WO2015041184A1 - Method for manufacturing coated active material for use in lithium-ion battery - Google Patents

Method for manufacturing coated active material for use in lithium-ion battery Download PDF

Info

Publication number
WO2015041184A1
WO2015041184A1 PCT/JP2014/074303 JP2014074303W WO2015041184A1 WO 2015041184 A1 WO2015041184 A1 WO 2015041184A1 JP 2014074303 W JP2014074303 W JP 2014074303W WO 2015041184 A1 WO2015041184 A1 WO 2015041184A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
lithium ion
ion battery
resin
weight
Prior art date
Application number
PCT/JP2014/074303
Other languages
French (fr)
Japanese (ja)
Inventor
水野 雄介
康裕 進藤
都藤 靖泰
雄太 村上
雄樹 草地
大澤 康彦
赤間 弘
堀江 英明
Original Assignee
三洋化成工業株式会社
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋化成工業株式会社, 日産自動車株式会社 filed Critical 三洋化成工業株式会社
Priority to JP2015537907A priority Critical patent/JP6235028B2/en
Publication of WO2015041184A1 publication Critical patent/WO2015041184A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a coated active material for a lithium ion battery.
  • a lithium ion secondary battery is formed by applying a positive electrode or a negative electrode active material or the like to a positive electrode or negative electrode current collector using a binder.
  • a positive electrode active material or the like is applied to one surface of the current collector using a binder and a positive electrode layer is applied to the opposite surface, and a negative electrode active material or the like is applied to the opposite surface using a binder.
  • a bipolar electrode having a negative electrode layer is formed.
  • Electrode active materials vary in electron conductivity depending on the type, but at present, a conductive additive for enhancing electron conductivity is indispensable for any active material.
  • a conductive additive for enhancing electron conductivity is indispensable for any active material.
  • carbonaceous conductive materials such as graphite and carbon black are used, but since these are particulate, it is necessary to add them at a high concentration in order to obtain the desired electronic conductivity. .
  • Patent Document 1 discloses a specific conductive polymer organic solvent dispersion and a carbonaceous conductive material. A conductive additive composition prepared by mixing is disclosed.
  • a coating for a lithium ion battery in which at least a part of the surface of the lithium ion battery active material is coated with a coating material containing a coating resin and a conductive additive.
  • a method for producing an active material wherein a resin solution containing the coating resin is added in the presence of the lithium ion battery active material, and then the conductive auxiliary agent is added.
  • a coating resin adheres to the periphery of the active material, and further a conductive assistant adheres to the coated active material in which the conductive assistant adheres to the active material. Is obtained. And the coating active material for lithium ion batteries obtained with the manufacturing method of this invention is excellent in electronic conductivity.
  • the method for producing a coated active material for a lithium ion battery according to the present invention includes a coated active material for a lithium ion battery in which at least a part of the surface of the lithium ion battery active material is coated with a coating material containing a coating resin and a conductive additive.
  • a manufacturing method of In the presence of the lithium ion battery active material, a resin solution containing the coating resin is added, and then the conductive assistant is added.
  • a resin solution containing a coating resin is added in the presence of the lithium ion battery active material, and then a conductive additive is added.
  • a resin solution containing a coating resin is introduced in the presence of a lithium ion battery active material. Thereby, the resin solution can be attached around the lithium ion battery active material.
  • Examples of the lithium ion battery active material (Y) include a positive electrode active material (Y1) and a negative electrode active material (Y2).
  • a positive electrode active material (Y1) a composite oxide of lithium and a transition metal (for example, LiCoO 2 , LiNiO 2 , LiMnO 2 and LiMn 2 O 4 ), a transition metal oxide (for example, MnO 2 and V 2 O 5 ), Transition metal sulfides (eg, MoS 2 and TiS 2 ) and conductive polymers (eg, polyaniline, polyvinylidene fluoride, polypyrrole, polythiophene, polyacetylene, poly-p-phenylene, and polycarbazole).
  • a transition metal for example, LiCoO 2 , LiNiO 2 , LiMnO 2 and LiMn 2 O 4
  • a transition metal oxide for example, MnO 2 and V 2 O 5
  • Transition metal sulfides eg, MoS 2 and TiS 2
  • Examples of the negative electrode active material (Y2) include graphite, amorphous carbon, polymer compound fired bodies (for example, those obtained by firing and carbonizing phenol resin, furan resin, etc.), cokes (for example, pitch coke, needle coke, petroleum coke, etc.) ), Carbon fibers, conductive polymers (eg, polyacetylene and polypyrrole), tin, silicon, and metal alloys (eg, lithium-tin alloy, lithium-silicon alloy, lithium-aluminum alloy, and lithium-aluminum-manganese alloy), Examples include composite oxides of lithium and transition metals (for example, Li 4 Ti 5 O 12 ).
  • the lithium ion battery active material itself has a low conductivity because the effect of improving the conductivity can be greatly obtained. Therefore, as the positive electrode active material (Y1), a composite oxide of lithium and a transition metal (for example, LiCoO 2 , LiNiO 2 , LiMnO 2 and LiMn 2 O 4 ), a transition metal oxide (for example, MnO 2 and V 2 O 5 ) Transition metal sulfides (eg MoS 2 and TiS 2 ) are preferred. As the negative electrode active material (Y2), a composite oxide of lithium and a transition metal (for example, Li 4 Ti 5 O 12 or the like) is preferable.
  • a composite oxide of lithium and a transition metal for example, Li 4 Ti 5 O 12 or the like
  • the resin solution is a solution in which the coating resin is dissolved in the solvent without remaining undissolved.
  • the coating resin may be a thermoplastic resin or a thermosetting resin.
  • vinyl resin (A), urethane resin (B), polyester resin (C), polyamide resin (D), Other resin (E), a mixture thereof, etc. are mentioned. Of these, vinyl resin (A), urethane resin (B), polyester resin (C), polyamide resin (D), and mixtures thereof are preferred, and vinyl resin (A), urethane resin (B), polyester resin (C And polyamide resin (D) are more preferred.
  • the vinyl resin (A) is a resin comprising a polymer (A1) having the vinyl monomer (a) as an essential constituent monomer.
  • the polymer (A1) preferably contains a vinyl monomer (a1) having a carboxyl group or an acid anhydride group as the vinyl monomer (a) and a vinyl monomer (a2) represented by the following general formula (1).
  • CH 2 C (R 1 ) COOR 2 (1)
  • R 1 is a hydrogen atom or a methyl group
  • R 2 is a branched alkyl group having 4 to 36 carbon atoms.
  • Examples of the vinyl monomer (a1) having a carboxyl group or an acid anhydride group include monocarboxylic acids having 3 to 15 carbon atoms such as (meth) acrylic acid, crotonic acid and cinnamic acid; (anhydrous) maleic acid, fumaric acid, ( Anhydric) dicarboxylic acids having 4 to 24 carbon atoms such as itaconic acid, citraconic acid, and mesaconic acid; polycarboxylic acids having 6 to 24 carbon atoms such as aconitic acid and other polyvalent carboxylic acids having a valence of 6 or more. .
  • (meth) acrylic acid is preferable, and methacrylic acid is more preferable.
  • R 1 represents a hydrogen atom or a methyl group.
  • R 1 is preferably a methyl group.
  • R 2 is a branched alkyl group having 4 to 36 carbon atoms. Specific examples of R 2 include a 1-alkylalkyl group [1-methylpropyl group (sec-butyl group), 1,1-dimethylethyl group (tert -Butyl group), 1-methylbutyl group, 1-ethylpropyl group, 1,1-dimethylpropyl group, 1-methylpentyl group, 1-ethylbutyl group, 1-methylhexyl group, 1-ethylpentyl group, 1-methyl Heptyl, 1-ethylhexyl, 1-methyloctyl, 1-ethylheptyl, 1-methylnonyl, 1-ethyloctyl, 1-methyldecyl, 1-ethylnonyl, 1-butyleicosyl,
  • a mixed alkyl group containing one or more branched alkyl groups such as a residue obtained by removing a hydroxyl group from an oxo alcohol obtained from an oligomer (4 to 8 mer) or the like.
  • a 2-alkylalkyl group is preferable, and a 2-ethylhexyl group and a 2-decyltetradecyl group are more preferable.
  • copolymerizable vinyl monomer (a3) which does not contain active hydrogen may be contained.
  • examples of the copolymerizable vinyl monomer (a3) containing no active hydrogen include the following (a31) to (a38).
  • the monool includes (i) an aliphatic monool (methanol, ethanol, n- or i (Propyl alcohol, n-butyl alcohol, n-pentyl alcohol, n-octyl alcohol, nonyl alcohol, decyl alcohol, lauryl alcohol, tridecyl alcohol, myristyl alcohol, cetyl alcohol, stearyl alcohol, etc.), (ii) alicyclic mono All (such as cyclohexyl alcohol), (iii) araliphatic monool (such as benzyl alcohol) and a mixture of two or more of these.
  • an aliphatic monool methanol, ethanol, n- or i (Propyl alcohol, n-butyl alcohol, n-pentyl alcohol, n-octyl alcohol
  • A33 a nitrogen-containing vinyl compound (a33-1) an amide group-containing vinyl compound (i) a (meth) acrylamide compound having 3 to 30 carbon atoms, such as N, N-dialkyl (1 to 6 carbon atoms) or diaralkyl (carbon number) 7 to 15) (meth) acrylamide (N, N-dimethylacrylamide, N, N-dibenzylacrylamide, etc.), diacetone acrylamide (ii) amide group having 4 to 20 carbon atoms, excluding the above (meth) acrylamide compounds Vinyl compounds such as N-methyl-N-vinylacetamide, cyclic amides (pyrrolidone compounds (having 6 to 13 carbon atoms, such as N-vinylpyrrolidone))
  • (A33-2) (meth) acrylate compound (i) dialkyl (1 to 4 carbon atoms) aminoalkyl (1 to 4 carbon atoms) (meth) acrylate [N, N-dimethylaminoethyl (meth) acrylate, N, N -Diethylaminoethyl (meth) acrylate, t-butylaminoethyl (meth) acrylate, morpholinoethyl (meth) acrylate, etc.] (Ii) Quaternary ammonium group-containing (meth) acrylate ⁇ quaternary amino group-containing (meth) acrylate [N, N-dimethylaminoethyl (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, etc.]] (Quaternized with a quaternizing agent such as methyl chloride, dimethyl sulfate, benzyl chloride, dimethyl
  • A33-3 Heterocycle-containing vinyl compound Pyridine compound (carbon number 7 to 14, such as 2- or 4-vinylpyridine), imidazole compound (carbon number 5 to 12, such as N-vinylimidazole), pyrrole compound (carbon number) 6 to 13, for example, N-vinylpyrrole), pyrrolidone compound (6 to 13 carbon atoms, for example, N-vinyl-2-pyrrolidone)
  • Nitrile group-containing vinyl compound A nitrile group-containing vinyl compound having 3 to 15 carbon atoms, such as (meth) acrylonitrile, cyanostyrene, cyanoalkyl (1 to 4 carbon atoms) acrylate
  • Nitro group-containing vinyl compounds (carbon number 8 to 16, for example, nitrostyrene), etc.
  • Vinyl hydrocarbon (a34-1) Aliphatic vinyl hydrocarbon Olefin having 2 to 18 or more carbon atoms (ethylene, propylene, butene, isobutylene, pentene, heptene, diisobutylene, octene, dodecene, octadecene, etc.), Dienes having 4 to 10 or more carbon atoms (butadiene, isoprene, 1,4-pentadiene, 1,5-hexadiene, 1,7-octadiene, etc.), etc.
  • (A34-2) Alicyclic vinyl hydrocarbon Cyclic unsaturated compound having 4 to 18 or more carbon atoms, such as cycloalkene (for example, cyclohexene), (di) cycloalkadiene [for example, (di) cyclopentadiene], terpene ( For example, pinene and limonene), indene
  • cycloalkene for example, cyclohexene
  • cycloalkadiene for example, (di) cyclopentadiene
  • terpene for example, pinene and limonene
  • Aromatic vinyl hydrocarbon Aromatic unsaturated compounds having 8 to 20 or more carbon atoms, such as styrene, ⁇ -methylstyrene, vinyltoluene, 2,4-dimethylstyrene, ethylstyrene, isopropylstyrene, butyl Styrene, phenyl styrene, cyclohexyl styrene, benzyl styrene
  • (A35) Vinyl ester Aliphatic vinyl ester [C4-15, for example, alkenyl ester of aliphatic carboxylic acid (mono- or dicarboxylic acid) (for example, vinyl acetate, vinyl propionate, vinyl butyrate, diallyl adipate, isopropenyl acetate, Vinyl methoxyacetate)]
  • Aromatic vinyl esters [containing 9 to 20 carbon atoms, eg alkenyl esters of aromatic carboxylic acids (mono- or dicarboxylic acids) (eg vinyl benzoate, diallyl phthalate, methyl-4-vinyl benzoate), aromatic ring containing aliphatic carboxylic acid Ester (eg acetoxystyrene)]
  • Vinyl ether Aliphatic vinyl ether [C3-15, such as vinylalkyl (C1-10) ether (vinyl methyl ether, vinyl butyl ether, vinyl-2-ethylhexyl ether, etc.), vinyl alkoxy (C1-6) ) Alkyl (1 to 4 carbon atoms) ether (vinyl-2-methoxyethyl ether, methoxybutadiene, 3,4-dihydro-1,2-pyran, 2-butoxy-2'-vinyloxydiethyl ether, vinyl-2- Ethyl mercaptoethyl ether, etc.), poly (2-4) (meth) allyloxyalkanes (2-6 carbon atoms) (diallyloxyethane, triaryloxyethane, tetraallyloxybutane, tetrametaallyloxyethane, etc.)] Aromatic vinyl ether (C8-20, such as vinyl phenyl ether, phenoxyst
  • Vinyl ketone Aliphatic vinyl ketone (having 4 to 25 carbon atoms, such as vinyl methyl ketone, vinyl ethyl ketone) Aromatic vinyl ketone (C9-21, such as vinyl phenyl ketone)
  • Unsaturated dicarboxylic acid diester Unsaturated dicarboxylic acid diester having 4 to 34 carbon atoms such as dialkyl fumarate (two alkyl groups are linear, branched or alicyclic groups having 1 to 22 carbon atoms) ), Dialkyl maleate (two alkyl groups are straight, branched or alicyclic groups having 1 to 22 carbon atoms)
  • (a3) from the viewpoint of withstand voltage, (a31), (a32) and (a33) are preferred, and methyl (meth) acrylate and ethyl of (a31) are more preferred. (Meth) acrylate and butyl (meth) acrylate.
  • (a1) is 0.1 to 80% by weight
  • (a2) is 0.1 to 99.9% by weight
  • (a3) is 0 to 99%. It is preferably 8% by weight.
  • the content of the monomer is within the above range, the liquid absorptivity to the electrolytic solution is good. More preferable contents are 15 to 60% by weight of (a1), 5 to 60% by weight of (a2), and 5 to 80% by weight of (a3). Further more preferable contents are 25 to 60% of (a1). 50% by weight, (a2) is 15 to 45% by weight, and (a3) is 20 to 60% by weight.
  • the preferable lower limit of the number average molecular weight of the polymer (A1) is 3,000, more preferably 50,000, still more preferably 100,000, particularly preferably 200,000, and the preferable upper limit is 2,000,000. It is preferably 1,500,000, more preferably 1,000,000, and particularly preferably 800,000.
  • the number average molecular weight of the polymer (A1) can be determined by gel permeation chromatography (hereinafter abbreviated as GPC) measurement under the following conditions.
  • GPC gel permeation chromatography
  • Apparatus Alliance GPC V2000 (manufactured by Waters) Solvent: Orthodichlorobenzene Reference material: Polystyrene detector: RI Sample concentration: 3 mg / ml
  • Column stationary phase PLgel 10 ⁇ m, MIXED-B 2 in series (manufactured by Polymer Laboratories) Column temperature: 135 ° C
  • the solubility parameter (hereinafter abbreviated as SP value) of the polymer (A1) is preferably 9.0 to 20.0 (cal / cm 3 ) 1/2 .
  • the SP value of the polymer (A1) is more preferably 10.0 to 18.0 (cal / cm 3 ) 1/2 , and 11.5 to 14.0 (cal / cm 3 ) 1/2 . More preferably.
  • the SP value of the polymer (A1) is preferably 9.0 to 20.0 (cal / cm 3 ) 1/2 from the viewpoint of liquid absorption of the electrolytic solution.
  • the SP value is calculated by the Fedors method.
  • the SP value can be expressed by the following equation.
  • SP value ( ⁇ ) ( ⁇ H / V) 1/2
  • ⁇ H represents the heat of vaporization (cal)
  • V represents the molar volume (cm 3 ).
  • ⁇ H and V are the sum of the heat of molar evaporation ( ⁇ H) of the atomic group described in “POLYMER ENGINEERING AND SCIENCE, 1974, Vol. 14, No. 2, ROBERT F. FEDORS. (Pages 151 to 153)”.
  • the total molar volume (V) can be used.
  • the SP value is an index indicating that those having a close numerical value are easily mixed with each other (high compatibility), and those having a close numerical value are difficult to mix.
  • the glass transition point of the polymer (A1) is preferably 80 to 200 ° C., more preferably 90, from the viewpoint of battery heat resistance. -180 ° C, more preferably 100-150 ° C.
  • the polymer (A1) can be produced by a known polymerization method (bulk polymerization, solution polymerization, emulsion polymerization, suspension polymerization, etc.).
  • known polymerization initiators ⁇ azo initiators [2,2′-azobis (2-methylpropionitrile), 2,2′-azobis (2,4-dimethylvaleronitrile, etc.)], peroxides System initiators (benzoyl peroxide, di-t-butyl peroxide, lauryl peroxide, etc.) ⁇ can be used.
  • the amount of the polymerization initiator used is preferably 0.01 to 5% by weight, more preferably 0.05 to 2% by weight, still more preferably 0.1 to 1.5% by weight, based on the total weight of the monomers. .
  • Examples of the solvent used in the solution polymerization include esters (having 2 to 8 carbon atoms such as ethyl acetate and butyl acetate), alcohols (having 1 to 8 carbon atoms such as methanol, ethanol and octanol), hydrocarbons (having carbon atoms). 4 to 8, such as n-butane, cyclohexane and toluene) and ketones (3 to 9, carbon atoms such as methyl ethyl ketone), and the amount used is usually 5 to 900%, preferably 10 to 400, based on the total weight of the monomers. %, More preferably 30 to 300% by weight, and the monomer concentration is usually 10 to 95% by weight, preferably 20 to 90% by weight, more preferably 30 to 80% by weight.
  • Examples of the dispersion medium in emulsion polymerization and suspension polymerization include water, alcohol (for example, ethanol), ester (for example, ethyl propionate), light naphtha and the like, and examples of the emulsifier include higher fatty acid (carbon number 10 to 24) metal salt.
  • the emulsifier include higher fatty acid (carbon number 10 to 24) metal salt.
  • sulfate metal salt for example, sodium lauryl sulfate
  • ethoxylated tetramethyldecynediol sodium sulfoethyl methacrylate, dimethylaminomethyl methacrylate, etc. Is mentioned.
  • the monomer concentration of the solution or dispersion is usually 5 to 95% by weight, preferably 10 to 90% by weight, more preferably 15 to 85% by weight.
  • the amount of the polymerization initiator used is usually based on the total weight of the monomers. 0.01 to 5% by weight, preferably 0.05 to 2% by weight.
  • chain transfer agents such as mercapto compounds (such as dodecyl mercaptan and n-butyl mercaptan) and / or halogenated hydrocarbons (such as carbon tetrachloride, carbon tetrabromide and benzyl chloride) can be used.
  • the amount used is usually 2% by weight or less, preferably 0.5% by weight or less, more preferably 0.3% by weight or less, based on the total weight of the monomers.
  • the system temperature in the polymerization reaction is usually ⁇ 5 to 150 ° C., preferably 30 to 120 ° C., more preferably 50 to 110 ° C., and the reaction time is usually 0.1 to 50 hours, preferably 2 to 24 hours. Preferably, it is 3 to 20 hours, and the end point of the reaction is usually 5% by weight or less, preferably 1% by weight or less, more preferably 0.5% by weight based on the total amount of unreacted monomers used. This can be confirmed by:
  • the polymer (A1) contained in the vinyl resin (A) is a crosslinked polymer obtained by crosslinking the polymer (A1) with a polyepoxy compound (a′1) and / or a polyol compound (a′2). Also good.
  • the polymer (A1) is preferably crosslinked using a crosslinking agent (A ′) having a reactive functional group that reacts with active hydrogen such as a carboxyl group in the polymer (A1).
  • a crosslinking agent (A ′) it is preferable to use a polyepoxy compound (a′1) and / or a polyol compound (a′2).
  • polyepoxy compound (a′1) examples include those having an epoxy equivalent of 80 to 2,500, such as glycidyl ether [bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, pyrogallol triglycidyl ether, ethylene glycol diglycidyl ether, propylene glycol.
  • glycidyl ether bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, pyrogallol triglycidyl ether, ethylene glycol diglycidyl ether, propylene glycol.
  • polyol compound (a′2) examples include low-molecular polyhydric alcohol ⁇ aliphatic or alicyclic diol having 2 to 20 carbon atoms [ethylene glycol (hereinafter abbreviated as EG), diethylene glycol (hereinafter abbreviated as DEG), propylene glycol] 1,3-butylene glycol, 1,4-butanediol (hereinafter abbreviated as 14BG), 1,6-hexanediol, 3-methylpentanediol, neopentyl glycol, 1,9-nonanediol, 1,4-dihydroxy Cyclohexane, 1,4-bis (hydroxymethyl) cyclohexane, 2,2-bis (4,4'-hydroxycyclohexyl) propane, etc.]; aromatic ring-containing diol having 8 to 15 carbon atoms [m- or p-xylylene glycol 1,4-bis (hydroxyethyl) benzene, etc.]
  • the use amount of the cross-linking agent (A ′) is preferably the equivalent ratio of the active hydrogen-containing group in the polymer (A1) and the reactive functional group in the cross-linking agent (A ′) from the viewpoint of absorbing the electrolyte. Is an amount of 1: 0.01 to 1: 2, more preferably 1: 0.02 to 1: 1.
  • Examples of the method of crosslinking the polymer (A1) using the crosslinking agent (A ′) include a method in which the lithium ion battery active material is coated with a coating resin composed of the polymer (A1) and then crosslinked. Specifically, a lithium ion battery active material and a resin solution containing the polymer (A1) are mixed and removed to produce a coated active material in which the lithium ion battery active material is coated with a resin, and then a crosslinking agent.
  • a method of coating a lithium ion battery active material with a cross-linked polymer by causing a solution containing (A ′) to be mixed with a coated active material and heating to cause solvent removal and a cross-linking reaction.
  • the heating temperature is preferably 70 ° C. or higher when the polyepoxy compound (a′1) is used as a crosslinking agent, and is preferably 120 ° C. or higher when the polyol compound (a′2) is used.
  • Urethane resin (B) is a resin obtained by reacting active hydrogen component (b1) and isocyanate component (b2).
  • the active hydrogen component (b1) preferably contains at least one selected from the group consisting of polyether diol, polycarbonate diol and polyester diol.
  • Polyether diols include polyoxyethylene glycol (hereinafter abbreviated as PEG), polyoxyethyleneoxypropylene block copolymer diol, polyoxyethyleneoxytetramethylene block copolymer diol; ethylene glycol, propylene glycol, 1,4-butanediol 1,6-hexamethylene glycol, neopentyl glycol, bis (hydroxymethyl) cyclohexane, 4,4'-bis (2-hydroxyethoxy) -diphenylpropane and other low molecular glycol ethylene oxide adducts; number average molecular weight 2 PEG of 1,000 or less and dicarboxylic acid [aliphatic dicarboxylic acid having 4 to 10 carbon atoms (for example, succinic acid, adipic acid, sebacic acid, etc.), aromatic dicarboxylic acid having 8 to 15 carbon atoms (for example, terephthalic acid, isophthalic acid, etc.
  • PEG polyoxyethylene glycol
  • the content of the oxyethylene unit is preferably 20% by weight or more, more preferably 30% by weight or more, and further preferably 40% by weight or more.
  • polyoxypropylene glycol polyoxytetramethylene glycol (hereinafter abbreviated as PTMG), polyoxypropyleneoxytetramethylene block copolymer diol, and the like.
  • PTMG polyoxytetramethylene glycol
  • PEG polyoxyethyleneoxypropylene block copolymer diol
  • polyoxyethyleneoxytetramethylene block copolymer diol are preferable, and PEG is particularly preferable.
  • only 1 type of polyether diol may be used, and 2 or more types of these mixtures may be used.
  • polycarbonate diol examples include polyhexamethylene carbonate diol.
  • polyester diol examples include condensed polyester diols obtained by reacting low-molecular diols and / or polyether diols having a number average molecular weight of 1,000 or less with one or more of the aforementioned dicarboxylic acids, and lactones having 4 to 12 carbon atoms. And polylactone diols obtained by ring-opening polymerization.
  • the low molecular diol examples include low molecular glycols exemplified in the section of the polyether diol.
  • polyether diol having a number average molecular weight of 1,000 or less include polyoxypropylene glycol and PTMG.
  • lactone examples include ⁇ -caprolactone and ⁇ -valerolactone.
  • polyester diol examples include polyethylene adipate diol, polybutylene adipate diol, polyneopentylene adipate diol, poly (3-methyl-1,5-pentylene adipate) diol, polyhexamethylene adipate diol, polycaprolactone diol. And mixtures of two or more thereof.
  • the active hydrogen component (b1) may be a mixture of two or more of the polyether diol, polycarbonate diol and polyester diol.
  • the active hydrogen component (b1) preferably contains a high molecular diol (b11) having a number average molecular weight of 2,500 to 15,000 as an essential component.
  • the polymer diol (b11) include the polyether diol, polycarbonate diol, and polyester diol described above.
  • the number average molecular weight of the polymer diol (b11) is more preferably from 3,000 to 12,500, and further preferably from 4,000 to 10,000.
  • the number average molecular weight of the polymer diol (b11) can be calculated from the hydroxyl value of the polymer diol. The hydroxyl value can be measured according to the description of JIS K1557-1.
  • the active hydrogen component (b1) has a polymer diol (b11) having a number average molecular weight of 2,500 to 15,000 as an essential component, and the solubility parameter (SP value) of the polymer diol (b11) is 8.0 to It is preferably 12.0 (cal / cm 3 ) 1/2 .
  • the SP value of the polymer diol (b11) is more preferably 8.5 to 11.5 (cal / cm 3 ) 1/2 , and 9.0 to 11.0 (cal / cm 3 ) 1/2 . More preferably it is.
  • the SP value of the polymer diol (b11) is preferably 8.0 to 12.0 (cal / cm 3 ) 1/2 from the viewpoint of absorption of the electrolyte solution of the urethane resin (B).
  • the active hydrogen component (b1) has a polymer diol (b11) having a number average molecular weight of 2,500 to 15,000 as an essential component, and the content of the polymer diol (b11) is the weight of the urethane resin (B). From 20 to 80% by weight is preferable.
  • the content of the polymer diol (b11) is more preferably 30 to 70% by weight, and further preferably 40 to 65% by weight.
  • the content of the polymer diol (b11) is preferably 20 to 80% by weight from the viewpoint of the absorption of the electrolyte solution of the urethane resin (B).
  • the active hydrogen component (b1) includes a polymer diol (b11) having a number average molecular weight of 2,500 to 15,000 and a chain extender (b13) as essential components.
  • the chain extender (b13) include low molecular diols having 2 to 10 carbon atoms (eg, EG, propylene glycol, 14BG, DEG, 1,6-hexamethylene glycol); diamines [fatty acids having 2 to 6 carbon atoms] Group diamines (eg, ethylene diamine, 1,2-propylene diamine, etc.), alicyclic diamines having 6 to 15 carbon atoms (eg, isophorone diamine, 4,4′-diaminodicyclohexylmethane, etc.), aromatic diamines having 6 to 15 carbon atoms (For example, 4,4′-diaminodiphenylmethane and the like); monoalkanolamine (for example, monoethanolamine and the like); hydr
  • low molecular weight diols preferred are low molecular weight diols, and particularly preferred are EG, DEG and 14BG.
  • EG low molecular weight diols
  • DEG low molecular weight diol
  • 14BG preferred are EG, DEG and 14BG.
  • a combination of the polymer diol (b11) and the chain extender (b13) a combination of PEG as the polymer diol (b11) and EG as the chain extender (b13), or as a polymer diol (b11)
  • a combination of polycarbonate diol and EG as a chain extender (b13) is preferred.
  • the active hydrogen component (b1) includes a polymer diol (b11) having a number average molecular weight of 2,500 to 15,000, a diol (b12) other than the polymer diol (b11), and a chain extender (b13),
  • the equivalent ratio [(b11) / (b12)] of (b11) and (b12) is 10/1 to 30/1, and the equivalent ratio of (b11) to the total equivalent of (b12) and (b13) ⁇ (B11) / [(b12) + (b13)] ⁇ is preferably 0.9 / 1 to 1.1 / 1.
  • the equivalent ratio [(b11) / (b12)] of (b11) and (b12) is more preferably 13/1 to 25/1, and further preferably 15/1 to 20/1.
  • the diol (b12) other than the polymer diol (b11) is a diol and is not included in the polymer diol (b11) described above, but is included in the low molecular diol having 2 to 10 carbon atoms of the chain extender (b13). If it does not have, it will not specifically limit, Specifically, the diol whose number average molecular weight is less than 2,500, and the diol whose number average molecular weight exceeds 15,000 are mentioned. Examples of the diol include the polyether diol, polycarbonate diol, and polyester diol described above.
  • isocyanate component (b2) those conventionally used for polyurethane production can be used.
  • isocyanates include aromatic diisocyanates having 6 to 20 carbon atoms (excluding carbon in the NCO group, the same shall apply hereinafter), aliphatic diisocyanates having 2 to 18 carbon atoms, alicyclic diisocyanates having 4 to 15 carbon atoms, Examples thereof include araliphatic diisocyanates having 8 to 15 carbon atoms, modified products of these diisocyanates (carbodiimide-modified products, urethane-modified products, uretdione-modified products, etc.) and mixtures of two or more of these.
  • aromatic diisocyanate examples include 1,3- or 1,4-phenylene diisocyanate, 2,4- or 2,6-tolylene diisocyanate, 2,4′- or 4,4′-diphenylmethane diisocyanate (hereinafter referred to as “the aromatic diisocyanate”).
  • Diphenylmethane diisocyanate is abbreviated as MDI), 4,4'-diisocyanatobiphenyl, 3,3'-dimethyl-4,4'-diisocyanatobiphenyl, 3,3'-dimethyl-4,4'-diisocyanate And natodiphenylmethane and 1,5-naphthylene diisocyanate.
  • aliphatic diisocyanate examples include ethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, dodecamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, lysine diisocyanate, 2,6-diisocyanatomethylcaproate, Examples thereof include bis (2-isocyanatoethyl) carbonate and 2-isocyanatoethyl-2,6-diisocyanatohexanoate.
  • alicyclic diisocyanate examples include isophorone diisocyanate, dicyclohexylmethane-4,4′-diisocyanate, cyclohexylene diisocyanate, methylcyclohexylene diisocyanate, and bis (2-isocyanatoethyl) -4-cyclohexylene-1,2. -Dicarboxylate, 2,5- or 2,6-norbornane diisocyanate and the like.
  • araliphatic diisocyanate examples include m- or p-xylylene diisocyanate, ⁇ , ⁇ , ⁇ ', ⁇ '-tetramethylxylylene diisocyanate, and the like.
  • aromatic diisocyanates and alicyclic diisocyanates, more preferred are aromatic diisocyanates, and still more preferred is MDI.
  • the equivalent ratio of (b2) / (b11) is preferably 10/1 to 30/1, more preferably 11/1. Is 28/1, more preferably 15/1 to 25/1.
  • the ratio of the isocyanate component (b2) exceeds 30 equivalents, a hard film is formed.
  • the equivalent ratio of (b2) / [(b11) + (b13)] is usually 0. 0.9 / 1 to 1.1 / 1, preferably 0.95 / 1 to 1.05 / 1. If it is outside this range, the urethane resin may not have a sufficiently high molecular weight.
  • the number average molecular weight of the urethane resin (B) is preferably 40,000 to 500,000, more preferably 50,000 to 400,000, and further preferably 60,000 to 300,000.
  • the number average molecular weight of the urethane resin (B) is less than 40,000, the strength of the coating is low, and when it exceeds 500,000, the solution viscosity increases and a uniform coating may not be obtained.
  • the number average molecular weight of the urethane resin (B) is measured by GPC using dimethylformamide (hereinafter abbreviated as DMF) as a solvent and polyoxypropylene glycol as a standard substance.
  • DMF dimethylformamide
  • the sample concentration may be 0.25% by weight
  • the column stationary phase may be TSKgel SuperH2000, TSKgel SuperH3000, TSKgel SuperH4000 (both manufactured by Tosoh Corporation), and the column temperature may be 40 ° C.
  • the urethane resin (B) can be produced by reacting the active hydrogen component (b1) and the isocyanate component (b2).
  • the polymer diol (b11) and the chain extender (b13) are used as the active hydrogen component (b1), and the isocyanate component (b2), the polymer diol (b11), and the chain extender (b13) are reacted simultaneously.
  • examples thereof include a shot method and a prepolymer method in which the polymer diol (b11) and the isocyanate component (b2) are reacted first and then the chain extender (b13) is reacted continuously.
  • the urethane resin (B) can be produced in the presence or absence of a solvent inert to the isocyanate group.
  • Suitable solvents when used in the presence of a solvent include amide solvents [DMF, dimethylacetamide, N-methyl-2-pyrrolidone (hereinafter abbreviated as NMP), etc.], sulfoxide solvents (dimethyl sulfoxide, etc.), ketone solvents Solvents (methyl ethyl ketone, methyl isobutyl ketone, etc.), aromatic solvents (toluene, xylene, etc.), ether solvents (dioxane, tetrahydrofuran, etc.), ester solvents (ethyl acetate, butyl acetate, etc.) and mixtures of two or more of these Is mentioned.
  • amide solvents, ketone solvents, aromatic solvents, and mixtures of two or more thereof are preferable.
  • the reaction temperature may be the same as that normally used for the urethanization reaction, and is usually 20 to 100 ° C. when a solvent is used, and usually 20 to 220 ° C. when no solvent is used. .
  • a catalyst usually used for polyurethane reaction for example, amine-based catalyst (triethylamine, triethylenediamine, etc.), tin-based catalyst (dibutyltin dilaurate, etc.)] can be used.
  • a polymerization terminator for example, monohydric alcohol (ethanol, isopropanol, butanol, etc.), monovalent amine (dimethylamine, dibutylamine, etc.), etc.
  • monohydric alcohol ethanol, isopropanol, butanol, etc.
  • monovalent amine dimethylamine, dibutylamine, etc.
  • Production of the urethane resin (B) can be carried out with a production apparatus usually employed in the industry. When no solvent is used, a manufacturing apparatus such as a kneader or an extruder can be used.
  • the urethane resin (B) produced in this manner has a solution viscosity measured as a 30 wt% (solid content) DMF solution, which is usually 1,000 to 1,000,000 mPa ⁇ s / 20 ° C., which is practically preferable. Is 1,500 to 500,000 mPa ⁇ s / 20 ° C., and 5,000 to 100,000 mPa ⁇ s / 20 ° C. is more preferable in practical use.
  • polyester resin (C) examples include a polycondensate of a polyol and a polycarboxylic acid.
  • the polyol include a diol (c1) and a trivalent or higher polyol (c2)
  • examples of the polycarboxylic acid include a dicarboxylic acid (c3) and a trivalent or higher polycarboxylic acid (c4).
  • a non-linear polyester resin using a diol (c1) and a dicarboxylic acid (c3) together with a trivalent or higher polyol (c2) and / or a trivalent or higher polycarboxylic acid (c4) is preferable.
  • a polyester resin composed of the four components c1), (c2), (c3), and (c4) is more preferable.
  • diol (c1) examples include alkylene glycol (ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,6-hexanediol, dodecanediol, etc.); alkylene ether glycol ( DEG, triethylene glycol, dipropylene glycol, PEG, polyoxypropylene glycol, PTMG, etc.); alicyclic diol (1,4-cyclohexanedimethanol, hydrogenated bisphenol A, hydrogenated bisphenol F, etc.); bisphenols (bisphenol) A, bisphenol F, bisphenol S, etc.); alkylene oxide (EO, PO, butylene oxide, styrene oxide, ⁇ -olefin oxide, etc.) adduct of the above alicyclic diol; Alkylene oxide Nord acids (EO, PO, butylene oxide, styrene oxide, alpha-olefin oxide, etc.)
  • alkylene glycols having 6 or more carbon atoms preferred are alkylene glycols having 6 or more carbon atoms, alkylene oxide adducts of bisphenols, and alicyclic diols, and more preferred are additions of PO, butylene oxide, styrene oxide, ⁇ -olefin oxides of bisphenols.
  • trivalent or higher polyol (c2) examples include trihydric or higher polyhydric aliphatic alcohols (glycerin, trimethylolethane, trimethylolpropane, pentaerythritol, sorbitol, etc.); trisphenols (trisphenol PA, etc.) ); Novolak resins (phenol novolak, cresol novolak, etc.); alkylene oxide adducts of the above trisphenols; alkylene oxide adducts of the above novolac resins.
  • trivalent to octavalent or higher polyhydric aliphatic alcohols and alkylene oxide adducts of novolac resins preferred are alkylene oxide adducts of novolak resins.
  • Dicarboxylic acids (c3) include alkylene dicarboxylic acids (succinic acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, octadecanedicarboxylic acid, dodecenylsuccinic acid, pentadecenylsuccinic acid, octadecenylsuccinic acid, dimer Acids); alkenylene dicarboxylic acids (maleic acid, fumaric acid, etc.); aromatic dicarboxylic acids (phthalic acid, isophthalic acid, terephthalic acid, naphthalenedicarboxylic acid, etc.) and the like.
  • alkylene dicarboxylic acids succinic acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, octadecanedicarboxylic acid, dodecenylsuccinic
  • alkylene dicarboxylic acids having 6 to 50 carbon atoms preferred are alkylene dicarboxylic acids having 6 to 50 carbon atoms, alkenylene dicarboxylic acids having 6 to 50 carbon atoms, aromatic dicarboxylic acids having 8 to 20 carbon atoms, and combinations thereof, and more preferred are carbon atoms.
  • An alkylene dicarboxylic acid having 7 to 50 carbon atoms and a combination thereof with an aromatic dicarboxylic acid having 8 to 20 carbon atoms, and more preferable are alkenyl succinic acids having 16 to 50 carbon atoms and those having 8 to 20 carbon atoms.
  • Examples of the trivalent or higher polycarboxylic acid (c4) include aromatic polycarboxylic acids having 9 to 20 carbon atoms (trimellitic acid, pyromellitic acid, etc.), vinyl polymers of unsaturated carboxylic acids (styrene / maleic acid copolymer). Styrene / acrylic acid copolymer, ⁇ -olefin / maleic acid copolymer, styrene / fumaric acid copolymer, etc.). Of these, aromatic polycarboxylic acids having 9 to 20 carbon atoms are preferred, and trimellitic acid is more preferred.
  • dicarboxylic acid (c3) or the trivalent or higher polycarboxylic acid (c4) acid anhydrides or lower alkyl esters (methyl ester, ethyl ester, isopropyl ester, etc.) described above may be used.
  • hydroxycarboxylic acid (c5) can be copolymerized with (c1), (c2), (c3) and (c4).
  • examples of the hydroxycarboxylic acid (c5) include hydroxystearic acid and hardened castor oil fatty acid.
  • the ratio of the polyol and the polycarboxylic acid is usually 2/1 to 1/2, preferably 1.5 / 1 to 1/1 / as the equivalent ratio [OH] / [COOH] of the hydroxyl group [OH] and the carboxyl group [COOH]. 1.5, more preferably 1.3 / 1 to 1 / 1.3.
  • the ratio of the trivalent or higher polyol (c2) and the trivalent or higher polycarboxylic acid (c4) is such that the sum of the number of moles of (c2) and (c4) is the sum of the number of moles of (c1) to (c4). In general, it is 0 to 40 mol%, preferably 3 to 25 mol%, more preferably 5 to 20 mol%.
  • the molar ratio of (c2) to (c3) is usually 0/100 to 100/0, preferably 80/20 to 20/80, more preferably 70/30 to 30/70.
  • the polyester resin (C) has a number average molecular weight of 2,000 to 50,000, more preferably 3,000 to 45,000, and still more preferably 5,000 to 40,000. From the viewpoint of
  • the number average molecular weight of the polyester resin (C) is measured by GPC.
  • the conditions of GPC used for the measurement of the number average molecular weight of a polyester resin (C) are the following conditions, for example.
  • Apparatus HLC-8220GPC (liquid chromatograph manufactured by Tosoh Corporation) Column: TSK gel Super H4000 + TSK gel Super H3000 + TSK gel Super H2000 (both manufactured by Tosoh Corporation) Column temperature: 40 ° C Detector: RI (Refractive Index) Solvent: Tetrahydrofuran Flow rate: 0.6 ml / min Sample concentration: 0.25 wt% Injection volume: 10 ⁇ l Standard: Polystyrene (manufactured by Tosoh Corporation; TSK STANDARD POLYSTYRENE)
  • the polyester resin (C) can be obtained by dehydrating condensation of polycarboxylic acid and polyol by heating to 150 to 280 ° C. in the presence of a known esterification catalyst such as tetrabutoxytitanate or dibutyltin oxide. It is also effective to reduce the pressure in order to improve the reaction rate at the end of the reaction.
  • a known esterification catalyst such as tetrabutoxytitanate or dibutyltin oxide. It is also effective to reduce the pressure in order to improve the reaction rate at the end of the reaction.
  • the polyamide resin (D) is not particularly limited, but includes a polymerized fatty acid (d1) containing at least 40% by weight of a tribasic acid having 54 carbon atoms, an aliphatic monocarboxylic acid (d2) having 2 to 4 carbon atoms, and ethylenediamine.
  • a resin obtained by condensation polymerization of a polyamine (d3) composed of an aliphatic polyamine having 3 to 9 carbon atoms is preferred.
  • polymerized fatty acid (d1) for example, an unsaturated fatty acid such as oleic acid or linoleic acid or a lower alkyl ester thereof (1 to 3 carbon atoms) is polymerized, and then a dibasic acid component having 36 carbon atoms having high utility value is used.
  • the residue after being collected by distillation, which is also called trimer acid has the following composition, for example.
  • Monobasic acid having 18 carbon atoms 0 to 5% by weight (preferably 0 to 2% by weight, more preferably 0 to 1% by weight)
  • C36 dibasic acid less than 60% by weight (preferably less than 50% by weight, more preferably less than 40% by weight)
  • Tribasic acid having 54 carbon atoms 40% by weight or more (preferably 50% by weight or more, more preferably 60% by weight or more) If necessary, a part of (d1) may be replaced with other tribasic acid or tetrabasic acid.
  • Examples of the other tribasic acid or tetrabasic acid include trimellitic acid, pyromellitic acid, benzophenone tetracarboxylic acid, and butanetetracarboxylic acid (including these acid anhydrides and alkyl esters having 1 to 3 carbon atoms). Etc.
  • Examples of the aliphatic monocarboxylic acid having 2 to 4 carbon atoms (d2) include acetic acid, propionic acid and butyric acid, which can be used alone or in a mixture at any ratio.
  • the amount of (d2) used is usually 20 to 40 equivalent%, preferably 24 to 36 equivalent%, more preferably 26 to 32 equivalent%, based on the total carboxylic acid component [(d1) + (d2)].
  • Examples of the aliphatic polyamine having 3 to 9 carbon atoms constituting the polyamine (d3) include diethylenetriamine, propylenediamine, diaminobutane, hexamethylenediamine, trimethylhexamethylenediamine, iminobispropylamine, and methyliminobispropylamine. .
  • the (d3) is a mixture of at least one of ethylenediamine and an aliphatic polyamine having 3 to 9 carbon atoms, and the proportion of ethylenediamine in the (d3) is usually 60 to 85 equivalent%, preferably 70 to 80 equivalent%. It is.
  • the number average molecular weight of the polyamide resin (D) is usually 3,000 to 50,000, preferably 5,000 to 10,000, more preferably 6,000 to 9,000.
  • the number average molecular weight of the polyamide resin (D) can be determined by GPC measurement under the following conditions. Apparatus: HLC-802A (manufactured by Tosoh Corporation) Column: 2 TSK gel GMH6 (Tosoh Corporation) Measurement temperature: 40 ° C Sample solution: 0.25 wt% DMF solution injection amount: 200 ⁇ l Detector: RI Standard: Polystyrene (manufactured by Tosoh Corporation; TSK STANDARD POLYSTYRENE)
  • the melting point of the polyamide resin (D) measured by a trace melting point method is from the viewpoint of the heat resistance of the battery.
  • the temperature is preferably 100 to 150 ° C, more preferably 120 to 130 ° C.
  • the polyamide resin (D) can be produced by the same method as the production method of ordinary polymerized fatty acid polyamide resin.
  • the reaction temperature of the amidation condensation polymerization reaction is usually 160 to 250 ° C., preferably 180 to 230 ° C.
  • the reaction is preferably performed in an inert gas such as nitrogen gas in order to prevent coloring, and at the end of the reaction, the reaction may be performed under reduced pressure in order to promote the completion of the reaction or the removal of volatile components.
  • the reaction product can be diluted with an alcohol solvent such as methanol, ethanol, isopropanol or the like to form a solution.
  • Examples of other resins (E) include epoxy resins, polyimide resins, silicone resins, phenol resins, melamine resins, urea resins, aniline resins, ionomer resins, polycarbonates, and the like.
  • the type of solvent that can be used in the resin solution varies depending on the type of coating resin.
  • amide solvents dimethylacetamide, NMP, etc.
  • sulfoxide solvents dimethyl sulfoxide, etc.
  • ketone solvents Methyl ethyl ketone, methyl isobutyl ketone, etc.
  • hydrocarbon solvents n-hexane, cyclohexane, toluene, xylene, etc.
  • ether solvents dioxane, tetrahydrofuran, etc.
  • ester solvents ethyl acetate, butyl acetate, etc.
  • alcohol solvents for example, methanol, ethanol, isopropanol (hereinafter abbreviated as IPA), octanol, etc.], water, and a mixture of two or more of these.
  • the resin solution can be prepared by a method such as adding a coating resin in a solvent and stirring, and the preparation method is not particularly limited.
  • the viscosity (25 ° C.) of the resin solution is preferably 0.1 to 10,000 mPa ⁇ s, preferably 1 to 8,000 mPa ⁇ s, from the viewpoint of uniformly coating the resin solution on the lithium ion battery active material. More preferred is 5 to 5,000 mPa ⁇ s.
  • the viscosity of the resin solution refers to the rotor No. 7 is a numerical value when measured under the conditions of 25 ° C. and 6 rotations / minute.
  • the ratio of the resin solid content in the resin solution is preferably 10 to 40% by weight, more preferably 12 to 36% by weight, and 15 to 34% by weight from the viewpoint of securing an appropriate viscosity. More preferably.
  • the entire lithium ion battery active material can be coated with the resin solution. Further, it is preferable to add the resin solution while stirring.
  • the stirring conditions for charging the resin solution are not particularly limited, but are preferably stirred at a peripheral speed of 1 to 30 m / s, more preferably 5 to 25 m / s, and more preferably 8 to 20 m / s. More preferably, stirring is performed at s.
  • the peripheral speed in this specification is the speed of the tip of the stirring blade, and is calculated by the following equation.
  • V ⁇ ⁇ Di ⁇ N ⁇ 60
  • V the blade circumferential speed (m / s)
  • Di the blade diameter (m) of the stirring blade
  • N the rotational speed (rpm)
  • the circumferential ratio.
  • the apparatus for stirring include a stirrer, a universal mixer, and a planetary mixer.
  • the charging speed of the resin solution is not particularly limited, but it is preferable to add it little by little.
  • the resin solution locally adheres to the lithium ion battery active material, and it becomes difficult to cover the entire lithium ion battery active material with the resin solution.
  • the method for charging the resin solution include dropping and pouring.
  • a method for charging the resin solution based on the above conditions for example, a method of dropping a resin solution having a resin solid content of 10 to 40% by weight over 1 to 90 minutes is preferable.
  • the stirring conditions are preferably the same as the stirring conditions when charging the resin solution.
  • the input amount of the resin solution can be determined in consideration of the solid content weight of the coating resin contained in the resin solution, and the ratio of the solid content weight of the coating resin to the weight of the lithium ion battery active material is 0. 0.05 to 10% by weight, more preferably 0.5 to 10% by weight, still more preferably 0.8 to 5% by weight, and particularly preferably 1 to 3% by weight. preferable.
  • the ratio (V / S) of the volume V (cm 3 ) of the resin solution to the total surface area S (cm 2 ) of the lithium ion battery active material is: It is preferably 0.0000001 to 0.0001, more preferably 0.000001 to 0.00008, and further preferably 0.00001 to 0.00006.
  • the total surface area of the lithium ion battery active material is calculated from the product of the weight of the lithium ion battery active material used and the specific surface area.
  • the specific surface area refers to the BET specific surface area.
  • a conductive aid is added.
  • a conductive support agent can be made to adhere further to the circumference
  • the conductive assistant is added before the resin solution is added, the conductive assistants aggregate together, making it difficult to attach the conductive assistant to the entire lithium ion battery active material.
  • the conductive auxiliary (X) is selected from materials having conductivity. Specifically, metals [aluminum, stainless steel (SUS), silver, gold, copper, titanium, etc.], carbon [graphite and carbon black (acetylene black, ketjen black, furnace black, channel black, thermal lamp black, etc.), etc. , And mixtures thereof, but are not limited thereto. These conductive auxiliary agents (X) may be used individually by 1 type, and may be used together 2 or more types. Further, these alloys or metal oxides may be used. From the viewpoint of electrical stability, aluminum, stainless steel, carbon, silver, gold, copper, titanium and mixtures thereof are preferred, silver, gold, aluminum, stainless steel and carbon are more preferred, and carbon is particularly preferred. is there. Moreover, as these conductive auxiliary agents (X), what coated the electroconductive material [a metal thing among the above-mentioned (X)] by plating etc. around the particulate ceramic material and the resin material may be used.
  • the shape (form) of the conductive auxiliary agent (X) is not limited to the particle form, and may be a form other than the particle form, and in a form that is practically used as a so-called filler-based conductive resin composition such as a carbon nanotube. There may be.
  • the average particle diameter of the conductive auxiliary agent (X) is not particularly limited, but is preferably 0.01 to 10 ⁇ m and more preferably 0.02 to 5 ⁇ m from the viewpoint of the electric characteristics of the battery. Preferably, it is 0.03 to 1 ⁇ m.
  • particle diameter means the maximum distance L among the distances between any two points on the contour line of the conductive additive (X).
  • the value of “average particle size” is the average value of the particle size of particles observed in several to several tens of fields using an observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). The calculated value shall be adopted.
  • the ratio of the conductive auxiliary agent to be added is preferably 0.5 to 15% by weight, more preferably 0.5 to 10% by weight, based on the weight of the lithium ion battery active material. 0.8 to 8% by weight is more preferable, and 1 to 5% by weight is particularly preferable.
  • the conductive auxiliary agent is preferably added while stirring, and the peripheral speed when the conductive auxiliary agent is added while stirring is preferably 9 to 90 m / s, more preferably 12 to 85 m / s. It is preferably 14 to 80 m / s. Further, it is preferable to include a step of stirring at a peripheral speed of 9 to 90 m / s after adding the conductive auxiliary agent, more preferably a peripheral speed of 12 to 85 m / s, and 14 to 80 m / s. Is more preferable.
  • the solid content concentration when adding the conductive assistant is preferably 70 to 98% by weight, more preferably 80 to 97% by weight, and still more preferably 85 to 95% by weight.
  • the solid content concentration when the conductive auxiliary agent is added is the solid content concentration contained in the system of the system to which the conductive auxiliary agent is added (a mixture containing a lithium ion active material and a coating resin). It is the solid content concentration with respect to the total weight of the active material, coating resin, solvent and other components.
  • the solid content includes the lithium ion battery active material, the solid component of the coating resin, and the solid content contained in other components, and the solid content concentration is calculated from the total amount of the solid content.
  • the covering active material for lithium ion batteries from which the solvent was removed from the surface can be obtained.
  • the peripheral speed is preferably 2 to 50 m / s, more preferably 3 to 30 m / s, and more preferably 4 to 20 m / s. More preferably.
  • a method for removing the solvent a method of heating and drying the coated active material for a lithium ion battery after adding a conductive assistant, a method of drying the coated active material for a lithium ion battery after adding a conductive assistant under reduced pressure, Examples thereof include a method of freezing and drying a coating active material for a lithium ion battery after adding a conductive additive, and a combination of these methods.
  • the conditions for removing the solvent are not particularly limited. For example, after adding a conductive aid, the temperature is raised to 50 to 200 ° C. while stirring, the pressure is reduced to 0.007 to 0.04 MPa, and the mixture is held for 10 to 150 minutes. It is preferable to remove the solvent.
  • the coated active material may be pulverized after the solvent removal. Thereby, the aggregated particles can be pulverized.
  • the method of pulverization is not particularly limited, but dry or wet is preferable. Examples of the dry pulverization include a jet mill. Examples of the wet pulverization include a high-speed shearing disperser, a sand grinder, and a bead mill.
  • a coated active material for a lithium ion battery in which at least a part of the surface of the lithium ion battery active material is coated with a coating material containing a coating resin and a conductive additive can be produced.
  • the volume average particle diameter of the coated active material for a lithium ion battery produced by the production method of the present invention is preferably 1 to 80 ⁇ m, more preferably 1.2 to 35 ⁇ m, and more preferably 1.5 to 25 ⁇ m. Further preferred.
  • the volume average particle size of the coated active material for a lithium ion battery means a particle size (Dv50) at an integrated value of 50% in the particle size distribution determined by the microtrack method (laser diffraction / scattering method).
  • the microtrack method is a method for obtaining a particle size distribution using scattered light obtained by irradiating particles with laser light.
  • Nikkiso Co., Ltd. microtrack etc. can be used for the measurement of a volume average particle diameter.
  • An electrode for a lithium ion battery can be obtained using the above-described coated active material for a lithium ion battery. Furthermore, a lithium ion battery such as a bipolar lithium ion battery can be obtained by using an electrode containing the above-described coated active material for a lithium ion battery.
  • an initiator solution prepared by dissolving 0.583 parts of 2,2′-azobis (2,4-dimethylvaleronitrile) in 26 parts of ethyl acetate was continuously added using a dropping funnel over 2 hours. Furthermore, the polymerization was continued for 4 hours at the boiling point. After removing the solvent to obtain 582 parts of resin, 1,360 parts of isopropanol was added to obtain a vinyl resin (A) solution having a resin concentration of 30% by weight.
  • ⁇ Production Example 2> In a four-necked flask equipped with a stirrer and a thermometer, 57.4 parts of PEG [manufactured by Sanyo Chemical Industries, Ltd.] having a number average molecular weight of 6,000 (calculated from the hydroxyl value), ethylene glycol (EG) 8.0 Part, MDI 34.7 part and DMF 233 part were prepared and reacted at 70 ° C. for 10 hours under a dry nitrogen atmosphere to obtain a urethane resin (B) solution having a resin concentration of 30% by weight and a viscosity of 60,000 mPa ⁇ s (20 ° C.). It was.
  • PEG manufactured by Sanyo Chemical Industries, Ltd.
  • Example 1 96 parts of LiCoO 2 powder (manufactured by Nippon Chemical Industry Co., Ltd., CELLSEED C-20F2, volume average particle diameter 19 ⁇ m) as an active material was placed in a universal mixer and stirred at room temperature at a peripheral speed of 11 m / s, Production Example 1 6.7 parts of the vinyl resin (A) solution obtained in (2 parts of resin solid content) was dropped and mixed over 60 minutes, and further stirred at a peripheral speed of 11 m / s for 10 minutes.
  • LiCoO 2 powder manufactured by Nippon Chemical Industry Co., Ltd., CELLSEED C-20F2
  • volume average particle diameter 19 ⁇ m volume average particle diameter 19 ⁇ m
  • the solid content concentration at the time of adding the conductive assistant was 95% by weight.
  • the volume average particle diameter of the coated active material was measured using a microtrack (manufactured by Nikkiso Co., Ltd., 9320-X100, the same applies hereinafter), it was 57 ⁇ m.
  • the ratio (V / S) of the volume V (cm 3 ) of the resin solution used for the production of the coated active material to the total surface area S (cm 2 ) of the lithium ion battery active material is calculated by the following method, and the value is It is shown in Table 1. Using this coated active material, evaluation of electron conductivity and observation with an electron microscope were performed by the following methods. The results are shown in Table 1.
  • Example 2 when adding acetylene black and after adding acetylene black, the peripheral speeds of stirring were 10 m / s, 15 m / s, 60 m / s, and 85 m / s, respectively, as shown in Table 1.
  • a coated active material was obtained in the same manner as in Example 1 except for the change. About these coating
  • Example 1 the coated active material was obtained in the same manner as in Example 1 except that the peripheral speed of stirring during desolvation was changed to 10 m / s, 20 m / s, and 40 m / s as shown in Table 1, respectively. It was. About these coating
  • Example 9 96 parts of LiCoO 2 powder (manufactured by Nippon Chemical Industry Co., Ltd., CELLSEED C-20F2, volume average particle diameter 19 ⁇ m) as an active material was placed in a universal mixer and stirred at room temperature at a peripheral speed of 11 m / s, Production Example 1 6.7 parts of the vinyl resin (A) solution obtained in (2 parts of resin solid content) was dropped and mixed over 60 minutes, and further stirred at a peripheral speed of 11 m / s for 10 minutes.
  • LiCoO 2 powder manufactured by Nippon Chemical Industry Co., Ltd., CELLSEED C-20F2
  • volume average particle diameter 19 ⁇ m volume average particle diameter 19 ⁇ m
  • Example 10 96 parts of LiCoO 2 powder (manufactured by Nippon Chemical Industry Co., Ltd., CELLSEED C-20F2, volume average particle diameter 19 ⁇ m) as an active material was placed in a universal mixer and stirred at room temperature at a peripheral speed of 11 m / s, Production Example 1 6.7 parts of the vinyl resin (A) solution obtained in (2 parts of resin solid content) and 16.7 parts of a solution prepared by previously mixing 10 parts of isopropanol were added dropwise over 60 minutes, and the peripheral speed was 11 m / s. Stir for 10 minutes. Thereafter, a coated active material was obtained in the same manner as in Example 1.
  • Example 11 96 parts of LiCoO 2 powder (manufactured by Nippon Chemical Industry Co., Ltd., CELLSEED C-20F2, volume average particle diameter 19 ⁇ m) as an active material was placed in a universal mixer and stirred at room temperature at a peripheral speed of 11 m / s, Production Example 1 6.7 parts of the vinyl resin (A) solution obtained in (2 parts of resin solids) and 31.7 parts of a solution prepared by previously mixing 25 parts of isopropanol were added dropwise over 60 minutes, and the peripheral speed was 11 m / s. Stir for 10 minutes. Thereafter, a coated active material was obtained in the same manner as in Example 1.
  • Example 12 96 parts of LiCoO 2 powder (manufactured by Nippon Chemical Industry Co., Ltd., CELLSEED C-20F2, volume average particle size 19 ⁇ m) as an active material was placed in a universal mixer and stirred at room temperature at a peripheral speed of 4 m / s, Production Example 1 6.7 parts of the vinyl resin (A) solution obtained in (2 parts of resin solids) was added dropwise and mixed over 60 minutes, and further stirred at a peripheral speed of 4 m / s for 10 minutes. Thereafter, a coated active material was obtained in the same manner as in Example 1.
  • Example 13 96 parts of LiCoO 2 powder (manufactured by Nippon Chemical Industry Co., Ltd., CELLSEED C-20F2, volume average particle diameter 19 ⁇ m) as an active material was placed in a universal mixer and stirred at room temperature at a peripheral speed of 7 m / s, Production Example 1 6.7 parts of the vinyl resin (A) solution obtained in (2 parts of resin solids) was dropped and mixed over 60 minutes, and further stirred at a peripheral speed of 7 m / s for 10 minutes. Thereafter, a coated active material was obtained in the same manner as in Example 1.
  • Example 14 A coated active material was prepared in the same manner as in Example 1 except that 92 parts of LiCoO 2 powder, 13.3 parts of vinyl resin (A) solution (4 parts of resin solid content), and 4 parts of acetylene black were used. It was 72 micrometers when the volume average particle diameter of the coating active material was measured using the micro track. For this coated active material, calculation of the ratio (V / S), evaluation of electron conductivity, and observation with an electron microscope were carried out in the same manner as in Example 1, and the results are shown in Table 1.
  • Example 15 98.9 parts of LiCoO 2 powder (manufactured by Nippon Chemical Industry Co., Ltd., CELLSEED C-20F2, volume average particle diameter 19 ⁇ m) as an active material is placed in a universal mixer and manufactured with stirring at room temperature and a peripheral speed of 11 m / s. 0.34 parts of the vinyl resin (A) solution obtained in Example 1 (resin solid content 0.1 part) and 10.34 parts of a solution prepared by previously mixing 10 parts of isopropanol were dropped and mixed over 60 minutes, and the peripheral speed was further increased. The mixture was stirred at 11 m / s for 10 minutes.
  • LiCoO 2 powder manufactured by Nippon Chemical Industry Co., Ltd., CELLSEED C-20F2
  • Example 16 A coated active material was prepared in the same manner as in Example 1 except that 83 parts of LiCoO 2 powder, 16.7 parts of vinyl resin (A) solution (5 parts of resin solid content), and 12 parts of acetylene black were used.
  • V / S ratio of the ratio
  • E electron conductivity
  • observation with an electron microscope were carried out in the same manner as in Example 1, and the results are shown in Table 1.
  • the results of measuring the volume average particle diameter of the coated active material are shown in Table 1.
  • Examples 17 to 19> In place of the vinyl resin solution, the urethane resin (B) solution obtained in Production Example 2, the polyester resin (C) solution obtained in Production Example 3, and the polyamide resin (D) solution obtained in Production Example 4 were used.
  • a coated active material was prepared in the same manner as in Example 1. When the volume average particle diameter of the coated active material was measured using Microtrac, they were 62 ⁇ m, 64 ⁇ m, and 59 ⁇ m, respectively. About these coating
  • Example 20> Other than changing the LiCoO 2 powder of Example 1 (Nippon Chemical Industry Co., Ltd., CELLSEED C-20F2) to LiCoO 2 powder (Nippon Chemical Industry Co., Ltd., CELLSEED C-5H, volume average particle diameter 6.5 ⁇ m).
  • calculation of the ratio (V / S), evaluation of electron conductivity, and observation with an electron microscope were carried out in the same manner as in Example 1, and the results are shown in Table 1.
  • the results of measuring the volume average particle diameter of the coated active material are shown in Table 1.
  • Example 21 Other than changing the LiCoO 2 powder of Example 15 (Nippon Chemical Industry Co., Ltd., CELLSEED C-20F2) to LiCoO 2 powder (Nippon Chemical Industry Co., Ltd., CELLSEED C-5H, volume average particle size 6.5 ⁇ m).
  • calculation of the ratio (V / S), evaluation of electron conductivity, and observation with an electron microscope were carried out in the same manner as in Example 1, and the results are shown in Table 1.
  • the results of measuring the volume average particle diameter of the coated active material are shown in Table 1.
  • ⁇ Comparative Example 1> Put vinyl resin (A) solution 6.7 parts obtained in Production Example 1 (resin solid content 2 parts) in a universal mixer, at room temperature, with stirring state at a peripheral speed of 11m / s, LiCoO 2 powder (Nippon Chemical Industrial 96 parts of CELLSEED C-20F2, volume average particle diameter 19 ⁇ m, manufactured by Co., Ltd. were added, and the mixture was further stirred for 10 minutes at a peripheral speed of 11 m / s. Next, 2 parts of acetylene black was added in three portions while stirring at a peripheral speed of 26 m / s, and the mixture was mixed for 5 minutes while maintaining the peripheral speed of stirring at 26 m / s even after the addition of the conductive aid.
  • ⁇ Comparative example 2 96 parts of LiCoO 2 powder (manufactured by Nippon Kagaku Kogyo Co., Ltd., CELLSEED C-20F2, volume average particle diameter 19 ⁇ m) is placed in a universal mixer and stirred at room temperature and a peripheral speed of 11 m / s, and 2 parts of acetylene black is 3 parts. The mixture was divided into two times and further stirred at a peripheral speed of 11 m / s for 10 minutes. Subsequently, the peripheral speed of stirring was changed to 26 m / s, and 6.7 parts of the vinyl resin (A) solution obtained in Production Example 1 (2 parts of resin solid content) was dropped and mixed over 60 minutes while stirring. .
  • the volume V (cm 3 ) of the resin solution was obtained by measuring the density (cm 3 / g) of the resin solution using a measuring flask and calculating the product of the weight (g) of the resin solution used and the density.
  • the total surface area S (cm 2 ) of the lithium ion battery active material is determined by measuring the BET specific surface area (cm 2 / g) of the lithium ion battery active material under the following conditions, and the weight (g ) And the BET specific surface area.
  • active material is the coated active material obtained in Examples 1 to 21 and Comparative Examples 1 or 2, or the active material used in Comparative Example 3 or 4.
  • 30 mg of the active material was put inside a polypropylene cylinder having an inner diameter of 15 mm and a height of 30 mm, and tapped 50 times.
  • the active material was further sandwiched between SUS316 cylinders, and a pressure of 100 kN was applied.
  • the cylinder was removed, and the upper and lower resistance values of the active material formed into a cylindrical lump shape were measured using an electrochemical measuring device (1280C manufactured by Solartron).
  • the “resin solution charging conditions” section of Table 1 shows the peripheral speed of stirring when charging the resin solution, the solid content concentration when charging the conductive assistant, and the stirring after adding the conductive assistant.
  • the peripheral speed was also summarized in the item “Conductive auxiliary agent charging conditions”.
  • the “desolvent conditions” section shows the peripheral speed of stirring during desolvation.
  • the “coated active material particle diameter” shown in Table 1 is the volume average particle diameter of the coated active material. From the results shown in Table 1, by coating the surface of the lithium ion battery active material with a coating resin and a conductive additive, the direct current resistance between the active materials can be reduced, and the electron conductivity can be improved.
  • the surface of the lithium ion battery active material can be uniformly coated with the coating resin and the conductive auxiliary agent, and the electron conductivity is further improved. It turns out that it improves.
  • the coated active material for a lithium ion battery obtained by the present invention is particularly useful as an active material for a mobile phone, a personal computer and a hybrid vehicle, a bipolar secondary battery and a lithium ion secondary battery used for an electric vehicle. It is.

Abstract

The purpose of this invention is to provide a method for manufacturing a coated active material for use in a lithium-ion battery, said method being capable of improving the electron conductivity of said active material. This method for manufacturing a coated active material for use in a lithium-ion battery, said coated active material comprising a lithium-ion-battery active material with at least part of the surface thereof coated by a coating agent containing a conductivity-improving agent and a coating resin, is characterized in that in the presence of said lithium-ion-battery active material, a resin solution containing the coating resin is inputted and the conductivity-improving agent is added after that.

Description

リチウムイオン電池用被覆活物質の製造方法Method for producing coated active material for lithium ion battery
 本発明は、リチウムイオン電池用被覆活物質の製造方法に関する。 The present invention relates to a method for producing a coated active material for a lithium ion battery.
 近年、環境保護のため二酸化炭素排出量の低減が切に望まれている。自動車業界では、電気自動車(EV)やハイブリッド電気自動車(HEV)の導入による二酸化炭素排出量の低減に期待が集まっており、これらの実用化の鍵を握るモータ駆動用二次電池の開発が鋭意行われている。二次電池としては、高エネルギー密度、高出力密度が達成できるリチウムイオン二次電池に注目が集まっている。 In recent years, reduction of carbon dioxide emissions has been strongly desired for environmental protection. In the automobile industry, there are high expectations for reducing carbon dioxide emissions by introducing electric vehicles (EVs) and hybrid electric vehicles (HEVs), and we are eager to develop secondary batteries for motor drives that hold the key to their practical application. Has been done. As a secondary battery, attention is focused on a lithium ion secondary battery that can achieve a high energy density and a high output density.
 リチウムイオン二次電池は、一般に、バインダを用いて正極又は負極活物質等を正極用又は負極用集電体にそれぞれ塗布して電極を構成している。また、双極型の電池の場合には、集電体の一方の面にバインダを用いて正極活物質等を塗布して正極層を、反対側の面にバインダを用いて負極活物質等を塗布して負極層を有する双極型電極を構成している。 In general, a lithium ion secondary battery is formed by applying a positive electrode or a negative electrode active material or the like to a positive electrode or negative electrode current collector using a binder. In the case of a bipolar battery, a positive electrode active material or the like is applied to one surface of the current collector using a binder and a positive electrode layer is applied to the opposite surface, and a negative electrode active material or the like is applied to the opposite surface using a binder. Thus, a bipolar electrode having a negative electrode layer is formed.
 電極活物質は、その種類によって電子伝導性が異なるが、現状では、どの活物質を使用する場合でも電子伝導性を高めるための導電助剤が不可欠である。導電助剤としては、黒鉛やカーボンブラック等の炭素質導電性物質が用いられているが、これらは粒子状であるため、所望の電子伝導性を得るためには高濃度で添加する必要がある。 Electrode active materials vary in electron conductivity depending on the type, but at present, a conductive additive for enhancing electron conductivity is indispensable for any active material. As conductive aids, carbonaceous conductive materials such as graphite and carbon black are used, but since these are particulate, it is necessary to add them at a high concentration in order to obtain the desired electronic conductivity. .
 その一方で、所望の電子伝導性を得るために導電性高分子を使用する技術があり、例えば特許文献1には、特定の導電性高分子の有機溶剤分散液と炭素質導電性物質とを混合して調製した導電助剤組成物が開示されている。 On the other hand, there is a technique of using a conductive polymer to obtain a desired electronic conductivity. For example, Patent Document 1 discloses a specific conductive polymer organic solvent dispersion and a carbonaceous conductive material. A conductive additive composition prepared by mixing is disclosed.
特開2011-100594号公報JP 2011-100594 A
 しかしながら、近年、電池の高容量化がさらに求められているために、電極の導電性をさらに向上させることが必要となっている。
 本発明者らは、リチウムイオン電池活物質の表面の一部を被覆用樹脂及び導電助剤を含む被覆剤で被覆することによって、電極の導電性を高めることができる可能性があることを見出したが、リチウムイオン電池活物質の表面を被覆する具体的な方法としては様々な方法が考えられ、検討の余地があった。
 本発明は、上記状況を踏まえてなされたものであり、活物質の電子伝導性を向上させることのできるリチウムイオン電池用被覆活物質の製造方法を提供することを目的とする。
However, in recent years, since there is a further demand for higher capacity of batteries, it is necessary to further improve the conductivity of the electrodes.
The present inventors have found that there is a possibility that the conductivity of the electrode can be increased by coating a part of the surface of the lithium ion battery active material with a coating agent containing a coating resin and a conductive additive. However, various methods are conceivable as specific methods for coating the surface of the lithium ion battery active material, and there is room for study.
This invention is made | formed in view of the said condition, and it aims at providing the manufacturing method of the covering active material for lithium ion batteries which can improve the electronic conductivity of an active material.
 本発明者らは、上記課題を解決するために鋭意検討した結果、本発明に到達した。
 すなわち、本発明のリチウムイオン電池用被覆活物質の製造方法は、リチウムイオン電池活物質の表面の少なくとも一部が被覆用樹脂及び導電助剤を含む被覆剤で被覆されてなるリチウムイオン電池用被覆活物質の製造方法であって、上記リチウムイオン電池活物質の存在下、上記被覆用樹脂を含む樹脂溶液を投入し、その後、上記導電助剤を加えることを特徴とする。
As a result of intensive studies to solve the above-mentioned problems, the present inventors have reached the present invention.
That is, in the method for producing a coated active material for a lithium ion battery according to the present invention, a coating for a lithium ion battery in which at least a part of the surface of the lithium ion battery active material is coated with a coating material containing a coating resin and a conductive additive. A method for producing an active material, wherein a resin solution containing the coating resin is added in the presence of the lithium ion battery active material, and then the conductive auxiliary agent is added.
 本発明のリチウムイオン電池用被覆活物質の製造方法によると、活物質の周囲に被覆用樹脂が付着し、さらに導電助剤が付着するので導電助剤が活物質の周囲に付着した被覆活物質が得られる。そして、本発明の製造方法で得られるリチウムイオン電池用被覆活物質は、電子伝導性に優れる。 According to the method for producing a coated active material for a lithium ion battery according to the present invention, a coating resin adheres to the periphery of the active material, and further a conductive assistant adheres to the coated active material in which the conductive assistant adheres to the active material. Is obtained. And the coating active material for lithium ion batteries obtained with the manufacturing method of this invention is excellent in electronic conductivity.
 以下、本発明を詳細に説明する。
 本発明のリチウムイオン電池用被覆活物質の製造方法は、リチウムイオン電池活物質の表面の少なくとも一部が被覆用樹脂及び導電助剤を含む被覆剤で被覆されてなるリチウムイオン電池用被覆活物質の製造方法であって、
上記リチウムイオン電池活物質の存在下、上記被覆用樹脂を含む樹脂溶液を投入し、その後、上記導電助剤を加えることを特徴とする。
Hereinafter, the present invention will be described in detail.
The method for producing a coated active material for a lithium ion battery according to the present invention includes a coated active material for a lithium ion battery in which at least a part of the surface of the lithium ion battery active material is coated with a coating material containing a coating resin and a conductive additive. A manufacturing method of
In the presence of the lithium ion battery active material, a resin solution containing the coating resin is added, and then the conductive assistant is added.
 本発明のリチウムイオン電池用被覆活物質の製造方法では、リチウムイオン電池活物質の存在下、被覆用樹脂を含む樹脂溶液を投入し、その後、導電助剤を加える。以下、これらの工程について説明する。 In the method for producing a coating active material for a lithium ion battery according to the present invention, a resin solution containing a coating resin is added in the presence of the lithium ion battery active material, and then a conductive additive is added. Hereinafter, these steps will be described.
(1)まず、リチウムイオン電池活物質の存在下、被覆用樹脂を含む樹脂溶液を投入する。
 これにより、リチウムイオン電池活物質の周囲に樹脂溶液を付着させることができる。
(1) First, a resin solution containing a coating resin is introduced in the presence of a lithium ion battery active material.
Thereby, the resin solution can be attached around the lithium ion battery active material.
 リチウムイオン電池活物質(Y)としては、正極活物質(Y1)及び負極活物質(Y2)が挙げられる。
 正極活物質(Y1)としては、リチウムと遷移金属との複合酸化物(例えばLiCoO、LiNiO、LiMnO及びLiMn)、遷移金属酸化物(例えばMnO及びV)、遷移金属硫化物(例えばMoS及びTiS)及び導電性高分子(例えばポリアニリン、ポリフッ化ビニリデン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリ-p-フェニレン及びポリカルバゾール)等が挙げられる。
 負極活物質(Y2)としては、黒鉛、アモルファス炭素、高分子化合物焼成体(例えばフェノール樹脂及びフラン樹脂等を焼成し炭素化したもの等)、コークス類(例えばピッチコークス、ニードルコークス及び石油コークス等)、炭素繊維、導電性高分子(例えばポリアセチレン及びポリピロール等)、スズ、シリコン、及び金属合金(例えばリチウム-スズ合金、リチウム-シリコン合金、リチウム-アルミニウム合金及びリチウム-アルミニウム-マンガン合金等)、リチウムと遷移金属との複合酸化物(例えばLiTi12等)等が挙げられる。
Examples of the lithium ion battery active material (Y) include a positive electrode active material (Y1) and a negative electrode active material (Y2).
As the positive electrode active material (Y1), a composite oxide of lithium and a transition metal (for example, LiCoO 2 , LiNiO 2 , LiMnO 2 and LiMn 2 O 4 ), a transition metal oxide (for example, MnO 2 and V 2 O 5 ), Transition metal sulfides (eg, MoS 2 and TiS 2 ) and conductive polymers (eg, polyaniline, polyvinylidene fluoride, polypyrrole, polythiophene, polyacetylene, poly-p-phenylene, and polycarbazole).
Examples of the negative electrode active material (Y2) include graphite, amorphous carbon, polymer compound fired bodies (for example, those obtained by firing and carbonizing phenol resin, furan resin, etc.), cokes (for example, pitch coke, needle coke, petroleum coke, etc.) ), Carbon fibers, conductive polymers (eg, polyacetylene and polypyrrole), tin, silicon, and metal alloys (eg, lithium-tin alloy, lithium-silicon alloy, lithium-aluminum alloy, and lithium-aluminum-manganese alloy), Examples include composite oxides of lithium and transition metals (for example, Li 4 Ti 5 O 12 ).
 リチウムイオン電池活物質自体の導電性が低いものであると、導電性向上の効果が大きく得られるために好ましい。そのため、正極活物質(Y1)としてはリチウムと遷移金属との複合酸化物(例えばLiCoO、LiNiO、LiMnO及びLiMn)、遷移金属酸化物(例えばMnO及びV)、遷移金属硫化物(例えばMoS及びTiS)が好ましい。負極活物質(Y2)としてはリチウムと遷移金属との複合酸化物(例えばLiTi12等)が好ましい。 It is preferable that the lithium ion battery active material itself has a low conductivity because the effect of improving the conductivity can be greatly obtained. Therefore, as the positive electrode active material (Y1), a composite oxide of lithium and a transition metal (for example, LiCoO 2 , LiNiO 2 , LiMnO 2 and LiMn 2 O 4 ), a transition metal oxide (for example, MnO 2 and V 2 O 5 ) Transition metal sulfides (eg MoS 2 and TiS 2 ) are preferred. As the negative electrode active material (Y2), a composite oxide of lithium and a transition metal (for example, Li 4 Ti 5 O 12 or the like) is preferable.
 樹脂溶液は、被覆用樹脂が溶け残ることなく溶媒に溶解している溶液である。
 被覆用樹脂としては、熱可塑性樹脂であっても熱硬化性樹脂であってもよいが、例えば、ビニル樹脂(A)、ウレタン樹脂(B)、ポリエステル樹脂(C)、ポリアミド樹脂(D)、他の樹脂(E)及びこれらの混合物等が挙げられる。これらのうち、ビニル樹脂(A)、ウレタン樹脂(B)、ポリエステル樹脂(C)、ポリアミド樹脂(D)及びこれらの混合物が好ましく、ビニル樹脂(A)、ウレタン樹脂(B)、ポリエステル樹脂(C)及びポリアミド樹脂(D)がより好ましい。
The resin solution is a solution in which the coating resin is dissolved in the solvent without remaining undissolved.
The coating resin may be a thermoplastic resin or a thermosetting resin. For example, vinyl resin (A), urethane resin (B), polyester resin (C), polyamide resin (D), Other resin (E), a mixture thereof, etc. are mentioned. Of these, vinyl resin (A), urethane resin (B), polyester resin (C), polyamide resin (D), and mixtures thereof are preferred, and vinyl resin (A), urethane resin (B), polyester resin (C And polyamide resin (D) are more preferred.
 ビニル樹脂(A)は、ビニルモノマー(a)を必須構成単量体とする重合体(A1)を含んでなる樹脂である。
 特に、重合体(A1)は、ビニルモノマー(a)としてカルボキシル基又は酸無水物基を有するビニルモノマー(a1)及び下記一般式(1)で表されるビニルモノマー(a2)を含むことが好ましい。
CH=C(R)COOR  (1)
[式(1)中、Rは水素原子又はメチル基であり、Rは炭素数4~36の分岐アルキル基である。]
The vinyl resin (A) is a resin comprising a polymer (A1) having the vinyl monomer (a) as an essential constituent monomer.
In particular, the polymer (A1) preferably contains a vinyl monomer (a1) having a carboxyl group or an acid anhydride group as the vinyl monomer (a) and a vinyl monomer (a2) represented by the following general formula (1). .
CH 2 = C (R 1 ) COOR 2 (1)
[In Formula (1), R 1 is a hydrogen atom or a methyl group, and R 2 is a branched alkyl group having 4 to 36 carbon atoms. ]
 カルボキシル基又は酸無水物基を有するビニルモノマー(a1)としては、(メタ)アクリル酸、クロトン酸、桂皮酸等の炭素数3~15のモノカルボン酸;(無水)マレイン酸、フマル酸、(無水)イタコン酸、シトラコン酸、メサコン酸等の炭素数4~24のジカルボン酸;アコニット酸等の炭素数6~24の3価~4価又はそれ以上の価数のポリカルボン酸等が挙げられる。これらの中でも(メタ)アクリル酸が好ましく、メタクリル酸がより好ましい。 Examples of the vinyl monomer (a1) having a carboxyl group or an acid anhydride group include monocarboxylic acids having 3 to 15 carbon atoms such as (meth) acrylic acid, crotonic acid and cinnamic acid; (anhydrous) maleic acid, fumaric acid, ( Anhydric) dicarboxylic acids having 4 to 24 carbon atoms such as itaconic acid, citraconic acid, and mesaconic acid; polycarboxylic acids having 6 to 24 carbon atoms such as aconitic acid and other polyvalent carboxylic acids having a valence of 6 or more. . Among these, (meth) acrylic acid is preferable, and methacrylic acid is more preferable.
 上記一般式(1)で表されるビニルモノマー(a2)において、Rは水素原子又はメチル基を表す。Rはメチル基であることが好ましい。
 Rは炭素数4~36の分岐アルキル基であり、Rの具体例としては、1-アルキルアルキル基[1-メチルプロピル基(sec-ブチル基)、1,1-ジメチルエチル基(tert-ブチル基)、1-メチルブチル基、1-エチルプロピル基、1,1-ジメチルプロピル基、1-メチルペンチル基、1-エチルブチル基、1-メチルヘキシル基、1-エチルペンチル基、1-メチルヘプチル基、1-エチルヘキシル基、1-メチルオクチル基、1-エチルヘプチル基、1-メチルノニル基、1-エチルオクチル基、1-メチルデシル基、1-エチルノニル基、1-ブチルエイコシル基、1-ヘキシルオクタデシル基、1-オクチルヘキサデシル基、1-デシルテトラデシル基、1-ウンデシルトリデシル基等]、2-アルキルアルキル基[2-メチルプロピル基(iso-ブチル基)、2-メチルブチル基、2-エチルプロピル基、2,2-ジメチルプロピル基、2-メチルペンチル基、2-エチルブチル基、2-メチルヘキシル基、2-エチルペンチル基、2-メチルヘプチル基、2-エチルヘキシル基、2-メチルオクチル基、2-エチルヘプチル基、2-メチルノニル基、2-エチルオクチル基、2-メチルデシル基、2-エチルノニル基、2-ヘキシルオクタデシル基、2-オクチルヘキサデシル基、2-デシルテトラデシル基、2-ウンデシルトリデシル基、2-ドデシルヘキサデシル基、2-トリデシルペンタデシル基、2-デシルオクタデシル基、2-テトラデシルオクタデシル基、2-ヘキサデシルオクタデシル基、2-テトラデシルエイコシル基、2-ヘキサデシルエイコシル基等]、3~34-アルキルアルキル基(3-アルキルアルキル基、4-アルキルアルキル基、5-アルキルアルキル基、32-アルキルアルキル基、33-アルキルアルキル基及び34-アルキルアルキル基等)、並びに、プロピレンオリゴマー(7~11量体)、エチレン/プロピレン(モル比16/1~1/11)オリゴマー、イソブチレンオリゴマー(7~8量体)及びα-オレフィン(炭素数5~20)オリゴマー(4~8量体)等から得られるオキソアルコールから水酸基を除いた残基のような1又はそれ以上の分岐アルキル基を含有する混合アルキル基等が挙げられる。
 これらのうち、好ましいのは2-アルキルアルキル基であり、より好ましいのは2-エチルヘキシル基及び2-デシルテトラデシル基である。
In the vinyl monomer (a2) represented by the general formula (1), R 1 represents a hydrogen atom or a methyl group. R 1 is preferably a methyl group.
R 2 is a branched alkyl group having 4 to 36 carbon atoms. Specific examples of R 2 include a 1-alkylalkyl group [1-methylpropyl group (sec-butyl group), 1,1-dimethylethyl group (tert -Butyl group), 1-methylbutyl group, 1-ethylpropyl group, 1,1-dimethylpropyl group, 1-methylpentyl group, 1-ethylbutyl group, 1-methylhexyl group, 1-ethylpentyl group, 1-methyl Heptyl, 1-ethylhexyl, 1-methyloctyl, 1-ethylheptyl, 1-methylnonyl, 1-ethyloctyl, 1-methyldecyl, 1-ethylnonyl, 1-butyleicosyl, Hexyl octadecyl group, 1-octyl hexadecyl group, 1-decyl tetradecyl group, 1-undecyl tridecyl group, etc.], 2-alkylalkyl [2-methylpropyl group (iso-butyl group), 2-methylbutyl group, 2-ethylpropyl group, 2,2-dimethylpropyl group, 2-methylpentyl group, 2-ethylbutyl group, 2-methylhexyl group, 2 -Ethylpentyl group, 2-methylheptyl group, 2-ethylhexyl group, 2-methyloctyl group, 2-ethylheptyl group, 2-methylnonyl group, 2-ethyloctyl group, 2-methyldecyl group, 2-ethylnonyl group, 2 -Hexyl octadecyl group, 2-octyl hexadecyl group, 2-decyl tetradecyl group, 2-undecyl tridecyl group, 2-dodecyl hexadecyl group, 2-tridecyl pentadecyl group, 2-decyl octadecyl group, 2- Tetradecyloctadecyl group, 2-hexadecyloctadecyl group, 2-tetradecyleicosyl group, 2-hexyl Sadecyl eicosyl group, etc.] 3-34-alkylalkyl group (3-alkylalkyl group, 4-alkylalkyl group, 5-alkylalkyl group, 32-alkylalkyl group, 33-alkylalkyl group and 34-alkylalkyl group) Group), propylene oligomer (7 to 11 mer), ethylene / propylene (molar ratio 16/1 to 1/11) oligomer, isobutylene oligomer (7 to 8 mer), and α-olefin (5 to 5 carbon atoms). 20) A mixed alkyl group containing one or more branched alkyl groups such as a residue obtained by removing a hydroxyl group from an oxo alcohol obtained from an oligomer (4 to 8 mer) or the like.
Of these, a 2-alkylalkyl group is preferable, and a 2-ethylhexyl group and a 2-decyltetradecyl group are more preferable.
 また、重合体(A1)を構成する単量体には、カルボキシル基又は酸無水物基を有するビニルモノマー(a1)及び上記一般式(1)で表されるビニルモノマー(a2)の他に、活性水素を含有しない共重合性ビニルモノマー(a3)が含まれていてもよい。
 活性水素を含有しない共重合性ビニルモノマー(a3)としては、下記(a31)~(a38)が挙げられる。
 (a31)炭素数1~20のモノオールと(メタ)アクリル酸から形成されるハイドロカルビル(メタ)アクリレート
 上記モノオールとしては、(i)脂肪族モノオール(メタノール、エタノール、n-又はi-プロピルアルコール、n-ブチルアルコール、n-ペンチルアルコール、n-オクチルアルコール、ノニルアルコール、デシルアルコール、ラウリルアルコール、トリデシルアルコール、ミリスチルアルコール、セチルアルコール、ステアリルアルコール等)、(ii)脂環式モノオール(シクロヘキシルアルコール等)、(iii)芳香脂肪族モノオール(ベンジルアルコール等)及びこれらの2種以上の混合物が挙げられる。
In addition to the monomer constituting the polymer (A1), in addition to the vinyl monomer (a1) having a carboxyl group or an acid anhydride group and the vinyl monomer (a2) represented by the general formula (1), The copolymerizable vinyl monomer (a3) which does not contain active hydrogen may be contained.
Examples of the copolymerizable vinyl monomer (a3) containing no active hydrogen include the following (a31) to (a38).
(A31) Hydrocarbyl (meth) acrylate formed from monool having 1 to 20 carbon atoms and (meth) acrylic acid The monool includes (i) an aliphatic monool (methanol, ethanol, n- or i (Propyl alcohol, n-butyl alcohol, n-pentyl alcohol, n-octyl alcohol, nonyl alcohol, decyl alcohol, lauryl alcohol, tridecyl alcohol, myristyl alcohol, cetyl alcohol, stearyl alcohol, etc.), (ii) alicyclic mono All (such as cyclohexyl alcohol), (iii) araliphatic monool (such as benzyl alcohol) and a mixture of two or more of these.
 (a32)ポリ(n=2~30)オキシアルキレン(炭素数2~4)アルキル(炭素数1~18)エーテル(メタ)アクリレート[メタノールのエチレンオキサイド(以下EOと略記)10モル付加物(メタ)アクリレート、メタノールのプロピレンオキサイド(以下POと略記)10モル付加物(メタ)アクリレート等] (A32) poly (n = 2 to 30) oxyalkylene (carbon number 2 to 4) alkyl (carbon number 1 to 18) ether (meth) acrylate [methanol ethylene oxide (hereinafter abbreviated as EO) 10 mol adduct (meta ) Propylene oxide of acrylate, methanol (hereinafter abbreviated as PO), 10 mol adduct (meth) acrylate, etc.]
 (a33)窒素含有ビニル化合物
 (a33-1)アミド基含有ビニル化合物
(i)炭素数3~30の(メタ)アクリルアミド化合物、例えばN,N-ジアルキル(炭素数1~6)又はジアラルキル(炭素数7~15)(メタ)アクリルアミド(N,N-ジメチルアクリルアミド、N,N-ジベンジルアクリルアミド等)、ジアセトンアクリルアミド
(ii)上記(メタ)アクリルアミド化合物を除く、炭素数4~20のアミド基含有ビニル化合物、例えばN-メチル-N-ビニルアセトアミド、環状アミド(ピロリドン化合物(炭素数6~13、例えば、N-ビニルピロリドン等))
(A33) a nitrogen-containing vinyl compound (a33-1) an amide group-containing vinyl compound (i) a (meth) acrylamide compound having 3 to 30 carbon atoms, such as N, N-dialkyl (1 to 6 carbon atoms) or diaralkyl (carbon number) 7 to 15) (meth) acrylamide (N, N-dimethylacrylamide, N, N-dibenzylacrylamide, etc.), diacetone acrylamide (ii) amide group having 4 to 20 carbon atoms, excluding the above (meth) acrylamide compounds Vinyl compounds such as N-methyl-N-vinylacetamide, cyclic amides (pyrrolidone compounds (having 6 to 13 carbon atoms, such as N-vinylpyrrolidone))
 (a33-2)(メタ)アクリレート化合物
(i)ジアルキル(炭素数1~4)アミノアルキル(炭素数1~4)(メタ)アクリレート[N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート、t-ブチルアミノエチル(メタ)アクリレート、モルホリノエチル(メタ)アクリレート等]
(ii)4級アンモニウム基含有(メタ)アクリレート{3級アミノ基含有(メタ)アクリレート[N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート等]の4級化物(メチルクロライド、ジメチル硫酸、ベンジルクロライド、ジメチルカーボネート等の4級化剤を用いて4級化したもの)等}
(A33-2) (meth) acrylate compound (i) dialkyl (1 to 4 carbon atoms) aminoalkyl (1 to 4 carbon atoms) (meth) acrylate [N, N-dimethylaminoethyl (meth) acrylate, N, N -Diethylaminoethyl (meth) acrylate, t-butylaminoethyl (meth) acrylate, morpholinoethyl (meth) acrylate, etc.]
(Ii) Quaternary ammonium group-containing (meth) acrylate {quaternary amino group-containing (meth) acrylate [N, N-dimethylaminoethyl (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, etc.]] (Quaternized with a quaternizing agent such as methyl chloride, dimethyl sulfate, benzyl chloride, dimethyl carbonate, etc.)}
 (a33-3)複素環含有ビニル化合物
 ピリジン化合物(炭素数7~14、例えば2-又は4-ビニルピリジン)、イミダゾール化合物(炭素数5~12、例えばN-ビニルイミダゾール)、ピロール化合物(炭素数6~13、例えばN-ビニルピロール)、ピロリドン化合物(炭素数6~13、例えばN-ビニル-2-ピロリドン)
(A33-3) Heterocycle-containing vinyl compound Pyridine compound (carbon number 7 to 14, such as 2- or 4-vinylpyridine), imidazole compound (carbon number 5 to 12, such as N-vinylimidazole), pyrrole compound (carbon number) 6 to 13, for example, N-vinylpyrrole), pyrrolidone compound (6 to 13 carbon atoms, for example, N-vinyl-2-pyrrolidone)
 (a33-4)ニトリル基含有ビニル化合物
 炭素数3~15のニトリル基含有ビニル化合物、例えば(メタ)アクリロニトリル、シアノスチレン、シアノアルキル(炭素数1~4)アクリレート
(A33-4) Nitrile group-containing vinyl compound A nitrile group-containing vinyl compound having 3 to 15 carbon atoms, such as (meth) acrylonitrile, cyanostyrene, cyanoalkyl (1 to 4 carbon atoms) acrylate
 (a33-5)その他の窒素含有ビニル化合物
 ニトロ基含有ビニル化合物(炭素数8~16、例えばニトロスチレン)等
(A33-5) Other nitrogen-containing vinyl compounds Nitro group-containing vinyl compounds (carbon number 8 to 16, for example, nitrostyrene), etc.
 (a34)ビニル炭化水素
 (a34-1)脂肪族ビニル炭化水素
 炭素数2~18又はそれ以上のオレフィン(エチレン、プロピレン、ブテン、イソブチレン、ペンテン、ヘプテン、ジイソブチレン、オクテン、ドデセン、オクタデセン等)、炭素数4~10又はそれ以上のジエン(ブタジエン、イソプレン、1,4-ペンタジエン、1,5-ヘキサジエン、1,7-オクタジエン等)等
(A34) Vinyl hydrocarbon (a34-1) Aliphatic vinyl hydrocarbon Olefin having 2 to 18 or more carbon atoms (ethylene, propylene, butene, isobutylene, pentene, heptene, diisobutylene, octene, dodecene, octadecene, etc.), Dienes having 4 to 10 or more carbon atoms (butadiene, isoprene, 1,4-pentadiene, 1,5-hexadiene, 1,7-octadiene, etc.), etc.
 (a34-2)脂環式ビニル炭化水素
 炭素数4~18又はそれ以上の環状不飽和化合物、例えばシクロアルケン(例えばシクロヘキセン)、(ジ)シクロアルカジエン[例えば(ジ)シクロペンタジエン]、テルペン(例えばピネン及びリモネン)、インデン
(A34-2) Alicyclic vinyl hydrocarbon Cyclic unsaturated compound having 4 to 18 or more carbon atoms, such as cycloalkene (for example, cyclohexene), (di) cycloalkadiene [for example, (di) cyclopentadiene], terpene ( For example, pinene and limonene), indene
 (a34-3)芳香族ビニル炭化水素
 炭素数8~20又はそれ以上の芳香族不飽和化合物、例えばスチレン、α-メチルスチレン、ビニルトルエン、2,4-ジメチルスチレン、エチルスチレン、イソプロピルスチレン、ブチルスチレン、フェニルスチレン、シクロヘキシルスチレン、ベンジルスチレン
(A34-3) Aromatic vinyl hydrocarbon Aromatic unsaturated compounds having 8 to 20 or more carbon atoms, such as styrene, α-methylstyrene, vinyltoluene, 2,4-dimethylstyrene, ethylstyrene, isopropylstyrene, butyl Styrene, phenyl styrene, cyclohexyl styrene, benzyl styrene
  (a35)ビニルエステル
 脂肪族ビニルエステル[炭素数4~15、例えば脂肪族カルボン酸(モノ-又はジカルボン酸)のアルケニルエステル(例えば酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、ジアリルアジペート、イソプロペニルアセテート、ビニルメトキシアセテート)]
 芳香族ビニルエステル[炭素数9~20、例えば芳香族カルボン酸(モノ-又はジカルボン酸)のアルケニルエステル(例えばビニルベンゾエート、ジアリルフタレート、メチル-4-ビニルベンゾエート)、脂肪族カルボン酸の芳香環含有エステル(例えばアセトキシスチレン)]
(A35) Vinyl ester Aliphatic vinyl ester [C4-15, for example, alkenyl ester of aliphatic carboxylic acid (mono- or dicarboxylic acid) (for example, vinyl acetate, vinyl propionate, vinyl butyrate, diallyl adipate, isopropenyl acetate, Vinyl methoxyacetate)]
Aromatic vinyl esters [containing 9 to 20 carbon atoms, eg alkenyl esters of aromatic carboxylic acids (mono- or dicarboxylic acids) (eg vinyl benzoate, diallyl phthalate, methyl-4-vinyl benzoate), aromatic ring containing aliphatic carboxylic acid Ester (eg acetoxystyrene)]
 (a36)ビニルエーテル
 脂肪族ビニルエーテル[炭素数3~15、例えばビニルアルキル(炭素数1~10)エーテル(ビニルメチルエーテル、ビニルブチルエーテル、ビニル-2-エチルヘキシルエーテル等)、ビニルアルコキシ(炭素数1~6)アルキル(炭素数1~4)エーテル(ビニル-2-メトキシエチルエーテル、メトキシブタジエン、3,4-ジヒドロ-1,2-ピラン、2-ブトキシ-2’-ビニロキシジエチルエーテル、ビニル-2-エチルメルカプトエチルエーテル等)、ポリ(2~4)(メタ)アリロキシアルカン(炭素数2~6)(ジアリロキシエタン、トリアリロキシエタン、テトラアリロキシブタン、テトラメタアリロキシエタン等)]
 芳香族ビニルエーテル(炭素数8~20、例えばビニルフェニルエーテル、フェノキシスチレン)
(A36) Vinyl ether Aliphatic vinyl ether [C3-15, such as vinylalkyl (C1-10) ether (vinyl methyl ether, vinyl butyl ether, vinyl-2-ethylhexyl ether, etc.), vinyl alkoxy (C1-6) ) Alkyl (1 to 4 carbon atoms) ether (vinyl-2-methoxyethyl ether, methoxybutadiene, 3,4-dihydro-1,2-pyran, 2-butoxy-2'-vinyloxydiethyl ether, vinyl-2- Ethyl mercaptoethyl ether, etc.), poly (2-4) (meth) allyloxyalkanes (2-6 carbon atoms) (diallyloxyethane, triaryloxyethane, tetraallyloxybutane, tetrametaallyloxyethane, etc.)]
Aromatic vinyl ether (C8-20, such as vinyl phenyl ether, phenoxystyrene)
 (a37)ビニルケトン
 脂肪族ビニルケトン(炭素数4~25、例えばビニルメチルケトン、ビニルエチルケトン)
 芳香族ビニルケトン(炭素数9~21、例えばビニルフェニルケトン)
(A37) Vinyl ketone Aliphatic vinyl ketone (having 4 to 25 carbon atoms, such as vinyl methyl ketone, vinyl ethyl ketone)
Aromatic vinyl ketone (C9-21, such as vinyl phenyl ketone)
 (a38)不飽和ジカルボン酸ジエステル
 炭素数4~34の不飽和ジカルボン酸ジエステル、例えばジアルキルフマレート(2個のアルキル基は、炭素数1~22の、直鎖、分岐鎖又は脂環式の基)、ジアルキルマレエート(2個のアルキル基は、炭素数1~22の、直鎖、分岐鎖又は脂環式の基)
(A38) Unsaturated dicarboxylic acid diester Unsaturated dicarboxylic acid diester having 4 to 34 carbon atoms such as dialkyl fumarate (two alkyl groups are linear, branched or alicyclic groups having 1 to 22 carbon atoms) ), Dialkyl maleate (two alkyl groups are straight, branched or alicyclic groups having 1 to 22 carbon atoms)
 上記(a3)として例示したもののうち耐電圧の観点から好ましいのは、(a31)、(a32)及び(a33)であり、より好ましいのは、(a31)のうちのメチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレートである。 Of those exemplified as (a3), from the viewpoint of withstand voltage, (a31), (a32) and (a33) are preferred, and methyl (meth) acrylate and ethyl of (a31) are more preferred. (Meth) acrylate and butyl (meth) acrylate.
 重合体(A1)において、カルボキシル基又は酸無水物基を有するビニルモノマー(a1)、上記一般式(1)で表されるビニルモノマー(a2)及び活性水素を含有しない共重合性ビニルモノマー(a3)の含有量は、重合体(A1)の重量を基準として、(a1)が0.1~80重量%、(a2)が0.1~99.9重量%、(a3)が0~99.8重量%であることが好ましい。
 モノマーの含有量が上記範囲内であると、電解液への吸液性が良好となる。
 より好ましい含有量は、(a1)が15~60重量%、(a2)が5~60重量%、(a3)が5~80重量%であり、さらに好ましい含有量は、(a1)が25~50重量%、(a2)が15~45重量%、(a3)が20~60重量%である。
In the polymer (A1), a vinyl monomer (a1) having a carboxyl group or an acid anhydride group, a vinyl monomer (a2) represented by the general formula (1), and a copolymerizable vinyl monomer (a3) containing no active hydrogen ) Based on the weight of the polymer (A1), (a1) is 0.1 to 80% by weight, (a2) is 0.1 to 99.9% by weight, and (a3) is 0 to 99%. It is preferably 8% by weight.
When the content of the monomer is within the above range, the liquid absorptivity to the electrolytic solution is good.
More preferable contents are 15 to 60% by weight of (a1), 5 to 60% by weight of (a2), and 5 to 80% by weight of (a3). Further more preferable contents are 25 to 60% of (a1). 50% by weight, (a2) is 15 to 45% by weight, and (a3) is 20 to 60% by weight.
 重合体(A1)の数平均分子量の好ましい下限は3,000、より好ましくは50,000、さらに好ましくは100,000、特に好ましくは200,000であり、好ましい上限は2,000,000、より好ましくは1,500,000、さらに好ましくは1,000,000、特に好ましくは800,000である。 The preferable lower limit of the number average molecular weight of the polymer (A1) is 3,000, more preferably 50,000, still more preferably 100,000, particularly preferably 200,000, and the preferable upper limit is 2,000,000. It is preferably 1,500,000, more preferably 1,000,000, and particularly preferably 800,000.
 重合体(A1)の数平均分子量は、以下の条件でゲルパーミエーションクロマトグラフィー(以下GPCと略記)測定により求めることができる。
装置:Alliance GPC V2000(Waters社製)
溶媒:オルトジクロロベンゼン
標準物質:ポリスチレン
検出器:RI
サンプル濃度:3mg/ml
カラム固定相:PLgel 10μm、MIXED-B 2本直列(ポリマーラボラトリーズ社製)
カラム温度:135℃
The number average molecular weight of the polymer (A1) can be determined by gel permeation chromatography (hereinafter abbreviated as GPC) measurement under the following conditions.
Apparatus: Alliance GPC V2000 (manufactured by Waters)
Solvent: Orthodichlorobenzene Reference material: Polystyrene detector: RI
Sample concentration: 3 mg / ml
Column stationary phase: PLgel 10 μm, MIXED-B 2 in series (manufactured by Polymer Laboratories)
Column temperature: 135 ° C
 重合体(A1)の溶解度パラメータ(以下、SP値と略記する)は9.0~20.0(cal/cm1/2であることが好ましい。重合体(A1)のSP値は10.0~18.0(cal/cm1/2であることがより好ましく、11.5~14.0(cal/cm1/2であることがさらに好ましい。重合体(A1)のSP値が9.0~20.0(cal/cm1/2であると、電解液の吸液の点で好ましい。
 SP値は、Fedors法によって計算される。SP値は、次式で表せる。
SP値(δ)=(ΔH/V)1/2
 但し、式中、ΔHはモル蒸発熱(cal)を、Vはモル体積(cm)を表す。
 また、ΔH及びVは、「POLYMER ENGINEERING AND SCIENCE,1974,Vol.14,No.2,ROBERT F.FEDORS.(151~153頁)」に記載の原子団のモル蒸発熱の合計(ΔH)とモル体積の合計(V)を用いることができる。
 SP値は、この数値が近いもの同士はお互いに混ざりやすく(相溶性が高い)、この数値が離れているものは混ざりにくいことを表す指標である。
The solubility parameter (hereinafter abbreviated as SP value) of the polymer (A1) is preferably 9.0 to 20.0 (cal / cm 3 ) 1/2 . The SP value of the polymer (A1) is more preferably 10.0 to 18.0 (cal / cm 3 ) 1/2 , and 11.5 to 14.0 (cal / cm 3 ) 1/2 . More preferably. The SP value of the polymer (A1) is preferably 9.0 to 20.0 (cal / cm 3 ) 1/2 from the viewpoint of liquid absorption of the electrolytic solution.
The SP value is calculated by the Fedors method. The SP value can be expressed by the following equation.
SP value (δ) = (ΔH / V) 1/2
In the formula, ΔH represents the heat of vaporization (cal), and V represents the molar volume (cm 3 ).
ΔH and V are the sum of the heat of molar evaporation (ΔH) of the atomic group described in “POLYMER ENGINEERING AND SCIENCE, 1974, Vol. 14, No. 2, ROBERT F. FEDORS. (Pages 151 to 153)”. The total molar volume (V) can be used.
The SP value is an index indicating that those having a close numerical value are easily mixed with each other (high compatibility), and those having a close numerical value are difficult to mix.
 また、重合体(A1)のガラス転移点[以下Tgと略記、測定法:DSC(走査型示差熱分析)法]は、電池の耐熱性の観点から好ましくは80~200℃、より好ましくは90~180℃、さらに好ましくは100~150℃である。 The glass transition point of the polymer (A1) [hereinafter abbreviated as Tg, measurement method: DSC (scanning differential thermal analysis) method] is preferably 80 to 200 ° C., more preferably 90, from the viewpoint of battery heat resistance. -180 ° C, more preferably 100-150 ° C.
 重合体(A1)は、公知の重合方法(塊状重合、溶液重合、乳化重合、懸濁重合等)により製造することができる。
 重合に際しては、公知の重合開始剤{アゾ系開始剤[2,2’-アゾビス(2-メチルプロピオニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル等)]、パーオキサイド系開始剤(ベンゾイルパーオキサイド、ジ-t-ブチルパーオキサイド、ラウリルパーオキサイド等)等}を使用して行なうことができる。
 重合開始剤の使用量は、モノマーの全重量に基づいて好ましくは0.01~5重量%、より好ましくは0.05~2重量%、さらに好ましくは0.1~1.5重量%である。
The polymer (A1) can be produced by a known polymerization method (bulk polymerization, solution polymerization, emulsion polymerization, suspension polymerization, etc.).
In the polymerization, known polymerization initiators {azo initiators [2,2′-azobis (2-methylpropionitrile), 2,2′-azobis (2,4-dimethylvaleronitrile, etc.)], peroxides System initiators (benzoyl peroxide, di-t-butyl peroxide, lauryl peroxide, etc.)} can be used.
The amount of the polymerization initiator used is preferably 0.01 to 5% by weight, more preferably 0.05 to 2% by weight, still more preferably 0.1 to 1.5% by weight, based on the total weight of the monomers. .
 溶液重合の場合に使用される溶媒としては、例えばエステル(炭素数2~8、例えば酢酸エチル及び酢酸ブチル)、アルコール(炭素数1~8、例えばメタノール、エタノール及びオクタノール)、炭化水素(炭素数4~8、例えばn-ブタン、シクロヘキサン及びトルエン)及びケトン(炭素数3~9、例えばメチルエチルケトン)が挙げられ、使用量はモノマーの合計重量に基づいて通常5~900%、好ましくは10~400%、より好ましくは30~300重量%であり、モノマー濃度としては、通常10~95重量%、好ましくは20~90重量%、より好ましくは30~80重量%である。 Examples of the solvent used in the solution polymerization include esters (having 2 to 8 carbon atoms such as ethyl acetate and butyl acetate), alcohols (having 1 to 8 carbon atoms such as methanol, ethanol and octanol), hydrocarbons (having carbon atoms). 4 to 8, such as n-butane, cyclohexane and toluene) and ketones (3 to 9, carbon atoms such as methyl ethyl ketone), and the amount used is usually 5 to 900%, preferably 10 to 400, based on the total weight of the monomers. %, More preferably 30 to 300% by weight, and the monomer concentration is usually 10 to 95% by weight, preferably 20 to 90% by weight, more preferably 30 to 80% by weight.
 乳化重合及び懸濁重合における分散媒としては、水、アルコール(例えばエタノール)、エステル(例えばプロピオン酸エチル)、軽ナフサ等が挙げられ、乳化剤としては、高級脂肪酸(炭素数10~24)金属塩(例えばオレイン酸ナトリウム及びステアリン酸ナトリウム)、高級アルコール(炭素数10~24)硫酸エステル金属塩(例えばラウリル硫酸ナトリウム)、エトキシ化テトラメチルデシンジオール、メタクリル酸スルホエチルナトリウム、メタクリル酸ジメチルアミノメチル等が挙げられる。さらに安定剤としてポリビニルアルコール、ポリビニルピロリドン等を加えてもよい。
 溶液又は分散液のモノマー濃度は通常5~95重量%、好ましくは10~90重量%、より好ましくは15~85重量%であり、重合開始剤の使用量は、モノマーの全重量に基づいて通常0.01~5重量%、好ましくは0.05~2重量%である。
 重合に際しては、公知の連鎖移動剤、例えばメルカプト化合物(ドデシルメルカプタン、n-ブチルメルカプタン等)及び/又はハロゲン化炭化水素(四塩化炭素、四臭化炭素、塩化ベンジル等)を使用することができる。使用量はモノマーの全重量に基づいて通常2重量%以下、好ましくは0.5重量%以下、より好ましくは0.3重量%以下である。
Examples of the dispersion medium in emulsion polymerization and suspension polymerization include water, alcohol (for example, ethanol), ester (for example, ethyl propionate), light naphtha and the like, and examples of the emulsifier include higher fatty acid (carbon number 10 to 24) metal salt. (For example, sodium oleate and sodium stearate), higher alcohol (10 to 24 carbon atoms) sulfate metal salt (for example, sodium lauryl sulfate), ethoxylated tetramethyldecynediol, sodium sulfoethyl methacrylate, dimethylaminomethyl methacrylate, etc. Is mentioned. Furthermore, you may add polyvinyl alcohol, polyvinylpyrrolidone, etc. as a stabilizer.
The monomer concentration of the solution or dispersion is usually 5 to 95% by weight, preferably 10 to 90% by weight, more preferably 15 to 85% by weight. The amount of the polymerization initiator used is usually based on the total weight of the monomers. 0.01 to 5% by weight, preferably 0.05 to 2% by weight.
In the polymerization, known chain transfer agents such as mercapto compounds (such as dodecyl mercaptan and n-butyl mercaptan) and / or halogenated hydrocarbons (such as carbon tetrachloride, carbon tetrabromide and benzyl chloride) can be used. . The amount used is usually 2% by weight or less, preferably 0.5% by weight or less, more preferably 0.3% by weight or less, based on the total weight of the monomers.
 また、重合反応における系内温度は通常-5~150℃、好ましくは30~120℃、より好ましくは50~110℃、反応時間は通常0.1~50時間、好ましくは2~24時間、より好ましくは3~20時間であり、反応の終点は、未反応単量体の量が使用した単量体全量の通常5重量%以下、好ましくは1重量%以下、より好ましくは0.5重量%以下となることにより確認できる。 The system temperature in the polymerization reaction is usually −5 to 150 ° C., preferably 30 to 120 ° C., more preferably 50 to 110 ° C., and the reaction time is usually 0.1 to 50 hours, preferably 2 to 24 hours. Preferably, it is 3 to 20 hours, and the end point of the reaction is usually 5% by weight or less, preferably 1% by weight or less, more preferably 0.5% by weight based on the total amount of unreacted monomers used. This can be confirmed by:
 ビニル樹脂(A)に含まれる重合体(A1)は、重合体(A1)をポリエポキシ化合物(a’1)及び/又はポリオール化合物(a’2)で架橋してなる架橋重合体であってもよい。
 架橋重合体においては、重合体(A1)中のカルボキシル基等の活性水素と反応する反応性官能基を有する架橋剤(A’)を用いて重合体(A1)を架橋することが好ましく、架橋剤(A’)としてポリエポキシ化合物(a’1)及び/又はポリオール化合物(a’2)を用いることが好ましい。
The polymer (A1) contained in the vinyl resin (A) is a crosslinked polymer obtained by crosslinking the polymer (A1) with a polyepoxy compound (a′1) and / or a polyol compound (a′2). Also good.
In the crosslinked polymer, the polymer (A1) is preferably crosslinked using a crosslinking agent (A ′) having a reactive functional group that reacts with active hydrogen such as a carboxyl group in the polymer (A1). As the agent (A ′), it is preferable to use a polyepoxy compound (a′1) and / or a polyol compound (a′2).
 ポリエポキシ化合物(a’1)としては、エポキシ当量80~2,500のもの、例えばグリシジルエーテル[ビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、ピロガロールトリグリシジルエーテル、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、グリセリントリグリシジルエーテル、ポリエチレングリコール(Mw200~2,000)ジグリシジルエーテル、ポリプロピレングリコール(Mw200~2,000)ジグリシジルエーテル、ビスフェノールAのアルキレンオキサイド1~20モル付加物のジグリシジルエーテル等];グリシジルエステル(フタル酸ジグリシジルエステル、トリメリット酸トリグリシジルエステル、ダイマー酸ジグリシジルエステル、アジピン酸ジグリシジルエステル等);グリシジルアミン[N,N-ジグリシジルアニリン、N,N-ジグリシジルトルイジン、N,N,N’,N’-テトラグリシジルジアミノジフェニルメタン、N,N,N’,N’-テトラグリシジルキシリレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’-テトラグリシジルヘキサメチレンジアミン等];脂肪族エポキシド(エポキシ化ポリブタジエン、エポキシ化大豆油等);脂環式エポキシド(リモネンジオキサイド、ジシクロペンタジエンジオキサイド等)が挙げられる。 Examples of the polyepoxy compound (a′1) include those having an epoxy equivalent of 80 to 2,500, such as glycidyl ether [bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, pyrogallol triglycidyl ether, ethylene glycol diglycidyl ether, propylene glycol. Diglycidyl ether, neopentyl glycol diglycidyl ether, trimethylolpropane triglycidyl ether, glycerin triglycidyl ether, polyethylene glycol (Mw 200-2,000) diglycidyl ether, polypropylene glycol (Mw 200-2,000) diglycidyl ether, bisphenol Diglycidyl ether of 1-20 mol adduct of alkylene oxide of A and the like]; glycidyl ester ( Diglycidyl tartrate, triglycidyl trimellitate, diglycidyl dimer, diglycidyl adipate, etc.); glycidyl amine [N, N-diglycidyl aniline, N, N-diglycidyl toluidine, N, N, N ′, N′-tetraglycidyldiaminodiphenylmethane, N, N, N ′, N′-tetraglycidylxylylenediamine, 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane, N, N, N ′ , N′-tetraglycidyl hexamethylenediamine, etc.]; aliphatic epoxides (epoxidized polybutadiene, epoxidized soybean oil, etc.); alicyclic epoxides (limonene dioxide, dicyclopentadiene dioxide, etc.).
 ポリオール化合物(a’2)としては、低分子多価アルコール{炭素数2~20の脂肪族又は脂環式のジオール[エチレングリコール(以下EGと略記)、ジエチレングリコール(以下DEGと略記)、プロピレングリコール、1,3-ブチレングリコール、1,4-ブタンジオール(以下14BGと略記)、1,6-ヘキサンジオール、3-メチルペンタンジオール、ネオペンチルグリコール、1,9-ノナンジオール、1,4-ジヒドロキシシクロヘキサン、1,4-ビス(ヒドロキシメチル)シクロヘキサン、2,2-ビス(4,4’-ヒドロキシシクロヘキシル)プロパン等];炭素数8~15の芳香環含有ジオール[m-又はp-キシリレングリコール、1,4-ビス(ヒドロキシエチル)ベンゼン等];炭素数3~8のトリオール(グリセリン、トリメチロールプロパン等);4価以上の多価アルコール[ペンタエリスリトール、α-メチルグルコシド、ソルビトール、キシリット、マンニット、グルコース、フルクトース、ショ糖、ジペンタエリスリトール、ポリグリセリン(重合度2~20)等]等}、及びこれらのアルキレン(炭素数2~4)オキサイド付加物(重合度2~30)等が挙げられる。 Examples of the polyol compound (a′2) include low-molecular polyhydric alcohol {aliphatic or alicyclic diol having 2 to 20 carbon atoms [ethylene glycol (hereinafter abbreviated as EG), diethylene glycol (hereinafter abbreviated as DEG), propylene glycol] 1,3-butylene glycol, 1,4-butanediol (hereinafter abbreviated as 14BG), 1,6-hexanediol, 3-methylpentanediol, neopentyl glycol, 1,9-nonanediol, 1,4-dihydroxy Cyclohexane, 1,4-bis (hydroxymethyl) cyclohexane, 2,2-bis (4,4'-hydroxycyclohexyl) propane, etc.]; aromatic ring-containing diol having 8 to 15 carbon atoms [m- or p-xylylene glycol 1,4-bis (hydroxyethyl) benzene, etc.]; trio having 3 to 8 carbon atoms (Polyglycerol, trimethylolpropane, etc.); polyhydric alcohols having a valence of 4 or more [pentaerythritol, α-methylglucoside, sorbitol, xylit, mannitol, glucose, fructose, sucrose, dipentaerythritol, polyglycerol (degree of polymerization 2) And 20) etc.], and their alkylene (2 to 4 carbon atoms) oxide adducts (degree of polymerization 2 to 30).
 架橋剤(A’)の使用量は、電解液の吸液の観点から、重合体(A1)中の活性水素含有基と、架橋剤(A’)中の反応性官能基の当量比が好ましくは、1:0.01~1:2、より好ましくは1:0.02~1:1となる量である。 The use amount of the cross-linking agent (A ′) is preferably the equivalent ratio of the active hydrogen-containing group in the polymer (A1) and the reactive functional group in the cross-linking agent (A ′) from the viewpoint of absorbing the electrolyte. Is an amount of 1: 0.01 to 1: 2, more preferably 1: 0.02 to 1: 1.
 架橋剤(A’)を用いて重合体(A1)を架橋する方法としては、リチウムイオン電池活物質を重合体(A1)からなる被覆用樹脂で被覆した後に架橋する方法が挙げられる。具体的には、リチウムイオン電池活物質と重合体(A1)を含む樹脂溶液を混合し脱溶剤することにより、リチウムイオン電池活物質が樹脂で被覆された被覆活物質を製造した後に、架橋剤(A’)を含む溶液を被覆活物質に混合して加熱することにより、脱溶剤と架橋反応を生じさせて、架橋重合体でリチウムイオン電池活物質を被覆する方法が挙げられる。
 加熱温度は、架橋剤としてポリエポキシ化合物(a’1)を用いる場合は70℃以上とすることが好ましく、ポリオール化合物(a’2)を用いる場合は120℃以上とすることが好ましい。
Examples of the method of crosslinking the polymer (A1) using the crosslinking agent (A ′) include a method in which the lithium ion battery active material is coated with a coating resin composed of the polymer (A1) and then crosslinked. Specifically, a lithium ion battery active material and a resin solution containing the polymer (A1) are mixed and removed to produce a coated active material in which the lithium ion battery active material is coated with a resin, and then a crosslinking agent. A method of coating a lithium ion battery active material with a cross-linked polymer by causing a solution containing (A ′) to be mixed with a coated active material and heating to cause solvent removal and a cross-linking reaction.
The heating temperature is preferably 70 ° C. or higher when the polyepoxy compound (a′1) is used as a crosslinking agent, and is preferably 120 ° C. or higher when the polyol compound (a′2) is used.
 ウレタン樹脂(B)は、活性水素成分(b1)及びイソシアネート成分(b2)を反応させて得られる樹脂である。 Urethane resin (B) is a resin obtained by reacting active hydrogen component (b1) and isocyanate component (b2).
 活性水素成分(b1)としては、ポリエーテルジオール、ポリカーボネートジオール及びポリエステルジオールからなる群から選ばれる少なくとも1種を含むことが好ましい。 The active hydrogen component (b1) preferably contains at least one selected from the group consisting of polyether diol, polycarbonate diol and polyester diol.
 ポリエーテルジオールとしては、ポリオキシエチレングリコール(以下PEGと略記)、ポリオキシエチレンオキシプロピレンブロック共重合ジオール、ポリオキシエチレンオキシテトラメチレンブロック共重合ジオール;エチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサメチレングリコール、ネオペンチルグリコール、ビス(ヒドロキシメチル)シクロヘキサン、4,4’-ビス(2-ヒドロキシエトキシ)-ジフェニルプロパン等の低分子グリコールのエチレンオキサイド付加物;数平均分子量2,000以下のPEGと、ジカルボン酸[炭素数4~10の脂肪族ジカルボン酸(例えばコハク酸、アジピン酸、セバシン酸等)、炭素数8~15の芳香族ジカルボン酸(例えばテレフタル酸、イソフタル酸等)等]の1種以上とを反応させて得られる縮合ポリエーテルエステルジオール;及びこれらの2種以上の混合物が挙げられる。
 ポリエーテルジオール中にオキシエチレン単位が含まれる場合、オキシエチレン単位の含有量は好ましくは20重量%以上、より好ましくは30重量%以上、さらに好ましくは40重量%以上である。
 また、ポリオキシプロピレングリコール、ポリオキシテトラメチレングリコール(以下PTMGと略記)、ポリオキシプロピレンオキシテトラメチレンブロック共重合ジオール等も挙げられる。
 これらのうち、好ましくはPEG、ポリオキシエチレンオキシプロピレンブロック共重合ジオール及びポリオキシエチレンオキシテトラメチレンブロック共重合ジオールであり、特に好ましくはPEGである。
 また、ポリエーテルジオールを1種のみ用いてもよいし、これらの2種以上の混合物を用いてもよい。
Polyether diols include polyoxyethylene glycol (hereinafter abbreviated as PEG), polyoxyethyleneoxypropylene block copolymer diol, polyoxyethyleneoxytetramethylene block copolymer diol; ethylene glycol, propylene glycol, 1,4-butanediol 1,6-hexamethylene glycol, neopentyl glycol, bis (hydroxymethyl) cyclohexane, 4,4'-bis (2-hydroxyethoxy) -diphenylpropane and other low molecular glycol ethylene oxide adducts; number average molecular weight 2 PEG of 1,000 or less and dicarboxylic acid [aliphatic dicarboxylic acid having 4 to 10 carbon atoms (for example, succinic acid, adipic acid, sebacic acid, etc.), aromatic dicarboxylic acid having 8 to 15 carbon atoms (for example, terephthalic acid, isophthalic acid, etc. And a mixture of two or more thereof.
When the polyether diol contains an oxyethylene unit, the content of the oxyethylene unit is preferably 20% by weight or more, more preferably 30% by weight or more, and further preferably 40% by weight or more.
Also included are polyoxypropylene glycol, polyoxytetramethylene glycol (hereinafter abbreviated as PTMG), polyoxypropyleneoxytetramethylene block copolymer diol, and the like.
Among these, PEG, polyoxyethyleneoxypropylene block copolymer diol, and polyoxyethyleneoxytetramethylene block copolymer diol are preferable, and PEG is particularly preferable.
Moreover, only 1 type of polyether diol may be used, and 2 or more types of these mixtures may be used.
 ポリカーボネートジオールとしては、例えばポリヘキサメチレンカーボネートジオールが挙げられる。 Examples of the polycarbonate diol include polyhexamethylene carbonate diol.
 ポリエステルジオールとしては、低分子ジオール及び/又は数平均分子量1,000以下のポリエーテルジオールと前述のジカルボン酸の1種以上とを反応させて得られる縮合ポリエステルジオールや、炭素数4~12のラクトンの開環重合により得られるポリラクトンジオール等が挙げられる。上記低分子ジオールとして上記ポリエーテルジオールの項で例示した低分子グリコール等が挙げられる。上記数平均分子量1,000以下のポリエーテルジオールとしてはポリオキシプロピレングリコール、PTMG等が挙げられる。上記ラクトンとしては、例えばε-カプロラクトン、γ-バレロラクトン等が挙げられる。該ポリエステルジオールの具体例としては、ポリエチレンアジペートジオール、ポリブチレンアジペートジオール、ポリネオペンチレンアジペートジオール、ポリ(3-メチル-1,5-ペンチレンアジペート)ジオール、ポリヘキサメチレンアジペートジオール、ポリカプロラクトンジオール及びこれらの2種以上の混合物が挙げられる。 Examples of the polyester diol include condensed polyester diols obtained by reacting low-molecular diols and / or polyether diols having a number average molecular weight of 1,000 or less with one or more of the aforementioned dicarboxylic acids, and lactones having 4 to 12 carbon atoms. And polylactone diols obtained by ring-opening polymerization. Examples of the low molecular diol include low molecular glycols exemplified in the section of the polyether diol. Examples of the polyether diol having a number average molecular weight of 1,000 or less include polyoxypropylene glycol and PTMG. Examples of the lactone include ε-caprolactone and γ-valerolactone. Specific examples of the polyester diol include polyethylene adipate diol, polybutylene adipate diol, polyneopentylene adipate diol, poly (3-methyl-1,5-pentylene adipate) diol, polyhexamethylene adipate diol, polycaprolactone diol. And mixtures of two or more thereof.
 また、活性水素成分(b1)は上記ポリエーテルジオール、ポリカーボネートジオール及びポリエステルジオールのうちの2種以上の混合物であってもよい。 The active hydrogen component (b1) may be a mixture of two or more of the polyether diol, polycarbonate diol and polyester diol.
 活性水素成分(b1)は数平均分子量2,500~15,000の高分子ジオール(b11)を必須成分とすることが好ましい。高分子ジオール(b11)としては上述したポリエーテルジオール、ポリカーボネートジオール及びポリエステルジオール等が挙げられる。
 高分子ジオール(b11)は、数平均分子量が2,500~15,000であるとウレタン樹脂(B)の硬さが適度に柔らかく、また、活物質上に形成した被膜の強度が強くなるため好ましい。
 また、高分子ジオール(b11)の数平均分子量が3,000~12,500であることがより好ましく、4,000~10,000であることがさらに好ましい。
 高分子ジオール(b11)の数平均分子量は、高分子ジオールの水酸基価から算出することができる。
 また、水酸基価は、JIS K1557-1の記載に準じて測定できる。
The active hydrogen component (b1) preferably contains a high molecular diol (b11) having a number average molecular weight of 2,500 to 15,000 as an essential component. Examples of the polymer diol (b11) include the polyether diol, polycarbonate diol, and polyester diol described above.
When the polymer diol (b11) has a number average molecular weight of 2,500 to 15,000, the hardness of the urethane resin (B) is moderately soft and the strength of the coating formed on the active material is increased. preferable.
The number average molecular weight of the polymer diol (b11) is more preferably from 3,000 to 12,500, and further preferably from 4,000 to 10,000.
The number average molecular weight of the polymer diol (b11) can be calculated from the hydroxyl value of the polymer diol.
The hydroxyl value can be measured according to the description of JIS K1557-1.
 また、活性水素成分(b1)が数平均分子量2,500~15,000の高分子ジオール(b11)を必須成分とし、上記高分子ジオール(b11)の溶解度パラメータ(SP値)が8.0~12.0(cal/cm1/2であることが好ましい。高分子ジオール(b11)のSP値は8.5~11.5(cal/cm1/2であることがより好ましく、9.0~11.0(cal/cm1/2であることがさらに好ましい。高分子ジオール(b11)のSP値が8.0~12.0(cal/cm1/2であると、ウレタン樹脂(B)の電解液の吸液の点で好ましい。 The active hydrogen component (b1) has a polymer diol (b11) having a number average molecular weight of 2,500 to 15,000 as an essential component, and the solubility parameter (SP value) of the polymer diol (b11) is 8.0 to It is preferably 12.0 (cal / cm 3 ) 1/2 . The SP value of the polymer diol (b11) is more preferably 8.5 to 11.5 (cal / cm 3 ) 1/2 , and 9.0 to 11.0 (cal / cm 3 ) 1/2 . More preferably it is. The SP value of the polymer diol (b11) is preferably 8.0 to 12.0 (cal / cm 3 ) 1/2 from the viewpoint of absorption of the electrolyte solution of the urethane resin (B).
 また、活性水素成分(b1)が数平均分子量2,500~15,000の高分子ジオール(b11)を必須成分とし、上記高分子ジオール(b11)の含有量が上記ウレタン樹脂(B)の重量を基準として20~80重量%であることが好ましい。高分子ジオール(b11)の含有量は30~70重量%であることがより好ましく、40~65重量%であることがさらに好ましい。
 高分子ジオール(b11)の含有量が20~80重量%であると、ウレタン樹脂(B)の電解液の吸液の点で好ましい。
In addition, the active hydrogen component (b1) has a polymer diol (b11) having a number average molecular weight of 2,500 to 15,000 as an essential component, and the content of the polymer diol (b11) is the weight of the urethane resin (B). From 20 to 80% by weight is preferable. The content of the polymer diol (b11) is more preferably 30 to 70% by weight, and further preferably 40 to 65% by weight.
The content of the polymer diol (b11) is preferably 20 to 80% by weight from the viewpoint of the absorption of the electrolyte solution of the urethane resin (B).
 また、活性水素成分(b1)が数平均分子量2,500~15,000の高分子ジオール(b11)及び鎖伸長剤(b13)を必須成分とすることが好ましい。
 鎖伸長剤(b13)としては、例えば炭素数2~10の低分子ジオール(例えばEG、プロピレングリコール、14BG、DEG、1,6-ヘキサメチレングリコール等);ジアミン類[炭素数2~6の脂肪族ジアミン(例えばエチレンジアミン、1,2-プロピレンジアミン等)、炭素数6~15の脂環式ジアミン(例えばイソホロンジアミン、4,4’-ジアミノジシクロヘキシルメタン等)、炭素数6~15の芳香族ジアミン(例えば4,4’-ジアミノジフェニルメタン等)等];モノアルカノールアミン(例えばモノエタノールアミン等);ヒドラジンもしくはその誘導体(例えばアジピン酸ジヒドラジド等)及びこれらの2種以上の混合物が挙げられる。これらのうち好ましいものは低分子ジオールであり、特に好ましいものはEG、DEG及び14BGである。
 高分子ジオール(b11)及び鎖伸長剤(b13)の組み合わせとしては、高分子ジオール(b11)としてのPEGと鎖伸長剤(b13)としてのEGの組み合わせ、又は、高分子ジオール(b11)としてのポリカーボネートジオールと鎖伸長剤(b13)としてのEGの組み合わせが好ましい。
In addition, it is preferable that the active hydrogen component (b1) includes a polymer diol (b11) having a number average molecular weight of 2,500 to 15,000 and a chain extender (b13) as essential components.
Examples of the chain extender (b13) include low molecular diols having 2 to 10 carbon atoms (eg, EG, propylene glycol, 14BG, DEG, 1,6-hexamethylene glycol); diamines [fatty acids having 2 to 6 carbon atoms] Group diamines (eg, ethylene diamine, 1,2-propylene diamine, etc.), alicyclic diamines having 6 to 15 carbon atoms (eg, isophorone diamine, 4,4′-diaminodicyclohexylmethane, etc.), aromatic diamines having 6 to 15 carbon atoms (For example, 4,4′-diaminodiphenylmethane and the like); monoalkanolamine (for example, monoethanolamine and the like); hydrazine or a derivative thereof (for example, adipic acid dihydrazide) and a mixture of two or more of these. Among these, preferred are low molecular weight diols, and particularly preferred are EG, DEG and 14BG.
As a combination of the polymer diol (b11) and the chain extender (b13), a combination of PEG as the polymer diol (b11) and EG as the chain extender (b13), or as a polymer diol (b11) A combination of polycarbonate diol and EG as a chain extender (b13) is preferred.
 また、活性水素成分(b1)が数平均分子量2,500~15,000の高分子ジオール(b11)、上記高分子ジオール(b11)以外のジオール(b12)及び鎖伸長剤(b13)を含み、(b11)と(b12)との当量比[(b11)/(b12)]が10/1~30/1であり、(b11)と(b12)及び(b13)の合計当量との当量比{(b11)/[(b12)+(b13)]}が0.9/1~1.1/1であることが好ましい。
 なお、(b11)と(b12)との当量比[(b11)/(b12)]はより好ましくは13/1~25/1であり、さらに好ましくは15/1~20/1である。
The active hydrogen component (b1) includes a polymer diol (b11) having a number average molecular weight of 2,500 to 15,000, a diol (b12) other than the polymer diol (b11), and a chain extender (b13), The equivalent ratio [(b11) / (b12)] of (b11) and (b12) is 10/1 to 30/1, and the equivalent ratio of (b11) to the total equivalent of (b12) and (b13) { (B11) / [(b12) + (b13)]} is preferably 0.9 / 1 to 1.1 / 1.
The equivalent ratio [(b11) / (b12)] of (b11) and (b12) is more preferably 13/1 to 25/1, and further preferably 15/1 to 20/1.
 高分子ジオール(b11)以外のジオール(b12)としては、ジオールであって上述した高分子ジオール(b11)に含まれず、鎖伸長剤(b13)の炭素数2~10の低分子ジオールに含まれないものであれば特に限定されるものではなく、具体的には、数平均分子量が2,500未満のジオール、及び、数平均分子量が15,000を超えるジオールが挙げられる。
 ジオールの種類としては、上述したポリエーテルジオール、ポリカーボネートジオール及びポリエステルジオール等が挙げられる。
The diol (b12) other than the polymer diol (b11) is a diol and is not included in the polymer diol (b11) described above, but is included in the low molecular diol having 2 to 10 carbon atoms of the chain extender (b13). If it does not have, it will not specifically limit, Specifically, the diol whose number average molecular weight is less than 2,500, and the diol whose number average molecular weight exceeds 15,000 are mentioned.
Examples of the diol include the polyether diol, polycarbonate diol, and polyester diol described above.
 イソシアネート成分(b2)としては、従来ポリウレタン製造に使用されているものが使用できる。このようなイソシアネートには、炭素数(NCO基中の炭素を除く、以下同様)6~20の芳香族ジイソシアネート、炭素数2~18の脂肪族ジイソシアネート、炭素数4~15の脂環式ジイソシアネート、炭素数8~15の芳香脂肪族ジイソシアネート、これらのジイソシアネートの変性体(カーボジイミド変性体、ウレタン変性体、ウレトジオン変性体等)及びこれらの2種以上の混合物が含まれる。 As the isocyanate component (b2), those conventionally used for polyurethane production can be used. Such isocyanates include aromatic diisocyanates having 6 to 20 carbon atoms (excluding carbon in the NCO group, the same shall apply hereinafter), aliphatic diisocyanates having 2 to 18 carbon atoms, alicyclic diisocyanates having 4 to 15 carbon atoms, Examples thereof include araliphatic diisocyanates having 8 to 15 carbon atoms, modified products of these diisocyanates (carbodiimide-modified products, urethane-modified products, uretdione-modified products, etc.) and mixtures of two or more of these.
 上記芳香族ジイソシアネートの具体例としては、1,3-又は1,4-フェニレンジイソシアネート、2,4-又は2,6-トリレンジイソシアネート、2,4’-又は4,4’-ジフェニルメタンジイソシアネート(以下、ジフェニルメタンジイソシアネートをMDIと略記)、4,4’-ジイソシアナトビフェニル、3,3’-ジメチル-4,4’-ジイソシアナトビフェニル、3,3’-ジメチル-4,4’-ジイソシアナトジフェニルメタン、1,5-ナフチレンジイソシアネート等が挙げられる。 Specific examples of the aromatic diisocyanate include 1,3- or 1,4-phenylene diisocyanate, 2,4- or 2,6-tolylene diisocyanate, 2,4′- or 4,4′-diphenylmethane diisocyanate (hereinafter referred to as “the aromatic diisocyanate”). Diphenylmethane diisocyanate is abbreviated as MDI), 4,4'-diisocyanatobiphenyl, 3,3'-dimethyl-4,4'-diisocyanatobiphenyl, 3,3'-dimethyl-4,4'-diisocyanate And natodiphenylmethane and 1,5-naphthylene diisocyanate.
 上記脂肪族ジイソシアネートの具体例としては、エチレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ドデカメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート、2,6-ジイソシアナトメチルカプロエート、ビス(2-イソシアナトエチル)カーボネート、2-イソシアナトエチル-2,6-ジイソシアナトヘキサノエート等が挙げられる。 Specific examples of the aliphatic diisocyanate include ethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, dodecamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, lysine diisocyanate, 2,6-diisocyanatomethylcaproate, Examples thereof include bis (2-isocyanatoethyl) carbonate and 2-isocyanatoethyl-2,6-diisocyanatohexanoate.
 上記脂環式ジイソシアネートの具体例としては、イソホロンジイソシアネート、ジシクロヘキシルメタン-4,4’-ジイソシアネート、シクロヘキシレンジイソシアネート、メチルシクロヘキシレンジイソシアネート、ビス(2-イソシアナトエチル)-4-シクロヘキシレン-1,2-ジカルボキシレート、2,5-又は2,6-ノルボルナンジイソシアネート等が挙げられる。 Specific examples of the alicyclic diisocyanate include isophorone diisocyanate, dicyclohexylmethane-4,4′-diisocyanate, cyclohexylene diisocyanate, methylcyclohexylene diisocyanate, and bis (2-isocyanatoethyl) -4-cyclohexylene-1,2. -Dicarboxylate, 2,5- or 2,6-norbornane diisocyanate and the like.
 上記芳香脂肪族ジイソシアネートの具体例としては、m-又はp-キシリレンジイソシアネート、α,α,α’,α’-テトラメチルキシリレンジイソシアネート等が挙げられる。 Specific examples of the araliphatic diisocyanate include m- or p-xylylene diisocyanate, α, α, α ', α'-tetramethylxylylene diisocyanate, and the like.
 これらのうち好ましいものは芳香族ジイソシアネート及び脂環式ジイソシアネートであり、より好ましいものは芳香族ジイソシアネートであり、さらに好ましいのはMDIである。 Among these, preferred are aromatic diisocyanates and alicyclic diisocyanates, more preferred are aromatic diisocyanates, and still more preferred is MDI.
 ウレタン樹脂(B)が高分子ジオール(b11)及びイソシアネート成分(b2)を含む場合、好ましい(b2)/(b11)の当量比は10/1~30/1であり、より好ましくは11/1~28/1であり、さらに好ましくは15/1~25/1である。イソシアネート成分(b2)の比率が30当量を超えると硬い被膜となる。
 また、ウレタン樹脂(B)が高分子ジオール(b11)、鎖伸長剤(b13)及びイソシアネート成分(b2)を含む場合、(b2)/[(b11)+(b13)]の当量比は通常0.9/1~1.1/1、好ましくは0.95/1~1.05/1である。この範囲外の場合ではウレタン樹脂が充分に高分子量にならないことがある。
When the urethane resin (B) contains the polymer diol (b11) and the isocyanate component (b2), the equivalent ratio of (b2) / (b11) is preferably 10/1 to 30/1, more preferably 11/1. Is 28/1, more preferably 15/1 to 25/1. When the ratio of the isocyanate component (b2) exceeds 30 equivalents, a hard film is formed.
When the urethane resin (B) contains the polymer diol (b11), the chain extender (b13) and the isocyanate component (b2), the equivalent ratio of (b2) / [(b11) + (b13)] is usually 0. 0.9 / 1 to 1.1 / 1, preferably 0.95 / 1 to 1.05 / 1. If it is outside this range, the urethane resin may not have a sufficiently high molecular weight.
 ウレタン樹脂(B)の数平均分子量は、40,000~500,000であることが好ましく、より好ましくは50,000~400,000であり、さらに好ましくは60,000~300,000である。ウレタン樹脂(B)の数平均分子量が40,000未満では被膜の強度が低くなり、500,000を超えると溶液粘度が高くなって、均一な被膜が得られないことがある。 The number average molecular weight of the urethane resin (B) is preferably 40,000 to 500,000, more preferably 50,000 to 400,000, and further preferably 60,000 to 300,000. When the number average molecular weight of the urethane resin (B) is less than 40,000, the strength of the coating is low, and when it exceeds 500,000, the solution viscosity increases and a uniform coating may not be obtained.
 ウレタン樹脂(B)の数平均分子量は、ジメチルホルムアミド(以下DMFと略記)を溶剤として用い、ポリオキシプロピレングリコールを標準物質としてGPCにより測定される。サンプル濃度は0.25重量%、カラム固定相はTSKgel SuperH2000、TSKgel SuperH3000、TSKgel SuperH4000(いずれも東ソー株式会社製)を各1本連結したもの、カラム温度は40℃とすればよい。 The number average molecular weight of the urethane resin (B) is measured by GPC using dimethylformamide (hereinafter abbreviated as DMF) as a solvent and polyoxypropylene glycol as a standard substance. The sample concentration may be 0.25% by weight, the column stationary phase may be TSKgel SuperH2000, TSKgel SuperH3000, TSKgel SuperH4000 (both manufactured by Tosoh Corporation), and the column temperature may be 40 ° C.
 ウレタン樹脂(B)は活性水素成分(b1)とイソシアネート成分(b2)を反応させて製造することができる。
 例えば、活性水素成分(b1)として高分子ジオール(b11)と鎖伸長剤(b13)を用い、イソシアネート成分(b2)と高分子ジオール(b11)と鎖伸長剤(b13)とを同時に反応させるワンショット法や、高分子ジオール(b11)とイソシアネート成分(b2)とを先に反応させた後に鎖伸長剤(b13)を続けて反応させるプレポリマー法が挙げられる。
 また、ウレタン樹脂(B)の製造は、イソシアネート基に対して不活性な溶媒の存在下又は非存在下で行うことができる。溶媒の存在下で行う場合の適当な溶媒としては、アミド系溶媒[DMF、ジメチルアセトアミド、N-メチル-2-ピロリドン(以下NMPと略記)等]、スルホキシド系溶媒(ジメチルスルホキシド等)、ケトン系溶媒(メチルエチルケトン、メチルイソブチルケトン等)、芳香族系溶媒(トルエン、キシレン等)、エーテル系溶媒(ジオキサン、テトラヒドロフラン等)、エステル系溶媒(酢酸エチル、酢酸ブチル等)及びこれらの2種以上の混合物が挙げられる。これらのうち好ましいものはアミド系溶媒、ケトン系溶媒、芳香族系溶媒及びこれらの2種以上の混合物である。
The urethane resin (B) can be produced by reacting the active hydrogen component (b1) and the isocyanate component (b2).
For example, the polymer diol (b11) and the chain extender (b13) are used as the active hydrogen component (b1), and the isocyanate component (b2), the polymer diol (b11), and the chain extender (b13) are reacted simultaneously. Examples thereof include a shot method and a prepolymer method in which the polymer diol (b11) and the isocyanate component (b2) are reacted first and then the chain extender (b13) is reacted continuously.
The urethane resin (B) can be produced in the presence or absence of a solvent inert to the isocyanate group. Suitable solvents when used in the presence of a solvent include amide solvents [DMF, dimethylacetamide, N-methyl-2-pyrrolidone (hereinafter abbreviated as NMP), etc.], sulfoxide solvents (dimethyl sulfoxide, etc.), ketone solvents Solvents (methyl ethyl ketone, methyl isobutyl ketone, etc.), aromatic solvents (toluene, xylene, etc.), ether solvents (dioxane, tetrahydrofuran, etc.), ester solvents (ethyl acetate, butyl acetate, etc.) and mixtures of two or more of these Is mentioned. Among these, amide solvents, ketone solvents, aromatic solvents, and mixtures of two or more thereof are preferable.
 ウレタン樹脂(B)の製造に際し、反応温度はウレタン化反応に通常採用される温度と同じでよく、溶媒を使用する場合は通常20~100℃、無溶媒の場合は通常20~220℃である。 In the production of the urethane resin (B), the reaction temperature may be the same as that normally used for the urethanization reaction, and is usually 20 to 100 ° C. when a solvent is used, and usually 20 to 220 ° C. when no solvent is used. .
 反応を促進させるために必要により、ポリウレタン反応に通常使用される触媒[例えばアミン系触媒(トリエチルアミン、トリエチレンジアミン等)、錫系触媒(ジブチルチンジラウレート等)]を使用することができる。 If necessary to promote the reaction, a catalyst usually used for polyurethane reaction [for example, amine-based catalyst (triethylamine, triethylenediamine, etc.), tin-based catalyst (dibutyltin dilaurate, etc.)] can be used.
 また、必要により重合停止剤[例えば1価アルコール(エタノール、イソプロパノール、ブタノール等)、1価アミン(ジメチルアミン、ジブチルアミン等)等]を用いることもできる。 Further, if necessary, a polymerization terminator [for example, monohydric alcohol (ethanol, isopropanol, butanol, etc.), monovalent amine (dimethylamine, dibutylamine, etc.), etc.] can be used.
 ウレタン樹脂(B)の製造は当該業界において通常採用されている製造装置で行うことができる。また溶媒を使用しない場合はニーダーやエクストルーダー等の製造装置を用いることができる。このようにして製造されるウレタン樹脂(B)は、30重量%(固形分)DMF溶液として測定した溶液粘度が通常1,000~1,000,000mPa・s/20℃であり、実用上好ましいのは1,500~500,000mPa・s/20℃であり、実用上より好ましいのは5,000~100,000mPa・s/20℃である。 Production of the urethane resin (B) can be carried out with a production apparatus usually employed in the industry. When no solvent is used, a manufacturing apparatus such as a kneader or an extruder can be used. The urethane resin (B) produced in this manner has a solution viscosity measured as a 30 wt% (solid content) DMF solution, which is usually 1,000 to 1,000,000 mPa · s / 20 ° C., which is practically preferable. Is 1,500 to 500,000 mPa · s / 20 ° C., and 5,000 to 100,000 mPa · s / 20 ° C. is more preferable in practical use.
 ポリエステル樹脂(C)としては、ポリオールとポリカルボン酸の重縮合物等が挙げられる。
 ポリオールとしては、ジオール(c1)及び3価以上のポリオール(c2)が、ポリカルボン酸としては、ジカルボン酸(c3)及び3価以上のポリカルボン酸(c4)が挙げられる。これらの中では、ジオール(c1)、ジカルボン酸(c3)とともに3価以上のポリオール(c2)及び/又は3価以上のポリカルボン酸(c4)を用いた非線状のポリエステル樹脂が好ましく、(c1)、(c2)、(c3)、(c4)の4成分からなるポリエステル樹脂がより好ましい。
Examples of the polyester resin (C) include a polycondensate of a polyol and a polycarboxylic acid.
Examples of the polyol include a diol (c1) and a trivalent or higher polyol (c2), and examples of the polycarboxylic acid include a dicarboxylic acid (c3) and a trivalent or higher polycarboxylic acid (c4). Among these, a non-linear polyester resin using a diol (c1) and a dicarboxylic acid (c3) together with a trivalent or higher polyol (c2) and / or a trivalent or higher polycarboxylic acid (c4) is preferable. A polyester resin composed of the four components c1), (c2), (c3), and (c4) is more preferable.
 ジオール(c1)としては、アルキレングリコール(エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、ドデカンジオール等);アルキレンエーテルグリコール(DEG、トリエチレングリコール、ジプロピレングリコール、PEG、ポリオキシプロピレングリコール、PTMG等);脂環式ジオール(1,4-シクロヘキサンジメタノール、水素添加ビスフェノールA、水素添加ビスフェノールF等);ビスフェノール類(ビスフェノールA、ビスフェノールF、ビスフェノールS等);上記脂環式ジオールのアルキレンオキサイド(EO、PO、ブチレンオキサイド、スチレンオキサイド、α-オレフィンオキサイド等)付加物;上記ビスフェノール類のアルキレンオキサイド(EO、PO、ブチレンオキサイド、スチレンオキサイド、α-オレフィンオキサイド等)付加物等が挙げられる。これらのうち好ましいものは、炭素数6以上のアルキレングリコール、ビスフェノール類のアルキレンオキサイド付加物、脂環式ジオールであり、より好ましいものはビスフェノール類のPO、ブチレンオキサイド、スチレンオキサイド、α-オレフィンオキサイド付加物、炭素数8以上のアルキレングリコール、水素添加ビスフェノールA、水素添加ビスフェノールF及びこれらの併用である。 Examples of the diol (c1) include alkylene glycol (ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,6-hexanediol, dodecanediol, etc.); alkylene ether glycol ( DEG, triethylene glycol, dipropylene glycol, PEG, polyoxypropylene glycol, PTMG, etc.); alicyclic diol (1,4-cyclohexanedimethanol, hydrogenated bisphenol A, hydrogenated bisphenol F, etc.); bisphenols (bisphenol) A, bisphenol F, bisphenol S, etc.); alkylene oxide (EO, PO, butylene oxide, styrene oxide, α-olefin oxide, etc.) adduct of the above alicyclic diol; Alkylene oxide Nord acids (EO, PO, butylene oxide, styrene oxide, alpha-olefin oxide, etc.) adducts. Among these, preferred are alkylene glycols having 6 or more carbon atoms, alkylene oxide adducts of bisphenols, and alicyclic diols, and more preferred are additions of PO, butylene oxide, styrene oxide, α-olefin oxides of bisphenols. Products, alkylene glycols having 8 or more carbon atoms, hydrogenated bisphenol A, hydrogenated bisphenol F, and combinations thereof.
 3価以上のポリオール(c2)としては、3~8価又はそれ以上の多価脂肪族アルコール(グリセリン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、ソルビトール等);トリスフェノール類(トリスフェノールPA等);ノボラック樹脂(フェノールノボラック、クレゾールノボラック等);上記トリスフェノール類のアルキレンオキサイド付加物;上記ノボラック樹脂のアルキレンオキサイド付加物等が挙げられる。これらのうち好ましいものは、3~8価又はそれ以上の多価脂肪族アルコール及びノボラック樹脂のアルキレンオキサイド付加物であり、より好ましいものはノボラック樹脂のアルキレンオキサイド付加物である。 Examples of the trivalent or higher polyol (c2) include trihydric or higher polyhydric aliphatic alcohols (glycerin, trimethylolethane, trimethylolpropane, pentaerythritol, sorbitol, etc.); trisphenols (trisphenol PA, etc.) ); Novolak resins (phenol novolak, cresol novolak, etc.); alkylene oxide adducts of the above trisphenols; alkylene oxide adducts of the above novolac resins. Among these, preferred are trivalent to octavalent or higher polyhydric aliphatic alcohols and alkylene oxide adducts of novolac resins, and more preferred are alkylene oxide adducts of novolak resins.
 ジカルボン酸(c3)としては、アルキレンジカルボン酸(コハク酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸、オクタデカンジカルボン酸、ドデセニルコハク酸、ペンタデセニルコハク酸、オクタデセニルコハク酸、ダイマー酸等);アルケニレンジカルボン酸(マレイン酸、フマール酸等);芳香族ジカルボン酸(フタル酸、イソフタル酸、テレフタル酸、ナフタレンジカルボン酸等)等が挙げられる。これらのうち好ましいものは、炭素数6~50のアルキレンジカルボン酸、炭素数6~50のアルケニレンジカルボン酸、炭素数8~20の芳香族ジカルボン酸及びこれらの併用であり、より好ましいものは、炭素数7~50のアルキレンジカルボン酸、及びこれらと炭素数8~20の芳香族ジカルボン酸の併用であり、さらに好ましいものは、炭素数16~50のアルケニルコハク酸及びこれらと炭素数8~20の芳香族ジカルボン酸の併用である。 Dicarboxylic acids (c3) include alkylene dicarboxylic acids (succinic acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, octadecanedicarboxylic acid, dodecenylsuccinic acid, pentadecenylsuccinic acid, octadecenylsuccinic acid, dimer Acids); alkenylene dicarboxylic acids (maleic acid, fumaric acid, etc.); aromatic dicarboxylic acids (phthalic acid, isophthalic acid, terephthalic acid, naphthalenedicarboxylic acid, etc.) and the like. Among these, preferred are alkylene dicarboxylic acids having 6 to 50 carbon atoms, alkenylene dicarboxylic acids having 6 to 50 carbon atoms, aromatic dicarboxylic acids having 8 to 20 carbon atoms, and combinations thereof, and more preferred are carbon atoms. An alkylene dicarboxylic acid having 7 to 50 carbon atoms and a combination thereof with an aromatic dicarboxylic acid having 8 to 20 carbon atoms, and more preferable are alkenyl succinic acids having 16 to 50 carbon atoms and those having 8 to 20 carbon atoms. A combination of aromatic dicarboxylic acids.
 3価以上のポリカルボン酸(c4)としては、炭素数9~20の芳香族ポリカルボン酸(トリメリット酸、ピロメリット酸等)、不飽和カルボン酸のビニル重合物(スチレン/マレイン酸共重合物、スチレン/アクリル酸共重合物、α-オレフィン/マレイン酸共重合物、スチレン/フマル酸共重合物等)等が挙げられる。これらのうち好ましいものは、炭素数9~20の芳香族ポリカルボン酸であり、より好ましいものはトリメリット酸である。 Examples of the trivalent or higher polycarboxylic acid (c4) include aromatic polycarboxylic acids having 9 to 20 carbon atoms (trimellitic acid, pyromellitic acid, etc.), vinyl polymers of unsaturated carboxylic acids (styrene / maleic acid copolymer). Styrene / acrylic acid copolymer, α-olefin / maleic acid copolymer, styrene / fumaric acid copolymer, etc.). Of these, aromatic polycarboxylic acids having 9 to 20 carbon atoms are preferred, and trimellitic acid is more preferred.
 なお、ジカルボン酸(c3)又は3価以上のポリカルボン酸(c4)としては、上述のものの酸無水物又は低級アルキルエステル(メチルエステル、エチルエステル、イソプロピルエステル等)を用いてもよい。 In addition, as the dicarboxylic acid (c3) or the trivalent or higher polycarboxylic acid (c4), acid anhydrides or lower alkyl esters (methyl ester, ethyl ester, isopropyl ester, etc.) described above may be used.
 また、(c1)、(c2)、(c3)、(c4)とともにヒドロキシカルボン酸(c5)を共重合することもできる。ヒドロキシカルボン酸(c5)としては、ヒドロキシステアリン酸、硬化ヒマシ油脂肪酸等が挙げられる。 Further, hydroxycarboxylic acid (c5) can be copolymerized with (c1), (c2), (c3) and (c4). Examples of the hydroxycarboxylic acid (c5) include hydroxystearic acid and hardened castor oil fatty acid.
 ポリオールとポリカルボン酸の比率は、水酸基[OH]とカルボキシル基[COOH]の当量比[OH]/[COOH]として、通常2/1~1/2、好ましくは1.5/1~1/1.5、より好ましくは1.3/1~1/1.3である。3価以上のポリオール(c2)及び3価以上のポリカルボン酸(c4)の比率は、(c2)と(c4)のモル数の和が(c1)~(c4)のモル数の合計に対して、通常0~40モル%、好ましくは3~25モル%、より好ましくは、5~20モル%である。(c2)と(c3)とのモル比は、通常0/100~100/0、好ましくは80/20~20/80、より好ましくは、70/30~30/70である。 The ratio of the polyol and the polycarboxylic acid is usually 2/1 to 1/2, preferably 1.5 / 1 to 1/1 / as the equivalent ratio [OH] / [COOH] of the hydroxyl group [OH] and the carboxyl group [COOH]. 1.5, more preferably 1.3 / 1 to 1 / 1.3. The ratio of the trivalent or higher polyol (c2) and the trivalent or higher polycarboxylic acid (c4) is such that the sum of the number of moles of (c2) and (c4) is the sum of the number of moles of (c1) to (c4). In general, it is 0 to 40 mol%, preferably 3 to 25 mol%, more preferably 5 to 20 mol%. The molar ratio of (c2) to (c3) is usually 0/100 to 100/0, preferably 80/20 to 20/80, more preferably 70/30 to 30/70.
 ポリエステル樹脂(C)は、2,000~50,000、より好ましくは3,000~45,000、さらに好ましくは5,000~40,000の数平均分子量を有することが、電解液の吸液の観点で好ましい。 The polyester resin (C) has a number average molecular weight of 2,000 to 50,000, more preferably 3,000 to 45,000, and still more preferably 5,000 to 40,000. From the viewpoint of
 ポリエステル樹脂(C)の数平均分子量は、GPCにより測定される。ポリエステル樹脂(C)の数平均分子量の測定に使用されるGPCの条件は、例えば以下の条件である。
装置:HLC-8220GPC(東ソー株式会社製液体クロマトグラフ)
カラム:TSK gel Super H4000+TSK gel Super H3000+TSK gel Super H2000(いずれも東ソー株式会社製)
カラム温度:40℃
検出器:RI(Refractive Index)
溶媒:テトラヒドロフラン
流速:0.6ml/分
試料濃度:0.25重量%
注入量:10μl
標準:ポリスチレン(東ソー株式会社製;TSK STANDARD POLYSTYRENE)
The number average molecular weight of the polyester resin (C) is measured by GPC. The conditions of GPC used for the measurement of the number average molecular weight of a polyester resin (C) are the following conditions, for example.
Apparatus: HLC-8220GPC (liquid chromatograph manufactured by Tosoh Corporation)
Column: TSK gel Super H4000 + TSK gel Super H3000 + TSK gel Super H2000 (both manufactured by Tosoh Corporation)
Column temperature: 40 ° C
Detector: RI (Refractive Index)
Solvent: Tetrahydrofuran Flow rate: 0.6 ml / min Sample concentration: 0.25 wt%
Injection volume: 10 μl
Standard: Polystyrene (manufactured by Tosoh Corporation; TSK STANDARD POLYSTYRENE)
 ポリエステル樹脂(C)は、ポリカルボン酸とポリオールとを、テトラブトキシチタネート、ジブチルチンオキサイド等公知のエステル化触媒の存在下、150~280℃に加熱し、脱水縮合することで得られる。反応末期の反応速度を向上させるために減圧にすることも有効である。 The polyester resin (C) can be obtained by dehydrating condensation of polycarboxylic acid and polyol by heating to 150 to 280 ° C. in the presence of a known esterification catalyst such as tetrabutoxytitanate or dibutyltin oxide. It is also effective to reduce the pressure in order to improve the reaction rate at the end of the reaction.
 ポリアミド樹脂(D)としては、特に限定されないが、炭素数54の三塩基酸を少なくとも40重量%含有する重合脂肪酸(d1)、炭素数2~4の脂肪族モノカルボン酸(d2)及びエチレンジアミンと炭素数3~9脂肪族ポリアミンとからなるポリアミン(d3)を縮合重合せしめて得られる樹脂が好ましい。 The polyamide resin (D) is not particularly limited, but includes a polymerized fatty acid (d1) containing at least 40% by weight of a tribasic acid having 54 carbon atoms, an aliphatic monocarboxylic acid (d2) having 2 to 4 carbon atoms, and ethylenediamine. A resin obtained by condensation polymerization of a polyamine (d3) composed of an aliphatic polyamine having 3 to 9 carbon atoms is preferred.
 重合脂肪酸(d1)としては、例えばオレイン酸やリノール酸等の不飽和脂肪酸又はこれらの低級アルキルエステル(炭素数1~3)を重合した後、利用価値の高い炭素数36の二塩基酸成分を蒸留により採取した後の残渣でトリマー酸とも呼ばれる、例えば下記のごとき組成のものが挙げられる。
炭素数18の一塩基酸:0~5重量%(好ましくは0~2重量%、より好ましくは0~1重量%)
炭素数36の二塩基酸:60重量%未満(好ましくは50重量%未満、より好ましくは40重量%未満)
炭素数54の三塩基酸:40重量%以上(好ましくは50重量%以上、より好ましくは60重量%以上)
 また、必要により該(d1)の一部を他の三塩基酸もしくは四塩基酸に置き換えても良い。該他の三塩基酸もしくは四塩基酸としては、トリメリット酸、ピロメリット酸、ベンゾフエノンテトラカルボン酸、ブタンテトラカルボン酸(これらの酸無水物、炭素数1~3のアルキルエステルを含む)等が挙げられる。
As the polymerized fatty acid (d1), for example, an unsaturated fatty acid such as oleic acid or linoleic acid or a lower alkyl ester thereof (1 to 3 carbon atoms) is polymerized, and then a dibasic acid component having 36 carbon atoms having high utility value is used. The residue after being collected by distillation, which is also called trimer acid, has the following composition, for example.
Monobasic acid having 18 carbon atoms: 0 to 5% by weight (preferably 0 to 2% by weight, more preferably 0 to 1% by weight)
C36 dibasic acid: less than 60% by weight (preferably less than 50% by weight, more preferably less than 40% by weight)
Tribasic acid having 54 carbon atoms: 40% by weight or more (preferably 50% by weight or more, more preferably 60% by weight or more)
If necessary, a part of (d1) may be replaced with other tribasic acid or tetrabasic acid. Examples of the other tribasic acid or tetrabasic acid include trimellitic acid, pyromellitic acid, benzophenone tetracarboxylic acid, and butanetetracarboxylic acid (including these acid anhydrides and alkyl esters having 1 to 3 carbon atoms). Etc.
 炭素数2~4の脂肪族系モノカルボン酸(d2)としては、酢酸、プロピオン酸及び酪酸が挙げられ、これらはそれぞれ単独もしくは任意の割合で混合して使用することができる。 Examples of the aliphatic monocarboxylic acid having 2 to 4 carbon atoms (d2) include acetic acid, propionic acid and butyric acid, which can be used alone or in a mixture at any ratio.
 (d2)の使用量は、全カルボン酸成分[(d1)+(d2)]に対して通常20~40当量%、好ましくは24~36当量%、より好ましくは26~32当量%である。 The amount of (d2) used is usually 20 to 40 equivalent%, preferably 24 to 36 equivalent%, more preferably 26 to 32 equivalent%, based on the total carboxylic acid component [(d1) + (d2)].
 ポリアミン(d3)を構成する炭素数3~9の脂肪族ポリアミンとしては、ジエチレントリアミン、プロピレンジアミン、ジアミノブタン、ヘキサメチレンジアミン、トリメチルヘキサメチレンジアミン、イミノビスプロピルアミン、メチルイミノビスプロピルアミン等が挙げられる。該(d3)は、エチレンジアミンと炭素数3~9の脂肪族ポリアミンの一種以上の混合物であり、且つ該(d3)に占めるエチレンジアミンの比率は通常60~85当量%、好ましくは70~80当量%である。 Examples of the aliphatic polyamine having 3 to 9 carbon atoms constituting the polyamine (d3) include diethylenetriamine, propylenediamine, diaminobutane, hexamethylenediamine, trimethylhexamethylenediamine, iminobispropylamine, and methyliminobispropylamine. . The (d3) is a mixture of at least one of ethylenediamine and an aliphatic polyamine having 3 to 9 carbon atoms, and the proportion of ethylenediamine in the (d3) is usually 60 to 85 equivalent%, preferably 70 to 80 equivalent%. It is.
 ポリアミド樹脂(D)の数平均分子量は通常3,000~50,000、好ましくは5,000~10,000であり、より好ましくは6,000~9,000である。 The number average molecular weight of the polyamide resin (D) is usually 3,000 to 50,000, preferably 5,000 to 10,000, more preferably 6,000 to 9,000.
 ポリアミド樹脂(D)の数平均分子量は、以下の条件でGPC測定により求めることができる。
装置:HLC-802A(東ソー株式会社製)
カラム:TSK gel GMH6 2本(東ソー株式会社製)
測定温度:40℃
試料溶液:0.25重量%DMF溶液
溶液注入量:200μl
検出装置:RI
標準:ポリスチレン(東ソー株式会社製;TSK STANDARD POLYSTYRENE)
The number average molecular weight of the polyamide resin (D) can be determined by GPC measurement under the following conditions.
Apparatus: HLC-802A (manufactured by Tosoh Corporation)
Column: 2 TSK gel GMH6 (Tosoh Corporation)
Measurement temperature: 40 ° C
Sample solution: 0.25 wt% DMF solution injection amount: 200 μl
Detector: RI
Standard: Polystyrene (manufactured by Tosoh Corporation; TSK STANDARD POLYSTYRENE)
 ポリアミド樹脂(D)の微量融点測定法(JIS K0064-1992,3.2に規定される融点測定方法に準じ、融点測定装置を用いて測定される)による融点は、電池の耐熱性の観点から好ましくは100~150℃、より好ましくは120~130℃である。 The melting point of the polyamide resin (D) measured by a trace melting point method (measured using a melting point measurement device according to the melting point measurement method specified in JIS K0064-1992, 3.2) is from the viewpoint of the heat resistance of the battery. The temperature is preferably 100 to 150 ° C, more preferably 120 to 130 ° C.
 ポリアミド樹脂(D)は、通常の重合脂肪酸系ポリアミド樹脂の製造方法と同じ方法で製造することができる。アミド化縮合重合反応の反応温度は、通常160~250℃、好ましくは180~230℃である。反応は着色を防止するため窒素ガス等の不活性ガス中で行うことが好ましく、反応末期には反応の完結あるいは揮発性成分の除去を促進するため、反応を減圧下で行ってもよい。また、アミド化縮合重合反応後に、メタノール、エタノール、イソプロパノール等のアルコール系溶剤で反応生成物を希釈して溶液状にすることもできる。 The polyamide resin (D) can be produced by the same method as the production method of ordinary polymerized fatty acid polyamide resin. The reaction temperature of the amidation condensation polymerization reaction is usually 160 to 250 ° C., preferably 180 to 230 ° C. The reaction is preferably performed in an inert gas such as nitrogen gas in order to prevent coloring, and at the end of the reaction, the reaction may be performed under reduced pressure in order to promote the completion of the reaction or the removal of volatile components. Further, after the amidation condensation polymerization reaction, the reaction product can be diluted with an alcohol solvent such as methanol, ethanol, isopropanol or the like to form a solution.
 他の樹脂(E)としては、例えば、エポキシ樹脂、ポリイミド樹脂、シリコーン樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、アニリン樹脂、アイオノマー樹脂、ポリカーボネート等が挙げられる。 Examples of other resins (E) include epoxy resins, polyimide resins, silicone resins, phenol resins, melamine resins, urea resins, aniline resins, ionomer resins, polycarbonates, and the like.
 樹脂溶液において使用することのできる溶媒の種類は、被覆用樹脂の種類によって異なるが、例えば、アミド系溶媒(DMF、ジメチルアセトアミド、NMP等)、スルホキシド系溶媒(ジメチルスルホキシド等)、ケトン系溶媒(メチルエチルケトン、メチルイソブチルケトン等)、炭化水素系溶媒(n-ヘキサン、シクロヘキサン、トルエン、キシレン等)、エーテル系溶媒(ジオキサン、テトラヒドロフラン等)、エステル系溶媒(酢酸エチル、酢酸ブチル等)、アルコール系溶媒[例えばメタノール、エタノール、イソプロパノール(以下IPAと略記)、オクタノール等]、水、及びこれらの2種以上の混合物が挙げられる。 The type of solvent that can be used in the resin solution varies depending on the type of coating resin. For example, amide solvents (DMF, dimethylacetamide, NMP, etc.), sulfoxide solvents (dimethyl sulfoxide, etc.), ketone solvents ( Methyl ethyl ketone, methyl isobutyl ketone, etc.), hydrocarbon solvents (n-hexane, cyclohexane, toluene, xylene, etc.), ether solvents (dioxane, tetrahydrofuran, etc.), ester solvents (ethyl acetate, butyl acetate, etc.), alcohol solvents [For example, methanol, ethanol, isopropanol (hereinafter abbreviated as IPA), octanol, etc.], water, and a mixture of two or more of these.
 樹脂溶液は、溶媒中に被覆用樹脂を投入して撹拌する等の方法により調製することができ、その調製方法は特に限定されるものではない。 The resin solution can be prepared by a method such as adding a coating resin in a solvent and stirring, and the preparation method is not particularly limited.
 樹脂溶液の粘度(25℃)は、樹脂溶液をリチウムイオン電池活物質に均一に被覆させる観点から、0.1~10,000mPa・sであることが好ましく、1~8,000mPa・sであることがより好ましく、5~5,000mPa・sであることがさらに好ましい。
 ここで、樹脂溶液の粘度とは、B型粘度計でローターNo.7を用いて、25℃、6回転/分の条件で測定したときの数値である。
The viscosity (25 ° C.) of the resin solution is preferably 0.1 to 10,000 mPa · s, preferably 1 to 8,000 mPa · s, from the viewpoint of uniformly coating the resin solution on the lithium ion battery active material. More preferred is 5 to 5,000 mPa · s.
Here, the viscosity of the resin solution refers to the rotor No. 7 is a numerical value when measured under the conditions of 25 ° C. and 6 rotations / minute.
 樹脂溶液中の樹脂固形分の割合は、適度な粘度を確保する観点から、10~40重量%であることが好ましく、12~36重量%であることがより好ましく、15~34重量%であることがさらに好ましい。 The ratio of the resin solid content in the resin solution is preferably 10 to 40% by weight, more preferably 12 to 36% by weight, and 15 to 34% by weight from the viewpoint of securing an appropriate viscosity. More preferably.
 樹脂溶液を投入することにより、リチウムイオン電池活物質の全体に樹脂溶液を被覆させることができる。また、撹拌しながら樹脂溶液を投入することが好ましい。
 樹脂溶液を投入する際の撹拌条件は特に限定されるものではないが、周速1~30m/sで撹拌させることが好ましく、5~25m/sで撹拌させることがより好ましく、8~20m/sで撹拌させることがさらに好ましい。
なお、本明細書における周速は撹拌翼の先端の速度であり、次式によって計算される。
V=π×Di×N÷60
 但し、Vは翼周速度(m/s)を、Diは撹拌翼の翼径(m)を、Nは回転数(rpm)を、πは円周率を表す。
 撹拌を行う装置としては、撹拌機、万能混合機、プラネタリーミキサー等が挙げられる。
By introducing the resin solution, the entire lithium ion battery active material can be coated with the resin solution. Further, it is preferable to add the resin solution while stirring.
The stirring conditions for charging the resin solution are not particularly limited, but are preferably stirred at a peripheral speed of 1 to 30 m / s, more preferably 5 to 25 m / s, and more preferably 8 to 20 m / s. More preferably, stirring is performed at s.
The peripheral speed in this specification is the speed of the tip of the stirring blade, and is calculated by the following equation.
V = π × Di × N ÷ 60
Where V is the blade circumferential speed (m / s), Di is the blade diameter (m) of the stirring blade, N is the rotational speed (rpm), and π is the circumferential ratio.
Examples of the apparatus for stirring include a stirrer, a universal mixer, and a planetary mixer.
 樹脂溶液の投入速度は特に限定されるものではないが、少量ずつ投入することが好ましい。樹脂溶液を大量に投入すると、樹脂溶液がリチウムイオン電池活物質に局所的に付着してしまい、リチウムイオン電池活物質の全体に樹脂溶液を被覆させることが困難となる。
 樹脂溶液の投入方法としては、滴下、注入等の方法が挙げられる。
 上記条件から樹脂溶液の投入方法としては、例えば、樹脂固形分の割合が10~40重量%である樹脂溶液を、1~90分かけて滴下する方法等が好ましい。
 また、樹脂溶液を投入した後に、樹脂溶液をリチウムイオン電池活物質に均一に被覆させる観点から、撹拌を行うことが好ましい。撹拌条件は樹脂溶液を投入する際の撹拌条件と同様にすることが好ましい。
The charging speed of the resin solution is not particularly limited, but it is preferable to add it little by little. When a large amount of the resin solution is added, the resin solution locally adheres to the lithium ion battery active material, and it becomes difficult to cover the entire lithium ion battery active material with the resin solution.
Examples of the method for charging the resin solution include dropping and pouring.
As a method for charging the resin solution based on the above conditions, for example, a method of dropping a resin solution having a resin solid content of 10 to 40% by weight over 1 to 90 minutes is preferable.
Moreover, it is preferable to perform stirring from the viewpoint of uniformly coating the resin solution on the lithium ion battery active material after the resin solution is added. The stirring conditions are preferably the same as the stirring conditions when charging the resin solution.
 樹脂溶液の投入量は、樹脂溶液中に含まれる被覆用樹脂の固形分重量を考慮して定めることができ、リチウムイオン電池活物質の重量に対して被覆用樹脂の固形分重量の割合が0.05~10重量%であることが好ましく、0.5~10重量%であることがより好ましく、0.8~5重量%であることがさらに好ましく、1~3重量%であることが特に好ましい。 The input amount of the resin solution can be determined in consideration of the solid content weight of the coating resin contained in the resin solution, and the ratio of the solid content weight of the coating resin to the weight of the lithium ion battery active material is 0. 0.05 to 10% by weight, more preferably 0.5 to 10% by weight, still more preferably 0.8 to 5% by weight, and particularly preferably 1 to 3% by weight. preferable.
 また、樹脂溶液をリチウムイオン電池活物質に均一に被覆させる観点から、樹脂溶液の体積V(cm)のリチウムイオン電池活物質の合計表面積S(cm)に対する比率(V/S)は、0.0000001~0.0001であることが好ましく、0.000001~0.00008であることがより好ましく、0.00001~0.00006であることがさらに好ましい。
 ここで、リチウムイオン電池活物質の合計表面積は、使用したリチウムイオン電池活物質の重量と比表面積との積から算出したものである。また、比表面積とは、BET比表面積をいうものとする。
Further, from the viewpoint of uniformly covering the lithium ion battery active material with the resin solution, the ratio (V / S) of the volume V (cm 3 ) of the resin solution to the total surface area S (cm 2 ) of the lithium ion battery active material is: It is preferably 0.0000001 to 0.0001, more preferably 0.000001 to 0.00008, and further preferably 0.00001 to 0.00006.
Here, the total surface area of the lithium ion battery active material is calculated from the product of the weight of the lithium ion battery active material used and the specific surface area. The specific surface area refers to the BET specific surface area.
(2)次に、導電助剤を加える。
 これにより、樹脂溶液が付着したリチウムイオン電池活物質の周囲に、さらに導電助剤を付着させることができる。一方、樹脂溶液を投入する前に導電助剤を加えると、導電助剤同士が凝集してしまい、リチウムイオン電池活物質の全体に導電助剤を付着させることが困難となる。
(2) Next, a conductive aid is added.
Thereby, a conductive support agent can be made to adhere further to the circumference | surroundings of the lithium ion battery active material to which the resin solution adhered. On the other hand, if the conductive assistant is added before the resin solution is added, the conductive assistants aggregate together, making it difficult to attach the conductive assistant to the entire lithium ion battery active material.
 導電助剤(X)としては、導電性を有する材料から選択される。
 具体的には、金属[アルミニウム、ステンレス(SUS)、銀、金、銅及びチタン等]、カーボン[グラファイト及びカーボンブラック(アセチレンブラック、ケッチェンブラック、ファーネスブラック、チャンネルブラック、サーマルランプブラック等)等]、及びこれらの混合物等が挙げられるが、これらに限定されるわけではない。
 これらの導電助剤(X)は1種単独で用いてもよいし、2種以上併用してもよい。また、これらの合金又は金属酸化物を用いてもよい。電気的安定性の観点から、好ましくはアルミニウム、ステンレス、カーボン、銀、金、銅、チタン及びこれらの混合物であり、さらに好ましくは銀、金、アルミニウム、ステンレス及びカーボンであり、特に好ましくはカーボンである。またこれらの導電助剤(X)としては、粒子系セラミック材料や樹脂材料の周りに導電性材料[上記した(X)のうち金属のもの]をめっき等でコーティングしたものでもよい。
The conductive auxiliary (X) is selected from materials having conductivity.
Specifically, metals [aluminum, stainless steel (SUS), silver, gold, copper, titanium, etc.], carbon [graphite and carbon black (acetylene black, ketjen black, furnace black, channel black, thermal lamp black, etc.), etc. , And mixtures thereof, but are not limited thereto.
These conductive auxiliary agents (X) may be used individually by 1 type, and may be used together 2 or more types. Further, these alloys or metal oxides may be used. From the viewpoint of electrical stability, aluminum, stainless steel, carbon, silver, gold, copper, titanium and mixtures thereof are preferred, silver, gold, aluminum, stainless steel and carbon are more preferred, and carbon is particularly preferred. is there. Moreover, as these conductive auxiliary agents (X), what coated the electroconductive material [a metal thing among the above-mentioned (X)] by plating etc. around the particulate ceramic material and the resin material may be used.
 導電助剤(X)の形状(形態)は、粒子形態に限られず、粒子形態以外の形態であってもよく、カーボンナノチューブ等、いわゆるフィラー系導電性樹脂組成物として実用化されている形態であってもよい。 The shape (form) of the conductive auxiliary agent (X) is not limited to the particle form, and may be a form other than the particle form, and in a form that is practically used as a so-called filler-based conductive resin composition such as a carbon nanotube. There may be.
 導電助剤(X)の平均粒子径は、特に限定されるものではないが、電池の電気特性の観点から、0.01~10μmであることが好ましく、0.02~5μmであることがより好ましく、0.03~1μmであることがさらに好ましい。なお、本明細書中において、「粒子径」とは、導電助剤(X)の輪郭線上の任意の2点間の距離のうち、最大の距離Lを意味する。「平均粒子径」の値としては、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)等の観察手段を用い、数~数十視野中に観察される粒子の粒子径の平均値として算出される値を採用するものとする。 The average particle diameter of the conductive auxiliary agent (X) is not particularly limited, but is preferably 0.01 to 10 μm and more preferably 0.02 to 5 μm from the viewpoint of the electric characteristics of the battery. Preferably, it is 0.03 to 1 μm. In the present specification, “particle diameter” means the maximum distance L among the distances between any two points on the contour line of the conductive additive (X). The value of “average particle size” is the average value of the particle size of particles observed in several to several tens of fields using an observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). The calculated value shall be adopted.
 加える導電助剤の比率は、リチウムイオン電池活物質の重量に対する導電助剤の重量の割合が0.5~15重量%であることが好ましく、0.5~10重量%であることがより好ましく、0.8~8重量%であることがさらに好ましく、1~5重量%であることが特に好ましい。 The ratio of the conductive auxiliary agent to be added is preferably 0.5 to 15% by weight, more preferably 0.5 to 10% by weight, based on the weight of the lithium ion battery active material. 0.8 to 8% by weight is more preferable, and 1 to 5% by weight is particularly preferable.
 導電助剤の投入は、撹拌しながら行うことが好ましく、撹拌しながら導電助剤を投入する場合の周速は9~90m/sであることが好ましく、12~85m/sであることがより好ましく、14~80m/sであることがさらに好ましい。
 また、導電助剤を加えた後、周速9~90m/sで撹拌する工程を含むことが好ましく、周速が12~85m/sであることがより好ましく、14~80m/sであることがさらに好ましい。
The conductive auxiliary agent is preferably added while stirring, and the peripheral speed when the conductive auxiliary agent is added while stirring is preferably 9 to 90 m / s, more preferably 12 to 85 m / s. It is preferably 14 to 80 m / s.
Further, it is preferable to include a step of stirring at a peripheral speed of 9 to 90 m / s after adding the conductive auxiliary agent, more preferably a peripheral speed of 12 to 85 m / s, and 14 to 80 m / s. Is more preferable.
 導電助剤を加える際の固形分濃度は、70~98重量%であることが好ましく、80~97重量%であることがより好ましく、85~95重量%であることがさらに好ましい。
 導電助剤を加える際の固形分濃度とは、導電助剤が加えられる系(リチウムイオン活物質と被覆用樹脂とを含む混合物)の系中に含まれる固形分の濃度であり、リチウムイオン電池活物質、被覆用樹脂、溶媒及びその他の成分の合計重量に対する固形分の濃度である。
固形分には、リチウムイオン電池活物質、被覆用樹脂の固形成分、及び、その他の成分に含まれる固形分が含まれ、それらの固形分の合計量から固形分濃度を算出する。
The solid content concentration when adding the conductive assistant is preferably 70 to 98% by weight, more preferably 80 to 97% by weight, and still more preferably 85 to 95% by weight.
The solid content concentration when the conductive auxiliary agent is added is the solid content concentration contained in the system of the system to which the conductive auxiliary agent is added (a mixture containing a lithium ion active material and a coating resin). It is the solid content concentration with respect to the total weight of the active material, coating resin, solvent and other components.
The solid content includes the lithium ion battery active material, the solid component of the coating resin, and the solid content contained in other components, and the solid content concentration is calculated from the total amount of the solid content.
(3)続いて、脱溶媒を行うことが好ましい。
 これにより、表面から溶媒が除去されたリチウムイオン電池用被覆活物質を得ることができる。なお、均一に被覆する観点から、導電助剤を加えた後、攪拌しながら脱溶媒を行うことが好ましい。
 導電助剤を加えた後、撹拌しながら脱溶媒を行う場合の周速は2~50m/sであることが好ましく、3~30m/sであることがより好ましく、4~20m/sであることがさらに好ましい。
(3) Subsequently, it is preferable to perform solvent removal.
Thereby, the covering active material for lithium ion batteries from which the solvent was removed from the surface can be obtained. In addition, from the viewpoint of uniform coating, it is preferable to remove the solvent while stirring after adding the conductive additive.
When the solvent is removed with stirring after the addition of the conductive assistant, the peripheral speed is preferably 2 to 50 m / s, more preferably 3 to 30 m / s, and more preferably 4 to 20 m / s. More preferably.
 脱溶媒を行う方法としては、導電助剤を加えた後のリチウムイオン電池用被覆活物質を加熱乾燥する方法、導電助剤を加えた後のリチウムイオン電池用被覆活物質を減圧乾燥する方法、導電助剤を加えた後のリチウムイオン電池用被覆活物質を凍結させて乾燥する方法、及び、これらの方法の組み合わせ等が挙げられる。 As a method for removing the solvent, a method of heating and drying the coated active material for a lithium ion battery after adding a conductive assistant, a method of drying the coated active material for a lithium ion battery after adding a conductive assistant under reduced pressure, Examples thereof include a method of freezing and drying a coating active material for a lithium ion battery after adding a conductive additive, and a combination of these methods.
 脱溶媒の条件は特に限定されないが、例えば、導電助剤を加えた後、撹拌しながら50~200℃に昇温し、0.007~0.04MPaまで減圧した後に10~150分保持することにより脱溶媒を行うことが好ましい。 The conditions for removing the solvent are not particularly limited. For example, after adding a conductive aid, the temperature is raised to 50 to 200 ° C. while stirring, the pressure is reduced to 0.007 to 0.04 MPa, and the mixture is held for 10 to 150 minutes. It is preferable to remove the solvent.
 また、脱溶媒後に、被覆活物質を粉砕しても構わない。これにより、凝集粒子を粉砕することができる。粉砕の方法は特に限定されないが、乾式又は湿式が好ましい。乾式粉砕としては、ジェットミル等が挙げられる。湿式粉砕としては、高速せん断型分散機、サンドグラインダー及びビーズミル等が挙げられる。 The coated active material may be pulverized after the solvent removal. Thereby, the aggregated particles can be pulverized. The method of pulverization is not particularly limited, but dry or wet is preferable. Examples of the dry pulverization include a jet mill. Examples of the wet pulverization include a high-speed shearing disperser, a sand grinder, and a bead mill.
 以上の工程により、リチウムイオン電池活物質の表面の少なくとも一部が被覆用樹脂及び導電助剤を含む被覆剤で被覆されてなるリチウムイオン電池用被覆活物質を製造することができる。 Through the above steps, a coated active material for a lithium ion battery in which at least a part of the surface of the lithium ion battery active material is coated with a coating material containing a coating resin and a conductive additive can be produced.
 本発明の製造方法により製造されたリチウムイオン電池用被覆活物質の体積平均粒子径は、1~80μmが好ましく、1.2~35μmであることがより好ましく、1.5~25μmであることがさらに好ましい。 The volume average particle diameter of the coated active material for a lithium ion battery produced by the production method of the present invention is preferably 1 to 80 μm, more preferably 1.2 to 35 μm, and more preferably 1.5 to 25 μm. Further preferred.
 本明細書において、リチウムイオン電池用被覆活物質の体積平均粒子径は、マイクロトラック法(レーザー回折・散乱法)によって求めた粒度分布における積算値50%での粒径(Dv50)を意味する。マイクロトラック法とは、レーザー光を粒子に照射することによって得られる散乱光を利用して粒度分布を求める方法である。なお、体積平均粒子径の測定には、日機装(株)製のマイクロトラック等を用いることができる。 In the present specification, the volume average particle size of the coated active material for a lithium ion battery means a particle size (Dv50) at an integrated value of 50% in the particle size distribution determined by the microtrack method (laser diffraction / scattering method). The microtrack method is a method for obtaining a particle size distribution using scattered light obtained by irradiating particles with laser light. In addition, Nikkiso Co., Ltd. microtrack etc. can be used for the measurement of a volume average particle diameter.
 上記リチウムイオン電池用被覆活物質を用いて、リチウムイオン電池用の電極を得ることができる。
 さらに、上記リチウムイオン電池用被覆活物質を含む電極を用いて、双極型リチウムイオン電池等のリチウムイオン電池を得ることができる。
An electrode for a lithium ion battery can be obtained using the above-described coated active material for a lithium ion battery.
Furthermore, a lithium ion battery such as a bipolar lithium ion battery can be obtained by using an electrode containing the above-described coated active material for a lithium ion battery.
 次に本発明を実施例によって具体的に説明するが、本発明の主旨を逸脱しない限り本発明は実施例に限定されるものではない。なお、特記しない限り部は重量部、%は重量%を意味する。 Next, the present invention will be specifically described by way of examples. However, the present invention is not limited to the examples without departing from the gist of the present invention. Unless otherwise specified, “part” means “part by weight” and “%” means “% by weight”.
<製造例1>
 撹拌機、温度計、還流冷却管、滴下ロート及び窒素ガス導入管を付した4つ口フラスコに、酢酸エチル83部とメタノール17部とを仕込み68℃に昇温した。次いで、メタクリル酸242.8部、メチルメタクリレート97.1部、2-エチルヘキシルメタクリレート242.8部、酢酸エチル52.1部及びメタノール10.7部を配合したモノマー配合液と、2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.263部を酢酸エチル34.2部に溶解した開始剤溶液とを4つ口フラスコ内に窒素を吹き込みながら、撹拌下、滴下ロートで4時間かけて連続的に滴下してラジカル重合を行った。滴下終了後、2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.583部を酢酸エチル26部に溶解した開始剤溶液を滴下ロートを用いて2時間かけて連続的に追加した。さらに、沸点で重合を4時間継続した。溶媒を除去し、樹脂582部を得た後、イソプロパノールを1,360部加えて、樹脂濃度30重量%のビニル樹脂(A)溶液を得た。
<Production Example 1>
A four-necked flask equipped with a stirrer, thermometer, reflux condenser, dropping funnel and nitrogen gas inlet tube was charged with 83 parts of ethyl acetate and 17 parts of methanol, and the temperature was raised to 68 ° C. Next, a monomer compounded liquid containing 242.8 parts of methacrylic acid, 97.1 parts of methyl methacrylate, 242.8 parts of 2-ethylhexyl methacrylate, 52.1 parts of ethyl acetate and 10.7 parts of methanol, and 2,2′- An initiator solution prepared by dissolving 0.263 parts of azobis (2,4-dimethylvaleronitrile) in 34.2 parts of ethyl acetate and stirring with a dropping funnel over 4 hours while blowing nitrogen into a four-necked flask. The radical polymerization was carried out by dropping continuously. After completion of the dropping, an initiator solution prepared by dissolving 0.583 parts of 2,2′-azobis (2,4-dimethylvaleronitrile) in 26 parts of ethyl acetate was continuously added using a dropping funnel over 2 hours. Furthermore, the polymerization was continued for 4 hours at the boiling point. After removing the solvent to obtain 582 parts of resin, 1,360 parts of isopropanol was added to obtain a vinyl resin (A) solution having a resin concentration of 30% by weight.
<製造例2>
 撹拌機及び温度計を備えた四つ口フラスコに、数平均分子量6,000(水酸基価から計算)のPEG[三洋化成工業(株)製]57.4部、エチレングリコール(EG)8.0部、MDI34.7部及びDMF233部を仕込み、乾燥窒素雰囲気下で70℃で10時間反応させて樹脂濃度30重量%、粘度60,000mPa・s(20℃)のウレタン樹脂(B)溶液を得た。
<Production Example 2>
In a four-necked flask equipped with a stirrer and a thermometer, 57.4 parts of PEG [manufactured by Sanyo Chemical Industries, Ltd.] having a number average molecular weight of 6,000 (calculated from the hydroxyl value), ethylene glycol (EG) 8.0 Part, MDI 34.7 part and DMF 233 part were prepared and reacted at 70 ° C. for 10 hours under a dry nitrogen atmosphere to obtain a urethane resin (B) solution having a resin concentration of 30% by weight and a viscosity of 60,000 mPa · s (20 ° C.). It was.
<製造例3>
 冷却管、撹拌機及び窒素導入管の付いた反応槽中に、ビスフェノールAプロピレンオキサイド2モル付加物673部、フェノールノボラック樹脂(核体数約5個)のプロピレンオキサイド5モル付加物15部、テレフタル酸157部、無水マレイン酸37部、ドデセニルコハク酸無水物152部及びジブチルチンオキサイド2部を入れ、常圧下220℃で8時間反応し、さらに0.001~0.002MPaの減圧で5時間反応した。次いで、これに無水トリメリット酸32部を加えて180℃常圧で2時間反応させてポリエステル樹脂を得た。その後、DMFを加えて、樹脂濃度30重量%のポリエステル樹脂(C)溶液を得た。
<Production Example 3>
In a reaction vessel equipped with a cooling tube, a stirrer and a nitrogen introduction tube, 673 parts of bisphenol A propylene oxide 2 mol adduct, 15 parts of propylene oxide 5 mol adduct of phenol novolac resin (number of nuclei of about 5), terephthalate 157 parts of acid, 37 parts of maleic anhydride, 152 parts of dodecenyl succinic anhydride and 2 parts of dibutyltin oxide were added, reacted at 220 ° C. under normal pressure for 8 hours, and further reacted at reduced pressure of 0.001 to 0.002 MPa for 5 hours. . Next, 32 parts of trimellitic anhydride was added thereto and reacted at 180 ° C. and normal pressure for 2 hours to obtain a polyester resin. Thereafter, DMF was added to obtain a polyester resin (C) solution having a resin concentration of 30% by weight.
<製造例4>
 温度計、撹拌機、窒素導入管、脱水排気管を備えた四ツ口フラスコに、重合脂肪酸〔一塩基酸:1~2%、二塩基酸:50~60%、三塩基酸:42~45%;ユニケマ・インターナショナル製「プリポール1046」〕203.7部(0.7当量)、酢酸18部(0.3当量)、エチレンジアミン24部(0.8当量)及びヘキサメチレンジアミン11.6部(0.2当量)を仕込み、窒素ガス雰囲気中、200~210℃で4時間反応させ淡褐色固体のポリアミド樹脂を得た。その後、NMPを加えて、樹脂濃度30重量%のポリアミド樹脂(D)溶液を得た。
<Production Example 4>
A four-necked flask equipped with a thermometer, a stirrer, a nitrogen introduction tube, and a dehydration exhaust tube was charged with polymerized fatty acid [monobasic acid: 1 to 2%, dibasic acid: 50 to 60%, tribasic acid: 42 to 45]. %; “Pripole 1046” manufactured by Unikema International] 203.7 parts (0.7 equivalents), 18 parts (0.3 equivalents) of acetic acid, 24 parts (0.8 equivalents) of ethylenediamine and 11.6 parts of hexamethylenediamine ( 0.2 equivalents) and reacted in a nitrogen gas atmosphere at 200 to 210 ° C. for 4 hours to obtain a light brown solid polyamide resin. Thereafter, NMP was added to obtain a polyamide resin (D) solution having a resin concentration of 30% by weight.
<実施例1>
 活物質としてLiCoO粉末(日本化学工業株式会社製、CELLSEED C-20F2、体積平均粒子径19μm)96部を万能混合機に入れ、室温、周速11m/sで撹拌した状態で、製造例1で得たビニル樹脂(A)溶液6.7部(樹脂固形分2部)を60分かけて滴下混合し、さらに周速11m/sで10分撹拌した。
 次いで、周速26m/sで撹拌した状態で、導電助剤としてのアセチレンブラック(電気化学工業(株)製)2部を3回に分けて添加し、導電助剤の添加後も撹拌の周速を26m/sに維持して5分間混合した。
次いで撹拌の周速を5m/sに変更し、5分撹拌したままで70℃に昇温し、撹拌の周速を5m/sに維持したまま0.01MPaまで減圧し30分保持して脱溶媒を行った。上記操作により被覆活物質を得た。
なお、導電助剤を加える際の固形分濃度は95重量%であった。
 マイクロトラック(日機装(株)製9320-X100、以下同じ。)を用いて被覆活物質の体積平均粒子径を測定したところ、57μmであった。
 この被覆活物質の製造に用いた樹脂溶液の体積V(cm)のリチウムイオン電池活物質の合計表面積S(cm)に対する比率(V/S)を下記の方法により算出し、その値を表1に示した。
 この被覆活物質を用いて、下記方法により電子伝導性の評価と電子顕微鏡による観察を行った。その結果を表1に示した。
<Example 1>
96 parts of LiCoO 2 powder (manufactured by Nippon Chemical Industry Co., Ltd., CELLSEED C-20F2, volume average particle diameter 19 μm) as an active material was placed in a universal mixer and stirred at room temperature at a peripheral speed of 11 m / s, Production Example 1 6.7 parts of the vinyl resin (A) solution obtained in (2 parts of resin solid content) was dropped and mixed over 60 minutes, and further stirred at a peripheral speed of 11 m / s for 10 minutes.
Next, in a state of stirring at a peripheral speed of 26 m / s, 2 parts of acetylene black (manufactured by Denki Kagaku Kogyo Co., Ltd.) as a conductive auxiliary agent was added in three portions, and after the addition of the conductive auxiliary agent, stirring was continued. The speed was maintained at 26 m / s and mixed for 5 minutes.
Next, the peripheral speed of stirring was changed to 5 m / s, the temperature was raised to 70 ° C. while stirring for 5 minutes, the pressure was reduced to 0.01 MPa while maintaining the peripheral speed of stirring at 5 m / s, and maintained for 30 minutes. Solvent was performed. A coated active material was obtained by the above operation.
In addition, the solid content concentration at the time of adding the conductive assistant was 95% by weight.
When the volume average particle diameter of the coated active material was measured using a microtrack (manufactured by Nikkiso Co., Ltd., 9320-X100, the same applies hereinafter), it was 57 μm.
The ratio (V / S) of the volume V (cm 3 ) of the resin solution used for the production of the coated active material to the total surface area S (cm 2 ) of the lithium ion battery active material is calculated by the following method, and the value is It is shown in Table 1.
Using this coated active material, evaluation of electron conductivity and observation with an electron microscope were performed by the following methods. The results are shown in Table 1.
<実施例2~5>
 実施例1において、アセチレンブラックを添加する際、及び、アセチレンブラックを添加した後の撹拌の周速を共に表1に示すようにそれぞれ10m/s、15m/s、60m/s、85m/sに変更した他は実施例1と同様にして被覆活物質を得た。
 これらの被覆活物質について、比率(V/S)の算出と電子伝導性の評価と電子顕微鏡による観察を実施例1と同様に行い、その結果を表1に示した。また、被覆活物質の体積平均粒子径を測定した結果を表1に示した。
<Examples 2 to 5>
In Example 1, when adding acetylene black and after adding acetylene black, the peripheral speeds of stirring were 10 m / s, 15 m / s, 60 m / s, and 85 m / s, respectively, as shown in Table 1. A coated active material was obtained in the same manner as in Example 1 except for the change.
About these coating | coated active materials, calculation of ratio (V / S), evaluation of electronic conductivity, and observation with an electron microscope were performed similarly to Example 1, and the result was shown in Table 1. The results of measuring the volume average particle diameter of the coated active material are shown in Table 1.
<実施例6~8>
 実施例1において、脱溶媒の際の撹拌の周速を表1に示すようにそれぞれ10m/s、20m/s、40m/sに変更した他は実施例1と同様にして被覆活物質を得た。
 これらの被覆活物質について、比率(V/S)の算出と電子伝導性の評価と電子顕微鏡による観察を実施例1と同様に行い、その結果を表1に示した。また、被覆活物質の体積平均粒子径を測定した結果を表1に示した。
<Examples 6 to 8>
In Example 1, the coated active material was obtained in the same manner as in Example 1 except that the peripheral speed of stirring during desolvation was changed to 10 m / s, 20 m / s, and 40 m / s as shown in Table 1, respectively. It was.
About these coating | coated active materials, calculation of ratio (V / S), evaluation of electronic conductivity, and observation with an electron microscope were performed similarly to Example 1, and the result was shown in Table 1. The results of measuring the volume average particle diameter of the coated active material are shown in Table 1.
<実施例9>
 活物質としてLiCoO粉末(日本化学工業株式会社製、CELLSEED C-20F2、体積平均粒子径19μm)96部を万能混合機に入れ、室温、周速11m/sで撹拌した状態で、製造例1で得たビニル樹脂(A)溶液6.7部(樹脂固形分2部)を60分かけて滴下混合し、さらに周速11m/sで10分撹拌した。
 次いで、周速26m/sで撹拌した状態で、導電助剤としてのアセチレンブラック(電気化学工業(株)製)2部を3回に分けて添加し、導電助剤の添加後も撹拌の周速を26m/sに維持して5分間混合した。
次いで撹拌を止め、静置したままで70℃に昇温し、0.01MPaまで減圧し30分保持して脱溶媒を行った。上記操作により被覆活物質を得た。
 この被覆活物質について、比率(V/S)の算出と電子伝導性の評価と電子顕微鏡による観察を実施例1と同様に行い、その結果を表1に示した。また、被覆活物質の体積平均粒子径を測定した結果を表1に示した。
<Example 9>
96 parts of LiCoO 2 powder (manufactured by Nippon Chemical Industry Co., Ltd., CELLSEED C-20F2, volume average particle diameter 19 μm) as an active material was placed in a universal mixer and stirred at room temperature at a peripheral speed of 11 m / s, Production Example 1 6.7 parts of the vinyl resin (A) solution obtained in (2 parts of resin solid content) was dropped and mixed over 60 minutes, and further stirred at a peripheral speed of 11 m / s for 10 minutes.
Next, in a state of stirring at a peripheral speed of 26 m / s, 2 parts of acetylene black (manufactured by Denki Kagaku Kogyo Co., Ltd.) as a conductive auxiliary agent was added in three portions, and after the addition of the conductive auxiliary agent, stirring was continued. The speed was maintained at 26 m / s and mixed for 5 minutes.
Next, stirring was stopped, and the temperature was raised to 70 ° C. while standing still, and the pressure was reduced to 0.01 MPa and maintained for 30 minutes to remove the solvent. A coated active material was obtained by the above operation.
For this coated active material, calculation of the ratio (V / S), evaluation of electron conductivity, and observation with an electron microscope were carried out in the same manner as in Example 1, and the results are shown in Table 1. The results of measuring the volume average particle diameter of the coated active material are shown in Table 1.
<実施例10>
 活物質としてLiCoO粉末(日本化学工業株式会社製、CELLSEED C-20F2、体積平均粒子径19μm)96部を万能混合機に入れ、室温、周速11m/sで撹拌した状態で、製造例1で得たビニル樹脂(A)溶液6.7部(樹脂固形分2部)とイソプロパノールを10部事前に混合した溶液16.7部を60分かけて滴下混合し、さらに周速11m/sで10分撹拌した。
 その後は実施例1と同様にして被覆活物質を得た。
 この被覆活物質について、比率(V/S)の算出と電子伝導性の評価と電子顕微鏡による観察を実施例1と同様に行い、その結果を表1に示した。また、被覆活物質の体積平均粒子径を測定した結果を表1に示した。
 なお、導電助剤を加える際の固形分濃度は87重量%であった。
<Example 10>
96 parts of LiCoO 2 powder (manufactured by Nippon Chemical Industry Co., Ltd., CELLSEED C-20F2, volume average particle diameter 19 μm) as an active material was placed in a universal mixer and stirred at room temperature at a peripheral speed of 11 m / s, Production Example 1 6.7 parts of the vinyl resin (A) solution obtained in (2 parts of resin solid content) and 16.7 parts of a solution prepared by previously mixing 10 parts of isopropanol were added dropwise over 60 minutes, and the peripheral speed was 11 m / s. Stir for 10 minutes.
Thereafter, a coated active material was obtained in the same manner as in Example 1.
For this coated active material, calculation of the ratio (V / S), evaluation of electron conductivity, and observation with an electron microscope were carried out in the same manner as in Example 1, and the results are shown in Table 1. The results of measuring the volume average particle diameter of the coated active material are shown in Table 1.
In addition, the solid content concentration at the time of adding a conductive support agent was 87 weight%.
<実施例11>
 活物質としてLiCoO粉末(日本化学工業株式会社製、CELLSEED C-20F2、体積平均粒子径19μm)96部を万能混合機に入れ、室温、周速11m/sで撹拌した状態で、製造例1で得たビニル樹脂(A)溶液6.7部(樹脂固形分2部)とイソプロパノールを25部事前に混合した溶液31.7部を60分かけて滴下混合し、さらに周速11m/sで10分撹拌した。
 その後は実施例1と同様にして被覆活物質を得た。
 この被覆活物質について、比率(V/S)の算出と電子伝導性の評価と電子顕微鏡による観察を実施例1と同様に行い、その結果を表1に示した。また、被覆活物質の体積平均粒子径を測定した結果を表1に示した。
なお、導電助剤を加える際の固形分濃度は77重量%であった。
<Example 11>
96 parts of LiCoO 2 powder (manufactured by Nippon Chemical Industry Co., Ltd., CELLSEED C-20F2, volume average particle diameter 19 μm) as an active material was placed in a universal mixer and stirred at room temperature at a peripheral speed of 11 m / s, Production Example 1 6.7 parts of the vinyl resin (A) solution obtained in (2 parts of resin solids) and 31.7 parts of a solution prepared by previously mixing 25 parts of isopropanol were added dropwise over 60 minutes, and the peripheral speed was 11 m / s. Stir for 10 minutes.
Thereafter, a coated active material was obtained in the same manner as in Example 1.
For this coated active material, calculation of the ratio (V / S), evaluation of electron conductivity, and observation with an electron microscope were carried out in the same manner as in Example 1, and the results are shown in Table 1. The results of measuring the volume average particle diameter of the coated active material are shown in Table 1.
The solid content concentration when the conductive auxiliary agent was added was 77% by weight.
<実施例12>
 活物質としてLiCoO粉末(日本化学工業株式会社製、CELLSEED C-20F2、体積平均粒子径19μm)96部を万能混合機に入れ、室温、周速4m/sで撹拌した状態で、製造例1で得たビニル樹脂(A)溶液6.7部(樹脂固形分2部)を60分かけて滴下混合し、さらに周速4m/sで10分撹拌した。
その後は実施例1と同様にして被覆活物質を得た。
 この被覆活物質について、比率(V/S)の算出と電子伝導性の評価と電子顕微鏡による観察を実施例1と同様に行い、その結果を表1に示した。また、被覆活物質の体積平均粒子径を測定した結果を表1に示した。
<Example 12>
96 parts of LiCoO 2 powder (manufactured by Nippon Chemical Industry Co., Ltd., CELLSEED C-20F2, volume average particle size 19 μm) as an active material was placed in a universal mixer and stirred at room temperature at a peripheral speed of 4 m / s, Production Example 1 6.7 parts of the vinyl resin (A) solution obtained in (2 parts of resin solids) was added dropwise and mixed over 60 minutes, and further stirred at a peripheral speed of 4 m / s for 10 minutes.
Thereafter, a coated active material was obtained in the same manner as in Example 1.
For this coated active material, calculation of the ratio (V / S), evaluation of electron conductivity, and observation with an electron microscope were carried out in the same manner as in Example 1, and the results are shown in Table 1. The results of measuring the volume average particle diameter of the coated active material are shown in Table 1.
<実施例13>
 活物質としてLiCoO粉末(日本化学工業株式会社製、CELLSEED C-20F2、体積平均粒子径19μm)96部を万能混合機に入れ、室温、周速7m/sで撹拌した状態で、製造例1で得たビニル樹脂(A)溶液6.7部(樹脂固形分2部)を60分かけて滴下混合し、さらに周速7m/sで10分撹拌した。
その後は実施例1と同様にして被覆活物質を得た。
 この被覆活物質について、比率(V/S)の算出と電子伝導性の評価と電子顕微鏡による観察を実施例1と同様に行い、その結果を表1に示した。また、被覆活物質の体積平均粒子径を測定した結果を表1に示した。
<Example 13>
96 parts of LiCoO 2 powder (manufactured by Nippon Chemical Industry Co., Ltd., CELLSEED C-20F2, volume average particle diameter 19 μm) as an active material was placed in a universal mixer and stirred at room temperature at a peripheral speed of 7 m / s, Production Example 1 6.7 parts of the vinyl resin (A) solution obtained in (2 parts of resin solids) was dropped and mixed over 60 minutes, and further stirred at a peripheral speed of 7 m / s for 10 minutes.
Thereafter, a coated active material was obtained in the same manner as in Example 1.
For this coated active material, calculation of the ratio (V / S), evaluation of electron conductivity, and observation with an electron microscope were carried out in the same manner as in Example 1, and the results are shown in Table 1. The results of measuring the volume average particle diameter of the coated active material are shown in Table 1.
<実施例14>
 LiCoO粉末を92部、ビニル樹脂(A)溶液を13.3部(樹脂固形分4部)、アセチレンブラックを4部用いた他は実施例1と同様にして被覆活物質を作製した。
 マイクロトラックを用いて被覆活物質の体積平均粒子径を測定したところ、72μmであった。
 この被覆活物質について、比率(V/S)の算出と電子伝導性の評価と電子顕微鏡による観察を実施例1と同様に行い、その結果を表1に示した。
<Example 14>
A coated active material was prepared in the same manner as in Example 1 except that 92 parts of LiCoO 2 powder, 13.3 parts of vinyl resin (A) solution (4 parts of resin solid content), and 4 parts of acetylene black were used.
It was 72 micrometers when the volume average particle diameter of the coating active material was measured using the micro track.
For this coated active material, calculation of the ratio (V / S), evaluation of electron conductivity, and observation with an electron microscope were carried out in the same manner as in Example 1, and the results are shown in Table 1.
<実施例15>
 活物質としてLiCoO粉末(日本化学工業株式会社製、CELLSEED C-20F2、体積平均粒子径19μm)98.9部を万能混合機に入れ、室温、周速11m/sで撹拌した状態で、製造例1で得たビニル樹脂(A)溶液0.34部(樹脂固形分0.1部)とイソプロパノールを10部事前に混合した溶液10.34部を60分かけて滴下混合し、さらに周速11m/sで10分撹拌した。
 次いで、周速26m/sで撹拌した状態で、導電助剤としてのアセチレンブラック(電気化学工業(株)製)1部を3回に分けて添加し、導電助剤の添加後も撹拌の周速を26m/sに維持して5分間混合した。
その後は実施例1と同様にして被覆活物質を得た。
 この被覆活物質について、比率(V/S)の算出と電子伝導性の評価と電子顕微鏡による観察を実施例1と同様に行い、その結果を表1に示した。また、被覆活物質の体積平均粒子径を測定した結果を表1に示した。
<Example 15>
98.9 parts of LiCoO 2 powder (manufactured by Nippon Chemical Industry Co., Ltd., CELLSEED C-20F2, volume average particle diameter 19 μm) as an active material is placed in a universal mixer and manufactured with stirring at room temperature and a peripheral speed of 11 m / s. 0.34 parts of the vinyl resin (A) solution obtained in Example 1 (resin solid content 0.1 part) and 10.34 parts of a solution prepared by previously mixing 10 parts of isopropanol were dropped and mixed over 60 minutes, and the peripheral speed was further increased. The mixture was stirred at 11 m / s for 10 minutes.
Next, with stirring at a peripheral speed of 26 m / s, 1 part of acetylene black (manufactured by Denki Kagaku Kogyo Co., Ltd.) as a conductive auxiliary agent was added in three portions, and after the addition of the conductive auxiliary agent, stirring was continued. The speed was maintained at 26 m / s and mixed for 5 minutes.
Thereafter, a coated active material was obtained in the same manner as in Example 1.
For this coated active material, calculation of the ratio (V / S), evaluation of electron conductivity, and observation with an electron microscope were carried out in the same manner as in Example 1, and the results are shown in Table 1. The results of measuring the volume average particle diameter of the coated active material are shown in Table 1.
<実施例16>
 LiCoO粉末を83部、ビニル樹脂(A)溶液を16.7部(樹脂固形分5部)、アセチレンブラックを12部用いた他は実施例1と同様にして被覆活物質を作製した。
 この被覆活物質について、比率(V/S)の算出と電子伝導性の評価と電子顕微鏡による観察を実施例1と同様に行い、その結果を表1に示した。また、被覆活物質の体積平均粒子径を測定した結果を表1に示した。
<Example 16>
A coated active material was prepared in the same manner as in Example 1 except that 83 parts of LiCoO 2 powder, 16.7 parts of vinyl resin (A) solution (5 parts of resin solid content), and 12 parts of acetylene black were used.
For this coated active material, calculation of the ratio (V / S), evaluation of electron conductivity, and observation with an electron microscope were carried out in the same manner as in Example 1, and the results are shown in Table 1. The results of measuring the volume average particle diameter of the coated active material are shown in Table 1.
<実施例17~19>
 ビニル樹脂溶液に代えて、製造例2で得たウレタン樹脂(B)溶液、製造例3で得たポリエステル樹脂(C)溶液、製造例4で得たポリアミド樹脂(D)溶液をそれぞれ用いた他は実施例1と同様にして被覆活物質を作製した。
 マイクロトラックを用いて被覆活物質の体積平均粒子径を測定したところ、それぞれ62μm、64μm、59μmであった。
 これらの被覆活物質について、比率(V/S)の算出と電子伝導性の評価と電子顕微鏡による観察を実施例1と同様に行い、その結果を表1に示した。
<Examples 17 to 19>
In place of the vinyl resin solution, the urethane resin (B) solution obtained in Production Example 2, the polyester resin (C) solution obtained in Production Example 3, and the polyamide resin (D) solution obtained in Production Example 4 were used. A coated active material was prepared in the same manner as in Example 1.
When the volume average particle diameter of the coated active material was measured using Microtrac, they were 62 μm, 64 μm, and 59 μm, respectively.
About these coating | coated active materials, calculation of ratio (V / S), evaluation of electronic conductivity, and observation with an electron microscope were performed similarly to Example 1, and the result was shown in Table 1.
<実施例20>
実施例1のLiCoO粉末(日本化学工業株式会社製、CELLSEED C-20F2)をLiCoO粉末(日本化学工業株式会社製、CELLSEED C-5H、体積平均粒子径6.5μm)に変更したこと以外は、実施例1と同様にして被覆活物質を作製した。
 この被覆活物質について、比率(V/S)の算出と電子伝導性の評価と電子顕微鏡による観察を実施例1と同様に行い、その結果を表1に示した。また、被覆活物質の体積平均粒子径を測定した結果を表1に示した。
<Example 20>
Other than changing the LiCoO 2 powder of Example 1 (Nippon Chemical Industry Co., Ltd., CELLSEED C-20F2) to LiCoO 2 powder (Nippon Chemical Industry Co., Ltd., CELLSEED C-5H, volume average particle diameter 6.5 μm). Produced a coated active material in the same manner as in Example 1.
For this coated active material, calculation of the ratio (V / S), evaluation of electron conductivity, and observation with an electron microscope were carried out in the same manner as in Example 1, and the results are shown in Table 1. The results of measuring the volume average particle diameter of the coated active material are shown in Table 1.
<実施例21>
実施例15のLiCoO粉末(日本化学工業株式会社製、CELLSEED C-20F2)をLiCoO粉末(日本化学工業株式会社製、CELLSEED C-5H、体積平均粒子径6.5μm)に変更したこと以外は、実施例15と同様にして被覆活物質を作製した。
 この被覆活物質について、比率(V/S)の算出と電子伝導性の評価と電子顕微鏡による観察を実施例1と同様に行い、その結果を表1に示した。また、被覆活物質の体積平均粒子径を測定した結果を表1に示した。
<Example 21>
Other than changing the LiCoO 2 powder of Example 15 (Nippon Chemical Industry Co., Ltd., CELLSEED C-20F2) to LiCoO 2 powder (Nippon Chemical Industry Co., Ltd., CELLSEED C-5H, volume average particle size 6.5 μm). Produced a coated active material in the same manner as in Example 15.
For this coated active material, calculation of the ratio (V / S), evaluation of electron conductivity, and observation with an electron microscope were carried out in the same manner as in Example 1, and the results are shown in Table 1. The results of measuring the volume average particle diameter of the coated active material are shown in Table 1.
<比較例1>
 製造例1で得たビニル樹脂(A)溶液6.7部(樹脂固形分2部)を万能混合機に入れ、室温、周速11m/sで撹拌した状態で、LiCoO粉末(日本化学工業株式会社製、CELLSEED C-20F2、体積平均粒子径19μm)96部を投入し、さらに周速11m/sで10分撹拌した。
 次いで、周速26m/sで撹拌した状態でアセチレンブラック2部を3回に分けて添加し、導電助剤の添加後も撹拌の周速を26m/sに維持して5分間混合した。
次いで撹拌の周速を5m/sに変更し、5分撹拌したままで70℃に昇温し、撹拌の周速を5m/sに維持したまま0.01MPaまで減圧し30分保持して脱溶媒を行った。上記操作により被覆活物質を得た。
 マイクロトラックを用いて被覆活物質の体積平均粒子径を測定したところ、95μmであった。
 この被覆活物質について、比率(V/S)の算出と電子伝導性の評価と電子顕微鏡による観察を実施例1と同様に行い、その結果を表1に示した。
<Comparative Example 1>
Put vinyl resin (A) solution 6.7 parts obtained in Production Example 1 (resin solid content 2 parts) in a universal mixer, at room temperature, with stirring state at a peripheral speed of 11m / s, LiCoO 2 powder (Nippon Chemical Industrial 96 parts of CELLSEED C-20F2, volume average particle diameter 19 μm, manufactured by Co., Ltd. were added, and the mixture was further stirred for 10 minutes at a peripheral speed of 11 m / s.
Next, 2 parts of acetylene black was added in three portions while stirring at a peripheral speed of 26 m / s, and the mixture was mixed for 5 minutes while maintaining the peripheral speed of stirring at 26 m / s even after the addition of the conductive aid.
Next, the peripheral speed of stirring was changed to 5 m / s, the temperature was raised to 70 ° C. while stirring for 5 minutes, the pressure was reduced to 0.01 MPa while maintaining the peripheral speed of stirring at 5 m / s, and maintained for 30 minutes. Solvent was performed. A coated active material was obtained by the above operation.
It was 95 micrometers when the volume average particle diameter of the coating active material was measured using the micro track.
For this coated active material, calculation of the ratio (V / S), evaluation of electron conductivity, and observation with an electron microscope were carried out in the same manner as in Example 1, and the results are shown in Table 1.
<比較例2>
 LiCoO粉末(日本化学工業株式会社製、CELLSEED C-20F2、体積平均粒子径19μm)96部を万能混合機に入れ、室温、周速11m/sで撹拌した状態で、アセチレンブラック2部を3回に分けて混合し、さらに周速11m/sで10分撹拌した。
 次いで、撹拌の周速を26m/sに変更し、撹拌した状態で、製造例1で得たビニル樹脂(A)溶液6.7部(樹脂固形分2部)を60分かけて滴下混合した。
 次いで、撹拌の周速を5m/sに変更し、5分撹拌したままで70℃に昇温し、0.01MPaまで減圧し30分保持して脱溶媒を行った。上記操作により被覆活物質を得た。
 マイクロトラックを用いて被覆活物質の体積平均粒子径を測定したところ、45μmであった。
 この被覆活物質について、比率(V/S)の算出と電子伝導性の評価と電子顕微鏡による観察を実施例1と同様に行い、その結果を表1に示した。
<Comparative example 2>
96 parts of LiCoO 2 powder (manufactured by Nippon Kagaku Kogyo Co., Ltd., CELLSEED C-20F2, volume average particle diameter 19 μm) is placed in a universal mixer and stirred at room temperature and a peripheral speed of 11 m / s, and 2 parts of acetylene black is 3 parts. The mixture was divided into two times and further stirred at a peripheral speed of 11 m / s for 10 minutes.
Subsequently, the peripheral speed of stirring was changed to 26 m / s, and 6.7 parts of the vinyl resin (A) solution obtained in Production Example 1 (2 parts of resin solid content) was dropped and mixed over 60 minutes while stirring. .
Next, the peripheral speed of stirring was changed to 5 m / s, the temperature was raised to 70 ° C. while stirring for 5 minutes, the pressure was reduced to 0.01 MPa, and the solvent was removed for 30 minutes. A coated active material was obtained by the above operation.
It was 45 micrometers when the volume average particle diameter of the coating active material was measured using the micro track.
For this coated active material, calculation of the ratio (V / S), evaluation of electron conductivity, and observation with an electron microscope were carried out in the same manner as in Example 1, and the results are shown in Table 1.
<比較例3>
 樹脂溶液及びアセチレンブラックを使用せず、被覆活物質を作製しなかった。
 被覆していない活物質[LiCoO粉末(日本化学工業株式会社製、CELLSEED C-20F2、体積平均粒子径19μm)]を用いて、下記方法により電子伝導性の評価を行った。その結果を表1に示した。
<Comparative Example 3>
The resin solution and acetylene black were not used, and no coated active material was produced.
Using an uncoated active material [LiCoO 2 powder (manufactured by Nippon Chemical Industry Co., Ltd., CELLSEED C-20F2, volume average particle diameter 19 μm)], the electronic conductivity was evaluated by the following method. The results are shown in Table 1.
<比較例4>
樹脂溶液及びアセチレンブラックを使用せず、被覆活物質を作製しなかった。
 被覆していない活物質[LiCoO粉末(日本化学工業株式会社製、CELLSEED C-5H、体積平均粒子径6.5μm)]を用いて、下記方法により電子伝導性の評価を行った。その結果を表1に示した。
<Comparative example 4>
The resin solution and acetylene black were not used, and no coated active material was produced.
Using the uncoated active material [LiCoO 2 powder (manufactured by Nippon Chemical Industry Co., Ltd., CELLSEED C-5H, volume average particle size 6.5 μm)], the electronic conductivity was evaluated by the following method. The results are shown in Table 1.
[樹脂溶液の体積V(cm)のリチウムイオン電池活物質の合計表面積S(cm)に対する比率(V/S)]
 樹脂溶液の体積V(cm)は、樹脂溶液の密度(cm/g)をメスフラスコを用いて測定し、使用した樹脂溶液の重量(g)と密度との積により算出した。
 また、リチウムイオン電池活物質の合計表面積S(cm)は、リチウムイオン電池活物質のBET比表面積(cm/g)を下記条件により測定し、仕込んだリチウムイオン電池活物質の重量(g)とBET比表面積との積により算出した。
 算出したV、Sを用いて、樹脂溶液の体積V(cm)のリチウムイオン電池活物質の合計表面積S(cm)に対する比率(V/S)を算出した。結果を表1に示す。
 <BET比表面積の測定条件>
 測定装置:マイクロメリテックス社 ASAP-2010
 吸着ガス:N
 死容積測定ガス:He
 吸着温度:77K(液体窒素温度)
 測定前処理:200℃12時間真空乾燥(Heパージ後測定ステージにセット)
 測定モード:等温での吸着過程及び脱着過程
 測定相対圧P/P0 約0~0.99
 平衡設定時間:1相対圧につき180sec
[Ratio (V / S) of resin solution volume V (cm 3 ) to total surface area S (cm 2 ) of lithium ion battery active material]
The volume V (cm 3 ) of the resin solution was obtained by measuring the density (cm 3 / g) of the resin solution using a measuring flask and calculating the product of the weight (g) of the resin solution used and the density.
The total surface area S (cm 2 ) of the lithium ion battery active material is determined by measuring the BET specific surface area (cm 2 / g) of the lithium ion battery active material under the following conditions, and the weight (g ) And the BET specific surface area.
Using the calculated V and S, the ratio (V / S) of the volume V (cm 3 ) of the resin solution to the total surface area S (cm 2 ) of the lithium ion battery active material was calculated. The results are shown in Table 1.
<Measurement conditions of BET specific surface area>
Measuring device: Micromeritex ASAP-2010
Adsorption gas: N 2
Dead volume measuring gas: He
Adsorption temperature: 77K (liquid nitrogen temperature)
Pre-measurement treatment: vacuum drying at 200 ° C. for 12 hours (set on measurement stage after He purge)
Measurement mode: Isothermal adsorption process and desorption process Measurement relative pressure P / P0 about 0 to 0.99
Equilibrium setting time: 180 sec per relative pressure
[電子伝導性の評価1:活物質間の直流抵抗]
 電子伝導性の指標として、活物質間の直流抵抗を測定し、結果を表1に記載した。なお、以下の説明において、「活物質」とは、実施例1~21及び比較例1~2で得た被覆活物質、又は、比較例3若しくは4で用いた活物質である。
 内径が15mm、高さが30mmであるポリプロピレン製円筒の内部に、活物質を30mg入れ、50回タップした。活物質をさらにSUS316製円筒で挟み、100kNの圧力をかけた。円筒を外し、電気化学測定装置(ソーラトロン社製1280C)を使用して、円柱塊状に成形した活物質の上下の抵抗値を測定した。
[Evaluation of electronic conductivity 1: DC resistance between active materials]
The direct current resistance between the active materials was measured as an index of electronic conductivity, and the results are shown in Table 1. In the following description, “active material” is the coated active material obtained in Examples 1 to 21 and Comparative Examples 1 or 2, or the active material used in Comparative Example 3 or 4.
30 mg of the active material was put inside a polypropylene cylinder having an inner diameter of 15 mm and a height of 30 mm, and tapped 50 times. The active material was further sandwiched between SUS316 cylinders, and a pressure of 100 kN was applied. The cylinder was removed, and the upper and lower resistance values of the active material formed into a cylindrical lump shape were measured using an electrochemical measuring device (1280C manufactured by Solartron).
[電子伝導性の評価2:直流抵抗の減少率]
活物質間の直流抵抗の値を用いて被覆前後での活物質間の直流抵抗の減少率を以下の計算式で算出し、結果を表1に記載した。減少率が大きいほど被覆処理による効果が大きいことを意味する。
[直流抵抗の減少率(%)]={[被覆処理前の活物質の直流抵抗(Ω)]-[被覆活物質の直流抵抗(Ω)]}÷[被覆処理前の活物質の直流抵抗(Ω)]×100
被覆処理前の活物質の直流抵抗の値としては、実施例1~19に対しては比較例3の活物質の直流抵抗値を用い、実施例20、21に対しては比較例4の活物質の直流抵抗値を用いた。
[Electron conductivity evaluation 2: DC resistance reduction rate]
Using the value of the direct current resistance between the active materials, the reduction rate of the direct current resistance between the active materials before and after coating was calculated by the following formula, and the results are shown in Table 1. The larger the reduction rate, the greater the effect of the coating process.
[DC resistance decrease rate (%)] = {[DC resistance of active material before coating treatment (Ω)] − [DC resistance of coated active material (Ω)]} ÷ [DC resistance of active material before coating treatment] (Ω)] × 100
As the DC resistance value of the active material before the coating treatment, the DC resistance value of the active material of Comparative Example 3 is used for Examples 1 to 19, and the active material of Comparative Example 4 is used for Examples 20 and 21. The DC resistance value of the material was used.
[電子顕微鏡による観察]
 走査型電子顕微鏡(SEM、日立ハイテクノロジーズ社製S-4800)を使用して、実施例1~21及び比較例1~2で得た被覆活物質の粒子の状態を観察し、結果を表1に記載した。
[Observation with electron microscope]
Using a scanning electron microscope (SEM, Hitachi High-Technologies S-4800), the state of the particles of the coated active material obtained in Examples 1-21 and Comparative Examples 1-2 was observed, and the results are shown in Table 1. It was described in.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の「樹脂溶液投入条件」の項には樹脂溶液を投入する際の撹拌の周速を示し、導電助剤を投入する際の固形分濃度、及び、導電助剤を加えた後の撹拌の周速についても、「導電助剤投入条件」という項目にまとめて示した。「脱溶媒条件」の項には脱溶媒の際の撹拌の周速を示した。実施例9では脱溶媒の際に撹拌を行わなかったため「静置乾燥」とした。
 表1に示す「被覆活物質粒子径」は、被覆活物質の体積平均粒子径である。
 表1に示された結果から、リチウムイオン電池活物質の表面を被覆用樹脂及び導電助剤で被覆することにより、活物質間の直流抵抗を低下させることができ、電子伝導性を向上させることができることがわかる。特に、本発明の製造方法でリチウムイオン電池用被覆活物質を製造することにより、被覆用樹脂及び導電助剤をリチウムイオン電池活物質の表面に均一に被覆させることができ、電子伝導性をより向上させることがわかる。
The “resin solution charging conditions” section of Table 1 shows the peripheral speed of stirring when charging the resin solution, the solid content concentration when charging the conductive assistant, and the stirring after adding the conductive assistant. The peripheral speed was also summarized in the item “Conductive auxiliary agent charging conditions”. The "desolvent conditions" section shows the peripheral speed of stirring during desolvation. In Example 9, since stirring was not performed during the solvent removal, it was determined to be “static drying”.
The “coated active material particle diameter” shown in Table 1 is the volume average particle diameter of the coated active material.
From the results shown in Table 1, by coating the surface of the lithium ion battery active material with a coating resin and a conductive additive, the direct current resistance between the active materials can be reduced, and the electron conductivity can be improved. You can see that In particular, by producing a coating active material for a lithium ion battery by the production method of the present invention, the surface of the lithium ion battery active material can be uniformly coated with the coating resin and the conductive auxiliary agent, and the electron conductivity is further improved. It turns out that it improves.
 本発明により得られるリチウムイオン電池用被覆活物質は、特に、携帯電話、パーソナルコンピューター及びハイブリッド自動車、電気自動車用に用いられる双極型二次電池用及びリチウムイオン二次電池用等の活物質として有用である。 The coated active material for a lithium ion battery obtained by the present invention is particularly useful as an active material for a mobile phone, a personal computer and a hybrid vehicle, a bipolar secondary battery and a lithium ion secondary battery used for an electric vehicle. It is.

Claims (11)

  1. リチウムイオン電池活物質の表面の少なくとも一部が被覆用樹脂及び導電助剤を含む被覆剤で被覆されてなるリチウムイオン電池用被覆活物質の製造方法であって、
    前記リチウムイオン電池活物質の存在下、前記被覆用樹脂を含む樹脂溶液を投入し、その後、前記導電助剤を加えることを特徴とするリチウムイオン電池用被覆活物質の製造方法。
    A method for producing a coating active material for a lithium ion battery, wherein at least part of the surface of the lithium ion battery active material is coated with a coating agent containing a coating resin and a conductive auxiliary agent,
    A method for producing a coating active material for a lithium ion battery, comprising adding a resin solution containing the coating resin in the presence of the lithium ion battery active material and then adding the conductive additive.
  2. 前記リチウムイオン電池用被覆活物質の体積平均粒子径が1~80μmである請求項1に記載のリチウムイオン電池用被覆活物質の製造方法。 2. The method for producing a coated active material for a lithium ion battery according to claim 1, wherein the coated active material for the lithium ion battery has a volume average particle diameter of 1 to 80 μm.
  3. 前記導電助剤を加える際の固形分濃度が70~98重量%である請求項1又は2に記載のリチウムイオン電池用被覆活物質の製造方法。 The method for producing a coated active material for a lithium ion battery according to claim 1 or 2, wherein a solid content concentration when the conductive auxiliary agent is added is 70 to 98% by weight.
  4. 前記樹脂溶液の体積V(cm)の前記リチウムイオン電池活物質の合計表面積S(cm)に対する比率(V/S)が0.0000001~0.0001である請求項1~3のいずれかに記載のリチウムイオン電池用被覆活物質の製造方法。 The ratio (V / S) of the volume V (cm 3 ) of the resin solution to the total surface area S (cm 2 ) of the lithium ion battery active material is 0.0000001 to 0.0001. The manufacturing method of the covering active material for lithium ion batteries as described in any one of.
  5. 前記リチウムイオン電池活物質の重量に対する前記樹脂溶液に含まれる被覆用樹脂の固形分重量の割合が0.05~10重量%である請求項1~4のいずれかに記載のリチウムイオン電池用被覆活物質の製造方法。 The coating for a lithium ion battery according to any one of claims 1 to 4, wherein the ratio of the solid content weight of the coating resin contained in the resin solution to the weight of the lithium ion battery active material is 0.05 to 10% by weight. A method for producing an active material.
  6. 前記リチウムイオン電池活物質の重量に対する前記導電助剤の重量の割合が0.5~15重量%である請求項1~5のいずれかに記載のリチウムイオン電池用被覆活物質の製造方法。 The method for producing a coated active material for a lithium ion battery according to any one of claims 1 to 5, wherein a ratio of the weight of the conductive additive to the weight of the lithium ion battery active material is 0.5 to 15% by weight.
  7. 前記導電助剤を加えた後、周速9~90m/sで撹拌する工程を含む請求項1~6のいずれかに記載のリチウムイオン電池用被覆活物質の製造方法。 The method for producing a coated active material for a lithium ion battery according to any one of claims 1 to 6, further comprising a step of stirring at a peripheral speed of 9 to 90 m / s after adding the conductive assistant.
  8. 前記導電助剤を加えた後、脱溶媒を行う工程を含む請求項1~7のいずれかに記載のリチウムイオン電池用被覆活物質の製造方法。 The method for producing a coated active material for a lithium ion battery according to any one of claims 1 to 7, further comprising a step of removing the solvent after adding the conductive assistant.
  9. 前記導電助剤を加えた後、前記脱溶媒を周速2~50m/sで撹拌しながら行う請求項8に記載のリチウムイオン電池用被覆活物質の製造方法。 The method for producing a coated active material for a lithium ion battery according to claim 8, wherein after the addition of the conductive aid, the solvent removal is performed with stirring at a peripheral speed of 2 to 50 m / s.
  10. 前記リチウムイオン電池活物質の存在下、撹拌しながら前記被覆用樹脂を含む樹脂溶液を投入する請求項1~9のいずれかに記載のリチウムイオン電池用被覆活物質の製造方法。 The method for producing a coated active material for a lithium ion battery according to any one of claims 1 to 9, wherein a resin solution containing the coated resin is added while stirring in the presence of the lithium ion battery active material.
  11. 前記被覆用樹脂を含む樹脂溶液を投入する際の撹拌の周速が1~30m/sである請求項10に記載のリチウムイオン電池用被覆活物質の製造方法。 The method for producing a coated active material for a lithium ion battery according to claim 10, wherein the peripheral speed of stirring when the resin solution containing the coating resin is added is 1 to 30 m / s.
PCT/JP2014/074303 2013-09-18 2014-09-12 Method for manufacturing coated active material for use in lithium-ion battery WO2015041184A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015537907A JP6235028B2 (en) 2013-09-18 2014-09-12 Method for producing coated active material for lithium ion battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013193175 2013-09-18
JP2013-193175 2013-09-18

Publications (1)

Publication Number Publication Date
WO2015041184A1 true WO2015041184A1 (en) 2015-03-26

Family

ID=52688834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074303 WO2015041184A1 (en) 2013-09-18 2014-09-12 Method for manufacturing coated active material for use in lithium-ion battery

Country Status (2)

Country Link
JP (1) JP6235028B2 (en)
WO (1) WO2015041184A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017010883A (en) * 2015-06-25 2017-01-12 三洋化成工業株式会社 Resin for coating nonaqueous secondary battery active substance, coating active substance for nonaqueous secondary battery, and method for manufacturing nonaqueous secondary battery active substance
JP2017188455A (en) * 2016-03-31 2017-10-12 三洋化成工業株式会社 Coated positive electrode active material for lithium ion battery
JP2017188454A (en) * 2016-03-31 2017-10-12 三洋化成工業株式会社 Coated positive electrode active material for lithium ion battery
JP2018085177A (en) * 2016-11-21 2018-05-31 トヨタ自動車株式会社 Method for manufacturing mass of granulated material, method for manufacturing electrode plate, and method for manufacturing battery
JP2018101625A (en) * 2016-12-20 2018-06-28 三洋化成工業株式会社 Lithium-ion battery negative electrode
JP2018137222A (en) * 2017-02-22 2018-08-30 三洋化成工業株式会社 Coated positive electrode active material for lithium ion battery
JPWO2017110710A1 (en) * 2015-12-25 2018-10-11 東レ株式会社 Resin composition

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05283064A (en) * 1992-03-30 1993-10-29 Shin Kobe Electric Mach Co Ltd Manufacture of electrode mix for battery
WO2009041394A1 (en) * 2007-09-27 2009-04-02 Sanyo Electric Co., Ltd. Separator for nonaqueous electrolyte battery and nonaqueous electrolyte battery
WO2009128410A1 (en) * 2008-04-17 2009-10-22 トヨタ自動車株式会社 Lithium secondary battery and production method thereof
JP2011008965A (en) * 2009-06-23 2011-01-13 Toyota Motor Corp Manufacturing method for positive electrode of lithium ion secondary battery, and lithium ion secondary battery
JP2012129126A (en) * 2010-12-17 2012-07-05 Hitachi Maxell Energy Ltd Method of producing electrode paint of lithium ion secondary battery using continuous biaxial kneader
WO2013136828A1 (en) * 2012-03-16 2013-09-19 日立ビークルエナジー株式会社 Method for producing positive electrode mix, and lithium ion secondary battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004039539A (en) * 2002-07-05 2004-02-05 Toda Kogyo Corp Positive electrode active material for secondary battery
WO2012099149A1 (en) * 2011-01-20 2012-07-26 東レ株式会社 Porous laminate film, separator for electricity storage device, and electricity storage device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05283064A (en) * 1992-03-30 1993-10-29 Shin Kobe Electric Mach Co Ltd Manufacture of electrode mix for battery
WO2009041394A1 (en) * 2007-09-27 2009-04-02 Sanyo Electric Co., Ltd. Separator for nonaqueous electrolyte battery and nonaqueous electrolyte battery
WO2009128410A1 (en) * 2008-04-17 2009-10-22 トヨタ自動車株式会社 Lithium secondary battery and production method thereof
JP2011008965A (en) * 2009-06-23 2011-01-13 Toyota Motor Corp Manufacturing method for positive electrode of lithium ion secondary battery, and lithium ion secondary battery
JP2012129126A (en) * 2010-12-17 2012-07-05 Hitachi Maxell Energy Ltd Method of producing electrode paint of lithium ion secondary battery using continuous biaxial kneader
WO2013136828A1 (en) * 2012-03-16 2013-09-19 日立ビークルエナジー株式会社 Method for producing positive electrode mix, and lithium ion secondary battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017010883A (en) * 2015-06-25 2017-01-12 三洋化成工業株式会社 Resin for coating nonaqueous secondary battery active substance, coating active substance for nonaqueous secondary battery, and method for manufacturing nonaqueous secondary battery active substance
JPWO2017110710A1 (en) * 2015-12-25 2018-10-11 東レ株式会社 Resin composition
JP2017188455A (en) * 2016-03-31 2017-10-12 三洋化成工業株式会社 Coated positive electrode active material for lithium ion battery
JP2017188454A (en) * 2016-03-31 2017-10-12 三洋化成工業株式会社 Coated positive electrode active material for lithium ion battery
JP2018085177A (en) * 2016-11-21 2018-05-31 トヨタ自動車株式会社 Method for manufacturing mass of granulated material, method for manufacturing electrode plate, and method for manufacturing battery
US10897036B2 (en) 2016-11-21 2021-01-19 Toyota Jidosha Kabushiki Kaisha Method of producing granular aggregate, method of producing electrode plate, and method of producing battery
JP2018101625A (en) * 2016-12-20 2018-06-28 三洋化成工業株式会社 Lithium-ion battery negative electrode
JP7121449B2 (en) 2016-12-20 2022-08-18 三洋化成工業株式会社 Anode for lithium-ion batteries
JP2018137222A (en) * 2017-02-22 2018-08-30 三洋化成工業株式会社 Coated positive electrode active material for lithium ion battery
JP7058515B2 (en) 2017-02-22 2022-04-22 三洋化成工業株式会社 Coated positive electrode active material for lithium-ion batteries

Also Published As

Publication number Publication date
JPWO2015041184A1 (en) 2017-03-02
JP6235028B2 (en) 2017-11-22

Similar Documents

Publication Publication Date Title
JP6204472B2 (en) Coated active material particles for lithium ion batteries
JP6235028B2 (en) Method for producing coated active material for lithium ion battery
JP6178493B2 (en) Coated negative electrode active material for lithium ion battery, slurry for lithium ion battery, negative electrode for lithium ion battery, lithium ion battery, and method for producing coated negative electrode active material for lithium ion battery
EP3104445B1 (en) Non-aqueous electrolyte secondary battery
JP6797734B2 (en) Coated negative electrode active material for lithium-ion batteries
JP5320972B2 (en) Positive electrode mixture paste for lithium secondary battery
JP7042578B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using it
EP3561910B1 (en) Lithium-ion battery negative electrode
JP6896478B2 (en) Coating active material for lithium-ion batteries
JP6793585B2 (en) Coated positive electrode active material for lithium-ion batteries
JP6051929B2 (en) Secondary battery electrode forming composition, secondary battery electrode, and secondary battery
JP6896477B2 (en) Coated negative electrode active material for lithium-ion batteries
JP6348498B2 (en) Method for producing coated active material for lithium ion battery
JP6896479B2 (en) Coated positive electrode active material for lithium-ion batteries
JP2010055968A (en) Positive electrode mixture paste for lithium secondary battery
JP6802745B2 (en) Coated positive electrode active material for lithium-ion batteries
JP2022094109A (en) Manufacturing method of electrode for lithium-ion secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14845167

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015537907

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14845167

Country of ref document: EP

Kind code of ref document: A1