnace, or the like is used. can do.
  • the inosilicate catalyst may be used after being molded using a binder as necessary.
  • molding process may be performed before this ion exchange process, and may be performed after an ion exchange process.
  • the molding process can be performed by a method such as extrusion, compression, tableting, flow, rolling, spraying, etc., and a desired shape, for example, granular, pellet, spherical, cylindrical, plate, ring, clover It can be formed into a shape or the like.
  • the inosilicate catalyst includes a Group 4 metal element, a Group 5 metal element, a Group 6 metal element, germanium, an oxide of a Group 4 metal element, an oxide of a Group 5 metal element, and a Group 6 metal element. It is preferable to contain at least one selected from the group consisting of oxides of germanium and germanium oxide, and it is more preferable to contain at least one selected from the group consisting of Group 4 metal and Group 4 metal element oxides.
  • the Group 4 metal element include titanium and zirconium.
  • Examples of the Group 5 metal element include vanadium, niobium, and tantalum.
  • Examples of the Group 6 metal element include chromium, molybdenum, tungsten, and the like.
  • the method of the present invention is advantageously employed when using an inosilicate catalyst containing at least one selected from the group consisting of titanium and titanium oxide in view of the selectivity of the oxime compound (II) to be obtained.
  • the inosilicate catalyst includes a Group 4 metal element, a Group 5 metal element, a Group 6 metal element, germanium, an oxide of a Group 4 metal element, an oxide of a Group 5 metal element, and a Group 6 metal element. And a group 4 metal element, a group 5 metal element, a group 6 metal element, germanium, an oxide of a group 4 metal element, At least one selected from the group consisting of Group metal element oxides, Group 6 metal element oxides and germanium oxide may be incorporated in the inosilicate skeleton, and in the vacancies in the inosilicate. It may be carried or may be carried on the outer surface of inosilicate.
  • the inosilicate catalyst containing at least one selected from the group consisting of, for example, an inosilicate having an exchangeable cation, a Group 4 metal element compound, a Group 5 metal element compound, Group 6 What is obtained by ion-exchange-processing with the at least 1 type of compound chosen from the group which consists of a compound of a metal element and a germanium compound can be used conveniently.
  • the ion exchange treatment includes a solution containing inosilicate and at least one compound selected from the group consisting of compounds of Group 4 metal elements, compounds of Group 5 metal elements, compounds of Group 6 metal elements, and germanium compounds. It is preferable to carry out by making it contact.
  • the solution may contain compounds of other elements.
  • the total content is preferably 0.01 to 50% by weight More preferably, it is 0.1 to 25% by weight, and further preferably 0.2 to 10% by weight.
  • an inosilicate catalyst includes at least one selected from the group consisting of Group 4 metal element oxides, Group 5 metal element oxides, Group 6 metal element oxides, and germanium oxide
  • Group 4 metal element oxides are Group 4 metal elements
  • Group 5 metal element oxides are Group 5 metal elements
  • Group 6 metal element oxides are Group 6 metal elements
  • Germanium oxide is In terms of germanium, the total content of the Group 4 metal element, Group 5 metal element, Group 6 metal element and germanium in the inosilicate catalyst may be in the above range.
  • the respective contents of the Group 4 metal element, Group 5 metal element, Group 6 metal element and germanium can be determined by, for example, inductively coupled plasma (ICP) emission analysis.
  • ICP inductively coupled plasma
  • Examples of the group 4 metal element compound used in the ion exchange treatment include inorganic compounds of group 4 metal elements and organic compounds of group 4 metal elements.
  • Examples of inorganic compounds of Group 4 metal elements include titanium trichloride (TiCl 3 ), titanium tetrachloride (TiCl 4 ), titanium tetrabromide (TiBr 4 ), titanium tetrafluoride (TiF 4 ), and tetraiodide.
  • Examples of organic compounds of Group 4 metal elements include Group 4 metals such as Ti (OR 3 ) 4 (hereinafter R 3 represents an alkyl group having 1 to 4 carbon atoms) and Zr (OR 3 ) 4 . Elemental alkoxide compounds; TiCl (OR 3 ) 3 , TiCl 2 (OR 3 ) 2 , TiCl 3 (OR 3 ), ZrCl (OR 3 ) 3 , ZrCl 2 (OR 3 ) 2 , ZrCl 3 (OR 3 ), etc.
  • Group 4 metals such as Ti (OR 3 ) 4 (hereinafter R 3 represents an alkyl group having 1 to 4 carbon atoms) and Zr (OR 3 ) 4 . Elemental alkoxide compounds; TiCl (OR 3 ) 3 , TiCl 2 (OR 3 ) 2 , TiCl 3 (OR 3 ), ZrCl (OR 3 ) 3 , ZrCl 2 (OR 3 ) 2 , ZrCl 3 (OR 3 ),
  • Halogenated alkoxide compounds of Group 4 metal elements acetates of Group 4 metal elements such as titanium tetraacetate (Ti (CH 3 COO) 4 ) and zirconium tetraacetate (Zr (CH 3 COO) 4 ); It is done. Moreover, the hydrate of the compound of a group 4 metal element may be used as needed, and 2 or more types thereof may be used.
  • a Group 4 metal element compound among them, a Group 4 metal element halide, a Group 4 metal element sulfate, a Group 4 metal element alkoxide compound, a Group 4 metal element oxynitrate is preferable, More preferred are halides of Group 4 metal elements.
  • Examples of the Group 5 metal element compound used for the ion exchange treatment include inorganic compounds of Group 5 metal elements and organic compounds of Group 5 metal elements.
  • Examples of inorganic compounds of Group 5 metal elements include vanadium trichloride (VCl 3 ), vanadium tetrachloride (VCl 4 ), vanadium tribromide (VBr 3 ), vanadium trifluoride (VF 3 ), and tetrafluoride.
  • organic compounds of Group 5 metal elements include alkoxide compounds of Group 5 metal elements such as Nb (OR 3 ) 5 and Ta (OR 3 ) 5 .
  • the hydrate of the compound of a Group 5 metal element may be used as needed, and 2 or more types thereof may be used.
  • Examples of the Group 6 metal element compound used for the ion exchange treatment include inorganic compounds of Group 6 metal elements and organic compounds of Group 6 metal elements.
  • Examples of inorganic compounds of Group 6 metal elements include chromium dichloride (CrCl 2 ), chromium trichloride (CrCl 3 ), chromium dibromide (CrBr 2 ), chromium tribromide (CrBr 3 ), and difluoride.
  • organic compounds of Group 6 metal elements include alkoxide compounds of Group 6 metal elements such as Mo (OR 3 ) 5 , W (OR 3 ) 5 , and W (OR 3 ) 6 ; chromium triacetate (Cr ( CH 3 COO) 3 ) group 6 metal element acetates; and the like.
  • the hydrate of the compound of a group 6 metal element may be used as needed, and 2 or more types thereof may be used.
  • germanium compounds used in the ion exchange treatment include germanium inorganic compounds and germanium organic compounds.
  • germanium inorganic compounds include germanium halides such as germanium tetrachloride (GeCl 4 ), germanium tetrabromide (GeBr 4 ), germanium tetrafluoride (GeF 4 ), and germanium tetraiodide (GeI 4 ); And germanium sulfides such as germanium sulfide (GeS).
  • germanium organic compounds include germanium alkoxide compounds such as Ge (OR 3 ) 4 ; germanium halogenated alkoxides such as GeCl (OR 3 ) 3 , GeCl 2 (OR 3 ) 2 , and GeCl 3 (OR 3 ). Compound; and the like. Moreover, the hydrate of a germanium compound may be used as needed, and those 2 or more types may be used. Of these, germanium halides and germanium alkoxide compounds are preferred as the germanium compound.
  • the amount of at least one compound selected from the group consisting of a Group 4 metal element compound, a Group 5 metal element compound, a Group 6 metal element compound, and a germanium compound is 4 An exchangeable cation in terms of a metal element contained in at least one compound selected from the group consisting of a group metal element compound, a group 5 metal element compound, a group 6 metal element compound and a germanium compound
  • the amount is preferably 0.01 to 100 parts by weight and more preferably 0.05 to 50 parts by weight with respect to 100 parts by weight of the inosilicate.
  • the total amount used is within the above range. It only has to be.
  • an inosilicate having an exchangeable cation is selected from the group consisting of a Group 4 metal element compound, a Group 5 metal element compound, a Group 6 metal element compound, and a germanium compound.
  • a solvent used in the preparation of the solution for example, a polar solvent such as water, methanol, ethanol, acetone, 1,2-dimethoxyethane, and the like is used. Two or more of them can be used as necessary.
  • the solution may be acidic, basic, or neutral, but is preferably acidic or basic from the viewpoint of dispersibility of the inosilicate in the solution.
  • the acid used for the preparation of the acidic solution include inorganic acids and organic acids.
  • Examples of the inorganic acid include hydrogen chloride, sulfuric acid, phosphoric acid, nitric acid, nitrous acid, and the like.
  • Examples of the organic acid include acetic acid and trifluoromethanesulfonic acid.
  • Examples of the base used for preparing the basic solution include inorganic bases and organic bases.
  • Examples of the inorganic base include ammonia, sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide and the like.
  • Examples of the organic base include methylamine, dimethylamine, trimethylamine, tetramethylammonium salt, tetraethylammonium salt, tetrapropylammonium salt, pyridine, hexamethyleneimine, piperidine and the like.
  • At least one compound selected from the group consisting of compounds of Group 4 metal elements, compounds of Group 5 metal elements, compounds of Group 6 metal elements, and germanium compounds When a compound that is hydrolyzed under acidic or basic conditions such as hydrolyzable halide, alkoxide compound, oxynitrate, etc. is used, the compound is hydrolyzed to become an oxide.
  • An inosilicate catalyst containing at least one selected from the group consisting of an oxide of an element, an oxide of a Group 5 metal element, an oxide of a Group 6 metal element, and germanium oxide can be prepared.
  • the acidic solution or the basic solution contains compounds of other elements in addition to compounds of Group 4 metal elements, compounds of Group 5 metal elements, compounds of Group 6 metal elements, and germanium compounds. May be. Moreover, you may perform the contact with the acidic solution or basic solution containing the compound of another element before and / or after making it contact with the said acidic solution or the said basic solution.
  • a compound that is hydrolyzed under acidic or basic conditions such as a hydrolyzable halide, alkoxide compound, or oxynitrate
  • the compound of the other element is hydrolyzed to become an oxide.
  • Inosilicate catalysts containing oxides of other elements can be prepared. Examples of compounds containing other elements include silicon alkoxide compounds.
  • silicon alkoxide compounds include tetraalkyl orthosilicates such as tetramethyl orthosilicate, tetraethyl orthosilicate, tetrapropyl orthosilicate, and tetrabutyl orthosilicate. Can be mentioned.
  • inosilicate is selected from the group consisting of a group 4 metal element compound, a group 5 metal element compound, a group 6 metal element compound, and a germanium compound in a stirring tank. And a method of soaking and mixing in a solution containing at least one kind of compound.
  • a continuous method for example, from a group consisting of a group 4 metal element compound, a group 5 metal element compound, a group 6 metal element compound and a germanium compound in a tubular container filled with inosilicate
  • the temperature in the above ion exchange treatment is preferably 0 to 150 ° C., more preferably 10 to 100 ° C., and further preferably 30 to 70 ° C.
  • the time for the ion exchange treatment is usually 0.1 to 240 hours, preferably 0.5 to 120 hours.
  • the pressure during the ion exchange treatment is preferably 0.1 to 1 MPa in absolute pressure, more preferably atmospheric pressure.
  • the usage-amount of the said solution in the above-mentioned ion exchange process is suitably set with respect to inosilicate.
  • the inosilicate catalyst obtained after the above ion exchange treatment is subjected to treatment such as washing and drying as necessary.
  • the inosilicate catalyst obtained after the treatment is in a slurry state, the inosilicate catalyst may be recovered by drying the slurry, or separated by filtration or decantation, and then washed as necessary.
  • the inosilicate catalyst may be recovered by drying.
  • the inosilicate catalyst obtained after the treatment is preferably washed in that an inosilicate catalyst exhibiting high catalytic activity is obtained.
  • the drying can be performed under normal pressure or reduced pressure, the drying temperature is preferably 20 to 250 ° C., and the drying time is preferably 0.5 to 100 hours.
  • the drying may be performed in an atmosphere of an oxygen-containing gas such as air, or may be performed in an atmosphere of an inert gas such as nitrogen, helium, argon, or oxygen dioxide.
  • the amorphous titanosilicate catalyst may be an amorphous mesoporous titanosilicate catalyst, or an amorphous titano having no regular pores. Although it may be a silicate catalyst, an amorphous mesoporous titanosilicate catalyst is preferred.
  • the mesoporous titanosilicate here means a mesoporous titanosilicate having a pore diameter of about 2 to 50 nm.
  • Specific examples of the amorphous mesoporous titanosilicate catalyst include an amorphous titanosilicate catalyst having an MCM-41 type structure (hereinafter sometimes referred to as Ti-MCM-41), and an HMS type structure.
  • the amorphous titanosilicate catalyst includes titanium, silicon, and oxygen, and may be substantially composed of only titanium, silicon, and oxygen. Further, boron, aluminum, gallium, It may contain elements other than iron, chromium, etc., titanium, silicon and oxygen.
  • the content of titanium in the above amorphous titanosilicate catalyst is usually 0.0001 or more, preferably 0.005 or more, expressed as an atomic ratio (Ti / Si) to silicon, and usually 1.0. Hereinafter, it is preferably 0.5 or less.
  • the amorphous titanosilicate catalyst contains an element other than titanium, silicon and oxygen, the content of the element is usually 1.0 or less, preferably 0.5 or less, expressed as an atomic ratio with respect to silicon. It is. Oxygen can be present corresponding to the content and oxidation number of each element other than oxygen.
  • M represents at least one element other than silicon, titanium and oxygen, n is the oxidation number of the element, x is 0.0001 to 1.0, and y is 0 to 1.0. .
  • M is an element other than titanium, silicon, and oxygen, and examples thereof include boron, aluminum, gallium, iron, and chromium.
  • the amorphous mesoporous titanosilicate catalyst is prepared by mixing a titanium compound, a silicon compound and a structure directing agent (template) in an aqueous solvent in the presence of an acidic compound or a basic compound, and then at a certain temperature and By aging under pressure conditions or under conditions where temperature and / or pressure is varied within the temperature and pressure range described below, a titanosilicate incorporating a structure-directing agent is obtained, and a structure is obtained from this titanosilicate. Prepared by removing the defining agent.
  • the structure of the amorphous mesoporous titanosilicate catalyst can be adjusted by the type and amount of the structure-directing agent used.
  • the structure-directing agent used For example, when preparing Ti-MCM-41, cetyltrimethyl bromide When a quaternary ammonium salt such as ammonium is used and Ti-HMS is prepared, a primary amine such as n-dodecylamine is used.
  • examples of the titanium compound include tetraalkyl orthotitanates such as tetra-n-butyl orthotitanate, peroxytitanates such as tetra-n-butylammonium peroxytitanate, and titanium halides.
  • Examples of the compound include tetraalkyl orthosilicates such as tetraethyl orthosilicate, silica and the like.
  • Examples of the acidic compound include inorganic acids such as hydrochloric acid, and organic acids such as acetic acid.
  • Examples of the basic compound include inorganic bases such as alkali hydroxide and ammonia, and organic bases such as pyridine.
  • examples of the aqueous solvent include water-soluble organic solvents such as methanol, ethanol, propanol and 2-propanol, water or a mixed solvent of water and the water-soluble organic solvent.
  • the aging temperature in the aging is usually 0 to 200 ° C., preferably 20 to 100 ° C.
  • the pressure is usually 0.1 to 1.0 MPa in absolute pressure, preferably 0.1 to 0.8 MPa.
  • the aging time is usually 0.5 to 170 hours, preferably 4 to 72 hours.
  • a titanosilicate incorporating a structure directing agent is obtained, and then the structure directing agent is removed from this titanosilicate.
  • a removal method include a method of washing with an organic solvent such as methanol, acetone, and toluene, a method of washing with hydrochloric acid (aqueous hydrogen chloride solution), an aqueous solution of sulfuric acid, an aqueous nitric acid solution, and a method of baking at 200 to 800 ° C. It is done. Any one of the removal methods may be employed, or two or more may be employed in combination.
  • Calcination as the removing method may be performed in an atmosphere of an oxygen-containing gas such as air, or may be performed in an atmosphere of an inert gas such as nitrogen, helium, argon, or oxygen dioxide. Water vapor may be contained in the oxygen-containing gas or the inert gas. Further, the calcination may be performed in multiple stages in an atmosphere of an oxygen-containing gas or an inert gas.
  • the firing may be performed in a fluidized bed type or a fixed bed type.
  • the apparatus used for the firing is not particularly limited as long as it can be heated. For example, a hot-air circulating firing furnace, a stationary firing furnace, a tunnel furnace, a rotary kiln, a far infrared furnace, a microwave heating furnace, or the like is used. can do.
  • the amorphous mesoporous titanosilicate catalyst can be prepared, for example, according to the method described in JP-A-2000-117101, and Ti-MCM-41 can be prepared, for example, by microporous and It can be prepared according to the method described in Mesoporous Materials, 2007, P312-321, and Ti-HMS is prepared according to the method described in Nature, 1994, P321-323, for example. be able to.
  • the amorphous titanosilicate catalyst having no regular pores is, for example, mixed with a titanium compound and a silicon compound in an aqueous solvent in the presence of an acidic compound or a basic compound, and then at a certain temperature and It is prepared by aging under the conditions of pressure or under the conditions of changing the temperature and / or pressure within the range of the temperature and pressure described later, washing as necessary, and drying. After the drying, firing may be performed as necessary.
  • titanium compounds include tetraalkyl orthotitanates such as tetra-n-butyl orthotitanate, peroxytitanates such as tetra-n-butylammonium peroxytitanate, titanium halides, and the like.
  • tetraalkyl orthosilicates such as tetraethyl orthosilicate, silica and the like.
  • the acidic compound include inorganic acids such as hydrochloric acid, and organic acids such as acetic acid.
  • examples of the basic compound include inorganic bases such as alkali hydroxide and ammonia, and organic bases such as pyridine.
  • examples of the aqueous solvent include water-soluble organic solvents such as methanol, ethanol, propanol and 2-propanol, water or a mixed solvent of water and the water-soluble organic solvent.
  • the aging temperature in such aging is usually 0 to 200 ° C.
  • the pressure is usually 0.1 to 1.0 MPa in absolute pressure.
  • the aging time is usually 0.5 to 170 hours.
  • the above amorphous titanosilicate catalyst may be contact-treated with a silicon compound.
  • silicon compounds include organic silicon compounds and inorganic silicon compounds, and among them, organic silicon compounds are preferable.
  • the contact treatment with the silicon compound can be performed, for example, according to the method described in JP2012-20966A.
  • the above amorphous titanosilicate catalyst may be used after being molded using a binder as necessary.
  • the forming treatment may be performed before the contact treatment with the silicon compound or after the contact treatment with the silicon compound.
  • the molding process can be performed by a method such as extrusion, compression, tableting, flow, rolling, spraying, etc., and a desired shape, for example, granular, pellet, spherical, cylindrical, plate, ring, clover It can be formed into a shape or the like.
  • the contact between the amine compound (I) and oxygen in the presence of an oxidation catalyst is preferably performed using a solvent.
  • the solvent include an organic solvent, water, and a mixed solvent of an organic solvent and water. Among them, an organic solvent or a mixed solvent of an organic solvent and water is preferable, and an organic solvent is more preferable.
  • organic solvents examples include methanol, ethanol, propanol, isopropanol, n-butanol, t-butanol, n-hexanol, 2-ethylhexanol, n-dodecanol and other alcohols; pentane, hexane, heptane, octane, petroleum ether, Aliphatic hydrocarbons such as ligroin; alicyclic hydrocarbons such as cyclopentane, cyclohexane, and methylcyclohexane; aromatic hydrocarbons such as benzene, toluene, o-xylene, m-xylene, and p-xylene; dichloromethane, chloroform, 1 Halogenated hydrocarbons such as 1,2-dichloroethane, 1,1,1-trichloroethane, 1,1,2-trichloroethylene, 1,1,2,2-tetrachloroethylene, chlorobenz
  • Nitrile; nitro compounds such as nitrobenzene; ethyl acetate, isopropyl acetate, butyl acetate, ester compounds such as ethyl benzoate and the like, can also be used two or more of them as required.
  • alcohol, aromatic hydrocarbon, and nitrile are preferable.
  • methanol, ethanol, and t-butanol are preferable.
  • aromatic hydrocarbons toluene, o-xylene, m-xylene, and p-xylene are preferable.
  • nitrites acetonitrile is preferable.
  • the amount thereof is usually 0.1 to 300 parts by weight, preferably 0.5 to 100 parts by weight with respect to 1 part by weight of the amine compound (I).
  • the contact between the amine compound (I) and oxygen may be performed batchwise, semibatchwise, continuously, or a combination of batch, semibatch and continuous. May be.
  • fixed bed method, fluidized bed method, moving bed method, suspension bed method, and the method of extracting the liquid phase of the reaction mixture while supplying the reaction raw material into the stirring mixing type or loop type reactor It can implement by various methods, such as.
  • the contact temperature in the contact between the amine compound (I) and oxygen is preferably 50 to 200 ° C, more preferably 70 to 150 ° C.
  • the pressure is usually 0.1 to 10 MPa in absolute pressure, preferably 0.2 to 7.0 MPa. Such contact is preferably performed under pressure. In this case, the pressure may be adjusted using an inert gas such as nitrogen or helium.
  • the oxygen-containing gas is supplied to the gas phase part of the reactor.
  • the oxygen-containing gas may be supplied into the liquid phase, or the oxygen-containing gas may be supplied into the gas phase portion and the liquid phase of the reactor.
  • a radical initiator In the contact between the amine compound (I) and oxygen, a radical initiator, a phenol chain transfer agent or the like may coexist as necessary.
  • the radical initiator include hydrazyl radicals and hydrazine compounds disclosed in International Publication No. 2005/009613; azo compounds and peroxides disclosed in JP 2005-15381 A; If necessary, two or more kinds of radical initiators may be used.
  • the hydrazyl radical include 2,2-diphenyl-1-picrylhydrazyl, 2,2-di (4-tert-octylphenyl) -1-picrylhydrazyl and the like.
  • the hydrazine compound include 1,1-diphenyl-2-picrylhydrazine.
  • the compound etc. which are disclosed by Unexamined-Japanese-Patent No. 2005-15382 are mentioned, for example.
  • the amine compound (I) By contacting the amine compound (I) with oxygen in the presence of an oxidation catalyst, the amine compound (I) is oxidized with oxygen, and a reaction mixture containing the oxime compound (II) is obtained.
  • the post-treatment operation of the reaction mixture can be appropriately selected, and after purifying the oxime compound (II) by combining treatments such as filtration, washing, distillation, crystallization, extraction, recrystallization, chromatography and the like, if necessary. Can be used for various purposes.
  • the catalyst recovered after the oxidation can be reused after being subjected to treatments such as washing, calcination and ion exchange treatment as necessary.
  • the recovered solvent and unreacted raw material can be reused.
  • the obtained oxime compound (II) is suitably used as a raw material for producing the amide compound (III) by, for example, Beckmann rearrangement reaction.
  • amide compound (III) R 1 and R 2 are combined to form a carbon atom which may have one or more substituents together with the nitrogen atom to which R 1 is bonded and the carbon atom to which R 2 is bonded.
  • an oxime compound (II) is, R 1 and R 2 together with the carbon atom to which R 1 and R 2 are attached, one or more substituents
  • Beckmann rearrangement examples include a method performed under liquid phase conditions and a method performed under gas phase conditions.
  • the Beckmann rearrangement reaction under liquid phase conditions includes, for example, a method performed in the presence of a strong acid such as fuming sulfuric acid, and can be performed according to the method described in Japanese Patent Publication No. 48-4791.
  • the Beckmann rearrangement reaction under gas phase conditions includes, for example, a method performed in the presence of a solid catalyst such as zeolite, and can be performed according to the method described in JP-A-5-170732.
  • a solid catalyst such as zeolite
  • Reference example 1 [Preparation of catalyst]
  • a 100 mL beaker 40 g of water and 4 g of powdered silica alumina (manufactured by JGC Catalysts & Chemicals Co., Ltd .: SAL) were placed.
  • the mixture in the beaker was stirred and heated to 50 ° C. using a water bath, and then a 20 wt% titanium trichloride solution (a dilute hydrochloric acid solution of TiCl 3 , manufactured by Wako Pure Chemical Industries, Ltd.). 29 g was gradually added dropwise using a pipette. After completion of the dropping, stirring was continued at 50 ° C. for 1 hour. After 1 hour, stirring was stopped and cooled to room temperature.
  • the obtained mixture was subjected to pressure filtration to separate a solid, and this solid was repeatedly washed with water until the pH of the washing filtrate became 5 or more by pressure filtration.
  • the washed solid was dried under vacuum for 1 hour at room temperature.
  • the obtained dried product was filled in a quartz tube, and heat-treated at 450 ° C. for 6 hours while flowing air at a flow rate of 100 mL / min (0 ° C., 0.1 MPa conversion) to prepare catalyst A.
  • Example 1 In a reactor made of SUS316 (capacity: 200 mL) equipped with a thermocouple, a magnetic stirrer, a gas supply line and a gas discharge line, 0.30 g of the catalyst A obtained in Reference Example 1 and cyclohexylamine (Wako Pure Chemical Industries, Ltd. ( 1.49 g (15.0 mmol), 2,2-diphenyl-1-picrylhydrazyl (Aldrich) 0.15 g (0.38 mmol) and acetonitrile (Wako Pure Chemical Industries, Ltd.) Made), the gas phase in the reactor was replaced with nitrogen gas, and then sealed, and a gas mixture of oxygen and nitrogen (oxygen concentration: 7% by volume) was sealed in the gas phase in the reactor.
  • the pressure inside the reactor was adjusted to 0.90 MPa (gauge pressure).
  • the temperature in the reactor was raised to 80 ° C. while stirring, and kept at 80 ° C. for 4 hours, and then cooled.
  • the resulting reaction mixture was diluted with methanol and then filtered, and the obtained filtrate was analyzed.
  • the conversion of cyclohexylamine was 19.5% and the selectivity for cyclohexanone oxime was 89.6%. there were.
  • Reference example 2 [Preparation of catalyst]
  • a 100 mL beaker 40 g of water and 4 g of powdery ⁇ -alumina (manufactured by Sumitomo Chemical Co., Ltd .: GO-24) were placed.
  • the temperature was raised to 50 ° C. using a water bath, and then a 20 wt% titanium trichloride solution (a dilute hydrochloric acid solution of TiCl 3 , manufactured by Wako Pure Chemical Industries, Ltd.). 22 g was gradually added dropwise using a pipette. After completion of the dropwise addition, stirring was continued at 50 ° C. for 6 hours. After 6 hours, stirring was stopped and cooled to room temperature.
  • the obtained mixture was subjected to pressure filtration to separate a solid, and this solid was repeatedly washed with water until the pH of the washing filtrate became 5 or more by pressure filtration.
  • the washed solid was dried under vacuum for 1 hour at room temperature.
  • the obtained dried product was filled in a quartz tube, and heat-treated at 450 ° C. for 6 hours while flowing air at a flow rate of 100 mL / min (0 ° C., 0.1 MPa conversion) to prepare catalyst B.
  • Example 2 The same operation as in Example 1 was performed except that 0.30 g of the catalyst B obtained in Reference Example 2 was used instead of 0.30 g of the catalyst A.
  • the conversion of cyclohexylamine was 7.3% and the selectivity of cyclohexanone oxime was 60.8%.
  • Catalyst 4 was prepared in the same manner as in Reference Example 1 except that 4 g of silica gel (Wako Pure Chemical Industries, Ltd .: Wakogel [registered trademark] Q-63) was used instead of 4 g of powdered silica alumina. Was prepared.
  • Example 3 The same operation as in Example 1 was performed except that 0.30 g of the catalyst C obtained in Reference Example 3 was used instead of 0.30 g of the catalyst A.
  • the conversion of cyclohexylamine was 8.7% and the selectivity for cyclohexanone oxime was 72.3%.
  • Example 4 In a reactor made of SUS316 (capacity: 100 mL) equipped with a thermocouple, a magnetic stirrer, a gas supply line, and a gas discharge line, 0.30 g of catalyst D obtained in Reference Example 4 and cyclohexylamine (Wako Pure Chemical Industries, Ltd.
  • the resulting reaction mixture was diluted with methanol and then filtered, and the obtained filtrate was analyzed.
  • the conversion of cyclohexylamine was 42.6% and the selectivity of cyclohexanone oxime was 86.9%. there were.
  • Example 5 The same operation as in Example 4 was performed except that 0.30 g of the catalyst E obtained in Reference Example 5 was used instead of 0.30 g of the catalyst D.
  • the conversion of cyclohexylamine was 39.4% and the selectivity for cyclohexanone oxime was 86.2%.
  • a catalyst F was prepared in the same manner as in Reference Example 4 except that the amount of sodium tungstate dihydrate was changed from 4.94 g to 2.47 g (7.5 mmol).
  • Example 6 The same operation as in Example 4 was performed except that 0.30 g of the catalyst F obtained in Reference Example 6 was used instead of 0.30 g of the catalyst D.
  • the conversion of cyclohexylamine was 43.0% and the selectivity of cyclohexanone oxime was 88.8%.
  • Example 7 The same operation as in Example 4 was performed except that 0.30 g of the catalyst G obtained in Reference Example 7 was used instead of 0.30 g of the catalyst D.
  • the conversion of cyclohexylamine was 35.3% and the selectivity of cyclohexanone oxime was 85.4%.
  • Catalyst H was prepared in the same manner as in Reference Example 7 except that the amount of sodium tungstate dihydrate was changed from 0.99 g to 0.50 g (1.5 mmol).
  • Example 8 The same operation as in Example 4 was performed except that 0.30 g of the catalyst H obtained in Reference Example 8 was used instead of 0.30 g of the catalyst D.
  • the conversion of cyclohexylamine was 13.0% and the selectivity of cyclohexanone oxime was 77.5%.
  • Example 9 The same operation as in Example 4 was performed except that 0.30 g of the catalyst I obtained in Reference Example 9 was used instead of 0.30 g of the catalyst D.
  • the conversion of cyclohexylamine was 27.6% and the selectivity of cyclohexanone oxime was 67.7%.
  • Reference Example 10 [Preparation of catalyst] In a 50 mL beaker, 12.7 g of ethanol (manufactured by Wako Pure Chemical Industries, Ltd.), 2 g / L hydrochloric acid (manufactured by Wako Pure Chemical Industries, Ltd.) 3.0 g, and tetraethyl orthosilicate (Wako Pure Chemical Industries, Ltd. ( 6.3 g) was added and heated to 70 ° C. using a water bath while stirring, and then stirred at 70 ° C. for 1 hour to prepare ⁇ liquid.
  • ethanol manufactured by Wako Pure Chemical Industries, Ltd.
  • 2 g / L hydrochloric acid manufactured by Wako Pure Chemical Industries, Ltd.
  • tetraethyl orthosilicate (Wako Pure Chemical Industries, Ltd. ( 6.3 g) was added and heated to 70 ° C. using a water bath while stirring, and then stirred at 70 ° C. for 1 hour to prepare ⁇ liquid.
  • Example 10 In a reactor made of SUS316 (capacity: 200 mL) equipped with a thermocouple, a magnetic stirrer, a gas supply line and a gas discharge line, 0.30 g of the catalyst J obtained in Reference Example 10 and cyclohexylamine (Wako Pure Chemical Industries, Ltd. ( Co., Ltd.) 1.49 g (15.0 mmol) and acetonitrile (Wako Pure Chemical Industries, Ltd.) 6.99 g were added, and the gas phase in the reactor was replaced with nitrogen gas, and then sealed, A gas mixture of oxygen and nitrogen (oxygen concentration: 7% by volume) was introduced into the gas phase portion in the reactor to adjust the pressure in the reactor to 0.90 MPa (gauge pressure).
  • the temperature in the reactor was raised to 80 ° C. while stirring.
  • the pressure in the reactor at this time was 1.04 MPa (gauge pressure).
  • the mixture was kept at 80 ° C. for 4 hours while continuing stirring, and then cooled.
  • the resulting reaction mixture was diluted with methanol and then filtered, and the obtained filtrate was analyzed.
  • the conversion of cyclohexylamine was 0.3% and the selectivity of cyclohexanone oxime was 38.4%. there were.
  • Example 11 Example 10 except that 0.15 g (0.38 mmol) of 2,2-diphenyl-1-picrylhydrazyl (manufactured by Aldrich) was added to the reactor in addition to catalyst J, cyclohexylamine and acetonitrile. Was performed. When the obtained filtrate was analyzed, the conversion of cyclohexylamine was 21.2% and the selectivity of cyclohexanone oxime was 92.0%.
  • Reference Example 11 [Preparation of catalyst]
  • ethanol manufactured by Wako Pure Chemical Industries, Ltd.
  • sepiolite Sepisorb 400 manufactured by Sepio Japan Co., Ltd.
  • the mixture in the poly beaker was heated to 50 ° C. while stirring, and then a 20 wt% titanium trichloride solution (a dilute hydrochloric acid solution of TiCl 3 , manufactured by Wako Pure Chemical Industries, Ltd.).
  • Example 12 The same operation as in Example 10 was performed except that 0.30 g of the catalyst K obtained in Reference Example 11 was used instead of 0.30 g of the catalyst J.
  • the conversion of cyclohexylamine was 0.2% and the selectivity of cyclohexanone oxime was 27.1%.
  • Example 13 The same operation as in Example 11 was performed except that 0.30 g of the catalyst K obtained in Reference Example 11 was used instead of 0.30 g of the catalyst J.
  • the obtained filtrate was analyzed, the conversion of cyclohexylamine was 13.8% and the selectivity of cyclohexanone oxime was 78.2%.
  • Catalyst L was prepared in the same manner as in Reference Example 11 except that 10.0 g of palygorskite was used instead of 10.0 g of sepiolite.
  • Example 14 The same operation as in Example 10 was performed except that 0.30 g of the catalyst L obtained in Reference Example 12 was used instead of 0.30 g of the catalyst J.
  • the conversion of cyclohexylamine was 1.5% and the selectivity of cyclohexanone oxime was 46.1%.
  • Example 15 The same operation as in Example 11 was performed except that 0.30 g of the catalyst L obtained in Reference Example 12 was used instead of 0.30 g of the catalyst J.
  • the conversion of cyclohexylamine was 21.3% and the selectivity for cyclohexanone oxime was 80.7%.
  • Example 16 In a reactor made of SUS316 (capacity: 1 L) equipped with a thermocouple, a magnetic stirrer, a gas supply line, and a gas discharge line, 7.5 g of the catalyst M obtained in Reference Example 13 and cyclohexylamine (Wako Pure Chemical Industries, Ltd. ( 106 g (1.1 mol), and 106 g of toluene (manufactured by Wako Pure Chemical Industries, Ltd.) were added, and the gas phase in the reactor was replaced with nitrogen gas, and then sealed and sealed. Nitrogen gas was introduced into the gas phase to adjust the pressure in the reactor to 0.90 MPa (gauge pressure). Subsequently, it heated up at 80 degreeC, stirring.
  • SUS316 capacity: 1 L
  • the pressure in the reactor at this time was 0.90 MPa (gauge pressure).
  • a mixed gas of oxygen and nitrogen oxygen concentration: 7% by volume
  • the reaction was started. While maintaining the pressure in the reactor at 0.90 MPa (gauge pressure) and continuing the reaction at 80 ° C. for 5 hours while discharging the gas from the gas phase portion in the reactor through the gas discharge line, oxygen and The supply of mixed gas with nitrogen was stopped and the mixture was cooled.
  • the obtained reaction mixture was diluted with methanol and then filtered, and the obtained filtrate was analyzed.
  • the conversion of cyclohexylamine was 0.4% and the selectivity of cyclohexanone oxime was 27.9%. there were.
  • Example 17 Example 16 except that 7.5 g of amorphous titanosilicate having mesopores prepared in accordance with the method described in JP-A-2000-117101 was used instead of 7.5 g of catalyst M The same operation was performed. The pressure in the reactor when the temperature was raised to 80 ° C. was 0.90 MPa (gauge pressure). When the obtained filtrate was analyzed, the conversion of cyclohexylamine was 0.6% and the selectivity of cyclohexanone oxime was 29.7%.
  • Example 18 The same operation as in Example 16 was performed except that 7.5 g of Ti-HMS was used instead of 7.5 g of the catalyst M.
  • the pressure in the reactor when the temperature was raised to 80 ° C. was 0.90 MPa (gauge pressure).
  • the conversion rate of cyclohexylamine was 0.6% and the selectivity of cyclohexanone oxime was 32.4%.
  • Comparative Example 1 The same operation as in Example 1 was performed except that 0.30 g of titanium oxide (TiO 2 , ST-01 manufactured by Ishihara Sangyo Co., Ltd.) was used instead of 0.30 g of catalyst A. When the obtained filtrate was analyzed, the conversion of cyclohexylamine was 3.1% and the selectivity of cyclohexanone oxime was 46.3%.
  • TiO 2 titanium oxide
  • ST-01 manufactured by Ishihara Sangyo Co., Ltd.
  • Comparative Example 2 The same operation as in Comparative Example 1 was performed except that 2,2-diphenyl-1-picrylhydrazyl was not used. When the obtained filtrate was analyzed, the conversion of cyclohexylamine was 0.2% and the selectivity of cyclohexanone oxime was 5.6%.
  • Comparative Example 3 The same operation as in Example 16 was performed except that 7.5 g of titanium oxide (TiO 2 , ST-01 manufactured by Ishihara Sangyo Co., Ltd.) was used instead of 7.5 g of the catalyst M.
  • the pressure in the reactor when the temperature was raised to 80 ° C. was 0.90 MPa (gauge pressure).
  • the conversion rate of cyclohexylamine was 0.2% and the selectivity of cyclohexanone oxime was 10.6%.

Abstract

A method for producing an oxime compound (II) wherein an amine compound (I) is brought into contact with oxygen in the presence of at least one type of catalyst selected from the group constituting (A) a titanium supported catalyst obtained by heat treatment at 150°C or higher after contact treatment of a support by a titanium compound, (B) a catalyst containing tin and at least one selected from the group consisting of tungsten and molybdenum, (C) an inosilicate catalyst, and (D) an amorphous titanosilicate catalyst.

Description

オキシムの製造方法Oxime production method
 本発明は、後述する式(II)で示されるオキシム〔以下、オキシム化合物(II)ということがある。〕を製造する方法に関する。 In the present invention, an oxime represented by the formula (II) described below [hereinafter sometimes referred to as an oxime compound (II). ] About the method of manufacturing.
 オキシムは、ラクタムの原料、ひいては合成繊維の原料等として有用である。オキシム化合物(II)を製造する方法として、例えば、国際公開第2005/009613号(特許文献1)には、ヒドラジルラジカルまたはヒドラジン化合物と、酸化チタン等の酸化促進剤との共存下に、第一級アミンを酸素により酸化する方法が提案されている。 Oxime is useful as a raw material for lactam, and as a raw material for synthetic fibers. As a method for producing the oxime compound (II), for example, International Publication No. 2005/009613 (Patent Document 1) includes a hydrazyl radical or a hydrazine compound and a coexistence of an oxidation accelerator such as titanium oxide. A method of oxidizing a primary amine with oxygen has been proposed.
 本発明の目的は、良好な選択率でオキシム化合物(II)を製造することができる新規な方法を提供することにある。
 かかる状況下、本発明者らは、鋭意検討した結果、本発明を完成するに至った。すなわち、本発明は、以下の構成からなる。
An object of the present invention is to provide a novel method capable of producing the oxime compound (II) with good selectivity.
Under such circumstances, as a result of intensive studies, the present inventors have completed the present invention. That is, this invention consists of the following structures.
 (1)式(II)
Figure JPOXMLDOC01-appb-I000004
[式中、RおよびRは、それぞれ独立して、水素原子、1以上の置換基を有していてもよい炭化水素基または1以上の置換基を有していてもよい複素環基を表す(但し、RおよびRが共に水素原子であることはない。)か、あるいはRおよびRは一緒になって、RおよびRが結合する炭素原子と共に、1以上の置換基を有していてもよい炭素数3~12の脂環式炭化水素基を形成する。]
で示されるオキシム〔以下、オキシム化合物(II)ということがある〕の製造方法であって、
下記の(A)、(B)、(C)および(D)からなる群より選ばれる少なくとも一種の触媒の存在下に、
式(I)
Figure JPOXMLDOC01-appb-I000005
(式中、RおよびRは、それぞれ前記と同じ意味を表す。)
で示されるアミン〔以下、アミン化合物(I)ということがある〕と、
酸素と
を接触させる方法。
(A)担体をチタン化合物で接触処理した後に150℃以上で熱処理して得られるチタン担持触媒
(B)タングステンおよびモリブデンからなる群より選ばれる少なくとも一種とスズとを含む触媒
(C)イノケイ酸塩触媒
(D)非晶質チタノシリケート触媒
(1) Formula (II)
Figure JPOXMLDOC01-appb-I000004
[Wherein, R 1 and R 2 each independently represent a hydrogen atom, a hydrocarbon group optionally having one or more substituents, or a heterocyclic group optionally having one or more substituents. (Wherein R 1 and R 2 are not both hydrogen atoms), or R 1 and R 2 together represent one or more together with the carbon atom to which R 1 and R 2 are bonded. An alicyclic hydrocarbon group having 3 to 12 carbon atoms which may have a substituent is formed. ]
A method for producing an oxime represented by the following (hereinafter sometimes referred to as oxime compound (II)),
In the presence of at least one catalyst selected from the group consisting of the following (A), (B), (C) and (D):
Formula (I)
Figure JPOXMLDOC01-appb-I000005
(In the formula, R 1 and R 2 each have the same meaning as described above.)
An amine represented by the following (hereinafter sometimes referred to as amine compound (I));
A method of contacting oxygen.
(A) A titanium-supported catalyst obtained by contact-treating a support with a titanium compound and then heat-treated at 150 ° C. or higher. (B) A catalyst containing at least one selected from the group consisting of tungsten and molybdenum and tin (C) Inosilicate Catalyst (D) Amorphous titanosilicate catalyst
 (2)前記担体が、シリカアルミナである前記(1)に記載の方法。
 (3)前記イノケイ酸塩触媒が、セピオライト触媒およびパリゴルスカイト触媒からなる群より選ばれる少なくとも一種の触媒である前記(1)または(2)に記載の方法。
 (4)前記イノケイ酸塩触媒が、第4族金属元素、第5族金属元素、第6族金属元素、ゲルマニウム、第4族金属元素の酸化物、第5族金属元素の酸化物、第6族金属元素の酸化物および酸化ゲルマニウムからなる群より選ばれる少なくとも一種を含有する前記(1)~(3)のいずれかに記載の方法。
 (5)前記非晶質チタノシリケート触媒が、非晶質のメソポーラスチタノシリケート触媒である前記(1)~(4)のいずれかに記載の方法。
(2) The method according to (1), wherein the carrier is silica alumina.
(3) The method according to (1) or (2), wherein the inosilicate catalyst is at least one catalyst selected from the group consisting of a sepiolite catalyst and a palygorskite catalyst.
(4) The inosilicate catalyst includes a Group 4 metal element, a Group 5 metal element, a Group 6 metal element, germanium, an oxide of a Group 4 metal element, an oxide of a Group 5 metal element, 4. The method according to any one of (1) to (3) above, which contains at least one selected from the group consisting of oxides of group metal elements and germanium oxide.
(5) The method according to any one of (1) to (4), wherein the amorphous titanosilicate catalyst is an amorphous mesoporous titanosilicate catalyst.
 (6)式(III)
Figure JPOXMLDOC01-appb-I000006
[式中、RおよびRは、それぞれ独立して、水素原子、1以上の置換基を有していてもよい炭化水素基または1以上の置換基を有していてもよい複素環基を表す(但し、RおよびRが共に水素原子であることはない。)か、あるいはRおよびRは一緒になって、Rが結合する窒素原子と、Rが結合する炭素原子と共に、1以上の置換基を有していてもよい炭素数3~12の脂肪族複素環を形成する。]
で示されるアミド〔以下、アミド化合物(III)ということがある。〕の製造方法であって、
前記(1)~(5)のいずれかに記載の方法により前記式(II)で示されるオキシムを製造する工程、および、
該オキシムをベックマン転位反応させる工程
を含む方法。
(6) Formula (III)
Figure JPOXMLDOC01-appb-I000006
[Wherein, R 1 and R 2 each independently represent a hydrogen atom, a hydrocarbon group optionally having one or more substituents, or a heterocyclic group optionally having one or more substituents. Wherein R 1 and R 2 are not both hydrogen atoms, or R 1 and R 2 together represent a nitrogen atom to which R 1 is bonded and a carbon to which R 2 is bonded. Together with the atom, an aliphatic heterocycle having 3 to 12 carbon atoms which may have one or more substituents is formed. ]
An amide represented by the formula [hereinafter sometimes referred to as an amide compound (III). The manufacturing method of
A step of producing the oxime represented by the formula (II) by the method according to any one of (1) to (5), and
A method comprising a step of subjecting the oxime to a Beckmann rearrangement reaction.
 本発明によれば、良好な選択率でオキシム化合物(II)およびアミド化合物(III)を製造することができる新規な方法を提供することができる。 According to the present invention, it is possible to provide a novel method capable of producing the oxime compound (II) and the amide compound (III) with good selectivity.
 以下、本発明を詳細に説明する。本発明においては、下記の(A)、(B)、(C)および(D)からなる群より選ばれる少なくとも一種の触媒〔以下、酸化触媒ということがある〕の存在下に、アミン化合物(I)と、酸素とを接触させることにより、オキシム化合物(II)を製造する。
(A)担体をチタン化合物で接触処理した後に150℃以上で熱処理して得られるチタン担持触媒
(B)タングステンおよびモリブデンからなる群より選ばれる少なくとも一種とスズとを含む触媒
(C)イノケイ酸塩触媒
(D)非晶質チタノシリケート触媒
Hereinafter, the present invention will be described in detail. In the present invention, in the presence of at least one catalyst selected from the group consisting of the following (A), (B), (C) and (D) [hereinafter sometimes referred to as an oxidation catalyst], an amine compound ( The oxime compound (II) is produced by bringing I) into contact with oxygen.
(A) A titanium-supported catalyst obtained by contact-treating a support with a titanium compound and then heat-treated at 150 ° C. or higher. (B) A catalyst containing at least one selected from the group consisting of tungsten and molybdenum and tin (C) Inosilicate Catalyst (D) Amorphous titanosilicate catalyst
 前記式(I)、(II)および(III)において、RおよびRは、それぞれ独立して、水素原子、1以上の置換基を有していてもよい炭化水素基または1以上の置換基を有していてもよい複素環基を表す場合、RおよびRが共に水素原子であることはない。ここで、「1以上の置換基を有していてもよい」とは、炭化水素基または複素環基中の水素原子の一部または全部が、他の置換基で置換されていてもよい炭化水素基または複素環基のことをいう。RおよびRにおいて、炭化水素基としては、例えば、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、シクロアルケニル基、アリール基等が挙げられる。 In the formulas (I), (II) and (III), R 1 and R 2 are each independently a hydrogen atom, an optionally substituted hydrocarbon group or one or more substituents. When the heterocyclic group which may have a group is represented, R 1 and R 2 are not both hydrogen atoms. Here, “may have one or more substituents” means that a part or all of the hydrogen atoms in the hydrocarbon group or heterocyclic group may be substituted with other substituents. A hydrogen group or a heterocyclic group. In R 1 and R 2 , examples of the hydrocarbon group include an alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group, a cycloalkenyl group, and an aryl group.
 アルキル基としては、炭素数が1~24のアルキル基が好ましく、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s−ブチル基、t−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基、エイコシル基、ヘンイコシル基、ヘンエイコシル基、ドコシル基、トリコシル基、テトラコシル基等が挙げられる。 As the alkyl group, an alkyl group having 1 to 24 carbon atoms is preferable. For example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a s-butyl group, a t-butyl group, a pentyl group, Hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, icosyl, eicosyl, heicosyl , Heneicosyl group, docosyl group, tricosyl group, tetracosyl group and the like.
 アルケニル基としては、炭素数が2~24のアルケニル基が好ましく、例えば、ビニル基、アリル基、2−メチルアリル基、イソプロペニル基、1−プロペニル基、1−ブテニル基、2−ブテニル基、3−ブテニル基、1−メチル−1−プロペニル基、1−メチル−2−プロペニル基、2−メチル−1−プロペニル基、2−メチル−2−プロペニル基、1−ペンテニル基、2−ペンテニル基、3−ペンテニル基、4−ペンテニル基、1−メチル−1−ブテニル基、2−メチル−1−ブテニル基、3−メチル−1−ブテニル基、1−メチル−2−ブテニル基、2−メチル−2−ブテニル基、3−メチル−2−ブテニル基、1−ヘキセニル基、2−ヘキセニル基、3−ヘキセニル基、4−ヘキセニル基、5−ヘキセニル基、1−メチル−1−ペンテニル基、2−メチル−1−ペンテニル基、4−メチル−3−ペンテニル基、2−エチル−1−ブテニル基、2−ヘプテニル基、2−オクテニル基、2−ノネニル基、2−デセニル基、2−ウンデセニル基、2−ドデセニル基、2−トリデセニル基、2−テトラデセニル基、2−ペンタデセニル基、2−ヘキサデセニル基、2−ヘプタデセニル基、2−オクタデセニル基、2−ノナデセニル基、2−イコセニル基、2−エイコセニル基、2−ヘンイコセニル基、2−ヘンエイコセニル基、2−ドコセニル基、2−トリコセニル基、2−テトラコセニル基等が挙げられる。 The alkenyl group is preferably an alkenyl group having 2 to 24 carbon atoms, such as a vinyl group, an allyl group, a 2-methylallyl group, an isopropenyl group, a 1-propenyl group, a 1-butenyl group, a 2-butenyl group, 3 -Butenyl group, 1-methyl-1-propenyl group, 1-methyl-2-propenyl group, 2-methyl-1-propenyl group, 2-methyl-2-propenyl group, 1-pentenyl group, 2-pentenyl group, 3-pentenyl group, 4-pentenyl group, 1-methyl-1-butenyl group, 2-methyl-1-butenyl group, 3-methyl-1-butenyl group, 1-methyl-2-butenyl group, 2-methyl- 2-butenyl group, 3-methyl-2-butenyl group, 1-hexenyl group, 2-hexenyl group, 3-hexenyl group, 4-hexenyl group, 5-hexenyl group, 1-methyl-1-pen Tenenyl group, 2-methyl-1-pentenyl group, 4-methyl-3-pentenyl group, 2-ethyl-1-butenyl group, 2-heptenyl group, 2-octenyl group, 2-nonenyl group, 2-decenyl group, 2-undecenyl group, 2-dodecenyl group, 2-tridecenyl group, 2-tetradecenyl group, 2-pentadecenyl group, 2-hexadecenyl group, 2-heptadecenyl group, 2-octadecenyl group, 2-nonadecenyl group, 2-icosenyl group, A 2-eicosenyl group, a 2-henecocenyl group, a 2-henecocenyl group, a 2-docosenyl group, a 2-tricocenyl group, a 2-tetracocenyl group, and the like can be given.
 アルキニル基としては、炭素数が2~24のアルキニル基が好ましく、例えば、エチニル基、1−プロピニル基、2−プロピニル基、1−ブチニル基、2−ブチニル基、3−ブチニル基、1−メチル−2−プロピニル基、1−ペンチニル基、2−ペンチニル基、3−ペンチニル基、4−ペンチニル基、1−メチル−3−ブチニル基、2−メチル−3−ブチニル基、1−ヘキシニル基、2−ヘキシニル基、3−ヘキシニル基、4−ヘキシニル基、5−ヘキシニル基、2−ヘプチニル基、2−オクチニル基、2−ノニニル基、2−デシニル基、2−ウンデシニル基、2−ドデシニル基、2−トリデシニル基、2−テトラデシニル基、2−ペンタデシニル基、2−ヘキサデシニル基、2−ヘプタデシニル基、2−オクタデシニル基、2−ノナデシニル基、2−イコシニル基、2−エイコシニル基、2−ヘンイコシニル基、2−ヘンエイコシニル基、2−ドコシニル基、2−トリコシニル基、2−テトラコシニル基等が挙げられる。 The alkynyl group is preferably an alkynyl group having 2 to 24 carbon atoms. For example, ethynyl group, 1-propynyl group, 2-propynyl group, 1-butynyl group, 2-butynyl group, 3-butynyl group, 1-methyl 2-propynyl group, 1-pentynyl group, 2-pentynyl group, 3-pentynyl group, 4-pentynyl group, 1-methyl-3-butynyl group, 2-methyl-3-butynyl group, 1-hexynyl group, 2 -Hexynyl group, 3-hexynyl group, 4-hexynyl group, 5-hexynyl group, 2-heptynyl group, 2-octynyl group, 2-noninyl group, 2-decynyl group, 2-undecynyl group, 2-dodecynyl group, 2 -Tridecynyl group, 2-tetradecynyl group, 2-pentadecynyl group, 2-hexadecynyl group, 2-heptadecynyl group, 2-octadecynyl group, 2-nonadecini Group, 2-icosinyl group, 2-eicosinyl group, 2-heneicosinyl group, 2-heneicosinyl group, 2-docosinyl group, 2-tricosinyl group, 2-tetracosinyl group and the like.
 シクロアルキル基としては、炭素数が3~8のシクロアルキル基が好ましく、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基等が挙げられる。 The cycloalkyl group is preferably a cycloalkyl group having 3 to 8 carbon atoms, and examples thereof include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group.
 シクロアルケニル基としては、炭素数が3~8のシクロアルケニル基が好ましく、例えば、シクロプロペニル基、シクロブテニル基、シクロペンテニル基、シクロヘキセニル基、シクロヘプテニル基、シクロオクテニル基等が挙げられる。 The cycloalkenyl group is preferably a cycloalkenyl group having 3 to 8 carbon atoms, and examples thereof include a cyclopropenyl group, a cyclobutenyl group, a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, and a cyclooctenyl group.
 アリール基としては、炭素数が6~14のアリール基が好ましく、例えば、フェニル基、ナフチル基、アントラセニル基、フェナントリル基、トリル基、キシリル基等が挙げられる。 The aryl group is preferably an aryl group having 6 to 14 carbon atoms, and examples thereof include a phenyl group, a naphthyl group, an anthracenyl group, a phenanthryl group, a tolyl group, and a xylyl group.
 RおよびRにおいて、炭化水素基は、1以上の置換基を有していてもよい。炭化水素基がアルキル基、アルケニル基またはアルキニル基の場合、その置換基としては、例えば、フッ素、塩素、臭素等のハロゲン原子;シクロプロピル基、1−メチルシクロプロピル基、シクロブチル基、シクロペンチル基、1−メチルシクロペンチル基、シクロヘキシル基等の炭素数が3~6のシクロアルキル基;メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、s−ブトキシ基、イソブトキシ基、t−ブトキシ基等の炭素数が1~4のアルコキシ基;チオメトキシ基、チオエトキシ基、チオプロポキシ基、チオブトキシ基等の炭素数が1~4のチオアルコキシ基;アリルオキシ基、2−プロペニルオキシ基、2−ブテニルオキシ基、2−メチル−3−プロペニルオキシ基等の炭素数が3~4のアルケニルオキシ基;炭素数が7~20のアラルキルオキシ基;フェニル基、ナフチル基、アントラセニル基、フェナントリル基等の炭素数が6~18のアリール基;フェニルオキシ基、ナフチルオキシ基等のアリールオキシ基;炭素数が2~7のアルカノイル基;炭素数が7~19のアリロイル基;炭素数が1~6のアルコキシカルボニル基等が挙げられる。炭化水素基がアルキル基の場合、炭素数が6~18のアリール基で置換されたアルキル基としては、例えば、ベンジル基、フェネチル基、3−フェニルプロピル基、ベンズヒドリル基、トリチル基、トリフェニルエチル基、(1−ナフチル)メチル基、(2−ナフチル)メチル基等のアラルキル基が挙げられる。 In R 1 and R 2 , the hydrocarbon group may have one or more substituents. When the hydrocarbon group is an alkyl group, an alkenyl group or an alkynyl group, examples of the substituent include halogen atoms such as fluorine, chlorine and bromine; cyclopropyl group, 1-methylcyclopropyl group, cyclobutyl group, cyclopentyl group, A cycloalkyl group having 3 to 6 carbon atoms such as 1-methylcyclopentyl group, cyclohexyl group; methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, s-butoxy group, isobutoxy group, t-butoxy group, etc. An alkoxy group having 1 to 4 carbon atoms; a thioalkoxy group having 1 to 4 carbon atoms such as a thiomethoxy group, a thioethoxy group, a thiopropoxy group, or a thiobutoxy group; an allyloxy group, a 2-propenyloxy group, a 2-butenyloxy group, C3-C4 alkenyloxy groups such as 2-methyl-3-propenyloxy group An aralkyloxy group having 7 to 20 carbon atoms; an aryl group having 6 to 18 carbon atoms such as a phenyl group, a naphthyl group, an anthracenyl group, and a phenanthryl group; an aryloxy group such as a phenyloxy group and a naphthyloxy group; Is an alkanoyl group having 2 to 7 carbon atoms; an aryloyl group having 7 to 19 carbon atoms; an alkoxycarbonyl group having 1 to 6 carbon atoms; When the hydrocarbon group is an alkyl group, examples of the alkyl group substituted with an aryl group having 6 to 18 carbon atoms include benzyl group, phenethyl group, 3-phenylpropyl group, benzhydryl group, trityl group, and triphenylethyl. And aralkyl groups such as a group, (1-naphthyl) methyl group, (2-naphthyl) methyl group and the like.
 RおよびRにおいて、炭化水素基がシクロアルキル基、シクロアルケニル基またはアリール基の場合、その置換基としては、例えば、上述のハロゲン原子、炭素数が3~6のシクロアルキル基、炭素数が1~4のアルコキシ基、炭素数が1~4のチオアルコキシ基、炭素数が3~4のアルケニルオキシ基、炭素数が7~20のアラルキルオキシ基、炭素数が6~18のアリール基、アリールオキシ基、炭素数が2~7のアルカノイル基、炭素数が7~19のアリロイル基、炭素数が1~6のアルコキシカルボニル基や、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s−ブチル基、t−ブチル基、ペンチル基、ヘキシル基等の炭素数が1~6のアルキル基や、ビニル基、1−プロペニル基、2−プロペニル基、1−ブテニル基、2−ブテニル基、3−ブテニル基、1−メチル−2−プロペニル基、2−メチル−2−プロペニル基、1−ペンテニル基、2−ペンテニル基、3−ペンテニル基、4−ペンテニル基、1−メチル−2−ブテニル基、2−メチル−2−ブテニル基、1−ヘキセニル基、2−ヘキセニル基、3−ヘキセニル基、4−ヘキセニル基、5−ヘキセニル基等の炭素数が2~6のアルケニル基や、ベンジル基、フェネチル基、ナフチルメチル基等の炭素数が7~20のアラルキル基等が挙げられる。 In R 1 and R 2 , when the hydrocarbon group is a cycloalkyl group, a cycloalkenyl group or an aryl group, examples of the substituent include the halogen atom described above, a cycloalkyl group having 3 to 6 carbon atoms, Is an alkoxy group having 1 to 4 carbon atoms, a thioalkoxy group having 1 to 4 carbon atoms, an alkenyloxy group having 3 to 4 carbon atoms, an aralkyloxy group having 7 to 20 carbon atoms, an aryl group having 6 to 18 carbon atoms , Aryloxy group, alkanoyl group having 2 to 7 carbon atoms, allyloyl group having 7 to 19 carbon atoms, alkoxycarbonyl group having 1 to 6 carbon atoms, methyl group, ethyl group, propyl group, isopropyl group, butyl Group, isobutyl group, s-butyl group, t-butyl group, pentyl group, hexyl group and other alkyl groups having 1 to 6 carbon atoms, vinyl group, 1-propenyl group, 2-propenyl group, 1-butyl group, Nyl group, 2-butenyl group, 3-butenyl group, 1-methyl-2-propenyl group, 2-methyl-2-propenyl group, 1-pentenyl group, 2-pentenyl group, 3-pentenyl group, 4-pentenyl group 1-methyl-2-butenyl group, 2-methyl-2-butenyl group, 1-hexenyl group, 2-hexenyl group, 3-hexenyl group, 4-hexenyl group, 5-hexenyl group, etc. 6 alkenyl groups, aralkyl groups having 7 to 20 carbon atoms such as benzyl group, phenethyl group and naphthylmethyl group.
 RおよびRにおいて、複素環基としては、例えば、ヘテロアリール基、ヘテロアラルキル基等が挙げられる。ヘテロアリール基としては、炭素数が3~9のヘテロアリール基が好ましく、例えば、ピリジル基、キノニル基、ピロリル基、イミダゾリル基、フリル基、インドリル基、チエニル基、オキサゾリル基等が挙げられる。ヘテロアラルキル基としては、炭素数が5~10のヘテロアラルキル基が好ましく、例えば、ピリジルメチル基、キノリルメチル基、インドリルメチル基、フリルメチル基、ピロリルメチル基等が挙げられる。 In R 1 and R 2 , examples of the heterocyclic group include a heteroaryl group and a heteroaralkyl group. The heteroaryl group is preferably a heteroaryl group having 3 to 9 carbon atoms, and examples thereof include a pyridyl group, a quinonyl group, a pyrrolyl group, an imidazolyl group, a furyl group, an indolyl group, a thienyl group, and an oxazolyl group. The heteroaralkyl group is preferably a heteroaralkyl group having 5 to 10 carbon atoms, and examples thereof include a pyridylmethyl group, a quinolylmethyl group, an indolylmethyl group, a furylmethyl group, and a pyrrolylmethyl group.
 RおよびRにおいて、複素環基は、1以上の置換基を有していてもよい。複素環基における置換基としては、例えば、上述のハロゲン原子、炭素数が3~6のシクロアルキル基、炭素数が1~4のアルコキシ基、炭素数が1~4のチオアルコキシ基、炭素数が3~4のアルケニルオキシ基、炭素数が7~20のアラルキルオキシ基、炭素数が6~18のアリール基、アリールオキシ基、炭素数が2~7のアルカノイル基、炭素数が7~19のアリロイル基、炭素数が1~6のアルコキシカルボニル基や、上述の炭素数が1~6のアルキル基、炭素数が2~6のアルケニル基、炭素数が7~20のアラルキル基等が挙げられる。 In R 1 and R 2 , the heterocyclic group may have one or more substituents. Examples of the substituent in the heterocyclic group include the above-described halogen atom, a cycloalkyl group having 3 to 6 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a thioalkoxy group having 1 to 4 carbon atoms, and a carbon number Are alkenyloxy groups having 3 to 4 carbon atoms, aralkyloxy groups having 7 to 20 carbon atoms, aryl groups having 6 to 18 carbon atoms, aryloxy groups, alkanoyl groups having 2 to 7 carbon atoms, 7 to 19 carbon atoms Allylyl groups of 1 to 6 carbon atoms, alkoxycarbonyl groups of 1 to 6 carbon atoms, alkyl groups of 1 to 6 carbon atoms, alkenyl groups of 2 to 6 carbon atoms, aralkyl groups of 7 to 20 carbon atoms, and the like. It is done.
 前記式(I)において、RおよびRが、それぞれ独立して、水素原子または1以上の置換基を有していてもよい炭化水素基を表す場合、アミン化合物(I)としては、例えば、メチルアミン、エチルアミン、n−プロピルアミン、イソプロピルアミン、n−ブチルアミン、イソブチルアミン、s−ブチルアミン、t−ブチルアミン、ペンチルアミン、ヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ウンデシルアミン、ドデシルアミン、トリデシルアミン、テトラデシルアミン、ペンタデシルアミン、ヘキサデシルアミン、ヘプタデシルアミン、オクタデシルアミン、ノナデシルアミン、イコシルアミン、エイコシルアミン、ヘンイコシルアミン、ヘンエイコシルアミン、ドコシルアミン、トリコシルアミン、テトラコシルアミン、1−メチルブチルアミン、2−メチルブチルアミン、シクロプロピルメチルアミン、シクロヘキシルメチルアミン、ベンジルアミン、2−メチルベンジルアミン、4−メチルベンジルアミン、1−フェニルエチルアミン、2−フェニルエチルアミン、3−アミノメチルピリジン、1−(4−クロロフェニル)エチルアミン、2−(2−クロロフェニル)エチルアミン、1−(3−メトキシフェニル)エチルアミン、1−(4−メトキシフェニル)エチルアミン、2−(2−メトキシフェニル)エチルアミン、2−(3−メトキシフェニル)エチルアミン、2−(4−メトキシフェニル)エチルアミン、1−[3−(トリフルオロメチル)フェニル]エチルアミン、1−(1−ナフチル)エチルアミン、1−(2−ナフチル)エチルアミン、1−フェニルプロピルアミン、3−フェニルプロピルアミン等が挙げられる。 In the formula (I), when R 1 and R 2 each independently represent a hydrogen atom or a hydrocarbon group optionally having one or more substituents, the amine compound (I) is, for example, , Methylamine, ethylamine, n-propylamine, isopropylamine, n-butylamine, isobutylamine, s-butylamine, t-butylamine, pentylamine, hexylamine, heptylamine, octylamine, nonylamine, decylamine, undecylamine, dodecyl Amine, tridecylamine, tetradecylamine, pentadecylamine, hexadecylamine, heptadecylamine, octadecylamine, nonadecylamine, icosylamine, eicosylamine, henecosylamine, henecosylamine, docosylamine, tricosyl Amine, tetracosylamine, 1-methylbutylamine, 2-methylbutylamine, cyclopropylmethylamine, cyclohexylmethylamine, benzylamine, 2-methylbenzylamine, 4-methylbenzylamine, 1-phenylethylamine, 2-phenylethylamine, 3-aminomethylpyridine, 1- (4-chlorophenyl) ethylamine, 2- (2-chlorophenyl) ethylamine, 1- (3-methoxyphenyl) ethylamine, 1- (4-methoxyphenyl) ethylamine, 2- (2-methoxy Phenyl) ethylamine, 2- (3-methoxyphenyl) ethylamine, 2- (4-methoxyphenyl) ethylamine, 1- [3- (trifluoromethyl) phenyl] ethylamine, 1- (1-naphthyl) ethylamine, 1- ( 2 -Naphthyl) ethylamine, 1-phenylpropylamine, 3-phenylpropylamine and the like.
 前記式(I)および(II)において、RおよびRが一緒になって、RおよびRが結合する炭素原子と共に、1以上の置換基を有していてもよい炭素数3~12の脂環式炭化水素基を形成する場合、その炭素数は6~12が好ましい。ここで、炭素数3~12の脂環式炭化水素基とは、3~12員環の脂環式炭化水素基をいい、「1以上の置換基を有していてもよい」とは、該脂環式炭化水素基中のメチレン基における水素原子の一部または全部が、他の置換基で置換されていてもよい脂環式炭化水素基のことをいう。該置換基の炭素数は炭素数3~12の脂環式炭化水素基の炭素数には含まれない。炭素数3~12の脂環式炭化水素基における置換基としては、例えば、上述のハロゲン原子、炭素数が3~6のシクロアルキル基、炭素数が1~4のアルコキシ基、炭素数が1~4のチオアルコキシ基、炭素数が3~4のアルケニルオキシ基、炭素数が7~20のアラルキルオキシ基、炭素数が6~18のアリール基、アリールオキシ基、炭素数が2~7のアルカノイル基、炭素数が7~19のアリロイル基、炭素数が1~6のアルコキシカルボニル基や、上述の炭素数が1~6のアルキル基、炭素数が2~6のアルケニル基、炭素数が7~20のアラルキル基等が挙げられる。 In the above formulas (I) and (II), R 1 and R 2 together may have one or more substituents together with the carbon atom to which R 1 and R 2 are bonded. In the case of forming 12 alicyclic hydrocarbon groups, the number of carbon atoms is preferably 6-12. Here, the alicyclic hydrocarbon group having 3 to 12 carbon atoms refers to a 3 to 12-membered alicyclic hydrocarbon group, and “may have one or more substituents” This means an alicyclic hydrocarbon group in which part or all of the hydrogen atoms in the methylene group in the alicyclic hydrocarbon group may be substituted with other substituents. The carbon number of the substituent is not included in the carbon number of the alicyclic hydrocarbon group having 3 to 12 carbon atoms. Examples of the substituent in the alicyclic hydrocarbon group having 3 to 12 carbon atoms include, for example, the above-described halogen atom, a cycloalkyl group having 3 to 6 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, and 1 carbon atom. A thioalkoxy group having 4 to 4 carbon atoms, an alkenyloxy group having 3 to 4 carbon atoms, an aralkyloxy group having 7 to 20 carbon atoms, an aryl group having 6 to 18 carbon atoms, an aryloxy group, and 2 to 7 carbon atoms An alkanoyl group, an aryloyl group having 7 to 19 carbon atoms, an alkoxycarbonyl group having 1 to 6 carbon atoms, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, and a carbon number Examples thereof include 7 to 20 aralkyl groups.
 前記式(I)において、RおよびRが一緒になって、RおよびRが結合する炭素原子と共に、1以上の置換基を有していてもよい炭素数3~12の脂環式炭化水素基を形成する場合、アミン化合物(I)としては、例えば、シクロヘキシルアミン、シクロオクチルアミン、シクロペンチルアミン、シクロヘプチルアミン、シクロドデシルアミン、2−メチルシクロヘキシルアミン、4−メチルシクロヘキシルアミン等が挙げられる。 In the formula (I), R 1 and R 2 are combined together, and the carbon atom to which R 1 and R 2 are bonded together with one or more substituents, the alicyclic ring having 3 to 12 carbon atoms In the case of forming a formula hydrocarbon group, examples of the amine compound (I) include cyclohexylamine, cyclooctylamine, cyclopentylamine, cycloheptylamine, cyclododecylamine, 2-methylcyclohexylamine, 4-methylcyclohexylamine and the like. Can be mentioned.
 アミン化合物(I)の中でも、シクロヘキシルアミンを原料として使用する場合に、最終的に高い収率でシクロヘキサノンオキシムが得られる点で、本発明の方法は有利に採用される。シクロヘキシルアミンとしては、例えば、アニリン、ニトロベンゼン、ニトロシクロヘキサン等を水素化することにより得られたものであってもよいし、シクロヘキセンまたはシクロヘキサノールと、アンモニアとのアミノ化反応により得られたものであってもよい。 Among the amine compounds (I), when cyclohexylamine is used as a raw material, the method of the present invention is advantageously employed in that cyclohexanone oxime is finally obtained in a high yield. The cyclohexylamine may be obtained, for example, by hydrogenating aniline, nitrobenzene, nitrocyclohexane, or the like, or obtained by amination reaction of cyclohexene or cyclohexanol with ammonia. May be.
 本発明のオキシム化合物(II)の製造に用いられる酸素としては、酸素含有ガスを用いることが好ましい。この酸素含有ガスは、例えば、空気であってもよいし、純酸素であってもよいし、空気または純酸素を、窒素、アルゴン、ヘリウムのような不活性ガスで希釈したものであってもよい。また、空気に純酸素を添加した酸素富化空気を使用することもできる。酸素含有ガスを使用する場合、その酸素濃度は1~30容量%が好ましい。 As the oxygen used for the production of the oxime compound (II) of the present invention, it is preferable to use an oxygen-containing gas. The oxygen-containing gas may be, for example, air, pure oxygen, or air or pure oxygen diluted with an inert gas such as nitrogen, argon, or helium. Good. Further, oxygen-enriched air obtained by adding pure oxygen to air can also be used. When an oxygen-containing gas is used, the oxygen concentration is preferably 1 to 30% by volume.
(A)チタン担持触媒
 前記チタン担持触媒は、担体をチタン化合物で接触処理した後、150℃以上で熱処理することにより得られる。該接触処理に使用されるチタン化合物としては、チタンの無機化合物、チタンの有機化合物が挙げられる。チタンの無機化合物としては、例えば、三塩化チタン(TiCl)、四塩化チタン(TiCl)、四臭化チタン(TiBr)、四フッ化チタン(TiF)、四ヨウ化チタン(TiI)等のハロゲン化チタン;四硝酸チタン(Ti(NO)等のチタンの硝酸塩;二硫酸チタン(Ti(SO)等のチタンの硫酸塩;リン酸チタン(Ti(PO)等のチタンのリン酸塩;等が挙げられる。チタンの有機化合物としては、例えば、Ti(OR’)(以下、R’は炭素数1~4のアルキル基を表す。)等のチタンアルコキシド化合物;TiCl(OR’)、TiCl(OR’)、TiCl(OR’)等のチタンのハロゲン化アルコキシド化合物;四酢酸チタン(Ti(CHCOO))等のチタンの酢酸塩;等が挙げられる。チタン化合物は、必要に応じて、その水和物を用いてもよいし、それらの2種以上を用いてもよい。チタン化合物としては、中でも、ハロゲン化チタン、チタンの硫酸塩、チタンアルコキシド化合物が好ましく、ハロゲン化チタンがより好ましい。
(A) Titanium-supported catalyst The titanium-supported catalyst is obtained by heat-treating the support at 150 ° C. or higher after contact-treating the support with a titanium compound. Examples of the titanium compound used in the contact treatment include an inorganic compound of titanium and an organic compound of titanium. As an inorganic compound of titanium, for example, titanium trichloride (TiCl 3 ), titanium tetrachloride (TiCl 4 ), titanium tetrabromide (TiBr 4 ), titanium tetrafluoride (TiF 4 ), titanium tetraiodide (TiI 4) Titanium halides such as titanium tetranitrate (Ti (NO 3 ) 4 ); Titanium sulfates such as titanium disulfate (Ti (SO 4 ) 2 ); Titanium phosphate (Ti 3 (PO 4 ) Titanium phosphates such as 4 ); and the like. Examples of titanium organic compounds include titanium alkoxide compounds such as Ti (OR ′) 4 (hereinafter, R ′ represents an alkyl group having 1 to 4 carbon atoms); TiCl (OR ′) 3 , TiCl 2 (OR ') 2, TiCl 3 (OR ') halide alkoxide compounds of titanium, and the like; tetraacetic acid titanium (Ti (CH 3 COO) 4 ) acetate titanium and the like; and the like. The titanium compound may use the hydrate as needed, and may use 2 or more types thereof. Among the titanium compounds, titanium halide, titanium sulfate, and titanium alkoxide compound are preferable, and titanium halide is more preferable.
 前記接触処理に使用される担体としては、シリカ、アルミナ、シリカ−アルミナ、マグネシア等の酸化物;活性炭、グラファイト、ハードカーボン等の炭素;炭酸カルシウム、炭酸ストロンチウム、炭酸バリウム等のアルカリ土類金属炭酸塩;等が挙げられる。中でも、酸化物が好ましく、シリカ−アルミナがより好ましい。 Examples of the carrier used for the contact treatment include oxides such as silica, alumina, silica-alumina, and magnesia; carbons such as activated carbon, graphite, and hard carbon; alkaline earth metal carbonates such as calcium carbonate, strontium carbonate, and barium carbonate. Salt; and the like. Of these, oxides are preferable, and silica-alumina is more preferable.
 前記接触処理において、チタン化合物は、チタン化合物を含む溶液として使用することが好ましい。チタン化合物を含む溶液の調製に使用される溶媒としては、水、メタノール、エタノール、プロパノール、テトラヒドロフラン、トルエン、ヘキサン等が挙げられる。溶媒は1種のみを用いてもよいし、2種以上を併用してもよい。該接触処理において、処理時の温度は、0~200℃が好ましい。また、かかる接触処理は、空気雰囲気下や、窒素、ヘリウム、アルゴン、二酸化酸素の如き不活性ガス雰囲気下で行うことができる。 In the contact treatment, the titanium compound is preferably used as a solution containing a titanium compound. Examples of the solvent used for preparing the solution containing the titanium compound include water, methanol, ethanol, propanol, tetrahydrofuran, toluene, hexane and the like. Only 1 type may be used for a solvent and it may use 2 or more types together. In the contact treatment, the temperature during the treatment is preferably 0 to 200 ° C. Such contact treatment can be performed in an air atmosphere or in an inert gas atmosphere such as nitrogen, helium, argon, or oxygen dioxide.
 前記接触処理としては、含浸、浸漬等が挙げられる。前記担体をチタン化合物と接触処理する方法として、例えば、(a)担体にチタン化合物を含む溶液を含浸させる方法、(b)担体を、チタン化合物を含む溶液に浸漬させる方法等が挙げられる。かかる含浸または浸漬は、撹拌しながら行ってもよい。 Examples of the contact treatment include impregnation and immersion. Examples of the method for bringing the carrier into contact with the titanium compound include (a) a method in which the carrier is impregnated with a solution containing the titanium compound, and (b) a method in which the carrier is immersed in a solution containing the titanium compound. Such impregnation or immersion may be performed with stirring.
 前記接触処理後の処理物は、150℃以上で熱処理する前に、必要に応じて洗浄、乾燥等の処理に付される。前記接触処理後に得られる混合物がスラリーの状態である場合、該スラリーを乾燥することにより固体を回収してもよいし、濾過やデカンテーション等により分離した後、必要に応じて洗浄し、乾燥することにより、固体を回収してもよい。高い触媒活性を示すチタン担持触媒が得られる点で、前記接触処理後は洗浄を行うことが好ましい。かかる乾燥は、常圧下、減圧下のいずれでも行うことができ、乾燥温度は、20~200℃が好ましく、乾燥時間は、0.5~100時間が好ましい。前記乾燥は、空気等の酸素含有ガスの雰囲気下で行ってもよいし、窒素、ヘリウム、アルゴン、二酸化酸素等の不活性ガスの雰囲気下で行ってもよい。 The treated product after the contact treatment is subjected to treatment such as washing and drying as necessary before heat treatment at 150 ° C. or higher. When the mixture obtained after the contact treatment is in a slurry state, the solid may be recovered by drying the slurry, or separated by filtration, decantation, etc., washed as necessary, and dried. The solid may be recovered. Washing is preferably performed after the contact treatment in that a titanium-supported catalyst exhibiting high catalytic activity can be obtained. Such drying can be performed under normal pressure or reduced pressure, the drying temperature is preferably 20 to 200 ° C., and the drying time is preferably 0.5 to 100 hours. The drying may be performed in an atmosphere of an oxygen-containing gas such as air, or may be performed in an atmosphere of an inert gas such as nitrogen, helium, argon, or oxygen dioxide.
 前記チタン担持触媒において、熱処理の温度は、150~600℃が好ましく、250~500℃がより好ましい。該熱処理の時間は、0.1~100時間が好ましい。前記熱処理は、空気等の酸素含有ガスの雰囲気下で行ってもよいし、窒素、ヘリウム、アルゴン、二酸化酸素等の不活性ガスの雰囲気下で行ってもよい。酸素含有ガスや不活性ガスには、水蒸気が含まれていてもよい。また、該熱処理は、酸素含有ガスまたは不活性ガスの雰囲気下、多段階で行ってもよい。前記熱処理は、流動床式で行ってもよいし、固定床式で行ってもよい。前記熱処理に用いられる装置としては、加熱できる装置であれば特に制限はないが、例えば、熱風循環式焼成炉、静置式焼成炉、トンネル炉、ロータリーキルン、遠赤外線炉、マイクロ波加熱炉等を使用することができる。 In the titanium-supported catalyst, the heat treatment temperature is preferably 150 to 600 ° C, more preferably 250 to 500 ° C. The heat treatment time is preferably 0.1 to 100 hours. The heat treatment may be performed in an atmosphere of an oxygen-containing gas such as air, or may be performed in an atmosphere of an inert gas such as nitrogen, helium, argon, or oxygen dioxide. Water vapor may be contained in the oxygen-containing gas or the inert gas. Further, the heat treatment may be performed in multiple stages in an atmosphere of oxygen-containing gas or inert gas. The heat treatment may be performed in a fluidized bed type or a fixed bed type. The apparatus used for the heat treatment is not particularly limited as long as it can be heated. For example, a hot-air circulating firing furnace, a stationary firing furnace, a tunnel furnace, a rotary kiln, a far infrared furnace, a microwave heating furnace, or the like is used. can do.
 前記チタン担持触媒において、触媒総量に対するチタンの含有量は、0.1~50重量%が好ましく、より好ましくは0.5~50重量%である。 In the titanium-supported catalyst, the titanium content relative to the total amount of the catalyst is preferably 0.1 to 50% by weight, more preferably 0.5 to 50% by weight.
 前記チタン担持触媒は、必要に応じてバインダーを用いて、成形してから使用してもよい。かかる成形処理は、担体の調製時に行ってもよいし、前記接触処理の後に行ってもよいし、前記熱処理の後に行ってもよい。成形処理は、例えば、押出、圧縮、打錠、流動、転動、噴霧等の方法により行うことができ、所望の形状、例えば粒状、ペレット状、球状、円柱状、板状、リング状、クローバー状等に成形することができる。 The titanium-supported catalyst may be used after being molded using a binder as necessary. Such forming treatment may be performed at the time of preparing the carrier, may be performed after the contact treatment, or may be performed after the heat treatment. The molding process can be performed by a method such as extrusion, compression, tableting, flow, rolling, spraying, etc., and a desired shape, for example, granular, pellet, spherical, cylindrical, plate, ring, clover It can be formed into a shape or the like.
(B)タングステンおよびモリブデンからなる群より選ばれる少なくとも一種とスズとを含む触媒
 前記のタングステンおよびモリブデンからなる群より選ばれる少なくとも一種とスズとを含む触媒において、タングステン、モリブデンおよびスズはそれぞれ、金属単体の形態で含まれていてもよいし、化合物の形態で含まれていてもよい。化合物の形態で含まれる場合、該化合物としては、オキソ酸、オキソ酸塩、酸化物、水酸化物、硝酸塩、炭酸塩、水酸化物、ハロゲン化物、イソポリ酸、イソポリ酸塩、ヘテロポリ酸、ヘテロポリ酸塩等が挙げられる。
(B) A catalyst containing tin and at least one selected from the group consisting of tungsten and molybdenum In the catalyst containing tin and at least one selected from the group consisting of tungsten and molybdenum, tungsten, molybdenum and tin are each a metal. It may be included in the form of a simple substance or may be included in the form of a compound. When included in the form of compounds, the compounds include oxoacids, oxoacid salts, oxides, hydroxides, nitrates, carbonates, hydroxides, halides, isopolyacids, isopolyacid salts, heteropolyacids, heteropolyacids. Examples include acid salts.
 前記のタングステンおよびモリブデンからなる群より選ばれる少なくとも一種とスズとを含む触媒を調製する方法としては、例えば、吸着法、含浸法、共沈法、ゾル−ゲル法等が挙げられる。吸着法または含浸法による調製は、例えば、タングステン化合物およびモリブデン化合物からなる群より選ばれる少なくとも一種の化合物と、溶媒とを混合して得られる溶液を、固体状のスズ化合物に接触させた後、必要に応じて洗浄後、乾燥することにより行うことができる。該乾燥後は、必要に応じて焼成を行ってもよい。共沈法またはゾル−ゲル法による調製は、例えば、タングステン化合物およびモリブデン化合物からなる群より選ばれる少なくとも一種の化合物と、スズ化合物と、溶媒とを混合し、必要に応じてpH調整、温度調整、他成分添加等の操作を施し、得られたスラリー中の固体を回収し、必要に応じて洗浄後、乾燥することにより行うことができる。該乾燥後は、必要に応じて焼成を行ってもよい。 Examples of the method for preparing a catalyst containing tin and at least one selected from the group consisting of tungsten and molybdenum include an adsorption method, an impregnation method, a coprecipitation method, and a sol-gel method. Preparation by the adsorption method or impregnation method is, for example, after contacting a solution obtained by mixing at least one compound selected from the group consisting of a tungsten compound and a molybdenum compound and a solvent with a solid tin compound, If necessary, it can be performed by washing and drying. After the drying, firing may be performed as necessary. Preparation by the coprecipitation method or the sol-gel method is performed by, for example, mixing at least one compound selected from the group consisting of a tungsten compound and a molybdenum compound, a tin compound, and a solvent, and adjusting pH and temperature as necessary. The solids in the resulting slurry can be recovered by performing operations such as addition of other components, and drying after washing as necessary. After the drying, firing may be performed as necessary.
 前記のタングステンおよびモリブデンからなる群より選ばれる少なくとも一種とスズとを含む触媒の調製に原料化合物として用いられるタングステン化合物としては、例えば、酸化タングステン、オキシ四塩化タングステン、タングステン酸、タングステン酸塩、タングステンヘキサカルボニル、タングステンペンタエトキシド、タングステンヘキサフェノキシド、メタタングステン酸、メタタングステン酸塩、パラタングステン酸、パラタングステン酸塩、ケイタングステン酸、ケイタングステン酸塩、リンタングステン酸、リンタングステン酸塩、コバルトタングステン酸、コバルトタングステン酸塩、マンガンタングステン酸、マンガンタングステン酸塩、リンタングストモリブデン酸、リンタングストモリブデン酸塩、ケイタングストモリブデン酸、ケイタングストモリブデン酸塩、マンガンモリブデンタングステン酸、マンガンモリブデンタングステン酸塩等が挙げられ、それらの水和物が存在する場合は水和物も用いることができる。中でも、タングステン酸、タングステン酸塩が好ましく、タングステン酸塩としては、例えば、タングステン酸ナトリウム、タングステン酸亜鉛、タングステン酸コバルト、タングステン酸セシウム、タングステン酸マンガン、タングステン酸アンモニウム等が挙げられる。 Examples of the tungsten compound used as a raw material compound for the preparation of the catalyst containing tin and at least one selected from the group consisting of tungsten and molybdenum include tungsten oxide, tungsten oxytetrachloride, tungstic acid, tungstate, and tungsten. Hexacarbonyl, tungsten pentaethoxide, tungsten hexaphenoxide, metatungstic acid, metatungstate, paratungstic acid, paratungstate, silicotungstic acid, silicotungstate, phosphotungstic acid, phosphotungstate, cobalt tungsten Acid, cobalt tungstate, manganese tungstate, manganese tungstate, lintongue molybdate, lintongue molybdate, catang DOO molybdate, Keita ring strike molybdates, manganese molybdate tungstate, manganese molybdate tungstate salt and the like, when the hydrates thereof there may also be used hydrates. Among these, tungstic acid and tungstate are preferable. Examples of tungstate include sodium tungstate, zinc tungstate, cobalt tungstate, cesium tungstate, manganese tungstate, and ammonium tungstate.
 前記のタングステンおよびモリブデンからなる群より選ばれる少なくとも一種とスズとを含む触媒の調製に原料化合物として用いられるモリブデン化合物としては、例えば、酸化モリブデン、塩化モリブデン、2−エチルヘキサン酸モリブデン、ヘキサカルボニルモリブデン、ビス(アセチルアセトナト)酸化モリブデン、モリブデン酸、モリブデン酸塩、モリブドリン酸、モリブドリン酸塩、モリブドケイ酸、モリブドケイ酸塩、コバルトモリブデン酸、コバルトモリブデン酸塩、マンガンモリブデン酸、マンガンモリブデン酸塩、バナドモリブドリン酸、バナドモリブドリン酸塩、マンガンバナジウムモリブデン酸、マンガンバナジウムモリブデン酸塩、マンガンバナドモリブトリン酸、マンガンバナドモリブトリン酸塩等が挙げられ、それらの水和物が存在する場合は水和物も用いることができる。中でも、モリブデン酸、モリブデン酸塩が好ましく、モリブデン酸塩としては、例えば、モリブデン酸ナトリウム、モリブデン酸亜鉛、モリブデン酸コバルト、モリブデン酸セシウム、モリブデン酸マンガン、モリブデン酸アンモニウム等が挙げられる。 Examples of the molybdenum compound used as a raw material compound for the preparation of a catalyst containing at least one selected from the group consisting of tungsten and molybdenum and tin include molybdenum oxide, molybdenum chloride, molybdenum 2-ethylhexanoate, and hexacarbonylmolybdenum. , Bis (acetylacetonato) molybdenum oxide, molybdic acid, molybdate, molybdophosphoric acid, molybdophosphate, molybdosilicate, molybdosilicate, cobalt molybdate, cobalt molybdate, manganese molybdate, manganese molybdate, vana Domolybdophosphoric acid, vanadomolybdophosphate, manganese vanadium molybdate, manganese vanadium molybdate, manganese vanadomolybtriic acid, manganese vanadomolybtriphosphate, etc. If hydrates thereof there can be used the hydrates. Of these, molybdic acid and molybdate are preferable. Examples of molybdate include sodium molybdate, zinc molybdate, cobalt molybdate, cesium molybdate, manganese molybdate, and ammonium molybdate.
 前記のタングステンおよびモリブデンからなる群より選ばれる少なくとも一種とスズとを含む触媒の調製に原料化合物として用いられるスズ化合物としては、例えば、塩化第一スズ、塩化第二スズ、酸化第一スズ、酸化第二スズ等が挙げられ、それらの水和物が存在する場合は水和物も用いることができる。 Examples of the tin compound used as a raw material compound in the preparation of a catalyst containing tin and at least one selected from the group consisting of tungsten and molybdenum include, for example, stannous chloride, stannic chloride, stannous oxide, and oxidation. A hydrate can also be used when stannic etc. are mentioned and those hydrates exist.
 共沈法またはゾル−ゲル法による調製において、前記乾燥は、常圧下、減圧下のいずれでも行うことができ、乾燥温度は、0~200℃が好ましく、乾燥時間は、0.5~100時間が好ましい。該乾燥は、空気等の酸素含有ガスの雰囲気下で行ってもよいし、窒素、ヘリウム、アルゴン、二酸化炭素等の不活性ガスの雰囲気下で行ってもよい。酸素含有ガスや不活性ガスには、水蒸気が含まれていてもよい。また、該乾燥は、酸素含有ガスまたは不活性ガスの雰囲気下、多段階で行ってもよい。該乾燥は、流動床式で行ってもよいし、固定床式で行ってもよい。該乾燥に用いられる装置としては、乾燥できる装置であれば特に制限はないが、例えば、熱風循環式焼成炉、静置式焼成炉、トンネル炉、ロータリーキルン、遠赤外線炉、マイクロ波加熱炉等を使用することができる。 In the preparation by the coprecipitation method or the sol-gel method, the drying can be performed under normal pressure or reduced pressure, the drying temperature is preferably 0 to 200 ° C., and the drying time is 0.5 to 100 hours. Is preferred. The drying may be performed in an atmosphere of an oxygen-containing gas such as air, or may be performed in an atmosphere of an inert gas such as nitrogen, helium, argon, or carbon dioxide. Water vapor may be contained in the oxygen-containing gas or the inert gas. The drying may be performed in multiple stages under an atmosphere of oxygen-containing gas or inert gas. The drying may be performed in a fluidized bed type or a fixed bed type. The apparatus used for the drying is not particularly limited as long as it can be dried. For example, a hot-air circulating firing furnace, a stationary firing furnace, a tunnel furnace, a rotary kiln, a far infrared furnace, a microwave heating furnace, or the like is used. can do.
 前記のタングステンおよびモリブデンからなる群より選ばれる少なくとも一種とスズとを含む触媒中のタングステンおよびモリブデンからなる群より選ばれる少なくとも一種の含有量は、金属元素に換算して、触媒総量に対して、1~60重量%が好ましく、5~50重量%がより好ましい。該触媒中にタングステンおよびモリブデンが含まれる場合、その合計含有量が上記範囲となればよい。該触媒中のスズの含有量は、金属元素に換算して、触媒総量に対して、30~80重量%が好ましく、40~75重量%がより好ましい。また、該触媒中のスズの含有量は、該触媒中のタングステンおよびモリブデンからなる群より選ばれる少なくとも一種の1モルに対して、1~15モルが好ましい。該触媒中にタングステンおよびモリブデンが含まれる場合、その合計モル数に対して、スズの含有量が上記範囲となればよい。 The content of at least one selected from the group consisting of tungsten and molybdenum in the catalyst containing tin and at least one selected from the group consisting of tungsten and molybdenum is based on the total amount of the catalyst in terms of metal elements. 1 to 60% by weight is preferable, and 5 to 50% by weight is more preferable. When tungsten and molybdenum are contained in the catalyst, the total content may be in the above range. The tin content in the catalyst is preferably 30 to 80% by weight, more preferably 40 to 75% by weight, based on the total amount of the catalyst, in terms of metal elements. In addition, the content of tin in the catalyst is preferably 1 to 15 moles with respect to at least one mole selected from the group consisting of tungsten and molybdenum in the catalyst. When tungsten and molybdenum are contained in the catalyst, the content of tin may be in the above range with respect to the total number of moles.
 前記のタングステンおよびモリブデンからなる群より選ばれる少なくとも一種とスズとを含む触媒は、必要に応じてバインダーを用いて、成形してから使用してもよいし、担体に担持して使用してもよい。成形処理は、例えば、押出、圧縮、打錠、流動、転動、噴霧等の方法により行うことができ、所望の形状、例えば粒状、ペレット状、球状、円柱状、板状、リング状、クローバー状等に成形することができる。 The catalyst containing tin and at least one selected from the group consisting of tungsten and molybdenum may be used after being molded using a binder as necessary, or may be used by being supported on a carrier. Good. The molding process can be performed by a method such as extrusion, compression, tableting, flow, rolling, spraying, etc., and a desired shape, for example, granular, pellet, spherical, cylindrical, plate, ring, clover It can be formed into a shape or the like.
(C)イノケイ酸塩触媒
 前記イノケイ酸塩触媒は、SiO四面体が2個の酸素を共有して無限に連なり、鎖状の結晶構造を有するものである。イノケイ酸塩触媒としては、例えば、セピオライト触媒、パリゴルスカイト触媒等のマグネシウムのイノケイ酸塩触媒;ワラストナイト触媒等のカルシウムのイノケイ酸塩触媒等が挙げられ、必要に応じてこれらの2種以上を用いることもできる。中でも、マグネシウムのイノケイ酸塩触媒が好ましく、マグネシウムのイノケイ酸塩触媒の中でも、得られるオキシム化合物(II)の選択率の点で、セピオライト触媒およびパリゴルスカイト触媒からなる群より選ばれる少なくとも一種の触媒が好ましい。前記イノケイ酸塩触媒は、天然物であってもよく、人工的に合成された合成品であってもよく、これらの混合物であってもよい。上記のマグネシウムのイノケイ酸塩触媒は、SiO四面体シートの頂点酸素が周期的に逆転することによりリボン構造(鎖状構造)を有し、リボン幅を周期として四面体シートの頂点酸素の方向が逆転するため、構造内に特徴的な空孔を形成する。また、その形態は繊維状形態を有する。
(C) Inosilicate catalyst The inosilicate catalyst has a chain crystal structure in which SiO 4 tetrahedrons share two oxygens and are connected indefinitely. Examples of the inosilicate catalyst include magnesium inosilicate catalyst such as sepiolite catalyst and palygorskite catalyst; calcium inosilicate catalyst such as wollastonite catalyst and the like. It can also be used. Among them, a magnesium inosilicate catalyst is preferable, and among the magnesium inosilicate catalysts, at least one catalyst selected from the group consisting of a sepiolite catalyst and a palygorskite catalyst in terms of the selectivity of the oxime compound (II) to be obtained. preferable. The inosilicate catalyst may be a natural product, a synthetic product synthesized artificially, or a mixture thereof. The magnesium inosilicate catalyst has a ribbon structure (chain structure) by periodically reversing the apex oxygen of the SiO tetrahedral sheet, and the direction of the apex oxygen of the tetrahedron sheet is the period of the ribbon width. In order to reverse, characteristic voids are formed in the structure. Moreover, the form has a fibrous form.
 前記イノケイ酸塩触媒は、焼成してから、アミン化合物(I)と酸素との接触に使用してもよい。該焼成の温度は、150~600℃が好ましく、該焼成の時間は、0.1~100時間が好ましい。前記焼成は、空気等の酸素含有ガスの雰囲気下で行ってもよいし、窒素、ヘリウム、アルゴン、二酸化酸素等の不活性ガスの雰囲気下で行ってもよい。酸素含有ガスや不活性ガスには、水蒸気が含まれていてもよい。また、該焼成は、酸素含有ガスまたは不活性ガスの雰囲気下、多段階で行ってもよい。前記焼成は、流動床式で行ってもよいし、固定床式で行ってもよい。前記焼成に用いられる装置としては、加熱できる装置であれば特に制限はないが、例えば、熱風循環式焼成炉、静置式焼成炉、トンネル炉、ロータリーキルン、遠赤外線炉、マイクロ波加熱炉等を使用することができる。 The inosilicate catalyst may be used for contacting the amine compound (I) and oxygen after calcination. The firing temperature is preferably 150 to 600 ° C., and the firing time is preferably 0.1 to 100 hours. The firing may be performed in an atmosphere of an oxygen-containing gas such as air, or may be performed in an atmosphere of an inert gas such as nitrogen, helium, argon, or oxygen dioxide. Water vapor may be contained in the oxygen-containing gas or the inert gas. Further, the calcination may be performed in multiple stages in an atmosphere of an oxygen-containing gas or an inert gas. The firing may be performed in a fluidized bed type or a fixed bed type. The apparatus used for the firing is not particularly limited as long as it can be heated. For example, a hot-air circulating firing furnace, a stationary firing furnace, a tunnel furnace, a rotary kiln, a far infrared furnace, a microwave heating furnace, or the like is used. can do.
 前記イノケイ酸塩触媒は、必要に応じてバインダーを用いて、成形してから使用してもよい。かかる成形処理は、後述するイオン交換処理を行う場合、かかるイオン交換処理の前に行ってもよいし、イオン交換処理の後に行ってもよい。成形処理は、例えば、押出、圧縮、打錠、流動、転動、噴霧等の方法により行うことができ、所望の形状、例えば粒状、ペレット状、球状、円柱状、板状、リング状、クローバー状等に成形することができる。 The inosilicate catalyst may be used after being molded using a binder as necessary. When performing the ion exchange process mentioned later, this shaping | molding process may be performed before this ion exchange process, and may be performed after an ion exchange process. The molding process can be performed by a method such as extrusion, compression, tableting, flow, rolling, spraying, etc., and a desired shape, for example, granular, pellet, spherical, cylindrical, plate, ring, clover It can be formed into a shape or the like.
 前記イノケイ酸塩触媒は、第4族金属元素、第5族金属元素、第6族金属元素、ゲルマニウム、第4族金属元素の酸化物、第5族金属元素の酸化物、第6族金属元素の酸化物および酸化ゲルマニウムからなる群より選ばれる少なくとも一種を含有することが好ましく、第4族金属および第4族金属元素の酸化物からなる群より選ばれる少なくとも一種を含有することがより好ましい。第4族金属元素としては、チタン、ジルコニウム等が挙げられる。第5族金属元素としては、バナジウム、ニオブ、タンタル等が挙げられる。第6族金属元素としては、クロム、モリブデン、タングステン等が挙げられる。特に、得られるオキシム化合物(II)の選択率の点で、チタンおよび酸化チタンからなる群より選ばれる少なくとも一種を含有するイノケイ酸塩触媒を使用する場合に、本発明の方法は有利に採用される。 The inosilicate catalyst includes a Group 4 metal element, a Group 5 metal element, a Group 6 metal element, germanium, an oxide of a Group 4 metal element, an oxide of a Group 5 metal element, and a Group 6 metal element. It is preferable to contain at least one selected from the group consisting of oxides of germanium and germanium oxide, and it is more preferable to contain at least one selected from the group consisting of Group 4 metal and Group 4 metal element oxides. Examples of the Group 4 metal element include titanium and zirconium. Examples of the Group 5 metal element include vanadium, niobium, and tantalum. Examples of the Group 6 metal element include chromium, molybdenum, tungsten, and the like. In particular, the method of the present invention is advantageously employed when using an inosilicate catalyst containing at least one selected from the group consisting of titanium and titanium oxide in view of the selectivity of the oxime compound (II) to be obtained. The
 前記イノケイ酸塩触媒が、第4族金属元素、第5族金属元素、第6族金属元素、ゲルマニウム、第4族金属元素の酸化物、第5族金属元素の酸化物、第6族金属元素の酸化物および酸化ゲルマニウムからなる群より選ばれる少なくとも一種を含有する場合、第4族金属元素、第5族金属元素、第6族金属元素、ゲルマニウム、第4族金属元素の酸化物、第5族金属元素の酸化物、第6族金属元素の酸化物および酸化ゲルマニウムからなる群より選ばれる少なくとも一種は、イノケイ酸塩骨格中に組み込まれていてもよく、イノケイ酸塩内の空孔中に担持されていてもよく、イノケイ酸塩の外表面に担持されていてもよい。 The inosilicate catalyst includes a Group 4 metal element, a Group 5 metal element, a Group 6 metal element, germanium, an oxide of a Group 4 metal element, an oxide of a Group 5 metal element, and a Group 6 metal element. And a group 4 metal element, a group 5 metal element, a group 6 metal element, germanium, an oxide of a group 4 metal element, At least one selected from the group consisting of Group metal element oxides, Group 6 metal element oxides and germanium oxide may be incorporated in the inosilicate skeleton, and in the vacancies in the inosilicate. It may be carried or may be carried on the outer surface of inosilicate.
 第4族金属元素、第5族金属元素、第6族金属元素、ゲルマニウム、第4族金属元素の酸化物、第5族金属元素の酸化物、第6族金属元素の酸化物および酸化ゲルマニウムからなる群より選ばれる少なくとも一種を含有するイノケイ酸塩触媒としては、例えば、交換可能な陽イオンを有するイノケイ酸塩を、第4族金属元素の化合物、第5族金属元素の化合物、第6族金属元素の化合物およびゲルマニウム化合物からなる群より選ばれる少なくとも一種の化合物でイオン交換処理することにより得られるものを好適に使用することができる。かかるイオン交換処理は、イノケイ酸塩を、第4族金属元素の化合物、第5族金属元素の化合物、第6族金属元素の化合物およびゲルマニウム化合物からなる群より選ばれる少なくとも一種の化合物を含む溶液と接触させることにより行われることが好ましい。該溶液には、第4族金属元素の化合物、第5族金属元素の化合物、第6族金属元素の化合物およびゲルマニウム化合物以外に、他の元素の化合物が含まれてもよい。また、第4族金属元素の化合物、第5族金属元素の化合物、第6族金属元素の化合物およびゲルマニウム化合物からなる群より選ばれる少なくとも一種の化合物を含む溶液と接触させる前および/または接触させた後に、他の元素の化合物を含む溶液との接触を行ってもよい。 From Group 4 metal element, Group 5 metal element, Group 6 metal element, germanium, Group 4 metal element oxide, Group 5 metal element oxide, Group 6 metal element oxide and germanium oxide As the inosilicate catalyst containing at least one selected from the group consisting of, for example, an inosilicate having an exchangeable cation, a Group 4 metal element compound, a Group 5 metal element compound, Group 6 What is obtained by ion-exchange-processing with the at least 1 type of compound chosen from the group which consists of a compound of a metal element and a germanium compound can be used conveniently. The ion exchange treatment includes a solution containing inosilicate and at least one compound selected from the group consisting of compounds of Group 4 metal elements, compounds of Group 5 metal elements, compounds of Group 6 metal elements, and germanium compounds. It is preferable to carry out by making it contact. In addition to a Group 4 metal element compound, a Group 5 metal element compound, a Group 6 metal element compound, and a germanium compound, the solution may contain compounds of other elements. Further, before and / or contact with a solution containing at least one compound selected from the group consisting of a compound of a Group 4 metal element, a compound of a Group 5 metal element, a compound of a Group 6 metal element, and a germanium compound Thereafter, contact with a solution containing a compound of another element may be performed.
 第4族金属元素、第5族金属元素、第6族金属元素、ゲルマニウム、第4族金属元素の酸化物、第5族金属元素の酸化物、第6族金属元素の酸化物および酸化ゲルマニウムからなる群より選ばれる少なくとも一種を含有するイノケイ酸塩触媒において、第4族金属元素、第5族金属元素、第6族金属元素およびゲルマニウムの合計含有量は、好ましくは0.01~50重量%、より好ましくは0.1~25重量%、さらに好ましくは0.2~10重量%である。かかるイノケイ酸塩触媒において、第4族金属元素の酸化物、第5族金属元素の酸化物、第6族金属元素の酸化物および酸化ゲルマニウムからなる群より選ばれる少なくとも一種が含まれる場合、第4族金属元素の酸化物は第4族金属元素に、第5族金属元素の酸化物は第5族金属元素に、第6族金属元素の酸化物は第6族金属元素に、酸化ゲルマニウムはゲルマニウムにそれぞれ換算して、前記イノケイ酸塩触媒における第4族金属元素、第5族金属元素、第6族金属元素およびゲルマニウムの合計含有量が上記範囲となればよい。第4族金属元素、第5族金属元素、第6族金属元素およびゲルマニウムのそれぞれの含有量は、例えば、誘導結合プラズマ(ICP)発光分析により求めることができる。 From Group 4 metal element, Group 5 metal element, Group 6 metal element, germanium, Group 4 metal element oxide, Group 5 metal element oxide, Group 6 metal element oxide and germanium oxide In the inosilicate catalyst containing at least one selected from the group consisting of the group 4 metal element, group 5 metal element, group 6 metal element and germanium, the total content is preferably 0.01 to 50% by weight More preferably, it is 0.1 to 25% by weight, and further preferably 0.2 to 10% by weight. When such an inosilicate catalyst includes at least one selected from the group consisting of Group 4 metal element oxides, Group 5 metal element oxides, Group 6 metal element oxides, and germanium oxide, Group 4 metal element oxides are Group 4 metal elements, Group 5 metal element oxides are Group 5 metal elements, Group 6 metal element oxides are Group 6 metal elements, and Germanium oxide is In terms of germanium, the total content of the Group 4 metal element, Group 5 metal element, Group 6 metal element and germanium in the inosilicate catalyst may be in the above range. The respective contents of the Group 4 metal element, Group 5 metal element, Group 6 metal element and germanium can be determined by, for example, inductively coupled plasma (ICP) emission analysis.
 前記イオン交換処理に使用される第4族金属元素の化合物としては、第4族金属元素の無機化合物、第4族金属元素の有機化合物が挙げられる。第4族金属元素の無機化合物としては、例えば、三塩化チタン(TiCl)、四塩化チタン(TiCl)、四臭化チタン(TiBr)、四フッ化チタン(TiF)、四ヨウ化チタン(TiI)、三塩化ジルコニウム(ZrCl)、四塩化ジルコニウム(ZrCl)、三臭化ジルコニウム(ZrBr)、四臭化ジルコニウム(ZrBr)、四フッ化ジルコニウム(ZrF)、四ヨウ化ジルコニウム(ZrI)等の第4族金属元素のハロゲン化物;四硝酸チタン(Ti(NO)、四硝酸ジルコニウム(Zr(NO)等の第4族金属元素の硝酸塩;硝酸ジルコニル(ZrO(NO)等の第4族金属元素のオキシ硝酸塩;二硫酸チタン(Ti(SO)、二硫酸ジルコニウム(Zr(SO)等の第4族金属元素の硫酸塩;リン酸チタン(Ti(PO)、リン酸ジルコニウム(Zr(PO)等の第4族金属元素のリン酸塩;等が挙げられる。第4族金属元素の有機化合物としては、例えば、Ti(OR(以下、Rは炭素数1~4のアルキル基を表す。)、Zr(OR等の第4族金属元素のアルコキシド化合物;TiCl(OR、TiCl(OR、TiCl(OR)、ZrCl(OR、ZrCl(OR、ZrCl(OR)等の第4族金属元素のハロゲン化アルコキシド化合物;四酢酸チタン(Ti(CHCOO))、四酢酸ジルコニウム(Zr(CHCOO))等の第4族金属元素の酢酸塩;等が挙げられる。また、必要に応じて、第4族金属元素の化合物の水和物を用いてもよいし、それらの2種以上を用いてもよい。第4族金属元素の化合物としては、中でも、第4族金属元素のハロゲン化物、第4族金属元素の硫酸塩、第4族金属元素のアルコキシド化合物、第4族金属元素のオキシ硝酸塩が好ましく、第4族金属元素のハロゲン化物がより好ましい。 Examples of the group 4 metal element compound used in the ion exchange treatment include inorganic compounds of group 4 metal elements and organic compounds of group 4 metal elements. Examples of inorganic compounds of Group 4 metal elements include titanium trichloride (TiCl 3 ), titanium tetrachloride (TiCl 4 ), titanium tetrabromide (TiBr 4 ), titanium tetrafluoride (TiF 4 ), and tetraiodide. Titanium (TiI 4 ), zirconium trichloride (ZrCl 3 ), zirconium tetrachloride (ZrCl 4 ), zirconium tribromide (ZrBr 3 ), zirconium tetrabromide (ZrBr 4 ), zirconium tetrafluoride (ZrF 4 ), four Group 4 metal element halides such as zirconium iodide (ZrI 4 ); Group 4 metal element nitrates such as titanium tetranitrate (Ti (NO 3 ) 4 ) and zirconium tetranitrate (Zr (NO 3 ) 4 ) ; zirconyl nitrate (ZrO (NO 3) 2) a group 4 metal elements oxy nitrates such as; disulfate titanium (Ti (SO 4) 2) , disulfate zirconium (Zr (SO 4) 2) sulfate group 4 metal elements such as; titanium phosphate (Ti 3 (PO 4) 4 ), zirconium phosphate (Zr 3 (PO 4) 4 ) Group 4 metal, such as Elemental phosphates; and the like. Examples of organic compounds of Group 4 metal elements include Group 4 metals such as Ti (OR 3 ) 4 (hereinafter R 3 represents an alkyl group having 1 to 4 carbon atoms) and Zr (OR 3 ) 4 . Elemental alkoxide compounds; TiCl (OR 3 ) 3 , TiCl 2 (OR 3 ) 2 , TiCl 3 (OR 3 ), ZrCl (OR 3 ) 3 , ZrCl 2 (OR 3 ) 2 , ZrCl 3 (OR 3 ), etc. Halogenated alkoxide compounds of Group 4 metal elements; acetates of Group 4 metal elements such as titanium tetraacetate (Ti (CH 3 COO) 4 ) and zirconium tetraacetate (Zr (CH 3 COO) 4 ); It is done. Moreover, the hydrate of the compound of a group 4 metal element may be used as needed, and 2 or more types thereof may be used. As the Group 4 metal element compound, among them, a Group 4 metal element halide, a Group 4 metal element sulfate, a Group 4 metal element alkoxide compound, a Group 4 metal element oxynitrate is preferable, More preferred are halides of Group 4 metal elements.
 前記イオン交換処理に使用される第5族金属元素の化合物としては、第5族金属元素の無機化合物、第5族金属元素の有機化合物が挙げられる。第5族金属元素の無機化合物としては、例えば、三塩化バナジウム(VCl)、四塩化バナジウム(VCl)、三臭化バナジウム(VBr)、三フッ化バナジウム(VF)、四フッ化バナジウム(VF)、三ヨウ化バナジウム(VI)、三塩化ニオブ(NbCl)、五塩化ニオブ(NbCl)、三臭化ニオブ(NbBr)、五臭化ニオブ(NbBr)、五フッ化ニオブ(NbF)、五ヨウ化ニオブ(NbI)、三塩化タンタル(TaCl)、五塩化タンタル(TaCl)、五臭化タンタル(TaBr)、五フッ化タンタル(TaF)、五ヨウ化タンタル(TaI))等の第5族金属元素のハロゲン化物等が挙げられる。第5族金属元素の有機化合物としては、例えば、Nb(OR、Ta(OR等の第5族金属元素のアルコキシド化合物等が挙げられる。また、必要に応じて、第5族金属元素の化合物の水和物を用いてもよいし、それらの2種以上を用いてもよい。 Examples of the Group 5 metal element compound used for the ion exchange treatment include inorganic compounds of Group 5 metal elements and organic compounds of Group 5 metal elements. Examples of inorganic compounds of Group 5 metal elements include vanadium trichloride (VCl 3 ), vanadium tetrachloride (VCl 4 ), vanadium tribromide (VBr 3 ), vanadium trifluoride (VF 3 ), and tetrafluoride. Vanadium (VF 4 ), vanadium triiodide (VI 3 ), niobium trichloride (NbCl 3 ), niobium pentachloride (NbCl 5 ), niobium tribromide (NbBr 3 ), niobium pentabromide (NbBr 5 ), five Niobium fluoride (NbF 5 ), niobium pentaiodide (NbI 5 ), tantalum trichloride (TaCl 3 ), tantalum pentachloride (TaCl 5 ), tantalum pentabromide (TaBr 5 ), tantalum pentafluoride (TaF 5 ) And halides of Group 5 metal elements such as tantalum pentaiodide (TaI 5 ). Examples of organic compounds of Group 5 metal elements include alkoxide compounds of Group 5 metal elements such as Nb (OR 3 ) 5 and Ta (OR 3 ) 5 . Moreover, the hydrate of the compound of a Group 5 metal element may be used as needed, and 2 or more types thereof may be used.
 前記イオン交換処理に使用される第6族金属元素の化合物としては、第6族金属元素の無機化合物、第6族金属元素の有機化合物が挙げられる。第6族金属元素の無機化合物としては、例えば、二塩化クロム(CrCl)、三塩化クロム(CrCl)、二臭化クロム(CrBr)、三臭化クロム(CrBr)、二フッ化クロム(CrF)、三フッ化クロム(CrF)、二ヨウ化クロム(CrI)、三ヨウ化クロム(CrI)、三塩化モリブデン(MoCl)、五塩化モリブデン(MoCl)、三臭化モリブデン(MoBr)、四フッ化モリブデン(MoF)、六フッ化モリブデン(MoF)、四塩化タングステン(WCl)、六塩化タングステン(WCl)、五臭化タングステン(WBr)、六フッ化タングステン(WF)等の第6族金属元素のハロゲン化物;三硝酸クロム(Cr(NO)等の第6族金属元素の硝酸塩;硫酸クロム(III)(Cr(SO)、等の第6族金属元素の硫酸塩;等が挙げられる。第6族金属元素の有機化合物としては、例えば、Mo(OR、W(OR、W(OR等の第6族金属元素のアルコキシド化合物;三酢酸クロム(Cr(CHCOO))等の第6族金属元素の酢酸塩;等が挙げられる。また、必要に応じて、第6族金属元素の化合物の水和物を用いてもよいし、それらの2種以上を用いてもよい。 Examples of the Group 6 metal element compound used for the ion exchange treatment include inorganic compounds of Group 6 metal elements and organic compounds of Group 6 metal elements. Examples of inorganic compounds of Group 6 metal elements include chromium dichloride (CrCl 2 ), chromium trichloride (CrCl 3 ), chromium dibromide (CrBr 2 ), chromium tribromide (CrBr 3 ), and difluoride. Chromium (CrF 2 ), chromium trifluoride (CrF 3 ), chromium diiodide (CrI 2 ), chromium triiodide (CrI 3 ), molybdenum trichloride (MoCl 3 ), molybdenum pentachloride (MoCl 5 ), three Molybdenum bromide (MoBr 3 ), molybdenum tetrafluoride (MoF 4 ), molybdenum hexafluoride (MoF 6 ), tungsten tetrachloride (WCl 4 ), tungsten hexachloride (WCl 6 ), tungsten pentabromide (WBr 5 ) , halides of the group 6 metal element such as tungsten hexafluoride (WF 6); trinitrate chromium (Cr (NO 3) 3) of the group 6 metal elements such as Salt; Chromium sulfate (III) (Cr 2 (SO 4) 3), sulfates of Group 6 metal element and the like; and the like. Examples of organic compounds of Group 6 metal elements include alkoxide compounds of Group 6 metal elements such as Mo (OR 3 ) 5 , W (OR 3 ) 5 , and W (OR 3 ) 6 ; chromium triacetate (Cr ( CH 3 COO) 3 ) group 6 metal element acetates; and the like. Moreover, the hydrate of the compound of a group 6 metal element may be used as needed, and 2 or more types thereof may be used.
 前記イオン交換処理に使用されるゲルマニウム化合物としては、ゲルマニウムの無機化合物、ゲルマニウムの有機化合物が挙げられる。ゲルマニウムの無機化合物としては、例えば、四塩化ゲルマニウム(GeCl)、四臭化ゲルマニウム(GeBr)、四フッ化ゲルマニウム(GeF)、四ヨウ化ゲルマニウム(GeI)等のゲルマニウムのハロゲン化物;硫化ゲルマニウム(GeS)等のゲルマニウムの硫化物;等が挙げられる。ゲルマニウムの有機化合物としては、例えば、Ge(OR等のゲルマニウムのアルコキシド化合物;GeCl(OR、GeCl(OR、GeCl(OR)等のゲルマニウムのハロゲン化アルコキシド化合物;等が挙げられる。また、必要に応じて、ゲルマニウム化合物の水和物を用いてもよいし、それらの2種以上を用いてもよい。ゲルマニウム化合物としては、中でも、ゲルマニウムのハロゲン化物、ゲルマニウムのアルコキシド化合物が好ましい。 Examples of germanium compounds used in the ion exchange treatment include germanium inorganic compounds and germanium organic compounds. Examples of germanium inorganic compounds include germanium halides such as germanium tetrachloride (GeCl 4 ), germanium tetrabromide (GeBr 4 ), germanium tetrafluoride (GeF 4 ), and germanium tetraiodide (GeI 4 ); And germanium sulfides such as germanium sulfide (GeS). Examples of germanium organic compounds include germanium alkoxide compounds such as Ge (OR 3 ) 4 ; germanium halogenated alkoxides such as GeCl (OR 3 ) 3 , GeCl 2 (OR 3 ) 2 , and GeCl 3 (OR 3 ). Compound; and the like. Moreover, the hydrate of a germanium compound may be used as needed, and those 2 or more types may be used. Of these, germanium halides and germanium alkoxide compounds are preferred as the germanium compound.
 上述のイオン交換処理において、第4族金属元素の化合物、第5族金属元素の化合物、第6族金属元素の化合物およびゲルマニウム化合物からなる群より選ばれる少なくとも一種の化合物の使用量は、第4族金属元素の化合物、第5族金属元素の化合物、第6族金属元素の化合物およびゲルマニウム化合物からなる群より選ばれる少なくとも一種の化合物に含まれる金属元素に換算して、交換可能な陽イオンを有するイノケイ酸塩100重量部に対して、0.01~100重量部が好ましく、0.05~50重量部がより好ましい。第4族金属元素の化合物、第5族金属元素の化合物、第6族金属元素の化合物およびゲルマニウム化合物からなる群より選ばれる二種以上の化合物を使用する場合、その合計使用量が前記範囲となればよい。 In the ion exchange treatment described above, the amount of at least one compound selected from the group consisting of a Group 4 metal element compound, a Group 5 metal element compound, a Group 6 metal element compound, and a germanium compound is 4 An exchangeable cation in terms of a metal element contained in at least one compound selected from the group consisting of a group metal element compound, a group 5 metal element compound, a group 6 metal element compound and a germanium compound The amount is preferably 0.01 to 100 parts by weight and more preferably 0.05 to 50 parts by weight with respect to 100 parts by weight of the inosilicate. When using two or more compounds selected from the group consisting of Group 4 metal element compounds, Group 5 metal element compounds, Group 6 metal element compounds and Germanium compounds, the total amount used is within the above range. It only has to be.
 上述のイオン交換処理を、交換可能な陽イオンを有するイノケイ酸塩を、第4族金属元素の化合物、第5族金属元素の化合物、第6族金属元素の化合物およびゲルマニウム化合物からなる群より選ばれる少なくとも一種の化合物を含む溶液と接触させることにより行う場合、該溶液の調製において使用される溶媒としては、例えば、水、メタノール、エタノール、アセトン、1,2−ジメトキシエタン等の極性溶媒が挙げられ、必要に応じてそれらの2種以上を用いることもできる。該溶液は、酸性でもよく、塩基性でもよく、中性でもよいが、イノケイ酸塩の溶液への分散性の観点から、酸性または塩基性が好ましい。酸性溶液の調製に使用される酸としては、無機酸、有機酸が挙げられる。無機酸としては、例えば、塩化水素、硫酸、リン酸、硝酸、亜硝酸等が挙げられる。有機酸としては、例えば、酢酸、トリフルオロメタンスルホン酸等が挙げられる。塩基性溶液の調製に使用される塩基としては、無機塩基、有機塩基が挙げられる。無機塩基としては、例えば、アンモニア、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化マグネシウム等が挙げられる。有機塩基としては、例えば、メチルアミン、ジメチルアミン、トリメチルアミン、テトラメチルアンモニウム塩、テトラエチルアンモニウム塩、テトラプロピルアンモニウム塩、ピリジン、ヘキサメチレンイミン、ピペリジン等が挙げられる。 For the above-described ion exchange treatment, an inosilicate having an exchangeable cation is selected from the group consisting of a Group 4 metal element compound, a Group 5 metal element compound, a Group 6 metal element compound, and a germanium compound. As a solvent used in the preparation of the solution, for example, a polar solvent such as water, methanol, ethanol, acetone, 1,2-dimethoxyethane, and the like is used. Two or more of them can be used as necessary. The solution may be acidic, basic, or neutral, but is preferably acidic or basic from the viewpoint of dispersibility of the inosilicate in the solution. Examples of the acid used for the preparation of the acidic solution include inorganic acids and organic acids. Examples of the inorganic acid include hydrogen chloride, sulfuric acid, phosphoric acid, nitric acid, nitrous acid, and the like. Examples of the organic acid include acetic acid and trifluoromethanesulfonic acid. Examples of the base used for preparing the basic solution include inorganic bases and organic bases. Examples of the inorganic base include ammonia, sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide and the like. Examples of the organic base include methylamine, dimethylamine, trimethylamine, tetramethylammonium salt, tetraethylammonium salt, tetrapropylammonium salt, pyridine, hexamethyleneimine, piperidine and the like.
 前記酸性溶液または前記塩基性溶液を使用する場合において、第4族金属元素の化合物、第5族金属元素の化合物、第6族金属元素の化合物およびゲルマニウム化合物からなる群より選ばれる少なくとも一種の化合物として、加水分解性のハロゲン化物、アルコキシド化合物、オキシ硝酸塩等の酸性または塩基性条件で加水分解される化合物を用いると、化合物が加水分解され酸化物となり、前記イオン交換処理により、第4族金属元素の酸化物、第5族金属元素の酸化物、第6族金属元素の酸化物および酸化ゲルマニウムからなる群より選ばれる少なくとも一種を含有するイノケイ酸塩触媒を調製することができる。また、前記酸性溶液または前記塩基性溶液には、第4族金属元素の化合物、第5族金属元素の化合物、第6族金属元素の化合物およびゲルマニウム化合物以外に、他の元素の化合物が含まれてもよい。また、前記酸性溶液または前記塩基性溶液と接触させる前および/または接触させた後に、他の元素の化合物を含む酸性溶液または塩基性溶液との接触を行ってもよい。他の元素の化合物として、加水分解性のハロゲン化物、アルコキシド化合物、オキシ硝酸塩等の酸性または塩基性条件で加水分解される化合物を用いると、化合物が加水分解され酸化物となり、前記イオン交換処理により、他の元素の酸化物を含有するイノケイ酸塩触媒を調製することができる。他の元素を含む化合物としては、例えば、ケイ素アルコキシド化合物が挙げられ、ケイ素アルコキシド化合物としては、例えば、オルトケイ酸テトラメチル、オルトケイ酸テトラエチル、オルトケイ酸テトラプロピル、オルトケイ酸テトラブチル等のオルトケイ酸テトラアルキルが挙げられる。 In the case of using the acidic solution or the basic solution, at least one compound selected from the group consisting of compounds of Group 4 metal elements, compounds of Group 5 metal elements, compounds of Group 6 metal elements, and germanium compounds When a compound that is hydrolyzed under acidic or basic conditions such as hydrolyzable halide, alkoxide compound, oxynitrate, etc. is used, the compound is hydrolyzed to become an oxide. An inosilicate catalyst containing at least one selected from the group consisting of an oxide of an element, an oxide of a Group 5 metal element, an oxide of a Group 6 metal element, and germanium oxide can be prepared. The acidic solution or the basic solution contains compounds of other elements in addition to compounds of Group 4 metal elements, compounds of Group 5 metal elements, compounds of Group 6 metal elements, and germanium compounds. May be. Moreover, you may perform the contact with the acidic solution or basic solution containing the compound of another element before and / or after making it contact with the said acidic solution or the said basic solution. When a compound that is hydrolyzed under acidic or basic conditions, such as a hydrolyzable halide, alkoxide compound, or oxynitrate, is used as the compound of the other element, the compound is hydrolyzed to become an oxide. Inosilicate catalysts containing oxides of other elements can be prepared. Examples of compounds containing other elements include silicon alkoxide compounds. Examples of silicon alkoxide compounds include tetraalkyl orthosilicates such as tetramethyl orthosilicate, tetraethyl orthosilicate, tetrapropyl orthosilicate, and tetrabutyl orthosilicate. Can be mentioned.
 上述のイオン交換処理は、回分式で行ってもよいし、連続式で行ってもよい。回分式で行う方法としては、例えば、撹拌槽中、イノケイ酸塩を、第4族金属元素の化合物、第5族金属元素の化合物、第6族金属元素の化合物およびゲルマニウム化合物からなる群より選ばれる少なくとも一種の化合物を含む溶液に浸漬し撹拌混合する方法等が挙げられる。連続式で行う方法としては、例えば、イノケイ酸塩を充填した管状容器に、第4族金属元素の化合物、第5族金属元素の化合物、第6族金属元素の化合物およびゲルマニウム化合物からなる群より選ばれる少なくとも一種の化合物を含む溶液を流通させる方法や、イノケイ酸塩を入れた撹拌槽に、第4族金属元素の化合物、第5族金属元素の化合物、第6族金属元素の化合物およびゲルマニウム化合物からなる群より選ばれる少なくとも一種の化合物を含む溶液を供給しながら、混合物の液相を抜き出す方法等が挙げられる。 The above-described ion exchange treatment may be performed batchwise or continuously. As a batch method, for example, inosilicate is selected from the group consisting of a group 4 metal element compound, a group 5 metal element compound, a group 6 metal element compound, and a germanium compound in a stirring tank. And a method of soaking and mixing in a solution containing at least one kind of compound. As a continuous method, for example, from a group consisting of a group 4 metal element compound, a group 5 metal element compound, a group 6 metal element compound and a germanium compound in a tubular container filled with inosilicate A method of circulating a solution containing at least one selected compound, a group 4 metal element compound, a group 5 metal element compound, a group 6 metal element compound, and germanium in a stirring tank containing inosilicate Examples thereof include a method of extracting the liquid phase of the mixture while supplying a solution containing at least one compound selected from the group consisting of compounds.
 上述のイオン交換処理における温度は、0~150℃が好ましく、より好ましくは10~100℃、さらに好ましくは30~70℃である。該イオン交換処理の時間は通常0.1~240時間であり、好ましくは0.5~120時間である。該イオン交換処理時の圧力は、好ましくは絶対圧で0.1~1MPa、より好ましくは大気圧である。また、上述のイオン交換処理における前記溶液の使用量は、イノケイ酸塩に対して、適宜設定される。尚、上述のイオン交換処理は、必要に応じて複数回行ってもよい。また、酸性溶液による処理、塩基性溶液による処理および中性溶液による処理を組み合わせて行ってもよい。 The temperature in the above ion exchange treatment is preferably 0 to 150 ° C., more preferably 10 to 100 ° C., and further preferably 30 to 70 ° C. The time for the ion exchange treatment is usually 0.1 to 240 hours, preferably 0.5 to 120 hours. The pressure during the ion exchange treatment is preferably 0.1 to 1 MPa in absolute pressure, more preferably atmospheric pressure. Moreover, the usage-amount of the said solution in the above-mentioned ion exchange process is suitably set with respect to inosilicate. In addition, you may perform the above-mentioned ion exchange process in multiple times as needed. Moreover, you may perform combining the process by an acidic solution, the process by a basic solution, and the process by a neutral solution.
 上述のイオン交換処理を行った後に得られるイノケイ酸塩触媒は、必要に応じて洗浄、乾燥等の処理に付される。処理後に得られるイノケイ酸塩触媒がスラリーの状態である場合、該スラリーを乾燥することによりイノケイ酸塩触媒を回収してもよいし、濾過やデカンテーション等により分離した後、必要に応じて洗浄し、乾燥することにより、イノケイ酸塩触媒を回収してもよい。高い触媒活性を示すイノケイ酸塩触媒が得られる点で、処理後に得られるイノケイ酸塩触媒には洗浄を施すことが好ましい。前記乾燥は、常圧下、減圧下のいずれでも行うことができ、乾燥温度は、20~250℃が好ましく、乾燥時間は、0.5~100時間が好ましい。前記乾燥は、空気等の酸素含有ガスの雰囲気下で行ってもよいし、窒素、ヘリウム、アルゴン、二酸化酸素等の不活性ガスの雰囲気下で行ってもよい。 The inosilicate catalyst obtained after the above ion exchange treatment is subjected to treatment such as washing and drying as necessary. When the inosilicate catalyst obtained after the treatment is in a slurry state, the inosilicate catalyst may be recovered by drying the slurry, or separated by filtration or decantation, and then washed as necessary. The inosilicate catalyst may be recovered by drying. The inosilicate catalyst obtained after the treatment is preferably washed in that an inosilicate catalyst exhibiting high catalytic activity is obtained. The drying can be performed under normal pressure or reduced pressure, the drying temperature is preferably 20 to 250 ° C., and the drying time is preferably 0.5 to 100 hours. The drying may be performed in an atmosphere of an oxygen-containing gas such as air, or may be performed in an atmosphere of an inert gas such as nitrogen, helium, argon, or oxygen dioxide.
(D)非晶質チタノシリケート触媒
 前記非晶質チタノシリケート触媒は、非晶質のメソポーラスチタノシリケート触媒であってもよいし、規則的な細孔を有さない非晶質チタノシリケート触媒であってもよいが、非晶質のメソポーラスチタノシリケート触媒が好ましい。ここでいうメソポーラスチタノシリケートは、2~50nm程度の細孔径を有するメソ多孔性のチタノシリケートを意味するものである。非晶質のメソポーラスチタノシリケート触媒の具体例としては、MCM−41型の構造を有する非晶質チタノシリケート触媒(以下、Ti−MCM−41ということがある。)や、HMS型の構造を有する非晶質チタノシリケート触媒(以下、Ti−HMSということがある。)等が挙げられる。メソポーラス構造の有無は、銅Kα線によるXRD(X線回折)測定における2θ=0.2~4.0°のピークの有無で確認することができる。
(D) Amorphous titanosilicate catalyst The amorphous titanosilicate catalyst may be an amorphous mesoporous titanosilicate catalyst, or an amorphous titano having no regular pores. Although it may be a silicate catalyst, an amorphous mesoporous titanosilicate catalyst is preferred. The mesoporous titanosilicate here means a mesoporous titanosilicate having a pore diameter of about 2 to 50 nm. Specific examples of the amorphous mesoporous titanosilicate catalyst include an amorphous titanosilicate catalyst having an MCM-41 type structure (hereinafter sometimes referred to as Ti-MCM-41), and an HMS type structure. An amorphous titanosilicate catalyst (hereinafter sometimes referred to as Ti-HMS) having The presence or absence of a mesoporous structure can be confirmed by the presence or absence of a peak at 2θ = 0.2 to 4.0 ° in XRD (X-ray diffraction) measurement using copper Kα rays.
 上記の非晶質チタノシリケート触媒は、チタン、ケイ素および酸素を含むものであり、実質的にチタン、ケイ素および酸素のみから構成されるものであってもよいし、さらにホウ素、アルミニウム、ガリウム、鉄、クロム等、チタン、ケイ素および酸素以外の元素を含むものであってもよい。 The amorphous titanosilicate catalyst includes titanium, silicon, and oxygen, and may be substantially composed of only titanium, silicon, and oxygen. Further, boron, aluminum, gallium, It may contain elements other than iron, chromium, etc., titanium, silicon and oxygen.
 上記の非晶質チタノシリケート触媒におけるチタンの含有量は、ケイ素に対する原子比(Ti/Si)で表して、通常0.0001以上、好ましくは0.005以上であり、また、通常1.0以下、好ましくは0.5以下である。なお、この非晶質チタノシリケート触媒がチタン、ケイ素および酸素以外の元素を含む場合、該元素の含有量は、ケイ素に対する原子比で表して、通常1.0以下、好ましくは0.5以下である。また酸素は、酸素以外の各元素の含有量および酸化数に対応して存在しうる。非晶質チタノシリケート触媒の典型的な組成は、ケイ素を基準(=1)として、次の式で示すことができる。 The content of titanium in the above amorphous titanosilicate catalyst is usually 0.0001 or more, preferably 0.005 or more, expressed as an atomic ratio (Ti / Si) to silicon, and usually 1.0. Hereinafter, it is preferably 0.5 or less. When the amorphous titanosilicate catalyst contains an element other than titanium, silicon and oxygen, the content of the element is usually 1.0 or less, preferably 0.5 or less, expressed as an atomic ratio with respect to silicon. It is. Oxygen can be present corresponding to the content and oxidation number of each element other than oxygen. A typical composition of an amorphous titanosilicate catalyst can be represented by the following formula with silicon as the reference (= 1).
 SiO・xTiO・yMn/2
(式中、Mはケイ素、チタンおよび酸素以外の少なくとも1種の元素を表し、nは該元素の酸化数であり、xは0.0001~1.0であり、yは0~1.0である。)
SiO 2 · xTiO 2 · yM n O n / 2
(In the formula, M represents at least one element other than silicon, titanium and oxygen, n is the oxidation number of the element, x is 0.0001 to 1.0, and y is 0 to 1.0. .)
 なお、上記式中、Mはチタン、ケイ素および酸素以外の元素であり、例えば、ホウ素、アルミニウム、ガリウム、鉄、クロム等が挙げられる。 In the above formula, M is an element other than titanium, silicon, and oxygen, and examples thereof include boron, aluminum, gallium, iron, and chromium.
 上記の非晶質のメソポーラスチタノシリケート触媒は、例えば、酸性化合物または塩基性化合物の存在下、水性溶媒中、チタン化合物、ケイ素化合物および構造規定剤(テンプレート)を混合した後、一定の温度および圧力の条件下、または後述の温度および圧力の範囲内で温度および/または圧力を変動させる条件下にて熟成して、構造規定剤が組み込まれたチタノシリケートを得、このチタノシリケートから構造規定剤を除去することにより、調製される。 The amorphous mesoporous titanosilicate catalyst is prepared by mixing a titanium compound, a silicon compound and a structure directing agent (template) in an aqueous solvent in the presence of an acidic compound or a basic compound, and then at a certain temperature and By aging under pressure conditions or under conditions where temperature and / or pressure is varied within the temperature and pressure range described below, a titanosilicate incorporating a structure-directing agent is obtained, and a structure is obtained from this titanosilicate. Prepared by removing the defining agent.
 上記の非晶質のメソポーラスチタノシリケート触媒の構造は、使用する構造規定剤の種類や量等により調整することができ、例えば、Ti−MCM−41を調製する場合には、臭化セチルトリメチルアンモニウム等の第四級アンモニウム塩等が用いられ、Ti−HMSを調製する場合には、n−ドデシルアミン等の一級アミン等が用いられる。一方、上記チタン化合物としては、テトラ−n−ブチルオルソチタネート等のテトラアルキルオルソチタネートや、ペルオキシチタン酸テトラ−n−ブチルアンモニウム等のペルオキシチタン酸塩や、ハロゲン化チタン等が挙げられ、上記ケイ素化合物としては、テトラエチルオルソシリケート等のテトラアルキルオルソシリケートや、シリカ等が挙げられる。また、上記酸性化合物としては、塩酸等の無機酸や、酢酸等の有機酸が挙げられ、上記塩基性化合物としては、水酸化アルカリ、アンモニア等の無機塩基や、ピリジン等の有機塩基が挙げられる。さらに、上記水性溶媒としては、メタノール、エタノール、プロパノ−ル、2−プロパノ−ル等の水溶性有機溶媒、水または水と前記水溶性有機溶媒との混合溶媒が挙げられる。 The structure of the amorphous mesoporous titanosilicate catalyst can be adjusted by the type and amount of the structure-directing agent used. For example, when preparing Ti-MCM-41, cetyltrimethyl bromide When a quaternary ammonium salt such as ammonium is used and Ti-HMS is prepared, a primary amine such as n-dodecylamine is used. On the other hand, examples of the titanium compound include tetraalkyl orthotitanates such as tetra-n-butyl orthotitanate, peroxytitanates such as tetra-n-butylammonium peroxytitanate, and titanium halides. Examples of the compound include tetraalkyl orthosilicates such as tetraethyl orthosilicate, silica and the like. Examples of the acidic compound include inorganic acids such as hydrochloric acid, and organic acids such as acetic acid. Examples of the basic compound include inorganic bases such as alkali hydroxide and ammonia, and organic bases such as pyridine. . Furthermore, examples of the aqueous solvent include water-soluble organic solvents such as methanol, ethanol, propanol and 2-propanol, water or a mixed solvent of water and the water-soluble organic solvent.
 上記熟成における熟成温度は、通常0~200℃、好ましくは20~100℃である。圧力は、通常、絶対圧で0.1~1.0MPa、好ましくは0.1~0.8MPaである。熟成時間は、通常0.5~170時間、好ましくは4~72時間である。 The aging temperature in the aging is usually 0 to 200 ° C., preferably 20 to 100 ° C. The pressure is usually 0.1 to 1.0 MPa in absolute pressure, preferably 0.1 to 0.8 MPa. The aging time is usually 0.5 to 170 hours, preferably 4 to 72 hours.
 上記熟成により、構造規定剤が組み込まれたチタノシリケートが得られ、次いで、このチタノシリケートから構造規定剤を除去する。かかる除去方法としては、メタノール、アセトン、トルエン等の有機溶媒により洗浄する方法、塩酸(塩化水素の水溶液)、硫酸水溶液、硝酸水溶液等により洗浄する方法、200~800℃で焼成する方法等が挙げられる。上記除去方法は、いずれか一つを採用してもよく、二つ以上を組み合わせて採用してもよい。 By the above aging, a titanosilicate incorporating a structure directing agent is obtained, and then the structure directing agent is removed from this titanosilicate. Examples of such a removal method include a method of washing with an organic solvent such as methanol, acetone, and toluene, a method of washing with hydrochloric acid (aqueous hydrogen chloride solution), an aqueous solution of sulfuric acid, an aqueous nitric acid solution, and a method of baking at 200 to 800 ° C. It is done. Any one of the removal methods may be employed, or two or more may be employed in combination.
 前記除去方法としての焼成は、空気等の酸素含有ガスの雰囲気下で行ってもよいし、窒素、ヘリウム、アルゴン、二酸化酸素等の不活性ガスの雰囲気下で行ってもよい。酸素含有ガスや不活性ガスには、水蒸気が含まれていてもよい。また、該焼成は、酸素含有ガスまたは不活性ガスの雰囲気下、多段階で行ってもよい。該焼成は、流動床式で行ってもよいし、固定床式で行ってもよい。前記焼成に用いられる装置としては、加熱できる装置であれば特に制限はないが、例えば、熱風循環式焼成炉、静置式焼成炉、トンネル炉、ロータリーキルン、遠赤外線炉、マイクロ波加熱炉等を使用することができる。 Calcination as the removing method may be performed in an atmosphere of an oxygen-containing gas such as air, or may be performed in an atmosphere of an inert gas such as nitrogen, helium, argon, or oxygen dioxide. Water vapor may be contained in the oxygen-containing gas or the inert gas. Further, the calcination may be performed in multiple stages in an atmosphere of an oxygen-containing gas or an inert gas. The firing may be performed in a fluidized bed type or a fixed bed type. The apparatus used for the firing is not particularly limited as long as it can be heated. For example, a hot-air circulating firing furnace, a stationary firing furnace, a tunnel furnace, a rotary kiln, a far infrared furnace, a microwave heating furnace, or the like is used. can do.
 なお、非晶質のメソポーラスチタノシリケート触媒は、例えば、特開2000−117101号公報に記載の方法に準拠して調製することができ、Ti−MCM−41は、例えば、マイクロポーラス・アンド・メソポーラス・マテリアルズ、2007年、P312−321に記載の方法に準拠して調製することができ、Ti−HMSは、例えば、ネイチャー、1994年、P321−323に記載の方法に準拠して調製することができる。 The amorphous mesoporous titanosilicate catalyst can be prepared, for example, according to the method described in JP-A-2000-117101, and Ti-MCM-41 can be prepared, for example, by microporous and It can be prepared according to the method described in Mesoporous Materials, 2007, P312-321, and Ti-HMS is prepared according to the method described in Nature, 1994, P321-323, for example. be able to.
 上記の規則的な細孔を有さない非晶質チタノシリケート触媒は、例えば、酸性化合物または塩基性化合物の存在下、水性溶媒中、チタン化合物およびケイ素化合物を混合した後、一定の温度および圧力の条件下、または後述の温度および圧力の範囲内で温度および/または圧力を変動させる条件下にて熟成し、必要に応じて洗浄した後、乾燥することにより、調製される。該乾燥後は、必要に応じて焼成を行ってもよい。チタン化合物としては、テトラ−n−ブチルオルソチタネート等のテトラアルキルオルソチタネートや、ペルオキシチタン酸テトラ−n−ブチルアンモニウム等のペルオキシチタン酸塩や、ハロゲン化チタン等が挙げられ、上記ケイ素化合物としては、テトラエチルオルソシリケート等のテトラアルキルオルソシリケートや、シリカ等が挙げられる。また、上記酸性化合物としては、塩酸等の無機酸や、酢酸等の有機酸が挙げられ、上記塩基性化合物としては、水酸化アルカリ、アンモニア等の無機塩基や、ピリジン等の有機塩基が挙げられる。さらに、上記水性溶媒としては、メタノール、エタノール、プロパノ−ル、2−プロパノ−ル等の水溶性有機溶媒、水または水と前記水溶性有機溶媒との混合溶媒が挙げられる。かかる熟成における熟成温度は、通常0~200℃である。圧力は、通常、絶対圧で0.1~1.0MPaである。熟成時間は、通常0.5~170時間である。 The amorphous titanosilicate catalyst having no regular pores is, for example, mixed with a titanium compound and a silicon compound in an aqueous solvent in the presence of an acidic compound or a basic compound, and then at a certain temperature and It is prepared by aging under the conditions of pressure or under the conditions of changing the temperature and / or pressure within the range of the temperature and pressure described later, washing as necessary, and drying. After the drying, firing may be performed as necessary. Examples of titanium compounds include tetraalkyl orthotitanates such as tetra-n-butyl orthotitanate, peroxytitanates such as tetra-n-butylammonium peroxytitanate, titanium halides, and the like. And tetraalkyl orthosilicates such as tetraethyl orthosilicate, silica and the like. Examples of the acidic compound include inorganic acids such as hydrochloric acid, and organic acids such as acetic acid. Examples of the basic compound include inorganic bases such as alkali hydroxide and ammonia, and organic bases such as pyridine. . Furthermore, examples of the aqueous solvent include water-soluble organic solvents such as methanol, ethanol, propanol and 2-propanol, water or a mixed solvent of water and the water-soluble organic solvent. The aging temperature in such aging is usually 0 to 200 ° C. The pressure is usually 0.1 to 1.0 MPa in absolute pressure. The aging time is usually 0.5 to 170 hours.
 上記の非晶質チタノシリケート触媒は、ケイ素化合物で接触処理されていてもよい。かかるケイ素化合物としては、有機ケイ素化合物、無機ケイ素化合物が挙げられ、中でも、有機ケイ素化合物が好ましい。ケイ素化合物による接触処理は、例えば、特開2012−20966号公報に記載の方法に準拠して行うことができる。 The above amorphous titanosilicate catalyst may be contact-treated with a silicon compound. Examples of such silicon compounds include organic silicon compounds and inorganic silicon compounds, and among them, organic silicon compounds are preferable. The contact treatment with the silicon compound can be performed, for example, according to the method described in JP2012-20966A.
 上記の非晶質チタノシリケート触媒は、必要に応じてバインダーを用いて、成形してから使用してもよい。かかる成形処理は、上述のケイ素化合物による接触処理を行う場合、かかるケイ素化合物による接触処理の前に行ってもよいし、ケイ素化合物による接触処理の後に行ってもよい。成形処理は、例えば、押出、圧縮、打錠、流動、転動、噴霧等の方法により行うことができ、所望の形状、例えば粒状、ペレット状、球状、円柱状、板状、リング状、クローバー状等に成形することができる。 The above amorphous titanosilicate catalyst may be used after being molded using a binder as necessary. In the case where the above-described contact treatment with the silicon compound is performed, the forming treatment may be performed before the contact treatment with the silicon compound or after the contact treatment with the silicon compound. The molding process can be performed by a method such as extrusion, compression, tableting, flow, rolling, spraying, etc., and a desired shape, for example, granular, pellet, spherical, cylindrical, plate, ring, clover It can be formed into a shape or the like.
<オキシム化合物(II)の製造>
 酸化触媒の存在下におけるアミン化合物(I)と酸素との接触は、溶媒を用いて行うことが好ましい。溶媒としては、有機溶媒、水、有機溶媒と水との混合溶媒が挙げられ、中でも、有機溶媒または有機溶媒と水との混合溶媒が好ましく、有機溶媒がより好ましい。有機溶媒の例としては、メタノール、エタノール、プロパノール、イソプロパノール、n−ブタノール、t−ブタノール、n−ヘキサノール、2−エチルヘキサノール、n−ドデカノール等のアルコール;ペンタン、ヘキサン、ヘプタン、オクタン、石油エーテル、リグロイン等の脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロヘキサン等の脂環式炭化水素;ベンゼン、トルエン、o−キシレン、m−キシレン、p−キシレン等の芳香族炭化水素;ジクロロメタン、クロロホルム、1,2−ジクロロエタン、1,1,1−トリクロロエタン、1,1,2−トリクロロエチレン、1,1,2,2−テトラクロロエチレン、クロロベンゼン、o−ジクロロベンゼン等のハロゲン化炭化水素;アセトニトリル、ベンゾニトリル等のニトリル;ニトロベンゼン等のニトロ化合物;酢酸エチル、酢酸イソプロピル、酢酸ブチル、安息香酸エチル等のエステル化合物等が挙げられ、必要に応じてこれらの2種以上を用いることもできる。中でも、アルコール、芳香族炭化水素、ニトリルが好ましい。アルコールの中でも、メタノール、エタノール、t−ブタノールが好ましく、芳香族炭化水素の中でも、トルエン、o−キシレン、m−キシレン、p−キシレンが好ましく、ニトリルの中でも、アセトニトリルが好ましい。
<Production of oxime compound (II)>
The contact between the amine compound (I) and oxygen in the presence of an oxidation catalyst is preferably performed using a solvent. Examples of the solvent include an organic solvent, water, and a mixed solvent of an organic solvent and water. Among them, an organic solvent or a mixed solvent of an organic solvent and water is preferable, and an organic solvent is more preferable. Examples of organic solvents include methanol, ethanol, propanol, isopropanol, n-butanol, t-butanol, n-hexanol, 2-ethylhexanol, n-dodecanol and other alcohols; pentane, hexane, heptane, octane, petroleum ether, Aliphatic hydrocarbons such as ligroin; alicyclic hydrocarbons such as cyclopentane, cyclohexane, and methylcyclohexane; aromatic hydrocarbons such as benzene, toluene, o-xylene, m-xylene, and p-xylene; dichloromethane, chloroform, 1 Halogenated hydrocarbons such as 1,2-dichloroethane, 1,1,1-trichloroethane, 1,1,2-trichloroethylene, 1,1,2,2-tetrachloroethylene, chlorobenzene, o-dichlorobenzene; acetonitrile, benzonitrile, etc. Nitrile; nitro compounds such as nitrobenzene; ethyl acetate, isopropyl acetate, butyl acetate, ester compounds such as ethyl benzoate and the like, can also be used two or more of them as required. Of these, alcohol, aromatic hydrocarbon, and nitrile are preferable. Among alcohols, methanol, ethanol, and t-butanol are preferable. Among aromatic hydrocarbons, toluene, o-xylene, m-xylene, and p-xylene are preferable. Among nitrites, acetonitrile is preferable.
 溶媒を使用する場合、その量は、アミン化合物(I)1重量部に対して、通常0.1~300重量部、好ましくは0.5~100重量部である。 When a solvent is used, the amount thereof is usually 0.1 to 300 parts by weight, preferably 0.5 to 100 parts by weight with respect to 1 part by weight of the amine compound (I).
 アミン化合物(I)と酸素との接触は、回分式で行ってもよく、半回分式で行ってもよく、連続式で行ってもよく、回分式、半回分式および連続式の組み合わせで行ってもよい。連続式で行う場合、固定床方式、流動床方式、移動床方式、懸濁床方式や、撹拌混合式またはループ式の反応器内に反応原料を供給しながら、反応混合物の液相を抜き出す方式等の各種の方式で実施することができる。 The contact between the amine compound (I) and oxygen may be performed batchwise, semibatchwise, continuously, or a combination of batch, semibatch and continuous. May be. For continuous operation, fixed bed method, fluidized bed method, moving bed method, suspension bed method, and the method of extracting the liquid phase of the reaction mixture while supplying the reaction raw material into the stirring mixing type or loop type reactor It can implement by various methods, such as.
 アミン化合物(I)と酸素との接触における接触温度は、50~200℃が好ましく、より好ましくは70~150℃である。また、圧力は、通常、絶対圧で0.1~10MPa、好ましくは0.2~7.0MPaである。かかる接触は、加圧下に行うことが好ましく、この場合、窒素やヘリウム等の不活性ガスを用いて、圧力を調整してもよい。かかる接触を、撹拌混合式の反応器内で、液相条件下、酸素含有ガスを使用して回分式または連続式で実施する場合には、反応器の気相部に酸素含有ガスを供給してもよいし、液相中に酸素含有ガスを供給してもよいし、反応器の気相部および液相中に酸素含有ガスを供給してもよい。 The contact temperature in the contact between the amine compound (I) and oxygen is preferably 50 to 200 ° C, more preferably 70 to 150 ° C. The pressure is usually 0.1 to 10 MPa in absolute pressure, preferably 0.2 to 7.0 MPa. Such contact is preferably performed under pressure. In this case, the pressure may be adjusted using an inert gas such as nitrogen or helium. When such contact is carried out in a stirred and mixed reactor in a batch-wise or continuous manner using an oxygen-containing gas under liquid phase conditions, the oxygen-containing gas is supplied to the gas phase part of the reactor. Alternatively, the oxygen-containing gas may be supplied into the liquid phase, or the oxygen-containing gas may be supplied into the gas phase portion and the liquid phase of the reactor.
 アミン化合物(I)と酸素との接触においては、必要に応じて、ラジカル開始剤、フェノール系連鎖移動剤等を共存させてもよい。該ラジカル開始剤としては、例えば、国際公開第2005/009613号に開示されているヒドラジルラジカルおよびヒドラジン化合物;特開2005−15381号公報に開示されているアゾ化合物および過酸化物;等が挙げられ、必要に応じて2種以上のラジカル開始剤を使用してもよい。ヒドラジルラジカルとしては、2,2−ジフェニル−1−ピクリルヒドラジル、2,2−ジ(4−tert−オクチルフェニル)−1−ピクリルヒドラジル等が挙げられる。ヒドラジン化合物としては、1,1−ジフェニル−2−ピクリルヒドラジン等が挙げられる。前記フェノール系連鎖移動剤としては、例えば、特開2005−15382号公報に開示されている化合物等が挙げられる。 In the contact between the amine compound (I) and oxygen, a radical initiator, a phenol chain transfer agent or the like may coexist as necessary. Examples of the radical initiator include hydrazyl radicals and hydrazine compounds disclosed in International Publication No. 2005/009613; azo compounds and peroxides disclosed in JP 2005-15381 A; If necessary, two or more kinds of radical initiators may be used. Examples of the hydrazyl radical include 2,2-diphenyl-1-picrylhydrazyl, 2,2-di (4-tert-octylphenyl) -1-picrylhydrazyl and the like. Examples of the hydrazine compound include 1,1-diphenyl-2-picrylhydrazine. As said phenol type chain transfer agent, the compound etc. which are disclosed by Unexamined-Japanese-Patent No. 2005-15382 are mentioned, for example.
 酸化触媒の存在下、アミン化合物(I)と酸素とを接触させることにより、アミン化合物(I)が酸素により酸化され、オキシム化合物(II)を含む反応混合物が得られる。該反応混合物の後処理操作については、適宜選択でき、必要に応じて濾過、洗浄、蒸留、晶析、抽出、再結晶、クロマトグラフィー等の処理を組み合わせてオキシム化合物(II)を精製した後、各種用途に使用できる。前記酸化後に回収された触媒は、必要に応じて洗浄、焼成、イオン交換処理等の処理が施された後、再使用することができる。また、反応混合物中に溶媒や未反応原料が含まれる場合、回収された溶媒や未反応原料は再使用することができる。 By contacting the amine compound (I) with oxygen in the presence of an oxidation catalyst, the amine compound (I) is oxidized with oxygen, and a reaction mixture containing the oxime compound (II) is obtained. The post-treatment operation of the reaction mixture can be appropriately selected, and after purifying the oxime compound (II) by combining treatments such as filtration, washing, distillation, crystallization, extraction, recrystallization, chromatography and the like, if necessary. Can be used for various purposes. The catalyst recovered after the oxidation can be reused after being subjected to treatments such as washing, calcination and ion exchange treatment as necessary. Moreover, when a solvent and an unreacted raw material are contained in the reaction mixture, the recovered solvent and unreacted raw material can be reused.
 得られたオキシム化合物(II)は、例えば、ベックマン転位反応させてアミド化合物(III)を製造するための原料として好適に使用される。 The obtained oxime compound (II) is suitably used as a raw material for producing the amide compound (III) by, for example, Beckmann rearrangement reaction.
 アミド化合物(III)において、RおよびRは一緒になって、Rが結合する窒素原子と、Rが結合する炭素原子と共に、1以上の置換基を有していてもよい炭素数3~12の脂肪族複素環を形成する場合とは、オキシム化合物(II)が、RおよびRが一緒になって、RおよびRが結合する炭素原子と共に、1以上の置換基を有していてもよい炭素数3~12の脂環式炭化水素基を形成する場合において、該オキシム化合物(II)をベックマン転位反応させて得られる、対応するアミド化合物(III)を意味する。 In the amide compound (III), R 1 and R 2 are combined to form a carbon atom which may have one or more substituents together with the nitrogen atom to which R 1 is bonded and the carbon atom to which R 2 is bonded. 3 in the case of forming the aliphatic heterocycle-12, an oxime compound (II) is, R 1 and R 2 together with the carbon atom to which R 1 and R 2 are attached, one or more substituents Means a corresponding amide compound (III) obtained by subjecting the oxime compound (II) to a Beckmann rearrangement reaction in the case of forming an alicyclic hydrocarbon group having 3 to 12 carbon atoms which may have .
 かかるベックマン転位反応としては、液相条件下に行う方法、気相条件下に行う方法が挙げられる。液相条件下のベックマン転位反応は、例えば、発煙硫酸等の強酸の存在下で行う方法等が挙げられ、特公昭48−4791号公報等に記載の方法に準じて行うことができる。気相条件下のベックマン転位反応は、例えば、ゼオライト等の固体触媒の存在下で行う方法等が挙げられ、特開平5−170732号公報等に記載の方法に準じて行うことができる。例えば、アミン化合物(I)としてシクロヘキシルアミンを使用した場合には、前記酸化により得られるシクロヘキサノンオキシムをベックマン転位反応させることにより、ε−カプロラクタムを製造することができる。 Examples of such Beckmann rearrangement include a method performed under liquid phase conditions and a method performed under gas phase conditions. The Beckmann rearrangement reaction under liquid phase conditions includes, for example, a method performed in the presence of a strong acid such as fuming sulfuric acid, and can be performed according to the method described in Japanese Patent Publication No. 48-4791. The Beckmann rearrangement reaction under gas phase conditions includes, for example, a method performed in the presence of a solid catalyst such as zeolite, and can be performed according to the method described in JP-A-5-170732. For example, when cyclohexylamine is used as the amine compound (I), ε-caprolactam can be produced by subjecting cyclohexanone oxime obtained by the oxidation to Beckmann rearrangement reaction.
 以下、本発明の実施例および比較例を示すが、本発明はこれによって限定されるものではない。尚、実施例中、反応液中のシクロヘキシルアミン〔式(I)中、RおよびRは一緒になって、RおよびRが結合する炭素原子と共にシクロヘキサン環を形成した化合物〕およびシクロヘキサノンオキシム〔式(II)中、RおよびRは一緒になって、RおよびRが結合する炭素原子と共にシクロヘキサン環を形成した化合物〕の分析は、ガスクロマトグラフィーにより行った。 Examples of the present invention and comparative examples are shown below, but the present invention is not limited thereby. In the Examples, cyclohexylamine in the reaction solution wherein (I), R 1 and R 2 together, the compound to form a cyclohexane ring together with the carbon atom to which R 1 and R 2 are attached] and cyclohexanone oxime wherein (II), R 1 and R 2 together, compound to form a cyclohexane ring together with the carbon atom to which R 1 and R 2 are attached] analysis was performed by gas chromatography.
 参考例1
[触媒の調製]
 100mLビーカー内に、水40gと、粉末状のシリカアルミナ(日揮触媒化成(株)製:SAL)4gとを入れた。次いで、ビーカー内の混合物を撹拌しながら、ウォーターバスを使用して50℃に昇温した後、20重量%三塩化チタン溶液(TiClの希塩酸溶液、和光純薬工業(株)製)1.29gをピペットを用いて徐々に滴下した。滴下終了後、50℃で1時間撹拌を継続した。1時間経過後、撹拌を停止し、室温まで冷却した。得られた混合物を加圧濾過することにより固体を分離し、この固体を、加圧濾過により、洗浄濾液のpHが5以上になるまで水で繰り返し洗浄した。洗浄後の固体を真空下、室温で1時間乾燥した。得られた乾燥物を石英管に充填し、空気を100mL/min(0℃、0.1MPa換算)の流量で流通させながら、450℃で6時間熱処理し、触媒Aを調製した。
Reference example 1
[Preparation of catalyst]
In a 100 mL beaker, 40 g of water and 4 g of powdered silica alumina (manufactured by JGC Catalysts & Chemicals Co., Ltd .: SAL) were placed. Next, the mixture in the beaker was stirred and heated to 50 ° C. using a water bath, and then a 20 wt% titanium trichloride solution (a dilute hydrochloric acid solution of TiCl 3 , manufactured by Wako Pure Chemical Industries, Ltd.). 29 g was gradually added dropwise using a pipette. After completion of the dropping, stirring was continued at 50 ° C. for 1 hour. After 1 hour, stirring was stopped and cooled to room temperature. The obtained mixture was subjected to pressure filtration to separate a solid, and this solid was repeatedly washed with water until the pH of the washing filtrate became 5 or more by pressure filtration. The washed solid was dried under vacuum for 1 hour at room temperature. The obtained dried product was filled in a quartz tube, and heat-treated at 450 ° C. for 6 hours while flowing air at a flow rate of 100 mL / min (0 ° C., 0.1 MPa conversion) to prepare catalyst A.
 実施例1
 熱電対、マグネチックスターラー、ガス供給ラインおよびガス排出ラインを備えたSUS316製反応器(容量:200mL)に、参考例1で得られた触媒Aを0.30g、シクロヘキシルアミン(和光純薬工業(株)製)を1.49g(15.0mmol)、2,2−ジフェニル−1−ピクリルヒドラジル(Aldrich社製)を0.15g(0.38mmol)およびアセトニトリル(和光純薬工業(株)製)を6.99g入れ、反応器内の気相部を窒素ガスで置換した後、密閉し、反応器内の気相部に酸素と窒素との混合ガス(酸素濃度:7体積%)を導入して反応器内の圧力を0.90MPa(ゲージ圧)とした。次いで、撹拌しながら反応器内の温度を80℃に昇温し、80℃で4時間保温した後、冷却した。得られた反応混合物にメタノールを加えて希釈した後、濾過し、得られた濾液を分析したところ、シクロヘキシルアミンの転化率は19.5%であり、シクロヘキサノンオキシムの選択率は89.6%であった。
Example 1
In a reactor made of SUS316 (capacity: 200 mL) equipped with a thermocouple, a magnetic stirrer, a gas supply line and a gas discharge line, 0.30 g of the catalyst A obtained in Reference Example 1 and cyclohexylamine (Wako Pure Chemical Industries, Ltd. ( 1.49 g (15.0 mmol), 2,2-diphenyl-1-picrylhydrazyl (Aldrich) 0.15 g (0.38 mmol) and acetonitrile (Wako Pure Chemical Industries, Ltd.) Made), the gas phase in the reactor was replaced with nitrogen gas, and then sealed, and a gas mixture of oxygen and nitrogen (oxygen concentration: 7% by volume) was sealed in the gas phase in the reactor. The pressure inside the reactor was adjusted to 0.90 MPa (gauge pressure). Next, the temperature in the reactor was raised to 80 ° C. while stirring, and kept at 80 ° C. for 4 hours, and then cooled. The resulting reaction mixture was diluted with methanol and then filtered, and the obtained filtrate was analyzed. The conversion of cyclohexylamine was 19.5% and the selectivity for cyclohexanone oxime was 89.6%. there were.
 参考例2
[触媒の調製]
 100mLビーカー内に、水40gと、粉末状のγ−アルミナ(住友化学(株)製:GO−24)4gとを入れた。次いで、ビーカー内の混合物を撹拌しながら、ウォーターバスを使用して50℃に昇温した後、20重量%三塩化チタン溶液(TiClの希塩酸溶液、和光純薬工業(株)製)3.22gをピペットを用いて徐々に滴下した。滴下終了後、50℃で6時間撹拌を継続した。6時間経過後、撹拌を停止し、室温まで冷却した。得られた混合物を加圧濾過することにより固体を分離し、この固体を、加圧濾過により、洗浄濾液のpHが5以上になるまで水で繰り返し洗浄した。洗浄後の固体を真空下、室温で1時間乾燥した。得られた乾燥物を石英管に充填し、空気を100mL/min(0℃、0.1MPa換算)の流量で流通させながら、450℃で6時間熱処理し、触媒Bを調製した。
Reference example 2
[Preparation of catalyst]
In a 100 mL beaker, 40 g of water and 4 g of powdery γ-alumina (manufactured by Sumitomo Chemical Co., Ltd .: GO-24) were placed. Next, while stirring the mixture in the beaker, the temperature was raised to 50 ° C. using a water bath, and then a 20 wt% titanium trichloride solution (a dilute hydrochloric acid solution of TiCl 3 , manufactured by Wako Pure Chemical Industries, Ltd.). 22 g was gradually added dropwise using a pipette. After completion of the dropwise addition, stirring was continued at 50 ° C. for 6 hours. After 6 hours, stirring was stopped and cooled to room temperature. The obtained mixture was subjected to pressure filtration to separate a solid, and this solid was repeatedly washed with water until the pH of the washing filtrate became 5 or more by pressure filtration. The washed solid was dried under vacuum for 1 hour at room temperature. The obtained dried product was filled in a quartz tube, and heat-treated at 450 ° C. for 6 hours while flowing air at a flow rate of 100 mL / min (0 ° C., 0.1 MPa conversion) to prepare catalyst B.
 実施例2
 触媒A0.30gに代えて、参考例2で得られた触媒Bを0.30g使用したこと以外は、実施例1と同様の操作を行った。得られた濾液を分析したところ、シクロヘキシルアミンの転化率は7.3%であり、シクロヘキサノンオキシムの選択率は60.8%であった。
Example 2
The same operation as in Example 1 was performed except that 0.30 g of the catalyst B obtained in Reference Example 2 was used instead of 0.30 g of the catalyst A. When the obtained filtrate was analyzed, the conversion of cyclohexylamine was 7.3% and the selectivity of cyclohexanone oxime was 60.8%.
 参考例3
[触媒の調製]
 粉末状のシリカアルミナ4gに代えて、シリカゲル(和光純薬工業(株)製:ワコーゲル[登録商標]Q−63)4gを使用したこと以外は、参考例1と同様の操作を行い、触媒Cを調製した。
Reference example 3
[Preparation of catalyst]
Catalyst 4 was prepared in the same manner as in Reference Example 1 except that 4 g of silica gel (Wako Pure Chemical Industries, Ltd .: Wakogel [registered trademark] Q-63) was used instead of 4 g of powdered silica alumina. Was prepared.
 実施例3
 触媒A0.30gに代えて、参考例3で得られた触媒Cを0.30g使用したこと以外は、実施例1と同様の操作を行った。得られた濾液を分析したところ、シクロヘキシルアミンの転化率は8.7%であり、シクロヘキサノンオキシムの選択率は72.3%であった。
Example 3
The same operation as in Example 1 was performed except that 0.30 g of the catalyst C obtained in Reference Example 3 was used instead of 0.30 g of the catalyst A. When the obtained filtrate was analyzed, the conversion of cyclohexylamine was 8.7% and the selectivity for cyclohexanone oxime was 72.3%.
 参考例4
[触媒の調製]
 300mLナスフラスコ内に、水30gと、タングステン酸ナトリウム二水和物(和光純薬工業(株)製)4.94g(15.0mmol)とを入れ、均一になるまで室温で撹拌した。次いで、得られた混合物に、塩化すず(IV)五水和物(和光純薬工業(株)製)10.52g(30.0mmol)を加え、室温で1時間撹拌した。撹拌後、水120gを加え、室温でさらに24時間撹拌した。得られた混合物を加圧濾過することにより固体を分離し、この固体を、加圧濾過により、洗浄濾液のpHが6以上になるまで水で繰り返し洗浄した。洗浄後の固体を40℃で一晩乾燥し、触媒Dを調製した。
Reference example 4
[Preparation of catalyst]
In a 300 mL eggplant flask, 30 g of water and 4.94 g (15.0 mmol) of sodium tungstate dihydrate (manufactured by Wako Pure Chemical Industries, Ltd.) were added and stirred at room temperature until uniform. Next, 10.52 g (30.0 mmol) of tin (IV) chloride pentahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was added to the obtained mixture, and the mixture was stirred at room temperature for 1 hour. After stirring, 120 g of water was added, and the mixture was further stirred at room temperature for 24 hours. The obtained mixture was subjected to pressure filtration to separate a solid, and this solid was repeatedly washed with water until the pH of the washing filtrate became 6 or more by pressure filtration. The washed solid was dried overnight at 40 ° C. to prepare catalyst D.
 実施例4
 熱電対、マグネチックスターラー、ガス供給ラインおよびガス排出ラインを備えたSUS316製反応器(容量:100mL)に、参考例4で得られた触媒Dを0.30g、シクロヘキシルアミン(和光純薬工業(株)製)を2.61g(26.2mmol)、2,2−ジフェニル−1−ピクリルヒドラジル(Aldrich社製)を0.15g(0.38mmol)およびアセトニトリル(和光純薬工業(株)製)を7.07g入れ、反応器内の気相部を窒素ガスで置換した後、密閉し、反応器内の気相部に酸素と窒素との混合ガス(酸素濃度:7体積%)を導入して反応器内の圧力を0.90MPa(ゲージ圧)とした。次いで、撹拌しながら反応器内の温度を80℃に昇温し、80℃で5時間保温した後、冷却した。得られた反応混合物にメタノールを加えて希釈した後、濾過し、得られた濾液を分析したところ、シクロヘキシルアミンの転化率は42.6%であり、シクロヘキサノンオキシムの選択率は86.9%であった。
Example 4
In a reactor made of SUS316 (capacity: 100 mL) equipped with a thermocouple, a magnetic stirrer, a gas supply line, and a gas discharge line, 0.30 g of catalyst D obtained in Reference Example 4 and cyclohexylamine (Wako Pure Chemical Industries, Ltd. ( 2.61 g (26.2 mmol), 2,2-diphenyl-1-picrylhydrazyl (Aldrich) 0.15 g (0.38 mmol) and acetonitrile (Wako Pure Chemical Industries, Ltd.) 7.07 g was added, and the gas phase portion in the reactor was replaced with nitrogen gas, and then sealed, and a gas mixture of oxygen and nitrogen (oxygen concentration: 7 vol%) was sealed in the gas phase portion in the reactor. The pressure inside the reactor was adjusted to 0.90 MPa (gauge pressure). Next, the temperature in the reactor was raised to 80 ° C. while stirring, and the temperature was kept at 80 ° C. for 5 hours, followed by cooling. The resulting reaction mixture was diluted with methanol and then filtered, and the obtained filtrate was analyzed. The conversion of cyclohexylamine was 42.6% and the selectivity of cyclohexanone oxime was 86.9%. there were.
 参考例5
[触媒の調製]
 洗浄後の固体の乾燥を110℃で一晩行ったこと以外は、参考例4と同様の操作を行い、触媒Eを調製した。
Reference Example 5
[Preparation of catalyst]
A catalyst E was prepared in the same manner as in Reference Example 4 except that the washed solid was dried overnight at 110 ° C.
 実施例5
 触媒D0.30gに代えて、参考例5で得られた触媒Eを0.30g使用したこと以外は、実施例4と同様の操作を行った。得られた濾液を分析したところ、シクロヘキシルアミンの転化率は39.4%であり、シクロヘキサノンオキシムの選択率は86.2%であった。
Example 5
The same operation as in Example 4 was performed except that 0.30 g of the catalyst E obtained in Reference Example 5 was used instead of 0.30 g of the catalyst D. When the obtained filtrate was analyzed, the conversion of cyclohexylamine was 39.4% and the selectivity for cyclohexanone oxime was 86.2%.
 参考例6
[触媒の調製]
 タングステン酸ナトリウム二水和物の使用量を4.94gから2.47g(7.5mmol)にしたこと以外は、参考例4と同様の操作を行い、触媒Fを調製した。
Reference Example 6
[Preparation of catalyst]
A catalyst F was prepared in the same manner as in Reference Example 4 except that the amount of sodium tungstate dihydrate was changed from 4.94 g to 2.47 g (7.5 mmol).
 実施例6
 触媒D0.30gに代えて、参考例6で得られた触媒Fを0.30g使用したこと以外は、実施例4と同様の操作を行った。得られた濾液を分析したところ、シクロヘキシルアミンの転化率は43.0%であり、シクロヘキサノンオキシムの選択率は88.8%であった。
Example 6
The same operation as in Example 4 was performed except that 0.30 g of the catalyst F obtained in Reference Example 6 was used instead of 0.30 g of the catalyst D. When the obtained filtrate was analyzed, the conversion of cyclohexylamine was 43.0% and the selectivity of cyclohexanone oxime was 88.8%.
 参考例7
[触媒の調製]
 300mLナスフラスコ内に、水15gと、タングステン酸ナトリウム二水和物(和光純薬工業(株)製)0.99g(3.0mmol)とを入れ、均一になるまで室温で撹拌した。次いで、得られた混合物に、塩化すず(IV)五水和物(和光純薬工業(株)製)5.26g(15.0mmol)を加え、室温で1時間撹拌した。撹拌後、水285gを加え、室温でさらに24時間撹拌した。得られた混合物を加圧濾過することにより固体を分離し、この固体を、加圧濾過により、洗浄濾液のpHが6以上になるまで水で繰り返し洗浄した。洗浄後の固体を40℃で一晩乾燥し、触媒Gを調製した。
Reference Example 7
[Preparation of catalyst]
In a 300 mL eggplant flask, 15 g of water and 0.99 g (3.0 mmol) of sodium tungstate dihydrate (manufactured by Wako Pure Chemical Industries, Ltd.) were added and stirred at room temperature until uniform. Next, 5.26 g (15.0 mmol) of tin (IV) chloride pentahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was added to the obtained mixture, and the mixture was stirred at room temperature for 1 hour. After stirring, 285 g of water was added, and the mixture was further stirred at room temperature for 24 hours. The obtained mixture was subjected to pressure filtration to separate a solid, and this solid was repeatedly washed with water until the pH of the washing filtrate became 6 or more by pressure filtration. The washed solid was dried overnight at 40 ° C. to prepare catalyst G.
 実施例7
 触媒D0.30gに代えて、参考例7で得られた触媒Gを0.30g使用したこと以外は、実施例4と同様の操作を行った。得られた濾液を分析したところ、シクロヘキシルアミンの転化率は35.3%であり、シクロヘキサノンオキシムの選択率は85.4%であった。
Example 7
The same operation as in Example 4 was performed except that 0.30 g of the catalyst G obtained in Reference Example 7 was used instead of 0.30 g of the catalyst D. When the obtained filtrate was analyzed, the conversion of cyclohexylamine was 35.3% and the selectivity of cyclohexanone oxime was 85.4%.
 参考例8
[触媒の調製]
 タングステン酸ナトリウム二水和物の使用量を0.99gから0.50g(1.5mmol)にしたこと以外は、参考例7と同様の操作を行い、触媒Hを調製した。
Reference Example 8
[Preparation of catalyst]
Catalyst H was prepared in the same manner as in Reference Example 7 except that the amount of sodium tungstate dihydrate was changed from 0.99 g to 0.50 g (1.5 mmol).
 実施例8
 触媒D0.30gに代えて、参考例8で得られた触媒Hを0.30g使用したこと以外は、実施例4と同様の操作を行った。得られた濾液を分析したところ、シクロヘキシルアミンの転化率は13.0%であり、シクロヘキサノンオキシムの選択率は77.5%であった。
Example 8
The same operation as in Example 4 was performed except that 0.30 g of the catalyst H obtained in Reference Example 8 was used instead of 0.30 g of the catalyst D. When the obtained filtrate was analyzed, the conversion of cyclohexylamine was 13.0% and the selectivity of cyclohexanone oxime was 77.5%.
 参考例9
[触媒の調製]
 300mLナスフラスコ内に、水15gと、モリブデン酸ナトリウム二水和物(和光純薬工業(株)製)1.82g(7.5mmol)とを入れ、均一になるまで室温で撹拌した。次いで、得られた混合物に、塩化すず(IV)五水和物(和光純薬工業(株)製)5.26g(15.0mmol)を加え、室温で1時間撹拌した。撹拌後、水60gを加え、室温でさらに24時間撹拌した。得られた混合物を加圧濾過することにより固体を分離し、この固体を、加圧濾過により、洗浄濾液のpHが6以上になるまで水で繰り返し洗浄した。洗浄後の固体を40℃で一晩乾燥し、触媒Iを調製した。
Reference Example 9
[Preparation of catalyst]
In a 300 mL eggplant flask, 15 g of water and 1.82 g (7.5 mmol) of sodium molybdate dihydrate (manufactured by Wako Pure Chemical Industries, Ltd.) were added and stirred at room temperature until uniform. Next, 5.26 g (15.0 mmol) of tin (IV) chloride pentahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was added to the obtained mixture, and the mixture was stirred at room temperature for 1 hour. After stirring, 60 g of water was added, and the mixture was further stirred at room temperature for 24 hours. The obtained mixture was subjected to pressure filtration to separate a solid, and this solid was repeatedly washed with water until the pH of the washing filtrate became 6 or more by pressure filtration. The washed solid was dried overnight at 40 ° C. to prepare Catalyst I.
 実施例9
 触媒D0.30gに代えて、参考例9で得られた触媒Iを0.30g使用したこと以外は、実施例4と同様の操作を行った。得られた濾液を分析したところ、シクロヘキシルアミンの転化率は27.6%であり、シクロヘキサノンオキシムの選択率は67.7%であった。
Example 9
The same operation as in Example 4 was performed except that 0.30 g of the catalyst I obtained in Reference Example 9 was used instead of 0.30 g of the catalyst D. When the obtained filtrate was analyzed, the conversion of cyclohexylamine was 27.6% and the selectivity of cyclohexanone oxime was 67.7%.
 参考例10
[触媒の調製]
 50mLビーカー内に、エタノール(和光純薬工業(株)製)12.7g、2モル/L塩酸(和光純薬工業(株)製)3.0g、およびオルトけい酸テトラエチル(和光純薬工業(株)製)6.3gを入れ、撹拌しながらウォーターバスを使用して70℃に昇温した後、70℃で1時間撹拌を継続し、α液を調製した。一方、50mLビーカー内に、2モル/L塩酸(和光純薬工業(株)製)18.0g、およびチタンテトライソプロポキシド(和光純薬工業(株)製)1.8gを入れ、室温で30分間撹拌し、β液を調製した。
Reference Example 10
[Preparation of catalyst]
In a 50 mL beaker, 12.7 g of ethanol (manufactured by Wako Pure Chemical Industries, Ltd.), 2 g / L hydrochloric acid (manufactured by Wako Pure Chemical Industries, Ltd.) 3.0 g, and tetraethyl orthosilicate (Wako Pure Chemical Industries, Ltd. ( 6.3 g) was added and heated to 70 ° C. using a water bath while stirring, and then stirred at 70 ° C. for 1 hour to prepare α liquid. Meanwhile, 18.0 g of 2 mol / L hydrochloric acid (manufactured by Wako Pure Chemical Industries, Ltd.) and 1.8 g of titanium tetraisopropoxide (manufactured by Wako Pure Chemical Industries, Ltd.) are placed in a 50 mL beaker at room temperature. Stir for 30 minutes to prepare β solution.
 500mLポリビーカー内に、エタノール(和光純薬工業(株)製)93.9gを入れ、撹拌しながら、セピオライト((株)セピオジャパン製のSepisorb 400)15.1gを加え、室温で5分間撹拌した。次いで、ウォーターバスを使用して、ポリビーカー内の混合物を撹拌しながら50℃に昇温後、α液全量とβ液全量との混合溶液を30分間かけて滴下し、滴下終了後、50℃で6時間撹拌を継続した。6時間経過後、室温まで冷却し、撹拌を停止した。得られた混合物を加圧濾過することにより固体を分離し、この固体を、加圧濾過により、水で洗浄濾過し、洗浄濾液のpHが5以上になるまで繰り返し洗浄した。洗浄後、得られた固体を110℃で一晩乾燥し、触媒Jを調製した。 In a 500 mL poly beaker, 93.9 g of ethanol (manufactured by Wako Pure Chemical Industries, Ltd.) was added, and while stirring, 15.1 g of sepiolite (Sepisorb 400, manufactured by Sepio Japan Co., Ltd.) was added and stirred at room temperature for 5 minutes. . Next, using a water bath, the mixture in the poly beaker was heated to 50 ° C. while stirring, and then a mixed solution of α liquid total amount and β liquid total amount was dropped over 30 minutes. And stirring was continued for 6 hours. After 6 hours, the mixture was cooled to room temperature and stirring was stopped. The obtained mixture was subjected to pressure filtration to separate a solid, and this solid was washed and filtered with water by pressure filtration, and washed repeatedly until the pH of the washing filtrate became 5 or more. After washing, the resulting solid was dried at 110 ° C. overnight to prepare Catalyst J.
 実施例10
 熱電対、マグネチックスターラー、ガス供給ラインおよびガス排出ラインを備えたSUS316製反応器(容量:200mL)に、参考例10で得られた触媒Jを0.30g、シクロヘキシルアミン(和光純薬工業(株)製)を1.49g(15.0mmol)、およびアセトニトリル(和光純薬工業(株)製)を6.99g入れ、反応器内の気相部を窒素ガスで置換した後、密閉し、反応器内の気相部に酸素と窒素との混合ガス(酸素濃度:7体積%)を導入して反応器内の圧力を0.90MPa(ゲージ圧)とした。次いで、撹拌しながら反応器内の温度を80℃に昇温した。このときの反応器内の圧力は1.04MPa(ゲージ圧)であった。次いで、撹拌を継続しながら80℃で4時間保温した後、冷却した。得られた反応混合物にメタノールを加えて希釈した後、濾過し、得られた濾液を分析したところ、シクロヘキシルアミンの転化率は0.3%であり、シクロヘキサノンオキシムの選択率は38.4%であった。
Example 10
In a reactor made of SUS316 (capacity: 200 mL) equipped with a thermocouple, a magnetic stirrer, a gas supply line and a gas discharge line, 0.30 g of the catalyst J obtained in Reference Example 10 and cyclohexylamine (Wako Pure Chemical Industries, Ltd. ( Co., Ltd.) 1.49 g (15.0 mmol) and acetonitrile (Wako Pure Chemical Industries, Ltd.) 6.99 g were added, and the gas phase in the reactor was replaced with nitrogen gas, and then sealed, A gas mixture of oxygen and nitrogen (oxygen concentration: 7% by volume) was introduced into the gas phase portion in the reactor to adjust the pressure in the reactor to 0.90 MPa (gauge pressure). Next, the temperature in the reactor was raised to 80 ° C. while stirring. The pressure in the reactor at this time was 1.04 MPa (gauge pressure). Next, the mixture was kept at 80 ° C. for 4 hours while continuing stirring, and then cooled. The resulting reaction mixture was diluted with methanol and then filtered, and the obtained filtrate was analyzed. The conversion of cyclohexylamine was 0.3% and the selectivity of cyclohexanone oxime was 38.4%. there were.
 実施例11
 触媒J、シクロヘキシルアミンおよびアセトニトリルに加え、2,2−ジフェニル−1−ピクリルヒドラジル(Aldrich社製)0.15g(0.38mmol)を反応器に入れたこと以外は、実施例10と同様の操作を行った。得られた濾液を分析したところ、シクロヘキシルアミンの転化率は21.2%であり、シクロヘキサノンオキシムの選択率は92.0%であった。
Example 11
Example 10 except that 0.15 g (0.38 mmol) of 2,2-diphenyl-1-picrylhydrazyl (manufactured by Aldrich) was added to the reactor in addition to catalyst J, cyclohexylamine and acetonitrile. Was performed. When the obtained filtrate was analyzed, the conversion of cyclohexylamine was 21.2% and the selectivity of cyclohexanone oxime was 92.0%.
 参考例11
[触媒の調製]
 300mLポリビーカー内に、エタノール(和光純薬工業(株)製)78.0gを入れ、撹拌しながら、セピオライト((株)セピオジャパン製のSepisorb 400)10.0gを加え、室温で5分間撹拌した。次いで、ウォーターバスを使用して、ポリビーカー内の混合物を撹拌しながら50℃に昇温後、20重量%三塩化チタン溶液(TiClの希塩酸溶液、和光純薬工業(株)製)12.0gを30分間かけて滴下し、滴下終了後、50℃で6時間撹拌を継続した。6時間経過後、室温まで冷却し、撹拌を停止した。得られた混合物を加圧濾過することにより固体を分離し、この固体を、加圧濾過により、水で洗浄濾過し、洗浄濾液のpHが5以上になるまで繰り返し洗浄した。洗浄後、得られた固体を110℃で一晩乾燥し、触媒Kを調製した。
Reference Example 11
[Preparation of catalyst]
In a 300 mL poly beaker, 78.0 g of ethanol (manufactured by Wako Pure Chemical Industries, Ltd.) was added and 10.0 g of sepiolite (Sepisorb 400 manufactured by Sepio Japan Co., Ltd.) was added while stirring, and the mixture was stirred at room temperature for 5 minutes. . Next, using a water bath, the mixture in the poly beaker was heated to 50 ° C. while stirring, and then a 20 wt% titanium trichloride solution (a dilute hydrochloric acid solution of TiCl 3 , manufactured by Wako Pure Chemical Industries, Ltd.). 0g was dripped over 30 minutes, and stirring was continued at 50 degreeC after completion | finish of dripping for 6 hours. After 6 hours, the mixture was cooled to room temperature and stirring was stopped. The obtained mixture was subjected to pressure filtration to separate a solid, and this solid was washed and filtered with water by pressure filtration, and washed repeatedly until the pH of the washing filtrate became 5 or more. After washing, the resulting solid was dried at 110 ° C. overnight to prepare Catalyst K.
 実施例12
 触媒J0.30gに代えて、参考例11で得られた触媒Kを0.30g使用したこと以外は、実施例10と同様の操作を行った。得られた濾液を分析したところ、シクロヘキシルアミンの転化率は0.2%であり、シクロヘキサノンオキシムの選択率は27.1%であった。
Example 12
The same operation as in Example 10 was performed except that 0.30 g of the catalyst K obtained in Reference Example 11 was used instead of 0.30 g of the catalyst J. When the obtained filtrate was analyzed, the conversion of cyclohexylamine was 0.2% and the selectivity of cyclohexanone oxime was 27.1%.
 実施例13
 触媒J0.30gに代えて、参考例11で得られた触媒Kを0.30g使用したこと以外は、実施例11と同様の操作を行った。得られた濾液を分析したところ、シクロヘキシルアミンの転化率は13.8%であり、シクロヘキサノンオキシムの選択率は78.2%であった。
Example 13
The same operation as in Example 11 was performed except that 0.30 g of the catalyst K obtained in Reference Example 11 was used instead of 0.30 g of the catalyst J. When the obtained filtrate was analyzed, the conversion of cyclohexylamine was 13.8% and the selectivity of cyclohexanone oxime was 78.2%.
 参考例12
[触媒の調製]
 セピオライト10.0gに代えて、パリゴルスカイトを10.0g使用したこと以外は、参考例11と同様の操作を行い、触媒Lを調製した。
Reference Example 12
[Preparation of catalyst]
Catalyst L was prepared in the same manner as in Reference Example 11 except that 10.0 g of palygorskite was used instead of 10.0 g of sepiolite.
 実施例14
 触媒J0.30gに代えて、参考例12で得られた触媒Lを0.30g使用したこと以外は、実施例10と同様の操作を行った。得られた濾液を分析したところ、シクロヘキシルアミンの転化率は1.5%であり、シクロヘキサノンオキシムの選択率は46.1%であった。
Example 14
The same operation as in Example 10 was performed except that 0.30 g of the catalyst L obtained in Reference Example 12 was used instead of 0.30 g of the catalyst J. When the obtained filtrate was analyzed, the conversion of cyclohexylamine was 1.5% and the selectivity of cyclohexanone oxime was 46.1%.
 実施例15
 触媒J0.30gに代えて、参考例12で得られた触媒Lを0.30g使用したこと以外は、実施例11と同様の操作を行った。得られた濾液を分析したところ、シクロヘキシルアミンの転化率は21.3%であり、シクロヘキサノンオキシムの選択率は80.7%であった。
Example 15
The same operation as in Example 11 was performed except that 0.30 g of the catalyst L obtained in Reference Example 12 was used instead of 0.30 g of the catalyst J. When the obtained filtrate was analyzed, the conversion of cyclohexylamine was 21.3% and the selectivity for cyclohexanone oxime was 80.7%.
 参考例13
[触媒の調製]
 滴下ロートに、エタノール(和光純薬工業(株)製)35g、テトラブチルオルソチタネート(東京化成工業(株)製)85g、オルトけい酸テトラエチル(和光純薬工業(株)製)52gを入れて混合した。一方、2Lポリビーカー内に、イオン交換水721gと、25%アンモニア水(和光純薬工業(株)製)51gとを入れ、室温で5分間撹拌した。5分間の撹拌の後、撹拌を継続しながら、ポリビーカー内の混合液に、滴下ロート中の混合液を30分かけて滴下した。滴下終了後、さらに室温で30分撹拌を継続し、得られた混合物を加圧濾過することにより固体を分離し、この固体を、加圧濾過により、水で洗浄濾過した。洗浄後、得られた固体を110℃で一晩乾燥し、触媒M(非晶質チタノシリケート)を調製した。
Reference Example 13
[Preparation of catalyst]
In a dropping funnel, 35 g of ethanol (manufactured by Wako Pure Chemical Industries, Ltd.), 85 g of tetrabutyl orthotitanate (manufactured by Tokyo Chemical Industry Co., Ltd.), and 52 g of tetraethyl orthosilicate (manufactured by Wako Pure Chemical Industries, Ltd.) are added. Mixed. On the other hand, 721 g of ion-exchanged water and 51 g of 25% ammonia water (manufactured by Wako Pure Chemical Industries, Ltd.) were placed in a 2 L poly beaker and stirred at room temperature for 5 minutes. After stirring for 5 minutes, the liquid mixture in the dropping funnel was dropped into the liquid mixture in the poly beaker over 30 minutes while continuing the stirring. After completion of the dropping, stirring was further continued at room temperature for 30 minutes, and the resulting mixture was subjected to pressure filtration to separate a solid, and this solid was washed with water by pressure filtration and filtered. After washing, the obtained solid was dried at 110 ° C. overnight to prepare catalyst M (amorphous titanosilicate).
 実施例16
 熱電対、マグネチックスターラー、ガス供給ラインおよびガス排出ラインを備えたSUS316製反応器(容量:1L)に、参考例13で得られた触媒Mを7.5g、シクロヘキシルアミン(和光純薬工業(株)製)を106g(1.1mol)、およびトルエン(和光純薬工業(株)製)を106g入れ、反応器内の気相部を窒素ガスで置換した後、密閉し、反応器内の気相部に窒素ガスを導入して反応器内の圧力を0.90MPa(ゲージ圧)とした。次いで、撹拌しながら80℃に昇温した。このときの反応器内の圧力は0.90MPa(ゲージ圧)であった。次いで、撹拌を継続しながら、反応器内の混合物の液相中に酸素と窒素との混合ガス(酸素濃度:7体積%)を450mL/minの流量で吹込み、反応器内を流通させることで反応を開始した。反応器内の圧力を0.90MPa(ゲージ圧)に保ちつつ、反応器内の気相部からガス排出ラインを介してガスを排出しながら、80℃で5時間反応を継続した後、酸素と窒素との混合ガスの供給を止め、冷却した。得られた反応混合物にメタノールを加えて希釈した後、濾過し、得られた濾液を分析したところ、シクロヘキシルアミンの転化率は0.4%であり、シクロヘキサノンオキシムの選択率は27.9%であった。
Example 16
In a reactor made of SUS316 (capacity: 1 L) equipped with a thermocouple, a magnetic stirrer, a gas supply line, and a gas discharge line, 7.5 g of the catalyst M obtained in Reference Example 13 and cyclohexylamine (Wako Pure Chemical Industries, Ltd. ( 106 g (1.1 mol), and 106 g of toluene (manufactured by Wako Pure Chemical Industries, Ltd.) were added, and the gas phase in the reactor was replaced with nitrogen gas, and then sealed and sealed. Nitrogen gas was introduced into the gas phase to adjust the pressure in the reactor to 0.90 MPa (gauge pressure). Subsequently, it heated up at 80 degreeC, stirring. The pressure in the reactor at this time was 0.90 MPa (gauge pressure). Next, while stirring is continued, a mixed gas of oxygen and nitrogen (oxygen concentration: 7% by volume) is blown into the liquid phase of the mixture in the reactor at a flow rate of 450 mL / min, and the inside of the reactor is circulated. The reaction was started. While maintaining the pressure in the reactor at 0.90 MPa (gauge pressure) and continuing the reaction at 80 ° C. for 5 hours while discharging the gas from the gas phase portion in the reactor through the gas discharge line, oxygen and The supply of mixed gas with nitrogen was stopped and the mixture was cooled. The obtained reaction mixture was diluted with methanol and then filtered, and the obtained filtrate was analyzed. The conversion of cyclohexylamine was 0.4% and the selectivity of cyclohexanone oxime was 27.9%. there were.
 実施例17
 触媒M7.5gに代えて、特開2000−117101号公報に記載の方法に準拠して調製したメソ細孔を有する非晶質チタノシリケートを7.5g使用したこと以外は、実施例16と同様の操作を行った。80℃に昇温したときの反応器内の圧力は0.90MPa(ゲージ圧)であった。得られた濾液を分析したところ、シクロヘキシルアミンの転化率は0.6%であり、シクロヘキサノンオキシムの選択率は29.7%であった。
Example 17
Example 16 except that 7.5 g of amorphous titanosilicate having mesopores prepared in accordance with the method described in JP-A-2000-117101 was used instead of 7.5 g of catalyst M The same operation was performed. The pressure in the reactor when the temperature was raised to 80 ° C. was 0.90 MPa (gauge pressure). When the obtained filtrate was analyzed, the conversion of cyclohexylamine was 0.6% and the selectivity of cyclohexanone oxime was 29.7%.
 実施例18
 触媒M7.5gに代えて、Ti−HMSを7.5g使用したこと以外は、実施例16と同様の操作を行った。80℃に昇温したときの反応器内の圧力は0.90MPa(ゲージ圧)であった。得られた濾液を分析したところ、シクロヘキシルアミンの転化率は0.6%であり、シクロヘキサノンオキシムの選択率は32.4%であった。
Example 18
The same operation as in Example 16 was performed except that 7.5 g of Ti-HMS was used instead of 7.5 g of the catalyst M. The pressure in the reactor when the temperature was raised to 80 ° C. was 0.90 MPa (gauge pressure). When the obtained filtrate was analyzed, the conversion rate of cyclohexylamine was 0.6% and the selectivity of cyclohexanone oxime was 32.4%.
 比較例1
 触媒A0.30gに代えて、酸化チタン(TiO、石原産業(株)社製のST−01)を0.30g使用したこと以外は、実施例1と同様の操作を行った。得られた濾液を分析したところ、シクロヘキシルアミンの転化率は3.1%であり、シクロヘキサノンオキシムの選択率は46.3%であった。
Comparative Example 1
The same operation as in Example 1 was performed except that 0.30 g of titanium oxide (TiO 2 , ST-01 manufactured by Ishihara Sangyo Co., Ltd.) was used instead of 0.30 g of catalyst A. When the obtained filtrate was analyzed, the conversion of cyclohexylamine was 3.1% and the selectivity of cyclohexanone oxime was 46.3%.
 比較例2
 2,2−ジフェニル−1−ピクリルヒドラジルを使用しなかったこと以外は、比較例1と同様の操作を行った。得られた濾液を分析したところ、シクロヘキシルアミンの転化率は0.2%であり、シクロヘキサノンオキシムの選択率は5.6%であった。
Comparative Example 2
The same operation as in Comparative Example 1 was performed except that 2,2-diphenyl-1-picrylhydrazyl was not used. When the obtained filtrate was analyzed, the conversion of cyclohexylamine was 0.2% and the selectivity of cyclohexanone oxime was 5.6%.
 比較例3
 触媒M7.5gに代えて、酸化チタン(TiO、石原産業(株)社製のST−01)を7.5g使用したこと以外は、実施例16と同様の操作を行った。80℃に昇温したときの反応器内の圧力は0.90MPa(ゲージ圧)であった。得られた濾液を分析したところ、シクロヘキシルアミンの転化率は0.2%であり、シクロヘキサノンオキシムの選択率は10.6%であった。
Comparative Example 3
The same operation as in Example 16 was performed except that 7.5 g of titanium oxide (TiO 2 , ST-01 manufactured by Ishihara Sangyo Co., Ltd.) was used instead of 7.5 g of the catalyst M. The pressure in the reactor when the temperature was raised to 80 ° C. was 0.90 MPa (gauge pressure). When the obtained filtrate was analyzed, the conversion rate of cyclohexylamine was 0.2% and the selectivity of cyclohexanone oxime was 10.6%.
 本発明によれば、良好な選択率でオキシム化合物(II)およびアミド化合物(III)を製造することができる新規な方法を提供することができる。 According to the present invention, it is possible to provide a novel method capable of producing the oxime compound (II) and the amide compound (III) with good selectivity.

Claims (6)

  1. 式(II)
    Figure JPOXMLDOC01-appb-I000001
    [式中、RおよびRは、それぞれ独立して、水素原子、1以上の置換基を有していてもよい炭化水素基または1以上の置換基を有していてもよい複素環基を表す(但し、RおよびRが共に水素原子であることはない。)か、あるいはRおよびRは一緒になって、RおよびRが結合する炭素原子と共に、1以上の置換基を有していてもよい炭素数3~12の脂環式炭化水素基を形成する。]
    で示されるオキシムの製造方法であって、下記の(A)、(B)、(C)および(D)からなる群より選ばれる少なくとも一種の触媒の存在下に、
    式(I)
    Figure JPOXMLDOC01-appb-I000002
    (式中、RおよびRは、それぞれ前記と同じ意味を表す。)
    で示されるアミンと、
    酸素と
    を接触させる方法。
    (A)担体をチタン化合物で接触処理した後に150℃以上で熱処理して得られるチタン担持触媒
    (B)タングステンおよびモリブデンからなる群より選ばれる少なくとも一種とスズとを含む触媒
    (C)イノケイ酸塩触媒
    (D)非晶質チタノシリケート触媒
    Formula (II)
    Figure JPOXMLDOC01-appb-I000001
    [Wherein, R 1 and R 2 each independently represent a hydrogen atom, a hydrocarbon group optionally having one or more substituents, or a heterocyclic group optionally having one or more substituents. (Wherein R 1 and R 2 are not both hydrogen atoms), or R 1 and R 2 together represent one or more together with the carbon atom to which R 1 and R 2 are bonded. An alicyclic hydrocarbon group having 3 to 12 carbon atoms which may have a substituent is formed. ]
    In the presence of at least one catalyst selected from the group consisting of the following (A), (B), (C) and (D):
    Formula (I)
    Figure JPOXMLDOC01-appb-I000002
    (In the formula, R 1 and R 2 each have the same meaning as described above.)
    An amine represented by
    A method of contacting oxygen.
    (A) A titanium-supported catalyst obtained by contact-treating a support with a titanium compound and then heat-treated at 150 ° C. or higher. (B) A catalyst containing at least one selected from the group consisting of tungsten and molybdenum and tin (C) Inosilicate Catalyst (D) Amorphous titanosilicate catalyst
  2.  前記担体が、シリカアルミナである請求項1に記載の方法。 The method according to claim 1, wherein the carrier is silica alumina.
  3.  前記イノケイ酸塩触媒が、セピオライト触媒およびパリゴルスカイト触媒からなる群より選ばれる少なくとも一種の触媒である請求項1または2に記載の方法。 The method according to claim 1 or 2, wherein the inosilicate catalyst is at least one catalyst selected from the group consisting of a sepiolite catalyst and a palygorskite catalyst.
  4.  前記イノケイ酸塩触媒が、第4族金属元素、第5族金属元素、第6族金属元素、ゲルマニウム、第4族金属元素の酸化物、第5族金属元素の酸化物、第6族金属元素の酸化物および酸化ゲルマニウムからなる群より選ばれる少なくとも一種を含有する請求項1~3のいずれかに記載の方法。 The inosilicate catalyst includes a Group 4 metal element, a Group 5 metal element, a Group 6 metal element, germanium, an oxide of a Group 4 metal element, an oxide of a Group 5 metal element, and a Group 6 metal element. The method according to any one of claims 1 to 3, comprising at least one selected from the group consisting of an oxide of the above and germanium oxide.
  5.  前記非晶質チタノシリケート触媒が、非晶質のメソポーラスチタノシリケート触媒である請求項1~4のいずれかに記載の方法。 The method according to any one of claims 1 to 4, wherein the amorphous titanosilicate catalyst is an amorphous mesoporous titanosilicate catalyst.
  6.  式(III)
    Figure JPOXMLDOC01-appb-I000003
    [式中、RおよびRは、それぞれ独立して、水素原子、1以上の置換基を有していてもよい炭化水素基または1以上の置換基を有していてもよい複素環基を表す(但し、RおよびRが共に水素原子であることはない。)か、あるいはRおよびRは一緒になって、Rが結合する窒素原子と、Rが結合する炭素原子と共に1以上の置換基を有していてもよい炭素数3~12の脂肪族複素環を形成する。]
    で示されるアミドの製造方法であって、
    請求項1~5のいずれかに記載の方法により前記式(II)で示されるオキシムを製造する工程、および、
    該オキシムをベックマン転位反応させる工程
    を含む方法。
    Formula (III)
    Figure JPOXMLDOC01-appb-I000003
    [Wherein, R 1 and R 2 each independently represent a hydrogen atom, a hydrocarbon group optionally having one or more substituents, or a heterocyclic group optionally having one or more substituents. Wherein R 1 and R 2 are not both hydrogen atoms, or R 1 and R 2 together represent a nitrogen atom to which R 1 is bonded and a carbon to which R 2 is bonded. An aliphatic heterocyclic ring having 3 to 12 carbon atoms which may have one or more substituents together with atoms is formed. ]
    A process for producing an amide represented by
    A step of producing the oxime represented by the formula (II) by the method according to any one of claims 1 to 5, and
    A method comprising a step of subjecting the oxime to a Beckmann rearrangement reaction.
PCT/JP2014/075335 2013-09-19 2014-09-17 Method for producing oxime WO2015041363A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013193912A JP2015059100A (en) 2013-09-19 2013-09-19 Method for producing oxime
JP2013-193912 2013-09-19

Publications (1)

Publication Number Publication Date
WO2015041363A1 true WO2015041363A1 (en) 2015-03-26

Family

ID=52689009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075335 WO2015041363A1 (en) 2013-09-19 2014-09-17 Method for producing oxime

Country Status (2)

Country Link
JP (1) JP2015059100A (en)
WO (1) WO2015041363A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107118125A (en) * 2017-06-29 2017-09-01 湘潭大学 A kind of preparation method of cyclohexanone oxime
CN107219823A (en) * 2016-03-22 2017-09-29 中国石油化工股份有限公司 Under the conditions of fresh catalyst in the tail gas of cyclohexanone oxamidinating technique oxygen content method of controlling security

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112016003289T5 (en) * 2015-07-21 2018-04-12 Sumitomo Chemical Company, Limited PROCESS FOR PREPARING A 4- (TRIFLUOROMETHYLSULFONYL) PHENOL COMPOUND

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3960954A (en) * 1968-05-27 1976-06-01 Halcon International, Inc. Process for preparing oximes and hydroxylamines
JPH0285240A (en) * 1988-06-23 1990-03-26 Montedipe Spa Catalytic production of oxime
JPH02295956A (en) * 1989-04-27 1990-12-06 Istit Guido Donegani Spa Method for oxidizing saturated primary amine to oxime
WO2003024927A1 (en) * 2001-09-12 2003-03-27 Asahi Kasei Chemicals Corporation Process for producing lactam
JP2003277329A (en) * 2002-01-15 2003-10-02 Sumitomo Chem Co Ltd Method for producing oxime compound or nitro compound and catalyst therefor
JP2005015370A (en) * 2003-06-25 2005-01-20 Asahi Kasei Chemicals Corp Method for producing alicyclic oxime
JP2012067044A (en) * 2010-09-27 2012-04-05 Sumitomo Chemical Co Ltd Method for producing cyclohexanone oxime
JP2012201626A (en) * 2011-03-25 2012-10-22 Sumitomo Chemical Co Ltd Method for producing oxime

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3960954A (en) * 1968-05-27 1976-06-01 Halcon International, Inc. Process for preparing oximes and hydroxylamines
JPH0285240A (en) * 1988-06-23 1990-03-26 Montedipe Spa Catalytic production of oxime
JPH02295956A (en) * 1989-04-27 1990-12-06 Istit Guido Donegani Spa Method for oxidizing saturated primary amine to oxime
WO2003024927A1 (en) * 2001-09-12 2003-03-27 Asahi Kasei Chemicals Corporation Process for producing lactam
JP2003277329A (en) * 2002-01-15 2003-10-02 Sumitomo Chem Co Ltd Method for producing oxime compound or nitro compound and catalyst therefor
JP2005015370A (en) * 2003-06-25 2005-01-20 Asahi Kasei Chemicals Corp Method for producing alicyclic oxime
JP2012067044A (en) * 2010-09-27 2012-04-05 Sumitomo Chemical Co Ltd Method for producing cyclohexanone oxime
JP2012201626A (en) * 2011-03-25 2012-10-22 Sumitomo Chemical Co Ltd Method for producing oxime

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107219823A (en) * 2016-03-22 2017-09-29 中国石油化工股份有限公司 Under the conditions of fresh catalyst in the tail gas of cyclohexanone oxamidinating technique oxygen content method of controlling security
CN107118125A (en) * 2017-06-29 2017-09-01 湘潭大学 A kind of preparation method of cyclohexanone oxime

Also Published As

Publication number Publication date
JP2015059100A (en) 2015-03-30

Similar Documents

Publication Publication Date Title
JP6134740B2 (en) Oxime production method
Kominami et al. Novel synthesis of microcrystalline titanium (IV) oxide having high thermal stability and ultra-high photocatalytic activity: thermal decomposition of titanium (IV) alkoxide in organic solvents
NO171061B (en) PROCEDURE FOR CATALYTIC PREPARATION OF OXIMES
KR101514848B1 (en) Catalyst for synthesizing acrylonitrile and process for producing acrylonitrile
CN109206339B (en) Method for preparing cyclohexanone oxime by oxidizing cyclohexylamine
JP2012232891A (en) Titanium-silicalite molecular sieve, method for preparing the same and method for preparing cyclohexanone oxime using the molecular sieve
WO2015041363A1 (en) Method for producing oxime
KR20100135882A (en) Method for producing a nanocrystalline molybdenum mixed oxide
EP3746220A1 (en) Preparation method for molybdenum-tellurium-vanadium-niobium-based odh catalysts
KR100601230B1 (en) Process for Producing Lactam
US9656950B2 (en) Method for producing oxime
CN105980054B (en) The manufacturing method of catalyst and oxidation product
US6407291B1 (en) Preparation of 1,1,4,4-tetramethoxy-2-butene
WO2015199034A1 (en) Catalyst for amine oxidation and method for producing oxidation product with use of said catalyst
JP2016008164A (en) Method for producing laminar silicate
JP4522672B2 (en) Method for producing cycloaliphatic oximes
JP2001019670A (en) Production of organic compound by rearrangement reaction
JP3767562B2 (en) Method for producing ε-caprolactam
JPH10130209A (en) Production of amine
JP2005089342A (en) Method for producing cyclooctene oxide
WO2005063388A1 (en) Method for preparing solid acid catalyst and method for producing lactam compound using such catalyst
WO2023214235A1 (en) Catalysts for oxidative dehydrogenation
JP2005015370A (en) Method for producing alicyclic oxime
JP3814867B2 (en) Olefin oxidation catalyst and method for producing olefin oxides using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14845783

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14845783

Country of ref document: EP

Kind code of ref document: A1