WO2015041087A1 - Light guide body and laser light source device - Google Patents
Light guide body and laser light source device Download PDFInfo
- Publication number
- WO2015041087A1 WO2015041087A1 PCT/JP2014/073663 JP2014073663W WO2015041087A1 WO 2015041087 A1 WO2015041087 A1 WO 2015041087A1 JP 2014073663 W JP2014073663 W JP 2014073663W WO 2015041087 A1 WO2015041087 A1 WO 2015041087A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light guide
- light
- guide plate
- incident
- laser
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/40—Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
- H01S5/4012—Beam combining, e.g. by the use of fibres, gratings, polarisers, prisms
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/40—Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4204—Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
- G02B6/4214—Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4249—Packages, e.g. shape, construction, internal or external details comprising arrays of active devices and fibres
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/005—Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/022—Mountings; Housings
- H01S5/0225—Out-coupling of light
- H01S5/02251—Out-coupling of light using optical fibres
Definitions
- the present invention relates to a light guide including a plurality of light guide plates, and also relates to a laser light source device including the light guide.
- a light guide including a plurality of light guide plates is known as the light guide (for example, Patent Document 1).
- the light guide In such a light guide, light is incident from one end of each light guide plate, and the incident light is emitted from the other end of each light guide plate.
- each light guide plate needs to have a complicated shape, for example, a part of the light guide plate has a curved shape, so that the structure becomes complicated. Thereby, the operation
- an object of the present invention is to provide a light guide that can be simplified in structure.
- the light guide according to the present invention includes a plurality of light guide plates formed in a long flat plate shape, and each of the light guide plates reflects light incident from the end surface in the width direction toward the end portion in the longitudinal direction.
- the plurality of light guide plates are arranged so as to overlap in the thickness direction.
- the plurality of light guide plates formed in a long flat plate shape are arranged to overlap in the thickness direction. This simplifies the structure. Moreover, the reflection part provided in each light-guide plate reflects the light which injects into a light-guide plate from the end surface of the width direction of a light-guide plate toward the edge part of the longitudinal direction of a light-guide plate. Thereby, the light incident on the light guide plate from the end surface in the width direction of the light guide plate is emitted from the end portion in the longitudinal direction of the light guide plate.
- the plurality of reflecting portions may be arranged so as to be separated from each other in the longitudinal direction of the light guide plate.
- the plurality of reflecting portions are separated from each other in the longitudinal direction of the light guide plate.
- a plurality of laser light emitting units that emit laser light can be arranged so as to be separated from each other in the longitudinal direction of the light guide plate, so that the apparatus can be miniaturized in the thickness direction of the light guide plate.
- the reflection portion is an end surface disposed at an end portion in a longitudinal direction of the light guide plate, and the end surface receives light incident from a side portion of the light guide plate. It may be arranged such that it is incident on the end face at an incident angle larger than the critical angle.
- the laser light source device includes a plurality of laser light emitting units that emit laser light, a first optical system that receives laser light emitted from the laser light emitting unit, and the first optical system. And the second optical system for allowing the laser light emitted from the light guide to be incident thereon.
- the present invention has an excellent effect that the structure can be simplified.
- FIG. 1 is an overall schematic plan view of a laser light source device according to an embodiment of the present invention. It is a principal part schematic side view of the laser light source apparatus which concerns on the same embodiment. It is a whole perspective view of the light guide concerning the embodiment.
- FIG. 4 is an enlarged cross-sectional view of a main part taken along line IV-IV in FIG. 3 of the light guide according to the same embodiment. It is a principal part general
- a laser light source device 1 includes a light source unit 2 that emits laser light, and a first optical system (“incident side” on which laser light emitted from the light source unit 2 is incident. 3) and a long light guide 4 into which the laser light emitted from the first optical system 3 is incident.
- the laser light source device 1 emits a second optical system 5 (also referred to as an “emission-side optical system”) to which the laser light emitted from the light guide 4 is incident, and the second optical system 5.
- a fiber 6 on which a laser beam is incident.
- the light source unit 2 includes a plurality of laser light emitting units 21 that emit laser light.
- the light source unit 2 includes a plurality of semiconductor lasers, and each semiconductor laser includes one laser light emitting unit 21.
- each semiconductor laser is a CAN-type blue semiconductor laser (LD) having an outer diameter of 9 mm, and the light emission size is (X direction) 15 ⁇ m ⁇ (Z direction) 1 ⁇ m.
- the plurality of laser light emitting units 21 are arranged on the side of the light guide 4 and are arranged in parallel along the longitudinal direction X of the light guide 4.
- the first optical system 3 includes a plurality of parallel light lenses 31 that convert the light emitted from each laser light emitting unit 21 into parallel light, and the parallel light lenses 31.
- a plurality of condensing lenses 32 that concentrate light in the thickness direction Z of the light guide 4 are provided.
- one parallel light lens 31 and one condensing lens 32 are arranged for each laser emission unit 21.
- the parallel light lens 31 is a lens targeted for the optical axis
- the condenser lens 32 is a cylindrical lens.
- the light guide 4 includes a substrate 41 made of a reflective material formed in a long flat plate shape and a long flat plate shape, and one side of the substrate 41. And a plurality of light guide plates 42 arranged so as to overlap with each other in the thickness direction Z.
- the light guide 4 is disposed between the light guide plates 42 and 42 and a light transmission preventing portion 43 that prevents light incident on the predetermined light guide plate 42 from being transmitted toward the adjacent light guide plate 42.
- the light guide plates 42 are provided with a bonding portion 44 for bonding the light guide plates 42 to each other.
- the light guide plate 42 includes a reflection portion 42a that reflects light incident from one end face in the width direction (short direction) Y toward the other end portion in the longitudinal direction X at one end portion in the longitudinal direction X. Yes.
- the plurality of light guide plates 42 are formed so that the dimensions in the width direction Y are all the same, while the dimensions in the longitudinal direction X are shortened as the distance from the substrate 41 increases.
- the plurality of light guide plates 42 are arranged so that each end face in the width direction Y is substantially flush with each other, and the other end face in the longitudinal direction X is substantially flush. Thereby, each light guide plate 42 is arranged so that the whole overlaps in the thickness direction Z with respect to the light guide plate 42 adjacent on the substrate 41 side (lower side).
- the light guide plate 42 is arranged for one laser light emitting unit 21.
- the light guide plate 42 is made of glass.
- the light guide plate 42 is made of a float glass ribbon having a width dimension of 5 mm, a thickness dimension of 5 ⁇ m, and a refractive index of 1.52.
- the reflection portion 42 a is a flat end surface disposed at one end portion in the longitudinal direction X of the light guide plate 42.
- the end face (reflecting portion 42a) is formed by cutting and polishing one end portion of the light guide plate 42.
- the end face (reflecting part 42a) is arranged such that light incident from the side part of the light guide plate 42 enters the end face (reflecting part 42a) at an incident angle larger than the critical angle.
- the critical angle when entering the air from the light guide plate 42 is 42 °
- the incident angle of light with respect to the end face (reflecting portion 42a) is 45 °.
- the plurality of reflecting portions 42 a are arranged so as to be separated from each other in the longitudinal direction X of the light guide plate 42. Specifically, the plurality of reflecting portions 42 a are arranged so as to be closer to the other end portion in the longitudinal direction X as they are separated from the substrate 41. In the present embodiment, the plurality of reflecting portions 42a are arranged at intervals of 12 mm in the light guide plate 42 longitudinal direction X, respectively.
- the transmission preventing unit 43 is disposed between the light guide plates 42 and 42. Further, the transmission preventing unit 43 is disposed at least at a portion where the reflecting unit 42 a is disposed, that is, at one end portion in the longitudinal direction X of the light guide plate 42.
- the transmission preventing unit 43 is formed with a refractive index lower than that of the light guide plate 42. In the present embodiment, the transmission preventing unit 43 is formed by coating the surface of the light guide plate 42 with SiO 2 having a refractive index of 1.46.
- the transmission preventing unit 43 prevents light incident on the light guide plate 42 from being transmitted toward the adjacent light guide plate 42 before being reflected by the reflection unit 42a.
- the transmission preventing unit 43 is disposed over the longitudinal direction X of the light guide plate 42. Accordingly, the transmission preventing unit 43 prevents the light incident on the light guide plate 42 from being transmitted toward the adjacent light guide plate 42 not only before being reflected by the reflecting unit 42a but also afterward.
- the second optical system 5 parallels the light emitted from the light guide 4 and spreading in the thickness direction Z of the light guide 4 in the thickness direction Z of the light guide 4.
- a cylindrical parallel light lens 51 for converting light and a condensing lens 52 for concentrating the light emitted from the parallel light lens 51 are provided.
- the fiber 6 includes a core 61 that receives light emitted from the second optical system 5 and a clad 62 that is disposed outside the core 61.
- the fiber 6 is a fiber laser having a resonator on each of the incident end face and the exit end face, and the diameter of the core 61 is 20 ⁇ m.
- the fiber 6 is not limited to such a configuration, and may be an optical fiber that propagates light in the core 61, for example.
- the configurations of the laser light source device 1 and the light guide 4 according to the present embodiment are as described above. Next, operations of the laser light source device 1 and the light guide 4 according to the present embodiment will be described.
- Laser light emitted from each laser light emitting section 21 passes through the first optical system 3 and enters the light guide plate 42.
- the laser light emitted from the first optical system 3 is parallel light in the longitudinal direction X of the light guide plate 42 as shown in FIG.
- the laser light emitted from the first optical system 3 is collected so that the end surface in the width direction Y of the light guide plate 42 is the focal position in the thickness direction Z of the light guide plate 42. It is shining.
- the laser light incident from the side portion of the light guide plate 42 maintains parallel light in the longitudinal direction X, and diffuses while maintaining the focused angle in the thickness direction Z. At this time, the laser light is incident on the plane (lower surface) of the light guide plate 42 that is in contact with the transmission preventing unit 43 at a larger angle than the critical angle when entering the transmission preventing unit 43 from the light guide plate 42. Critical reflection on a plane. Accordingly, the laser light incident on the light guide plate 42 is not emitted toward the light guide plate 42 adjacent on the lower side before being reflected by the reflecting portion 42a.
- the laser beam is incident on the plane (upper surface) in contact with air in the light guide plate 42 at an angle larger than the critical angle when entering the air from the light guide plate 42, it is critically reflected on the plane.
- the laser light incident on the light guide plate 42 is not emitted toward the air (outside) before being reflected by the reflecting portion 42a. Accordingly, all of the laser light incident on the light guide plate 42 is reflected toward the other end portion in the longitudinal direction X by the reflection portion 42 a of the light guide plate 42.
- the laser light reflected by the reflecting portion 42 a is emitted from the other end portion of the light guide plate 42, passes through the second optical system 5, and enters the core 61 of the fiber 6.
- the laser light emitted from the second optical system 5 is condensed so that the incident surface of the core 61 becomes the focal position in the width direction Y of the light guide plate 42 as shown in FIG. Yes.
- the laser light emitted from the second optical system 5 is condensed so that the incident surface of the core 61 becomes a focal position in the thickness direction Z as shown in FIG.
- the plurality of light guide plates 42 formed in a long flat plate shape are arranged so as to overlap in the thickness direction Z. This simplifies the structure.
- each light guide plate 42 is arranged so as to overlap the light guide plate 42 adjacent on the substrate 41 side in the thickness direction Z as a whole. Therefore, the rigidity of the structure can be provided.
- the reflector 42 a provided in each light guide plate 42 transmits laser light incident on the light guide plate 42 from the end surface in the width direction Y of the light guide plate 42.
- the light is reflected toward the end in the longitudinal direction X of 42.
- the light incident on the light guide plate 42 from the end surface in the width direction Y of the light guide plate 42 is emitted from the end portion of the light guide plate 42 in the longitudinal direction X.
- the plurality of reflecting portions 42 a are separated from each other in the longitudinal direction X of the light guide plate 42. Accordingly, the plurality of laser light emitting units 21 that emit laser light can be arranged so as to be separated from each other in the longitudinal direction X of the light guide plate 42, and thus the laser light source device 1 can be downsized in the thickness direction Z of the light guide plate 42. be able to.
- the laser light incident from the side portion of the light guide plate 42 is more than the critical angle at the end surface disposed at the end portion in the longitudinal direction X of the light guide plate 42. Since the light is incident at a large incident angle, the light incident on the end face is critically reflected. Thereby, an end surface functions as the reflection part 42a. Therefore, by cutting and polishing the end portion of the light guide plate 42, an end surface that functions as the reflecting portion 42a can be formed, and thus the configuration of the reflecting portion 42a can be simplified.
- the arrangement of the various lenses in the first optical system 3 and the second optical system 5 can be changed in the width direction Y and the thickness direction Z by changing the focal length.
- the imaging magnification can be easily changed. Accordingly, it is possible to provide an appropriate optical design in accordance with the light emission size and number of lasers to be used and the size of the core of the focusing fiber.
- this invention is not limited to the structure of above-described embodiment, and is not limited to the above-mentioned effect.
- the present invention can be variously modified without departing from the gist of the present invention.
- configurations, methods, and the like according to various modifications described below may be arbitrarily selected and employed in the configurations, methods, and the like according to the above-described embodiments.
- the light source unit 2 is configured to include a plurality of members (semiconductor lasers) having one laser light emitting unit 21.
- the laser light source device according to the present invention is not limited to such a configuration.
- the light source unit 2 may be configured to include a member (for example, a laser array) having a plurality of laser light emitting units 21, or may have one laser light emitting unit 21.
- a member and a member having a plurality of laser light emitting units 21 are provided may be employed.
- the transmission preventing unit 43 is formed of a material having a lower refractive index than that of the light guide plate 42.
- the transmission preventing portion 43 may be formed of a reflective material, and the transmission preventing portion 43 may be configured such that the bonding portion 44 is made of an adhesive having a low refractive index. By configuring, it may be configured such that the bonding portion 44 also functions as the permeation preventing portion 43.
- the permeation preventing unit 43 may be a gap (air layer) formed between the light guide plates 42 and 42.
- the light guide 4 shown in FIG. 6 includes a binding member 45 that is disposed between the light guide plates 42 and 42 and connects the light guide plates 42 and 42 to each other.
- Such a binding material 45 supports the end of one light guide plate 42.
- the binding material 45 is made of a reflective material or a low refractive index material to prevent the laser light from being emitted from the light guide 42.
- the transmission preventing unit 43 is arranged over the entire longitudinal direction X of the light guide plate 42.
- the light guide according to the present invention is not limited to such a configuration.
- the transmission preventing portion 43 is disposed only on one end side in the longitudinal direction X of the light guide plate 42 where the reflecting portion 42 a is disposed. The structure of, may be used.
- the transmission preventing unit 43 only needs to prevent light incident on the light guide plate 42 from being transmitted toward the adjacent light guide plate 42 before being reflected by the reflection unit 42a. Therefore, the light guide according to the present invention may be configured such that the laser light reflected by the reflecting portion 42 a is transmitted toward the adjacent light guide plate 42. Specifically, on the other end side in the longitudinal direction X of the light guide plate 42, the transmission preventing portion 43 does not exist, and the light guide plates 42 and 42 are bonded portions made of a material having a high refractive index and capable of transmitting light. 44 may be bonded.
- the light guide according to the present invention is not limited to such a configuration.
- the light guide plate 42 according to the above embodiment and the light guide plate 42 in which the direction of the reflection part 42 a is changed by 90 ° are provided together, and the plurality of laser light emitting units 21 Part of the emitted laser light is incident from one end face in the width direction of each light guide plate 42, and the other remaining part is incident from the other end face in the width direction of each light guide plate 42.
- the structure of may be used.
- the reflecting portion 42 a is configured to be an end surface disposed at the end portion in the longitudinal direction X of the light guide plate 42.
- the light guide according to the present invention is not limited to such a configuration.
- the reflection portion 42a may be a reflective material disposed (embedded) inside the light guide plate 42.
- SYMBOLS 1 Laser light source device, 2 ... Light source part, 3 ... 1st optical system, 4 ... Light guide, 5 ... 2nd optical system, 6 ... Fiber, 21 ... Laser light emission part, 31 ... Parallel light lens, 32 DESCRIPTION OF SYMBOLS ... Condensing lens, 41 ... Board
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Optical Couplings Of Light Guides (AREA)
- Light Guides In General And Applications Therefor (AREA)
- Semiconductor Lasers (AREA)
- Planar Illumination Modules (AREA)
Abstract
A light guide body (4) is provided with a plurality of light guide plates (42) formed in a long plate-shape. The light guide plates (42) are each provided with a reflective part (42a) that reflects light entering from an end surface of the plate in a width direction Y towards an end part of the plate in a longitudinal direction X. The plurality of light guide plates (42) are disposed so as to overlap each other in a thickness direction Z.
Description
本発明は、複数の導光板を備える導光体に関し、また、その導光体を備えるレーザ光源装置に関する。
The present invention relates to a light guide including a plurality of light guide plates, and also relates to a laser light source device including the light guide.
従来、導光体として、複数の導光板を備える導光体が知られている(例えば、特許文献1)。斯かる導光体においては、各導光板の一端部から光が入射され、入射された光が各導光板の他端部から出射する。
Conventionally, a light guide including a plurality of light guide plates is known as the light guide (for example, Patent Document 1). In such a light guide, light is incident from one end of each light guide plate, and the incident light is emitted from the other end of each light guide plate.
ところで、特許文献1に係る導光体においては、複数の導光板の他端部は、厚み方向で重なる一方、複数の導光板の一端部は、幅方向でお互いに離間している。したがって、各導光板を複雑な形状、例えば、導光板の一部を湾曲形状にする必要があるため、構造が複雑になる。これにより、導光板から導光体を組み立てる作業が煩雑となったり、導光体が大型化したりするという問題を生じさせていた。
By the way, in the light guide according to Patent Document 1, the other end portions of the plurality of light guide plates overlap in the thickness direction, while the one end portions of the plurality of light guide plates are separated from each other in the width direction. Accordingly, each light guide plate needs to have a complicated shape, for example, a part of the light guide plate has a curved shape, so that the structure becomes complicated. Thereby, the operation | work which assembles a light guide from a light guide plate became complicated, and the problem that a light guide was enlarged was produced.
よって、本発明は、斯かる事情に鑑み、構造の簡素化が図れる導光体を提供することを課題とする。
Therefore, in view of such circumstances, an object of the present invention is to provide a light guide that can be simplified in structure.
本発明に係る導光体は、長尺な平板状に形成される複数の導光板を備え、前記各導光板は、幅方向の端面から入射される光を長手方向の端部に向けて反射させる反射部を備え、前記複数の導光板は、厚み方向で重なるように配置される。
The light guide according to the present invention includes a plurality of light guide plates formed in a long flat plate shape, and each of the light guide plates reflects light incident from the end surface in the width direction toward the end portion in the longitudinal direction. The plurality of light guide plates are arranged so as to overlap in the thickness direction.
本発明に係る導光体によれば、長尺な平板状に形成される複数の導光板は、厚み方向で重なるように配置されている。これにより、構造の簡素化が図れている。また、各導光板に設けられる反射部は、導光板の幅方向の端面から導光板に入射される光を、導光板の長手方向の端部に向けて反射させている。これにより、導光板の幅方向の端面から導光板に入射された光は、導光板の長手方向の端部から出射される。
According to the light guide according to the present invention, the plurality of light guide plates formed in a long flat plate shape are arranged to overlap in the thickness direction. This simplifies the structure. Moreover, the reflection part provided in each light-guide plate reflects the light which injects into a light-guide plate from the end surface of the width direction of a light-guide plate toward the edge part of the longitudinal direction of a light-guide plate. Thereby, the light incident on the light guide plate from the end surface in the width direction of the light guide plate is emitted from the end portion in the longitudinal direction of the light guide plate.
また、本発明に係る導光体においては、前記複数の反射部は、前記導光板の長手方向において互いに離間するように、配置される、という構成でもよい。
In the light guide according to the present invention, the plurality of reflecting portions may be arranged so as to be separated from each other in the longitudinal direction of the light guide plate.
斯かる構成によれば、複数の反射部が、導光板の長手方向において互いに離間している。これにより、例えば、レーザ光を出射する複数のレーザ発光部を、導光板の長手方向において互いに離間するように配置できるため、導光板の厚み方向において、装置を小型化することができる。
According to such a configuration, the plurality of reflecting portions are separated from each other in the longitudinal direction of the light guide plate. Accordingly, for example, a plurality of laser light emitting units that emit laser light can be arranged so as to be separated from each other in the longitudinal direction of the light guide plate, so that the apparatus can be miniaturized in the thickness direction of the light guide plate.
また、本発明に係る導光体においては、前記反射部は、前記導光板の長手方向の端部に配置される端面であり、前記端面は、前記導光板の側部から入射される光が臨界角よりも大きい入射角で該端面に入射するように配置される、という構成でもよい。
Moreover, in the light guide according to the present invention, the reflection portion is an end surface disposed at an end portion in a longitudinal direction of the light guide plate, and the end surface receives light incident from a side portion of the light guide plate. It may be arranged such that it is incident on the end face at an incident angle larger than the critical angle.
斯かる構成によれば、導光板の側部から入射される光は、導光板の長手方向の端部に配置される端面に、臨界角よりも大きい入射角で入射するため、端面に入射された光は、臨界反射する。これにより、端面が反射部として機能する。したがって、例えば、導光板の端部を切断及び研磨することにより、反射部として機能する端面を形成することができるため、反射部の構成を簡素化することができる。
According to such a configuration, light incident from the side portion of the light guide plate is incident on the end surface disposed at the end portion in the longitudinal direction of the light guide plate at an incident angle larger than the critical angle, and thus is incident on the end surface. The reflected light is critically reflected. Thereby, an end surface functions as a reflection part. Therefore, for example, by cutting and polishing the end portion of the light guide plate, an end surface that functions as a reflection portion can be formed, and thus the configuration of the reflection portion can be simplified.
また、本発明に係るレーザ光源装置は、レーザ光を出射する複数のレーザ発光部と、前記レーザ発光部から出射されるレーザ光が入射される第1の光学系と、前記第1の光学系から出射されるレーザ光が入射される前記の導光体と、前記導光体から出射されるレーザ光が入射させる第2の光学系と、を備える。
The laser light source device according to the present invention includes a plurality of laser light emitting units that emit laser light, a first optical system that receives laser light emitted from the laser light emitting unit, and the first optical system. And the second optical system for allowing the laser light emitted from the light guide to be incident thereon.
以上の如く、本発明は、構造の簡素化が図れるという優れた効果を奏する。
As described above, the present invention has an excellent effect that the structure can be simplified.
以下、本発明に係る導光体及びレーザ光源装置における一実施形態について、図1~図5を参酌して説明する。なお、各図において、図面の寸法比と実際の寸法比とは、必ずしも一致していない。
Hereinafter, an embodiment of a light guide and a laser light source device according to the present invention will be described with reference to FIGS. In each figure, the dimensional ratio in the drawing does not necessarily match the actual dimensional ratio.
図1に示すように、本実施形態に係るレーザ光源装置1は、レーザ光を出射する光源部2と、光源部2から出射されるレーザ光が入射される第1の光学系(「入射側の光学系」ともいう)3と、第1の光学系3から出射されるレーザ光が入射される長尺な導光体4とを備えている。また、レーザ光源装置1は、導光体4から出射されるレーザ光が入射される第2の光学系(「出射側の光学系」ともいう)5と、第2の光学系5から出射されるレーザ光が入射されるファイバ6とを備えている。
As shown in FIG. 1, a laser light source device 1 according to the present embodiment includes a light source unit 2 that emits laser light, and a first optical system (“incident side” on which laser light emitted from the light source unit 2 is incident. 3) and a long light guide 4 into which the laser light emitted from the first optical system 3 is incident. In addition, the laser light source device 1 emits a second optical system 5 (also referred to as an “emission-side optical system”) to which the laser light emitted from the light guide 4 is incident, and the second optical system 5. And a fiber 6 on which a laser beam is incident.
光源部2は、レーザ光を出射する複数のレーザ発光部21を備えている。本実施形態においては、光源部2は、複数の半導体レーザを備えており、各半導体レーザは、一つのレーザ発光部21を備えている。例えば、各半導体レーザは、外径が9mmのCAN型の青色半導体レーザ(LD)であり、発光サイズは、(X方向)15μm×(Z方向)1μmである。複数のレーザ発光部21は、導光体4の側方側に配置され、そして、導光体4の長手方向Xに沿って並列されている。
The light source unit 2 includes a plurality of laser light emitting units 21 that emit laser light. In the present embodiment, the light source unit 2 includes a plurality of semiconductor lasers, and each semiconductor laser includes one laser light emitting unit 21. For example, each semiconductor laser is a CAN-type blue semiconductor laser (LD) having an outer diameter of 9 mm, and the light emission size is (X direction) 15 μm × (Z direction) 1 μm. The plurality of laser light emitting units 21 are arranged on the side of the light guide 4 and are arranged in parallel along the longitudinal direction X of the light guide 4.
図1及び図2に示すように、第1の光学系3は、各レーザ発光部21から出射された光を平行な光にする複数の平行光レンズ31と、平行光レンズ31から出射された光を、導光体4の厚み方向Zで集中する複数の集光レンズ32とを備えている。なお、第1の光学系3は、一つのレーザ発光部21に対して、平行光レンズ31と集光レンズ32とをそれぞれ一つずつ配置されている。本実施形態においては、平行光レンズ31は、光軸対象のレンズであり、集光レンズ32は、シリンドリカル状のレンズである。
As shown in FIGS. 1 and 2, the first optical system 3 includes a plurality of parallel light lenses 31 that convert the light emitted from each laser light emitting unit 21 into parallel light, and the parallel light lenses 31. A plurality of condensing lenses 32 that concentrate light in the thickness direction Z of the light guide 4 are provided. In the first optical system 3, one parallel light lens 31 and one condensing lens 32 are arranged for each laser emission unit 21. In the present embodiment, the parallel light lens 31 is a lens targeted for the optical axis, and the condenser lens 32 is a cylindrical lens.
図1、図3及び図4に示すように、導光体4は、長尺な平板状に形成される反射材からなる基板41と、長尺な平板状に形成され、基板41の一方側の面に厚み方向Zで重なるようにして配置される複数の導光板42とを備えている。また、導光体4は、所定の導光板42に入射された光が隣接する導光板42に向けて透過することを防止する透過防止部43と、導光板42,42の間に配置され、導光板42,42同士を接着する接着部44とを備えている。
As shown in FIGS. 1, 3, and 4, the light guide 4 includes a substrate 41 made of a reflective material formed in a long flat plate shape and a long flat plate shape, and one side of the substrate 41. And a plurality of light guide plates 42 arranged so as to overlap with each other in the thickness direction Z. The light guide 4 is disposed between the light guide plates 42 and 42 and a light transmission preventing portion 43 that prevents light incident on the predetermined light guide plate 42 from being transmitted toward the adjacent light guide plate 42. The light guide plates 42 are provided with a bonding portion 44 for bonding the light guide plates 42 to each other.
導光板42は、幅方向(短手方向)Yの一方側の端面から入射される光を長手方向Xの他端部に向けて反射させる反射部42aを、長手方向Xの一端部に備えている。また、複数の導光板42は、幅方向Yの寸法が全て同じとなるように、形成されている一方、基板41から離れるに従って、長手方向Xの寸法が短くなるように、形成されている。
The light guide plate 42 includes a reflection portion 42a that reflects light incident from one end face in the width direction (short direction) Y toward the other end portion in the longitudinal direction X at one end portion in the longitudinal direction X. Yes. In addition, the plurality of light guide plates 42 are formed so that the dimensions in the width direction Y are all the same, while the dimensions in the longitudinal direction X are shortened as the distance from the substrate 41 increases.
そして、複数の導光板42は、幅方向Yの各端面が略面一となるように、配置されていると共に、長手方向Xの他端面が略面一となるように、配置されている。これにより、各導光板42は、基板41側(下方側)で隣接する導光板42に対して、全体が厚み方向Zで重なるように配置されている。
The plurality of light guide plates 42 are arranged so that each end face in the width direction Y is substantially flush with each other, and the other end face in the longitudinal direction X is substantially flush. Thereby, each light guide plate 42 is arranged so that the whole overlaps in the thickness direction Z with respect to the light guide plate 42 adjacent on the substrate 41 side (lower side).
なお、導光板42は、一つのレーザ発光部21に対して、一つ配置されている。本実施形態においては、導光板42は、ガラスで形成されている。具体的には、導光板42は、幅寸法が5mmであり、厚み寸法が5μmであり、屈折率が1.52であるフロートガラスリボンからなる。
Note that one light guide plate 42 is arranged for one laser light emitting unit 21. In the present embodiment, the light guide plate 42 is made of glass. Specifically, the light guide plate 42 is made of a float glass ribbon having a width dimension of 5 mm, a thickness dimension of 5 μm, and a refractive index of 1.52.
反射部42aは、導光板42の長手方向Xの一端部に配置される平坦な端面である。そして、端面(反射部42a)は、導光板42の一方側の端部を切断及び研磨して形成されている。また、端面(反射部42a)は、導光板42の側部から入射される光が臨界角よりも大きい入射角で端面(反射部42a)に入射するように配置されている。本実施形態においては、導光板42から空気に入る際の臨界角が42°であり、端面(反射部42a)に対する光の入射角が45°である。
The reflection portion 42 a is a flat end surface disposed at one end portion in the longitudinal direction X of the light guide plate 42. The end face (reflecting portion 42a) is formed by cutting and polishing one end portion of the light guide plate 42. The end face (reflecting part 42a) is arranged such that light incident from the side part of the light guide plate 42 enters the end face (reflecting part 42a) at an incident angle larger than the critical angle. In the present embodiment, the critical angle when entering the air from the light guide plate 42 is 42 °, and the incident angle of light with respect to the end face (reflecting portion 42a) is 45 °.
複数の反射部42aは、導光板42の長手方向Xにおいて互いに離間するように、配置されている。具体的には、複数の反射部42aは、基板41から離れるに従って、長手方向Xの他端部に近くなるように、配置されている。本実施形態においては、複数の反射部42aは、導光板42長手方向Xにおいて、12mmの間隔でそれぞれ配置されている。
The plurality of reflecting portions 42 a are arranged so as to be separated from each other in the longitudinal direction X of the light guide plate 42. Specifically, the plurality of reflecting portions 42 a are arranged so as to be closer to the other end portion in the longitudinal direction X as they are separated from the substrate 41. In the present embodiment, the plurality of reflecting portions 42a are arranged at intervals of 12 mm in the light guide plate 42 longitudinal direction X, respectively.
図4に示すように、透過防止部43は、導光板42,42の間に配置されている。また、透過防止部43は、反射部42aが配置されている部分、即ち、導光板42の長手方向Xの一端部に、少なくとも配置されている。そして、透過防止部43は、導光板42よりも低い屈折率に形成されている。本実施形態においては、透過防止部43は、屈折率が1.46であるSiO2を導光板42の表面にコーティングして形成されている。
As shown in FIG. 4, the transmission preventing unit 43 is disposed between the light guide plates 42 and 42. Further, the transmission preventing unit 43 is disposed at least at a portion where the reflecting unit 42 a is disposed, that is, at one end portion in the longitudinal direction X of the light guide plate 42. The transmission preventing unit 43 is formed with a refractive index lower than that of the light guide plate 42. In the present embodiment, the transmission preventing unit 43 is formed by coating the surface of the light guide plate 42 with SiO 2 having a refractive index of 1.46.
これにより、透過防止部43は、導光板42に入射された光が反射部42aで反射される前に隣接する導光板42に向けて透過することを防止している。なお、本実施形態においては、透過防止部43は、導光板42の長手方向Xに亘って配置されている。したがって、透過防止部43は、導光板42に入射された光が反射部42aで反射される前だけでなく後も隣接する導光板42に向けて透過することを防止している。
Thereby, the transmission preventing unit 43 prevents light incident on the light guide plate 42 from being transmitted toward the adjacent light guide plate 42 before being reflected by the reflection unit 42a. In the present embodiment, the transmission preventing unit 43 is disposed over the longitudinal direction X of the light guide plate 42. Accordingly, the transmission preventing unit 43 prevents the light incident on the light guide plate 42 from being transmitted toward the adjacent light guide plate 42 not only before being reflected by the reflecting unit 42a but also afterward.
図1及び図5に示すように、第2の光学系5は、導光体4から出射され且つ導光体4の厚み方向Zで広がる光を、導光体4の厚み方向Zで平行な光にするシリンドリカル状の平行光レンズ51と、平行光レンズ51から出射された光を集中する集光レンズ52とを備えている。
As shown in FIGS. 1 and 5, the second optical system 5 parallels the light emitted from the light guide 4 and spreading in the thickness direction Z of the light guide 4 in the thickness direction Z of the light guide 4. A cylindrical parallel light lens 51 for converting light and a condensing lens 52 for concentrating the light emitted from the parallel light lens 51 are provided.
ファイバ6は、第2光学系5から出射された光を入射されるコア61と、コア61の外側に配置されるクラッド62とを備えている。本実施形態においては、ファイバ6は、入射端面及び出射端面にそれぞれ共振器を有するファイバレーザであり、コア61の直径は、20μmである。なお、ファイバ6は、斯かる構成に限られず、例えば、コア61内で光を伝搬する光ファイバでもよい。
The fiber 6 includes a core 61 that receives light emitted from the second optical system 5 and a clad 62 that is disposed outside the core 61. In the present embodiment, the fiber 6 is a fiber laser having a resonator on each of the incident end face and the exit end face, and the diameter of the core 61 is 20 μm. The fiber 6 is not limited to such a configuration, and may be an optical fiber that propagates light in the core 61, for example.
本実施形態に係るレーザ光源装置1及び導光体4の構成については以上の通りであり、次に、本実施形態に係るレーザ光源装置1及び導光体4の作用について説明する。
The configurations of the laser light source device 1 and the light guide 4 according to the present embodiment are as described above. Next, operations of the laser light source device 1 and the light guide 4 according to the present embodiment will be described.
各レーザ発光部21から出射されたレーザ光(各図において、破線で示している)は、第1の光学系3を透過して、導光板42に入射する。このとき、第1の光学系3から出射されたレーザ光は、図1に示すように、導光板42の長手方向Xにおいて、平行光となっている。また、第1の光学系3から出射されたレーザ光は、図2に示すように、導光板42の厚み方向Zにおいて、導光板42の幅方向Yの端面が焦点位置となるように、集光されている。
Laser light emitted from each laser light emitting section 21 (shown by a broken line in each figure) passes through the first optical system 3 and enters the light guide plate 42. At this time, the laser light emitted from the first optical system 3 is parallel light in the longitudinal direction X of the light guide plate 42 as shown in FIG. Further, as shown in FIG. 2, the laser light emitted from the first optical system 3 is collected so that the end surface in the width direction Y of the light guide plate 42 is the focal position in the thickness direction Z of the light guide plate 42. It is shining.
導光板42の側部から入射されたレーザ光は、長手方向Xにおいては、平行光を維持する一方、厚み方向Zにおいては、集光された角度を維持して散光する。このとき、導光板42における透過防止部43に接する平面(下面)に対して、レーザ光は、導光板42から透過防止部43に入る際の臨界角よりも、大きい角度で入射するため、当該平面で臨界反射する。これにより、導光板42に入射されたレーザ光は、反射部42aで反射される前に、下方側で隣接する導光板42に向けて出射されない。
The laser light incident from the side portion of the light guide plate 42 maintains parallel light in the longitudinal direction X, and diffuses while maintaining the focused angle in the thickness direction Z. At this time, the laser light is incident on the plane (lower surface) of the light guide plate 42 that is in contact with the transmission preventing unit 43 at a larger angle than the critical angle when entering the transmission preventing unit 43 from the light guide plate 42. Critical reflection on a plane. Accordingly, the laser light incident on the light guide plate 42 is not emitted toward the light guide plate 42 adjacent on the lower side before being reflected by the reflecting portion 42a.
同様に、導光板42における空気に接する平面(上面)に対して、レーザ光は、導光板42から空気に入る際の臨界角よりも、大きい角度で入射するため、当該平面で臨界反射する。これにより、導光板42に入射されたレーザ光は、反射部42aで反射される前に、空気(外部)に向けて出射されない。したがって、導光板42に入射されたレーザ光は、全てその導光板42の反射部42aにより、長手方向Xの他端部に向けて反射される。
Similarly, since the laser beam is incident on the plane (upper surface) in contact with air in the light guide plate 42 at an angle larger than the critical angle when entering the air from the light guide plate 42, it is critically reflected on the plane. Thus, the laser light incident on the light guide plate 42 is not emitted toward the air (outside) before being reflected by the reflecting portion 42a. Accordingly, all of the laser light incident on the light guide plate 42 is reflected toward the other end portion in the longitudinal direction X by the reflection portion 42 a of the light guide plate 42.
そして、反射部42aで反射されたレーザ光は、導光板42の他端部から出射し、第2の光学系5を透過して、ファイバ6のコア61に入射する。このとき、第2の光学系5から出射されたレーザ光は、図1に示すように、導光板42の幅方向Yにおいて、コア61の入射面が焦点位置となるように、集光されている。同様に、第2の光学系5から出射されたレーザ光は、図5に示すように、厚み方向Zにおいて、コア61の入射面が焦点位置となるように、集光されている。
Then, the laser light reflected by the reflecting portion 42 a is emitted from the other end portion of the light guide plate 42, passes through the second optical system 5, and enters the core 61 of the fiber 6. At this time, the laser light emitted from the second optical system 5 is condensed so that the incident surface of the core 61 becomes the focal position in the width direction Y of the light guide plate 42 as shown in FIG. Yes. Similarly, the laser light emitted from the second optical system 5 is condensed so that the incident surface of the core 61 becomes a focal position in the thickness direction Z as shown in FIG.
以上より、本実施形態に係る導光体4によれば、長尺な平板状に形成される複数の導光板42は、厚み方向Zで重なるように配置されている。これにより、構造の簡素化が図れている。しかも、各導光板42は、基板41側で隣接する導光板42に対して、全体が厚み方向Zで重なるように配置されている。したがって、構造の剛性を備えることができる。
As described above, according to the light guide 4 according to this embodiment, the plurality of light guide plates 42 formed in a long flat plate shape are arranged so as to overlap in the thickness direction Z. This simplifies the structure. In addition, each light guide plate 42 is arranged so as to overlap the light guide plate 42 adjacent on the substrate 41 side in the thickness direction Z as a whole. Therefore, the rigidity of the structure can be provided.
また、本実施形態に係る導光体4によれば、各導光板42に設けられる反射部42aは、導光板42の幅方向Yの端面から導光板42に入射されるレーザ光を、導光板42の長手方向Xの端部に向けて反射させている。これにより、導光板42の幅方向Yの端面から導光板42に入射された光は、導光板42の長手方向Xの端部から出射される。
In addition, according to the light guide 4 according to the present embodiment, the reflector 42 a provided in each light guide plate 42 transmits laser light incident on the light guide plate 42 from the end surface in the width direction Y of the light guide plate 42. The light is reflected toward the end in the longitudinal direction X of 42. Thereby, the light incident on the light guide plate 42 from the end surface in the width direction Y of the light guide plate 42 is emitted from the end portion of the light guide plate 42 in the longitudinal direction X.
また、本実施形態に係る導光体4によれば、複数の反射部42aが、導光板42の長手方向Xにおいて互いに離間している。これにより、レーザ光を出射する複数のレーザ発光部21を、導光板42の長手方向Xにおいて互いに離間するように配置できるため、導光板42の厚み方向Zにおいて、レーザ光源装置1を小型化することができる。
Moreover, according to the light guide 4 according to the present embodiment, the plurality of reflecting portions 42 a are separated from each other in the longitudinal direction X of the light guide plate 42. Accordingly, the plurality of laser light emitting units 21 that emit laser light can be arranged so as to be separated from each other in the longitudinal direction X of the light guide plate 42, and thus the laser light source device 1 can be downsized in the thickness direction Z of the light guide plate 42. be able to.
また、本実施形態に係る導光体4によれば、導光板42の側部から入射されるレーザ光は、導光板42の長手方向Xの端部に配置される端面に、臨界角よりも大きい入射角で入射するため、端面に入射された光は、臨界反射する。これにより、端面が反射部42aとして機能する。したがって、導光板42の端部を切断及び研磨することにより、反射部42aとして機能する端面を形成できるため、反射部42aの構成を簡素化することができる。
In addition, according to the light guide 4 according to the present embodiment, the laser light incident from the side portion of the light guide plate 42 is more than the critical angle at the end surface disposed at the end portion in the longitudinal direction X of the light guide plate 42. Since the light is incident at a large incident angle, the light incident on the end face is critically reflected. Thereby, an end surface functions as the reflection part 42a. Therefore, by cutting and polishing the end portion of the light guide plate 42, an end surface that functions as the reflecting portion 42a can be formed, and thus the configuration of the reflecting portion 42a can be simplified.
また、本実施形態に係る導光体4によれば、第1の光学系3と第2の光学系5との各種レンズの配置は、焦点距離を変えることで幅方向Yと厚み方向Zとの結像倍率を容易に変えることができる。したがって、使用するレーザの発光サイズ、個数、及び、集光するファイバのコア等のサイズにあわせた適切な光学設計を提供することができる。
Further, according to the light guide 4 according to the present embodiment, the arrangement of the various lenses in the first optical system 3 and the second optical system 5 can be changed in the width direction Y and the thickness direction Z by changing the focal length. The imaging magnification can be easily changed. Accordingly, it is possible to provide an appropriate optical design in accordance with the light emission size and number of lasers to be used and the size of the core of the focusing fiber.
なお、本発明は、上記した実施形態の構成に限定されるものではなく、また、上記した作用効果に限定されるものではない。また、本発明は、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。例えば、下記する各種の変更例に係る構成や方法等を任意に選択して、上記した実施形態に係る構成や方法等に採用してもよいことは勿論である。
In addition, this invention is not limited to the structure of above-described embodiment, and is not limited to the above-mentioned effect. In addition, the present invention can be variously modified without departing from the gist of the present invention. For example, it is needless to say that configurations, methods, and the like according to various modifications described below may be arbitrarily selected and employed in the configurations, methods, and the like according to the above-described embodiments.
上記実施形態に係るレーザ光源装置1においては、光源部2は、一つのレーザ発光部21を有する部材(半導体レーザ)を複数備える、という構成である。しかしながら、本発明に係るレーザ光源装置は、斯かる構成に限られない。例えば、本発明に係るレーザ光源装置においては、光源部2は、複数のレーザ発光部21を有する部材(例えば、レーザアレイ)を備える、という構成でもよく、また、一つのレーザ発光部21を有する部材と複数のレーザ発光部21を有する部材とをそれぞれ備える、という構成でもよい。
In the laser light source device 1 according to the above-described embodiment, the light source unit 2 is configured to include a plurality of members (semiconductor lasers) having one laser light emitting unit 21. However, the laser light source device according to the present invention is not limited to such a configuration. For example, in the laser light source device according to the present invention, the light source unit 2 may be configured to include a member (for example, a laser array) having a plurality of laser light emitting units 21, or may have one laser light emitting unit 21. A configuration in which a member and a member having a plurality of laser light emitting units 21 are provided may be employed.
また、上記実施形態に係る導光体4においては、透過防止部43は、導光板42よりも低い屈折率の材料で形成されている、という構成である。しかしながら、本発明に係る導光体は、斯かる構成に限られない。例えば、本発明に係る導光体においては、透過防止部43は、反射材で形成されている、という構成でもよく、また、透過防止部43は、接着部44を低屈折率の接着剤で構成することにより、接着部44に透過防止部43の機能を兼用させる、という構成でもよい。
Further, in the light guide 4 according to the above-described embodiment, the transmission preventing unit 43 is formed of a material having a lower refractive index than that of the light guide plate 42. However, the light guide according to the present invention is not limited to such a configuration. For example, in the light guide according to the present invention, the transmission preventing portion 43 may be formed of a reflective material, and the transmission preventing portion 43 may be configured such that the bonding portion 44 is made of an adhesive having a low refractive index. By configuring, it may be configured such that the bonding portion 44 also functions as the permeation preventing portion 43.
さらに、例えば、図6に示すように、透過防止部43は、導光板42,42間に形成される隙間(空気層)である、という構成でもよい。図6に示す導光体4は、導光板42,42間に配置されて導光板42,42同士を結合する結合材45を備えている。斯かる結合材45は、一方の導光板42の端部を支持している。そして、結合材45は、レーザ光が導光体42から出射することを防止すべく、反射材又は低屈折率の材料で形成されている。
Further, for example, as shown in FIG. 6, the permeation preventing unit 43 may be a gap (air layer) formed between the light guide plates 42 and 42. The light guide 4 shown in FIG. 6 includes a binding member 45 that is disposed between the light guide plates 42 and 42 and connects the light guide plates 42 and 42 to each other. Such a binding material 45 supports the end of one light guide plate 42. The binding material 45 is made of a reflective material or a low refractive index material to prevent the laser light from being emitted from the light guide 42.
また、上記実施形態に係る導光体4においては、透過防止部43は、導光板42の長手方向Xの全体に亘って配置されている、という構成である。しかしながら、本発明に係る導光体は、斯かる構成に限られない。例えば、本発明に係る導光体においては、図7に示すように、透過防止部43は、反射部42aが配置されている導光板42の長手方向Xの一端部側にのみ配置されている、という構成でもよい。
Further, in the light guide 4 according to the above-described embodiment, the transmission preventing unit 43 is arranged over the entire longitudinal direction X of the light guide plate 42. However, the light guide according to the present invention is not limited to such a configuration. For example, in the light guide according to the present invention, as shown in FIG. 7, the transmission preventing portion 43 is disposed only on one end side in the longitudinal direction X of the light guide plate 42 where the reflecting portion 42 a is disposed. The structure of, may be used.
要するに、透過防止部43は、導光板42に入射された光が反射部42aで反射される前に隣接する導光板42に向けて透過することを防止できればよい。したがって、本発明に係る導光体においては、反射部42aで反射されたレーザ光は、隣接する導光板42に向けて透過する、という構成でもよい。具体的には、導光板42の長手方向Xの他端部側においては、透過防止部43が存在せず、導光板42,42同士は、高屈折率で透光可能な材料からなる接着部44により、接着されている、という構成でもよい。
In short, the transmission preventing unit 43 only needs to prevent light incident on the light guide plate 42 from being transmitted toward the adjacent light guide plate 42 before being reflected by the reflection unit 42a. Therefore, the light guide according to the present invention may be configured such that the laser light reflected by the reflecting portion 42 a is transmitted toward the adjacent light guide plate 42. Specifically, on the other end side in the longitudinal direction X of the light guide plate 42, the transmission preventing portion 43 does not exist, and the light guide plates 42 and 42 are bonded portions made of a material having a high refractive index and capable of transmitting light. 44 may be bonded.
また、上記実施形態に係る導光体4においては、複数のレーザ発光部21から出射されたレーザ光の全部は、各導光板42における幅方向の一方側の端面から入射される、という構成である。しかしながら、本発明に係る導光体は、斯かる構成に限られない。例えば、本発明に係る導光体においては、上記実施形態に係る導光板42と、反射部42aの向きを90°変えた導光板42とが、併せて設けられ、複数のレーザ発光部21から出射されたレーザ光のうち、一部は、各導光板42における幅方向の一方側の端面から入射され、残りの他部は、各導光板42における幅方向の他方側の端面から入射される、という構成でもよい。
Further, in the light guide 4 according to the above-described embodiment, all of the laser beams emitted from the plurality of laser light emitting units 21 are incident from one end face in the width direction of each light guide plate 42. is there. However, the light guide according to the present invention is not limited to such a configuration. For example, in the light guide according to the present invention, the light guide plate 42 according to the above embodiment and the light guide plate 42 in which the direction of the reflection part 42 a is changed by 90 ° are provided together, and the plurality of laser light emitting units 21 Part of the emitted laser light is incident from one end face in the width direction of each light guide plate 42, and the other remaining part is incident from the other end face in the width direction of each light guide plate 42. The structure of, may be used.
また、上記実施形態に係る導光体4においては、反射部42aは、導光板42の長手方向Xの端部に配置される端面である、という構成である。しかしながら、本発明に係る導光体は、斯かる構成に限られない。例えば、本発明に係る導光体4においては、反射部42aは、導光板42の内部に配置される(埋め込められる)反射材である、という構成でもよい。
Further, in the light guide 4 according to the above-described embodiment, the reflecting portion 42 a is configured to be an end surface disposed at the end portion in the longitudinal direction X of the light guide plate 42. However, the light guide according to the present invention is not limited to such a configuration. For example, in the light guide 4 according to the present invention, the reflection portion 42a may be a reflective material disposed (embedded) inside the light guide plate 42.
1…レーザ光源装置、2…光源部、3…第1の光学系、4…導光体、5…第2の光学系、6…ファイバ、21…レーザ発光部、31…平行光レンズ、32…集光レンズ、41…基板、42…導光板、42a…反射部、43…透過防止部、44…接着部、45…結合材、51…平行光レンズ、52…集光レンズ、61…コア、62…クラッド、X…(導光体、導光板の)長手方向、Y…(導光体、導光板の)幅方向、Z…(導光体、導光板の)厚み方向
DESCRIPTION OF SYMBOLS 1 ... Laser light source device, 2 ... Light source part, 3 ... 1st optical system, 4 ... Light guide, 5 ... 2nd optical system, 6 ... Fiber, 21 ... Laser light emission part, 31 ... Parallel light lens, 32 DESCRIPTION OF SYMBOLS ... Condensing lens, 41 ... Board | substrate, 42 ... Light guide plate, 42a ... Reflection part, 43 ... Transmission prevention part, 44 ... Adhesion part, 45 ... Binder, 51 ... Parallel light lens, 52 ... Condensing lens, 61 ... Core 62 ... Cladding, X ... Longitudinal direction (of light guide, light guide plate), Y ... Width direction (of light guide, light guide plate), Z ... Thickness direction (of light guide, light guide plate)
Claims (4)
- 長尺な平板状に形成される複数の導光板を備え、
前記各導光板は、幅方向の端面から入射される光を長手方向の端部に向けて反射させる反射部を備え、
前記複数の導光板は、厚み方向で重なるように配置される導光体。 A plurality of light guide plates formed in a long flat plate shape,
Each of the light guide plates includes a reflection portion that reflects light incident from the end face in the width direction toward the end in the longitudinal direction,
The plurality of light guide plates are arranged to overlap in the thickness direction. - 前記複数の反射部は、前記導光板の長手方向において互いに離間するように、配置される請求項1に記載の導光体。 The light guide according to claim 1, wherein the plurality of reflecting portions are arranged so as to be separated from each other in a longitudinal direction of the light guide plate.
- 前記反射部は、前記導光板の長手方向の端部に配置される端面であり、
前記端面は、前記導光板の側部から入射される光が臨界角よりも大きい入射角で該端面に入射するように配置される請求項1又は2に記載の導光体。 The reflection portion is an end surface disposed at an end portion in the longitudinal direction of the light guide plate,
3. The light guide according to claim 1, wherein the end surface is arranged such that light incident from a side portion of the light guide plate enters the end surface at an incident angle larger than a critical angle. - レーザ光を出射する複数のレーザ発光部と、
前記レーザ発光部から出射されるレーザ光が入射される第1の光学系と、
前記第1の光学系から出射されるレーザ光が入射される請求項1~3の何れか1項に記載の導光体と、
前記導光体から出射されるレーザ光が入射させる第2の光学系と、を備えるレーザ光源装置。 A plurality of laser light emitting sections for emitting laser light;
A first optical system into which laser light emitted from the laser light emitting unit is incident;
The light guide according to any one of claims 1 to 3, wherein a laser beam emitted from the first optical system is incident;
And a second optical system on which laser light emitted from the light guide is incident.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-193865 | 2013-09-19 | ||
JP2013193865A JP5780472B2 (en) | 2013-09-19 | 2013-09-19 | Laser light source device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015041087A1 true WO2015041087A1 (en) | 2015-03-26 |
Family
ID=52688738
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/073663 WO2015041087A1 (en) | 2013-09-19 | 2014-09-08 | Light guide body and laser light source device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5780472B2 (en) |
WO (1) | WO2015041087A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110737979A (en) * | 2019-10-12 | 2020-01-31 | 中国人民解放军国防科技大学 | Bionic staggered composite structure with pores |
CN112969969A (en) * | 2018-12-05 | 2021-06-15 | 优志旺电机株式会社 | Light source device for exposure |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102018201312A1 (en) * | 2018-01-29 | 2019-08-01 | Osram Gmbh | OPTICAL DEVICE |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11150341A (en) * | 1997-09-22 | 1999-06-02 | Siemens Ag | Laser device and manufacture thereof |
JP2004515086A (en) * | 2000-12-06 | 2004-05-20 | イエーノプティーク レーザーダイオード ゲゼルシャフト ミット ベシュレンクテル ハフツング | Diode laser device with multiple diode laser cells |
JP2007507748A (en) * | 2003-09-30 | 2007-03-29 | テクストロン・システムズ・コーポレイション | Beam synthesis using interleaved optical plates |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07114024A (en) * | 1993-10-19 | 1995-05-02 | Tosoh Corp | Back light |
-
2013
- 2013-09-19 JP JP2013193865A patent/JP5780472B2/en not_active Expired - Fee Related
-
2014
- 2014-09-08 WO PCT/JP2014/073663 patent/WO2015041087A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11150341A (en) * | 1997-09-22 | 1999-06-02 | Siemens Ag | Laser device and manufacture thereof |
JP2004515086A (en) * | 2000-12-06 | 2004-05-20 | イエーノプティーク レーザーダイオード ゲゼルシャフト ミット ベシュレンクテル ハフツング | Diode laser device with multiple diode laser cells |
JP2007507748A (en) * | 2003-09-30 | 2007-03-29 | テクストロン・システムズ・コーポレイション | Beam synthesis using interleaved optical plates |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112969969A (en) * | 2018-12-05 | 2021-06-15 | 优志旺电机株式会社 | Light source device for exposure |
CN112969969B (en) * | 2018-12-05 | 2021-11-09 | 优志旺电机株式会社 | Light source device for exposure |
CN110737979A (en) * | 2019-10-12 | 2020-01-31 | 中国人民解放军国防科技大学 | Bionic staggered composite structure with pores |
CN110737979B (en) * | 2019-10-12 | 2022-08-19 | 中国人民解放军国防科技大学 | Bionic staggered composite structure with pores |
Also Published As
Publication number | Publication date |
---|---|
JP5780472B2 (en) | 2015-09-16 |
JP2015060084A (en) | 2015-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6380069B2 (en) | Optical transmission module | |
JP6205194B2 (en) | Optical receptacle and optical module | |
KR101508619B1 (en) | System and methods for routing optical signals | |
JP2007025422A (en) | Wavelength branching filter and optical communication module | |
KR102103867B1 (en) | High power spatial filter | |
WO2013140922A1 (en) | Optical receptacle and optical module provided with same | |
WO2015135454A1 (en) | System and apparatus for free space optical coupling | |
JP2010267734A (en) | Optical module | |
US9912437B2 (en) | Optical transmitters | |
WO2015041087A1 (en) | Light guide body and laser light source device | |
EP1703601A1 (en) | Fiber laser oscillator | |
WO2017169774A1 (en) | Optical receptacle, optical module, and method for producing optical module | |
JP6406800B2 (en) | Light emitting device and light conversion unit | |
TW201228250A (en) | Optical fiber communication apparatus | |
JP4997543B2 (en) | Laser focusing prism | |
JP4471778B2 (en) | Optical waveguide member | |
JP2019138927A (en) | Optical fiber and optical transmission system | |
JP2020016826A (en) | Multiwavelength laser device | |
JP2018105932A (en) | Optical transmission path | |
JP2005352256A (en) | Optical component for single fiber bi-directional transmitting/receiving module and single fiber bi-directional transmitting/receiving module | |
WO2014129280A1 (en) | Optical connector device | |
CN102056702B (en) | Block-terminal fiber for laser generation of ultrasonic waves | |
JP2007183469A (en) | Optical waveguide for optical path conversion | |
JP2011123121A (en) | Bidirectional optical module | |
JP2018036635A (en) | Optical component, fiber array module, light-receiving module, and method for manufacturing optical component |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14846538 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14846538 Country of ref document: EP Kind code of ref document: A1 |