JP2017010883A - Resin for coating nonaqueous secondary battery active substance, coating active substance for nonaqueous secondary battery, and method for manufacturing nonaqueous secondary battery active substance - Google Patents

Resin for coating nonaqueous secondary battery active substance, coating active substance for nonaqueous secondary battery, and method for manufacturing nonaqueous secondary battery active substance Download PDF

Info

Publication number
JP2017010883A
JP2017010883A JP2015127842A JP2015127842A JP2017010883A JP 2017010883 A JP2017010883 A JP 2017010883A JP 2015127842 A JP2015127842 A JP 2015127842A JP 2015127842 A JP2015127842 A JP 2015127842A JP 2017010883 A JP2017010883 A JP 2017010883A
Authority
JP
Japan
Prior art keywords
secondary battery
active material
resin
coating
aqueous secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015127842A
Other languages
Japanese (ja)
Other versions
JP6572016B2 (en
Inventor
英起 西村
Hideki Nishimura
英起 西村
水野 雄介
Yusuke Mizuno
雄介 水野
都藤 靖泰
Yasuhiro Tsudo
靖泰 都藤
康裕 進藤
Yasuhiro Shindo
康裕 進藤
雄樹 草地
Takeki Kusachi
雄樹 草地
大澤 康彦
Yasuhiko Osawa
康彦 大澤
佐藤 一
Hajime Sato
一 佐藤
赤間 弘
Hiroshi Akama
弘 赤間
堀江 英明
Hideaki Horie
英明 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Sanyo Chemical Industries Ltd
Original Assignee
Nissan Motor Co Ltd
Sanyo Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, Sanyo Chemical Industries Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2015127842A priority Critical patent/JP6572016B2/en
Publication of JP2017010883A publication Critical patent/JP2017010883A/en
Application granted granted Critical
Publication of JP6572016B2 publication Critical patent/JP6572016B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a resin for coating a nonaqueous secondary battery active substance capable of manufacturing a lithium ion secondary battery which has a low internal resistance of a battery and can keep excellent cycle characteristics, and to provide an active substance covering the same.SOLUTION: There is provided a resin for coating a nonaqueous secondary battery active substance which is formed by polymerization of a monomer composition containing an ester compound (a11) of monovalent aliphatic alcohol having 4 to 12 carbon atoms and a (meth)acrylic acid and a (meth)acrylic acid (a12), where a weight ratio [ester compound (a11)/(meth)acrylic acid (a12)] of the ester compound (a11) and the (meth)acrylic acid (a12) is 10/90 to 90/10.SELECTED DRAWING: None

Description

本発明は、非水系二次電池活物質被覆用樹脂、非水系二次電池用被覆活物質及び非水系二次電池用被覆活物質の製造方法に関する。 The present invention relates to a resin for coating a non-aqueous secondary battery active material, a coating active material for a non-aqueous secondary battery, and a method for producing a coated active material for a non-aqueous secondary battery.

リチウムイオン二次電池に代表される非水系二次電池は、一般に、正極又は負極活物質とバインダーと溶媒とを含むスラリーを正極用又は負極用集電体にそれぞれ塗布して電極を構成している。
バインダーには活物質及び導電助剤との密着性、電解液との親和性並びに耐高電圧分解性等が必要であり、正極で用いられる耐高電圧分解性に優れたバインダーとしてはポリフッ化ビニリデン(以下、PVdFと略記する)があり、負極では活物質や導電助剤との密着性の高いバインダーとしてスチレン・ブタジエンゴム(以下、SBRと略記する)及びカルボキシメチルセルロース(以下、CMCと略記する)が使用されている。
A non-aqueous secondary battery represented by a lithium ion secondary battery generally comprises an electrode formed by applying a slurry containing a positive electrode or negative electrode active material, a binder and a solvent to a current collector for a positive electrode or a negative electrode, respectively. Yes.
The binder must have adhesion to the active material and conductive aid, affinity with the electrolyte, and high voltage decomposition resistance. As a binder excellent in high voltage decomposition resistance used for the positive electrode, polyvinylidene fluoride is used. (Hereinafter abbreviated as PVdF), and styrene-butadiene rubber (hereinafter abbreviated as SBR) and carboxymethylcellulose (hereinafter abbreviated as CMC) as binders having high adhesion to the active material and conductive additive in the negative electrode. Is used.

しかしながら、PVdF、SBR及びCMCは活物質への接着性が充分ではなく剥離して電池の内部抵抗増加の原因となることがあった。活物質とバインダーとの剥離を防止するためにバインダーの添加量を増やすことが考えられるが、バインダーが増えることで電池の内部抵抗が増加し、電池内の活物質量が減少することで電池容量も減少してしまう。
そのため電池の内部抵抗が小さくサイクル特性を良好に維持できる非水系二次電池が望まれている。
However, PVdF, SBR, and CMC have insufficient adhesiveness to the active material and may peel off and cause an increase in the internal resistance of the battery. It is conceivable to increase the amount of binder added in order to prevent the active material and the binder from peeling off, but increasing the binder increases the internal resistance of the battery and reduces the amount of active material in the battery to reduce the battery capacity. Will also decrease.
Therefore, a non-aqueous secondary battery that has a low internal resistance of the battery and can maintain good cycle characteristics is desired.

正極活物質としては、LiCoO等のリチウムを含む複合酸化物が利用可能であり、負極活物質としては、黒鉛系の材料、シリコン系の材料等が利用可能である。リチウムイオン二次電池の充放電過程においては、リチウムイオンの脱挿入反応が生じるため、正極活物質及び負極活物質には体積変化が生じ、十分なサイクル特性を発揮できないという課題がある。 A composite oxide containing lithium such as LiCoO 2 can be used as the positive electrode active material, and a graphite-based material, a silicon-based material, or the like can be used as the negative electrode active material. In the charging / discharging process of the lithium ion secondary battery, a lithium ion deinsertion reaction occurs, so that there is a problem that volume change occurs in the positive electrode active material and the negative electrode active material, and sufficient cycle characteristics cannot be exhibited.

特許文献1には、充放電サイクル時の活物質の膨張/収縮によるストレスを受けにくい正極として、活物質の表面を導電剤とバインダーとの複合被覆により被覆された正極活物質材料を用いた正極が知られている(特許文献1参照)。 Patent Document 1 discloses a positive electrode using a positive electrode active material in which a surface of an active material is coated with a composite coating of a conductive agent and a binder as a positive electrode that is less susceptible to stress due to expansion / contraction of the active material during a charge / discharge cycle. Is known (see Patent Document 1).

特開2007−265668号公報JP 2007-265668 A

しかしながら、特許文献1に記載のリチウムイオン二次電池は電池の内部抵抗が十分に低いものでは無く、サイクル特性も十分では無かった。 However, the lithium ion secondary battery described in Patent Document 1 does not have sufficiently low internal resistance, and the cycle characteristics are not sufficient.

本発明が解決しようとする課題は、電池の内部抵抗が低くサイクル特性を良好に維持できるリチウムイオン二次電池を製造可能な非水系二次電池活物質被覆用樹脂及びそれを被覆した活物質を提供することである。 The problem to be solved by the present invention is to provide a resin for coating a non-aqueous secondary battery active material capable of producing a lithium ion secondary battery with low internal resistance and good cycle characteristics, and an active material coated therewith. Is to provide.

本発明者らは、上記の目的を達成すべく鋭意検討を行った結果、本発明に到達した。
すなわち、本発明は、炭素数4〜12の1価の脂肪族アルコールと(メタ)アクリル酸とのエステル化合物(a11)及び(メタ)アクリル酸(a12)を含んでなる単量体組成物を重合してなり、上記エステル化合物(a11)と上記(メタ)アクリル酸(a12)の重量比[上記エステル化合物(a11)/上記(メタ)アクリル酸(a12)]が10/90〜90/10である非水系二次電池活物質被覆用樹脂;この非水系二次電池活物質被覆用樹脂が非水系二次電池用活物質(Y)の表面に結着した非水系二次電池用被覆活物質;この非水系二次電池活物質被覆用樹脂をカルボキシル基と反応しうる官能基を2個以上有する架橋剤(b)によって架橋した架橋樹脂が非水系二次電池用活物質(Y)の表面に結着した非水系二次電池用被覆活物質;並びにこの非水系二次電池活物質被覆用樹脂を含有する樹脂溶液、カルボキシル基と反応しうる官能基を2個以上有する架橋剤(b)及び非水系二次電池用活物質(Y)を混合しながら有機溶剤を留去する樹脂被覆工程と、該非水系二次電池活物質被覆用樹脂と該架橋剤(b)とを反応させる架橋工程とを有する非水系二次電池用被覆活物質の製造方法である。
As a result of intensive studies to achieve the above object, the present inventors have reached the present invention.
That is, the present invention provides a monomer composition comprising an ester compound (a11) of a monovalent aliphatic alcohol having 4 to 12 carbon atoms and (meth) acrylic acid and (meth) acrylic acid (a12). The weight ratio of the ester compound (a11) to the (meth) acrylic acid (a12) [the ester compound (a11) / the (meth) acrylic acid (a12)] is 10/90 to 90/10. Non-aqueous secondary battery active material coating resin; non-aqueous secondary battery active material coating resin bound to the surface of the non-aqueous secondary battery active material (Y) Substance: A cross-linked resin obtained by cross-linking the non-aqueous secondary battery active material coating resin with a cross-linking agent (b) having two or more functional groups capable of reacting with a carboxyl group is a non-aqueous secondary battery active material (Y). For non-aqueous secondary batteries bound to the surface A non-aqueous secondary battery active material coating resin, a crosslinking agent (b) having two or more functional groups capable of reacting with carboxyl groups, and a non-aqueous secondary battery active material ( Non-aqueous secondary battery coating comprising: a resin coating step of distilling off the organic solvent while mixing Y); and a crosslinking step of reacting the non-aqueous secondary battery active material coating resin with the crosslinking agent (b) It is a manufacturing method of an active material.

本発明の非水系二次電池活物質被覆用樹脂は活物質との接着性に優れ、かつ、電極にした場合の電気伝導率が高いため、非水系二次電池用活物質の表面を被覆することにより電池の内部抵抗の増加を抑制し、継続的な使用においても活物質表面から剥離することがない。また、そのため、電池の内部抵抗を増加させることなく、サイクル特性を良好に維持できる非水系二次電池を提供することができる。 The resin for coating a non-aqueous secondary battery active material of the present invention is excellent in adhesion to the active material and has high electrical conductivity when used as an electrode, and therefore covers the surface of the active material for a non-aqueous secondary battery. Therefore, the increase in the internal resistance of the battery is suppressed, and the battery is not peeled off from the active material surface even during continuous use. Therefore, it is possible to provide a nonaqueous secondary battery that can maintain good cycle characteristics without increasing the internal resistance of the battery.

以下、本発明を詳細に説明する。
本発明の非水系二次電池活物質被覆用樹脂は、炭素数4〜12の1価の脂肪族アルコールと(メタ)アクリル酸とのエステル化合物(a11)及び(メタ)アクリル酸(a12)を含んでなる単量体組成物を重合してなり、上記エステル化合物(a11)と上記(メタ)アクリル酸(a12)の重量比[上記エステル化合物(a11)/上記(メタ)アクリル酸(a12)]が10/90〜90/10である。
Hereinafter, the present invention will be described in detail.
The resin for coating a non-aqueous secondary battery active material of the present invention comprises ester compounds (a11) and (meth) acrylic acid (a12) of a monovalent aliphatic alcohol having 4 to 12 carbon atoms and (meth) acrylic acid. Polymerization of the monomer composition comprising the above, the weight ratio of the ester compound (a11) and the (meth) acrylic acid (a12) [the ester compound (a11) / the (meth) acrylic acid (a12) ] Is 10/90 to 90/10.

エステル化合物(a11)の含有量は、活物質との接着性等の観点から、単量体組成物の合計重量に基づいて10〜90重量%であることが好ましく、より好ましくは15〜75重量%であり、更に好ましくは20〜60重量%である。 The content of the ester compound (a11) is preferably 10 to 90% by weight, more preferably 15 to 75% by weight, based on the total weight of the monomer composition, from the viewpoint of adhesiveness to the active material and the like. %, More preferably 20 to 60% by weight.

まず、エステル化合物(a11)を構成する炭素数4〜12の1価の脂肪族アルコールについて説明する。
炭素数4〜12の1価の脂肪族アルコールとしては、ブチルアルコール(n−ブチルアルコール、sec−ブチルアルコール、tert−ブチルアルコール)、ペンチルアルコール(n−ペンチルアルコール、2−ペンチルアルコール及びネオペンチルアルコール等)、ヘキシルアルコール(1−ヘキサノール、2−ヘキサノール及び3−ヘキサノール等)、ヘプチルアルコール(n−ヘプチルアルコール、1−メチルヘキシルアルコール及び2−メチルヘキシルアルコール等)、オクチルアルコール(n−オクチルアルコール、1−メチルヘプタノール、1−エチルヘキサノール、2−メチルヘプタノール及び2−エチルヘキサノール等)、ノニルアルコール(n−ノニルアルコール、1−メチルオクタノール、1−エチルヘプタノール、1−プロピルヘキサノール及び2−エチルヘプチルアルコール等)、デシルアルコール(n−デシルアルコール、1−メチルノニルアルコール、2−メチルノニルアルコール及び2−エチルオクチルアルコール等)、ウンデシルアルコール(n−ウンデシルアルコール、1−メチルデシルアルコール、2−メチルデシルアルコール及び2−エチルノニルアルコール等)、ラウリルアルコール(n−ラウリルアルコール、1−メチルウンデシルアルコール、2−メチルウンデシルアルコール、2−エチルデシルアルコール及び2−ブチルヘキシルアルコール等)等が挙げられる。
First, the monovalent aliphatic alcohol having 4 to 12 carbon atoms constituting the ester compound (a11) will be described.
Examples of monovalent aliphatic alcohols having 4 to 12 carbon atoms include butyl alcohol (n-butyl alcohol, sec-butyl alcohol, tert-butyl alcohol), pentyl alcohol (n-pentyl alcohol, 2-pentyl alcohol, and neopentyl alcohol). ), Hexyl alcohol (such as 1-hexanol, 2-hexanol and 3-hexanol), heptyl alcohol (such as n-heptyl alcohol, 1-methylhexyl alcohol and 2-methylhexyl alcohol), octyl alcohol (n-octyl alcohol, 1-methylheptanol, 1-ethylhexanol, 2-methylheptanol, 2-ethylhexanol, etc.), nonyl alcohol (n-nonyl alcohol, 1-methyloctanol, 1-ethylheptanol, -Propylhexanol and 2-ethylheptyl alcohol), decyl alcohol (n-decyl alcohol, 1-methylnonyl alcohol, 2-methylnonyl alcohol, 2-ethyloctyl alcohol, etc.), undecyl alcohol (n-undecyl alcohol, 1-methyldecyl alcohol, 2-methyldecyl alcohol and 2-ethylnonyl alcohol), lauryl alcohol (n-lauryl alcohol, 1-methylundecyl alcohol, 2-methylundecyl alcohol, 2-ethyldecyl alcohol and 2- Butylhexyl alcohol, etc.).

続いて、(メタ)アクリル酸(a12)について説明する。
本明細書において、(メタ)アクリル酸は、アクリル酸及び/又はメタクリル酸を示しており、アクリル酸とメタクリル酸の混合物であってもよい。
Subsequently, (meth) acrylic acid (a12) will be described.
In this specification, (meth) acrylic acid indicates acrylic acid and / or methacrylic acid, and may be a mixture of acrylic acid and methacrylic acid.

本発明の非水系二次電池活物質被覆用樹脂を構成する単量体組成物は、エステル化合物(a11)と(メタ)アクリル酸(a12)の重量比が10/90〜90/10であるため、これを重合してなる樹脂は、活物質との接着性が良好で剥離しにくい。
上記重量比は、より好ましくは30/70〜85/15であり、更に好ましくは40/60〜70/30である。
In the monomer composition constituting the resin for coating a non-aqueous secondary battery active material of the present invention, the weight ratio of the ester compound (a11) to the (meth) acrylic acid (a12) is 10/90 to 90/10. Therefore, a resin obtained by polymerizing this has good adhesiveness with the active material and is difficult to peel off.
The weight ratio is more preferably 30/70 to 85/15, still more preferably 40/60 to 70/30.

(メタ)アクリル酸(a12)の含有量は、活物質との接着性等の観点から、単量体組成物の合計重量に基づいて10〜90重量%であることが好ましく、より好ましくは15〜65重量%であり、更に好ましくは20〜60重量%である。 The content of (meth) acrylic acid (a12) is preferably 10 to 90% by weight, more preferably 15 based on the total weight of the monomer composition from the viewpoint of adhesiveness to the active material and the like. It is -65 weight%, More preferably, it is 20-60 weight%.

本発明の非水系二次電池活物質被覆用樹脂を構成する単量体組成物は、更に炭素数1〜3の1価の脂肪族アルコールと(メタ)アクリル酸とのエステル化合物(a13)を含有することが好ましい。エステル化合物(a13)を含有することで活物質に被覆した樹脂による活物質の体積変化を抑制する効果が更に良好となる。
エステル化合物(a13)を構成する炭素数1〜3の1価の脂肪族アルコールとしては、メタノール、エタノール、1−プロパノール及び2−プロパノール等が挙げられる。
The monomer composition constituting the resin for coating a non-aqueous secondary battery active material of the present invention further comprises an ester compound (a13) of a monovalent aliphatic alcohol having 1 to 3 carbon atoms and (meth) acrylic acid. It is preferable to contain. By containing the ester compound (a13), the effect of suppressing the volume change of the active material due to the resin coated on the active material is further improved.
Examples of the monovalent aliphatic alcohol having 1 to 3 carbon atoms constituting the ester compound (a13) include methanol, ethanol, 1-propanol, and 2-propanol.

エステル化合物(a13)の含有量は、活物質の体積変化抑制等の観点から、単量体組成物の合計重量に基づいて、10〜60重量%であることが好ましく、より好ましくは15〜55重量%であり、更に好ましくは20〜50重量%である。 The content of the ester compound (a13) is preferably 10 to 60% by weight, more preferably 15 to 55%, based on the total weight of the monomer composition, from the viewpoint of suppressing the volume change of the active material. % By weight, more preferably 20-50% by weight.

本発明の非水系二次電池活物質被覆用樹脂は、内部抵抗等の観点から、更に、重合性不飽和二重結合とアニオン性基とを有するアニオン性単量体の塩(a14)を含有することが好ましい。
重合性不飽和二重結合を有する構造としてはビニル基、アリル基、スチレニル基及び(メタ)アクリロイル基等が挙げられる。
アニオン性基としては、スルホン酸基及びカルボキシル基等が挙げられる。
重合性不飽和二重結合とアニオン性基とを有するアニオン性単量体はこれらの組み合わせにより得られる化合物であり、例えばビニルスルホン酸、アリルスルホン酸、スチレンスルホン酸及び(メタ)アクリル酸が挙げられる。
なお、(メタ)アクリロイル基は、アクリロイル基及び/又はメタクリロイル基を意味する。
アニオン性単量体の塩(a14)を構成するカチオンとしては、リチウムイオン、ナトリウムイオン、カリウムイオン及びアンモニウムイオン等が挙げられる。
The resin for coating a non-aqueous secondary battery active material of the present invention further contains a salt (a14) of an anionic monomer having a polymerizable unsaturated double bond and an anionic group from the viewpoint of internal resistance and the like. It is preferable to do.
Examples of the structure having a polymerizable unsaturated double bond include a vinyl group, an allyl group, a styryl group, and a (meth) acryloyl group.
Examples of the anionic group include a sulfonic acid group and a carboxyl group.
An anionic monomer having a polymerizable unsaturated double bond and an anionic group is a compound obtained by a combination thereof, such as vinyl sulfonic acid, allyl sulfonic acid, styrene sulfonic acid and (meth) acrylic acid. It is done.
The (meth) acryloyl group means an acryloyl group and / or a methacryloyl group.
Examples of the cation constituting the salt (a14) of the anionic monomer include lithium ion, sodium ion, potassium ion and ammonium ion.

アニオン性単量体の塩(a14)としては、アリルスルホン酸ナトリウム、スチレンスルホン酸リチウム、スチレンスルホン酸ナトリウム及びメタクリル酸リチウム等が挙げられる。 Examples of the anionic monomer salt (a14) include sodium allyl sulfonate, lithium styrene sulfonate, sodium styrene sulfonate, and lithium methacrylate.

アニオン性単量体の塩(a14)の含有量は、内部抵抗等の観点から、単量体組成物の合計重量に基づいて0.1〜15重量%であることが好ましく、より好ましくは1〜15重量%であり、更に好ましくは2〜10重量%である。 The content of the anionic monomer salt (a14) is preferably 0.1 to 15% by weight, more preferably 1 based on the total weight of the monomer composition from the viewpoint of internal resistance and the like. -15% by weight, more preferably 2-10% by weight.

本発明の非水系二次電池活物質被覆用樹脂の重量平均分子量は、活物質との接着性等の観点から、20,000〜500,000であることが好ましく、より好ましくは22,000〜480,000であり、更に好ましくは25,000〜450,000である。
なお、本明細書における非水系二次電池活物質被覆用樹脂の重量平均分子量は、以下の条件で測定したゲルパーミエーションクロマトグラフィ(以下、GPCと略記する)により測定される。
<GPCの測定条件>
装置:Alliance GPC V2000(Waters社製)
溶媒:オルトジクロロベンゼン
標準物質:ポリスチレン
サンプル濃度:3mg/ml
カラム固定相:PLgel 10μm、MIXED−B 2本直列(ポリマーラボラトリーズ社製)
カラム温度:135℃
The weight average molecular weight of the nonaqueous secondary battery active material coating resin of the present invention is preferably 20,000 to 500,000, more preferably 22,000 to 500,000 from the viewpoint of adhesion to the active material and the like. It is 480,000, More preferably, it is 25,000-450,000.
In addition, the weight average molecular weight of the resin for coating a non-aqueous secondary battery active material in this specification is measured by gel permeation chromatography (hereinafter abbreviated as GPC) measured under the following conditions.
<GPC measurement conditions>
Apparatus: Alliance GPC V2000 (manufactured by Waters)
Solvent: Orthodichlorobenzene Standard substance: Polystyrene Sample concentration: 3 mg / ml
Column stationary phase: PLgel 10 μm, MIXED-B 2 in series (manufactured by Polymer Laboratories)
Column temperature: 135 ° C

単量体組成物には、エステル化合物(a11)、(メタ)アクリル酸(a12)、エステル化合物(a13)及びアニオン性単量体の塩(a14)の他に、活性水素を含有しない共重合性ビニルモノマー(c)が含まれていてもよい。
活性水素を含有しない共重合性ビニルモノマー(c)としては、下記(c1)〜(c5)が挙げられる。
なお、単量体組成物に(c)が含まれる場合、単量体組成物の合計重量に(c)の重量も計上することとする。
活性水素を含有しない共重合性ビニルモノマーの含有量は、単量体組成物の合計重量に基づいて0.5〜15重量%であることが好ましく、より好ましくは1〜15重量%であり、更に好ましくは2〜10重量%である。
The monomer composition includes an ester compound (a11), a (meth) acrylic acid (a12), an ester compound (a13) and a salt of an anionic monomer (a14) and a copolymer containing no active hydrogen. The vinyl monomer (c) may be contained.
Examples of the copolymerizable vinyl monomer (c) containing no active hydrogen include the following (c1) to (c5).
In addition, when (c) is included in the monomer composition, the weight of (c) is also included in the total weight of the monomer composition.
The content of the copolymerizable vinyl monomer not containing active hydrogen is preferably 0.5 to 15% by weight, more preferably 1 to 15% by weight, based on the total weight of the monomer composition. More preferably, it is 2 to 10% by weight.

(c1)炭素数13〜20のモノオールと(メタ)アクリル酸から形成されるカルビル(メタ)アクリレート
上記モノオールとしては、(i)炭素数13〜20の脂肪族モノオール(トリデシルアルコール、テトラデシルアルコール、ペンタデシルアルコール、セチルアルコール、ヘプタデシルアルコール、ステアリルアルコール、イソステアリルアルコール、ノナデシルアルコール、アラキジルアルコール等)、(ii)脂環式モノオール(シクロヘキシルアルコール等)、(iii)芳香脂肪族モノオール(ベンジルアルコール等)及びこれらの2種以上の混合物が挙げられる。
(C1) Carbyl (meth) acrylate formed from monool having 13 to 20 carbon atoms and (meth) acrylic acid As the monool, (i) aliphatic monool having 13 to 20 carbon atoms (tridecyl alcohol, Tetradecyl alcohol, pentadecyl alcohol, cetyl alcohol, heptadecyl alcohol, stearyl alcohol, isostearyl alcohol, nonadecyl alcohol, arachidyl alcohol, etc.), (ii) alicyclic monools (cyclohexyl alcohol, etc.), (iii) aroma Examples include aliphatic monools (such as benzyl alcohol) and mixtures of two or more thereof.

(c2)ポリ(n=2〜30)オキシアルキレン(炭素数2〜4)アルキル(炭素数1〜18)エーテル(メタ)アクリレート[メタノールのエチレンオキシド(以下EOと略記)10モル付加物(メタ)アクリレート、メタノールのプロピレンオキシド(以下POと略記)10モル付加物(メタ)アクリレート等]。 (C2) Poly (n = 2 to 30) oxyalkylene (2 to 4 carbon atoms) alkyl (1 to 18 carbon atoms) ether (meth) acrylate [methanol ethylene oxide (hereinafter abbreviated as EO) 10 mol adduct (meth) Acrylate, propylene oxide of methanol (hereinafter abbreviated as PO), 10 mol adduct (meth) acrylate, etc.].

(c3)窒素含有ビニル化合物
(c3−1)アミド基含有ビニル化合物
(i)炭素数3〜30の(メタ)アクリルアミド化合物、例えばN,N−ジアルキル(炭素数1〜6)又はジアラルキル(炭素数7〜15)(メタ)アクリルアミド(N,N−ジメチルアクリルアミド、N,N−ジベンジルアクリルアミド等)及びジアセトンアクリルアミド。
(ii)上記(メタ)アクリルアミド化合物を除く、炭素数4〜20のアミド基含有ビニル化合物、例えばN−メチル−N−ビニルアセトアミド、環状アミド[炭素数6〜13のピロリドン化合物(N−ビニルピロリドン等)]。
(C3) Nitrogen-containing vinyl compound (c3-1) Amido group-containing vinyl compound (i) (meth) acrylamide compound having 3 to 30 carbon atoms such as N, N-dialkyl (1 to 6 carbon atoms) or diaralkyl (carbon number) 7-15) (Meth) acrylamide (N, N-dimethylacrylamide, N, N-dibenzylacrylamide, etc.) and diacetone acrylamide.
(Ii) an amide group-containing vinyl compound having 4 to 20 carbon atoms, excluding the (meth) acrylamide compound, for example, N-methyl-N-vinylacetamide, cyclic amide [pyrrolidone compound having 6 to 13 carbon atoms (N-vinylpyrrolidone) etc)].

(c3−2)(メタ)アクリレート化合物
(i)ジアルキル(炭素数1〜4)アミノアルキル(炭素数1〜4)(メタ)アクリレート[N,N−ジメチルアミノエチル(メタ)アクリレート、N,N−ジエチルアミノエチル(メタ)アクリレート、t−ブチルアミノエチル(メタ)アクリレート及びモルホリノエチル(メタ)アクリレート等]。
(ii)4級アンモニウム基含有(メタ)アクリレート{3級アミノ基含有(メタ)アクリレート[N,N−ジメチルアミノエチル(メタ)アクリレート及びN,N−ジエチルアミノエチル(メタ)アクリレート等]をハロゲン化アルキル等の4級化剤を用いて4級化した4級化物等}。
(C3-2) (meth) acrylate compound (i) dialkyl (1 to 4 carbon atoms) aminoalkyl (1 to 4 carbon atoms) (meth) acrylate [N, N-dimethylaminoethyl (meth) acrylate, N, N -Diethylaminoethyl (meth) acrylate, t-butylaminoethyl (meth) acrylate, morpholinoethyl (meth) acrylate, etc.].
(Ii) Quaternary ammonium group-containing (meth) acrylate {tertiary amino group-containing (meth) acrylate [N, N-dimethylaminoethyl (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, etc.] halogenated) A quaternized product quaternized with a quaternizing agent such as alkyl}.

(c3−3)複素環含有ビニル化合物
炭素数7〜14のピリジン化合物(2−及び4−ビニルピリジン等)、炭素数5〜12のイミダゾール化合物(N−ビニルイミダゾール等)、炭素数6〜13のピロール化合物(N−ビニルピロール等)及び炭素数6〜13のピロリドン化合物(N−ビニル−2−ピロリドン等)。
(C3-3) Heterocycle-containing vinyl compound A pyridine compound having 7 to 14 carbon atoms (such as 2- and 4-vinylpyridine), an imidazole compound having 5 to 12 carbon atoms (such as N-vinylimidazole), and 6 to 13 carbon atoms. Pyrrole compounds (such as N-vinylpyrrole) and pyrrolidone compounds having 6 to 13 carbon atoms (such as N-vinyl-2-pyrrolidone).

(c3−4)ニトリル基含有ビニル化合物
炭素数3〜15のニトリル基含有ビニル化合物[(メタ)アクリロニトリル、シアノスチレン及びシアノアルキル(炭素数1〜4)アクリレート等]。
(C3-4) Nitrile group-containing vinyl compound A nitrile group-containing vinyl compound having 3 to 15 carbon atoms [(meth) acrylonitrile, cyanostyrene, cyanoalkyl (1 to 4 carbon atoms) acrylate, etc.].

(c3−5)その他ビニル化合物
炭素数8〜16のニトロ基含有ビニル化合物(ニトロスチレン等)等。
(C3-5) Other vinyl compounds A nitro group-containing vinyl compound having 8 to 16 carbon atoms (such as nitrostyrene).

(c4)ビニル炭化水素
(c4−1)脂肪族ビニル炭化水素
炭素数2〜18又はそれ以上のオレフィン(エチレン、プロピレン、ブテン、イソブチレン、ペンテン、ヘプテン、ジイソブチレン、オクテン、ドデセン及びオクタデセン等)、炭素数4〜10又はそれ以上のジエン(ブタジエン、イソプレン、1,4−ペンタジエン、1,5−ヘキサジエン及び1,7−オクタジエン等)等。
(C4) Vinyl hydrocarbon (c4-1) Aliphatic vinyl hydrocarbon olefin having 2 to 18 or more carbon atoms (ethylene, propylene, butene, isobutylene, pentene, heptene, diisobutylene, octene, dodecene, octadecene, etc.), Dienes having 4 to 10 or more carbon atoms (butadiene, isoprene, 1,4-pentadiene, 1,5-hexadiene, 1,7-octadiene, etc.) and the like.

(c4−2)脂環式ビニル炭化水素
炭素数4〜18又はそれ以上の環状不飽和化合物{シクロアルケン(シクロヘキセン等)、(ジ)シクロアルカジエン[(ジ)シクロペンタジエン等]、テルペン(ピネン、リモネン及びインデン等)}。
(C4-2) alicyclic vinyl hydrocarbon cyclic unsaturated compound having 4 to 18 or more carbon atoms {cycloalkene (cyclohexene, etc.), (di) cycloalkadiene [(di) cyclopentadiene, etc.], terpene (pinene) , Limonene, indene, etc.)}.

(c4−3)芳香族ビニル炭化水素
炭素数8〜20又はそれ以上の芳香族不飽和化合物及びそれらの誘導体(スチレン、α−メチルスチレン、ビニルトルエン、2,4−ジメチルスチレン、エチルスチレン、イソプロピルスチレン、ブチルスチレン、フェニルスチレン、シクロヘキシルスチレン及びベンジルスチレン等)等。
(C4-3) Aromatic vinyl hydrocarbon aromatic unsaturated compound having 8 to 20 or more carbon atoms and derivatives thereof (styrene, α-methylstyrene, vinyltoluene, 2,4-dimethylstyrene, ethylstyrene, isopropyl Styrene, butyl styrene, phenyl styrene, cyclohexyl styrene, benzyl styrene, etc.).

(c5)ビニルエステル、ビニルエーテル、ビニルケトン及び不飽和ジカルボン酸ジエステル
(c5−1)ビニルエステル
脂肪族ビニルエステル[炭素数4〜15の脂肪族カルボン酸(モノ−又はジカルボン酸)のアルケニルエステル(酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、ジアリルアジペート、イソプロペニルアセテート及びビニルメトキシアセテート等)等]。
芳香族ビニルエステル[炭素数9〜20の芳香族カルボン酸(モノ−又はジカルボン酸)のアルケニルエステル(ビニルベンゾエート、ジアリルフタレート及びメチル−4−ビニルベンゾエート等)及び脂肪族カルボン酸の芳香環含有エステル(アセトキシスチレン等)等]。
(C5) Vinyl ester, vinyl ether, vinyl ketone and unsaturated dicarboxylic acid diester (c5-1) Vinyl ester aliphatic vinyl ester [Alkenyl ester of aliphatic carboxylic acid having 4 to 15 carbon atoms (mono- or dicarboxylic acid) (vinyl acetate , Vinyl propionate, vinyl butyrate, diallyl adipate, isopropenyl acetate, vinyl methoxyacetate, etc.).
Aromatic vinyl esters [alkenyl esters of aromatic carboxylic acids (mono- or dicarboxylic acids) having 9 to 20 carbon atoms (such as vinyl benzoate, diallyl phthalate and methyl-4-vinyl benzoate) and aromatic ring-containing esters of aliphatic carboxylic acids] (Acetoxystyrene etc.) etc.].

(c5−2)ビニルエーテル
脂肪族ビニルエーテル[炭素数3〜15のビニルアルキル(炭素数1〜10)エーテル(ビニルメチルエーテル、ビニルブチルエーテル及びビニル2−エチルヘキシルエーテル等)、ビニルアルコキシ(炭素数1〜6)アルキル(炭素数1〜4)エーテル(ビニル−2−メトキシエチルエーテル、メトキシブタジエン、3,4−ジヒドロ−1,2−ピラン、2−ブトキシ−2’−ビニロキシジエチルエーテル及びビニル−2−エチルメルカプトエチルエーテル等)、ポリ(2〜4)(メタ)アリロキシアルカン(炭素数2〜6)(ジアリロキシエタン、トリアリロキシエタン、テトラアリロキシブタン及びテトラメタアリロキシエタン等)等]。
炭素数8〜20の芳香族ビニルエーテル(ビニルフェニルエーテル及びフェノキシスチレン等)。
(C5-2) Vinyl ether aliphatic vinyl ether [vinyl alkyl having 3 to 15 carbon atoms (1 to 10 carbon atoms) ether (such as vinyl methyl ether, vinyl butyl ether and vinyl 2-ethylhexyl ether), vinyl alkoxy (1 to 6 carbon atoms) ) Alkyl (C1-C4) ether (vinyl-2-methoxyethyl ether, methoxybutadiene, 3,4-dihydro-1,2-pyran, 2-butoxy-2'-vinyloxydiethyl ether and vinyl-2- Ethyl mercaptoethyl ether, etc.), poly (2-4) (meth) allyloxyalkanes (2-6 carbon atoms) (diallyloxyethane, triaryloxyethane, tetraallyloxybutane, tetrametaallyloxyethane, etc.), etc. ].
Aromatic vinyl ethers having 8 to 20 carbon atoms (such as vinyl phenyl ether and phenoxystyrene).

(c5−3)ビニルケトン
炭素数4〜25の脂肪族ビニルケトン(ビニルメチルケトン及びビニルエチルケトン等)。
炭素数9〜21の芳香族ビニルケトン(ビニルフェニルケトン等)。
(C5-3) Vinyl ketone Aliphatic vinyl ketone having 4 to 25 carbon atoms (such as vinyl methyl ketone and vinyl ethyl ketone).
Aromatic vinyl ketone having 9 to 21 carbon atoms (such as vinyl phenyl ketone).

(c5−4)不飽和ジカルボン酸ジエステル
炭素数4〜34の不飽和ジカルボン酸ジエステル[ジアルキルフマレート(2個のアルキル基は、炭素数1〜22の、直鎖、分枝鎖もしくは脂環式の基)及びジアルキルマレエート(2個のアルキル基は、炭素数1〜22の、直鎖、分枝鎖もしくは脂環式の基)
(C5-4) Unsaturated dicarboxylic acid diester Unsaturated dicarboxylic acid diester having 4 to 34 carbon atoms [dialkyl fumarate (two alkyl groups are linear, branched or alicyclic having 1 to 22 carbon atoms) Groups) and dialkyl maleates (two alkyl groups are straight, branched or alicyclic groups having 1 to 22 carbon atoms)

本発明の非水系二次電池活物質被覆用樹脂のガラス転移点[以下Tgと略記、測定法:DSC(走査型示差熱分析)法]は、電池の耐熱性の観点から好ましくは50〜200℃、更に好ましくは70〜180℃、特に好ましくは80〜150℃である。 The glass transition point [hereinafter abbreviated as Tg, measuring method: DSC (scanning differential thermal analysis) method] of the resin for coating a non-aqueous secondary battery active material of the present invention is preferably 50 to 200 from the viewpoint of the heat resistance of the battery. ° C, more preferably 70 to 180 ° C, particularly preferably 80 to 150 ° C.

本発明の非水系二次電池活物質被覆用樹脂を構成する単量体組成物を重合させる方法としては、公知の重合方法(塊状重合、溶液重合、乳化重合、懸濁重合等)を用いることができる。
重合に際しては、公知の重合開始剤{アゾ系開始剤[2,2’−アゾビス(2−メチルプロピオニトリル)、2,2’−アゾビス(2,4−ジメチルバレロニトリル)及び2,2’−アゾビス(2−メチルブチロニトリル)等]、パーオキシド系開始剤(ベンゾイルパーオキシド、ジ−t−ブチルパーオキシド及びラウリルパーオキシド等)等}を使用して行うことができる。
重合開始剤の使用量は、モノマーの全重量に基づいて好ましくは0.01〜5重量%、より好ましくは0.05〜2重量%である。
なお、モノマーとは単量体組成物を構成する各単量体[例えばエステル化合物(a11)、(メタ)アクリル酸(a12)、エステル化合物(a13)、アニオン性単量体の塩(a14)及び活性水素を含有しない共重合性ビニルモノマー(c)]を指す。
As a method for polymerizing the monomer composition constituting the resin for coating the non-aqueous secondary battery active material of the present invention, a known polymerization method (bulk polymerization, solution polymerization, emulsion polymerization, suspension polymerization, etc.) is used. Can do.
In the polymerization, known polymerization initiators {azo initiators [2,2′-azobis (2-methylpropionitrile), 2,2′-azobis (2,4-dimethylvaleronitrile) and 2,2 ′ -Azobis (2-methylbutyronitrile), etc.], peroxide initiators (benzoyl peroxide, di-t-butyl peroxide, lauryl peroxide, etc.), etc.} can be used.
The amount of the polymerization initiator used is preferably 0.01 to 5% by weight, more preferably 0.05 to 2% by weight, based on the total weight of the monomers.
The monomer means each monomer constituting the monomer composition [for example, ester compound (a11), (meth) acrylic acid (a12), ester compound (a13), anionic monomer salt (a14) And a copolymerizable vinyl monomer (c)] containing no active hydrogen.

溶液重合の場合に使用される溶媒としては、例えばエステル(炭素数2〜8、例えば酢酸エチル及び酢酸ブチル)、アルコール(炭素数1〜8、例えばメタノール、エタノール、イソプロパノール及びオクタノール)、炭素数5〜8の直鎖、分岐又は環状構造を持つ炭化水素(例えばペンタン、ヘキサン、ヘプタン、オクタン、シクロヘキサン、トルエン及びキシレン)、アミド[例えばN,N−ジメチルホルムアミド(以下、DMFと略記)及びジメチルアセトアミド]及びケトン(炭素数3〜9、例えばメチルエチルケトン)が挙げられ、使用量はモノマーの合計重量に基づいて通常5〜900%、好ましくは10〜400%であり、モノマー濃度としては、通常10〜95重量%、好ましくは20〜90重量%である。 Examples of the solvent used in the case of solution polymerization include esters (having 2 to 8 carbon atoms such as ethyl acetate and butyl acetate), alcohols (having 1 to 8 carbon atoms such as methanol, ethanol, isopropanol and octanol), and 5 carbon atoms. -8 hydrocarbons having a linear, branched or cyclic structure (eg pentane, hexane, heptane, octane, cyclohexane, toluene and xylene), amides [eg N, N-dimethylformamide (hereinafter abbreviated as DMF) and dimethylacetamide ] And ketones (3-9 carbon atoms such as methyl ethyl ketone), and the amount used is usually 5 to 900%, preferably 10 to 400% based on the total weight of the monomers, and the monomer concentration is usually 10 to 10%. 95% by weight, preferably 20 to 90% by weight.

乳化重合及び懸濁重合における分散媒としては、水、アルコール(例えばエタノール)、エステル(例えばプロピオン酸エチル)及び軽ナフサ等が挙げられ、乳化剤としては、高級脂肪酸(炭素数10〜24)金属塩(例えばオレイン酸ナトリウム及びステアリン酸ナトリウム)、高級アルコール(炭素数10〜24)硫酸エステル金属塩(例えばラウリル硫酸ナトリウム)、エトキシ化テトラメチルデシンジオール、メタクリル酸スルホエチルナトリウム及びメタクリル酸ジメチルアミノメチル等が挙げられる。さらに安定剤としてポリビニルアルコール及びポリビニルピロリドン等を加えてもよい。
溶液又は分散液のモノマー濃度は通常5〜95重量%、重合開始剤の使用量は、モノマーの全重量に基づいて通常0.01〜5%、粘着力及び凝集力の観点から好ましくは0.05〜2%である。
重合に際しては、公知の連鎖移動剤、例えばメルカプト化合物(ドデシルメルカプタン及びn−ブチルメルカプタン等)及びハロゲン化炭化水素(四塩化炭素、四臭化炭素及び塩化ベンジル等)を使用することができる。使用量はモノマーの全重量に基づいて通常2%以下、粘着力及び凝集力の観点から好ましくは0.5%以下である。
Examples of the dispersion medium in emulsion polymerization and suspension polymerization include water, alcohol (for example, ethanol), ester (for example, ethyl propionate), and light naphtha. As the emulsifier, higher fatty acid (having 10 to 24 carbon atoms) metal salt. (For example, sodium oleate and sodium stearate), higher alcohols (10 to 24 carbon atoms) sulfate metal salts (for example, sodium lauryl sulfate), ethoxylated tetramethyldecynediol, sulfoethyl sodium methacrylate, dimethylaminomethyl methacrylate, etc. Is mentioned. Furthermore, you may add polyvinyl alcohol, polyvinylpyrrolidone, etc. as a stabilizer.
The monomer concentration of the solution or dispersion is usually from 5 to 95% by weight, and the amount of the polymerization initiator used is usually from 0.01 to 5% based on the total weight of the monomers, preferably from the viewpoint of adhesive strength and cohesive strength. 05 to 2%.
In the polymerization, known chain transfer agents such as mercapto compounds (such as dodecyl mercaptan and n-butyl mercaptan) and halogenated hydrocarbons (such as carbon tetrachloride, carbon tetrabromide and benzyl chloride) can be used. The amount used is usually 2% or less based on the total weight of the monomer, and preferably 0.5% or less from the viewpoint of adhesive strength and cohesive strength.

また、重合反応における系内温度は通常−5〜150℃、好ましくは30〜120℃、反応時間は通常0.1〜50時間、好ましくは2〜24時間であり、反応の終点は、未反応単量体の量が使用した単量体全量の通常5重量%以下、好ましくは1重量%以下となることにより確認できる。 The system temperature in the polymerization reaction is usually −5 to 150 ° C., preferably 30 to 120 ° C., the reaction time is usually 0.1 to 50 hours, preferably 2 to 24 hours, and the end point of the reaction is unreacted It can be confirmed that the amount of monomer is usually 5% by weight or less, preferably 1% by weight or less of the total amount of monomers used.

本発明の非水系二次電池用被覆活物質は、本発明の非水系二次電池活物質被覆用樹脂が非水系二次電池用活物質(Y)の表面に結着したものである。
なお、電池の内部抵抗等の観点から、本発明の非水系二次電池用被覆活物質には導電助剤(X)を用いることが好ましい。すなわち、非水系二次電池用被覆活物質は、本発明の非水系二次電池活物質被覆用樹脂と導電助剤(X)とが非水系二次電池用活物質(Y)の表面に結着したものであってもよい。
また、本発明の非水系二次電池用被覆活物質を被覆している本発明の非水系二次電池活物質被覆用樹脂は、後述するカルボキシル基と反応しうる官能基を2個以上有する架橋剤(b)によって架橋されていてもよい。
The non-aqueous secondary battery coating active material of the present invention is a non-aqueous secondary battery active material coating resin bound to the surface of a non-aqueous secondary battery active material (Y).
In view of the internal resistance of the battery and the like, it is preferable to use a conductive additive (X) for the coating active material for the non-aqueous secondary battery of the present invention. That is, the non-aqueous secondary battery covering active material is formed by binding the non-aqueous secondary battery active material coating resin of the present invention and the conductive auxiliary agent (X) to the surface of the non-aqueous secondary battery active material (Y). It may be worn.
Further, the nonaqueous secondary battery active material coating resin of the present invention, which is coated with the nonaqueous secondary battery coating active material of the present invention, has a cross-linking having two or more functional groups capable of reacting with a carboxyl group, which will be described later. It may be cross-linked by the agent (b).

導電助剤(X)としては、導電性を有する材料から選択される。
具体的には、金属[アルミニウム、ステンレス(SUS)、銀、金、銅及びチタン等]、カーボン[グラファイト及びカーボンブラック(アセチレンブラック、ケッチェンブラック、ファーネスブラック、チャンネルブラック及びサーマルランプブラック等)等]、及びこれらの混合物等が挙げられるが、これらに限定されるわけではない。
これらの導電助剤(X)は1種単独で用いられてもよいし、2種以上併用してもよい。また、これらの合金又は金属酸化物が用いられてもよい。電気的安定性の観点から、好ましくはアルミニウム、ステンレス、カーボン、銀、金、銅、チタン及びこれらの混合物であり、更に好ましくは銀、金、アルミニウム、ステンレス及びカーボンであり、特に好ましくはカーボンである。またこれらの導電助剤(X)とは、粒子系セラミック材料や樹脂材料の周りに導電性材料[上記した(X)のうち金属のもの]をめっき等でコーティングしたものでもよい。
The conductive auxiliary (X) is selected from materials having conductivity.
Specifically, metals [aluminum, stainless steel (SUS), silver, gold, copper, titanium, etc.], carbon [graphite and carbon black (acetylene black, ketjen black, furnace black, channel black, thermal lamp black, etc.), etc. , And mixtures thereof, but are not limited thereto.
These conductive auxiliary agents (X) may be used individually by 1 type, and may be used together 2 or more types. Moreover, these alloys or metal oxides may be used. From the viewpoint of electrical stability, aluminum, stainless steel, carbon, silver, gold, copper, titanium and mixtures thereof are preferred, silver, gold, aluminum, stainless steel and carbon are more preferred, and carbon is particularly preferred. is there. In addition, these conductive assistants (X) may be those obtained by coating a conductive material [a metal of the above (X)] by plating or the like around a particulate ceramic material or resin material.

導電助剤(X)の形状(形態)は、粒子形態に限られず、粒子形態以外の形態であってもよく、カーボンナノファイバー、カーボンナノチューブ等、いわゆるフィラー系導電性樹脂組成物として実用化されている形態であってもよい。 The shape (form) of the conductive auxiliary agent (X) is not limited to the particle form, and may be a form other than the particle form, and is practically used as a so-called filler-based conductive resin composition such as carbon nanofiber or carbon nanotube. It may be a form.

導電助剤(X)の平均粒子径は、特に限定されるものではないが、電池の電気特性の観点から、0.01〜10μm程度であることが好ましい。なお、本明細書中において、「粒子径」とは、導電助剤(X)の輪郭線上の任意の2点間の距離のうち、最大の距離Lを意味する。「平均粒子径」の値としては、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)等の観察手段を用い、数〜数十視野中に観察される粒子の粒子径の平均値として算出される値を採用するものとする。 The average particle diameter of the conductive auxiliary agent (X) is not particularly limited, but is preferably about 0.01 to 10 μm from the viewpoint of the electric characteristics of the battery. In the present specification, “particle diameter” means the maximum distance L among the distances between any two points on the contour line of the conductive additive (X). As the value of “average particle diameter”, the average value of the particle diameter of particles observed in several to several tens of fields using an observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). The calculated value shall be adopted.

非水系二次電池活物質被覆用樹脂と導電助剤(X)の配合比率は特に限定されるものではないが、電池の内部抵抗等の観点から、重量比率で非水系二次電池活物質被覆用樹脂(樹脂固形分重量):導電助剤(X)=1:0.01〜1:50であることが好ましく、1:0.2〜1:3.0であることがより好ましい。 The mixing ratio of the resin for coating the non-aqueous secondary battery active material and the conductive additive (X) is not particularly limited, but from the viewpoint of the internal resistance of the battery, the non-aqueous secondary battery active material is coated by weight. Resin for resin (resin solid content weight): Conductive auxiliary agent (X) = 1: 0.01-1: 50 is preferable, and 1: 0.2-1: 3.0 is more preferable.

本発明の非水系二次電池用被覆活物質は、本発明の非水系二次電池活物質被覆用樹脂、非水系二次電池用活物質(Y)及び必要に応じて導電助剤(X)を混合することによって製造することができる。
非水系二次電池活物質被覆用樹脂、非水系二次電池用活物質(Y)及び導電助剤(X)を混合する順番は特に限定されず、例えば、事前に混合した非水系二次電池活物質被覆用樹脂と導電助剤(X)からなる樹脂組成物を非水系二次電池用活物質(Y)とさらに混合してもよいし、非水系二次電池活物質被覆用樹脂、非水系二次電池用活物質(Y)及び導電助剤(X)を同時に混合してもよいし、非水系二次電池用活物質(Y)に非水系二次電池活物質被覆用樹脂を混合し、さらに導電助剤(X)を混合してもよい。
The coated active material for a non-aqueous secondary battery of the present invention includes a resin for coating a non-aqueous secondary battery active material of the present invention, an active material for a non-aqueous secondary battery (Y), and a conductive auxiliary agent (X) as necessary. It can manufacture by mixing.
The order of mixing the non-aqueous secondary battery active material coating resin, the non-aqueous secondary battery active material (Y), and the conductive additive (X) is not particularly limited. For example, the non-aqueous secondary battery mixed in advance is used. A resin composition comprising an active material coating resin and a conductive additive (X) may be further mixed with a nonaqueous secondary battery active material (Y), or a nonaqueous secondary battery active material coating resin, non- The aqueous secondary battery active material (Y) and the conductive additive (X) may be mixed at the same time, or the nonaqueous secondary battery active material coating resin is mixed with the nonaqueous secondary battery active material (Y). Furthermore, you may mix a conductive support agent (X).

本発明の非水系二次電池用被覆活物質は、本発明の非水系二次電池活物質被覆用樹脂をカルボキシル基と反応しうる官能基を2個以上有する架橋剤(b)によって架橋した架橋樹脂、及び、必要に応じて添加される導電助剤(X)が非水系二次電池用活物質(Y)の表面に結着したものであってもよい。 The coated active material for a non-aqueous secondary battery of the present invention is a crosslinked material obtained by crosslinking the resin for coating a non-aqueous secondary battery active material of the present invention with a crosslinking agent (b) having two or more functional groups capable of reacting with a carboxyl group. The resin and the conductive additive (X) added as necessary may be bound to the surface of the non-aqueous secondary battery active material (Y).

架橋剤(b)は、カルボキシル基と反応し得る官能基を2個以上有する。
カルボキシル基と反応しうる官能基としてはヒドロキシル基、エポキシ基等が挙げられる。上記官能基を2個以上有する化合物としては、例えば、エポキシ基を2個以上有するポリエポキシ化合物(b1)及びヒドロキシル基を2個以上有するポリオール化合物(b2)が挙げられる。
The crosslinking agent (b) has two or more functional groups capable of reacting with a carboxyl group.
Examples of the functional group capable of reacting with a carboxyl group include a hydroxyl group and an epoxy group. Examples of the compound having two or more functional groups include a polyepoxy compound (b1) having two or more epoxy groups and a polyol compound (b2) having two or more hydroxyl groups.

ポリエポキシ化合物(b1)としては、例えば、エポキシ当量80〜2,500のもの、例えばグリシジルエーテル[ビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、ピロガロールトリグリシジルエーテル、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、グリセリントリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル(ペンタエリスリトールジグリシジルエーテル、ペンタエリスリトールトリグリシジルエーテル及びペンタエリスリトールテトラグリシジルエーテル等)、ポリエチレングリコール(Mw200〜2,000)ジグリシジルエーテル、ポリプロピレングリコール(Mw200〜2,000)ジグリシジルエーテル及びビスフェノールAのアルキレンオキシド1〜20モル付加物のジグリシジルエーテル等];グリシジルエステル(フタル酸ジグリシジルエステル、トリメリット酸トリグリシジルエステル、ダイマー酸ジグリシジルエステル及びアジピン酸ジグリシジルエステル等);グリシジルアミン(N,N−ジグリシジルアニリン、N,N−ジグリシジルトルイジン、N,N,N’,N’−テトラグリシジルジアミノジフェニルメタン、N,N,N’,N’−テトラグリシジルキシリレンジアミン、1,3−ビス(N,N−ジグリシジルアミノメチル)シクロヘキサン及びN,N,N’,N’−テトラグリシジルヘキサメチレンジアミン等);脂肪族エポキシド(エポキシ化ポリブタジエン及びエポキシ化大豆油等);脂環式エポキシド(リモネンジオキシド及びジシクロペンタジエンジオキシド等)が挙げられる。 Examples of the polyepoxy compound (b1) include those having an epoxy equivalent of 80 to 2,500, such as glycidyl ether [bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, pyrogallol triglycidyl ether, ethylene glycol diglycidyl ether, propylene glycol. Diglycidyl ether, neopentyl glycol diglycidyl ether, trimethylolpropane triglycidyl ether, glycerin triglycidyl ether, pentaerythritol polyglycidyl ether (such as pentaerythritol diglycidyl ether, pentaerythritol triglycidyl ether and pentaerythritol tetraglycidyl ether), polyethylene Glycol (Mw200-2,000) diglycidyl Ether, polypropylene glycol (Mw 200-2,000) diglycidyl ether and diglycidyl ether of alkylene oxide 1-20 mol adduct of bisphenol A, etc.]; glycidyl ester (phthalic acid diglycidyl ester, trimellitic acid triglycidyl ester, dimer) Acid diglycidyl ester and adipic acid diglycidyl ester, etc.); glycidylamine (N, N-diglycidylaniline, N, N-diglycidyltoluidine, N, N, N ′, N′-tetraglycidyldiaminodiphenylmethane, N, N N, N ′, N′-tetraglycidylxylylenediamine, 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane and N, N, N ′, N′-tetraglycidylhexamethylenediamine, etc.); aliphatic Epoxy (Epoxidized polybutadiene and epoxidized soybean oil and the like), alicyclic epoxides (limonene dioxide and dicyclopentadiene dioxide, etc.).

ポリオール化合物(b2)としては、例えば、低分子多価アルコール{炭素数2〜20の脂肪族及び脂環式のジオール[エチレングリコール、ジエチレングリコール、プロピレングリコール、1,3−ブチレングリコール、1,4−ブチレングリコール、1,6−ヘキサンジオール、3−メチルペンタンジオール、ネオペンチルグリコール、1,9−ノナンジオール、1,4−ジヒドロキシシクロヘキサン、1,4−ビス(ヒドロキシメチル)シクロヘキサン及び2,2−ビス(4,4’−ヒドロキシシクロヘキシル)プロパン等];炭素数8〜15の芳香環含有ジオール[m−又はp−キシリレングリコール及び1,4−ビス(ヒドロキシエチル)ベンゼン等];炭素数3〜8のトリオール(グリセリン及びトリメチロールプロパン等);4価以上の多価アルコール[ペンタエリスリトール、α−メチルグルコシド、ソルビトール、キシリット、マンニット、グルコース、フルクトース、ショ糖、ジペンタエリスリトール及びポリグリセリン(重合度2〜20)等]等}及びこれらのアルキレン(炭素数2〜4)オキサイド付加物(重合度=2〜30)が挙げられる。 Examples of the polyol compound (b2) include low-molecular polyhydric alcohols {aliphatic and alicyclic diols having 2 to 20 carbon atoms [ethylene glycol, diethylene glycol, propylene glycol, 1,3-butylene glycol, 1,4- Butylene glycol, 1,6-hexanediol, 3-methylpentanediol, neopentyl glycol, 1,9-nonanediol, 1,4-dihydroxycyclohexane, 1,4-bis (hydroxymethyl) cyclohexane and 2,2-bis (4,4'-hydroxycyclohexyl) propane and the like]; aromatic diol having 8 to 15 carbon atoms [m- or p-xylylene glycol and 1,4-bis (hydroxyethyl) benzene and the like]; 8 triols (such as glycerin and trimethylolpropane); And higher polyhydric alcohols [pentaerythritol, α-methylglucoside, sorbitol, xylit, mannitol, glucose, fructose, sucrose, dipentaerythritol, polyglycerin (degree of polymerization 2-20, etc.), etc.] and their alkylenes (C2-C4) oxide adduct (degree of polymerization = 2-30) is mentioned.

架橋剤(b)を用い本発明の非水系二次電池活物質被覆用樹脂を架橋することにより、樹脂強度及び電解液に対する耐性をより向上させることができる。 By crosslinking the non-aqueous secondary battery active material coating resin of the present invention using the crosslinking agent (b), the resin strength and the resistance to the electrolyte can be further improved.

架橋剤(b)の含有量は、非水系二次電池活物質被覆用樹脂の重量に基づいて1〜5重量%であることが好ましい。 The content of the cross-linking agent (b) is preferably 1 to 5% by weight based on the weight of the non-aqueous secondary battery active material coating resin.

架橋剤(b)を用いて非水系二次電池活物質用被覆樹脂を架橋する方法としては、非水系二次電池用活物質(Y)を本発明の非水系二次電池活物質被覆用樹脂で被覆した後に架橋する方法、及び、被覆しながら同時に架橋する方法が挙げられる。
被覆した後に架橋する方法としては、具体的には、非水系二次電池用活物質(Y)と本発明の非水系二次電池活物質被覆用樹脂を含む樹脂溶液を混合し脱溶剤することにより、二次電池用活物質が樹脂で被覆された被覆活物質を製造した後に、架橋剤(b)を含む溶液を被覆活物質に混合して加熱することにより、脱溶剤と架橋反応を生じさせて、得られた架橋重合体で二次電池用活物質を被覆する方法が挙げられる。
被覆しながら同時に架橋する方法としては、具体的には、本発明の非水系二次電池活物質被覆用樹脂を含む樹脂溶液と架橋剤(b)とを含む混合溶液を被覆活物質と共に混合した後に脱溶媒し、脱溶媒と同時に架橋反応を生じさせて、架橋重合体の作製と同時にこの架橋重合体によって二次電池用活物質を被覆する方法が挙げられる。
加熱温度は、架橋剤としてポリエポキシ化合物(b1)を用いる場合は120℃以上とすることが好ましく、ポリオール化合物(b2)を用いる場合は190℃以上とすることが好ましい。
As a method for crosslinking the coating resin for non-aqueous secondary battery active material using the crosslinking agent (b), the non-aqueous secondary battery active material coating resin of the present invention is used as the non-aqueous secondary battery active material coating resin (Y). And a method of cross-linking at the same time while coating.
Specifically, as a method of crosslinking after coating, the resin material containing the non-aqueous secondary battery active material (Y) and the non-aqueous secondary battery active material coating resin of the present invention is mixed to remove the solvent. After producing a coated active material in which the active material for a secondary battery is coated with a resin, a solution containing the crosslinking agent (b) is mixed with the coated active material and heated to cause a solvent removal and a crosslinking reaction. And a method of coating the secondary battery active material with the obtained crosslinked polymer.
As a method of simultaneously crosslinking while coating, specifically, a mixed solution containing a resin solution containing the non-aqueous secondary battery active material coating resin of the present invention and a crosslinking agent (b) was mixed with the coating active material. A method of removing the solvent later, causing a crosslinking reaction simultaneously with the solvent removal, and coating the active material for the secondary battery with the crosslinked polymer simultaneously with the production of the crosslinked polymer can be mentioned.
The heating temperature is preferably 120 ° C. or higher when the polyepoxy compound (b1) is used as a crosslinking agent, and is preferably 190 ° C. or higher when the polyol compound (b2) is used.

非水系二次電池用活物質(Y)としては、リチウムイオン二次電池用正極活物質(Y1)及びリチウムイオン二次電池用負極活物質(Y2)が挙げられる。
リチウムイオン二次電池用正極活物質(Y1)は、リチウムイオン二次電池の正極活物質として用いることができるものであれば特に限定されないが、好ましいものとしてはリチウムと遷移金属との複合酸化物{遷移金属が1種である複合酸化物(LiCoO、LiNiO、LiAlMnO、LiMnO及びLiMn等)、遷移金属元素が2種である複合酸化物(例えばLiFeMnO、LiNi1−xCo、LiMn1−yCo、LiNi1/3Co1/3Al1/3及びLiNi0.8Co0.15Al0.05)及び金属元素が3種類以上である複合酸化物[例えばLiMM’M’’(M、M’及びM’’はそれぞれ異なる遷移金属元素であり、a+b+c=1を満たす。例えばLiNi1/3Mn1/3Co1/3)等]等}、リチウム含有遷移金属リン酸塩(例えばLiFePO、LiCoPO、LiMnPO及びLiNiPO)、遷移金属酸化物(例えばMnO及びV)、遷移金属硫化物(例えばMoS及びTiS)及び導電性高分子(例えばポリアニリン、ポリフッ化ビニリデン、ポリピロール、ポリチオフェン、ポリアセチレン及びポリ−p−フェニレン及びポリカルバゾール)等が挙げられ、2種以上を併用してもよい。
なお、リチウム含有遷移金属リン酸塩は、遷移金属サイトの一部を他の遷移金属で置換したものであってもよい。
リチウムイオン二次電池用負極活物質(Y2)は、リチウムイオン二次電池の負極活物質として用いることができるものであれば特に制限されないが、好ましいものとしては黒鉛、アモルファス炭素、高分子化合物焼成体(例えばフェノール樹脂及びフラン樹脂等を焼成し炭素化したもの)、コークス類(例えばピッチコークス、ニードルコークス及び石油コークス)、炭素繊維、導電性高分子(例えばポリアセチレン、ポリキノリン及びポリピロール)、スズ、シリコン、及び金属合金(例えばリチウム−スズ合金、リチウム−シリコン合金、リチウム−アルミニウム合金及びリチウム−アルミニウム−マンガン合金)等が挙げられる。
Examples of the non-aqueous secondary battery active material (Y) include a positive electrode active material (Y1) for a lithium ion secondary battery and a negative electrode active material (Y2) for a lithium ion secondary battery.
The positive electrode active material (Y1) for a lithium ion secondary battery is not particularly limited as long as it can be used as a positive electrode active material for a lithium ion secondary battery, but a composite oxide of lithium and a transition metal is preferable. {Composite oxides with one transition metal (LiCoO 2 , LiNiO 2 , LiAlMnO 4 , LiMnO 2, LiMn 2 O 4, etc.), composite oxides with two transition metal elements (for example, LiFeMnO 4 , LiNi 1− x Co x O 2 , LiMn 1-y Co y O 2 , LiNi 1/3 Co 1/3 Al 1/3 O 2 and LiNi 0.8 Co 0.15 Al 0.05 O 2 ) and 3 metal elements composite oxide is more than [e.g. LiM a M 'b M'' c O 2 (M, M' and M '' is a different transition metal element, respectively, a + b + c Satisfies 1. For example LiNi 1/3 Mn 1/3 Co 1/3 O 2 ) , etc.] or the like}, lithium-containing transition metal phosphate (e.g. LiFePO 4, LiCoPO 4, LiMnPO 4 and LiNiPO 4), a transition metal oxide Products (eg MnO 2 and V 2 O 5 ), transition metal sulfides (eg MoS 2 and TiS 2 ) and conductive polymers (eg polyaniline, polyvinylidene fluoride, polypyrrole, polythiophene, polyacetylene and poly-p-phenylene and poly Carbazole) and the like, and two or more of them may be used in combination.
The lithium-containing transition metal phosphate may be one in which a part of the transition metal site is substituted with another transition metal.
The negative electrode active material (Y2) for the lithium ion secondary battery is not particularly limited as long as it can be used as the negative electrode active material of the lithium ion secondary battery. Preferred examples thereof include graphite, amorphous carbon, and polymer compound firing. Bodies (for example, those obtained by baking and carbonizing phenol resin and furan resin), cokes (for example, pitch coke, needle coke and petroleum coke), carbon fibers, conductive polymers (for example, polyacetylene, polyquinoline and polypyrrole), tin, Examples thereof include silicon and metal alloys (for example, lithium-tin alloy, lithium-silicon alloy, lithium-aluminum alloy, and lithium-aluminum-manganese alloy).

本発明の非水系二次電池用被覆活物質は、非水系二次電池用活物質(Y)を本発明の非水系二次電池活物質被覆用樹脂で被覆することで得ることができ、例えば、非水系二次電池用活物質(Y)を万能混合機に入れて30〜500rpmで撹拌した状態で、非水系二次電池活物質被覆用樹脂を含む樹脂溶液を1〜90分かけて滴下混合し、さらに必要に応じて導電助剤(X)を混合し、撹拌したまま50〜200℃に昇温し、0.007〜0.04MPaまで減圧した後に10〜150分保持することにより得ることができる。 The coated active material for a non-aqueous secondary battery of the present invention can be obtained by coating the active material for a non-aqueous secondary battery (Y) with the resin for coating a non-aqueous secondary battery active material of the present invention. In a state where the non-aqueous secondary battery active material (Y) is put in a universal mixer and stirred at 30 to 500 rpm, a resin solution containing the non-aqueous secondary battery active material coating resin is dropped over 1 to 90 minutes. Mixing and further mixing the conductive auxiliary agent (X) as necessary, raising the temperature to 50 to 200 ° C. with stirring, reducing the pressure to 0.007 to 0.04 MPa, and holding for 10 to 150 minutes. be able to.

本発明の非水系二次電池用被覆活物質における非水系二次電池用活物質(Y)と非水系二次電池活物質被覆用樹脂の配合比率は特に限定されるものではないが、重量比率で非水系二次電池用活物質(Y):非水系二次電池活物質被覆用樹脂=1:0.001〜1:0.1であることが好ましい。 The blending ratio of the nonaqueous secondary battery active material (Y) and the nonaqueous secondary battery active material coating resin in the nonaqueous secondary battery coated active material of the present invention is not particularly limited, but the weight ratio And non-aqueous secondary battery active material (Y): non-aqueous secondary battery active material coating resin = 1: 0.001 to 1: 0.1.

本発明の非水系二次電池用被覆活物質のうち、本発明の非水系二次電池被覆活物質用樹脂をカルボキシル基と反応しうる官能基を2個以上有する架橋剤(b)によって架橋した架橋樹脂(以下、架橋重合体ともいう)が非水系二次電池用活物質(Y)の表面に結着した非水系二次電池用被覆活物質は、非水系二次電池用活物質(Y)を架橋重合体で被覆することで得ることができる。
例えば、本発明の非水系二次電池活物質被覆用樹脂を含有する樹脂溶液、カルボキシル基と反応しうる官能基を2個以上有する架橋剤(b)、非水系二次電池用活物質(Y)及び必要に応じて導電助剤(X)を混合しながら有機溶剤を留去する樹脂被覆工程と、上記非水系二次電池活物質被覆用樹脂と上記架橋剤(b)とを反応させる架橋工程と経ることにより作製することができる。
Of the coated active materials for non-aqueous secondary batteries of the present invention, the resin for coated non-aqueous secondary batteries of the present invention is crosslinked with a crosslinking agent (b) having two or more functional groups capable of reacting with carboxyl groups. A coated active material for a nonaqueous secondary battery in which a crosslinked resin (hereinafter also referred to as a crosslinked polymer) is bound to the surface of the active material for a nonaqueous secondary battery (Y) is an active material for a nonaqueous secondary battery (Y ) Can be obtained by coating with a crosslinked polymer.
For example, a resin solution containing the non-aqueous secondary battery active material coating resin of the present invention, a crosslinking agent (b) having two or more functional groups capable of reacting with carboxyl groups, a non-aqueous secondary battery active material (Y ) And, if necessary, a resin coating step for distilling off the organic solvent while mixing the conductive auxiliary agent (X), and a cross-linking for reacting the non-aqueous secondary battery active material coating resin with the cross-linking agent (b). It can be manufactured through processes.

樹脂被覆工程及び架橋工程については、架橋剤(b)を用いて単量体組成物を架橋する方法として既に説明したとおりである。
樹脂被覆工程及び架橋工程によって、非水系二次電池活物質被覆用樹脂を架橋剤(b)によって架橋した架橋樹脂、及び、必要に応じて用いる導電助剤(X)が非水系二次電池用活物質(Y)の表面に結着した非水系二次電池用被覆活物質が得られる。
本発明の非水系二次電池用被覆活物質は、本発明の非水系二次電池用活物質被覆用樹脂により被覆されているため、電極を作製する際に導電助剤やバインダーを加える必要はないが、上記スラリーに炭素繊維を加えることは、電極の電気抵抗(内部抵抗)をさらに低下させる観点から有用である。
About a resin coating process and a bridge | crosslinking process, it is as having already demonstrated as a method of bridge | crosslinking a monomer composition using a crosslinking agent (b).
A cross-linking resin obtained by cross-linking a resin for coating a non-aqueous secondary battery active material with a cross-linking agent (b) in a resin coating step and a cross-linking step, and a conductive auxiliary agent (X) to be used as needed are for a non-aqueous secondary battery. A coated active material for a non-aqueous secondary battery bound to the surface of the active material (Y) is obtained.
Since the coated active material for non-aqueous secondary batteries of the present invention is coated with the resin for coating an active material for non-aqueous secondary batteries of the present invention, it is not necessary to add a conductive additive or binder when preparing an electrode. However, adding carbon fiber to the slurry is useful from the viewpoint of further reducing the electrical resistance (internal resistance) of the electrode.

非水系二次電池用活物質(Y)としてリチウムイオン二次電池用正極活物質(Y1)を用いることによりリチウムイオン二次電池用の正極が得られ、リチウムイオン二次電池用負極活物質(Y2)を用いることによりリチウムイオン二次電池用の負極が得られる。 A positive electrode for a lithium ion secondary battery is obtained by using a positive electrode active material (Y1) for a lithium ion secondary battery as an active material (Y) for a non-aqueous secondary battery, and a negative electrode active material for a lithium ion secondary battery ( By using Y2), a negative electrode for a lithium ion secondary battery is obtained.

リチウム二次電池用の電極を作製する場合、例えば、本発明の非水系二次電池用被覆活物質を溶媒に分散させた電極スラリーを作成し、この電極スラリーを集電体に塗布、乾燥する方法が挙げられる。上記電極スラリーには、必要に応じて導電助剤(X)やバインダーを添加してもよい。 When producing an electrode for a lithium secondary battery, for example, an electrode slurry in which the coating active material for a non-aqueous secondary battery of the present invention is dispersed in a solvent is prepared, and this electrode slurry is applied to a current collector and dried. A method is mentioned. You may add a conductive support agent (X) and a binder to the said electrode slurry as needed.

電極スラリーに用いる溶媒としては、1−メチル−2−ピロリドン、メチルエチルケトン、DMF、ジメチルアセトアミド、N,N−ジメチルアミノプロピルアミン及びテトラヒドロフラン等が挙げられる。
電極スラリーを塗布する集電体としては、銅、アルミニウム、チタン、ステンレス鋼、ニッケル、焼成炭素、導電性高分子及び導電性ガラス等が挙げられる。
集電体の形状としては、シート状又は箔状等が好ましい。
電極スラリーに含まれるバインダーとしてはデンプン、ポリフッ化ビニリデン、ポリビニルアルコール、カルボキシメチルセルロース、ポリビニルピロリドン、テトラフロオロエチレン、スチレン−ブタジエンゴム、ポリエチレン及びポリプロピレン等の高分子化合物が挙げられる。
Examples of the solvent used for the electrode slurry include 1-methyl-2-pyrrolidone, methyl ethyl ketone, DMF, dimethylacetamide, N, N-dimethylaminopropylamine, and tetrahydrofuran.
Examples of the current collector to which the electrode slurry is applied include copper, aluminum, titanium, stainless steel, nickel, baked carbon, conductive polymer, and conductive glass.
The shape of the current collector is preferably a sheet shape or a foil shape.
Examples of the binder contained in the electrode slurry include polymer compounds such as starch, polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose, polyvinyl pyrrolidone, tetrafluoroethylene, styrene-butadiene rubber, polyethylene, and polypropylene.

電極スラリー中のバインダーの含有量は、活物質の重量に基づいて5重量%未満が好ましく、0重量%であることがより好ましい。
通常、バインダーは活物質同士及び活物質と集電体とを固定化して必要な電池性能を維持するために用いられる。
これに対して、本発明の非水系二次電池用被覆活物質は、活物質表面に本発明の非水系二次電池活物質被覆用樹脂が被覆されているから、電極とした際に活物質同士及び活物質と集電体とが充分に密着し、バインダーを用いる必要がない。
電極スラリーにバインダーを添加した場合、バインダーが本発明の非水系二次電池用被覆用活物質同士又は本発明の非水系二次電池被覆用活物質と集電体との間を結着することとなるため、添加したバインダーの分だけ内部抵抗が増加してしまう。
The binder content in the electrode slurry is preferably less than 5% by weight based on the weight of the active material, and more preferably 0% by weight.
Usually, the binder is used to fix the active materials and between the active material and the current collector to maintain necessary battery performance.
On the other hand, the coated active material for a non-aqueous secondary battery according to the present invention has an active material surface coated with the resin for coating a non-aqueous secondary battery active material according to the present invention. The active material and the current collector are in close contact with each other, and there is no need to use a binder.
When a binder is added to the electrode slurry, the binder binds the non-aqueous secondary battery coating active material of the present invention or between the non-aqueous secondary battery coating active material of the present invention and the current collector. Therefore, the internal resistance increases by the amount of the added binder.

本発明の非水系二次電池用被覆活物質を含む電極を用いたリチウムイオン二次電池は、対極となる電極を組み合わせて、セパレーターと共にセル容器に収納し、電解液を注入し、セル容器を密封することで得られる。
また、集電体の一方の面に正極を形成し、もう一方の面に負極を形成して双極型電極を作製し、双極型電極をセパレーターと積層してセル容器に収納し、電解液を注入し、セル容器を密封することでも得られる。
また、正極、負極を共に本発明の非水系二次電池用被覆活物質を含む電極としてリチウムイオン二次電池としてもよい。
A lithium ion secondary battery using an electrode containing a coated active material for a non-aqueous secondary battery according to the present invention is combined with a counter electrode, accommodated in a cell container together with a separator, injected with an electrolyte, Obtained by sealing.
In addition, a positive electrode is formed on one surface of the current collector, and a negative electrode is formed on the other surface to produce a bipolar electrode. The bipolar electrode is laminated with a separator and stored in a cell container. It can also be obtained by pouring and sealing the cell container.
Moreover, it is good also considering a positive electrode and a negative electrode as a lithium ion secondary battery as an electrode containing the coating active material for non-aqueous secondary batteries of this invention.

セパレーターとしては、ポリエチレン、ポリプロピレン製フィルムの微多孔膜、多孔性のポリエチレンフィルムとポリプロピレンとの多層フィルム、ポリエステル繊維、アラミド繊維、ガラス繊維等からなる不織布、及びそれらの表面にシリカ、アルミナ、チタニア等のセラミック微粒子を付着させたもの等が挙げられる。 As separators, polyethylene, polypropylene film microporous membrane, porous polyethylene film and polypropylene multilayer film, polyester fiber, aramid fiber, nonwoven fabric made of glass fiber, etc., and silica, alumina, titania etc. on their surface And those having ceramic fine particles attached thereto.

電解液としては、リチウムイオン二次電池の製造に用いられる、電解質及び非水溶媒を含有する電解液を使用することができる。 As the electrolytic solution, an electrolytic solution containing an electrolyte and a non-aqueous solvent used for manufacturing a lithium ion secondary battery can be used.

電解質としては、通常の電解液に用いられているもの等が使用でき、例えば、LiPF、LiBF、LiSbF、LiAsF及びLiClO等の無機酸のリチウム塩、LiN(CFSO、LiN(CSO及びLiC(CFSO等の有機酸のリチウム塩が挙げられる。これらの内、電池出力及び充放電サイクル特性の観点から好ましいのはLiPFである。 As the electrolyte, those used in ordinary electrolytic solutions can be used. For example, lithium salts of inorganic acids such as LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 and LiClO 4 , LiN (CF 3 SO 2 ) 2 , lithium salts of organic acids such as LiN (C 2 F 5 SO 2 ) 2 and LiC (CF 3 SO 2 ) 3 . Among these, LiPF 6 is preferable from the viewpoint of battery output and charge / discharge cycle characteristics.

非水溶媒としては、通常の電解液に用いられているもの等が使用でき、例えば、ラクトン化合物、環状又は鎖状炭酸エステル、鎖状カルボン酸エステル、環状又は鎖状エーテル、リン酸エステル、ニトリル化合物、アミド化合物、スルホン、スルホラン及びこれらの混合物を用いることができる。 As the non-aqueous solvent, those used in ordinary electrolytic solutions can be used, for example, lactone compounds, cyclic or chain carbonates, chain carboxylates, cyclic or chain ethers, phosphates, nitriles. Compounds, amide compounds, sulfones, sulfolanes and mixtures thereof can be used.

ラクトン化合物としては、5員環(γ−ブチロラクトン及びγ−バレロラクトン等)及び6員環のラクトン化合物(δ−バレロラクトン等)等を挙げることができる。 Examples of the lactone compound include a 5-membered ring (γ-butyrolactone, γ-valerolactone, etc.) and a 6-membered lactone compound (δ-valerolactone, etc.).

環状炭酸エステルとしては、プロピレンカーボネート、エチレンカーボネート(EC)及びブチレンカーボネート(BC)等が挙げられる。
鎖状炭酸エステルとしては、ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)、ジエチルカーボネート(DEC)、メチル−n−プロピルカーボネート、エチル−n−プロピルカーボネート及びジ−n−プロピルカーボネート等が挙げられる。
Examples of the cyclic carbonate include propylene carbonate, ethylene carbonate (EC) and butylene carbonate (BC).
Examples of the chain carbonate include dimethyl carbonate (DMC), methyl ethyl carbonate (MEC), diethyl carbonate (DEC), methyl-n-propyl carbonate, ethyl-n-propyl carbonate, and di-n-propyl carbonate. .

鎖状カルボン酸エステルとしては、酢酸メチル、酢酸エチル、酢酸プロピル及びプロピオン酸メチル等が挙げられる。
環状エーテルとしては、テトラヒドロフラン、テトラヒドロピラン、1,3−ジオキソラン及び1,4−ジオキサン等が挙げられる。鎖状エーテルとしては、ジメトキシメタン及び1,2−ジメトキシエタン等が挙げられる。
Examples of chain carboxylic acid esters include methyl acetate, ethyl acetate, propyl acetate, and methyl propionate.
Examples of the cyclic ether include tetrahydrofuran, tetrahydropyran, 1,3-dioxolane, 1,4-dioxane and the like. Examples of the chain ether include dimethoxymethane and 1,2-dimethoxyethane.

リン酸エステルとしては、リン酸トリメチル、リン酸トリエチル、リン酸エチルジメチル、リン酸ジエチルメチル、リン酸トリプロピル、リン酸トリブチル、リン酸トリ(トリフルオロメチル)、リン酸トリ(トリクロロメチル)、リン酸トリ(トリフルオロエチル)、リン酸トリ(トリパーフルオロエチル)、2−エトキシ−1,3,2−ジオキサホスホラン−2−オン、2−トリフルオロエトキシ−1,3,2−ジオキサホスホラン−2−オン及び2−メトキシエトキシ−1,3,2−ジオキサホスホラン−2−オン等が挙げられる。
ニトリル化合物としては、アセトニトリル等が挙げられる。アミド化合物としては、DMF等が挙げられる。スルホンとしては、ジメチルスルホン及びジエチルスルホン等が挙げられる。
非水溶媒は1種を単独で用いてもよいし、2種以上を併用してもよい。
Examples of phosphate esters include trimethyl phosphate, triethyl phosphate, ethyl dimethyl phosphate, diethyl methyl phosphate, tripropyl phosphate, tributyl phosphate, tri (trifluoromethyl) phosphate, tri (trichloromethyl) phosphate, Tri (trifluoroethyl) phosphate, tri (triperfluoroethyl) phosphate, 2-ethoxy-1,3,2-dioxaphospholan-2-one, 2-trifluoroethoxy-1,3,2- Examples include dioxaphospholan-2-one and 2-methoxyethoxy-1,3,2-dioxaphosphoran-2-one.
Examples of the nitrile compound include acetonitrile. Examples of the amide compound include DMF. Examples of the sulfone include dimethyl sulfone and diethyl sulfone.
A non-aqueous solvent may be used individually by 1 type, and may use 2 or more types together.

非水溶媒の内、電池出力及び充放電サイクル特性の観点から好ましいのは、ラクトン化合物、環状炭酸エステル、鎖状炭酸エステル及びリン酸エステルであり、更に好ましいのはラクトン化合物、環状炭酸エステル及び鎖状炭酸エステルであり、特に好ましいのは環状炭酸エステルと鎖状炭酸エステルの混合液である。最も好ましいのはエチレンカーボネート(EC)とジメチルカーボネート(DMC)の混合液である。 Of the non-aqueous solvents, lactone compounds, cyclic carbonates, chain carbonates and phosphates are preferable from the viewpoint of battery output and charge / discharge cycle characteristics, and lactone compounds, cyclic carbonates and chains are more preferable. The carbonic acid ester is particularly preferable, and a mixed solution of a cyclic carbonate and a chain carbonate is particularly preferable. Most preferred is a mixed solution of ethylene carbonate (EC) and dimethyl carbonate (DMC).

次に本発明を実施例によって具体的に説明するが、本発明の主旨を逸脱しない限り本発明は実施例に限定されるものではない。なお、特記しない限り部は重量部、%は重量%を意味する。 EXAMPLES Next, the present invention will be specifically described with reference to examples. However, the present invention is not limited to the examples without departing from the gist of the present invention. Unless otherwise specified, “part” means “part by weight” and “%” means “% by weight”.

<実施例1>
撹拌機、温度計、還流冷却管、滴下ロート及び窒素ガス導入管を付した4つ口フラスコにDMF70.0部を仕込み75℃に昇温した。次いで、メタクリル酸2−エチルヘキシル70.0部、メタクリル酸30.0部及びDMF20部を配合したモノマー配合液と、2,2’−アゾビス(2,4−ジメチルバレロニトリル)0.8部及び2,2’−アゾビス(2−メチルブチロニトリル)1.6部をDMF10.0部に溶解した開始剤溶液とを4つ口フラスコ内に窒素を吹き込みながら、撹拌下、滴下ロートで2時間かけて連続的に滴下してラジカル重合を行った。滴下終了後、80℃に昇温し反応を5時間継続し樹脂濃度50%の共重合体溶液を得た。得られた共重合体溶液はテフロン(登録商標)製のバットに移して120℃、0.01MPaで3時間の減圧乾燥を行いDMFを留去して共重合体を得た。この共重合体をハンマーで粗粉砕した後、乳鉢にて追加粉砕して、粉末状の樹脂(A−1)を得た。
使用したエステル化合物(a11)及び(メタ)アクリル酸(a12)の配合量を表1に示す。
以下の条件によるGPCで測定した共重合体の重量平均分子量は26,000であった。
<GPCの測定条件>
装置:Alliance GPC V2000(Waters社製)
溶媒:オルトジクロロベンゼン
標準物質:ポリスチレン
サンプル濃度:3mg/ml
カラム固定相:PLgel 10μm、MIXED−B 2本直列(ポリマーラボラトリーズ社製)
カラム温度:135℃
<Example 1>
In a four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, a dropping funnel and a nitrogen gas introduction tube, 70.0 parts of DMF was charged and heated to 75 ° C. Subsequently, 70.0 parts of 2-ethylhexyl methacrylate, 30.0 parts of methacrylic acid and 20 parts of DMF were mixed with a monomer, 0.8 part of 2,2′-azobis (2,4-dimethylvaleronitrile) and 2 parts , 2'-azobis (2-methylbutyronitrile) 1.6 parts in DMF 10.0 parts and an initiator solution, while blowing nitrogen into a four-necked flask and stirring with a dropping funnel over 2 hours Then, radical polymerization was carried out by dropping continuously. After completion of dropping, the temperature was raised to 80 ° C. and the reaction was continued for 5 hours to obtain a copolymer solution having a resin concentration of 50%. The obtained copolymer solution was transferred to a Teflon (registered trademark) vat and dried under reduced pressure at 120 ° C. and 0.01 MPa for 3 hours to distill off DMF to obtain a copolymer. This copolymer was roughly pulverized with a hammer and then additionally pulverized in a mortar to obtain a powdery resin (A-1).
Table 1 shows the compounding amounts of the ester compound (a11) and (meth) acrylic acid (a12) used.
The weight average molecular weight of the copolymer measured by GPC under the following conditions was 26,000.
<GPC measurement conditions>
Apparatus: Alliance GPC V2000 (manufactured by Waters)
Solvent: Orthodichlorobenzene Standard substance: Polystyrene Sample concentration: 3 mg / ml
Column stationary phase: PLgel 10 μm, MIXED-B 2 in series (manufactured by Polymer Laboratories)
Column temperature: 135 ° C

<実施例2>
撹拌機、温度計、還流冷却管、滴下ロート及び窒素ガス導入管を付した4つ口フラスコにDMF70.0部を仕込み75℃に昇温した。次いで、メタクリル酸ドデシル40.0部、メタクリル酸60.0部及びDMF20部を配合したモノマー配合液と、2,2’−アゾビス(2,4−ジメチルバレロニトリル)0.2部及び2,2’−アゾビス(2−メチルブチロニトリル)0.8部をDMF10.0部に溶解した開始剤溶液とを4つ口フラスコ内に窒素を吹き込みながら、撹拌下、滴下ロートで2時間かけて連続的に滴下してラジカル重合を行った。滴下終了後、75℃で反応を3時間継続した。次いで80℃に昇温し反応を3時間継続し樹脂濃度50%の共重合体溶液を得た。得られた共重合体溶液はテフロン(登録商標)製のバットに移して120℃、0.01MPaで3時間の減圧乾燥を行いDMFを留去して共重合体を得た。この共重合体をハンマーで粗粉砕した後、乳鉢にて追加粉砕して、粉末状の樹脂(A−2)を得た。
使用したエステル化合物(a11)及び(メタ)アクリル酸(a12)の配合量を表1に示す。
GPCで測定した共重合体の重量平均分子量は96,000であった。
<Example 2>
In a four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, a dropping funnel and a nitrogen gas introduction tube, 70.0 parts of DMF was charged and heated to 75 ° C. Subsequently, 40.0 parts of dodecyl methacrylate, 60.0 parts of methacrylic acid, and 20 parts of DMF were mixed with a monomer, and 0.22 of 2,2′-azobis (2,4-dimethylvaleronitrile) and 2,2 An initiator solution prepared by dissolving 0.8 parts of '-azobis (2-methylbutyronitrile) in 10.0 parts of DMF and continuously blowing with a dropping funnel for 2 hours while stirring nitrogen into a four-necked flask. The mixture was dropped dropwise to perform radical polymerization. After completion of dropping, the reaction was continued at 75 ° C. for 3 hours. Subsequently, the temperature was raised to 80 ° C., and the reaction was continued for 3 hours to obtain a copolymer solution having a resin concentration of 50%. The obtained copolymer solution was transferred to a Teflon (registered trademark) vat and dried under reduced pressure at 120 ° C. and 0.01 MPa for 3 hours to distill off DMF to obtain a copolymer. This copolymer was roughly pulverized with a hammer and then additionally pulverized in a mortar to obtain a powdery resin (A-2).
Table 1 shows the compounding amounts of the ester compound (a11) and (meth) acrylic acid (a12) used.
The weight average molecular weight of the copolymer measured by GPC was 96,000.

<実施例3>
撹拌機、温度計、還流冷却管、滴下ロート及び窒素ガス導入管を付した4つ口フラスコにDMF70.0部を仕込み75℃に昇温した。次いで、メタクリル酸ドデシル20.0部、アクリル酸70.0部、メタクリル酸メチル10.0部及びDMF20部を配合したモノマー配合液と、2,2’−アゾビス(2,4−ジメチルバレロニトリル)0.3部及び2,2’−アゾビス(2−メチルブチロニトリル)0.8部をDMF10.0部に溶解した開始剤溶液とを4つ口フラスコ内に窒素を吹き込みながら、撹拌下、滴下ロートで2時間かけて連続的に滴下してラジカル重合を行った。滴下終了後、75℃で反応を3時間継続した。次いで80℃に昇温し反応を3時間継続し樹脂濃度50%の共重合体溶液を得た。得られた共重合体溶液はテフロン(登録商標)製のバットに移して120℃、0.01MPaで3時間の減圧乾燥を行いDMFを留去して共重合体を得た。この共重合体をハンマーで粗粉砕した後、乳鉢にて追加粉砕して、粉末状の樹脂(A−3)を得た。
使用したエステル化合物(a11)、(メタ)アクリル酸(a12)及びエステル化合物(a13)の配合量を表1に示す。
GPCで測定した共重合体の重量平均分子量は70,000であった。
<Example 3>
In a four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, a dropping funnel and a nitrogen gas introduction tube, 70.0 parts of DMF was charged and heated to 75 ° C. Subsequently, 20.0 parts of dodecyl methacrylate, 70.0 parts of acrylic acid, 10.0 parts of methyl methacrylate and 20 parts of DMF, and a monomer mixture solution and 2,2′-azobis (2,4-dimethylvaleronitrile) An initiator solution prepared by dissolving 0.3 part and 0.8 part of 2,2′-azobis (2-methylbutyronitrile) in 10.0 part of DMF and blowing nitrogen into a four-necked flask while stirring, Radical polymerization was carried out by continuously dropping with a dropping funnel over 2 hours. After completion of dropping, the reaction was continued at 75 ° C. for 3 hours. Subsequently, the temperature was raised to 80 ° C., and the reaction was continued for 3 hours to obtain a copolymer solution having a resin concentration of 50%. The obtained copolymer solution was transferred to a Teflon (registered trademark) vat and dried under reduced pressure at 120 ° C. and 0.01 MPa for 3 hours to distill off DMF to obtain a copolymer. The copolymer was roughly pulverized with a hammer and then additionally pulverized in a mortar to obtain a powdery resin (A-3).
Table 1 shows the compounding amounts of the ester compound (a11), (meth) acrylic acid (a12) and ester compound (a13) used.
The weight average molecular weight of the copolymer measured by GPC was 70,000.

<実施例4>
撹拌機、温度計、還流冷却管、滴下ロート及び窒素ガス導入管を付した4つ口フラスコにDMF70.0部を仕込み75℃に昇温した。次いで、メタクリル酸ブチル20.0部、メタクリル酸40.0部、メタクリル酸メチル35.0部、メタクリル酸セチルとメタクリル酸ステアリルの混合物を合計5部及びDMF20部を配合したモノマー配合液と、2,2’−アゾビス(2,4−ジメチルバレロニトリル)0.08部及び2,2’−アゾビス(2−メチルブチロニトリル)0.8部をDMF10.0部に溶解した開始剤溶液とを4つ口フラスコ内に窒素を吹き込みながら、撹拌下、滴下ロートで2時間かけて連続的に滴下してラジカル重合を行った。滴下終了後、75℃で反応を3時間継続した。次いで80℃に昇温し反応を3時間継続した。次いで2,2’−アゾビス(2−メチルブチロニトリル)0.2部をDMF1.0部に溶解した開始剤溶液を追加で投入しさらに反応を3時間継続し樹脂濃度50%の共重合体溶液を得た。得られた共重合体溶液はテフロン(登録商標)製のバットに移して120℃、0.01MPaで3時間の減圧乾燥を行いDMFを留去して共重合体を得た。この共重合体をハンマーで粗粉砕した後、乳鉢にて追加粉砕して、粉末状の樹脂(A−4)を得た。
使用したエステル化合物(a11)、(メタ)アクリル酸(a12)、エステル化合物(a13)及び活性水素を含有しない共重合性ビニルモノマー(c)の配合量を表1に示す。
GPCで測定した共重合体の重量平均分子量は180,000であった。
<Example 4>
In a four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, a dropping funnel and a nitrogen gas introduction tube, 70.0 parts of DMF was charged and heated to 75 ° C. Next, 20.0 parts of butyl methacrylate, 40.0 parts of methacrylic acid, 35.0 parts of methyl methacrylate, a monomer mixture containing 5 parts of a mixture of cetyl methacrylate and stearyl methacrylate and 20 parts of DMF, and 2 , 2'-azobis (2,4-dimethylvaleronitrile) 0.08 parts and 2,2'-azobis (2-methylbutyronitrile) 0.8 parts in DMF 10.0 parts with an initiator solution While nitrogen was blown into the four-necked flask, radical polymerization was carried out by continuously dropping with a dropping funnel over 2 hours under stirring. After completion of dropping, the reaction was continued at 75 ° C. for 3 hours. The temperature was then raised to 80 ° C. and the reaction was continued for 3 hours. Next, an initiator solution in which 0.2 part of 2,2′-azobis (2-methylbutyronitrile) was dissolved in 1.0 part of DMF was added, and the reaction was continued for 3 hours to obtain a copolymer having a resin concentration of 50%. A solution was obtained. The obtained copolymer solution was transferred to a Teflon (registered trademark) vat and dried under reduced pressure at 120 ° C. and 0.01 MPa for 3 hours to distill off DMF to obtain a copolymer. The copolymer was roughly pulverized with a hammer and then additionally pulverized in a mortar to obtain a powdery resin (A-4).
Table 1 shows the blending amounts of the ester compound (a11), (meth) acrylic acid (a12), ester compound (a13), and copolymerizable vinyl monomer (c) containing no active hydrogen.
The weight average molecular weight of the copolymer measured by GPC was 180,000.

<実施例5>
撹拌機、温度計、還流冷却管、滴下ロート及び窒素ガス導入管を付した4つ口フラスコにDMF70.0部を仕込み75℃に昇温した。次いで、メタクリル酸2−エチルヘキシル44.5部、メタクリル酸30.0部、メタクリル酸メチル25.0部、スチレンスルホン酸ナトリウム0.5部及びDMF20部を配合したモノマー配合液と、2,2’−アゾビス(2,4−ジメチルバレロニトリル)0.3部及び2,2’−アゾビス(2−メチルブチロニトリル)0.8部をDMF10.0部に溶解した開始剤溶液とを4つ口フラスコ内に窒素を吹き込みながら、撹拌下、滴下ロートで2時間かけて連続的に滴下してラジカル重合を行った。滴下終了後、75℃で反応を3時間継続した。次いで80℃に昇温し反応を3時間継続し樹脂濃度50%の共重合体溶液を得た。得られた共重合体溶液はテフロン(登録商標)製のバットに移して120℃、0.01MPaで3時間の減圧乾燥を行いDMFを留去して共重合体を得た。この共重合体をハンマーで粗粉砕した後、乳鉢にて追加粉砕して、粉末状の樹脂(A−5)を得た。
使用したエステル化合物(a11)、(メタ)アクリル酸(a12)、エステル化合物(a13)及びアニオン性単量体の塩(a14)の配合量を表1に示す。
GPCで測定した共重合体の重量平均分子量は62,000であった。
<Example 5>
In a four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, a dropping funnel and a nitrogen gas introduction tube, 70.0 parts of DMF was charged and heated to 75 ° C. Then, 44.5 parts of 2-ethylhexyl methacrylate, 30.0 parts of methacrylic acid, 25.0 parts of methyl methacrylate, 0.5 part of sodium styrenesulfonate and 20 parts of DMF, and 2,2 ′ Four initiators of initiator solution prepared by dissolving 0.3 part of azobis (2,4-dimethylvaleronitrile) and 0.8 part of 2,2′-azobis (2-methylbutyronitrile) in 10.0 parts of DMF While nitrogen was blown into the flask, radical polymerization was carried out by continuously dropping the mixture with a dropping funnel over 2 hours while stirring. After completion of dropping, the reaction was continued at 75 ° C. for 3 hours. Subsequently, the temperature was raised to 80 ° C., and the reaction was continued for 3 hours to obtain a copolymer solution having a resin concentration of 50%. The obtained copolymer solution was transferred to a Teflon (registered trademark) vat and dried under reduced pressure at 120 ° C. and 0.01 MPa for 3 hours to distill off DMF to obtain a copolymer. The copolymer was roughly pulverized with a hammer and then additionally pulverized in a mortar to obtain a powdery resin (A-5).
Table 1 shows the compounding amounts of the ester compound (a11), (meth) acrylic acid (a12), ester compound (a13) and anionic monomer salt (a14) used.
The weight average molecular weight of the copolymer measured by GPC was 62,000.

<実施例6>
撹拌機、温度計、還流冷却管、滴下ロート及び窒素ガス導入管を付した4つ口フラスコにDMF70.0部を仕込み75℃に昇温した。次いで、メタクリル酸2−エチルヘキシル35.0部、メタクリル酸45.0部、メタクリル酸メチル15.0部、スチレンスルホン酸リチウム5.0部及びDMF20部を配合したモノマー配合液と、2,2’−アゾビス(2,4−ジメチルバレロニトリル)0.6部及び2,2’−アゾビス(2−メチルブチロニトリル)1.2部をDMF10.0部に溶解した開始剤溶液とを4つ口フラスコ内に窒素を吹き込みながら、撹拌下、滴下ロートで2時間かけて連続的に滴下してラジカル重合を行った。滴下終了後、80℃に昇温し反応を5時間継続し樹脂濃度50%の共重合体溶液を得た。得られた共重合体溶液はテフロン(登録商標)製のバットに移して120℃、0.01MPaで3時間の減圧乾燥を行いDMFを留去して共重合体を得た。この共重合体をハンマーで粗粉砕した後、乳鉢にて追加粉砕して、粉末状の樹脂(A−6)を得た。
使用したエステル化合物(a11)、(メタ)アクリル酸(a12)、エステル化合物(a13)及びアニオン性単量体の塩(a14)の配合量を表1に示す。
GPCで測定した共重合体の重量平均分子量は48,000であった。
<Example 6>
In a four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, a dropping funnel and a nitrogen gas introduction tube, 70.0 parts of DMF was charged and heated to 75 ° C. Subsequently, 35.0 parts of 2-ethylhexyl methacrylate, 45.0 parts of methacrylic acid, 15.0 parts of methyl methacrylate, 5.0 parts of lithium styrenesulfonate and 20 parts of DMF, and 2,2 ′ Four initiators of an initiator solution in which 0.6 parts of azobis (2,4-dimethylvaleronitrile) and 1.2 parts of 2,2′-azobis (2-methylbutyronitrile) are dissolved in 10.0 parts of DMF While nitrogen was blown into the flask, radical polymerization was carried out by continuously dropping the mixture with a dropping funnel over 2 hours while stirring. After completion of dropping, the temperature was raised to 80 ° C. and the reaction was continued for 5 hours to obtain a copolymer solution having a resin concentration of 50%. The obtained copolymer solution was transferred to a Teflon (registered trademark) vat and dried under reduced pressure at 120 ° C. and 0.01 MPa for 3 hours to distill off DMF to obtain a copolymer. The copolymer was roughly pulverized with a hammer and then additionally pulverized in a mortar to obtain a powdery resin (A-6).
Table 1 shows the compounding amounts of the ester compound (a11), (meth) acrylic acid (a12), ester compound (a13) and anionic monomer salt (a14) used.
The weight average molecular weight of the copolymer measured by GPC was 48,000.

<実施例7>
撹拌機、温度計、還流冷却管、滴下ロート及び窒素ガス導入管を付した4つ口フラスコにDMF70.0部を仕込み75℃に昇温した。次いで、メタクリル酸2−エチルヘキシル30.0部、メタクリル酸40.0部、メタクリル酸メチル17.0部、スチレンスルホン酸リチウム8.0部、スチレン5.0部及びDMF20部を配合したモノマー配合液と、2,2’−アゾビス(2,4−ジメチルバレロニトリル)0.3部及び2,2’−アゾビス(2−メチルブチロニトリル)0.8部をDMF10.0部に溶解した開始剤溶液とを4つ口フラスコ内に窒素を吹き込みながら、撹拌下、滴下ロートで2時間かけて連続的に滴下してラジカル重合を行った。滴下終了後、75℃で反応を3時間継続した。次いで80℃に昇温し反応を3時間継続し樹脂濃度50%の共重合体溶液を得た。得られた共重合体溶液はテフロン(登録商標)製のバットに移して120℃、0.01MPaで3時間の減圧乾燥を行いDMFを留去して共重合体を得た。この共重合体をハンマーで粗粉砕した後、乳鉢にて追加粉砕して、粉末状の樹脂(A−7)を得た。
使用したエステル化合物(a11)、(メタ)アクリル酸(a12)、エステル化合物(a13)、アニオン性単量体の塩(a14)及び活性水素を含有しない共重合性ビニルモノマー(c)の配合量を表1に示す。
GPCで測定した共重合体の重量平均分子量は79,000であった。
<Example 7>
In a four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, a dropping funnel and a nitrogen gas introduction tube, 70.0 parts of DMF was charged and heated to 75 ° C. Next, a monomer compounded liquid containing 30.0 parts of 2-ethylhexyl methacrylate, 40.0 parts of methacrylic acid, 17.0 parts of methyl methacrylate, 8.0 parts of lithium styrenesulfonate, 5.0 parts of styrene and 20 parts of DMF. And an initiator in which 0.3 part of 2,2′-azobis (2,4-dimethylvaleronitrile) and 0.8 part of 2,2′-azobis (2-methylbutyronitrile) are dissolved in 10.0 parts of DMF. The solution was continuously dropped with a dropping funnel over 2 hours with stirring while nitrogen was blown into a four-necked flask to perform radical polymerization. After completion of dropping, the reaction was continued at 75 ° C. for 3 hours. Subsequently, the temperature was raised to 80 ° C., and the reaction was continued for 3 hours to obtain a copolymer solution having a resin concentration of 50%. The obtained copolymer solution was transferred to a Teflon (registered trademark) vat and dried under reduced pressure at 120 ° C. and 0.01 MPa for 3 hours to distill off DMF to obtain a copolymer. This copolymer was roughly pulverized with a hammer and then additionally pulverized in a mortar to obtain a powdery resin (A-7).
Amounts of used ester compound (a11), (meth) acrylic acid (a12), ester compound (a13), anionic monomer salt (a14) and copolymerizable vinyl monomer (c) containing no active hydrogen Is shown in Table 1.
The weight average molecular weight of the copolymer measured by GPC was 79,000.

<実施例8>
撹拌機、温度計、還流冷却管、滴下ロート及び窒素ガス導入管を付した4つ口フラスコにDMF70.0部を仕込み75℃に昇温した。次いで、メタクリル酸ブチル20.0部、アクリル酸55.0部、メタクリル酸メチル22.0部、アリルスルホン酸ナトリウム3部及びDMF20部を配合したモノマー配合液と、2,2’−アゾビス(2,4−ジメチルバレロニトリル)0.4部及び2,2’−アゾビス(2−メチルブチロニトリル)0.8部をDMF10.0部に溶解した開始剤溶液とを4つ口フラスコ内に窒素を吹き込みながら、撹拌下、滴下ロートで2時間かけて連続的に滴下してラジカル重合を行った。滴下終了後、80℃に昇温し反応を5時間継続し樹脂濃度50%の共重合体溶液を得た。得られた共重合体溶液はテフロン(登録商標)製のバットに移して120℃、0.01MPaで3時間の減圧乾燥を行いDMFを留去して共重合体を得た。この共重合体をハンマーで粗粉砕した後、乳鉢にて追加粉砕して、粉末状の樹脂(A−8)を得た。
使用したエステル化合物(a11)、(メタ)アクリル酸(a12)、エステル化合物(a13)及びアニオン性単量体の塩(a14)の配合量を表1に示す。
GPCで測定した共重合体の重量平均分子量は51,000であった。
<Example 8>
In a four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, a dropping funnel and a nitrogen gas introduction tube, 70.0 parts of DMF was charged and heated to 75 ° C. Subsequently, 20.0 parts of butyl methacrylate, 55.0 parts of acrylic acid, 22.0 parts of methyl methacrylate, 3 parts of sodium allyl sulfonate and 20 parts of DMF, and 2,2′-azobis (2 , 4-dimethylvaleronitrile) and an initiator solution prepared by dissolving 0.8 part of 2,2′-azobis (2-methylbutyronitrile) in 10.0 part of DMF and nitrogen in a four-necked flask. Then, radical polymerization was carried out by continuously dropping with a dropping funnel over 2 hours under stirring. After completion of dropping, the temperature was raised to 80 ° C. and the reaction was continued for 5 hours to obtain a copolymer solution having a resin concentration of 50%. The obtained copolymer solution was transferred to a Teflon (registered trademark) vat and dried under reduced pressure at 120 ° C. and 0.01 MPa for 3 hours to distill off DMF to obtain a copolymer. This copolymer was roughly pulverized with a hammer and then additionally pulverized in a mortar to obtain a powdery resin (A-8).
Table 1 shows the compounding amounts of the ester compound (a11), (meth) acrylic acid (a12), ester compound (a13) and anionic monomer salt (a14) used.
The weight average molecular weight of the copolymer measured by GPC was 51,000.

<実施例9>
撹拌機、温度計、還流冷却管、滴下ロート及び窒素ガス導入管を付した4つ口フラスコにDMF70.0部を仕込み75℃に昇温した。次いで、メタクリル酸2−エチルヘキシル10.0部、メタクリル酸45.0部、メタクリル酸メチル42.0部、メタクリル酸リチウム3.0部及びDMF20部を配合したモノマー配合液と、2,2’−アゾビス(2,4−ジメチルバレロニトリル)0.3部及び2,2’−アゾビス(2−メチルブチロニトリル)0.7部をDMF10.0部に溶解した開始剤溶液とを4つ口フラスコ内に窒素を吹き込みながら、撹拌下、滴下ロートで2時間かけて連続的に滴下してラジカル重合を行った。滴下終了後、75℃で反応を3時間継続した。次いで80℃に昇温し反応を3時間継続し樹脂濃度50%の共重合体溶液を得た。得られた共重合体溶液はテフロン(登録商標)製のバットに移して120℃、0.01MPaで3時間の減圧乾燥を行いDMFを留去して共重合体を得た。この共重合体をハンマーで粗粉砕した後、乳鉢にて追加粉砕して、粉末状の樹脂(A−9)を得た。
使用したエステル化合物(a11)、(メタ)アクリル酸(a12)、エステル化合物(a13)及びアニオン性単量体の塩(a14)の配合量を表1に示す。
GPCで測定した共重合体の重量平均分子量は65,000であった。
<Example 9>
In a four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, a dropping funnel and a nitrogen gas introduction tube, 70.0 parts of DMF was charged and heated to 75 ° C. Next, a monomer compounding solution in which 10.0 parts of 2-ethylhexyl methacrylate, 45.0 parts of methacrylic acid, 42.0 parts of methyl methacrylate, 3.0 parts of lithium methacrylate and 20 parts of DMF were blended, and 2,2′- A four-necked flask with an initiator solution in which 0.3 part of azobis (2,4-dimethylvaleronitrile) and 0.7 part of 2,2′-azobis (2-methylbutyronitrile) are dissolved in 10.0 parts of DMF While nitrogen was blown into the inside, radical polymerization was carried out by continuously dropping the mixture with a dropping funnel over 2 hours under stirring. After completion of dropping, the reaction was continued at 75 ° C. for 3 hours. Subsequently, the temperature was raised to 80 ° C., and the reaction was continued for 3 hours to obtain a copolymer solution having a resin concentration of 50%. The obtained copolymer solution was transferred to a Teflon (registered trademark) vat and dried under reduced pressure at 120 ° C. and 0.01 MPa for 3 hours to distill off DMF to obtain a copolymer. This copolymer was roughly pulverized with a hammer and then additionally pulverized in a mortar to obtain a powdery resin (A-9).
Table 1 shows the compounding amounts of the ester compound (a11), (meth) acrylic acid (a12), ester compound (a13) and anionic monomer salt (a14) used.
The weight average molecular weight of the copolymer measured by GPC was 65,000.

<実施例10>
撹拌機、温度計、還流冷却管、滴下ロート及び窒素ガス導入管を付した4つ口フラスコにDMF70.0部を仕込み75℃に昇温した。次いで、メタクリル酸2−エチルヘキシル50.0部、メタクリル酸50.0部及びDMF20部を配合したモノマー配合液と、2,2’−アゾビス(2,4−ジメチルバレロニトリル)0.8部及び2,2’−アゾビス(2−メチルブチロニトリル)1.6部をDMF10.0部に溶解した開始剤溶液とを4つ口フラスコ内に窒素を吹き込みながら、撹拌下、滴下ロートで2時間かけて連続的に滴下してラジカル重合を行った。滴下終了後、80℃に昇温し反応を5時間継続し樹脂濃度50%の共重合体溶液を得た。得られた共重合体溶液はテフロン(登録商標)製のバットに移して120℃、0.01MPaで3時間の減圧乾燥を行いDMFを留去して共重合体を得た。この共重合体をハンマーで粗粉砕した後、乳鉢にて追加粉砕して、粉末状の樹脂(A−10)を得た。
使用したエステル化合物(a11)及び(メタ)アクリル酸(a12)の配合量を表1に示す。
GPCで測定した共重合体の重量平均分子量は26,000であった。
<Example 10>
In a four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, a dropping funnel and a nitrogen gas introduction tube, 70.0 parts of DMF was charged and heated to 75 ° C. Next, a monomer compounded solution prepared by blending 50.0 parts of 2-ethylhexyl methacrylate, 50.0 parts of methacrylic acid and 20 parts of DMF, 0.8 part of 2,2′-azobis (2,4-dimethylvaleronitrile) and 2 parts , 2'-azobis (2-methylbutyronitrile) 1.6 parts in DMF 10.0 parts and an initiator solution, while blowing nitrogen into a four-necked flask and stirring with a dropping funnel over 2 hours Then, radical polymerization was carried out by dropping continuously. After completion of dropping, the temperature was raised to 80 ° C. and the reaction was continued for 5 hours to obtain a copolymer solution having a resin concentration of 50%. The obtained copolymer solution was transferred to a Teflon (registered trademark) vat and dried under reduced pressure at 120 ° C. and 0.01 MPa for 3 hours to distill off DMF to obtain a copolymer. This copolymer was roughly pulverized with a hammer and then additionally pulverized in a mortar to obtain a powdery resin (A-10).
Table 1 shows the compounding amounts of the ester compound (a11) and (meth) acrylic acid (a12) used.
The weight average molecular weight of the copolymer measured by GPC was 26,000.

<実施例11>
撹拌機、温度計、還流冷却管、滴下ロート及び窒素ガス導入管を付した4つ口フラスコにDMF70.0部を仕込み75℃に昇温した。次いで、メタクリル酸2−エチルヘキシル30.0部、アクリル酸10.0部、メタクリル酸メチル60.0部及びDMF20部を配合したモノマー配合液と、2,2’−アゾビス(2,4−ジメチルバレロニトリル)0.8部及び2,2’−アゾビス(2−メチルブチロニトリル)1.6部をDMF10.0部に溶解した開始剤溶液とを4つ口フラスコ内に窒素を吹き込みながら、撹拌下、滴下ロートで2時間かけて連続的に滴下してラジカル重合を行った。滴下終了後、80℃に昇温し反応を5時間継続し樹脂濃度50%の共重合体溶液を得た。得られた共重合体溶液はテフロン(登録商標)製のバットに移して120℃、0.01MPaで3時間の減圧乾燥を行いDMFを留去して共重合体を得た。この共重合体をハンマーで粗粉砕した後、乳鉢にて追加粉砕して、粉末状の樹脂(A−11)を得た。
使用したエステル化合物(a11)、(メタ)アクリル酸(a12)及びエステル化合物(a13)の配合量を表1に示す。
GPCで測定した共重合体の重量平均分子量は24,000であった。
<Example 11>
In a four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, a dropping funnel and a nitrogen gas introduction tube, 70.0 parts of DMF was charged and heated to 75 ° C. Next, a monomer compounded solution containing 30.0 parts of 2-ethylhexyl methacrylate, 10.0 parts of acrylic acid, 60.0 parts of methyl methacrylate and 20 parts of DMF, and 2,2′-azobis (2,4-dimethylvalero) Nitrile) and an initiator solution prepared by dissolving 0.8 part of 2,2′-azobis (2-methylbutyronitrile) in 10.0 parts of DMF and stirring while blowing nitrogen into the four-necked flask. Then, radical polymerization was carried out by continuously dropping with a dropping funnel over 2 hours. After completion of dropping, the temperature was raised to 80 ° C. and the reaction was continued for 5 hours to obtain a copolymer solution having a resin concentration of 50%. The obtained copolymer solution was transferred to a Teflon (registered trademark) vat and dried under reduced pressure at 120 ° C. and 0.01 MPa for 3 hours to distill off DMF to obtain a copolymer. This copolymer was roughly pulverized with a hammer and then additionally pulverized in a mortar to obtain a powdery resin (A-11).
Table 1 shows the compounding amounts of the ester compound (a11), (meth) acrylic acid (a12) and ester compound (a13) used.
The weight average molecular weight of the copolymer measured by GPC was 24,000.

<実施例12>
撹拌機、温度計、還流冷却管、滴下ロート及び窒素ガス導入管を付した4つ口フラスコにDMF70.0部を仕込み75℃に昇温した。次いで、メタクリル酸2−エチルヘキシル30.0部、メタクリル酸10.0部、メタクリル酸メチル60.0部及びDMF20部を配合したモノマー配合液と、2,2’−アゾビス(2,4−ジメチルバレロニトリル)0.3部及び2,2’−アゾビス(2−メチルブチロニトリル)0.8部をDMF10.0部に溶解した開始剤溶液とを4つ口フラスコ内に窒素を吹き込みながら、撹拌下、滴下ロートで2時間かけて連続的に滴下してラジカル重合を行った。滴下終了後、75℃で反応を3時間継続した。次いで80℃に昇温し反応を3時間継続し樹脂濃度50%の共重合体溶液を得た。得られた共重合体溶液はテフロン(登録商標)製のバットに移して120℃、0.01MPaで3時間の減圧乾燥を行いDMFを留去して共重合体を得た。この共重合体をハンマーで粗粉砕した後、乳鉢にて追加粉砕して、粉末状の樹脂(A−12)を得た。
使用したエステル化合物(a11)、(メタ)アクリル酸(a12)及びエステル化合物(a13)の配合量を表1に示す。
GPCで測定した共重合体の重量平均分子量は80,000であった。
<Example 12>
In a four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, a dropping funnel and a nitrogen gas introduction tube, 70.0 parts of DMF was charged and heated to 75 ° C. Subsequently, a monomer compounded liquid containing 30.0 parts of 2-ethylhexyl methacrylate, 10.0 parts of methacrylic acid, 60.0 parts of methyl methacrylate and 20 parts of DMF, and 2,2′-azobis (2,4-dimethylvalero) Nitrile) and an initiator solution prepared by dissolving 0.3 part of 2,2′-azobis (2-methylbutyronitrile) in 10.0 part of DMF and stirring while blowing nitrogen into a four-necked flask Then, radical polymerization was carried out by continuously dropping with a dropping funnel over 2 hours. After completion of dropping, the reaction was continued at 75 ° C. for 3 hours. Subsequently, the temperature was raised to 80 ° C., and the reaction was continued for 3 hours to obtain a copolymer solution having a resin concentration of 50%. The obtained copolymer solution was transferred to a Teflon (registered trademark) vat and dried under reduced pressure at 120 ° C. and 0.01 MPa for 3 hours to distill off DMF to obtain a copolymer. The copolymer was roughly pulverized with a hammer and then additionally pulverized in a mortar to obtain a powdery resin (A-12).
Table 1 shows the compounding amounts of the ester compound (a11), (meth) acrylic acid (a12) and ester compound (a13) used.
The weight average molecular weight of the copolymer measured by GPC was 80,000.

<実施例13>
撹拌機、温度計、還流冷却管、滴下ロート及び窒素ガス導入管を付した4つ口フラスコにDMF70.0部を仕込み75℃に昇温した。次いで、メタクリル酸ブチル30.0部、メタクリル酸30.0部、メタクリル酸メチル25.0部、スチレンスルホン酸リチウム3.0部、メタクリル酸セチル及びメタクリル酸ステアリルの混合物を合計12.0部及びDMF20部を配合したモノマー配合液と、2,2’−アゾビス(2,4−ジメチルバレロニトリル)0.6部及び2,2’−アゾビス(2−メチルブチロニトリル)1.6部をDMF10.0部に溶解した開始剤溶液とを4つ口フラスコ内に窒素を吹き込みながら、撹拌下、滴下ロートで2時間かけて連続的に滴下してラジカル重合を行った。滴下終了後、80℃に昇温し反応を5時間継続し樹脂濃度50%の共重合体溶液を得た。得られた共重合体溶液はテフロン(登録商標)製のバットに移して120℃、0.01MPaで3時間の減圧乾燥を行いDMFを留去して共重合体を得た。この共重合体をハンマーで粗粉砕した後、乳鉢にて追加粉砕して、粉末状の樹脂(A−13)を得た。
使用したエステル化合物(a11)、(メタ)アクリル酸(a12)、エステル化合物(a13)、アニオン性単量体の塩(a14)及び活性水素を含有しない共重合性ビニルモノマー(c)の配合量を表1に示す。
GPCで測定した共重合体の重量平均分子量は48,000であった。
<Example 13>
In a four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, a dropping funnel and a nitrogen gas introduction tube, 70.0 parts of DMF was charged and heated to 75 ° C. Next, 30.0 parts of butyl methacrylate, 30.0 parts of methacrylic acid, 25.0 parts of methyl methacrylate, 3.0 parts of lithium styrenesulfonate, 12.0 parts in total of a mixture of cetyl methacrylate and stearyl methacrylate DMF10 was prepared by mixing 20 parts of DMF with a monomer mixture, 0.6 part of 2,2′-azobis (2,4-dimethylvaleronitrile) and 1.6 parts of 2,2′-azobis (2-methylbutyronitrile). The initiator solution dissolved in 0.0 part was continuously dropped in a dropping funnel over 2 hours with stirring while nitrogen was blown into a four-necked flask to perform radical polymerization. After completion of dropping, the temperature was raised to 80 ° C. and the reaction was continued for 5 hours to obtain a copolymer solution having a resin concentration of 50%. The obtained copolymer solution was transferred to a Teflon (registered trademark) vat and dried under reduced pressure at 120 ° C. and 0.01 MPa for 3 hours to distill off DMF to obtain a copolymer. The copolymer was roughly pulverized with a hammer and then additionally pulverized in a mortar to obtain a powdery resin (A-13).
Amounts of used ester compound (a11), (meth) acrylic acid (a12), ester compound (a13), anionic monomer salt (a14) and copolymerizable vinyl monomer (c) containing no active hydrogen Is shown in Table 1.
The weight average molecular weight of the copolymer measured by GPC was 48,000.

<実施例14>
撹拌機、温度計、還流冷却管、滴下ロート及び窒素ガス導入管を付した4つ口フラスコにDMF70.0部を仕込み75℃に昇温した。次いで、メタクリル酸2−エチルヘキシル40.0部、メタクリル酸40.0部、メタクリル酸メチル15.0部、スチレンスルホン酸ナトリウム5.0部及びDMF20部を配合したモノマー配合液と、2,2’−アゾビス(2,4−ジメチルバレロニトリル)0.3部及び2,2’−アゾビス(2−メチルブチロニトリル)0.8部をDMF10.0部に溶解した開始剤溶液とを4つ口フラスコ内に窒素を吹き込みながら、撹拌下、滴下ロートで2時間かけて連続的に滴下してラジカル重合を行った。滴下終了後、75℃で反応を3時間継続した。次いで80℃に昇温し反応を3時間継続し樹脂濃度50%の共重合体溶液を得た。得られた共重合体溶液はテフロン(登録商標)製のバットに移して120℃、0.01MPaで3時間の減圧乾燥を行いDMFを留去して共重合体を得た。この共重合体をハンマーで粗粉砕した後、乳鉢にて追加粉砕して、粉末状の樹脂(A−14)を得た。
使用したエステル化合物(a11)、(メタ)アクリル酸(a12)、エステル化合物(a13)及びアニオン性単量体の塩(a14)の配合量を表1に示す。
GPCで測定した共重合体の重量平均分子量は60,000であった。
<Example 14>
In a four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, a dropping funnel and a nitrogen gas introduction tube, 70.0 parts of DMF was charged and heated to 75 ° C. Next, a monomer compounded solution containing 40.0 parts of 2-ethylhexyl methacrylate, 40.0 parts of methacrylic acid, 15.0 parts of methyl methacrylate, 5.0 parts of sodium styrenesulfonate and 20 parts of DMF, and 2,2 ′ Four initiators of initiator solution prepared by dissolving 0.3 part of azobis (2,4-dimethylvaleronitrile) and 0.8 part of 2,2′-azobis (2-methylbutyronitrile) in 10.0 parts of DMF While nitrogen was blown into the flask, radical polymerization was carried out by continuously dropping the mixture with a dropping funnel over 2 hours while stirring. After completion of dropping, the reaction was continued at 75 ° C. for 3 hours. Subsequently, the temperature was raised to 80 ° C., and the reaction was continued for 3 hours to obtain a copolymer solution having a resin concentration of 50%. The obtained copolymer solution was transferred to a Teflon (registered trademark) vat and dried under reduced pressure at 120 ° C. and 0.01 MPa for 3 hours to distill off DMF to obtain a copolymer. The copolymer was roughly pulverized with a hammer and then additionally pulverized in a mortar to obtain a powdery resin (A-14).
Table 1 shows the compounding amounts of the ester compound (a11), (meth) acrylic acid (a12), ester compound (a13) and anionic monomer salt (a14) used.
The weight average molecular weight of the copolymer measured by GPC was 60,000.

<実施例15>
撹拌機、温度計、還流冷却管、滴下ロート及び窒素ガス導入管を付した4つ口フラスコにDMF70.0部を仕込み75℃に昇温した。次いで、メタクリル酸2−エチルヘキシル30.0部、メタクリル酸ブチル9.0部、アクリル酸35.0部、メタクリル酸メチル20.0部、スチレンスルホン酸リチウム1.0部、スチレン5.0部及びDMF20部を配合したモノマー配合液と、2,2’−アゾビス(2,4−ジメチルバレロニトリル)0.6部及び2,2’−アゾビス(2−メチルブチロニトリル)1.6部をDMF10.0部に溶解した開始剤溶液とを4つ口フラスコ内に窒素を吹き込みながら、撹拌下、滴下ロートで2時間かけて連続的に滴下してラジカル重合を行った。滴下終了後、80℃に昇温し反応を5時間継続し樹脂濃度50%の共重合体溶液を得た。得られた共重合体溶液はテフロン(登録商標)製のバットに移して120℃、0.01MPaで3時間の減圧乾燥を行いDMFを留去して共重合体を得た。この共重合体をハンマーで粗粉砕した後、乳鉢にて追加粉砕して、粉末状の樹脂(A−15)を得た。
使用したエステル化合物(a11)、(メタ)アクリル酸(a12)、エステル化合物(a13)、アニオン性単量体の塩(a14)及び活性水素を含有しない共重合性ビニルモノマー(c)の配合量を表1に示す。
GPCで測定した共重合体の重量平均分子量は38,000であった。
<Example 15>
In a four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, a dropping funnel and a nitrogen gas introduction tube, 70.0 parts of DMF was charged and heated to 75 ° C. Next, 30.0 parts of 2-ethylhexyl methacrylate, 9.0 parts of butyl methacrylate, 35.0 parts of acrylic acid, 20.0 parts of methyl methacrylate, 1.0 part of lithium styrenesulfonate, 5.0 parts of styrene and DMF10 was prepared by mixing 20 parts of DMF with a monomer mixture, 0.6 part of 2,2′-azobis (2,4-dimethylvaleronitrile) and 1.6 parts of 2,2′-azobis (2-methylbutyronitrile). The initiator solution dissolved in 0.0 part was continuously dropped in a dropping funnel over 2 hours with stirring while nitrogen was blown into a four-necked flask to perform radical polymerization. After completion of dropping, the temperature was raised to 80 ° C. and the reaction was continued for 5 hours to obtain a copolymer solution having a resin concentration of 50%. The obtained copolymer solution was transferred to a Teflon (registered trademark) vat and dried under reduced pressure at 120 ° C. and 0.01 MPa for 3 hours to distill off DMF to obtain a copolymer. The copolymer was roughly pulverized with a hammer and then additionally pulverized in a mortar to obtain a powdery resin (A-15).
Amounts of used ester compound (a11), (meth) acrylic acid (a12), ester compound (a13), anionic monomer salt (a14) and copolymerizable vinyl monomer (c) containing no active hydrogen Is shown in Table 1.
The weight average molecular weight of the copolymer measured by GPC was 38,000.

<実施例16>
撹拌機、温度計、還流冷却管、滴下ロート及び窒素ガス導入管を付した4つ口フラスコにDMF70.0部を仕込み75℃に昇温した。次いで、メタクリル酸2−エチルヘキシル15.0部、メタクリル酸ドデシル10.0部、メタクリル酸30.0部、メタクリル酸メチル40.0部、スチレンスルホン酸リチウム1.0部、メタクリル酸リチウム4.0部及びDMF20部を配合したモノマー配合液と、2,2’−アゾビス(2,4−ジメチルバレロニトリル)0.6部及び2,2’−アゾビス(2−メチルブチロニトリル)1.4部をDMF10.0部に溶解した開始剤溶液とを4つ口フラスコ内に窒素を吹き込みながら、撹拌下、滴下ロートで2時間かけて連続的に滴下してラジカル重合を行った。滴下終了後、80℃に昇温し反応を5時間継続し樹脂濃度50%の共重合体溶液を得た。得られた共重合体溶液はテフロン(登録商標)製のバットに移して120℃、0.01MPaで3時間の減圧乾燥を行いDMFを留去して共重合体を得た。この共重合体をハンマーで粗粉砕した後、乳鉢にて追加粉砕して、粉末状の樹脂(A−16)を得た。
使用したエステル化合物(a11)、(メタ)アクリル酸(a12)、エステル化合物(a13)及びアニオン性単量体の塩(a14)の配合量を表1に示す。
GPCで測定した共重合体の重量平均分子量は41,000であった。
<Example 16>
In a four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, a dropping funnel and a nitrogen gas introduction tube, 70.0 parts of DMF was charged and heated to 75 ° C. Next, 15.0 parts of 2-ethylhexyl methacrylate, 10.0 parts of dodecyl methacrylate, 30.0 parts of methacrylic acid, 40.0 parts of methyl methacrylate, 1.0 part of lithium styrene sulfonate, and 4.0 parts of lithium methacrylate. Part and 20 parts of DMF, a monomer mixture, 0.6 part of 2,2′-azobis (2,4-dimethylvaleronitrile) and 1.4 part of 2,2′-azobis (2-methylbutyronitrile) The initiator solution dissolved in 10.0 parts of DMF was continuously dropped with a dropping funnel over 2 hours with stirring while blowing nitrogen into a four-necked flask to perform radical polymerization. After completion of dropping, the temperature was raised to 80 ° C. and the reaction was continued for 5 hours to obtain a copolymer solution having a resin concentration of 50%. The obtained copolymer solution was transferred to a Teflon (registered trademark) vat and dried under reduced pressure at 120 ° C. and 0.01 MPa for 3 hours to distill off DMF to obtain a copolymer. The copolymer was roughly pulverized with a hammer and then additionally pulverized in a mortar to obtain a powdery resin (A-16).
Table 1 shows the compounding amounts of the ester compound (a11), (meth) acrylic acid (a12), ester compound (a13) and anionic monomer salt (a14) used.
The weight average molecular weight of the copolymer measured by GPC was 41,000.

<実施例17>
撹拌機、温度計、還流冷却管、滴下ロート及び窒素ガス導入管を付した4つ口フラスコにDMF70.0部を仕込み75℃に昇温した。次いで、メタクリル酸ドデシル20.0部、メタクリル酸40.0部、メタクリル酸メチル34.0部、アリルスルホン酸ナトリウム1.0部、スチレン5.0部及びDMF20部を配合したモノマー配合液と、2,2’−アゾビス(2,4−ジメチルバレロニトリル)0.9部及び2,2’−アゾビス(2−メチルブチロニトリル)1.6部をDMF10.0部に溶解した開始剤溶液とを4つ口フラスコ内に窒素を吹き込みながら、撹拌下、滴下ロートで2時間かけて連続的に滴下してラジカル重合を行った。滴下終了後、80℃に昇温し反応を5時間継続し樹脂濃度50%の共重合体溶液を得た。得られた共重合体溶液はテフロン(登録商標)製のバットに移して120℃、0.01MPaで3時間の減圧乾燥を行いDMFを留去して共重合体を得た。この共重合体をハンマーで粗粉砕した後、乳鉢にて追加粉砕して、粉末状の樹脂(A−17)を得た。
使用したエステル化合物(a11)、(メタ)アクリル酸(a12)、エステル化合物(a13)、アニオン性単量体の塩(a14)及び活性水素を含有しない共重合性ビニルモノマー(c)の配合量を表1に示す。
GPCで測定した共重合体の重量平均分子量は20,000であった。
<Example 17>
In a four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, a dropping funnel and a nitrogen gas introduction tube, 70.0 parts of DMF was charged and heated to 75 ° C. Then, 20.0 parts of dodecyl methacrylate, 40.0 parts of methacrylic acid, 34.0 parts of methyl methacrylate, 1.0 part of sodium allyl sulfonate, 5.0 parts of styrene and 20 parts of DMF, An initiator solution prepared by dissolving 0.9 part of 2,2′-azobis (2,4-dimethylvaleronitrile) and 1.6 part of 2,2′-azobis (2-methylbutyronitrile) in 10.0 parts of DMF; Was continuously dripped in a dropping funnel over 2 hours with stirring while nitrogen was blown into the four-necked flask to perform radical polymerization. After completion of dropping, the temperature was raised to 80 ° C. and the reaction was continued for 5 hours to obtain a copolymer solution having a resin concentration of 50%. The obtained copolymer solution was transferred to a Teflon (registered trademark) vat and dried under reduced pressure at 120 ° C. and 0.01 MPa for 3 hours to distill off DMF to obtain a copolymer. The copolymer was roughly pulverized with a hammer and then additionally pulverized in a mortar to obtain a powdery resin (A-17).
Amounts of used ester compound (a11), (meth) acrylic acid (a12), ester compound (a13), anionic monomer salt (a14) and copolymerizable vinyl monomer (c) containing no active hydrogen Is shown in Table 1.
The weight average molecular weight of the copolymer measured by GPC was 20,000.

<実施例18>
撹拌機、温度計、還流冷却管、滴下ロート及び窒素ガス導入管を付した4つ口フラスコにDMF70.0部を仕込み75℃に昇温した。次いで、メタクリル酸2−エチルヘキシル40.0部、メタクリル酸30.0部、メタクリル酸メチル25.0部、スチレンスルホン酸ナトリウム5.0部及びDMF20部を配合したモノマー配合液と、2,2’−アゾビス(2,4−ジメチルバレロニトリル)0.9部及び2,2’−アゾビス(2−メチルブチロニトリル)1.4部をDMF10.0部に溶解した開始剤溶液とを4つ口フラスコ内に窒素を吹き込みながら、撹拌下、滴下ロートで2時間かけて連続的に滴下してラジカル重合を行った。滴下終了後、80℃に昇温し反応を5時間継続し樹脂濃度50%の共重合体溶液を得た。得られた共重合体溶液はテフロン(登録商標)製のバットに移して120℃、0.01MPaで3時間の減圧乾燥を行いDMFを留去して共重合体を得た。この共重合体をハンマーで粗粉砕した後、乳鉢にて追加粉砕して、粉末状の樹脂(A−18)を得た。
使用したエステル化合物(a11)、(メタ)アクリル酸(a12)、エステル化合物(a13)及びアニオン性単量体の塩(a14)の配合量を表1に示す。
GPCで測定した共重合体の重量平均分子量は28,000であった。
<Example 18>
In a four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, a dropping funnel and a nitrogen gas introduction tube, 70.0 parts of DMF was charged and heated to 75 ° C. Next, a monomer compounded liquid containing 40.0 parts of 2-ethylhexyl methacrylate, 30.0 parts of methacrylic acid, 25.0 parts of methyl methacrylate, 5.0 parts of sodium styrenesulfonate and 20 parts of DMF, and 2,2 ′ 4 initiators with 0.9 parts of azobis (2,4-dimethylvaleronitrile) and 1.4 parts of 2,2′-azobis (2-methylbutyronitrile) dissolved in 10.0 parts of DMF While nitrogen was blown into the flask, radical polymerization was carried out by continuously dropping the mixture with a dropping funnel over 2 hours while stirring. After completion of dropping, the temperature was raised to 80 ° C. and the reaction was continued for 5 hours to obtain a copolymer solution having a resin concentration of 50%. The obtained copolymer solution was transferred to a Teflon (registered trademark) vat and dried under reduced pressure at 120 ° C. and 0.01 MPa for 3 hours to distill off DMF to obtain a copolymer. This copolymer was roughly pulverized with a hammer and then additionally pulverized in a mortar to obtain a powdery resin (A-18).
Table 1 shows the compounding amounts of the ester compound (a11), (meth) acrylic acid (a12), ester compound (a13) and anionic monomer salt (a14) used.
The weight average molecular weight of the copolymer measured by GPC was 28,000.

Figure 2017010883
Figure 2017010883

[リチウムイオン二次電池用被覆正極活物質の作成]
<実施例19:架橋剤なし>
実施例1で作成した粉末状の樹脂(A−1)2部及びDMF10.4部を配合して樹脂混合液を調製した。
その後、コーヒーミルにコバルト酸リチウム94部と上記樹脂混合液を投入し室温、1分間の混合攪拌を行った。次いでアセチレンブラック[電気化学工業(株)製]4部を投入し、さらに5分間の混合攪拌を行って活物質ケーキを得た。
活物質ケーキをテフロン(登録商標)製のバットに移し、120℃、0.01MPaで1時間の減圧乾燥を行った。減圧乾燥後はコーヒーミルに戻し10秒間撹拌して解砕を行い、実施例19に係る被覆負極活物質(D−1)を得た。被覆正極活物質の組成を表2に示す。
[Creation of coated positive electrode active material for lithium ion secondary battery]
<Example 19: No crosslinking agent>
A resin mixed solution was prepared by blending 2 parts of the powdery resin (A-1) prepared in Example 1 and 10.4 parts of DMF.
Thereafter, 94 parts of lithium cobaltate and the above resin mixture were charged into a coffee mill, and mixed and stirred at room temperature for 1 minute. Next, 4 parts of acetylene black [manufactured by Denki Kagaku Kogyo Co., Ltd.] was added, and the mixture was further stirred for 5 minutes to obtain an active material cake.
The active material cake was transferred to a Teflon (registered trademark) vat and dried under reduced pressure at 120 ° C. and 0.01 MPa for 1 hour. After drying under reduced pressure, the mixture was returned to the coffee mill and stirred for 10 seconds for pulverization to obtain a coated negative electrode active material (D-1) according to Example 19. Table 2 shows the composition of the coated positive electrode active material.

<実施例20〜29:架橋剤なし>
粉末状の樹脂(非水系二次電池活物質被覆用樹脂)の種類及び分量、並びに、DMF、コバルト酸リチウム及びアセチレンブラックの分量を表2に示した部数に変更したほかは、実施例19と同様の手順で実施例20〜29に係る被覆正極活物質(D−2)〜(D−11)を得た。各被覆正極活物質の組成を表2に示す。
<Examples 20 to 29: no crosslinking agent>
Example 19 and the amount of powdered resin (resin for coating non-aqueous secondary battery active material) and the amount of DMF, lithium cobaltate and acetylene black were changed to the numbers shown in Table 2, and Example 19 The coated positive electrode active materials (D-2) to (D-11) according to Examples 20 to 29 were obtained in the same procedure. Table 2 shows the composition of each coated positive electrode active material.

<比較例1>
粉末状の樹脂(A−1)2部にかわってポリフッ化ビニリデン[(株)クレハ社製]2部を用いたほかは、実施例19と同様の方法で被覆正極活物質(D’−1)を得た。
<Comparative Example 1>
The coated positive electrode active material (D′-1) was prepared in the same manner as in Example 19 except that 2 parts of polyvinylidene fluoride (manufactured by Kureha Co., Ltd.) was used instead of 2 parts of the powdered resin (A-1). )

<実施例30:架橋剤あり>
実施例10で作成した粉末状の樹脂(A−10)2部と架橋剤(b)としてデナコールEX−810[ナガセケムテックス(株)製]0.05部とDMF10.4部を配合して樹脂混合液を調製した。
コーヒーミルにコバルト酸リチウム94部、上記樹脂混合液を投入し室温、1分間の混合撹拌を行った。次いでアセチレンブラック[電気化学工業(株)製]4部を投入しさらに5分間の混合撹拌を行い活物質ケーキを得た。
活物質ケーキをテフロン(登録商標)製のバットに移し、120℃で1時間加熱し被覆樹脂の架橋反応を行った。その後0.01MPaで1時間の減圧乾燥を行った。減圧乾燥後はコーヒーミルに戻し10秒間撹拌解砕を行うことで実施例30に係る被覆正極活物質(D−12)を得た。
<Example 30: With crosslinking agent>
2 parts of powdery resin (A-10) prepared in Example 10 and 0.05 part of Denacol EX-810 [manufactured by Nagase ChemteX Corp.] and 10.4 parts of DMF are blended as the crosslinking agent (b). A resin mixture was prepared.
The coffee mill was charged with 94 parts of lithium cobaltate and the above resin mixture, and mixed and stirred at room temperature for 1 minute. Subsequently, 4 parts of acetylene black [manufactured by Denki Kagaku Kogyo Co., Ltd.] was added, and further mixed and stirred for 5 minutes to obtain an active material cake.
The active material cake was transferred to a Teflon (registered trademark) vat and heated at 120 ° C. for 1 hour to carry out a crosslinking reaction of the coating resin. Thereafter, vacuum drying was performed at 0.01 MPa for 1 hour. After drying under reduced pressure, it was returned to the coffee mill and stirred and crushed for 10 seconds to obtain a coated positive electrode active material (D-12) according to Example 30.

<実施例31〜38:架橋剤あり>
粉末状の樹脂(非水系二次電池活物質被覆用樹脂)、架橋剤(b)の種類及び分量、並びに、DMF、コバルト酸リチウム及びアセチレンブラックの分量を表2に示したとおりに変更したほかは、実施例30と同様の手順で実施例31〜38に係る被覆正極活物質(D−13)〜(D−20)を得た。各被覆正極活物質の組成を表2に示す。
<Examples 31 to 38: with a crosslinking agent>
In addition to changing the powdery resin (non-aqueous secondary battery active material coating resin), the type and amount of the crosslinking agent (b), and the amounts of DMF, lithium cobaltate and acetylene black as shown in Table 2. Obtained the coated positive electrode active materials (D-13) to (D-20) according to Examples 31 to 38 in the same procedure as in Example 30. Table 2 shows the composition of each coated positive electrode active material.

Figure 2017010883
Figure 2017010883

[リチウムイオン二次電池用被覆負極活物質の作製]
<実施例39:架橋剤なし>
実施例1で作成した粉末状の樹脂(A−1)2部及びDMF17.6部をそれぞれ配合し樹脂混合液を調製した。
コーヒーミルに黒鉛粉末[日本黒鉛工業(株)製]88部、上記樹脂混合液を投入し室温、1分間の混合撹拌を行った。次いでアセチレンブラック[電気化学工業(株)製]10部を投入しさらに5分間の混合撹拌を行って活物質ケーキを得た。
活物質ケーキをテフロン(登録商標)製のバットに移し、120℃、0.01MPaで1時間の減圧乾燥を行った。減圧乾燥後はコーヒーミルに戻し10秒間撹拌して解砕を行い、実施例39に係る被覆負極活物質(E−1)を得た。被覆負極活物質の組成を表3に示す。
[Production of coated negative electrode active material for lithium ion secondary battery]
<Example 39: No crosslinking agent>
2 parts of powdery resin (A-1) prepared in Example 1 and 17.6 parts of DMF were blended to prepare a resin mixed solution.
88 parts of graphite powder [manufactured by Nippon Graphite Industry Co., Ltd.] and the above resin mixture were charged into a coffee mill, and mixed and stirred at room temperature for 1 minute. Next, 10 parts of acetylene black [manufactured by Denki Kagaku Kogyo Co., Ltd.] was added, and the mixture was further stirred for 5 minutes to obtain an active material cake.
The active material cake was transferred to a Teflon (registered trademark) vat and dried under reduced pressure at 120 ° C. and 0.01 MPa for 1 hour. After drying under reduced pressure, the mixture was returned to the coffee mill and stirred for 10 seconds to crush to obtain a coated negative electrode active material (E-1) according to Example 39. Table 3 shows the composition of the coated negative electrode active material.

<実施例40〜49:架橋剤なし>
粉末状の樹脂(非水系二次電池活物質被覆用樹脂)の種類及び分量、並びに、DMF、黒鉛粉末及びアセチレンブラックの分量を表3に示したとおりに変更したほかは、実施例39と同様の手順で実施例40〜49に係る被覆負極活物質(E−2)〜(E−11)を得た。各被覆負極活物質の組成を表3に示す。
<Examples 40 to 49: No crosslinking agent>
The same as in Example 39, except that the type and amount of powdered resin (non-aqueous secondary battery active material coating resin) and the amounts of DMF, graphite powder and acetylene black were changed as shown in Table 3. In this procedure, coated negative electrode active materials (E-2) to (E-11) according to Examples 40 to 49 were obtained. Table 3 shows the composition of each coated negative electrode active material.

<比較例2>
粉末状の樹脂(A−1)2部にかわってポリフッ化ビニリデン[(株)クレハ社製]2部を用いたほかは、実施例39と同様の方法で被覆正極活物質(E’−1)を得た。
<Comparative example 2>
The coated positive electrode active material (E′-1) was prepared in the same manner as in Example 39 except that 2 parts of polyvinylidene fluoride (manufactured by Kureha Co., Ltd.) was used instead of 2 parts of the powdered resin (A-1). )

<実施例50:架橋剤あり>
実施例10で作成した粉末状の樹脂(A−10)2部、DMF17.6部及び架橋剤(b)としてデナコールEX−810[ナガセケムテックス(株)製]0.025部をそれぞれ配合し樹脂混合液を調製した。
コーヒーミルに黒鉛粉末[日本黒鉛工業(株)製]88部と樹脂混合液を投入し室温、1分間の混合撹拌を行った。次いでアセチレンブラック[電気化学工業(株)製]10部を投入しさらに5分間の混合撹拌を行って活物質ケーキを得た。
活物質ケーキをテフロン(登録商標)製のバットに移し、120℃、0.01MPaで1時間の減圧乾燥を行った。減圧乾燥後はコーヒーミルに戻し10秒間撹拌して解砕を行い、実施例50に係る被覆負極活物質(E−12)を得た。被覆負極活物質の組成を表3に示す。
<Example 50: With crosslinking agent>
2 parts of powdery resin (A-10) prepared in Example 10, 17.6 parts of DMF, and 0.025 part of Denacol EX-810 [manufactured by Nagase ChemteX Corporation] as a crosslinking agent (b) were blended. A resin mixture was prepared.
88 parts of graphite powder [manufactured by Nippon Graphite Industry Co., Ltd.] and a resin mixed solution were charged into a coffee mill and mixed and stirred at room temperature for 1 minute. Next, 10 parts of acetylene black [manufactured by Denki Kagaku Kogyo Co., Ltd.] was added, and the mixture was further stirred for 5 minutes to obtain an active material cake.
The active material cake was transferred to a Teflon (registered trademark) vat and dried under reduced pressure at 120 ° C. and 0.01 MPa for 1 hour. After drying under reduced pressure, the mixture was returned to the coffee mill and stirred for 10 seconds for pulverization to obtain a coated negative electrode active material (E-12) according to Example 50. Table 3 shows the composition of the coated negative electrode active material.

<実施例51〜58:架橋剤あり>
粉末状の樹脂(非水系二次電池活物質被覆用樹脂)、架橋剤(b)の種類及び分量、並びに、DMF、黒鉛粉末及びアセチレンブラックの分量を表3に示したとおりに変更したほかは、実施例50と同様の手順で実施例51〜58に係る被覆正極活物質(E−13)〜(E−20)を得た。各被覆負極活物質の組成を表3に示す。
<Examples 51 to 58: with a crosslinking agent>
Except that the powdery resin (non-aqueous secondary battery active material coating resin), the type and amount of the crosslinking agent (b), and the amounts of DMF, graphite powder and acetylene black were changed as shown in Table 3. The coated positive electrode active materials (E-13) to (E-20) according to Examples 51 to 58 were obtained in the same procedure as in Example 50. Table 3 shows the composition of each coated negative electrode active material.

Figure 2017010883
Figure 2017010883

<製造例1〜39>
[リチウムイオン二次電池用正極の作製]
実施例19〜38及び比較例1で作製した被覆正極活物質(D−1)〜(D−20)及び(D’−1)のいずれか10部とジエチルカーボネート5部を乳鉢に投入、混練することで正極スラリーを得た。得られたスラリーを大気中でワイヤーバーを用いて厚さ20μmのアルミニウム電解箔上の片面に塗布し、50℃で15分間乾燥させた後、さらに120℃、0.01MPaで12時間減圧乾燥を行い15mmφに打ち抜き、リチウムイオン二次電池用正極を作製した。
<Production Examples 1-39>
[Preparation of positive electrode for lithium ion secondary battery]
10 parts of any of the coated positive electrode active materials (D-1) to (D-20) and (D′-1) prepared in Examples 19 to 38 and Comparative Example 1 and 5 parts of diethyl carbonate were put into a mortar and kneaded. Thus, a positive electrode slurry was obtained. The obtained slurry was applied to one side of an aluminum electrolytic foil having a thickness of 20 μm using a wire bar in the air, dried at 50 ° C. for 15 minutes, and further dried under reduced pressure at 120 ° C. and 0.01 MPa for 12 hours. This was punched to 15 mmφ to produce a positive electrode for a lithium ion secondary battery.

[リチウムイオン二次電池用負極の作製]
続いて、実施例39〜58及び比較例2で作製した被覆負極活物質(E−1)〜(E−20)及び(E’−1)のいずれか10部とジエチルカーボネート5部を乳鉢に投入、混練することで負極スラリーを得た。得られたスラリーを大気中でワイヤーバーを用いて厚さ20μmの銅電解箔上の片面に塗布し、50℃で15分間乾燥させた後、さらに120℃、0.01MPaで12時間減圧乾燥を行い15mmφに打ち抜き、リチウムイオン二次電池用負極を作製した。
[Preparation of negative electrode for lithium ion secondary battery]
Subsequently, 10 parts of any one of the coated negative electrode active materials (E-1) to (E-20) and (E′-1) prepared in Examples 39 to 58 and Comparative Example 2 and 5 parts of diethyl carbonate in a mortar. The negative electrode slurry was obtained by charging and kneading. The obtained slurry was applied to one side of a 20 μm-thick copper electrolytic foil in the air using a wire bar, dried at 50 ° C. for 15 minutes, and then further dried under reduced pressure at 120 ° C. and 0.01 MPa for 12 hours. This was punched out to 15 mmφ to produce a negative electrode for a lithium ion secondary battery.

[リチウムイオン二次電池の作製]
2032型コインセル内の両端に、リチウムイオン二次電池用正極及びリチウムイオン二次電池用負極を、それぞれ、電極を構成する活物質が表4に記載の組み合わせとなるように組み合わせ、負極の塗布面が正極の塗布面に向き合うように配置して、電極間にセパレーター(セルガード2500:ポリプロピレン製)を3枚挿入し、リチウムイオン二次電池用セルを作製した。セルに電解液を注液密封し、以下の方法で内部抵抗を評価した。
使用した被覆正極活物質及び被覆負極活物質を表4に示す。
[Production of lithium ion secondary battery]
Combine the positive electrode for the lithium ion secondary battery and the negative electrode for the lithium ion secondary battery at both ends in the 2032 type coin cell so that the active materials constituting the electrodes are the combinations shown in Table 4, respectively, Were placed so as to face the coated surface of the positive electrode, and three separators (Celguard 2500: made of polypropylene) were inserted between the electrodes to produce a cell for a lithium ion secondary battery. An electrolytic solution was injected and sealed in the cell, and the internal resistance was evaluated by the following method.
Table 4 shows the coated positive electrode active material and the coated negative electrode active material used.

<製造例40:導電助剤(アセチレンブラック)を添加したもの>
正極スラリーを作製する際に(D−7)を9.9部、アセチレンブラックを0.1部、ジエチルカーボネートを5部用いるほかは、製造例1〜39と同様の方法でリチウムイオン二次電池用正極を作製した。
また、負極スラリーを作製する際に(E−7)を9.9部、アセチレンブラックを0.1部、ジエチルカーボネートを5部用いるほかは、製造例1〜39と同様の方法でリチウムイオン二次電池用負極を作製した。
2032型コインセル内の両端に、リチウムイオン二次電池用正極及びリチウムイオン二次電池用負極を、負極の塗布面が正極の塗布面に向き合うように配置して、電極間にセパレーター(セルガード2500:ポリプロピレン製)を3枚挿入し、リチウムイオン二次電池用セルを作製した。セルに電解液を注液密封し、以下の方法で内部抵抗を評価した。
使用した被覆正極活物質、被覆負極活物質及び導電助剤(X)を表4に示す。
<Production Example 40: Conductive auxiliary agent (acetylene black) added>
A lithium ion secondary battery was produced in the same manner as in Production Examples 1 to 39 except that 9.9 parts of (D-7), 0.1 part of acetylene black, and 5 parts of diethyl carbonate were used in preparing the positive electrode slurry. A positive electrode was prepared.
In addition, when preparing the negative electrode slurry, 9.9 parts of (E-7), 0.1 part of acetylene black, and 5 parts of diethyl carbonate were used, and lithium ion 2 was prepared in the same manner as in Production Examples 1 to 39. A negative electrode for a secondary battery was produced.
A positive electrode for a lithium ion secondary battery and a negative electrode for a lithium ion secondary battery are arranged at both ends in the 2032 type coin cell so that the coated surface of the negative electrode faces the coated surface of the positive electrode, and a separator (Cell Guard 2500: Three sheets of polypropylene) were inserted to produce a lithium ion secondary battery cell. An electrolytic solution was injected and sealed in the cell, and the internal resistance was evaluated by the following method.
Table 4 shows the coated positive electrode active material, the coated negative electrode active material, and the conductive additive (X) used.

<製造例41:導電助剤(カーボンナノファイバー)を添加したもの>
正極スラリーを作製する際に(D−16)を9.9部、カーボンナノファイバー[昭和電工(株)製]を0.1部、ジエチルカーボネートを5部用いるほかは、製造例1〜39と同様の方法でリチウムイオン二次電池用正極を作製した。
また、負極スラリーを作製する際に(E−16)を9.9部、カーボンナノファイバー[昭和電工(株)製]を0.1部、ジエチルカーボネート5部を用いるほかは、製造例1〜39と同様の方法でリチウムイオン二次電池用正極を作製した。
2032型コインセル内の両端に、リチウムイオン二次電池用正極及びリチウムイオン二次電池用負極を、負極の塗布面が正極の塗布面に向き合うように配置して、電極間にセパレーター(セルガード2500:ポリプロピレン製)を3枚挿入し、リチウムイオン二次電池用セルを作製した。セルに電解液を注液密封し、以下の方法で内部抵抗を評価した。
使用した被覆正極活物質、被覆負極活物質及び導電助剤(X)を表4に示す。
<Production Example 41: Conductive auxiliary agent (carbon nanofiber) added>
Production Examples 1 to 39 except that 9.9 parts of (D-16), 0.1 part of carbon nanofiber [manufactured by Showa Denko KK] and 5 parts of diethyl carbonate are used in preparing the positive electrode slurry. A positive electrode for a lithium ion secondary battery was produced in the same manner.
Further, in preparing the negative electrode slurry, 9.9 parts of (E-16), 0.1 part of carbon nanofiber [manufactured by Showa Denko KK], and 5 parts of diethyl carbonate are used, except for Production Examples 1 to 1. A positive electrode for a lithium ion secondary battery was produced in the same manner as in Example 39.
A positive electrode for a lithium ion secondary battery and a negative electrode for a lithium ion secondary battery are arranged at both ends in the 2032 type coin cell so that the coated surface of the negative electrode faces the coated surface of the positive electrode, and a separator (Cell Guard 2500: Three sheets of polypropylene) were inserted to produce a lithium ion secondary battery cell. An electrolytic solution was injected and sealed in the cell, and the internal resistance was evaluated by the following method.
Table 4 shows the coated positive electrode active material, the coated negative electrode active material, and the conductive additive (X) used.

<製造例42:バインダー(PVdF)を添加したもの>
(D−1)9.0部、アセチレンブラック0.5部、ポリフッ化ビニリデン0.5部、N−メチルピロリドン5部を乳鉢に投入、混練することで得られた正極スラリーを用い、1回目の乾燥温度を50℃から80℃に変更するほかは、製造例1〜39と同様の方法でリチウムイオン二次電池用正極を作製した。
また、(E−1)8.5部、アセチレンブラック1.0部、ポリフッ化ビニリデン0.5部、N−メチルピロリドン5部を乳鉢に投入、混練することで得られた負極スラリーを用い、1回目の乾燥温度を50℃から80℃に変更するほかは、製造例1〜39と同様の方法でリチウムイオン二次電池用負極を作製した。
2032型コインセル内の両端に、リチウムイオン二次電池用正極及びリチウムイオン二次電池用負極を、負極の塗布面が正極の塗布面に向き合うように配置して、電極間にセパレーター(セルガード2500:ポリプロピレン製)を3枚挿入し、リチウムイオン二次電池用セルを作製した。セルに電解液を注液密封し、以下の方法で内部抵抗を評価した。
使用した被覆正極活物質、被覆負極活物質及び導電助剤(X)を表4に示す。
<Production Example 42: Added binder (PVdF)>
(D-1) Using the positive electrode slurry obtained by charging 9.0 parts, acetylene black 0.5 parts, polyvinylidene fluoride 0.5 parts, and N-methylpyrrolidone 5 parts into a mortar and kneading the first time A positive electrode for a lithium ion secondary battery was produced in the same manner as in Production Examples 1 to 39 except that the drying temperature was changed from 50 ° C. to 80 ° C.
Moreover, using the negative electrode slurry obtained by putting and kneading 8.5 parts of (E-1), 1.0 part of acetylene black, 0.5 part of polyvinylidene fluoride, and 5 parts of N-methylpyrrolidone in a mortar, A negative electrode for a lithium ion secondary battery was produced in the same manner as in Production Examples 1 to 39 except that the first drying temperature was changed from 50 ° C to 80 ° C.
A positive electrode for a lithium ion secondary battery and a negative electrode for a lithium ion secondary battery are arranged at both ends in the 2032 type coin cell so that the coated surface of the negative electrode faces the coated surface of the positive electrode, and a separator (Cell Guard 2500: Three sheets of polypropylene) were inserted to produce a lithium ion secondary battery cell. An electrolytic solution was injected and sealed in the cell, and the internal resistance was evaluated by the following method.
Table 4 shows the coated positive electrode active material, the coated negative electrode active material, and the conductive additive (X) used.

<比較製造例1:本発明の被覆活物質を含有しないもの>
正極スラリーを作製する際に(D’−1)を10部とジエチルカーボネート5部を用いるほかは、製造例1〜39と同様の方法でリチウムイオン二次電池用正極を作製した。
また、負極スラリーを作製する際に(E’−1)を10部とジエチルカーボネート5部を用いるほかは、製造例1〜39と同様の方法でリチウムイオン二次電池用負極を作製した。
2032型コインセル内の両端に、リチウムイオン二次電池用正極及びリチウムイオン二次電池用負極を、負極の塗布面が正極の塗布面に向き合うように配置して、電極間にセパレーター(セルガード2500:ポリプロピレン製)を3枚挿入し、リチウムイオン二次電池用セルを作製した。セルに電解液を注液密封し、以下の方法で内部抵抗を評価した。
使用した被覆正極活物質、被覆負極活物質及び導電助剤(X)を表4に示す。
<Comparative Production Example 1: What does not contain the coating active material of the present invention>
A positive electrode for a lithium ion secondary battery was produced in the same manner as in Production Examples 1 to 39 except that 10 parts of (D′-1) and 5 parts of diethyl carbonate were used when producing the positive electrode slurry.
Moreover, the negative electrode for lithium ion secondary batteries was produced by the method similar to manufacture examples 1-39 except using 10 parts of (E'-1) and 5 parts of diethyl carbonate when producing a negative electrode slurry.
A positive electrode for a lithium ion secondary battery and a negative electrode for a lithium ion secondary battery are arranged at both ends in the 2032 type coin cell so that the coated surface of the negative electrode faces the coated surface of the positive electrode, and a separator (Cell Guard 2500: Three sheets of polypropylene) were inserted to produce a lithium ion secondary battery cell. An electrolytic solution was injected and sealed in the cell, and the internal resistance was evaluated by the following method.
Table 4 shows the coated positive electrode active material, the coated negative electrode active material, and the conductive additive (X) used.

<比較製造例2:被覆活物質を使わないもの>
コバルト酸リチウム9.0部、アセチレンブラック0.5部、ポリフッ化ビニリデン0.5部、N−メチルピロリドン5部を乳鉢に投入、混練することで得られた正極スラリーを用い、1回目の乾燥温度を50℃から80℃に変更するほかは、製造例1〜39と同様の方法でリチウムイオン二次電池用正極を作製した。
また、黒鉛粉末8.5部、アセチレンブラック1.0部、ポリフッ化ビニリデン0.5部、N−メチルピロリドン5部を乳鉢に投入、混練することで得られた負極スラリーを用い、1回目の乾燥温度を50℃から80℃に変更するほかは、製造例1〜39と同様の方法でリチウムイオン二次電池用負極を作製した。
2032型コインセル内の両端に、リチウムイオン二次電池用正極及びリチウムイオン二次電池用負極を、負極の塗布面が正極の塗布面に向き合うように配置して、電極間にセパレーター(セルガード2500:ポリプロピレン製)を3枚挿入し、リチウムイオン二次電池用セルを作製した。セルに電解液を注液密封し、以下の方法で内部抵抗を評価した。使用した正極活物質、負極活物質及び導電助剤(X)を表4に示す。
<Comparative Production Example 2: Using no coated active material>
Using positive electrode slurry obtained by charging and kneading 9.0 parts of lithium cobaltate, 0.5 part of acetylene black, 0.5 part of polyvinylidene fluoride and 5 parts of N-methylpyrrolidone in a mortar, the first drying A positive electrode for a lithium ion secondary battery was produced in the same manner as in Production Examples 1 to 39 except that the temperature was changed from 50 ° C to 80 ° C.
In addition, a negative electrode slurry obtained by adding and kneading 8.5 parts of graphite powder, 1.0 part of acetylene black, 0.5 part of polyvinylidene fluoride, and 5 parts of N-methylpyrrolidone into a mortar is used for the first time. A negative electrode for a lithium ion secondary battery was produced in the same manner as in Production Examples 1 to 39 except that the drying temperature was changed from 50 ° C to 80 ° C.
A positive electrode for a lithium ion secondary battery and a negative electrode for a lithium ion secondary battery are arranged at both ends in the 2032 type coin cell so that the coated surface of the negative electrode faces the coated surface of the positive electrode, and a separator (Cell Guard 2500: Three sheets of polypropylene) were inserted to produce a lithium ion secondary battery cell. An electrolytic solution was injected and sealed in the cell, and the internal resistance was evaluated by the following method. Table 4 shows the positive electrode active material, negative electrode active material, and conductive additive (X) used.

[サイクル初期及びサイクル終期の内部抵抗の評価]
室温(25℃)下、充放電測定装置「バッテリーアナライザ1470型」[東陽テクニカ(株)製]を用いて4.2Vまで、定電流定電圧充電を行った。10分間の休止後、0.1Cの電流値で2.5Vまで放電を行った。2サイクル目は0.2Cの電流で放電し、3サイクル目は0.5Cの電流で放電した。その後は1Cの電流での放電を197サイクル目までの194サイクル行い、198サイクル目は0.5Cの電流で、199サイクル目は0.2Cの電流で、200サイクル目は0.1Cの電流で放電を行った。
1〜4サイクル目におけるそれぞれの[「放電開始時の電圧」と「放電して10秒後の電圧」との差(ΔV)]と各サイクルの電流値(I)とから[降下電圧(ΔV)−電流(I)]のグラフを作成し、最小二乗法を用いてΔV=RIとなる抵抗値Rを算出し、サイクル初期の内部抵抗とした。
同様の手順で、197〜200サイクル目のΔVとIから算出したRをサイクル終期の内部抵抗とした。結果を表4に示す。
[Evaluation of internal resistance at the beginning and end of cycle]
Under room temperature (25 ° C.), constant current and constant voltage charging was performed up to 4.2 V using a charge / discharge measuring device “Battery Analyzer 1470 type” [manufactured by Toyo Technica Co., Ltd.]. After a 10-minute pause, discharging was performed to 2.5 V at a current value of 0.1 C. The second cycle was discharged with a current of 0.2 C, and the third cycle was discharged with a current of 0.5 C. After that, discharge at a current of 1 C is performed for 194 cycles up to the 197th cycle, the current at 198 is 0.5 C, the current at 199 is 0.2 C, the current at 200 is 0.1 C. Discharge was performed.
From the [difference (ΔV) between the “voltage at the start of discharge” and the “voltage after 10 seconds after discharge”] and the current value (I) of each cycle in the first to fourth cycles, [drop voltage (ΔV ) -Current (I)], a resistance value R satisfying ΔV = RI was calculated using the least square method, and used as the internal resistance at the beginning of the cycle.
In the same procedure, R calculated from ΔV and I in the 197th to 200th cycles was defined as the internal resistance at the end of the cycle. The results are shown in Table 4.

Figure 2017010883
なお、製造例42及び比較製造例2は電極スラリー作製時にバインダーとしてポリフッ化ビニリデン(PVdF)を用いている。
Figure 2017010883
In Production Example 42 and Comparative Production Example 2, polyvinylidene fluoride (PVdF) is used as a binder when preparing the electrode slurry.

表4に示された結果から、本発明の非水系二次電池活物質被覆用樹脂でリチウムイオン二次電池用活物質の表面を被覆して作製された本発明の非水系二次電池用被覆活物質(D−1)〜(D−20)及び(E−1)〜(E−20)を用いたリチウムイオン二次電池は、内部抵抗が低く、さらに経年劣化による内部抵抗の増加を抑制することができることがわかる。 From the results shown in Table 4, the coating for the non-aqueous secondary battery of the present invention produced by coating the surface of the active material for the lithium ion secondary battery with the resin for coating the non-aqueous secondary battery of the present invention. Lithium ion secondary batteries using active materials (D-1) to (D-20) and (E-1) to (E-20) have a low internal resistance and further suppress an increase in internal resistance due to aging. You can see that you can.

本発明の非水系二次電池活物質被覆用樹脂は、リチウムイオン二次電池活物質の表面を被覆することにより電池の内部抵抗を抑えることができる。また、本発明の非水系二次電池活物質被覆用樹脂は、活物質との接着性に優れるため、充放電を繰り返した場合であっても樹脂が活物質表面から剥離しにくく、継続使用による内部抵抗の増加を抑制することができる。
また、本発明により得られる非水系二次電池用被覆活物質は、特に、携帯電話、ウェアラブル機器、パーソナルコンピューター及びハイブリッド自動車、電気自動車用に用いられる双極型二次電池用及びリチウムイオン二次電池用等の活物質として有用である。
The resin for coating a non-aqueous secondary battery active material of the present invention can suppress the internal resistance of the battery by covering the surface of the lithium ion secondary battery active material. In addition, the resin for coating a non-aqueous secondary battery active material of the present invention is excellent in adhesiveness with the active material, so that even when charging and discharging are repeated, the resin is difficult to peel off from the surface of the active material. An increase in internal resistance can be suppressed.
Further, the coated active material for non-aqueous secondary batteries obtained by the present invention is used for bipolar secondary batteries and lithium ion secondary batteries used for mobile phones, wearable devices, personal computers and hybrid vehicles, electric vehicles, etc. Useful as an active material.

Claims (13)

炭素数4〜12の1価の脂肪族アルコールと(メタ)アクリル酸とのエステル化合物(a11)及び(メタ)アクリル酸(a12)を含んでなる単量体組成物を重合してなり、前記エステル化合物(a11)と前記(メタ)アクリル酸(a12)の重量比[前記エステル化合物(a11)/前記(メタ)アクリル酸(a12)]が10/90〜90/10である非水系二次電池活物質被覆用樹脂。 Polymerizing a monomer composition comprising an ester compound (a11) of a monovalent aliphatic alcohol having 4 to 12 carbon atoms and (meth) acrylic acid and (meth) acrylic acid (a12), Non-aqueous secondary in which the weight ratio of the ester compound (a11) to the (meth) acrylic acid (a12) [the ester compound (a11) / the (meth) acrylic acid (a12)] is 10/90 to 90/10 Battery active material coating resin. 前記単量体組成物が、更に炭素数1〜3の1価の脂肪族アルコールと(メタ)アクリル酸とのエステル化合物(a13)を含有する請求項1に記載の非水系二次電池活物質被覆用樹脂。 The non-aqueous secondary battery active material according to claim 1, wherein the monomer composition further contains an ester compound (a13) of a monovalent aliphatic alcohol having 1 to 3 carbon atoms and (meth) acrylic acid. Resin for coating. 前記エステル化合物(a13)の含有量が、前記単量体組成物の合計重量に基づいて10〜60重量%である請求項2に記載の非水系二次電池活物質被覆用樹脂。 The resin for coating a non-aqueous secondary battery active material according to claim 2, wherein the content of the ester compound (a13) is 10 to 60% by weight based on the total weight of the monomer composition. 前記単量体組成物が、更に重合性不飽和二重結合とアニオン性基とを有するアニオン性単量体の塩(a14)を含有する請求項1〜3のいずれかに記載の非水系二次電池活物質被覆用樹脂。 The non-aqueous system according to claim 1, wherein the monomer composition further contains a salt (a14) of an anionic monomer having a polymerizable unsaturated double bond and an anionic group. Secondary battery active material coating resin. 前記アニオン性単量体の塩(a14)がビニルスルホン酸、アリルスルホン酸、スチレンスルホン酸及び(メタ)アクリル酸からなる群より選ばれる少なくとも1種のアニオン性単量体と、リチウム、ナトリウム、カリウム及びアンモニアから選ばれる少なくとも1種との塩である請求項4に記載の非水系二次電池活物質被覆用樹脂。 At least one anionic monomer selected from the group consisting of vinylsulfonic acid, allylsulfonic acid, styrenesulfonic acid and (meth) acrylic acid, and lithium, sodium, The resin for coating a non-aqueous secondary battery active material according to claim 4, which is a salt with at least one selected from potassium and ammonia. 前記アニオン性単量体の塩(a14)の含有量が、前記単量体組成物の合計重量に基づいて0.1〜15重量%である請求項4又は5に記載の非水系二次電池活物質被覆用樹脂。 The non-aqueous secondary battery according to claim 4 or 5, wherein a content of the salt (a14) of the anionic monomer is 0.1 to 15% by weight based on a total weight of the monomer composition. Resin for active material coating. 前記(メタ)アクリル酸(a12)の含有量が、前記単量体組成物の合計重量に基づいて10〜90重量%である請求項1〜6のいずれかに記載の非水系二次電池活物質被覆用樹脂。 The content of the (meth) acrylic acid (a12) is 10 to 90% by weight based on the total weight of the monomer composition, and the non-aqueous secondary battery activity according to any one of claims 1 to 6. Material coating resin. 前記エステル化合物(a11)の含有量が、前記単量体組成物の合計重量に基づいて10〜90重量%である請求項1〜7のいずれかに記載の非水系二次電池活物質被覆用樹脂。 The content of the ester compound (a11) is 10 to 90% by weight based on the total weight of the monomer composition, for coating a non-aqueous secondary battery active material according to any one of claims 1 to 7. resin. 重量平均分子量が20,000〜500,000である請求項1〜8のいずれかに記載の非水系二次電池活物質被覆用樹脂。 The resin for coating a non-aqueous secondary battery active material according to claim 1, having a weight average molecular weight of 20,000 to 500,000. 請求項1〜9のいずれかに記載の非水系二次電池活物質被覆用樹脂が非水系二次電池用活物質(Y)の表面に結着した非水系二次電池用被覆活物質。 A coated active material for a nonaqueous secondary battery, wherein the resin for coating a nonaqueous secondary battery active material according to any one of claims 1 to 9 is bound to the surface of the active material for a nonaqueous secondary battery (Y). 請求項1〜9のいずれかに記載の非水系二次電池活物質被覆用樹脂をカルボキシル基と反応しうる官能基を2個以上有する架橋剤(b)によって架橋した架橋樹脂が非水系二次電池用活物質(Y)の表面に結着した非水系二次電池用被覆活物質。 A cross-linked resin obtained by cross-linking the non-aqueous secondary battery active material coating resin according to claim 1 with a cross-linking agent (b) having two or more functional groups capable of reacting with a carboxyl group is a non-aqueous secondary battery. A coated active material for a non-aqueous secondary battery bound to the surface of the battery active material (Y). 前記架橋剤(b)の含有量が前記非水系二次電池活物質被覆用樹脂の重量に基づいて1〜5重量%である請求項11に記載の非水系二次電池用被覆活物質。 The coated active material for a non-aqueous secondary battery according to claim 11, wherein the content of the crosslinking agent (b) is 1 to 5% by weight based on the weight of the resin for coating the non-aqueous secondary battery active material. 請求項1〜9のいずれかに記載の非水系二次電池活物質被覆用樹脂を含有する樹脂溶液、カルボキシル基と反応しうる官能基を2個以上有する架橋剤(b)及び非水系二次電池用活物質(Y)を混合しながら有機溶剤を留去する樹脂被覆工程と、
前記非水系二次電池活物質被覆用樹脂と前記架橋剤(b)とを反応させる架橋工程とを有する非水系二次電池用被覆活物質の製造方法。
A resin solution containing the resin for coating a non-aqueous secondary battery active material according to any one of claims 1 to 9, a crosslinking agent (b) having two or more functional groups capable of reacting with a carboxyl group, and a non-aqueous secondary A resin coating step of distilling off the organic solvent while mixing the battery active material (Y);
The manufacturing method of the coating active material for non-aqueous secondary batteries which has a bridge | crosslinking process with which the said resin for non-aqueous secondary battery coating | coated and the said crosslinking agent (b) are made to react.
JP2015127842A 2015-06-25 2015-06-25 Non-aqueous secondary battery active material coating resin, non-aqueous secondary battery coating active material, and non-aqueous secondary battery coating active material manufacturing method Active JP6572016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015127842A JP6572016B2 (en) 2015-06-25 2015-06-25 Non-aqueous secondary battery active material coating resin, non-aqueous secondary battery coating active material, and non-aqueous secondary battery coating active material manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015127842A JP6572016B2 (en) 2015-06-25 2015-06-25 Non-aqueous secondary battery active material coating resin, non-aqueous secondary battery coating active material, and non-aqueous secondary battery coating active material manufacturing method

Publications (2)

Publication Number Publication Date
JP2017010883A true JP2017010883A (en) 2017-01-12
JP6572016B2 JP6572016B2 (en) 2019-09-04

Family

ID=57762473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015127842A Active JP6572016B2 (en) 2015-06-25 2015-06-25 Non-aqueous secondary battery active material coating resin, non-aqueous secondary battery coating active material, and non-aqueous secondary battery coating active material manufacturing method

Country Status (1)

Country Link
JP (1) JP6572016B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019202985A1 (en) * 2018-04-17 2019-10-24 東亞合成株式会社 Binder for secondary battery electrodes, and use thereof
JP7357219B2 (en) 2019-05-30 2023-10-06 パナソニックIpマネジメント株式会社 Positive electrode active material and secondary battery using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6811007B2 (en) * 2015-09-09 2021-01-13 三洋化成工業株式会社 Method for manufacturing resin for coating non-aqueous secondary battery active material, coating active material for non-aqueous secondary battery, and coating active material for non-aqueous secondary battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000048807A (en) * 1998-07-29 2000-02-18 Sekisui Chem Co Ltd Nonaqueous electrolyte secondary battery
WO2013154165A1 (en) * 2012-04-12 2013-10-17 三菱レイヨン株式会社 Secondary battery electrode binder resin, secondary battery electrode composition, secondary battery electrode, and secondary battery
JP2014203771A (en) * 2013-04-09 2014-10-27 日本ゼオン株式会社 Electrode laminate for secondary battery and secondary battery
JP2014241235A (en) * 2013-06-12 2014-12-25 三菱レイヨン株式会社 Secondary battery electrode composition, secondary battery electrode, and secondary battery
WO2015005117A1 (en) * 2013-07-08 2015-01-15 三洋化成工業株式会社 Resin for coating lithium-ion-battery active material, resin composition for coating lithium-ion-battery active material, and coated active material for lithium-ion battery
WO2015041184A1 (en) * 2013-09-18 2015-03-26 三洋化成工業株式会社 Method for manufacturing coated active material for use in lithium-ion battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000048807A (en) * 1998-07-29 2000-02-18 Sekisui Chem Co Ltd Nonaqueous electrolyte secondary battery
WO2013154165A1 (en) * 2012-04-12 2013-10-17 三菱レイヨン株式会社 Secondary battery electrode binder resin, secondary battery electrode composition, secondary battery electrode, and secondary battery
JP2014203771A (en) * 2013-04-09 2014-10-27 日本ゼオン株式会社 Electrode laminate for secondary battery and secondary battery
JP2014241235A (en) * 2013-06-12 2014-12-25 三菱レイヨン株式会社 Secondary battery electrode composition, secondary battery electrode, and secondary battery
WO2015005117A1 (en) * 2013-07-08 2015-01-15 三洋化成工業株式会社 Resin for coating lithium-ion-battery active material, resin composition for coating lithium-ion-battery active material, and coated active material for lithium-ion battery
WO2015041184A1 (en) * 2013-09-18 2015-03-26 三洋化成工業株式会社 Method for manufacturing coated active material for use in lithium-ion battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019202985A1 (en) * 2018-04-17 2019-10-24 東亞合成株式会社 Binder for secondary battery electrodes, and use thereof
JP7357219B2 (en) 2019-05-30 2023-10-06 パナソニックIpマネジメント株式会社 Positive electrode active material and secondary battery using the same

Also Published As

Publication number Publication date
JP6572016B2 (en) 2019-09-04

Similar Documents

Publication Publication Date Title
JP6811007B2 (en) Method for manufacturing resin for coating non-aqueous secondary battery active material, coating active material for non-aqueous secondary battery, and coating active material for non-aqueous secondary battery
US20190020032A1 (en) Resin for coating lithium-ion-battery active material, resin composition for coating lithium-ion-battery active material, and coated active material for lithium-ion battery
EP3386016B1 (en) Composition for non-aqueous secondary battery adhesive layer, non-aqueous secondary battery adhesive layer, and non-aqueous secondary battery
EP3474348B1 (en) Composition for non-aqueous secondary battery function layer, functional layer for non-aqueous secondary battery, and non-aqueous secondary battery
JP2017160294A (en) Resin composition for coating nonaqueous secondary battery active material and coated active material for nonaqueous secondary battery
US11831020B2 (en) Conductive material dispersion liquid for electrochemical device, slurry for electrochemical device electrode, electrode for electrochemical device, and electrochemical device
US11764359B2 (en) Binder including copolymer of styrene, (meth)acrylate, and surfactant having unsaturated bond, slurry having the same, nonaqueous battery electrode using the same, and nonaqueous battery using the same
JP6572016B2 (en) Non-aqueous secondary battery active material coating resin, non-aqueous secondary battery coating active material, and non-aqueous secondary battery coating active material manufacturing method
KR20180105646A (en) A binder composition for a non-aqueous secondary battery electrode, a slurry composition for a non-aqueous secondary battery electrode, an electrode for a non-aqueous secondary battery,
US10651447B2 (en) Heat-sensitive layer for lithium ion secondary battery
US20170263936A1 (en) Lithium metal electrode, method for preparing the same, and lithium rechargeable battery using the same
US20230275235A1 (en) Electrode for electrochemical device and electrochemical device
EP3379622B1 (en) Electrode for lithium-ion secondary battery
US11976147B2 (en) Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode and method of producing same, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
US20220181631A1 (en) Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery positive electrode, positive electrode for non-aqueous secondary battery, and non-aqueous secondary battery
EP3958357B1 (en) Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery positive electrode, positive electrode for non-aqueous secondary battery, and non-aqueous secondary battery
US20220045329A1 (en) Conductive material paste for all-solid-state secondary battery electrode
JP7109512B2 (en) Coated cathode active material particles for lithium-ion batteries
US20230323074A1 (en) Conductive material dispersion liquid for electrochemical device, slurry for electrochemical device electrode, electrode for electrochemical device, and electrochemical device
JP2021097036A (en) Coated positive electrode active material for lithium ion battery and manufacturing method thereof
JP2020009750A (en) Electrode for lithium ion battery and lithium ion battery
US20240047755A1 (en) Non-aqueous electrochemical device
EP4083084A1 (en) Binder composition for non-aqueous secondary battery electrodes, slurry composition for non-aqueous secondary battery electrodes, electrode for non-aqueous secondary batteries, and non-aqueous secondary battery
US20230420650A1 (en) Electrode for electrochemical device and electrochemical device
US20220045360A1 (en) Binder composition for all-solid-state secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190809

R150 Certificate of patent or registration of utility model

Ref document number: 6572016

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250