WO2015040956A1 - Optical deflector - Google Patents

Optical deflector Download PDF

Info

Publication number
WO2015040956A1
WO2015040956A1 PCT/JP2014/069903 JP2014069903W WO2015040956A1 WO 2015040956 A1 WO2015040956 A1 WO 2015040956A1 JP 2014069903 W JP2014069903 W JP 2014069903W WO 2015040956 A1 WO2015040956 A1 WO 2015040956A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
parallel
movable plate
piezoelectric actuator
optical deflector
Prior art date
Application number
PCT/JP2014/069903
Other languages
French (fr)
Japanese (ja)
Inventor
俊明 山下
山本 浩誠
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2015040956A1 publication Critical patent/WO2015040956A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD

Definitions

  • the present invention relates to an optical deflector, and more particularly to an optical deflector capable of deflecting and scanning light.
  • a first piezoelectric actuator having one end connected to a torsion bar and the other end connected to a support portion, and one end connected to a torsion bar and the other end connected to a mirror portion and supported.
  • a configuration including the second piezoelectric actuator is proposed (see, for example, Japanese Unexamined Patent Application Publication No. 2009-169326 (Patent Document 1)).
  • a configuration is proposed that includes a piezoelectric actuator that swings the mirror portion around the first axis and a piezoelectric actuator that swings around the second axis that is orthogonal to the first axis (for example, Japanese Patent Application Laid-Open No. 2009-2009). -9093 (patent document 2)).
  • the present invention has been made in view of the above-mentioned problems, and its main purpose is to provide an optical deflector that can increase the rotation angle of the reflecting surface.
  • the optical deflector includes a movable plate, a support portion, and a pair of torsion bars.
  • the movable plate has a reflection surface capable of reflecting light.
  • the support part has a rectangular frame shape surrounding the movable plate.
  • the torsion bar has one end connected to the movable plate and the other end connected to the support portion, and extends in opposite directions from the edge of the movable plate.
  • the support part has a pair of first parallel parts arranged in parallel to each other and a pair of second parallel parts orthogonal to the first parallel part and arranged in parallel to each other.
  • the other end of the torsion bar is connected to the first parallel portion.
  • the optical deflector further includes a first piezoelectric actuator and a second piezoelectric actuator.
  • the first piezoelectric actuator is provided in the first parallel portion and vibrates the first parallel portion.
  • the second piezoelectric actuator is provided in the second parallel part and vibrates the second parallel part.
  • the first parallel portion is driven and vibrated in the secondary bending mode, and the second parallel portion is driven and vibrated in the primary bending mode.
  • the pair of second parallel portions vibrate in mutually opposite phases.
  • the rotation angle of the reflecting surface can be increased.
  • FIG. 3 is a plan view illustrating the outline of the configuration of the optical deflector according to the first embodiment.
  • 6 is a schematic diagram illustrating a vibration mode of a support portion in the optical deflector according to Embodiment 1.
  • FIG. It is a side view which shows typically the movable plate at the time of the rotational drive operation
  • 4 is a side view schematically showing a movable plate during a rotational driving operation by the optical deflector according to Embodiment 1.
  • FIG. 6 is a graph showing the amount of displacement of the movable plate during a rotational driving operation by the optical deflector according to the first embodiment.
  • FIG. 6 is a plan view illustrating an outline of a configuration of an optical deflector according to a second embodiment.
  • FIG. 1 is a plan view schematically showing the configuration of the optical deflector 1 according to the first embodiment.
  • the optical deflector 1 according to the first embodiment includes a movable plate 10, a support portion 20, and a torsion bar 30.
  • the movable plate 10, the support part 20, and the torsion bar 30 are integrally formed, for example, by processing a silicon substrate.
  • the movable plate 10 has a disk shape, and its main surface functions as a reflecting surface 11 that can reflect light.
  • the reflection surface 11 is provided as a surface that reflects light emitted from the light source and incident on the main surface of the movable plate 10.
  • the reflecting surface 11 is provided with a configuration in which a reflecting film made of a metal thin film such as gold or aluminum is formed on the main surface of the movable plate to improve the reflectance of light incident on the main surface.
  • the movable plate 10 has a reflecting surface 11 on its main surface and an edge 12.
  • the movable plate 10 is provided to be rotatable about a first axis Ax parallel to the X axis shown in FIG.
  • the shape of the movable plate 10 is not limited to the disc shape, and may be other shapes such as an elliptical shape and a polygonal shape.
  • the support part 20 is formed in a rectangular frame shape.
  • the support portion 20 is provided so as to surround the movable plate 10.
  • the support unit 20 supports the movable plate 10 via the torsion bar 30 so as to be rotatable.
  • the support part 20 is fixed to a housing or the like (not shown).
  • a gap 2 is provided between the movable plate 10 and the support portion 20 so that the movable plate 10 can rotate to a predetermined angle without interfering with the support portion 20.
  • the support part 20 has a first parallel part 22 and a second parallel part 26.
  • the first parallel portion 22 has a pair of elongated plate-like plate members 23 and 24.
  • the plate-like members 23 and 24 are arranged in parallel to each other.
  • the second parallel portion 26 has a pair of long and thin plate-like members 27 and 28.
  • the plate-like members 27 and 28 are arranged in parallel to each other.
  • the plate-like members 23 and 24 and the plate-like members 27 and 28 are arranged so as to be orthogonal to each other.
  • the plate-like members 23 and 24 extend in parallel to the second axis Ay that is parallel to the Y axis shown in FIG. 1 and orthogonal to the first axis Ax.
  • the plate-like members 27 and 28 extend in parallel with the first axis Ax.
  • the torsion bar 30 is provided so as to be elastically deformable.
  • the movable plate 10 is elastically supported with respect to the support portion 20 by a pair of torsion bars 30.
  • the torsion bar 30 has one end 33 connected to the movable plate 10 and the other end 34 connected to the support portion 20.
  • the torsion bar 30 extends from the center position of the movable plate 10 toward the outside along the radial direction of the disk-shaped movable plate 10.
  • the pair of torsion bars 30 includes torsion bars 31 and 32.
  • the torsion bars 31 and 32 are arranged along the first axis Ax shown in FIG.
  • the torsion bar 31 and the torsion bar 32 extend in opposite directions from the edge 12 of the movable plate 10.
  • the torsion bar 31 is arranged on the side where the X coordinate is smaller than the installation position of the movable plate 10.
  • the torsion bar 32 is arranged on the side where the X coordinate is larger than the installation position of the movable plate 10.
  • the torsion bars 31 and 32 are connected to the movable plate 10 and the support part 20, respectively.
  • the other end 34 of the torsion bar 30 is connected to the first parallel portion 22.
  • One end 33 of the torsion bar 31 is connected to the edge 12 of the movable plate 10, and the other end 34 of the torsion bar 31 is connected to the plate-like member 23.
  • One end 33 of the torsion bar 32 is connected to the edge 12 of the movable plate 10, and the other end 34 of the torsion bar 32 is connected to the plate-like member 24.
  • the optical deflector 1 further includes a first piezoelectric actuator 40 provided in the first parallel portion 22 and a second piezoelectric actuator 50 provided in the second parallel portion 26.
  • the first piezoelectric actuator 40 and the second piezoelectric actuator 50 are thin plate-like elements that expand and contract when a voltage is applied, and are elements that can convert electrical energy into mechanical energy.
  • the first piezoelectric actuator 40 has piezoelectric actuators 41 to 44.
  • the piezoelectric actuators 41 and 42 are attached to the plate member 23.
  • the piezoelectric actuators 43 and 44 are attached to the plate member 24.
  • the piezoelectric actuators 41 to 44 are fixed to the plate-like members 23 and 24, for example, by being attached to the plate-like members 23 and 24 using an adhesive.
  • the second piezoelectric actuator 50 has piezoelectric actuators 51 and 52.
  • the piezoelectric actuator 51 is attached to the plate member 27.
  • the piezoelectric actuator 52 is attached to the plate member 28.
  • the piezoelectric actuators 51 and 52 are fixed to the plate-like members 27 and 28, for example, by being attached to the plate-like members 27 and 28 using an adhesive.
  • the piezoelectric actuators 41 and 42 extend from the vicinity of the portion where the torsion bar 31 is connected to the plate-like member 23 to the vicinity of the outer edge portion of the support portion 20.
  • the piezoelectric actuators 43 and 44 extend from the vicinity of the portion where the torsion bar 32 is connected to the plate-like member 24 to the vicinity of the outer edge portion of the support portion 20.
  • One end of the piezoelectric actuator 51 faces the piezoelectric actuator 41, and the other end faces the piezoelectric actuator 43.
  • One end of the piezoelectric actuator 52 faces the piezoelectric actuator 42, and the other end faces the piezoelectric actuator 44.
  • the first piezoelectric actuator 40 vibrates the first parallel portion 22 by applying a voltage, thereby rotating the movable plate 10 via the torsion bars 31 and 32, thereby moving the movable plate 10 about the first axis Ax. Swing around.
  • the second piezoelectric actuator 50 vibrates the second parallel portion 26 by applying a voltage, thereby assisting and adjusting the rotational drive of the movable plate 10 around the first axis Ax.
  • the first piezoelectric actuator 40 and the second piezoelectric actuator 50 are formed by laminating and processing an upper electrode, a piezoelectric film, and a lower electrode, respectively.
  • the piezoelectric film is formed of a material such as lead zirconate titanate (PZT) or potassium sodium niobate (KNN).
  • PZT lead zirconate titanate
  • KNN potassium sodium niobate
  • a piezoelectric plate made of piezoelectric ceramics may be used instead of the piezoelectric film.
  • the upper electrode and the lower electrode are made of, for example, platinum (Pt).
  • a drive voltage is applied to each of the first piezoelectric actuator 40 and the second piezoelectric actuator 50 from the outside of the optical deflector 1 via the upper electrode and the lower electrode.
  • the piezoelectric actuators 41 and 42 attached to the plate-like member 23 expand and contract when a driving voltage is applied, and change the longitudinal dimension thereof.
  • the plate-like member 23 remains warped even when the piezoelectric actuators 41 and 42 expand and contract, and therefore warps as the piezoelectric actuators 41 and 42 expand and contract.
  • the plate-like member 23 is bent and deformed by applying a voltage to the piezoelectric actuators 41 and 42.
  • the phase of the voltage applied to the piezoelectric actuators 41 and 42 changes, the direction of warp deformation of the plate-like member 23 changes.
  • the plate-like member 23 and the piezoelectric actuators 41 and 42 form a flat strip-shaped first unimorph element that generates vibration and is displaced by application of a drive voltage to the piezoelectric actuators 41 and 42.
  • the piezoelectric actuators 43 and 44 attached to the plate-like member 24 expand and contract when a driving voltage is applied, and change the longitudinal dimension thereof.
  • the plate-like member 24 remains warped even when the piezoelectric actuators 43 and 44 expand and contract, and therefore warps as the piezoelectric actuators 43 and 44 expand and contract.
  • the plate-like member 24 is bent and deformed by applying a voltage to the piezoelectric actuators 43 and 44.
  • the phase of the voltage applied to the piezoelectric actuators 43 and 44 changes, the direction of warp deformation of the plate-like member 24 changes.
  • the plate-like member 24 and the piezoelectric actuators 43 and 44 form a flat strip-shaped second unimorph element that is displaced by generating vibration when a driving voltage is applied to the piezoelectric actuators 43 and 44.
  • the piezoelectric actuator 51 affixed to the plate member 27 expands and contracts when a driving voltage is applied, and changes its longitudinal dimension.
  • the plate-like member 27 remains warped even when the piezoelectric actuator 51 expands and contracts, and therefore warps as the piezoelectric actuator 51 expands and contracts.
  • the plate member 27 is bent and deformed by applying a voltage to the piezoelectric actuator 51.
  • the phase of the voltage applied to the piezoelectric actuator 51 changes, the direction of warp deformation of the plate-like member 27 changes.
  • the plate-like member 27 and the piezoelectric actuator 51 form a plate-shaped strip-shaped third unimorph element that generates vibration and is displaced by application of a drive voltage to the piezoelectric actuator 51.
  • the piezoelectric actuator 52 affixed to the plate member 28 expands and contracts when a driving voltage is applied, and changes its longitudinal dimension.
  • the plate-like member 28 remains warped even when the piezoelectric actuator 52 expands and contracts, and therefore warps as the piezoelectric actuator 52 expands and contracts.
  • the plate-like member 28 is bent and deformed by applying a voltage to the piezoelectric actuator 52.
  • the phase of the voltage applied to the piezoelectric actuator 52 changes, the direction of warp deformation of the plate-like member 28 changes.
  • the plate-like member 28 and the piezoelectric actuator 52 form a flat strip-shaped fourth unimorph element that generates vibration and is displaced by application of a driving voltage to the piezoelectric actuator 52.
  • FIG. 2 is a schematic diagram showing a vibration mode of the support portion 20 in the optical deflector 1 of the first embodiment. 2 includes plate members 23, 24, which are generated when a voltage is applied to the first piezoelectric actuator 40 and the second piezoelectric actuator 50, in addition to the components of the optical deflector 1 shown in FIG. Waveforms 63, 64, 67 and 68 of vibrations 27 and 28 are shown. In FIG. 2, the piezoelectric actuators 41 to 44, 51, and 52 are not shown for simplicity.
  • the plate-like members 23 and 24 to which the torsion bar 30 is connected vibrate with corrugated waveforms 63 and 64, respectively.
  • the first parallel portion 22 constituted by the plate-like members 23 and 24 is driven to vibrate in the secondary bending mode.
  • the piezoelectric actuators 41 to 44 are arranged so as to drive the plate-like members 23 and 24 in the secondary bending mode.
  • the plate-like members 27 and 28 to which the torsion bar 30 is not connected vibrate with mountain-shaped waveforms 67 and 68, respectively.
  • the second parallel portion 26 constituted by the plate-like members 27 and 28 is driven to vibrate in the primary bending mode.
  • the piezoelectric actuators 51 and 52 are arranged so as to drive the plate-like members 27 and 28 in the secondary bending mode.
  • the pair of first parallel portions 22 vibrate with the same phase.
  • the pair of second parallel portions 26 vibrate in mutually opposite phases.
  • the first parallel part 22 to which the torsion bar 30 is connected and the second parallel part 26 to which the torsion bar 30 is not connected vibrate at the same drive frequency.
  • the second parallel portion 26 vibrates in the primary bending mode in accordance with the secondary bending mode driving vibration of the first parallel portion 22.
  • the first parallel portion 22 and the second parallel portion 26 are configured to vibrate at the same drive frequency.
  • the first parallel portion 22 and the second parallel portion 26 are configured to vibrate.
  • the parallel part 26 may be configured to vibrate at a different driving frequency.
  • the drive frequency ratio between the first parallel portion 22 and the second parallel portion 26 is, for example, 1: 2, 16: 9, or the like.
  • the first parallel portion 22 (plate-like members 23 and 24) vibrates in the secondary bending mode, whereby a torsional motion is generated in the torsion bar 30. Due to the torsional motion of the torsion bar 30, the movable plate 10 performs a rotational motion around the first axis Ax indicated by the white arrow in FIG.
  • the optical deflector 1 according to the present embodiment includes a plate-like member 23 and a first unimorph element having piezoelectric actuators 41 and 42 that drive the plate-like member 23, a plate-like member 24, and the plate-like member 24. And a second unimorph element having piezoelectric actuators 43 and 44 to be driven. The first and second unimorph elements rotate and oscillate the movable plate 10 about the first axis Ax.
  • the optical deflector 1 of the present embodiment drives the plate member 27 and the third unimorph element having the piezoelectric actuator 51 that drives the plate member 27, the plate member 28, and the plate member 28. And a fourth unimorph element having a piezoelectric actuator 52.
  • the piezoelectric actuators 51 and 52 are set in shape, size and arrangement so that the plate-like members 27 and 28 vibrate in the primary bending mode at a frequency at which the plate-like members 23 and 24 vibrate in the secondary bending mode. Has been.
  • the plate-like members 27 and 28 are driven and vibrated in the primary bending mode at the same drive frequency as the plate-like members 23 and 24 that are driven and vibrated in the secondary bending mode. Displaces in the thickness direction. Therefore, the displacement amount of the plate-like members 23 and 24 increases.
  • both ends of the plate-like members 23 and 24 connected to the plate-like members 27 and 28 are displaced in opposite directions in the thickness direction.
  • the end portions of the plate members 27 and 28 connected to the plate member 27 are displaced upward, the end portions of the plate members 27 and 28 connected to the plate member 28 are displaced downward. Therefore, a large torsional motion can be caused by the torsion bar 30.
  • the driving range of the movable plate 10 is increased, and the angle of the rotational movement of the reflecting surface 11 can be increased.
  • FIG. 3 is a side view schematically showing a movable plate during a rotational driving operation by a conventional optical deflector.
  • the conventional optical deflector shown in FIG. 3 is different from the optical deflector 1 of the present embodiment shown in FIGS. 1 and 2 in that the second piezoelectric actuator 50 is not provided.
  • FIG. 3 shows a side view of a conventional optical deflector as viewed from the right side in FIG. 1, and in FIG. 3, piezoelectric actuators 43 and 44 attached to the plate-like member 24, and The movable plate 10 partially blocked by the plate-like member 24 is shown.
  • the piezoelectric actuator 44 and the plate member 24 form a unimorph portion Ua, and the piezoelectric actuator 43 and the plate member 24 form a unimorph portion Ub.
  • a drive voltage that extends in the longitudinal direction (Y-axis direction) is applied to the piezoelectric actuator 43, and a drive voltage that is opposite in phase to the drive voltage applied to the piezoelectric actuator 43 is applied to the piezoelectric actuator 44.
  • Contract in the longitudinal direction At this time, in the unimorph portion Ua, the plate-like member 24 is curved downward and convex, and in the unimorph portion Ub, the plate-like member 24 is curved upward and convex.
  • the plate-like member 23 is curved downward and convex at the installation position of the piezoelectric actuator 42.
  • the plate-like member 23 is curved upward and convex.
  • a drive voltage that extends in the longitudinal direction is applied to the piezoelectric actuators 42 and 44, and the drive voltage applied to the piezoelectric actuators 42 and 44 is opposite to the piezoelectric actuators 41 and 43.
  • a phase driving voltage is applied and contracted in the longitudinal direction, the movable plate 10 is inclined in the direction opposite to the rotational direction D shown in FIG. 3 with the first axis Ax as the center.
  • the movable plate 10 oscillates in a predetermined angular range around the first axis Ax.
  • the maximum value of the angle range when the conventional optical deflector performs the swing vibration operation is shown as a swing angle ⁇ in FIG.
  • FIG. 4 is a graph showing the amount of displacement of the movable plate during the rotational driving operation by the conventional optical deflector.
  • FIG. 4 is a graph showing a simulation result of the displacement amount in the Z-axis direction perpendicular to both the X-axis and the Y-axis shown in FIGS. 1 and 2 at the edge of the movable plate 10 using the finite element method (FEM). Is shown.
  • FEM finite element method
  • the diameter of the movable plate 10 was 800 ⁇ m, and the driving frequency of the first parallel portion 22 was 60 kHz.
  • the maximum displacement amount of the edge portion of the movable plate 10 was 38 ⁇ m, and was about ⁇ 5 ° when converted to a displacement angle.
  • FIG. 5 is a side view schematically showing the movable plate during the rotational driving operation by the optical deflector 1 of the first embodiment.
  • FIG. 5 shows a side view of the optical deflector 1 as viewed from the right side in FIG. 1. Therefore, FIG. 5 shows the piezoelectric actuators 43 and 44 attached to the plate-like member 24 and a part thereof.
  • the movable plate 10 is illustrated as being blocked by the plate-like member 24.
  • the piezoelectric actuator 44 and the plate member 24 form a unimorph portion Ua, and the piezoelectric actuator 43 and the plate member 24 form a unimorph portion Ub.
  • a drive voltage is applied to the piezoelectric actuators 41 to 44 of the optical deflector 1 of the first embodiment.
  • a driving voltage for contracting in the longitudinal direction (X-axis direction) is applied to the piezoelectric actuator 51 and applied to the piezoelectric actuator 51 with respect to the piezoelectric actuator 52.
  • a drive voltage having an opposite phase to the drive voltage to be applied is applied to extend in the longitudinal direction.
  • the plate-like member 27 is bent convexly downward, and the plate-like member 28 is curved convexly upward.
  • the plate-like members 27 and 28 When a driving voltage is applied to the piezoelectric actuators 51 and 52, the plate-like members 27 and 28 are bent. Both ends of the plate-like member 27 that is convexly curved downward are displaced upward. The ends of the plate members 23 and 24 connected to both ends of the plate member 27 are also displaced upward. Both ends of the plate-like member 28 that is convexly curved upward are displaced downward. The ends of the plate members 23 and 24 connected to both ends of the plate member 28 are also displaced downward.
  • the movable plate 10 oscillates within a predetermined angular range around the first axis Ax.
  • the unimorph portion Ua is displaced downward in the figure with respect to the first axis Ax due to the influence of vibration of the plate-like members 27 and 28, and the unimorph portion Ub is relative to the first axis Ax. It is displaced upward in the figure. Therefore, the maximum value of the angular range when the optical deflector 1 of the first embodiment performs the swing vibration operation, which is shown as the swing angle ⁇ in FIG. 5, is compared with the swing angle ⁇ shown in FIG. Is getting bigger. As a result, the rotation angle of the reflecting surface 11 formed on the movable plate 10 can be increased.
  • FIG. 6 is a graph showing the amount of displacement of the movable plate during the rotational driving operation by the optical deflector 1 of the first embodiment.
  • FIG. 6 is a graph showing a simulation result of the displacement amount in the Z-axis direction of the edge portion of the movable plate 10 using the finite element method (FEM).
  • FEM finite element method
  • the diameter of the movable plate 10 was 800 ⁇ m, and the drive frequencies of the first parallel portion 22 and the second parallel portion 26 were the same 60 kHz.
  • the maximum displacement amount of the edge portion of the movable plate 10 is 148 ⁇ m, which is about ⁇ 21 ° when converted to a displacement angle. .
  • the first parallel portion 22 connected to the torsion bar 30 among the first parallel portion 22 and the second parallel portion 26 constituting the rectangular frame-shaped support portion 20 vibrates in the secondary bending mode. It was shown that the drive angle of the reflecting surface of the movable plate 10 can be increased by vibrating the second parallel portion 26 in the primary bending mode at the same drive frequency as the first parallel portion 22.
  • FIG. 7 is a plan view schematically showing the configuration of the optical deflector 1 according to the second embodiment.
  • the optical deflector 1 according to the second embodiment differs from the first embodiment in the configuration of the piezoelectric actuators 41 to 44, 51, and 52.
  • both ends of the piezoelectric actuators 51 and 52 extend to the vicinity of the outer edge portion of the support portion 20.
  • One end of the piezoelectric actuator 41 is disposed in the vicinity of a portion where the torsion bar 31 is connected to the plate-like member 23, and the other end faces the piezoelectric actuator 51.
  • One end of the piezoelectric actuator 42 is disposed in the vicinity of a portion where the torsion bar 31 is connected to the plate-like member 23, and the other end faces the piezoelectric actuator 52.
  • One end of the piezoelectric actuator 43 is disposed in the vicinity of a portion where the torsion bar 32 is connected to the plate-like member 24, and the other end faces the piezoelectric actuator 51.
  • One end of the piezoelectric actuator 44 is disposed in the vicinity of the portion where the torsion bar 32 is connected to the plate-like member 24, and the other end faces the piezoelectric actuator 52.
  • the swing angle of the movable plate 10 can be increased, and as a result, the reflecting surface of the movable plate 10
  • the effect of increasing the drive angle can be obtained as in the first embodiment.
  • the optical deflector of the present invention can be used in an image display device, an optical scanning device for image formation, or an optical scanning device for sensing.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Micromachines (AREA)

Abstract

Provided is an optical deflector that is capable of enlarging the rotation angle of a reflecting surface. A rectangular-frame-shaped support part (20) that surrounds a movable plate (10) has a pair of first parallel parts (22) that are arranged parallel to each other, and a pair of second parallel parts (26) that are perpendicular to the first parallel parts (22) and arranged parallel to each other. One end (33) of a torsion bar (30) is connected to the movable plate (10), and another end (34) is connected to the first parallel parts (22). An optical deflector (1) is provided with a first voltage actuator (40) that is provided to the first parallel parts (22) and that oscillates the first parallel parts (22) and with a second voltage actuator (50) that is provided to the second parallel parts (26) and that oscillates the second parallel parts (26).

Description

光偏向器Optical deflector
 本発明は、光偏向器に関し、特に、光の偏向および走査が可能な光偏向器に関する。 The present invention relates to an optical deflector, and more particularly to an optical deflector capable of deflecting and scanning light.
 光偏向器に関し、従来、一端がトーションバーに連結され他端が支持部に連結されて支持された第1の圧電アクチュエータと、一端がトーションバーに連結され他端がミラー部に連結されて支持された第2の圧電アクチュエータとを備える構成が提案されている(たとえば、特開2009-169326号公報(特許文献1)参照)。また、ミラー部を第1軸の回りに揺動させる圧電アクチュエータと、第1軸と直交する第2軸の回りに揺動させる圧電アクチュエータとを備える構成が提案されている(たとえば、特開2009-9093号公報(特許文献2)参照)。 Regarding an optical deflector, conventionally, a first piezoelectric actuator having one end connected to a torsion bar and the other end connected to a support portion, and one end connected to a torsion bar and the other end connected to a mirror portion and supported. A configuration including the second piezoelectric actuator is proposed (see, for example, Japanese Unexamined Patent Application Publication No. 2009-169326 (Patent Document 1)). In addition, a configuration is proposed that includes a piezoelectric actuator that swings the mirror portion around the first axis and a piezoelectric actuator that swings around the second axis that is orthogonal to the first axis (for example, Japanese Patent Application Laid-Open No. 2009-2009). -9093 (patent document 2)).
特開2009-169326号公報JP 2009-169326 A 特開2009-9093号公報JP 2009-9093 A
 特許文献1,2に記載の光偏向器では、ミラー部を1つの軸回りに回転駆動させる際に、1つのベンディングモードしか使用していない。そのため、ミラー部の反射面の回転角度を大きくすることが困難である。大きな回転角度を得るためには、トーションバーの剛性を小さくする、駆動電力を増大するなどの対策が必要になるが、前者は光偏向器の強度を低下させ、後者は光偏向器の駆動のための電力費を増大させる問題がある。 In the optical deflectors described in Patent Documents 1 and 2, only one bending mode is used when the mirror unit is driven to rotate about one axis. Therefore, it is difficult to increase the rotation angle of the reflecting surface of the mirror part. In order to obtain a large rotation angle, measures such as reducing the rigidity of the torsion bar and increasing the driving power are required. However, the former reduces the strength of the optical deflector and the latter reduces the driving force of the optical deflector. Therefore, there is a problem of increasing the power cost.
 本発明は上記の課題に鑑みてなされたものであり、その主たる目的は、反射面の回転角度を大きくできる、光偏向器を提供することである。 The present invention has been made in view of the above-mentioned problems, and its main purpose is to provide an optical deflector that can increase the rotation angle of the reflecting surface.
 本発明に係る光偏向器は、可動板と、支持部と、一対のトーションバーとを備えている。可動板は、光を反射可能な反射面を有している。支持部は、可動板を取り囲む矩形枠形状を有している。トーションバーは、可動板に連結された一端、および支持部に連結された他端を有しており、可動板の縁部から互いに反対方向に延びている。支持部は、互いに平行に配置された一対の第一の平行部と、第一の平行部に対し直交するとともに互いに平行に配置された一対の第二の平行部とを有している。トーションバーの他端は、第一の平行部に連結されている。光偏向器はさらに、第一の圧電アクチュエータと、第二の圧電アクチュエータとを備えている。第一の圧電アクチュエータは、第一の平行部に設けられており、第一の平行部を振動させる。第二の圧電アクチュエータは、第二の平行部に設けられており、第二の平行部を振動させる。 The optical deflector according to the present invention includes a movable plate, a support portion, and a pair of torsion bars. The movable plate has a reflection surface capable of reflecting light. The support part has a rectangular frame shape surrounding the movable plate. The torsion bar has one end connected to the movable plate and the other end connected to the support portion, and extends in opposite directions from the edge of the movable plate. The support part has a pair of first parallel parts arranged in parallel to each other and a pair of second parallel parts orthogonal to the first parallel part and arranged in parallel to each other. The other end of the torsion bar is connected to the first parallel portion. The optical deflector further includes a first piezoelectric actuator and a second piezoelectric actuator. The first piezoelectric actuator is provided in the first parallel portion and vibrates the first parallel portion. The second piezoelectric actuator is provided in the second parallel part and vibrates the second parallel part.
 上記光偏向器において好ましくは、第一の平行部は、2次ベンディングモードで駆動振動し、第二の平行部は、1次ベンディングモードで駆動振動する。 Preferably, in the optical deflector, the first parallel portion is driven and vibrated in the secondary bending mode, and the second parallel portion is driven and vibrated in the primary bending mode.
 上記光偏向器において好ましくは、一対の第二の平行部は、互いに逆位相で振動する。 In the above optical deflector, preferably, the pair of second parallel portions vibrate in mutually opposite phases.
 本発明の光偏向器によると、反射面の回転角度を大きくすることができる。 According to the optical deflector of the present invention, the rotation angle of the reflecting surface can be increased.
実施の形態1の光偏向器の構成の概略を示す平面図である。FIG. 3 is a plan view illustrating the outline of the configuration of the optical deflector according to the first embodiment. 実施の形態1の光偏向器における支持部の振動モードを示す模式図である。6 is a schematic diagram illustrating a vibration mode of a support portion in the optical deflector according to Embodiment 1. FIG. 従来の光偏向器による回転駆動動作時の可動板を模式的に示す側面図である。It is a side view which shows typically the movable plate at the time of the rotational drive operation | movement by the conventional optical deflector. 従来の光偏向器による回転駆動動作時の可動板の変位量を示すグラフである。It is a graph which shows the displacement amount of the movable plate at the time of the rotational drive operation | movement by the conventional optical deflector. 実施の形態1の光偏向器による回転駆動動作時の可動板を模式的に示す側面図である。4 is a side view schematically showing a movable plate during a rotational driving operation by the optical deflector according to Embodiment 1. FIG. 実施の形態1の光偏向器による回転駆動動作時の可動板の変位量を示すグラフである。6 is a graph showing the amount of displacement of the movable plate during a rotational driving operation by the optical deflector according to the first embodiment. 実施の形態2の光偏向器の構成の概略を示す平面図である。FIG. 6 is a plan view illustrating an outline of a configuration of an optical deflector according to a second embodiment.
 以下、図面に基づいてこの発明の実施の形態を説明する。なお、以下の図面において、同一または相当する部分には同一の参照番号を付し、その説明は繰返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.
 (実施の形態1)
 図1は、実施の形態1の光偏向器1の構成の概略を示す平面図である。図1中には、互いに直交する座標軸であるX軸とY軸とが図示されている。図1を参照して、実施の形態1の光偏向器1は、可動板10と、支持部20と、トーションバー30とを備えている。可動板10、支持部20およびトーションバー30は、たとえばシリコン基板を加工することにより、一体的に成形されている。
(Embodiment 1)
FIG. 1 is a plan view schematically showing the configuration of the optical deflector 1 according to the first embodiment. In FIG. 1, an X axis and a Y axis, which are coordinate axes orthogonal to each other, are illustrated. Referring to FIG. 1, the optical deflector 1 according to the first embodiment includes a movable plate 10, a support portion 20, and a torsion bar 30. The movable plate 10, the support part 20, and the torsion bar 30 are integrally formed, for example, by processing a silicon substrate.
 可動板10は、円板状の形状を有しており、その主表面が、光を反射可能な反射面11としての機能を有している。反射面11は、光源から発せられ可動板10の主表面に入射した光を反射する面として設けられている。たとえば、可動板の主表面に金またはアルミニウムなどの金属薄膜による反射膜を形成して主表面へ入射する光の反射率を向上させる構成により、反射面11が設けられている。可動板10は、その主表面に反射面11を有しており、また縁部12を有している。可動板10は、図1中に示すX軸に平行な第1軸Axを中心として回動可能に設けられている。なお、可動板10の形状は、円板状に限られるものではなく、楕円形状、多角形形状などの他の形状であってもよい。 The movable plate 10 has a disk shape, and its main surface functions as a reflecting surface 11 that can reflect light. The reflection surface 11 is provided as a surface that reflects light emitted from the light source and incident on the main surface of the movable plate 10. For example, the reflecting surface 11 is provided with a configuration in which a reflecting film made of a metal thin film such as gold or aluminum is formed on the main surface of the movable plate to improve the reflectance of light incident on the main surface. The movable plate 10 has a reflecting surface 11 on its main surface and an edge 12. The movable plate 10 is provided to be rotatable about a first axis Ax parallel to the X axis shown in FIG. The shape of the movable plate 10 is not limited to the disc shape, and may be other shapes such as an elliptical shape and a polygonal shape.
 支持部20は、矩形枠形状に形成されている。支持部20は、可動板10を取り囲んで設けられている。支持部20は、トーションバー30を介して、可動板10を回転可能に支持している。支持部20は、図示しない筺体などに固定されている。可動板10と支持部20との間には、空隙2が設けられており、可動板10が支持部20と干渉することなく所定角度まで回転可能とされている。 The support part 20 is formed in a rectangular frame shape. The support portion 20 is provided so as to surround the movable plate 10. The support unit 20 supports the movable plate 10 via the torsion bar 30 so as to be rotatable. The support part 20 is fixed to a housing or the like (not shown). A gap 2 is provided between the movable plate 10 and the support portion 20 so that the movable plate 10 can rotate to a predetermined angle without interfering with the support portion 20.
 支持部20は、第一の平行部22と、第二の平行部26とを有している。第一の平行部22は、一対の細長い平板形状の板状部材23,24を有している。板状部材23,24は、互いに平行に配置されている。第二の平行部26は、一対の細長い平板形状の板状部材27,28を有している。板状部材27,28は、互いに平行に配置されている。板状部材23,24と、板状部材27,28とは、互いに直交するように配置されている。板状部材23,24は、図1中に示すY軸に平行であって第1軸Axに直交している第2軸Ayと平行に延在している。板状部材27,28は、第1軸Axと平行に延在している。 The support part 20 has a first parallel part 22 and a second parallel part 26. The first parallel portion 22 has a pair of elongated plate- like plate members 23 and 24. The plate- like members 23 and 24 are arranged in parallel to each other. The second parallel portion 26 has a pair of long and thin plate- like members 27 and 28. The plate- like members 27 and 28 are arranged in parallel to each other. The plate- like members 23 and 24 and the plate- like members 27 and 28 are arranged so as to be orthogonal to each other. The plate- like members 23 and 24 extend in parallel to the second axis Ay that is parallel to the Y axis shown in FIG. 1 and orthogonal to the first axis Ax. The plate- like members 27 and 28 extend in parallel with the first axis Ax.
 トーションバー30は、弾性変形可能に設けられている。可動板10は、一対のトーションバー30によって、支持部20に対して弾性的に支持されている。トーションバー30は、可動板10に連結された一端33と、支持部20に連結された他端34とを有している。トーションバー30は、円板形状の可動板10の径方向に沿って、可動板10の中心位置から外側に向かう方向に延びている。 The torsion bar 30 is provided so as to be elastically deformable. The movable plate 10 is elastically supported with respect to the support portion 20 by a pair of torsion bars 30. The torsion bar 30 has one end 33 connected to the movable plate 10 and the other end 34 connected to the support portion 20. The torsion bar 30 extends from the center position of the movable plate 10 toward the outside along the radial direction of the disk-shaped movable plate 10.
 一対のトーションバー30は、トーションバー31,32により構成されている。トーションバー31,32は、図1中に示す第1軸Axに沿って配置されている。トーションバー31とトーションバー32とは、可動板10の縁部12から、互いに反対方向に延びている。トーションバー31は、可動板10の設置位置に対して、X座標が小さい側に配置されている。トーションバー32は、可動板10の設置位置に対して、X座標が大きい側に配置されている。 The pair of torsion bars 30 includes torsion bars 31 and 32. The torsion bars 31 and 32 are arranged along the first axis Ax shown in FIG. The torsion bar 31 and the torsion bar 32 extend in opposite directions from the edge 12 of the movable plate 10. The torsion bar 31 is arranged on the side where the X coordinate is smaller than the installation position of the movable plate 10. The torsion bar 32 is arranged on the side where the X coordinate is larger than the installation position of the movable plate 10.
 トーションバー31,32は、各々、可動板10および支持部20に連結されている。トーションバー30の他端34は、第一の平行部22に連結されている。トーションバー31の一端33は、可動板10の縁部12に連結されており、トーションバー31の他端34は、板状部材23に連結されている。トーションバー32の一端33は、可動板10の縁部12に連結されており、トーションバー32の他端34は、板状部材24に連結されている。 The torsion bars 31 and 32 are connected to the movable plate 10 and the support part 20, respectively. The other end 34 of the torsion bar 30 is connected to the first parallel portion 22. One end 33 of the torsion bar 31 is connected to the edge 12 of the movable plate 10, and the other end 34 of the torsion bar 31 is connected to the plate-like member 23. One end 33 of the torsion bar 32 is connected to the edge 12 of the movable plate 10, and the other end 34 of the torsion bar 32 is connected to the plate-like member 24.
 光偏向器1はさらに、第一の平行部22に設けられた第一の圧電アクチュエータ40と、第二の平行部26に設けられた第二の圧電アクチュエータ50とを備えている。第一の圧電アクチュエータ40と、第二の圧電アクチュエータ50とは、電圧が加えられると伸縮する薄板状の素子であり、電気エネルギーを機械エネルギーへ変換可能な素子である。 The optical deflector 1 further includes a first piezoelectric actuator 40 provided in the first parallel portion 22 and a second piezoelectric actuator 50 provided in the second parallel portion 26. The first piezoelectric actuator 40 and the second piezoelectric actuator 50 are thin plate-like elements that expand and contract when a voltage is applied, and are elements that can convert electrical energy into mechanical energy.
 第一の圧電アクチュエータ40は、圧電アクチュエータ41~44を有している。圧電アクチュエータ41,42は、板状部材23に取り付けられている。圧電アクチュエータ43,44は、板状部材24に取り付けられている。圧電アクチュエータ41~44は、たとえば接着剤を用いた板状部材23,24への貼付によって、板状部材23,24に固定されている。 The first piezoelectric actuator 40 has piezoelectric actuators 41 to 44. The piezoelectric actuators 41 and 42 are attached to the plate member 23. The piezoelectric actuators 43 and 44 are attached to the plate member 24. The piezoelectric actuators 41 to 44 are fixed to the plate- like members 23 and 24, for example, by being attached to the plate- like members 23 and 24 using an adhesive.
 第二の圧電アクチュエータ50は、圧電アクチュエータ51,52を有している。圧電アクチュエータ51は、板状部材27に取り付けられている。圧電アクチュエータ52は、板状部材28に取り付けられている。圧電アクチュエータ51,52は、たとえば接着剤を用いた板状部材27,28への貼付によって、板状部材27,28に固定されている。 The second piezoelectric actuator 50 has piezoelectric actuators 51 and 52. The piezoelectric actuator 51 is attached to the plate member 27. The piezoelectric actuator 52 is attached to the plate member 28. The piezoelectric actuators 51 and 52 are fixed to the plate- like members 27 and 28, for example, by being attached to the plate- like members 27 and 28 using an adhesive.
 圧電アクチュエータ41,42は、板状部材23にトーションバー31が連結する部分の近傍から支持部20の外縁部の近傍にまで延在している。圧電アクチュエータ43,44は、板状部材24にトーションバー32が連結する部分の近傍から支持部20の外縁部の近傍にまで延在している。圧電アクチュエータ51の一方の端部は圧電アクチュエータ41に対向し、他方の端部は圧電アクチュエータ43に対向している。圧電アクチュエータ52の一方の端部は圧電アクチュエータ42に対向し、他方の端部は圧電アクチュエータ44に対向している。 The piezoelectric actuators 41 and 42 extend from the vicinity of the portion where the torsion bar 31 is connected to the plate-like member 23 to the vicinity of the outer edge portion of the support portion 20. The piezoelectric actuators 43 and 44 extend from the vicinity of the portion where the torsion bar 32 is connected to the plate-like member 24 to the vicinity of the outer edge portion of the support portion 20. One end of the piezoelectric actuator 51 faces the piezoelectric actuator 41, and the other end faces the piezoelectric actuator 43. One end of the piezoelectric actuator 52 faces the piezoelectric actuator 42, and the other end faces the piezoelectric actuator 44.
 第一の圧電アクチュエータ40は、電圧の印加により第一の平行部22を振動させ、これによりトーションバー31,32を介して可動板10を回転駆動して、可動板10を第1軸Axの回りに揺動させる。第二の圧電アクチュエータ50は、電圧の印加により第二の平行部26を振動させ、これにより第1軸Ax回りの可動板10の回転駆動を補助および調整する。 The first piezoelectric actuator 40 vibrates the first parallel portion 22 by applying a voltage, thereby rotating the movable plate 10 via the torsion bars 31 and 32, thereby moving the movable plate 10 about the first axis Ax. Swing around. The second piezoelectric actuator 50 vibrates the second parallel portion 26 by applying a voltage, thereby assisting and adjusting the rotational drive of the movable plate 10 around the first axis Ax.
 第一の圧電アクチュエータ40および第二の圧電アクチュエータ50は、各々、上部電極、圧電膜および下部電極を積層して形状加工することにより形成されている。圧電膜は、チタン酸ジルコン酸鉛(PZT)、ニオブ酸カリウムナトリウム(KNN)などの材料で形成されている。圧電膜に替えて圧電セラミックスからなる圧電板を用いてもよい。上部電極および下部電極は、たとえば白金(Pt)製である。上部電極および下部電極を介して、光偏向器1の外部から、第一の圧電アクチュエータ40および第二の圧電アクチュエータ50のそれぞれに、駆動電圧が印加される。 The first piezoelectric actuator 40 and the second piezoelectric actuator 50 are formed by laminating and processing an upper electrode, a piezoelectric film, and a lower electrode, respectively. The piezoelectric film is formed of a material such as lead zirconate titanate (PZT) or potassium sodium niobate (KNN). A piezoelectric plate made of piezoelectric ceramics may be used instead of the piezoelectric film. The upper electrode and the lower electrode are made of, for example, platinum (Pt). A drive voltage is applied to each of the first piezoelectric actuator 40 and the second piezoelectric actuator 50 from the outside of the optical deflector 1 via the upper electrode and the lower electrode.
 板状部材23に貼り付けられた圧電アクチュエータ41,42は、駆動電圧が印加されると伸縮し、その長手方向の寸法を変化する。板状部材23は、圧電アクチュエータ41,42が伸縮しても寸法はそのままであるため、圧電アクチュエータ41,42の伸縮に伴って反りを発生する。板状部材23は、圧電アクチュエータ41,42へ電圧を印加することにより、屈曲変形する。圧電アクチュエータ41,42へ印加される電圧の位相が変化すると、板状部材23の反り変形の向きが変動する。板状部材23および圧電アクチュエータ41,42は、圧電アクチュエータ41,42への駆動電圧の印加により振動を発生して変位する、平板短冊状の第1のユニモルフ素子を形成している。 The piezoelectric actuators 41 and 42 attached to the plate-like member 23 expand and contract when a driving voltage is applied, and change the longitudinal dimension thereof. The plate-like member 23 remains warped even when the piezoelectric actuators 41 and 42 expand and contract, and therefore warps as the piezoelectric actuators 41 and 42 expand and contract. The plate-like member 23 is bent and deformed by applying a voltage to the piezoelectric actuators 41 and 42. When the phase of the voltage applied to the piezoelectric actuators 41 and 42 changes, the direction of warp deformation of the plate-like member 23 changes. The plate-like member 23 and the piezoelectric actuators 41 and 42 form a flat strip-shaped first unimorph element that generates vibration and is displaced by application of a drive voltage to the piezoelectric actuators 41 and 42.
 板状部材24に貼り付けられた圧電アクチュエータ43,44は、駆動電圧が印加されると伸縮し、その長手方向の寸法を変化する。板状部材24は、圧電アクチュエータ43,44が伸縮しても寸法はそのままであるため、圧電アクチュエータ43,44の伸縮に伴って反りを発生する。板状部材24は、圧電アクチュエータ43,44へ電圧を印加することにより、屈曲変形する。圧電アクチュエータ43,44へ印加される電圧の位相が変化すると、板状部材24の反り変形の向きが変動する。板状部材24および圧電アクチュエータ43,44は、圧電アクチュエータ43,44への駆動電圧の印加により振動を発生して変位する、平板短冊状の第2のユニモルフ素子を形成している。 The piezoelectric actuators 43 and 44 attached to the plate-like member 24 expand and contract when a driving voltage is applied, and change the longitudinal dimension thereof. The plate-like member 24 remains warped even when the piezoelectric actuators 43 and 44 expand and contract, and therefore warps as the piezoelectric actuators 43 and 44 expand and contract. The plate-like member 24 is bent and deformed by applying a voltage to the piezoelectric actuators 43 and 44. When the phase of the voltage applied to the piezoelectric actuators 43 and 44 changes, the direction of warp deformation of the plate-like member 24 changes. The plate-like member 24 and the piezoelectric actuators 43 and 44 form a flat strip-shaped second unimorph element that is displaced by generating vibration when a driving voltage is applied to the piezoelectric actuators 43 and 44.
 板状部材27に貼り付けられた圧電アクチュエータ51は、駆動電圧が印加されると伸縮し、その長手方向の寸法を変化する。板状部材27は、圧電アクチュエータ51が伸縮しても寸法はそのままであるため、圧電アクチュエータ51の伸縮に伴って反りを発生する。板状部材27は、圧電アクチュエータ51へ電圧を印加することにより、屈曲変形する。圧電アクチュエータ51へ印加される電圧の位相が変化すると、板状部材27の反り変形の向きが変動する。板状部材27および圧電アクチュエータ51は、圧電アクチュエータ51への駆動電圧の印加により振動を発生して変位する、平板短冊状の第3のユニモルフ素子を形成している。 The piezoelectric actuator 51 affixed to the plate member 27 expands and contracts when a driving voltage is applied, and changes its longitudinal dimension. The plate-like member 27 remains warped even when the piezoelectric actuator 51 expands and contracts, and therefore warps as the piezoelectric actuator 51 expands and contracts. The plate member 27 is bent and deformed by applying a voltage to the piezoelectric actuator 51. When the phase of the voltage applied to the piezoelectric actuator 51 changes, the direction of warp deformation of the plate-like member 27 changes. The plate-like member 27 and the piezoelectric actuator 51 form a plate-shaped strip-shaped third unimorph element that generates vibration and is displaced by application of a drive voltage to the piezoelectric actuator 51.
 板状部材28に貼り付けられた圧電アクチュエータ52は、駆動電圧が印加されると伸縮し、その長手方向の寸法を変化する。板状部材28は、圧電アクチュエータ52が伸縮しても寸法はそのままであるため、圧電アクチュエータ52の伸縮に伴って反りを発生する。板状部材28は、圧電アクチュエータ52へ電圧を印加することにより、屈曲変形する。圧電アクチュエータ52へ印加される電圧の位相が変化すると、板状部材28の反り変形の向きが変動する。板状部材28および圧電アクチュエータ52は、圧電アクチュエータ52への駆動電圧の印加により振動を発生して変位する、平板短冊状の第4のユニモルフ素子を形成している。 The piezoelectric actuator 52 affixed to the plate member 28 expands and contracts when a driving voltage is applied, and changes its longitudinal dimension. The plate-like member 28 remains warped even when the piezoelectric actuator 52 expands and contracts, and therefore warps as the piezoelectric actuator 52 expands and contracts. The plate-like member 28 is bent and deformed by applying a voltage to the piezoelectric actuator 52. When the phase of the voltage applied to the piezoelectric actuator 52 changes, the direction of warp deformation of the plate-like member 28 changes. The plate-like member 28 and the piezoelectric actuator 52 form a flat strip-shaped fourth unimorph element that generates vibration and is displaced by application of a driving voltage to the piezoelectric actuator 52.
 図2は、実施の形態1の光偏向器1における支持部20の振動モードを示す模式図である。図2には、図1に示す光偏向器1の各構成に加えて、第一の圧電アクチュエータ40および第二の圧電アクチュエータ50に電圧が印加されたときに発生する板状部材23,24,27,28の振動の波形63,64,67,68が図示されている。なお図2では、圧電アクチュエータ41~44,51,52は、簡略化のため図示を省略されている。 FIG. 2 is a schematic diagram showing a vibration mode of the support portion 20 in the optical deflector 1 of the first embodiment. 2 includes plate members 23, 24, which are generated when a voltage is applied to the first piezoelectric actuator 40 and the second piezoelectric actuator 50, in addition to the components of the optical deflector 1 shown in FIG. Waveforms 63, 64, 67 and 68 of vibrations 27 and 28 are shown. In FIG. 2, the piezoelectric actuators 41 to 44, 51, and 52 are not shown for simplicity.
 図2に示すように、トーションバー30が接続されている板状部材23,24は、波型の波形63,64でそれぞれ振動する。板状部材23,24により構成されている第一の平行部22は、2次ベンディングモードで駆動振動する。圧電アクチュエータ41~44は、板状部材23,24を2次のベンディングモードで駆動させるように、配置されている。一方、トーションバー30が接続されていない板状部材27,28は、山型の波形67,68でそれぞれ振動する。板状部材27,28により構成されている第二の平行部26は、1次ベンディングモードで駆動振動する。圧電アクチュエータ51,52は、板状部材27,28を2次のベンディングモードで駆動させるように、配置されている。 As shown in FIG. 2, the plate- like members 23 and 24 to which the torsion bar 30 is connected vibrate with corrugated waveforms 63 and 64, respectively. The first parallel portion 22 constituted by the plate- like members 23 and 24 is driven to vibrate in the secondary bending mode. The piezoelectric actuators 41 to 44 are arranged so as to drive the plate- like members 23 and 24 in the secondary bending mode. On the other hand, the plate- like members 27 and 28 to which the torsion bar 30 is not connected vibrate with mountain-shaped waveforms 67 and 68, respectively. The second parallel portion 26 constituted by the plate- like members 27 and 28 is driven to vibrate in the primary bending mode. The piezoelectric actuators 51 and 52 are arranged so as to drive the plate- like members 27 and 28 in the secondary bending mode.
 一対の第一の平行部22は、互いに同一の位相で振動する。一対の第二の平行部26は、互いに逆位相で振動する。トーションバー30が接続されている第一の平行部22と、トーションバー30が接続されていない第二の平行部26とは、同じ駆動周波数で振動する。第二の平行部26は、第一の平行部22の2次ベンディングモードの駆動振動に合わせ、1次ベンディングモードで駆動振動する。なお、実施の形態1の光偏向器1では第一の平行部22と第二の平行部26とが同じ駆動周波数で振動するように構成されているが、第一の平行部22と第二の平行部26とが異なる駆動周波数で振動するように構成されていてもよい。この場合、第一の平行部22と第二の平行部26との駆動周波数の比は、例えば1:2、16:9などとする。 The pair of first parallel portions 22 vibrate with the same phase. The pair of second parallel portions 26 vibrate in mutually opposite phases. The first parallel part 22 to which the torsion bar 30 is connected and the second parallel part 26 to which the torsion bar 30 is not connected vibrate at the same drive frequency. The second parallel portion 26 vibrates in the primary bending mode in accordance with the secondary bending mode driving vibration of the first parallel portion 22. In the optical deflector 1 of the first embodiment, the first parallel portion 22 and the second parallel portion 26 are configured to vibrate at the same drive frequency. However, the first parallel portion 22 and the second parallel portion 26 are configured to vibrate. The parallel part 26 may be configured to vibrate at a different driving frequency. In this case, the drive frequency ratio between the first parallel portion 22 and the second parallel portion 26 is, for example, 1: 2, 16: 9, or the like.
 第一の平行部22(板状部材23,24)が2次のベンディングモードで振動することにより、トーションバー30に捩り運動が発生する。トーションバー30の捩り運動によって、可動板10は、図2中の白抜き矢印で示す第1軸Ax回りの回転運動を行なう。本実施の形態の光偏向器1は、板状部材23および板状部材23を駆動させる圧電アクチュエータ41,42を有している第1のユニモルフ素子と、板状部材24および板状部材24を駆動させる圧電アクチュエータ43,44を有している第2のユニモルフ素子とを備えており、第1および第2のユニモルフ素子は、可動板10を第1軸Ax回りに回転振動させる。 The first parallel portion 22 (plate-like members 23 and 24) vibrates in the secondary bending mode, whereby a torsional motion is generated in the torsion bar 30. Due to the torsional motion of the torsion bar 30, the movable plate 10 performs a rotational motion around the first axis Ax indicated by the white arrow in FIG. The optical deflector 1 according to the present embodiment includes a plate-like member 23 and a first unimorph element having piezoelectric actuators 41 and 42 that drive the plate-like member 23, a plate-like member 24, and the plate-like member 24. And a second unimorph element having piezoelectric actuators 43 and 44 to be driven. The first and second unimorph elements rotate and oscillate the movable plate 10 about the first axis Ax.
 板状部材23,24の2次のベンディングモードの変位を拡大するために、第3および第4のユニモルフ素子が設けられている。本実施の形態の光偏向器1は、板状部材27および板状部材27を駆動させる圧電アクチュエータ51を有している第3のユニモルフ素子と、板状部材28および板状部材28を駆動させる圧電アクチュエータ52を有している第4のユニモルフ素子とを備えている。圧電アクチュエータ51,52は、板状部材23,24を2次のベンディングモードで振動させる周波数で板状部材27,28が1次のベンディングモードで振動するように、その形状、寸法および配置が設定されている。 In order to increase the displacement of the second bending mode of the plate- like members 23 and 24, third and fourth unimorph elements are provided. The optical deflector 1 of the present embodiment drives the plate member 27 and the third unimorph element having the piezoelectric actuator 51 that drives the plate member 27, the plate member 28, and the plate member 28. And a fourth unimorph element having a piezoelectric actuator 52. The piezoelectric actuators 51 and 52 are set in shape, size and arrangement so that the plate- like members 27 and 28 vibrate in the primary bending mode at a frequency at which the plate- like members 23 and 24 vibrate in the secondary bending mode. Has been.
 板状部材27,28が、2次のベンディングモードで駆動振動する板状部材23,24と同じ駆動周波数で、1次のベンディングモードで駆動振動することにより、板状部材23,24の両端が厚み方向に変位する。そのため、板状部材23,24の変位量が増加する。板状部材27,28が互いに逆位相で振動することにより、板状部材27,28の各々に連結されている板状部材23,24の両端は、互いに厚み方向に逆向きに変位する。板状部材27に連結されている板状部材27,28の端部が上向きに変位するとき、板状部材28に連結されている板状部材27,28の端部は下向きに変位する。したがって、トーションバー30により大きな捩り運動を起こすことができる。その結果、可動板10の駆動範囲が大きくなり、反射面11の回転運動の角度を大きくすることができる。 The plate- like members 27 and 28 are driven and vibrated in the primary bending mode at the same drive frequency as the plate- like members 23 and 24 that are driven and vibrated in the secondary bending mode. Displaces in the thickness direction. Therefore, the displacement amount of the plate- like members 23 and 24 increases. When the plate- like members 27 and 28 vibrate in mutually opposite phases, both ends of the plate- like members 23 and 24 connected to the plate- like members 27 and 28 are displaced in opposite directions in the thickness direction. When the end portions of the plate members 27 and 28 connected to the plate member 27 are displaced upward, the end portions of the plate members 27 and 28 connected to the plate member 28 are displaced downward. Therefore, a large torsional motion can be caused by the torsion bar 30. As a result, the driving range of the movable plate 10 is increased, and the angle of the rotational movement of the reflecting surface 11 can be increased.
 図3は、従来の光偏向器による回転駆動動作時の可動板を模式的に示す側面図である。図3に示す従来の光偏向器は、図1,2に示す本実施の形態の光偏向器1と比較して、第二の圧電アクチュエータ50を備えていない点で異なっているものとする。図3には、従来の光偏向器を、図1中の右側から見た側面図が図示されており、そのため図3には、板状部材24に取り付けられた圧電アクチュエータ43,44、および、一部が板状部材24によって遮られた可動板10が図示されている。 FIG. 3 is a side view schematically showing a movable plate during a rotational driving operation by a conventional optical deflector. The conventional optical deflector shown in FIG. 3 is different from the optical deflector 1 of the present embodiment shown in FIGS. 1 and 2 in that the second piezoelectric actuator 50 is not provided. FIG. 3 shows a side view of a conventional optical deflector as viewed from the right side in FIG. 1, and in FIG. 3, piezoelectric actuators 43 and 44 attached to the plate-like member 24, and The movable plate 10 partially blocked by the plate-like member 24 is shown.
 図3を参照して、圧電アクチュエータ44と板状部材24とはユニモルフ部Uaを形成しており、圧電アクチュエータ43と板状部材24とはユニモルフ部Ubを形成している。 Referring to FIG. 3, the piezoelectric actuator 44 and the plate member 24 form a unimorph portion Ua, and the piezoelectric actuator 43 and the plate member 24 form a unimorph portion Ub.
 圧電アクチュエータ43に対して、その長手方向(Y軸方向)に伸長させる駆動電圧を印加するとともに、圧電アクチュエータ44に対して、圧電アクチュエータ43に印加する駆動電圧と逆位相の駆動電圧を印加して、その長手方向に収縮させる。このとき、ユニモルフ部Uaにおいて、板状部材24は下向きに凸に湾曲するとともに、ユニモルフ部Ubにおいて、板状部材24は上向きに凸に湾曲する。圧電アクチュエータ43,44に駆動電圧を印加することで、板状部材24が曲げ変形を生じる。 A drive voltage that extends in the longitudinal direction (Y-axis direction) is applied to the piezoelectric actuator 43, and a drive voltage that is opposite in phase to the drive voltage applied to the piezoelectric actuator 43 is applied to the piezoelectric actuator 44. , Contract in the longitudinal direction. At this time, in the unimorph portion Ua, the plate-like member 24 is curved downward and convex, and in the unimorph portion Ub, the plate-like member 24 is curved upward and convex. By applying a driving voltage to the piezoelectric actuators 43 and 44, the plate-like member 24 is bent and deformed.
 圧電アクチュエータ41,42に対しても、圧電アクチュエータ43,44のそれぞれと同位相の駆動電圧を印加することにより、圧電アクチュエータ42の設置位置において板状部材23は下向きに凸に湾曲し、圧電アクチュエータ41の設置位置において板状部材23は上向きに凸に湾曲する。これにより、トーションバー30を介して可動板10に対して第1軸Ax回りに回転トルクが与えられ、可動板10は第1軸Axを中心として回転方向Dに傾斜する。 By applying a drive voltage having the same phase as that of each of the piezoelectric actuators 43 and 44 to the piezoelectric actuators 41 and 42, the plate-like member 23 is curved downward and convex at the installation position of the piezoelectric actuator 42. At the installation position 41, the plate-like member 23 is curved upward and convex. Thereby, a rotational torque is applied around the first axis Ax to the movable plate 10 via the torsion bar 30, and the movable plate 10 is inclined in the rotation direction D around the first axis Ax.
 一方、圧電アクチュエータ42,44に対して、その長手方向(Y軸方向)に伸長させる駆動電圧を印加するとともに、圧電アクチュエータ41,43に対して、圧電アクチュエータ42,44に印加する駆動電圧と逆位相の駆動電圧を印加して、その長手方向に収縮させると、可動板10は第1軸Axを中心として図3に示す回転方向Dと反対方向に傾斜する。 On the other hand, a drive voltage that extends in the longitudinal direction (Y-axis direction) is applied to the piezoelectric actuators 42 and 44, and the drive voltage applied to the piezoelectric actuators 42 and 44 is opposite to the piezoelectric actuators 41 and 43. When a phase driving voltage is applied and contracted in the longitudinal direction, the movable plate 10 is inclined in the direction opposite to the rotational direction D shown in FIG. 3 with the first axis Ax as the center.
 圧電アクチュエータ41~44に交流電圧を印加することにより、可動板10は、第1軸Axを中心に所定の角度範囲で揺動振動を行なう。従来の光偏向器が揺動振動動作を行なう際の角度範囲の最大値を、図3中に揺動角度βとして示す。 When an AC voltage is applied to the piezoelectric actuators 41 to 44, the movable plate 10 oscillates in a predetermined angular range around the first axis Ax. The maximum value of the angle range when the conventional optical deflector performs the swing vibration operation is shown as a swing angle β in FIG.
 図4は、従来の光偏向器による回転駆動動作時の可動板の変位量を示すグラフである。図4には、有限要素法(FEM)を用いた可動板10の縁部の、図1,2に示すX軸およびY軸の両方に直交するZ軸方向における変位量のシミュレーション結果を示すグラフが図示されている。図3を参照して説明した従来の光偏向器において、第一の平行部22(板状部材23,24)のみを振動させ、第二の平行部26(板状部材27,28)は振動させない場合の、可動板10の縁部の変位量を計算した。なお、可動板10の直径は800μmとし、第一の平行部22の駆動周波数は60kHzとした。第一の平行部22のみを励振させた場合の、可動板10の縁部の最大変位量は38μmであり、変位角に換算した場合約±5°であった。 FIG. 4 is a graph showing the amount of displacement of the movable plate during the rotational driving operation by the conventional optical deflector. FIG. 4 is a graph showing a simulation result of the displacement amount in the Z-axis direction perpendicular to both the X-axis and the Y-axis shown in FIGS. 1 and 2 at the edge of the movable plate 10 using the finite element method (FEM). Is shown. In the conventional optical deflector described with reference to FIG. 3, only the first parallel portion 22 (plate-like members 23 and 24) is vibrated, and the second parallel portion 26 (plate-like members 27 and 28) is vibrated. The amount of displacement of the edge of the movable plate 10 when not being used was calculated. The diameter of the movable plate 10 was 800 μm, and the driving frequency of the first parallel portion 22 was 60 kHz. When only the first parallel portion 22 was excited, the maximum displacement amount of the edge portion of the movable plate 10 was 38 μm, and was about ± 5 ° when converted to a displacement angle.
 図5は、実施の形態1の光偏向器1による回転駆動動作時の可動板を模式的に示す側面図である。図5には、光偏向器1を図1中の右側から見た側面図が図示されており、そのため図5には、板状部材24に取り付けられた圧電アクチュエータ43,44、および、一部が板状部材24によって遮られた可動板10が図示されている。圧電アクチュエータ44と板状部材24とはユニモルフ部Uaを形成しており、圧電アクチュエータ43と板状部材24とはユニモルフ部Ubを形成している。 FIG. 5 is a side view schematically showing the movable plate during the rotational driving operation by the optical deflector 1 of the first embodiment. FIG. 5 shows a side view of the optical deflector 1 as viewed from the right side in FIG. 1. Therefore, FIG. 5 shows the piezoelectric actuators 43 and 44 attached to the plate-like member 24 and a part thereof. The movable plate 10 is illustrated as being blocked by the plate-like member 24. The piezoelectric actuator 44 and the plate member 24 form a unimorph portion Ua, and the piezoelectric actuator 43 and the plate member 24 form a unimorph portion Ub.
 実施の形態1の光偏向器1の圧電アクチュエータ41~44には、上述した従来の光偏向器と同様に、駆動電圧が印加される。加えて、実施の形態1の光偏向器1においては、圧電アクチュエータ51に対してその長手方向(X軸方向)に収縮させる駆動電圧を印加するとともに、圧電アクチュエータ52に対して圧電アクチュエータ51に印加する駆動電圧と逆位相の駆動電圧を印加してその長手方向に伸長させる。このとき板状部材27は下向きに凸に湾曲し、板状部材28は上向きに凸に湾曲する。 As with the conventional optical deflector described above, a drive voltage is applied to the piezoelectric actuators 41 to 44 of the optical deflector 1 of the first embodiment. In addition, in the optical deflector 1 according to the first embodiment, a driving voltage for contracting in the longitudinal direction (X-axis direction) is applied to the piezoelectric actuator 51 and applied to the piezoelectric actuator 51 with respect to the piezoelectric actuator 52. A drive voltage having an opposite phase to the drive voltage to be applied is applied to extend in the longitudinal direction. At this time, the plate-like member 27 is bent convexly downward, and the plate-like member 28 is curved convexly upward.
 圧電アクチュエータ51、52に駆動電圧を印加することで、板状部材27,28が曲げ変形を生じる。下向きに凸に湾曲している板状部材27の両端は、上向きに変位する。板状部材27の両端に連結されている板状部材23,24の端部もまた、上向きに変位する。上向きに凸に湾曲している板状部材28の両端は、下向きに変位する。板状部材28の両端に連結されている板状部材23,24の端部もまた、下向きに変位する。 When a driving voltage is applied to the piezoelectric actuators 51 and 52, the plate- like members 27 and 28 are bent. Both ends of the plate-like member 27 that is convexly curved downward are displaced upward. The ends of the plate members 23 and 24 connected to both ends of the plate member 27 are also displaced upward. Both ends of the plate-like member 28 that is convexly curved upward are displaced downward. The ends of the plate members 23 and 24 connected to both ends of the plate member 28 are also displaced downward.
 圧電アクチュエータ41~44および圧電アクチュエータ51,52に交流電圧を印加することにより、可動板10は、第1軸Axを中心に所定の角度範囲で揺動振動を行なう。図5に示すように、板状部材27,28の振動の影響により、ユニモルフ部Uaは第1軸Axに対して図中下方に変位しており、ユニモルフ部Ubは第1軸Axに対して図中上方に変位している。そのため、図5中に揺動角度αとして示す、実施の形態1の光偏向器1が揺動振動動作を行なう際の角度範囲の最大値は、図3中に示す揺動角度βと比較して大きくなっている。その結果、可動板10に形成された反射面11の回転角度を大きくすることができる。 When an AC voltage is applied to the piezoelectric actuators 41 to 44 and the piezoelectric actuators 51 and 52, the movable plate 10 oscillates within a predetermined angular range around the first axis Ax. As shown in FIG. 5, the unimorph portion Ua is displaced downward in the figure with respect to the first axis Ax due to the influence of vibration of the plate- like members 27 and 28, and the unimorph portion Ub is relative to the first axis Ax. It is displaced upward in the figure. Therefore, the maximum value of the angular range when the optical deflector 1 of the first embodiment performs the swing vibration operation, which is shown as the swing angle α in FIG. 5, is compared with the swing angle β shown in FIG. Is getting bigger. As a result, the rotation angle of the reflecting surface 11 formed on the movable plate 10 can be increased.
 図6は、実施の形態1の光偏向器1による回転駆動動作時の可動板の変位量を示すグラフである。図6には、有限要素法(FEM)を用いた可動板10の縁部のZ軸方向における変位量のシミュレーション結果を示すグラフが図示されている。実施の形態1の光偏向器1において、第一の平行部22(板状部材23,24)を2次ベンディングモードで振動させるとともに、第二の平行部26(板状部材27,28)を1次ベンディングモードで振動させる場合の、可動板10の縁部の変位量を計算した。なお、可動板10の直径は800μmとし、第一の平行部22および第二の平行部26の駆動周波数は同じ60kHzとした。第一の平行部22と第二の平行部26とを共に励振させた場合の、可動板10の縁部の最大変位量は148μmであり、変位角に換算した場合約±21°であった。 FIG. 6 is a graph showing the amount of displacement of the movable plate during the rotational driving operation by the optical deflector 1 of the first embodiment. FIG. 6 is a graph showing a simulation result of the displacement amount in the Z-axis direction of the edge portion of the movable plate 10 using the finite element method (FEM). In the optical deflector 1 of the first embodiment, the first parallel portion 22 (plate-like members 23 and 24) is vibrated in the secondary bending mode, and the second parallel portion 26 (plate-like members 27 and 28) is vibrated. The amount of displacement of the edge of the movable plate 10 when vibrating in the primary bending mode was calculated. The diameter of the movable plate 10 was 800 μm, and the drive frequencies of the first parallel portion 22 and the second parallel portion 26 were the same 60 kHz. When the first parallel portion 22 and the second parallel portion 26 are excited together, the maximum displacement amount of the edge portion of the movable plate 10 is 148 μm, which is about ± 21 ° when converted to a displacement angle. .
 したがって、矩形枠形状の支持部20を構成する第一の平行部22と第二の平行部26とのうち、トーションバー30の連結されている第一の平行部22を2次ベンディングモードで振動させ、第二の平行部26を第一の平行部22と同じ駆動周波数で1次ベンディングモードで振動させることにより、可動板10の反射面の駆動角を大きくすることができることが示された。 Therefore, the first parallel portion 22 connected to the torsion bar 30 among the first parallel portion 22 and the second parallel portion 26 constituting the rectangular frame-shaped support portion 20 vibrates in the secondary bending mode. It was shown that the drive angle of the reflecting surface of the movable plate 10 can be increased by vibrating the second parallel portion 26 in the primary bending mode at the same drive frequency as the first parallel portion 22.
 (実施の形態2)
 図7は、実施の形態2の光偏向器1の構成の概略を示す平面図である。実施の形態2の光偏向器1は、圧電アクチュエータ41~44,51,52の構成において実施の形態1と異なっている。
(Embodiment 2)
FIG. 7 is a plan view schematically showing the configuration of the optical deflector 1 according to the second embodiment. The optical deflector 1 according to the second embodiment differs from the first embodiment in the configuration of the piezoelectric actuators 41 to 44, 51, and 52.
 図7を参照して、圧電アクチュエータ51,52は、その両方の端部が支持部20の外縁部の近傍にまで延在している。圧電アクチュエータ41の一方の端部は、板状部材23にトーションバー31が連結する部分の近傍に配置されており、他方の端部は圧電アクチュエータ51に対向している。圧電アクチュエータ42の一方の端部は、板状部材23にトーションバー31が連結する部分の近傍に配置されており、他方の端部は圧電アクチュエータ52に対向している。圧電アクチュエータ43の一方の端部は、板状部材24にトーションバー32が連結する部分の近傍に配置されており、他方の端部は圧電アクチュエータ51に対向している。圧電アクチュエータ44の一方の端部は、板状部材24にトーションバー32が連結する部分の近傍に配置されており、他方の端部は圧電アクチュエータ52に対向している。 Referring to FIG. 7, both ends of the piezoelectric actuators 51 and 52 extend to the vicinity of the outer edge portion of the support portion 20. One end of the piezoelectric actuator 41 is disposed in the vicinity of a portion where the torsion bar 31 is connected to the plate-like member 23, and the other end faces the piezoelectric actuator 51. One end of the piezoelectric actuator 42 is disposed in the vicinity of a portion where the torsion bar 31 is connected to the plate-like member 23, and the other end faces the piezoelectric actuator 52. One end of the piezoelectric actuator 43 is disposed in the vicinity of a portion where the torsion bar 32 is connected to the plate-like member 24, and the other end faces the piezoelectric actuator 51. One end of the piezoelectric actuator 44 is disposed in the vicinity of the portion where the torsion bar 32 is connected to the plate-like member 24, and the other end faces the piezoelectric actuator 52.
 このように配置された圧電アクチュエータ41~44,51,52を備えている実施の形態2の光偏向器1においても、可動板10の揺動角度を大きくでき、その結果可動板10の反射面の駆動角を大きくできる効果を、実施の形態1と同様に得ることができる。 Also in the optical deflector 1 of the second embodiment provided with the piezoelectric actuators 41 to 44, 51, 52 arranged in this way, the swing angle of the movable plate 10 can be increased, and as a result, the reflecting surface of the movable plate 10 The effect of increasing the drive angle can be obtained as in the first embodiment.
 以上のように本発明の実施の形態について説明を行なったが、今回開示された実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。この発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。 As described above, the embodiment of the present invention has been described. However, it should be considered that the embodiment disclosed this time is illustrative and not restrictive in all respects. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 本発明の光偏向器は、画像表示装置、画像形成用の光走査装置、またはセンシング用の光走査装置に用いることができる。 The optical deflector of the present invention can be used in an image display device, an optical scanning device for image formation, or an optical scanning device for sensing.
 1 光偏向器、2 空隙、10 可動板、11 反射面、12 縁部、20 支持部、22 第一の平行部、23,24,27,28 板状部材、26 第二の平行部、30,31,32 トーションバー、33 一端、34 他端、40 第一の圧電アクチュエータ、41~44,51,52 圧電アクチュエータ、50 第二の圧電アクチュエータ、63,64,67,68 波形、Ax 第1軸、Ay 第2軸、D 回転方向、Ua,Ub ユニモルフ部。 DESCRIPTION OF SYMBOLS 1 Optical deflector, 2 gap | interval, 10 movable plate, 11 reflective surface, 12 edge part, 20 support part, 22 1st parallel part, 23, 24, 27, 28 plate-shaped member, 26 2nd parallel part, 30 , 31, 32, torsion bar, 33 one end, 34 other end, 40 first piezoelectric actuator, 41-44, 51, 52 piezoelectric actuator, 50 second piezoelectric actuator, 63, 64, 67, 68 waveforms, Ax first Axis, Ay second axis, D rotation direction, Ua, Ub unimorph part.

Claims (3)

  1.  光を反射可能な反射面を有する可動板と、
     前記可動板を取り囲む矩形枠形状の支持部と、
     前記可動板に連結された一端、および前記支持部に連結された他端を有し、前記可動板の縁部から互いに反対方向に延びる一対のトーションバーとを備え、
     前記支持部は、互いに平行に配置された一対の第一の平行部と、前記第一の平行部に対し直交するとともに互いに平行に配置された一対の第二の平行部とを有し、
     前記トーションバーの前記他端は、前記第一の平行部に連結されており、
     さらに、前記第一の平行部に設けられ、前記第一の平行部を振動させる第一の圧電アクチュエータと、
     前記第二の平行部に設けられ、前記第二の平行部を振動させる第二の圧電アクチュエータとを備える、光偏向器。
    A movable plate having a reflective surface capable of reflecting light;
    A rectangular frame-shaped support portion surrounding the movable plate;
    A pair of torsion bars having one end connected to the movable plate and the other end connected to the support, and extending in opposite directions from the edge of the movable plate;
    The support part includes a pair of first parallel parts arranged in parallel to each other and a pair of second parallel parts orthogonal to the first parallel part and arranged in parallel to each other,
    The other end of the torsion bar is connected to the first parallel portion;
    Furthermore, a first piezoelectric actuator that is provided in the first parallel portion and vibrates the first parallel portion;
    An optical deflector comprising: a second piezoelectric actuator provided on the second parallel portion and configured to vibrate the second parallel portion.
  2.  前記第一の平行部は、2次ベンディングモードで駆動振動し、
     前記第二の平行部は、1次ベンディングモードで駆動振動する、請求項1に記載の光偏向器。
    The first parallel part is driven to vibrate in a secondary bending mode,
    The optical deflector according to claim 1, wherein the second parallel portion is driven to vibrate in a primary bending mode.
  3.  一対の前記第二の平行部は、互いに逆位相で振動する、請求項1または2に記載の光偏向器。 The optical deflector according to claim 1 or 2, wherein the pair of second parallel portions vibrate in mutually opposite phases.
PCT/JP2014/069903 2013-09-17 2014-07-29 Optical deflector WO2015040956A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-191861 2013-09-17
JP2013191861 2013-09-17

Publications (1)

Publication Number Publication Date
WO2015040956A1 true WO2015040956A1 (en) 2015-03-26

Family

ID=52688614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069903 WO2015040956A1 (en) 2013-09-17 2014-07-29 Optical deflector

Country Status (1)

Country Link
WO (1) WO2015040956A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007312465A (en) * 2006-05-16 2007-11-29 Omron Corp Drive unit, optical scanning device, and substance information detection device
JP2008257226A (en) * 2007-03-15 2008-10-23 Ricoh Co Ltd Optical deflector and optical device
JP2009003165A (en) * 2007-06-21 2009-01-08 Konica Minolta Opto Inc Micro scanner and optical scanning apparatus with the same
JP2010134208A (en) * 2008-12-05 2010-06-17 Funai Electric Co Ltd Vibrating mirror element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007312465A (en) * 2006-05-16 2007-11-29 Omron Corp Drive unit, optical scanning device, and substance information detection device
JP2008257226A (en) * 2007-03-15 2008-10-23 Ricoh Co Ltd Optical deflector and optical device
JP2009003165A (en) * 2007-06-21 2009-01-08 Konica Minolta Opto Inc Micro scanner and optical scanning apparatus with the same
JP2010134208A (en) * 2008-12-05 2010-06-17 Funai Electric Co Ltd Vibrating mirror element

Similar Documents

Publication Publication Date Title
JP5659056B2 (en) Drive device for optical deflector
JP5229704B2 (en) Optical scanning device
JP5055832B2 (en) DRIVE DEVICE, OPTICAL SCANNING DEVICE, AND OBJECT INFORMATION DETECTING DEVICE
JP6205587B2 (en) Optical reflection element
JP5157857B2 (en) Vibration mirror element
JP5614167B2 (en) Optical deflector, optical scanning device, image forming apparatus, and image projecting apparatus
JP6220561B2 (en) Optical deflector
JP5347473B2 (en) Vibration mirror element
JP6024269B2 (en) Optical scanning device
WO2008038649A1 (en) Optical scanning device
JP5853933B2 (en) Optical scanning apparatus and manufacturing method
JP2010244012A (en) Optical scanner and image forming apparatus
JP5915446B2 (en) Optical scanning device
JP2012198298A (en) Optical deflection device, and optical scanning device, image projection device, image reading device and image forming device provided with the same
JP5098319B2 (en) Optical scanner device
JP4983648B2 (en) Optical scanning device
JP2008083122A (en) Movable structure and optical element provided with the same
JP2011069954A (en) Optical scanner
JP2013160891A (en) Oscillation mirror element and electronic apparatus with projector function
JP6648443B2 (en) Optical deflector, two-dimensional image display device, optical scanning device, and image forming device
WO2015040956A1 (en) Optical deflector
JP2008086067A (en) Movable structural body and optical element equipped with the same
JP6003529B2 (en) Piezoelectric light deflector, optical scanning device, image forming device, and image projection device
JP4976063B2 (en) Micro oscillating device and optical element
JP4993956B2 (en) Micro oscillating device and optical element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14845623

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14845623

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP