WO2015040902A1 - Power semiconductor module and power converter using same - Google Patents

Power semiconductor module and power converter using same Download PDF

Info

Publication number
WO2015040902A1
WO2015040902A1 PCT/JP2014/065408 JP2014065408W WO2015040902A1 WO 2015040902 A1 WO2015040902 A1 WO 2015040902A1 JP 2014065408 W JP2014065408 W JP 2014065408W WO 2015040902 A1 WO2015040902 A1 WO 2015040902A1
Authority
WO
WIPO (PCT)
Prior art keywords
fin
power semiconductor
fins
power
semiconductor module
Prior art date
Application number
PCT/JP2014/065408
Other languages
French (fr)
Japanese (ja)
Inventor
健 徳山
敬介 堀内
欣也 中津
俊也 佐藤
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2015040902A1 publication Critical patent/WO2015040902A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections

Definitions

  • the present invention relates to a power semiconductor module for converting a direct current into an alternating current and a power conversion device using the same, and more particularly to a power semiconductor module for supplying an alternating current to a drive motor of a hybrid vehicle or an electric vehicle and the use thereof.
  • the present invention relates to a power conversion apparatus.
  • the double-sided cooling type power semiconductor module sandwiches both main surfaces of the power semiconductor element with plate-shaped conductors, and the surface of the plate-shaped conductor opposite to the surface facing the main surface of the power semiconductor element is thermally connected to the cooling medium. Cooled down.
  • Patent Document 1 discloses a power semiconductor module in which both main surfaces of a power semiconductor element are sandwiched between plate-like lead frames to form a circuit body, and the circuit body is housed in a case. This case forms a pin fin for cooling the circuit body.
  • the fins may be deformed or broken during transportation of the power semiconductor module or assembly of the power conversion device to a cooling water channel or the like, thereby reducing the productivity of the power semiconductor module. is there.
  • An object of the present invention is to achieve both improvement in cooling performance and productivity in a power module.
  • a power semiconductor module includes a power semiconductor element that converts a direct current into an alternating current, and a case that forms a storage space for the power semiconductor element.
  • the case includes a first heat radiator, and the storage.
  • a second radiator that opposes the first radiator with a space interposed therebetween, wherein the first radiator and the second radiator include a plurality of first fins and a width of a cross section of the first fin.
  • FIG. 3 is a circuit configuration diagram of an inverter circuit unit 140.
  • FIG. 1 is an external perspective view of a power conversion device 200.
  • FIG. 2 is an exploded perspective view of a power conversion device 200.
  • FIG. 4 is an exploded perspective view of a housing 400.
  • FIG. It is sectional drawing of the housing
  • 3 is an exploded perspective view of a power circuit body 380.
  • FIG. It is the external appearance perspective view which looked at the housing
  • FIG. 6 is a cross-sectional view showing a process of assembling the power semiconductor modules 300a to 300c to the flow path forming body 400.
  • FIG. 5 is a cross-sectional view showing a process of assembling the bus bar module 700 to the flow path forming body 410 as seen from the direction of the arrow of the plane B of FIG. It is an enlarged view of the 1st heat radiator 354a of the surface side in which the fin was formed. It is the permeation
  • FIG. 6 is a front view of the power semiconductor module 300a and the adjustment member 407 in a state where the power semiconductor module 300a is incorporated in the flow path forming body 410. It is an enlarged view of the area
  • FIG. 1 and FIG. 2 show a control configuration and a circuit configuration when applied to a hybrid vehicle. It explains using.
  • FIG. 1 is a diagram showing a control block of a hybrid vehicle, and an internal combustion engine EGN and a motor generator MG are power sources that generate a running torque of the vehicle.
  • Motor generator MG not only generates rotational torque, but also has a function of converting mechanical energy (rotational force) applied to motor generator MG from the outside into electric power.
  • the motor generator MG is, for example, a synchronous motor / generator or an induction motor / generator, and operates as a motor or a generator depending on the operation method as described above.
  • the output side of the internal combustion engine EGN is transmitted to the motor generator MG via the power distribution mechanism TSM, and the rotation torque from the power distribution mechanism TSM or the rotation torque generated by the motor generator MG is transmitted to the wheels via the transmission TM and the differential gear DEF. Is transmitted to.
  • the inverter circuit unit 140 is electrically connected to the battery 136 via a DC connector 138, and power is exchanged between the battery 136 and the inverter circuit unit 140.
  • inverter circuit section 140 When motor generator MG is operated as an electric motor, inverter circuit section 140 generates AC power based on DC power supplied from battery 136 via DC connector 138 and supplies the motor generator MG via AC connector 188. To do.
  • the configuration including motor generator MG and inverter circuit unit 140 operates as an electric / power generation unit.
  • the electric / power generation unit may be operated as an electric motor or a generator depending on the operating state, or may be operated by using them properly.
  • the vehicle can be driven only by the power of the motor generator MG by operating the electric / power generation unit as an electric unit by the electric power of the battery 136.
  • the battery 136 can be charged by operating the electric / power generation unit as the power generation unit by the power of the internal combustion engine EGN or the power from the wheels to generate power.
  • the power conversion device 200 includes a capacitor module 500 for smoothing DC power supplied to the inverter circuit unit 140.
  • the power conversion device 200 includes a communication connector 21 for receiving a command from a host control device or transmitting data representing a state to the host control device.
  • a control circuit unit 172 calculates a control amount of the motor generator MG based on a command input from the connector 21.
  • a control pulse is generated based on the calculation result, and the control pulse is supplied to the driver circuit 174. Based on this control pulse, the driver circuit 174 generates a drive pulse for controlling the inverter circuit unit 140.
  • IGBT insulated gate bipolar transistor
  • the inverter circuit unit 140 outputs the power semiconductor modules 300a to 300c of the upper and lower arms composed of the IGBT 328 and the diode 156 that operate as the upper arm and the IGBT 330 and the diode 166 that operate as the lower arm, and outputs the U phase of the AC power to be output. , V phase and W phase.
  • the power semiconductor modules 300a to 300c of the upper and lower arms of each of the three phases output an alternating current from an intermediate electrode 169 that is a midpoint portion of each IGBT 328 and each IGBT 330 of the power semiconductor modules 300a to 300c.
  • AC terminal 159 it is connected to an AC bus bar which is an AC power line to motor generator MG.
  • the collector electrode 153 of the IGBT 328 in the upper arm is connected to the capacitor terminal 502 on the positive electrode side of the capacitor module 500 via the positive electrode terminal 157, and the emitter electrode of the IGBT 330 in the lower arm is connected to the capacitor terminal on the negative electrode side of the capacitor module 500 via the negative electrode terminal 158.
  • Each is electrically connected to 502.
  • control circuit unit 172 receives a control command from the host control device via the connector 21, and based on this, the upper arm or the lower arm of the power semiconductor modules 300a to 300c of each phase constituting the inverter circuit unit 140.
  • a control pulse that is a control signal for controlling the IGBT 328 and the IGBT 330 constituting the arm is generated and supplied to the driver circuit 174.
  • the driver circuit 174 supplies a drive pulse for controlling the IGBT 328 and IGBT 330 constituting the upper arm or lower arm of each phase to the IGBT 328 and IGBT 330 of each phase based on the control pulse.
  • the IGBT 328 and the IGBT 330 perform conduction or cutoff operation based on the drive pulse from the driver circuit 174, convert the DC power supplied from the battery 136 into three-phase AC power, and the converted power is supplied to the motor generator MG1.
  • the IGBT 328 includes a collector electrode 153, a signal emitter electrode 155, and a gate electrode 154.
  • the IGBT 330 includes a collector electrode 163, a signal emitter electrode 165, and a gate electrode 164.
  • a diode 156 is electrically connected between the collector electrode 153 and the emitter electrode.
  • a diode 166 is electrically connected between the collector electrode 163 and the emitter electrode.
  • MOSFET metal oxide semiconductor field effect transistor
  • IGBT is suitable when the DC voltage is relatively high
  • MOSFET is suitable when the DC voltage is relatively low.
  • the capacitor module 500 includes a plurality of positive electrode side capacitor terminals 502, a plurality of negative electrode side capacitor terminals 502, a positive electrode side power supply terminal 509, and a negative electrode side power supply terminal 508.
  • High voltage DC power from the battery 136 is supplied to the positive power supply terminal 509 and the negative power supply terminal 508 via the DC connector 138, and the plurality of positive capacitor terminals 502 and the plurality of negative capacitors on the capacitor module 500 are provided.
  • the voltage is supplied from the terminal 502 to the inverter circuit unit 140.
  • DC power converted from AC power by the inverter circuit unit 140 is supplied to the capacitor module 500 from the positive capacitor terminal 502 and the negative capacitor terminal 502, and is connected to the DC connector 138 from the positive power terminal 509 and the negative power terminal 508. Is supplied to the battery 136 and stored in the battery 136.
  • the control circuit unit 172 includes a microcomputer (hereinafter referred to as “microcomputer”) for performing arithmetic processing on the switching timing of the IGBT 328 and the IGBT 330.
  • microcomputer As input information to the microcomputer, there are a target torque value required for the motor generator MG, a current value supplied from the upper and lower arm power semiconductor module 150 to the motor generator MG, and a magnetic pole position of the rotor of the motor generator MG1.
  • the target torque value is based on a command signal output from a host controller (not shown), and the current value is detected based on a detection signal from a current sensor.
  • the magnetic pole position is detected based on a detection signal output from a rotating magnetic pole sensor (not shown) such as a resolver provided in the motor generator MG.
  • FIG. 3 is an external perspective view of the power conversion device 200.
  • the housing 400 has an opening formed on the upper surface thereof, and the opening is closed by the lid 900.
  • the DC connector 138 is a terminal that is electrically connected to the battery 136.
  • AC connector 188 is a terminal that is electrically connected to motor generator 192.
  • the DC connector 138 and the AC connector 188 are provided on the lid 900.
  • the casing 400 is fixed to the vehicle body so that the lid 900 faces the opening side for performing the wiring work of the automobile.
  • FIG. 4 is an exploded perspective view of the power conversion device 200.
  • the housing 400 accommodates the flow path forming body 410.
  • the flow path forming body 410 forms a flow path for cooling power semiconductor modules 300a to 300c described later, but also forms a flow path for cooling a capacitor element 500 described later in this embodiment.
  • the flow path forming body 410 has an opening at the bottom, and the opening 401 is closed by the lid 401.
  • the channel inlet portion 402 a and the channel outlet portion 402 b are fixed to the lid 401.
  • the terminals of the power semiconductor modules 300 a to 300 c and the terminals of the capacitor element 500 protrude from the upper surface side of the flow path forming body 410.
  • the bus bar module 700 includes a DC bus bar (not shown) connected to the DC terminals of the power semiconductor modules 300a to 300c and the terminals of the capacitor element 500, and an AC bus bar (not shown) connected to the AC terminals of the power semiconductor modules 300a to 300c. ) And an insulating resin portion for covering and integrating the DC bus bar and the AC bus bar.
  • the base unit 800 forms a storage space for storing the bus bar module 700 and is fixed to the housing 400.
  • the base portion 800 forms a first through hole 801 for passing through signal terminals 327U and 327L of power semiconductor modules 300a to 300c described later.
  • the control circuit board 175 is disposed on the surface opposite to the side where the storage space of the base portion 800 is formed, and is connected to the signal terminals 327U and 327L.
  • the base portion 800 is made of a conductive member, for example, a metal material, shields noise emitted from the power semiconductor modules 300a to 300c, and protects the control circuit board 175 from noise.
  • the base portion 800 forms a recess 802 for securing an insulation distance from the terminal of the capacitor element 500.
  • the power conversion device 200 requires cooling according to the power semiconductor modules 300a to 300c and the first layer in which the power semiconductor modules 300a to 300c and the capacitor elements 500 that require cooling while flowing large power are disposed.
  • a second hierarchy in which the bus bar module 700 that flows high power is arranged and a third hierarchy in which the control circuit board 175 that handles the low power of the control system is arranged.
  • a base unit 800 is disposed between the second layer and the third layer.
  • FIG. 5 is an exploded perspective view of the housing 400.
  • 6 is a cross-sectional view of the housing 400 as seen from the direction of the arrow on the plane AA in FIG.
  • the flow path forming body 410 is integrally formed with the housing 400.
  • the housing 400 is cooled by the flow path forming body 410, and components fixed to the housing 400, for example, the base portion 800 and the lid 401 can be cooled, and the entire power conversion device 200 can be efficiently cooled. Can do.
  • the flow path forming body 410 includes a first flow path space 411 in which the power semiconductor modules 300a to 300c are disposed, a storage space 490 that stores the capacitor element 500, and a second flow path space 412 that faces the storage space 490.
  • the second channel space 412 connects the channel inlet portion 402a and the first channel space 411. Moreover, the flow path forming body 410 forms an opening 413 connected to the first flow path space 411 on the bottom surface. The opening 413 is closed by the lid 401, so that the flow path forming body 410 and the lid 401 form a flow path for flowing the cooling refrigerant.
  • the flow path forming body 410 forms a plurality of through holes 415 connected to the first flow path space 411 in the upper surface portion.
  • the terminals of the power semiconductor modules 300 a to 300 c are extended to the outside of the flow path forming body 410 through the through holes 415.
  • the flow path forming body 410 forms an opening 414 connected to the storage space 490 on the upper surface.
  • the capacitor terminal 502 is extended to the outside of the flow path forming body 410 through the opening 414.
  • the sealing resin 501 fills the storage space 490 and seals the capacitor terminal 502.
  • FIG. 7 is an external perspective view of the power semiconductor module 300a. Since the power semiconductor modules 300a to 300c have the same configuration, the power semiconductor module 300a will be described as a representative.
  • the power semiconductor module 300a includes a power circuit body 380, which will be described later, a case 304 that houses the power circuit body 380, and an insulating mold terminal portion 600 that insulates the terminals.
  • the frame body 305 forms a side surface and a bottom surface of the case 304.
  • the first side surface 351 a forms the widest surface orthogonal to the side surface and the bottom surface of the case 304.
  • the second side surface 351b is formed on the opposite side of the first side surface 351a across the power circuit body 380, and forms the widest surface orthogonal to the side surface and the bottom surface of the case 304, similarly to the first side surface 351a.
  • the first side surface 351a Since the second side surface 351b has the same configuration and function as the first side surface 351a, the first side surface 351a will be described as a representative.
  • the fin 350 is formed on the first side surface 351a and is a cylindrical pin fin in the present embodiment.
  • the fin forming surface 352 is a surface on which the fins 350 are intensively formed on the first side surface 351a.
  • the flange 308 is formed so as to surround the insertion hole 306 (see FIG. 8) in order to pass the terminal of the power semiconductor module 300a.
  • the positioning portion 311 performs positioning when assembling with the flow path forming body 410 and is provided on the upper surface side of the flange 308.
  • the O-ring groove 312 is formed on the side surface side of the flange 308, and the power semiconductor module 300a and the flow path forming body 410 are sealed on the side surface side of the power semiconductor module 300a. That is, the O-ring groove 312 is formed so as to surround the outer periphery of the insertion port 306.
  • the terminals of the power semiconductor module 300a include a positive terminal 315D, a negative terminal 319D, an AC terminal 320D, a signal terminal 327L, and a signal terminal 327U.
  • the auxiliary mold body 601 is formed with a plurality of through holes for penetrating the positive terminal 315D, the AC terminal 320, the signal connection terminal 327L, and the signal connection terminal 327U, and electrically insulates the terminals from each other.
  • the groove 602 is formed in the auxiliary mold body 601 in order to fix the insulating material disposed between the terminals. Thereby, the insulation distance between terminals can be lengthened.
  • FIG. 8 is an exploded perspective view of the power semiconductor module 300a.
  • the power circuit body 380 includes an insulating sealing material 302 for sealing a conductor member such as a conductor plate 318 (see FIG. 9) and a power semiconductor element. Further, the heat radiation surface 321A of the conductor plate 318 and the heat radiation surface 321B of the conductor plate 319 are exposed from the insulating sealing material 302 and radiate heat transmitted from the power semiconductor element.
  • the heat radiation surface 321 ⁇ / b> A and the heat radiation surface 321 ⁇ / b> B are formed so as to overlap the fin formation surface 352 when viewed from the direction perpendicular to the fin formation surface 352.
  • the insulating materials 333a and 333b are disposed between the power circuit body 380 and the case 304, and insulate the power circuit body 380 and the case 304 from each other.
  • the case 304 has a fully closed structure except for the insertion port 306 from which the terminal protrudes.
  • the 1st heat radiating body 354a and the 2nd heat radiating body 354b may be integrally formed with the frame 305
  • the case 304 is a 1st heat radiating body which forms a part of 1st side surface 351a.
  • 354a and a second heat radiating body 354b that forms a part of the second side surface 351b are formed separately from the frame body 305, and the first heat radiating body 354a and the second heat radiating body 354b are attached to the frame 305 by FSW or They are connected by a highly waterproof joining method such as welding.
  • the case 304 is formed of a member having electrical conductivity, for example, a composite material such as Cu, Cu alloy, Cu—C, or Cu—CuO, or a composite material such as Al, Al alloy, AlSiC, or Al—C.
  • the insulating sealing material 302 can be made of, for example, a resin based on a novolak, polyfunctional, or biphenyl epoxy resin, and contains ceramics such as SiO2, Al2O3, AlN, BN, gel, rubber, or the like.
  • the thermal expansion coefficient is made closer to the conductor portions 315, 320, 318, and 319. Thereby, the difference in thermal expansion coefficient between the members can be reduced, and the thermal stress generated as the temperature rises in the use environment is greatly reduced, so that the life of the power semiconductor module can be extended.
  • a high heat-resistant thermoplastic resin such as PPS (polyphenyl sulfide) or PBT (polybutylene terephthalate) is suitable for the molding material of the auxiliary mold body 600.
  • FIG. 9 is an exploded perspective view of the power circuit body 380.
  • the IGBT 328 and the diode 156 constitute an upper arm circuit of the inverter circuit 140.
  • the conductor plate 315 is metal-connected to the collector electrode of the IGBT 328 and the anode electrode of the diode 156 by a solder material or the like.
  • the conductor plate 318 is disposed on the opposite side of the conductor plate 315 with the IGBT 328 and the diode 156 interposed therebetween, and is electrically connected to the emitter electrode of the IGBT 328 and the cathode electrode of the diode 156 by a solder material or the like.
  • the IGBT 330 and the diode 166 constitute a lower arm circuit of the inverter circuit 140.
  • the conductor plate 320 is metal-connected to the collector electrode of the IGBT 330 and the anode electrode of the diode 166 by a solder material or the like.
  • the conductor plate 319 is disposed on the opposite side of the conductor plate 312 with the IGBT 330 and the diode 136 in between, and is metal-connected to the emitter electrode of the IGBT 330 and the cathode electrode of the diode 166 by a solder material or the like.
  • metal bonding agent used for the metal connection for example, a Sn alloy-based soft solder material (solder), a hard solder material such as an Al alloy / Cu alloy, or a metal sintered material using metal nanoparticles / micro particles is used. be able to.
  • the intermediate electrode 329A is disposed on the side of the conductor plate 318 close to the conductor plate 319.
  • the intermediate electrode 329B is disposed on the side of the conductor plate 320 close to the conductor plate 315, and extends toward the conductor plate 315 so as to face the intermediate electrode 329A. Further, the intermediate electrode 329B is metal-connected to the intermediate electrode 329A by a solder material or the like, and connects the upper arm circuit and the lower arm circuit.
  • the conductor plate 318 and the conductor plate 319 are arranged so as to be arranged on a virtual plane parallel to the emitter electrode of the IGBT 328.
  • the conductor plate 315 and the conductor plate 320 are arranged so as to be arranged on a virtual plane parallel to the collector electrode of the IGBT 328.
  • FIG. 10 is an external perspective view of the casing 400 integrally formed with the flow path forming body 410 as viewed from above.
  • FIG. 11 is an external perspective view of the housing 400 as viewed from the lower surface.
  • the flat surface 404 is formed on the upper surface of the flow path forming body 400, and the bus bar module 700 is disposed on the flat surface 404.
  • the through hole 415 shown in FIG. 5 is formed in the flat surface 404.
  • FIG. 12 is a cross-sectional view illustrating a process of assembling the power semiconductor modules 300a to 300c to the flow path forming body 400.
  • FIG. 13 is a cross-sectional view showing a process of assembling the bus bar module 700 to the flow path forming body 410 as seen from the direction of the arrow on the plane B in FIG.
  • the power semiconductor modules 300a to 300c are accommodated in the first flow path space 411 from the bottom surface side of the flow path forming body 410.
  • the positioning part 311 formed in the case 304 of the power semiconductor module 300a is assembled to the bottom part of the recess 406.
  • the O-ring groove 312 formed in the case 304 is disposed at a position facing the side surface of the recess 406.
  • the auxiliary mold body 601 is disposed through the through-hole 415, and one surface of the auxiliary mold body 601 is disposed so as to be flush with the flat surface 404 of the flow path forming body 410.
  • the terminals of the power semiconductor modules 300a to 300c pass through the through holes 705 of the bus bar module 700 and are connected to the terminals 701 on the bus bar module 700 side.
  • the adjusting member 407 is a member for adjusting the flow of the cooling medium so that the cooling medium flows through the fins 350. That is, the adjustment member 407 is a member for preventing the coolant from bypassing other than the fins 350.
  • the reason why the adjustment member 407 is provided is that the case 304 needs a joining region for joining the first heat radiator 354a to the frame body 305 as described with reference to FIG.
  • FIG. 14 is an enlarged view of the first heat radiating body 354a on the surface side where the fins are formed.
  • the fin 350 includes a first fin 360 and second fins 370a to 370f having a thickness larger than that of the first fin 360.
  • the thickness of the fin is the width of the fin in the vertical section in the protruding direction of the fin, and in the case of a cylindrical pin fin, it is the diameter of the circle.
  • the second fins 370a to 370f have a larger diameter and higher bending rigidity than the first fin 360.
  • the first fin 360 for example, a pin fin having a diameter of about 0.9 mm is used.
  • the interval between the first fins 360 is smaller than the interval between the first fins 360 and the second fins 370a. Thereby, the heat transfer rate of the formation region of the first fin 360 can be improved.
  • FIG. 15 is a transmission diagram showing the positional relationship between the fin 350 and the power semiconductor element through the first heat radiator 354a.
  • the first fin projecting portion 360S is an oblique shadow of the first fin 360 when projected from the vertical direction with respect to the emitter electrode surface of the IGBT 328 or the fin forming surface of the first heat radiator 354a.
  • the second fin projection unit 370 ⁇ / b> S is an oblique projection of the second fin 370.
  • the first fin 360 is formed such that the first fin projection 360S overlaps the IGBTs 328 and 330 and the diodes 156 and 166. Thereby, power semiconductor elements, such as IGBT328 which is heat dissipation object, are efficiently cooled by the 1st fin 360 with a high heat transfer rate.
  • FIG. 16 is an enlarged view of a region C in FIG.
  • the outer peripheral edge 363 is a portion that becomes an edge when surrounding an area where the plurality of first fins 360 are formed.
  • the second fins 370 a to 370 f are disposed outside the outer peripheral edge 363.
  • the second fins 370 a to 370 f are the second fin projecting portions 370 ⁇ / b> S. Are arranged so as to overlap the outer peripheral edge of the first fin projecting portion 360S or to be outside the outer peripheral edge of the first fin projecting portion 360S. In other words, the second fins 370a to 370f are arranged outside the first fin region connecting the plurality of first fins 360 arranged outside the plurality of first fins 360.
  • the power semiconductor modules 300a to 300c of this embodiment use a case 304 in which fins 350 are formed on two wide surfaces. Further, the case 304 uses the first fin 360 having a very small diameter in order to improve the heat transfer coefficient.
  • the power semiconductor modules 300a to 300c of the present embodiment are transported or assembled during manufacture.
  • the power semiconductor modules 300a to 300c are placed on a workbench or the like before being incorporated into the flow path forming body 410.
  • the power semiconductor modules 300a to 300c are in a state where the frame body 305 is in contact with the workbench.
  • the power semiconductor modules 300a to 300c are taken up for incorporation, it is also assumed that the power semiconductor modules 300a to 300c fall on the work table or the first fin 360 contacts the work table.
  • the fins 350 are formed on two wide surfaces of the case 304, the probability is high.
  • the second fins 370 are disposed outside the outer peripheral edge 363 of the formation region of the first fin 360 on both surfaces of the case 304, thereby protecting the first fin 360 on both surfaces of the case 304 from deformation and cracking. Will be able to.
  • the first fin 360 facing the power semiconductor element can be protected from deformation and cracking.
  • the second fin 370 is disposed so as to have a protruding portion 355 protruding from the extension line 364 of the outer peripheral edge 363.
  • the protruding portion 355 is provided in a direction along the insertion direction D when the power semiconductor modules 300a to 300c are inserted into the flow path forming body 410.
  • FIG. 17 is a front view of the power semiconductor module 300a and the adjustment member 407 in a state where the power semiconductor module 300a is incorporated in the flow path forming body 410.
  • 18 is an enlarged view of a region D in FIG.
  • the adjustment member 407 is formed so that the gap between the flange 308 and the fin 350 is as small as possible in order to increase the effect for preventing the bypass flow.
  • one surface of the adjustment member 407 contacts the flange 308, and the other surface of the adjustment member 407 contacts the fin 350. Therefore, the fin 350 receives stress due to the elastic force 408 of the adjustment member 407.
  • the second fins 370a to 370f having higher rigidity than the first fin 360 are configured to receive the stress from the adjusting member 407.
  • the second fins 370 a to 370 f are the second fin projecting portions 370 ⁇ / b> S.
  • the deformation of the first fin 360 can be prevented.
  • the adjustment member 407 is made of an elastic member while being larger than the dimension.
  • the first fin 360 attempts to improve the heat transfer coefficient by reducing the diameter and the interval between the first fins 360, the bending rigidity of the first fin 360 is reduced. Therefore, since the elastic force 408 easily deforms the first fin 360, the effect of the present embodiment is remarkably exhibited.
  • the height of the flange 308 is formed larger than the height of the fin 350. 17, the second fin 370a, the second fin 370b, and the second fin 370e are disposed farther than the first fin 360 with respect to the flange 308.
  • the first fin 360 near the flange 308 is protected by the flange 308, and the first fin 360 near the second fin 370a or the like is protected by the second fin 370a or the like. Therefore, the number of the second fins 370a can be reduced while maintaining the productivity of the power semiconductor module and the power conversion device.
  • the first fin 360 and the second fins 370a to 370f are arranged so that the fin region connecting the first fin 360 and the second fin 370 has a substantially rectangular shape.
  • the plurality of second fins 370a to 370f four second fins 370a, second fins 370b, second fins 370c, and second fins 370d form substantially rectangular four corners.
  • the first fin 360 can be protected by the small number of second fins 370a and the like at the four corners where the frequency of impact is high in the fin region.
  • the second fins 370e different from the second fins 370a to 370d arranged at the four corners are two adjacent fins of the second fins 370a to 370d arranged at the four corners.
  • the second fins 370a and the second fins 370b are arranged at substantially midpoint positions.
  • the small number of second fins 370e can be protected.
  • FIG. 19 is an enlarged view of the first heat radiator 354a on the surface side where the fins according to another embodiment are formed.
  • FIG. 20 is an enlarged view in which the region E in FIG. 19 is enlarged.
  • FIG. 21 is a front view of the power semiconductor module 300a and the adjustment member 472a in a state in which the power semiconductor module 300a according to another embodiment is incorporated in the flow path forming body 410.
  • FIG. 22 is an enlarged view of a region F in FIG.
  • the configurations denoted by the same drawing numbers as in the first embodiment have the same functions as in the first embodiment. In the present embodiment, a description will be given focusing on the differences from the first embodiment.
  • the first heat dissipating body 392a is different from the first embodiment in the positions of the second fins 370a to 370f. Specifically, as shown in FIG. 20, the second fins 370 a to 370 f are arranged close to the first fin 360 so as not to overlap the extension line 364 of the outer peripheral edge 363. Even with such an arrangement, a large number of first fins 360 other than the first fins 360 arranged in the vicinity of the outer peripheral edge 363 can be protected from an impact or the like. Although not shown, the second radiator 392b has the same configuration as the first radiator 392a.
  • first fin 360 disposed in the vicinity of the outer peripheral edge 363 is repeatedly pressed by the adjustment member 470 in the first flow path space 411, many first fins 360 are deformed, and the first heat radiator The cooling performance of 392a may be affected.
  • the adjustment member 472 of the present embodiment forms a protruding portion 473 that protrudes toward the second fins 370a to 370f.
  • the protrusion 473 comes into contact with the second fin 370 preferentially in the adjustment member 472. That is, the adjustment member 472 excluding the protruding portion 473 is unlikely to contact the first fin 360, and the first fin 360 ⁇ ⁇ ⁇ can be prevented from being deformed.
  • FIG. 23 is a front view of the power semiconductor module 300a and the adjustment member 407 in a state in which the power semiconductor module 300a according to another embodiment is incorporated in the flow path forming body 410.
  • FIG. 24 is an enlarged view of a region G in FIG.
  • the configurations denoted by the same drawing numbers as in the first embodiment have the same functions as in the first embodiment. In the present embodiment, a description will be given focusing on the differences from the first embodiment.
  • the first radiator 393a according to the present embodiment is different from the first embodiment in the number and position of the second fins.
  • a plurality of second fins 370 are provided.
  • the plurality of second fins 370 are arranged in a line along the side portion of the adjustment member 407. That is, each of the plurality of first fins 360 is disposed at a position facing the adjustment member 407 with any one of the plurality of second fins 370 interposed therebetween. Thereby, the deformation of the first fin 360 can be prevented.
  • FIG. 25 is an overall perspective view showing a state where the power conversion device 200 according to any one of the first to third embodiments is arranged in the transmission TM.
  • the cooling refrigerant flowing in the power conversion device 200 may receive heat from the transmission TM and increase in temperature. Therefore, like the power conversion device 200 of any of the first to third embodiments described above, the cooling refrigerant uses the adjustment member 407 or the adjustment member 472 to preferentially cool the power semiconductor element. However, it leads to the improvement of the cooling performance of the power converter 200. By using the second fin 370a or the like according to any of the first to third embodiments, it is possible to maintain the cooling performance when the adjustment member 407 or the adjustment member 472 is used.
  • 2nd heat radiator, 400 housing
  • Insulation mold terminal 601 ... Auxiliary mold body, 602 ... Groove, 700 ... Bus bar module, 701 ... Terminal, 705 ... Through hole, 800 ... Base part, 801 ... First through hole, 802 ... Recess, 900 ... Lid, EGN Internal combustion engine, MG ... motor-generator, TM ... transmission, TSM ... power distribution mechanism

Abstract

 The objective of the present invention is to improve the cooling performance and productivity of a power module. A power semiconductor module (300a) according to the present invention is provided with a power semiconductor element (328, 156) for converting direct-current electrical current into alternating-current electrical current, and a case (304) for forming an accommodation space for accommodating the power semiconductor element. The case has a first heat dissipator (354a) and a second heat dissipator (354b) facing the first heat dissipator across the accommodation space. The first heat dissipator and the second heat dissipator have a plurality of first fins (360) and second fins (370 a-f), the second fins having a cross-sectional width larger than the cross-sectional width of the first fins. The second fins are disposed farther toward the outside than a first fin area (363), in which are combined a plurality of first fins disposed toward the outside among the plurality of first fins.

Description

パワー半導体モジュール及びそれを用いた電力変換装置Power semiconductor module and power converter using the same
 本発明は、直流電流を交流電流に変換するためのパワー半導体モジュール及びそれを用いた電力変換装置に関し、特にハイブリッド自動車や電気自動車の駆動用モータに交流電流を供給するパワー半導体モジュール及びそれを用いた電力変換装置に関する。 The present invention relates to a power semiconductor module for converting a direct current into an alternating current and a power conversion device using the same, and more particularly to a power semiconductor module for supplying an alternating current to a drive motor of a hybrid vehicle or an electric vehicle and the use thereof. The present invention relates to a power conversion apparatus.
 近年、パワー半導体モジュール及びそれを用いた電力変換装置では、大電流を出力することができるものが求められている一方、小型化も要求されている。電力変換装置が大電流を出力しようとすると、パワー半導体モジュールに内蔵されるパワー半導体素子で発生する熱が大きくなり、パワー半導体モジュールや電力変換装置の熱容量を大きくしなければパワー半導体素子の耐熱温度に達してしまい、小型化の妨げとなる。そこでパワー半導体素子を両面から冷却することにより冷却効率を向上させる両面冷却型パワー半導体モジュールとそれを用いた両面冷却型の電力変換装置が開発されている。 In recent years, power semiconductor modules and power converters using the power semiconductor modules have been required to be able to output a large current, while miniaturization is also required. If the power converter attempts to output a large current, the heat generated in the power semiconductor element built in the power semiconductor module will increase, and the heat resistance temperature of the power semiconductor element will not increase unless the heat capacity of the power semiconductor module or power converter is increased. This hinders downsizing. Therefore, a double-sided cooling type power semiconductor module that improves the cooling efficiency by cooling the power semiconductor element from both sides and a double-sided cooling type power converter using the same have been developed.
 両面冷却型のパワー半導体モジュールはパワー半導体素子の両主面を板状導体で挟み込み、パワー半導体素子の主面と対向する面と反対側の板状導体の面が冷却媒体と熱的に接続され、冷却される。 The double-sided cooling type power semiconductor module sandwiches both main surfaces of the power semiconductor element with plate-shaped conductors, and the surface of the plate-shaped conductor opposite to the surface facing the main surface of the power semiconductor element is thermally connected to the cooling medium. Cooled down.
 特許文献1に、パワー半導体素子の両主面を板状のリードフレームで挟み込んで回路体を構成し、回路体をケースに収納するパワー半導体モジュールを開示する。このケースは、回路体を冷却するためのピンフィンを形成する。 Patent Document 1 discloses a power semiconductor module in which both main surfaces of a power semiconductor element are sandwiched between plate-like lead frames to form a circuit body, and the circuit body is housed in a case. This case forms a pin fin for cooling the circuit body.
 電力変換装置の大電流化や小型化、パワー半導体モジュールの信頼性向上のために、このケースの熱伝達率をさらに向上させることが求められている。 In order to increase the current and size of the power conversion device and improve the reliability of the power semiconductor module, it is required to further improve the heat transfer coefficient of this case.
 そこで、フィンの間隔と寸法を小さくして本数を増やし、フィン表面積を拡大させることが考えられる。 Therefore, it is conceivable to increase the number of fins by increasing the fin spacing by reducing the fin spacing and dimensions.
 しかしながら、フィンの強度を低下させてしまうため、パワー半導体モジュールの運搬時や電力変換装置の冷却水路等への組み付け時にフィンが変形または破断し、パワー半導体モジュールの生産性を低下させてしまうおそれがある。 However, since the strength of the fins is reduced, the fins may be deformed or broken during transportation of the power semiconductor module or assembly of the power conversion device to a cooling water channel or the like, thereby reducing the productivity of the power semiconductor module. is there.
特開2010-110143号公報JP 2010-110143 A
 本発明の課題は、パワーモジュールの冷却性能向上と生産性向上の両立を図ることである。 An object of the present invention is to achieve both improvement in cooling performance and productivity in a power module.
 本発明に係るパワー半導体モジュールは、直流電流を交流電流に変換するパワー半導体素子と、前記パワー半導体素子を収納空間を形成するケースと、を備え、前記ケースは、第1放熱体と、前記収納空間を挟んで当該第1放熱体と対向する第2放熱体と、を有し、前記第1放熱体及び前記第2放熱体は、複数の第1フィンと、当該第1フィンの断面の幅よりも大きい断面の幅を形成する第2フィンと、をそれぞれ有し、前記第2フィンは、前記複数の第1フィンのうち外側に配置された複数の第1フィンを同士を結んだ第1フィン領域よりも外側に配置される。 A power semiconductor module according to the present invention includes a power semiconductor element that converts a direct current into an alternating current, and a case that forms a storage space for the power semiconductor element. The case includes a first heat radiator, and the storage. A second radiator that opposes the first radiator with a space interposed therebetween, wherein the first radiator and the second radiator include a plurality of first fins and a width of a cross section of the first fin. A second fin that forms a larger cross-sectional width than the first fin, and the second fin connects a plurality of first fins arranged outside of the plurality of first fins. It arrange | positions outside a fin area | region.
 本発明により、パワーモジュールの冷却性能向上と生産性向上の両立を図ることができる。 According to the present invention, it is possible to improve both the cooling performance and productivity of the power module.
ハイブリッド方式の自動車の制御ブロックを示す図である。It is a figure which shows the control block of a hybrid type motor vehicle. インバータ回路部140の回路構成図である。3 is a circuit configuration diagram of an inverter circuit unit 140. FIG. 電力変換装置200の外観斜視図である。1 is an external perspective view of a power conversion device 200. FIG. 電力変換装置200の分解斜視図である。2 is an exploded perspective view of a power conversion device 200. FIG. 筐体400の分解斜視図である。4 is an exploded perspective view of a housing 400. FIG. 図4の平面AAの矢印方向から見た筐体400の断面図である。It is sectional drawing of the housing | casing 400 seen from the arrow direction of plane AA of FIG. パワー半導体モジュール300aの外観斜視図である。It is an external appearance perspective view of the power semiconductor module 300a. パワー半導体モジュール300aの分解斜視図である。It is a disassembled perspective view of the power semiconductor module 300a. パワー回路体380の分解斜視図である。3 is an exploded perspective view of a power circuit body 380. FIG. 流路形成体410を一体に形成した筐体400を上面から見た外観斜視図である。It is the external appearance perspective view which looked at the housing | casing 400 which formed the flow-path formation body 410 integrally from the upper surface. 筐体400を下面から見た外観斜視図である。It is the external appearance perspective view which looked at the housing | casing 400 from the lower surface. 流路形成体400にパワー半導体モジュール300aないし300cを組み立てる工程を示す断面図である。6 is a cross-sectional view showing a process of assembling the power semiconductor modules 300a to 300c to the flow path forming body 400. FIG. 5の平面Bの矢印方向から見た流路形成体410にバスバーモジュール700を組み立てる工程を示す断面図である。5 is a cross-sectional view showing a process of assembling the bus bar module 700 to the flow path forming body 410 as seen from the direction of the arrow of the plane B of FIG. フィンを形成した面側の第1放熱体354aの拡大図である。It is an enlarged view of the 1st heat radiator 354a of the surface side in which the fin was formed. 第1放熱体354aを透過させ、フィン350とパワー半導体素子との位置関係を示した透過図である。It is the permeation | transmission figure which permeate | transmitted the 1st thermal radiation body 354a and showed the positional relationship of the fin 350 and a power semiconductor element. 図14の領域Cを拡大した拡大図である。It is the enlarged view to which the area | region C of FIG. 14 was expanded. パワー半導体モジュール300aが流路形成体410に組み込まれた状態におけるパワー半導体モジュール300a及び調整部材407の正面図である。FIG. 6 is a front view of the power semiconductor module 300a and the adjustment member 407 in a state where the power semiconductor module 300a is incorporated in the flow path forming body 410. 図17の領域Dの拡大図である。It is an enlarged view of the area | region D of FIG. 他の実施形態に係るフィンを形成した面側の第1放熱体354aの拡大図である。It is an enlarged view of the 1st heat radiator 354a by the side of the surface in which the fin concerning other embodiments was formed. 図19の領域Eを拡大した拡大図である。It is the enlarged view to which the area | region E of FIG. 19 was expanded. 他の実施形態に係るパワー半導体モジュール300aが流路形成体410に組み込まれた状態におけるパワー半導体モジュール300a及び調整部材472aの正面図である。It is a front view of the power semiconductor module 300a and the adjustment member 472a in the state in which the power semiconductor module 300a which concerns on other embodiment was integrated in the flow-path formation body 410. FIG. 図21の領域Fの拡大図である。It is an enlarged view of the area | region F of FIG. 他の実施形態に係るパワー半導体モジュール300aが流路形成体410に組み込まれた状態におけるパワー半導体モジュール300a及び調整部材407の正面図である。It is a front view of the power semiconductor module 300a and the adjustment member 407 in the state in which the power semiconductor module 300a which concerns on other embodiment was integrated in the flow-path formation body 410. 図23の領域Gの拡大図である。It is an enlarged view of the area | region G of FIG. 実施例1ないし実施例3のいずれかの電力変換装置200をトランスミッションTMに配置した状態を示す全体斜視図である。It is a whole perspective view which shows the state which has arrange | positioned the power converter device 200 in any one of Example 1 thru | or Example 3 to transmission TM.
 本実施形態に係る電力変換装置について、図面を参照しながら以下詳細に説明する。本実施形態に係る電力変換装置は、ハイブリッド用の自動車や純粋な電気自動車に適用可能であるが、代表例として、ハイブリッド自動車に適用した場合における制御構成と回路構成について、図1と図2を用いて説明する。 The power converter according to the present embodiment will be described in detail below with reference to the drawings. The power conversion device according to the present embodiment can be applied to a hybrid vehicle or a pure electric vehicle. As a representative example, FIG. 1 and FIG. 2 show a control configuration and a circuit configuration when applied to a hybrid vehicle. It explains using.
 図1はハイブリッド方式の自動車の制御ブロックを示す図であり、内燃機関EGNおよびモータジェネレータMGは自動車の走行用トルクを発生する動力源である。また、モータジェネレータMGは回転トルクを発生するだけでなく、モータジェネレータMGに外部から加えられる機械エネルギ(回転力)を電力に変換する機能を有する。モータジェネレータMGは、例えば同期電動/発電機あるいは誘導電動/発電機であり、上述のごとく運転方法により電動機としても発電機としても動作する。 FIG. 1 is a diagram showing a control block of a hybrid vehicle, and an internal combustion engine EGN and a motor generator MG are power sources that generate a running torque of the vehicle. Motor generator MG not only generates rotational torque, but also has a function of converting mechanical energy (rotational force) applied to motor generator MG from the outside into electric power. The motor generator MG is, for example, a synchronous motor / generator or an induction motor / generator, and operates as a motor or a generator depending on the operation method as described above.
 内燃機関EGNの出力側は動力分配機構TSMを介してモータジェネレータMGに伝達され、動力分配機構TSMからの回転トルクあるいはモータジェネレータMGが発生する回転トルクは、トランスミッションTMおよびデファレンシャルギアDEFを介して車輪に伝達される。 The output side of the internal combustion engine EGN is transmitted to the motor generator MG via the power distribution mechanism TSM, and the rotation torque from the power distribution mechanism TSM or the rotation torque generated by the motor generator MG is transmitted to the wheels via the transmission TM and the differential gear DEF. Is transmitted to.
 一方、回生制動の運転時には、車輪から回転トルクがモータジェネレータMGに伝達され、伝達されてきた回転トルクに基づいて交流電力を発生する。発生した交流電力は後述するように電力変換装置200により直流電力に変換され、高電圧用のバッテリ136を充電し、充電された電力は再び走行エネルギとして使用される。 On the other hand, during regenerative braking operation, rotational torque is transmitted from the wheels to motor generator MG, and AC power is generated based on the transmitted rotational torque. The generated AC power is converted into DC power by the power conversion device 200 as described later, and the high-voltage battery 136 is charged. The charged power is used again as travel energy.
 次に電力変換装置200について説明する。インバータ回路部140はバッテリ136と直流コネクタ138を介して電気的に接続されており、バッテリ136とインバータ回路部140との相互において電力の授受が行われる。 Next, the power conversion device 200 will be described. The inverter circuit unit 140 is electrically connected to the battery 136 via a DC connector 138, and power is exchanged between the battery 136 and the inverter circuit unit 140.
 モータジェネレータMGを電動機として動作させる場合には、インバータ回路部140は直流コネクタ138を介してバッテリ136から供給された直流電力に基づき交流電力を発生し、交流コネクタ188を介してモータジェネレータMGに供給する。モータジェネレータMGとインバータ回路部140からなる構成は電動/発電ユニットとして動作する。 When motor generator MG is operated as an electric motor, inverter circuit section 140 generates AC power based on DC power supplied from battery 136 via DC connector 138 and supplies the motor generator MG via AC connector 188. To do. The configuration including motor generator MG and inverter circuit unit 140 operates as an electric / power generation unit.
 電動/発電ユニットは、運転状態に応じて電動機として、或いは発電機として運転する場合、或いはこれらを使い分けて運転する場合がある。尚、本実施形態では、バッテリ136の電力によって電動/発電ユニットを電動ユニットとして作動させることにより、モータジェネレータMGの動力のみによって車両の駆動ができる。更に、本実施形態では、電動/発電ユニットを発電ユニットとして内燃機関EGNの動力或いは車輪からの動力によって作動させて発電させることにより、バッテリ136の充電ができるようになっている。 The electric / power generation unit may be operated as an electric motor or a generator depending on the operating state, or may be operated by using them properly. In the present embodiment, the vehicle can be driven only by the power of the motor generator MG by operating the electric / power generation unit as an electric unit by the electric power of the battery 136. Furthermore, in the present embodiment, the battery 136 can be charged by operating the electric / power generation unit as the power generation unit by the power of the internal combustion engine EGN or the power from the wheels to generate power.
 電力変換装置200は、インバータ回路部140に供給される直流電力を平滑化するためのコンデンサモジュール500を備えている。 The power conversion device 200 includes a capacitor module 500 for smoothing DC power supplied to the inverter circuit unit 140.
 電力変換装置200は上位の制御装置から指令を受け、あるいは上位の制御装置に状態を表すデータを送信したりするための通信用のコネクタ21を備えている。コネクタ21から入力される指令に基づいて制御回路部172でモータジェネレータMGの制御量を演算する。 The power conversion device 200 includes a communication connector 21 for receiving a command from a host control device or transmitting data representing a state to the host control device. A control circuit unit 172 calculates a control amount of the motor generator MG based on a command input from the connector 21.
 更に電動機として運転するか発電機として運転するかを演算し、演算結果に基づいて制御パルスを発生してドライバ回路174へ制御パルスを供給する。この制御パルスに基づいてドライバ回路174がインバータ回路部140を制御するための駆動パルスを発生する。 Further, whether to operate as an electric motor or a generator is calculated, a control pulse is generated based on the calculation result, and the control pulse is supplied to the driver circuit 174. Based on this control pulse, the driver circuit 174 generates a drive pulse for controlling the inverter circuit unit 140.
 次に、図2を用いてインバータ回路部140の回路構成を説明するが、半導体素子として絶縁ゲート型バイポーラトランジスタを使用しており、以下略してIGBTと表現している。 Next, the circuit configuration of the inverter circuit unit 140 will be described with reference to FIG. 2, but an insulated gate bipolar transistor is used as a semiconductor element, which is hereinafter abbreviated as IGBT.
 インバータ回路部140は、上アームとして動作するIGBT328及びダイオード156と、下アームとして動作するIGBT330及びダイオード166と、からなる上下アームのパワー半導体モジュール300aないし300cを、出力しようとする交流電力のU相,V相,W相からなる3相に対応して備えている。 The inverter circuit unit 140 outputs the power semiconductor modules 300a to 300c of the upper and lower arms composed of the IGBT 328 and the diode 156 that operate as the upper arm and the IGBT 330 and the diode 166 that operate as the lower arm, and outputs the U phase of the AC power to be output. , V phase and W phase.
 これらの3相はこの実施の形態では、モータジェネレータMGの電機子巻線の3相の各相巻線に対応している。3相のそれぞれの上下アームのパワー半導体モジュール300aないし300cは、パワー半導体モジュール300aないし300cのそれぞれのIGBT328とそれぞれのIGBT330の中点部分である中間電極169から交流電流が出力され、この交流電流は交流端子159を通して、モータジェネレータMGへの交流電力線である交流バスバーと接続される。 These three phases correspond to the three-phase windings of the armature winding of the motor generator MG in this embodiment. The power semiconductor modules 300a to 300c of the upper and lower arms of each of the three phases output an alternating current from an intermediate electrode 169 that is a midpoint portion of each IGBT 328 and each IGBT 330 of the power semiconductor modules 300a to 300c. Through AC terminal 159, it is connected to an AC bus bar which is an AC power line to motor generator MG.
 上アームのIGBT328のコレクタ電極153は正極端子157を介してコンデンサモジュール500の正極側のコンデンサ端子502に、下アームのIGBT330のエミッタ電極は負極端子158を介してコンデンサモジュール500の負極側のコンデンサ端子502にそれぞれ電気的に接続されている。 The collector electrode 153 of the IGBT 328 in the upper arm is connected to the capacitor terminal 502 on the positive electrode side of the capacitor module 500 via the positive electrode terminal 157, and the emitter electrode of the IGBT 330 in the lower arm is connected to the capacitor terminal on the negative electrode side of the capacitor module 500 via the negative electrode terminal 158. Each is electrically connected to 502.
 上述のように、制御回路部172は上位の制御装置からコネクタ21を介して制御指令を受け、これに基づいてインバータ回路部140を構成する各相のパワー半導体モジュール300aないし300cの上アームあるいは下アームを構成するIGBT328やIGBT330を制御するための制御信号である制御パルスを発生し、ドライバ回路174に供給する。 As described above, the control circuit unit 172 receives a control command from the host control device via the connector 21, and based on this, the upper arm or the lower arm of the power semiconductor modules 300a to 300c of each phase constituting the inverter circuit unit 140. A control pulse that is a control signal for controlling the IGBT 328 and the IGBT 330 constituting the arm is generated and supplied to the driver circuit 174.
 ドライバ回路174は制御パルスに基づき各相の上アームあるいは下アームを構成するIGBT328やIGBT330を制御するための駆動パルスを各相のIGBT328やIGBT330に供給する。 The driver circuit 174 supplies a drive pulse for controlling the IGBT 328 and IGBT 330 constituting the upper arm or lower arm of each phase to the IGBT 328 and IGBT 330 of each phase based on the control pulse.
 IGBT328やIGBT330はドライバ回路174からの駆動パルスに基づき、導通あるいは遮断動作を行い、バッテリ136から供給された直流電力を三相交流電力に変換し、この変換された電力はモータジェネレータMG1に供給される。 The IGBT 328 and the IGBT 330 perform conduction or cutoff operation based on the drive pulse from the driver circuit 174, convert the DC power supplied from the battery 136 into three-phase AC power, and the converted power is supplied to the motor generator MG1. The
 IGBT328はコレクタ電極153と、信号用エミッタ電極155と、ゲート電極154を備えている。また、IGBT330はコレクタ電極163と、信号用のエミッタ電極165と、ゲート電極164を備えている。 The IGBT 328 includes a collector electrode 153, a signal emitter electrode 155, and a gate electrode 154. The IGBT 330 includes a collector electrode 163, a signal emitter electrode 165, and a gate electrode 164.
 ダイオード156がコレクタ電極153とエミッタ電極との間に電気的に接続されている。また、ダイオード166がコレクタ電極163とエミッタ電極との間に電気的に接続されている。 A diode 156 is electrically connected between the collector electrode 153 and the emitter electrode. A diode 166 is electrically connected between the collector electrode 163 and the emitter electrode.
 スイッチング用パワー半導体素子としては金属酸化物半導体型電界効果トランジスタ(以下略してMOSFETと記す)を用いてもよい、この場合はダイオード156やダイオード166は不要となる。スイッチング用パワー半導体素子としてIGBTは直流電圧が比較的高い場合に適していて、MOSFETは直流電圧が比較的低い場合に適している。  As the switching power semiconductor element, a metal oxide semiconductor field effect transistor (hereinafter abbreviated as MOSFET) may be used. In this case, the diode 156 and the diode 166 are not required. As a switching power semiconductor element, IGBT is suitable when the DC voltage is relatively high, and MOSFET is suitable when the DC voltage is relatively low. *
 コンデンサモジュール500は、複数の正極側コンデンサ端子502と複数の負極側コンデンサ端子502と、正極側電源端子509と負極側電源端子508とを備えている。バッテリ136からの高電圧の直流電力は直流コネクタ138を介して、正極側電源端子509や負極側電源端子508に供給され、コンデンサモジュール500の複数の正極側コンデンサ端子502や複数の負極側のコンデンサ端子502から、インバータ回路部140へ供給される。 The capacitor module 500 includes a plurality of positive electrode side capacitor terminals 502, a plurality of negative electrode side capacitor terminals 502, a positive electrode side power supply terminal 509, and a negative electrode side power supply terminal 508. High voltage DC power from the battery 136 is supplied to the positive power supply terminal 509 and the negative power supply terminal 508 via the DC connector 138, and the plurality of positive capacitor terminals 502 and the plurality of negative capacitors on the capacitor module 500 are provided. The voltage is supplied from the terminal 502 to the inverter circuit unit 140.
 一方、交流電力からインバータ回路部140によって変換された直流電力は正極側コンデンサ端子502や負極側コンデンサ端子502からコンデンサモジュール500に供給され、正極側電源端子509や負極側電源端子508から直流コネクタ138を介してバッテリ136に供給されてバッテリ136に蓄積される。 On the other hand, DC power converted from AC power by the inverter circuit unit 140 is supplied to the capacitor module 500 from the positive capacitor terminal 502 and the negative capacitor terminal 502, and is connected to the DC connector 138 from the positive power terminal 509 and the negative power terminal 508. Is supplied to the battery 136 and stored in the battery 136.
 制御回路部172はIGBT328及びIGBT330のスイッチングタイミングを演算処理するためのマイクロコンピュータ(以下、「マイコン」と記述する)を備えている。マイコンへの入力情報として、モータジェネレータMGに対して要求される目標トルク値、上下アームパワー半導体モジュール150からモータジェネレータMGに供給される電流値、及びモータジェネレータMG1の回転子の磁極位置がある。 The control circuit unit 172 includes a microcomputer (hereinafter referred to as “microcomputer”) for performing arithmetic processing on the switching timing of the IGBT 328 and the IGBT 330. As input information to the microcomputer, there are a target torque value required for the motor generator MG, a current value supplied from the upper and lower arm power semiconductor module 150 to the motor generator MG, and a magnetic pole position of the rotor of the motor generator MG1.
 目標トルク値は図示しない上位の制御装置から出力された指令信号に基づくものであり、電流値は電流センサによる検出信号に基づいて検出されたものである。磁極位置は、モータジェネレータMGに設けられたレゾルバなどの回転磁極センサ(図示せず)から出力された検出信号に基づいて検出されたものである。 The target torque value is based on a command signal output from a host controller (not shown), and the current value is detected based on a detection signal from a current sensor. The magnetic pole position is detected based on a detection signal output from a rotating magnetic pole sensor (not shown) such as a resolver provided in the motor generator MG.
 図3は、電力変換装置200の外観斜視図である。 FIG. 3 is an external perspective view of the power conversion device 200.
 筐体400は、その上面に開口部が形成され、この開口部が蓋900に塞がれる。直流コネクタ138は、バッテリ136と電気的に接続される端子である。交流コネクタ188は、モータジェネレータ192と電気的に接続される端子である。直流コネクタ138及び交流コネクタ188は、蓋900に設けられる。筐体400は、蓋900が自動車の配線作業を行なう為の開口側に向くように、車体に固定される。 The housing 400 has an opening formed on the upper surface thereof, and the opening is closed by the lid 900. The DC connector 138 is a terminal that is electrically connected to the battery 136. AC connector 188 is a terminal that is electrically connected to motor generator 192. The DC connector 138 and the AC connector 188 are provided on the lid 900. The casing 400 is fixed to the vehicle body so that the lid 900 faces the opening side for performing the wiring work of the automobile.
 これにより、直流コネクタ138及び交流コネクタ188の双方の配線及び接続の作業が容易になる。 This facilitates the wiring and connection of both the DC connector 138 and the AC connector 188.
 図4は、電力変換装置200の分解斜視図である。 FIG. 4 is an exploded perspective view of the power conversion device 200.
 筐体400は、流路形成体410を収納する。流路形成体410は、後述するパワー半導体モジュール300aないし300cを冷却するための流路を形成するが、本実施形態においては後述するコンデンサ素子500を冷却するための流路も形成する。流路形成体410は、底部に開口部が形成され、この開口部が蓋401に塞がれる。流路入口部402a及び流路出口部402bは、蓋401に固定される。 The housing 400 accommodates the flow path forming body 410. The flow path forming body 410 forms a flow path for cooling power semiconductor modules 300a to 300c described later, but also forms a flow path for cooling a capacitor element 500 described later in this embodiment. The flow path forming body 410 has an opening at the bottom, and the opening 401 is closed by the lid 401. The channel inlet portion 402 a and the channel outlet portion 402 b are fixed to the lid 401.
 パワー半導体モジュール300aないし300cの端子及びコンデンサ素子500の端子が、流路形成体410の上面側から突出する。バスバーモジュール700は、パワー半導体モジュール300aないし300cの直流端子及びコンデンサ素子500の端子と接続される直流バスバー(不図示)と、パワー半導体モジュール300aないし300cの交流端子と接続される交流バスバー(不図示)と、直流バスバー及び交流バスバーを被覆して一体化するための絶縁樹脂部と、を有する。 The terminals of the power semiconductor modules 300 a to 300 c and the terminals of the capacitor element 500 protrude from the upper surface side of the flow path forming body 410. The bus bar module 700 includes a DC bus bar (not shown) connected to the DC terminals of the power semiconductor modules 300a to 300c and the terminals of the capacitor element 500, and an AC bus bar (not shown) connected to the AC terminals of the power semiconductor modules 300a to 300c. ) And an insulating resin portion for covering and integrating the DC bus bar and the AC bus bar.
 ベース部800は、バスバーモジュール700を収納するための収納空間を形成するとともに筐体400に固定される。ベース部800は、後述するパワー半導体モジュール300aないし300cの信号端子327U及び327Lを貫通するための第1貫通孔801を形成する。 The base unit 800 forms a storage space for storing the bus bar module 700 and is fixed to the housing 400. The base portion 800 forms a first through hole 801 for passing through signal terminals 327U and 327L of power semiconductor modules 300a to 300c described later.
 制御回路基板175は、ベース部800の収納空間が形成された側とは反対側の面に配置され、信号端子327U及び327Lと接続される。 The control circuit board 175 is disposed on the surface opposite to the side where the storage space of the base portion 800 is formed, and is connected to the signal terminals 327U and 327L.
 ベース部800は、導電性部材、例えば金属製材料に構成され、パワー半導体モジュール300aないし300cから放射されるノイズを遮蔽し、制御回路基板175をノイズから保護している。またベース部800は、コンデンサ素子500の端子との絶縁距離を確保するための凹部802を形成する。 The base portion 800 is made of a conductive member, for example, a metal material, shields noise emitted from the power semiconductor modules 300a to 300c, and protects the control circuit board 175 from noise. In addition, the base portion 800 forms a recess 802 for securing an insulation distance from the terminal of the capacitor element 500.
 本実施形態の電力変換装置200は、大電力を流すとともに冷却を必要するパワー半導体モジュール300aないし300c及びコンデンサ素子500を配置した第1階層と、パワー半導体モジュール300aないし300cに準じて冷却を必要するとともに大電力を流すバスバーモジュール700を配置する第2階層と、制御系の小電力を扱う制御回路基板175を配置する第3階層と、を備える。なお、第2階層と第3階層との間には、ベース部800が配置される。 The power conversion device 200 according to the present embodiment requires cooling according to the power semiconductor modules 300a to 300c and the first layer in which the power semiconductor modules 300a to 300c and the capacitor elements 500 that require cooling while flowing large power are disposed. In addition, a second hierarchy in which the bus bar module 700 that flows high power is arranged and a third hierarchy in which the control circuit board 175 that handles the low power of the control system is arranged. Note that a base unit 800 is disposed between the second layer and the third layer.
 図5は、筐体400の分解斜視図である。図6は、図4の平面AAの矢印方向から見た筐体400の断面図である。 FIG. 5 is an exploded perspective view of the housing 400. 6 is a cross-sectional view of the housing 400 as seen from the direction of the arrow on the plane AA in FIG.
 本実施形態においては、流路形成体410は、筐体400に一体に形成されている。これにより、筐体400が流路形成体410により冷却され、筐体400に固定される部品、例えばベース部800や蓋401を冷却することができ、電力変換装置200全体を効率良く冷却することができる。 In the present embodiment, the flow path forming body 410 is integrally formed with the housing 400. Thereby, the housing 400 is cooled by the flow path forming body 410, and components fixed to the housing 400, for example, the base portion 800 and the lid 401 can be cooled, and the entire power conversion device 200 can be efficiently cooled. Can do.
 流路形成体410は、パワー半導体モジュール300aないし300cを配置する第1流路空間411と、コンデンサ素子500を収納する収納空間490と、収納空間490と対向する第2流路空間412と、を形成する。 The flow path forming body 410 includes a first flow path space 411 in which the power semiconductor modules 300a to 300c are disposed, a storage space 490 that stores the capacitor element 500, and a second flow path space 412 that faces the storage space 490. Form.
 第2流路空間412は、流路入口部402aと第1流路空間411とを繋ぐ。また流路形成体410は、第1流路空間411に繋がる開口部413を、底面部に形成する。この開口部413は蓋401により塞がれることにより、流路形成体410と蓋401が冷却冷媒を流すための流路を形成する。 The second channel space 412 connects the channel inlet portion 402a and the first channel space 411. Moreover, the flow path forming body 410 forms an opening 413 connected to the first flow path space 411 on the bottom surface. The opening 413 is closed by the lid 401, so that the flow path forming body 410 and the lid 401 form a flow path for flowing the cooling refrigerant.
 さらに流路形成体410は、第1流路空間411に繋がる複数の貫通孔415を、上面部に形成する。パワー半導体モジュール300aないし300cの端子は、この貫通孔415を通って、流路形成体410の外部まで延ばされる。 Furthermore, the flow path forming body 410 forms a plurality of through holes 415 connected to the first flow path space 411 in the upper surface portion. The terminals of the power semiconductor modules 300 a to 300 c are extended to the outside of the flow path forming body 410 through the through holes 415.
 さらに流路形成体410は、収納空間490に繋がる開口部414を、上面部に形成する。 Further, the flow path forming body 410 forms an opening 414 connected to the storage space 490 on the upper surface.
 コンデンサ端子502は、開口部414が介して流路形成体410の外部まで延ばされる。封止樹脂501は、収納空間490に充填され、コンデンサ端子502を封止する。 The capacitor terminal 502 is extended to the outside of the flow path forming body 410 through the opening 414. The sealing resin 501 fills the storage space 490 and seals the capacitor terminal 502.
 冷却冷媒の流れ499は、流路入口部402aから第2流路空間412を通り、さらに第1流路空間411を通って、流路出口部402bの順に流れる。コンデンサ端子502から伝達される熱は、封止樹脂501及び流路形成体410を介して、第2流路空間412に流れる冷却冷媒まで伝達される。なお、第2流路空間412は、収納空間490の底部だけでなく側部を形成する流路形成体410に設けてもよい。 図7は、パワー半導体モジュール300aの外観斜視図である。パワー半導体モジュール300aないし300cは、同様の構成であるため、代表してパワー半導体モジュール300aについて説明する。 The cooling refrigerant flow 499 flows from the flow path inlet portion 402a through the second flow path space 412 and further through the first flow path space 411 to the flow path outlet portion 402b. The heat transferred from the capacitor terminal 502 is transferred to the cooling refrigerant flowing in the second flow path space 412 via the sealing resin 501 and the flow path forming body 410. The second flow path space 412 may be provided in the flow path forming body 410 that forms not only the bottom portion of the storage space 490 but also the side portions. FIG. 7 is an external perspective view of the power semiconductor module 300a. Since the power semiconductor modules 300a to 300c have the same configuration, the power semiconductor module 300a will be described as a representative.
 パワー半導体モジュール300aは、後述するパワー回路体380と、パワー回路体380を収納するケース304と、端子を絶縁するための絶縁モールド端子部600と、により構成される。 The power semiconductor module 300a includes a power circuit body 380, which will be described later, a case 304 that houses the power circuit body 380, and an insulating mold terminal portion 600 that insulates the terminals.
 枠体305は、ケース304の側面及び底面を形成する。第1側面351aは、ケース304の側面及び底面と直交する最も広い面を形成する。第2側面351bは、パワー回路体380を挟んで第1側面351aとは反対側に形成され、かつ第1側面351aと同様に、ケース304の側面及び底面と直交する最も広い面を形成する。 The frame body 305 forms a side surface and a bottom surface of the case 304. The first side surface 351 a forms the widest surface orthogonal to the side surface and the bottom surface of the case 304. The second side surface 351b is formed on the opposite side of the first side surface 351a across the power circuit body 380, and forms the widest surface orthogonal to the side surface and the bottom surface of the case 304, similarly to the first side surface 351a.
 第2側面351bは、第1側面351aと同様の構成と機能を有するため、代表して第1側面351aについて説明する。 Since the second side surface 351b has the same configuration and function as the first side surface 351a, the first side surface 351a will be described as a representative.
 フィン350は、第1側面351aに形成され、本実施形態においては円柱状のピンフィンである。フィン形成面352は、第1側面351aにおいて、フィン350が集中的に形成される面である。 The fin 350 is formed on the first side surface 351a and is a cylindrical pin fin in the present embodiment. The fin forming surface 352 is a surface on which the fins 350 are intensively formed on the first side surface 351a.
 フランジ308は、パワー半導体モジュール300aの端子を通す為に挿入孔306(図8参照)を囲むように形成される。位置決め部311は、流路形成体410と組み付ける際に位置決めを行い、フランジ308の上面側に設けられる。Oリング溝312はフランジ308の側面側に形成され、パワー半導体モジュール300aと流路形成体410はパワー半導体モジュール300aの側面側でシールされることになる。つまりOリング溝312は、挿入口306の外周を囲むように形成されている。 The flange 308 is formed so as to surround the insertion hole 306 (see FIG. 8) in order to pass the terminal of the power semiconductor module 300a. The positioning portion 311 performs positioning when assembling with the flow path forming body 410 and is provided on the upper surface side of the flange 308. The O-ring groove 312 is formed on the side surface side of the flange 308, and the power semiconductor module 300a and the flow path forming body 410 are sealed on the side surface side of the power semiconductor module 300a. That is, the O-ring groove 312 is formed so as to surround the outer periphery of the insertion port 306.
 パワー半導体モジュール300aの端子は、正極側端子315Dと、負極側端子319Dと、交流端子320Dと、信号端子327Lと、信号端子327Uとにより構成される。 The terminals of the power semiconductor module 300a include a positive terminal 315D, a negative terminal 319D, an AC terminal 320D, a signal terminal 327L, and a signal terminal 327U.
 補助モールド体601は、正極側端子315D、交流端子320、信号接続端子327L及び信号接続端子327Uを貫通させるための複数の貫通孔が形成され、互いの端子を電気的に絶縁する。溝602は、端子間に配置される絶縁材を固定するために、補助モールド体601に形成される。これにより端子間の絶縁距離を長くすることができる。 The auxiliary mold body 601 is formed with a plurality of through holes for penetrating the positive terminal 315D, the AC terminal 320, the signal connection terminal 327L, and the signal connection terminal 327U, and electrically insulates the terminals from each other. The groove 602 is formed in the auxiliary mold body 601 in order to fix the insulating material disposed between the terminals. Thereby, the insulation distance between terminals can be lengthened.
 図8は、パワー半導体モジュール300aの分解斜視図である。 FIG. 8 is an exploded perspective view of the power semiconductor module 300a.
 パワー回路体380は、導体板318等(図9参照)の導体部材やパワー半導体素子を封止するための絶縁封止材302を有する。また導体板318の放熱面321A及び導体板319の放熱面321Bは、絶縁封止材302から露出し、パワー半導体素子から伝達する熱を放熱する。 The power circuit body 380 includes an insulating sealing material 302 for sealing a conductor member such as a conductor plate 318 (see FIG. 9) and a power semiconductor element. Further, the heat radiation surface 321A of the conductor plate 318 and the heat radiation surface 321B of the conductor plate 319 are exposed from the insulating sealing material 302 and radiate heat transmitted from the power semiconductor element.
 放熱面321A及び放熱面321Bは、フィン形成面352の垂直方向から見た場合、フィン形成面352と重なるように形成される。絶縁材333a及び333bは、パワー回路体380とケース304との間に配置され、パワー回路体380とケース304との間を絶縁させる。ケース304は、端子を突出させる挿入口306以外は全閉な構造となっている。 The heat radiation surface 321 </ b> A and the heat radiation surface 321 </ b> B are formed so as to overlap the fin formation surface 352 when viewed from the direction perpendicular to the fin formation surface 352. The insulating materials 333a and 333b are disposed between the power circuit body 380 and the case 304, and insulate the power circuit body 380 and the case 304 from each other. The case 304 has a fully closed structure except for the insertion port 306 from which the terminal protrudes.
 なお、第1放熱体354aと第2放熱体354bを枠体305と一体に形成してよいが、本実施形態においては、ケース304は、第1側面351aの一部を形成する第1放熱体354aと、第2側面351bの一部を形成する第2放熱体354bと、を枠体305から分離して成形し、これら第1放熱体354a及び第2放熱体354bを枠体305にFSWや溶接等の防水性の高い接合方法により接続している。 In addition, although the 1st heat radiating body 354a and the 2nd heat radiating body 354b may be integrally formed with the frame 305, in this embodiment, the case 304 is a 1st heat radiating body which forms a part of 1st side surface 351a. 354a and a second heat radiating body 354b that forms a part of the second side surface 351b are formed separately from the frame body 305, and the first heat radiating body 354a and the second heat radiating body 354b are attached to the frame 305 by FSW or They are connected by a highly waterproof joining method such as welding.
 FSW等により第1放熱体354aと第2放熱体354bを枠体305を接合した場合、FSWや溶接等の接合領域を第1側面351a及び第2側面351bのそれぞれに設ける必要がある。 When the frame body 305 is joined to the first heat radiating body 354a and the second heat radiating body 354b by FSW or the like, it is necessary to provide joint regions such as FSW and welding on the first side surface 351a and the second side surface 351b.
 ケース304は、電気伝導性を有する部材、例えばCu、Cu合金、Cu-C、Cu-CuOなどの複合材、あるいはAl、Al合金、AlSiC、Al-Cなどの複合材などから形成される。 The case 304 is formed of a member having electrical conductivity, for example, a composite material such as Cu, Cu alloy, Cu—C, or Cu—CuO, or a composite material such as Al, Al alloy, AlSiC, or Al—C.
 また絶縁封止材302は、例えばノボラック系、多官能系、ビフェニル系のエポキシ樹脂系を基とした樹脂を用いることができ、SiO2、Al2O3、AlN、BNなどのセラミックスやゲル、ゴムなどを含有させ、熱膨張係数を導体部315、320、318、319に近づける。これにより、部材間の熱膨張係数差を低減でき、使用環境時の温度上昇にともない発生する熱応力が大幅に低下するため、パワー半導体モジュールの寿命をのばすことが可能となる。また、補助モールド体600の成型材には、PPS(ポリフェニルサルファイド)やPBT(ポリブチレンテレフタレート)といった高耐熱な熱可塑性樹脂が適している。 The insulating sealing material 302 can be made of, for example, a resin based on a novolak, polyfunctional, or biphenyl epoxy resin, and contains ceramics such as SiO2, Al2O3, AlN, BN, gel, rubber, or the like. The thermal expansion coefficient is made closer to the conductor portions 315, 320, 318, and 319. Thereby, the difference in thermal expansion coefficient between the members can be reduced, and the thermal stress generated as the temperature rises in the use environment is greatly reduced, so that the life of the power semiconductor module can be extended. Further, a high heat-resistant thermoplastic resin such as PPS (polyphenyl sulfide) or PBT (polybutylene terephthalate) is suitable for the molding material of the auxiliary mold body 600.
 図9は、パワー回路体380の分解斜視図である。 
 IGBT328とダイオード156は、インバータ回路140の上アーム回路を構成する。導体板315は、IGBT328のコレクタ電極及びダイオード156のアノード電極とはんだ材等により金属接続される。
FIG. 9 is an exploded perspective view of the power circuit body 380.
The IGBT 328 and the diode 156 constitute an upper arm circuit of the inverter circuit 140. The conductor plate 315 is metal-connected to the collector electrode of the IGBT 328 and the anode electrode of the diode 156 by a solder material or the like.
 導体板318は、IGBT328及びダイオード156を挟んで導体板315と反対側に配置され、IGBT328のエミッタ電極及びダイオード156のカソード電極とはんだ材等により金属接続される。IGBT330とダイオード166は、インバータ回路140の下アーム回路を構成する。 The conductor plate 318 is disposed on the opposite side of the conductor plate 315 with the IGBT 328 and the diode 156 interposed therebetween, and is electrically connected to the emitter electrode of the IGBT 328 and the cathode electrode of the diode 156 by a solder material or the like. The IGBT 330 and the diode 166 constitute a lower arm circuit of the inverter circuit 140.
 導体板320は、IGBT330のコレクタ電極及びダイオード166のアノード電極とはんだ材等により金属接続される。導体板319は、IGBT330及びダイオード136を挟んで導体板312と反対側に配置され、IGBT330のエミッタ電極及びダイオード166のカソード電極とはんだ材等により金属接続される。 The conductor plate 320 is metal-connected to the collector electrode of the IGBT 330 and the anode electrode of the diode 166 by a solder material or the like. The conductor plate 319 is disposed on the opposite side of the conductor plate 312 with the IGBT 330 and the diode 136 in between, and is metal-connected to the emitter electrode of the IGBT 330 and the cathode electrode of the diode 166 by a solder material or the like.
 金属接続に用いられる金属接合剤は、例えばSn合金系の軟ろう材(はんだ)や、Al合金・Cu合金等の硬ろう材や金属のナノ粒子・マイクロ粒子を用いた金属焼結材を用いることができる。 As the metal bonding agent used for the metal connection, for example, a Sn alloy-based soft solder material (solder), a hard solder material such as an Al alloy / Cu alloy, or a metal sintered material using metal nanoparticles / micro particles is used. be able to.
 中間電極329Aは、導体板318の導体板319に近い辺に配置される。中間電極329Bは、導体板320の導体板315に近い辺に配置されるとともに、中間電極329Aと対向するように導体板315 に向かって延ばされる。さらに中間電極329Bは、中間電極329Aとはんだ材等により金属接続され、上アーム回路と下アーム回路とを接続する。 The intermediate electrode 329A is disposed on the side of the conductor plate 318 close to the conductor plate 319. The intermediate electrode 329B is disposed on the side of the conductor plate 320 close to the conductor plate 315, and extends toward the conductor plate 315 so as to face the intermediate electrode 329A. Further, the intermediate electrode 329B is metal-connected to the intermediate electrode 329A by a solder material or the like, and connects the upper arm circuit and the lower arm circuit.
 なお、導体板318及び導体板319は、IGBT328のエミッタ電極と平行な仮想面上に並べられるように配置される。同様に、導体板315及び導体板320は、IGBT328のコレクタ電極と平行な仮想面上に並べられるように配置される。 Note that the conductor plate 318 and the conductor plate 319 are arranged so as to be arranged on a virtual plane parallel to the emitter electrode of the IGBT 328. Similarly, the conductor plate 315 and the conductor plate 320 are arranged so as to be arranged on a virtual plane parallel to the collector electrode of the IGBT 328.
 図10は、流路形成体410を一体に形成した筐体400を上面から見た外観斜視図である。図11は、筐体400を下面から見た外観斜視図である。 FIG. 10 is an external perspective view of the casing 400 integrally formed with the flow path forming body 410 as viewed from above. FIG. 11 is an external perspective view of the housing 400 as viewed from the lower surface.
 平坦面404は、流路形成体400の上面に形成され、バスバーモジュール700がこの平坦面404に配置される。図5にて示された貫通孔415は、平坦面404に形成される。 The flat surface 404 is formed on the upper surface of the flow path forming body 400, and the bus bar module 700 is disposed on the flat surface 404. The through hole 415 shown in FIG. 5 is formed in the flat surface 404.
 凹部406は、流路形成体400の第1流路空間411を形成する面のうち貫通孔415が形成された面に形成される。凹部406は、凹部406の底面部に、貫通孔415が配置されるように、流路形成体400に形成される。 
 図12は、流路形成体400にパワー半導体モジュール300aないし300cを組み立てる工程を示す断面図である。図13は、図5の平面Bの矢印方向から見た流路形成体410にバスバーモジュール700を組み立てる工程を示す断面図である。
The recess 406 is formed on the surface of the flow path forming body 400 in which the first flow path space 411 is formed, in which the through hole 415 is formed. The concave portion 406 is formed in the flow path forming body 400 such that the through hole 415 is disposed on the bottom surface portion of the concave portion 406.
FIG. 12 is a cross-sectional view illustrating a process of assembling the power semiconductor modules 300a to 300c to the flow path forming body 400. FIG. 13 is a cross-sectional view showing a process of assembling the bus bar module 700 to the flow path forming body 410 as seen from the direction of the arrow on the plane B in FIG.
 パワー半導体モジュール300aないし300cは、流路形成体410の底面側から第1流路空間411に収納される。パワー半導体モジュール300aのケース304に形成された位置決め部311は、凹部406の底面部に組み付けられる。一方、ケース304に形成されたOリング溝312は、凹部406の側面部と対向する位置に配置される。 The power semiconductor modules 300a to 300c are accommodated in the first flow path space 411 from the bottom surface side of the flow path forming body 410. The positioning part 311 formed in the case 304 of the power semiconductor module 300a is assembled to the bottom part of the recess 406. On the other hand, the O-ring groove 312 formed in the case 304 is disposed at a position facing the side surface of the recess 406.
 補助モールド体601は、貫通孔415を貫通して配置され、この補助モールド体601の一面が流路形成体410の平坦面404と同一面になるように配置される。パワー半導体モジュール300aないし300cの端子は、バスバーモジュール700の貫通孔705を貫通し、バスバーモジュール700側の端子701と接続される。 The auxiliary mold body 601 is disposed through the through-hole 415, and one surface of the auxiliary mold body 601 is disposed so as to be flush with the flat surface 404 of the flow path forming body 410. The terminals of the power semiconductor modules 300a to 300c pass through the through holes 705 of the bus bar module 700 and are connected to the terminals 701 on the bus bar module 700 side.
 調整部材407は、冷却媒体がフィン350に流れるように冷却媒体の流れを調整するための部材である。つまり、調整部材407は、冷却媒がフィン350以外にバイパスすることを防止するための部材である。調整部材407を設ける理由は図8にて説明したようにケース304は第1放熱体354aを枠体305を接合するための接合領域が必要だからである。 The adjusting member 407 is a member for adjusting the flow of the cooling medium so that the cooling medium flows through the fins 350. That is, the adjustment member 407 is a member for preventing the coolant from bypassing other than the fins 350. The reason why the adjustment member 407 is provided is that the case 304 needs a joining region for joining the first heat radiator 354a to the frame body 305 as described with reference to FIG.
 図14は、フィンを形成した面側の第1放熱体354aの拡大図である。 FIG. 14 is an enlarged view of the first heat radiating body 354a on the surface side where the fins are formed.
 フィン350は、第1フィン360と、第1フィン360の太さよりも大きい太さを有する第2フィン370aないし370fと、によりで構成される。ここで、フィンの太さとは、フィンの突出方向の垂直断面のフィンの幅であり、円柱状のピンフィンの場合には、円の直径である。 The fin 350 includes a first fin 360 and second fins 370a to 370f having a thickness larger than that of the first fin 360. Here, the thickness of the fin is the width of the fin in the vertical section in the protruding direction of the fin, and in the case of a cylindrical pin fin, it is the diameter of the circle.
 第2フィン370aないし370fは、第1フィン360よりも直径が大きく、曲げ剛性が高い形状となっている。第1フィン360としては、例えば直径が0.9mm程度のピンフィンを用いる。 The second fins 370a to 370f have a larger diameter and higher bending rigidity than the first fin 360. As the first fin 360, for example, a pin fin having a diameter of about 0.9 mm is used.
 第1フィン360同士の間隔は、第1フィン360と第2フィン370a等との間隔より小さい。これにより、第1フィン360の形成領域の熱伝達率を向上させることができる。 The interval between the first fins 360 is smaller than the interval between the first fins 360 and the second fins 370a. Thereby, the heat transfer rate of the formation region of the first fin 360 can be improved.
 図15は、第1放熱体354aを透過させ、フィン350とパワー半導体素子との位置関係を示した透過図である。 FIG. 15 is a transmission diagram showing the positional relationship between the fin 350 and the power semiconductor element through the first heat radiator 354a.
 第1フィン射影部360Sは、IGBT328のエミッタ電極面又は第1放熱体354aのフィン形成面に対して垂直方向から投影した場合における、第1フィン360の斜影である。同様に、第2フィン射影部370Sは、第2フィン370の斜影である。 The first fin projecting portion 360S is an oblique shadow of the first fin 360 when projected from the vertical direction with respect to the emitter electrode surface of the IGBT 328 or the fin forming surface of the first heat radiator 354a. Similarly, the second fin projection unit 370 </ b> S is an oblique projection of the second fin 370.
 第1フィン360は、第1フィン射影部360SがIGBT328及び330やダイオード156及び166と重なるように形成される。これにより、放熱対象であるIGBT328等のパワー半導体素子が、熱伝達率が高い第1フィン360により効率的に冷却される。 The first fin 360 is formed such that the first fin projection 360S overlaps the IGBTs 328 and 330 and the diodes 156 and 166. Thereby, power semiconductor elements, such as IGBT328 which is heat dissipation object, are efficiently cooled by the 1st fin 360 with a high heat transfer rate.
 図16は、図14の領域Cを拡大した拡大図である。 
 外周縁363は、複数の第1フィン360が形成された領域を囲んだ場合の縁となる部分である。第2フィン370aないし370fは、外周縁363よりも外側に配置される。
FIG. 16 is an enlarged view of a region C in FIG.
The outer peripheral edge 363 is a portion that becomes an edge when surrounding an area where the plurality of first fins 360 are formed. The second fins 370 a to 370 f are disposed outside the outer peripheral edge 363.
 つまり図15にて説明したように、IGBT328のエミッタ電極面又は第1放熱体354aのフィン形成面に対して垂直方向から投影した場合において、第2フィン370aないし370fは、第2フィン射影部370Sが第1フィン射影部360Sの外周縁と重なる又は第1フィン射影部360Sの外周縁の外側になるように、配置される。言い換えると、第2フィン370aないし370fは、複数の第1フィン360のうち外側に配置された複数の第1フィン360を結んだ第1フィン領域よりも外側に配置される。 That is, as described with reference to FIG. 15, when projected from the direction perpendicular to the emitter electrode surface of the IGBT 328 or the fin forming surface of the first heat radiator 354 a, the second fins 370 a to 370 f are the second fin projecting portions 370 </ b> S. Are arranged so as to overlap the outer peripheral edge of the first fin projecting portion 360S or to be outside the outer peripheral edge of the first fin projecting portion 360S. In other words, the second fins 370a to 370f are arranged outside the first fin region connecting the plurality of first fins 360 arranged outside the plurality of first fins 360.
 本実施形態のパワー半導体モジュール300aないし300cは、幅広い2面にフィン350を形成したケース304を用いている。さらにケース304は、熱伝達率を向上させるために直径が非常に小さい第1フィン360を用いている。 The power semiconductor modules 300a to 300c of this embodiment use a case 304 in which fins 350 are formed on two wide surfaces. Further, the case 304 uses the first fin 360 having a very small diameter in order to improve the heat transfer coefficient.
 これらの条件から、本実施形態のパワー半導体モジュール300aないし300cを製造時の運搬や組み込まれる際に、第1フィン360を変形や割れから十分に保護する必要がある。例えば、パワー半導体モジュール300aないし300cは流路形成体410に組み込まれる前には作業台等に置かれるが、その際パワー半導体モジュール300aないし300cは枠体305が作業台と接した状態となる。そこからパワー半導体モジュール300aないし300cを組み込みのために取り上げる際に、パワー半導体モジュール300aないし300cが作業台上で倒れたり、第1フィン360が作業台と接することも想定される。特に本実施形態においては、ケース304の幅広い2面にフィン350を形成しているため、その蓋然性が高い。 From these conditions, it is necessary to sufficiently protect the first fin 360 from deformation and cracking when the power semiconductor modules 300a to 300c of the present embodiment are transported or assembled during manufacture. For example, the power semiconductor modules 300a to 300c are placed on a workbench or the like before being incorporated into the flow path forming body 410. At this time, the power semiconductor modules 300a to 300c are in a state where the frame body 305 is in contact with the workbench. From this point, when the power semiconductor modules 300a to 300c are taken up for incorporation, it is also assumed that the power semiconductor modules 300a to 300c fall on the work table or the first fin 360 contacts the work table. In particular, in the present embodiment, since the fins 350 are formed on two wide surfaces of the case 304, the probability is high.
 そこで、ケース304の両面において第2フィン370が第1フィン360の形成領域の外周縁363よりも外側に配置されることにより、ケース304の両面における第1フィン360を変形や割れから保護することができるようになる。特にパワー半導体素子と対向する第1フィン360を変形や割れから保護することができる。 Therefore, the second fins 370 are disposed outside the outer peripheral edge 363 of the formation region of the first fin 360 on both surfaces of the case 304, thereby protecting the first fin 360 on both surfaces of the case 304 from deformation and cracking. Will be able to. In particular, the first fin 360 facing the power semiconductor element can be protected from deformation and cracking.
 さらに、図16に示されるように、第2フィン370は、外周縁363の延長線364によりも突出した突出部分355を有するように配置される。この突出部分355は、パワー半導体モジュール300aないし300cを流路形成体410に挿入する際の挿入方向Dに沿った向きに設けられる。 Further, as shown in FIG. 16, the second fin 370 is disposed so as to have a protruding portion 355 protruding from the extension line 364 of the outer peripheral edge 363. The protruding portion 355 is provided in a direction along the insertion direction D when the power semiconductor modules 300a to 300c are inserted into the flow path forming body 410.
 これにより、 パワー半導体モジュール300aないし300cを流路形成体410に組み込む際に、作業冶具や作業者の手により第1フィン360が変形してしまうことを防止できる。 Thereby, when the power semiconductor modules 300a to 300c are incorporated into the flow path forming body 410, it is possible to prevent the first fin 360 from being deformed by the work jig or the operator's hand.
 図17は、パワー半導体モジュール300aが流路形成体410に組み込まれた状態におけるパワー半導体モジュール300a及び調整部材407の正面図である。図18は、図17の領域Dの拡大図である。 FIG. 17 is a front view of the power semiconductor module 300a and the adjustment member 407 in a state where the power semiconductor module 300a is incorporated in the flow path forming body 410. 18 is an enlarged view of a region D in FIG.
 図17に示されるように、調整部材407は、バイパス流を防止するための効果をあげるために、フランジ308とフィン350の間の隙間ができるだけ小さくなるように、形成される。 17, the adjustment member 407 is formed so that the gap between the flange 308 and the fin 350 is as small as possible in order to increase the effect for preventing the bypass flow.
 具体的には図18に示されるように、調整部材407の一方の面がフランジ308と接触し、調整部材407の他方の面がフィン350と接触する。そのため、フィン350は、調整部材407の弾性力408による応力を受けることになる。 Specifically, as shown in FIG. 18, one surface of the adjustment member 407 contacts the flange 308, and the other surface of the adjustment member 407 contacts the fin 350. Therefore, the fin 350 receives stress due to the elastic force 408 of the adjustment member 407.
 そこで本実施形態においては、第1フィン360よりも剛性の大きい第2フィン370aないし370fが調整部材407からの応力を受け止めるように構成される。 Therefore, in the present embodiment, the second fins 370a to 370f having higher rigidity than the first fin 360 are configured to receive the stress from the adjusting member 407.
 つまり図15にて説明したように、IGBT328のエミッタ電極面又は第1放熱体354aのフィン形成面に対して垂直方向から投影した場合において、第2フィン370aないし370fは、第2フィン射影部370Sが第1フィン射影部360Sの外周縁と重なる又は第1フィン射影部360Sの外周縁の外側になるように、配置される。これにより、第1フィン360の変形を防止することが出来る。 That is, as described with reference to FIG. 15, when projected from the direction perpendicular to the emitter electrode surface of the IGBT 328 or the fin forming surface of the first heat radiator 354 a, the second fins 370 a to 370 f are the second fin projecting portions 370 </ b> S. Are arranged so as to overlap the outer peripheral edge of the first fin projecting portion 360S or to be outside the outer peripheral edge of the first fin projecting portion 360S. Thereby, the deformation of the first fin 360 can be prevented.
 特に、冷却媒体の流量が少ない場合、フィン350の熱伝達率を確保するために調整部材407を隙間なく組み付ける必要性が増し、この調整部材407の寸法を、フランジ308とフィン350との間の寸法よりも大きくするとともに、調整部材407を弾性部材により構成する。一方で第1フィン360は、その直径と第1フィン360同士の間隔を小さくして熱伝達率を向上させようとするため、第1フィン360の曲げ剛性は小さくなる。したがって、弾性力408が第1フィン360を変形させやすくなるため、本実施形態の効果が顕著に表れる。 In particular, when the flow rate of the cooling medium is small, the necessity of assembling the adjusting member 407 without gaps in order to ensure the heat transfer coefficient of the fin 350 increases, and the dimension of the adjusting member 407 is set between the flange 308 and the fin 350. The adjustment member 407 is made of an elastic member while being larger than the dimension. On the other hand, since the first fin 360 attempts to improve the heat transfer coefficient by reducing the diameter and the interval between the first fins 360, the bending rigidity of the first fin 360 is reduced. Therefore, since the elastic force 408 easily deforms the first fin 360, the effect of the present embodiment is remarkably exhibited.
 また図8に示されるように、フランジ308の高さは、フィン350の高さより大きく形成される。そして図17に示されるように、第2フィン370aと第2フィン370bと第2フィン370eは、フランジ308に対して第1フィン360よりも遠くに配置される。 As shown in FIG. 8, the height of the flange 308 is formed larger than the height of the fin 350. 17, the second fin 370a, the second fin 370b, and the second fin 370e are disposed farther than the first fin 360 with respect to the flange 308.
 これにより、フランジ308に近い側の第1フィン360はフランジ308によって保護され、第2フィン370a等に近い側の第1フィン360は第2フィン370a等によって保護される。よってパワー半導体モジュール及び電力変換装置の生産性を維持しながら、第2フィン370aの数を低減することができる。 Thus, the first fin 360 near the flange 308 is protected by the flange 308, and the first fin 360 near the second fin 370a or the like is protected by the second fin 370a or the like. Therefore, the number of the second fins 370a can be reduced while maintaining the productivity of the power semiconductor module and the power conversion device.
 また図17に示されるように、第1フィン360及び第2フィン370aないし370fは、第1フィン360及び第2フィン370を結んだフィン領域が略矩形状となるように配置される。そして複数の第2フィン370aないし370fのうちの4つの第2フィン370aと第2フィン370bと第2フィン370cと第2フィン370dは、略矩形状の4隅を形成する。 Also, as shown in FIG. 17, the first fin 360 and the second fins 370a to 370f are arranged so that the fin region connecting the first fin 360 and the second fin 370 has a substantially rectangular shape. Of the plurality of second fins 370a to 370f, four second fins 370a, second fins 370b, second fins 370c, and second fins 370d form substantially rectangular four corners.
 これにより、フィン領域において衝撃の頻度が高い4隅を、少ない数の第2フィン370a等により第1フィン360を保護することができる。 Thereby, the first fin 360 can be protected by the small number of second fins 370a and the like at the four corners where the frequency of impact is high in the fin region.
 また図17に示されるように、4隅に配置された第2フィン370aないし370dとは異なる第2フィン370eは、4隅に配置された第2フィン370aないし370dのうちの隣り合う2つのフィンである第2フィン370aと第2フィン370bを結ぶ線分の略中点の位置に配置される。 As shown in FIG. 17, the second fins 370e different from the second fins 370a to 370d arranged at the four corners are two adjacent fins of the second fins 370a to 370d arranged at the four corners. The second fins 370a and the second fins 370b are arranged at substantially midpoint positions.
 これにより、第2フィン370aと第2フィン370bを結ぶ線分が長くなり、この線分上において衝撃の頻度が高くなる可能性が高くなった場合であっても、少ない数の第2フィン370e等により第1フィン360を保護することができる。 As a result, even when the line segment connecting the second fins 370a and the second fins 370b becomes long and the possibility that the frequency of impact increases on this line segment is high, the small number of second fins 370e. For example, the first fin 360 can be protected.
 図19は、他の実施形態に係るフィンを形成した面側の第1放熱体354aの拡大図である。図20は、図19の領域Eを拡大した拡大図である。図21は、他の実施形態に係るパワー半導体モジュール300aが流路形成体410に組み込まれた状態におけるパワー半導体モジュール300a及び調整部材472aの正面図である。図22は、図21の領域Fの拡大図である。
 実施例1と同様の図面番号を付した構成は、実施例1と同様の機能を有する。本実施形態では、実施例1と異なる部分を中心に説明する。 
 本実施形態に係る第1放熱体392aは、第2フィン370aないし370fの位置が実施例1と異なる。具体的には、図20に示されるように、第2フィン370aないし370fは、外周縁363の延長線364に重ならないように、第1フィン360に近づけて配置される。このような配置であっても、外周縁363付近に配置された第1フィン360以外の多数の第1フィン360を衝撃等から保護することができる。図示しないが、第2放熱体392bも、第1放熱体392aと同様の構成である。
FIG. 19 is an enlarged view of the first heat radiator 354a on the surface side where the fins according to another embodiment are formed. FIG. 20 is an enlarged view in which the region E in FIG. 19 is enlarged. FIG. 21 is a front view of the power semiconductor module 300a and the adjustment member 472a in a state in which the power semiconductor module 300a according to another embodiment is incorporated in the flow path forming body 410. FIG. 22 is an enlarged view of a region F in FIG.
The configurations denoted by the same drawing numbers as in the first embodiment have the same functions as in the first embodiment. In the present embodiment, a description will be given focusing on the differences from the first embodiment.
The first heat dissipating body 392a according to this embodiment is different from the first embodiment in the positions of the second fins 370a to 370f. Specifically, as shown in FIG. 20, the second fins 370 a to 370 f are arranged close to the first fin 360 so as not to overlap the extension line 364 of the outer peripheral edge 363. Even with such an arrangement, a large number of first fins 360 other than the first fins 360 arranged in the vicinity of the outer peripheral edge 363 can be protected from an impact or the like. Although not shown, the second radiator 392b has the same configuration as the first radiator 392a.
 しかしながら、第1流路空間411において、外周縁363付近に配置された第1フィン360が調整部材470によって繰り返し押圧力を受けていると、多くの第1フィン360が変形され、第1放熱体392aの冷却性能に影響を与える可能性がある。 However, if the first fin 360 disposed in the vicinity of the outer peripheral edge 363 is repeatedly pressed by the adjustment member 470 in the first flow path space 411, many first fins 360 are deformed, and the first heat radiator The cooling performance of 392a may be affected.
 そこで本実施形態の調整部材472は、第2フィン370aないし370fに向かって突出する突出部473を形成する。そして、突出部473は、調整部材472の中で優先的に第2フィン370と接触する。つまり、突出部473を除いた調整部材472は、第1フィン360に接触し難くなり、第1フィン360 の変形を防止することができる。 Therefore, the adjustment member 472 of the present embodiment forms a protruding portion 473 that protrudes toward the second fins 370a to 370f. The protrusion 473 comes into contact with the second fin 370 preferentially in the adjustment member 472. That is, the adjustment member 472 excluding the protruding portion 473 is unlikely to contact the first fin 360, and the first fin 360 フ ィ ン can be prevented from being deformed.
 図23は、他の実施形態に係るパワー半導体モジュール300aが流路形成体410に組み込まれた状態におけるパワー半導体モジュール300a及び調整部材407の正面図である。図24は、図23の領域Gの拡大図である。 
 実施例1と同様の図面番号を付した構成は、実施例1と同様の機能を有する。本実施形態では、実施例1と異なる部分を中心に説明する。
FIG. 23 is a front view of the power semiconductor module 300a and the adjustment member 407 in a state in which the power semiconductor module 300a according to another embodiment is incorporated in the flow path forming body 410. FIG. 24 is an enlarged view of a region G in FIG.
The configurations denoted by the same drawing numbers as in the first embodiment have the same functions as in the first embodiment. In the present embodiment, a description will be given focusing on the differences from the first embodiment.
 本実施形態に係る第1放熱体393aは、第2フィンの数及び位置が実施例1と異なる。具体的には、図23に示されるように、第2フィン370は、複数設けられる。そして、複数の第2フィン370は、調整部材407の側部に沿って一列に配置される。つまり複数の第1フィン360のそれぞれは、複数の第2フィン370のいずれかを挟んで調整部材407と対向する位置に配置される。これにより、第1フィン360の変形を防止することができる。 The first radiator 393a according to the present embodiment is different from the first embodiment in the number and position of the second fins. Specifically, as shown in FIG. 23, a plurality of second fins 370 are provided. The plurality of second fins 370 are arranged in a line along the side portion of the adjustment member 407. That is, each of the plurality of first fins 360 is disposed at a position facing the adjustment member 407 with any one of the plurality of second fins 370 interposed therebetween. Thereby, the deformation of the first fin 360 can be prevented.
 図25は、実施例1ないし実施例3のいずれかの電力変換装置200をトランスミッションTMに配置した状態を示す全体斜視図である。 FIG. 25 is an overall perspective view showing a state where the power conversion device 200 according to any one of the first to third embodiments is arranged in the transmission TM.
 電力変換装置200をトランスミッションTMに配置した場合には、電力変換装置200に流れる冷却冷媒はトランスミッションTMからの熱を受けて温度が上昇するおそれがある。そこで、上述した実施例1ないし実施例3のいずれかの電力変換装置200のように、冷却冷媒は、調整部材407又は調整部材472を用いて、パワー半導体素子を優先的冷却するようにすることが、電力変換装置200の冷却性能の向上に繋がる。実施例1ないし実施例3のいずれかの第2フィン370a等を用いることにより、調整部材407又は調整部材472を用いた場合の冷却性の維持を図ることができる。 When the power conversion device 200 is disposed in the transmission TM, the cooling refrigerant flowing in the power conversion device 200 may receive heat from the transmission TM and increase in temperature. Therefore, like the power conversion device 200 of any of the first to third embodiments described above, the cooling refrigerant uses the adjustment member 407 or the adjustment member 472 to preferentially cool the power semiconductor element. However, it leads to the improvement of the cooling performance of the power converter 200. By using the second fin 370a or the like according to any of the first to third embodiments, it is possible to maintain the cooling performance when the adjustment member 407 or the adjustment member 472 is used.
21…コネクタ、136…バッテリ、138…直流コネクタ、140…インバータ回路部、153…コレクタ電極、154…ゲート電極、155…信号用エミッタ電極、156…ダイオード、157…正極端子、158…負極端子、163…コレクタ電極、164…ゲート電極、165…エミッタ電極、166…ダイオード、169…中間電極、172…制御回路部、174…ドライバ回路、175…制御回路基板、188…交流コネクタ、200…電力変換装置、300a…パワー半導体モジュール、300b…パワー半導体モジュール、300c…パワー半導体モジュール、302…絶縁封止材、304…ケース、305…枠体、306…挿入孔、308…フランジ、311…位置決め部、312…Oリング溝、315…導体板、315D…正極側端子、318…導体板、319…導体板、320…導体板、319D…負極側端子、320D…交流端子、321A…放熱面、321B…放熱面、327L…信号端子、327U…信号端子、328…IGBT、329A…中間電極、329B…中間電極、330…IGBT、333a及び333b…絶縁材、350…フィン、351a…第1側面、351b…第2側面、352…フィン形成面、354a…第1放熱体、354b…第2放熱体、355…突出部分、360…第1フィン、360S…第1フィン射影部、363…外周縁、364…延長線、370…第2フィン、370aないし370f…第2フィン、370S…第2フィン射影部、380…パワー回路体、392a…第1放熱体、392b…第2放熱体、393a…第1放熱体、393b…第2放熱体、400…筐体、401…蓋、402a…流路入口部、402b…流路出口部、404…平坦面、406…凹部、407…調整部材、408…弾性力、410…流路形成体、411…第1流路空間、412…第2流路空間、413…開口部、414…開口部、415…貫通孔、472…調整部材、473…突出部、490…収納空間、499…冷却冷媒の流れ、500…コンデンサモジュール、501…封止樹脂、502…コンデンサ端子、508…負極側電源端子、509…正極側電源端子、600…絶縁モールド端子部、601…補助モールド体、602…溝、700…バスバーモジュール、701…端子、705…貫通孔、800…ベース部、801…第1貫通孔、802…凹部、900…蓋、EGN…内燃機関、MG…モータジェネレータ、TM…トランスミッション、TSM…動力分配機構 DESCRIPTION OF SYMBOLS 21 ... Connector, 136 ... Battery, 138 ... DC connector, 140 ... Inverter circuit part, 153 ... Collector electrode, 154 ... Gate electrode, 155 ... Signal emitter electrode, 156 ... Diode, 157 ... Positive electrode terminal, 158 ... Negative electrode terminal, 163 ... Collector electrode, 164 ... Gate electrode, 165 ... Emitter electrode, 166 ... Diode, 169 ... Intermediate electrode, 172 ... Control circuit section, 174 ... Driver circuit, 175 ... Control circuit board, 188 ... AC connector, 200 ... Power conversion 300a ... power semiconductor module, 300c ... power semiconductor module, 302 ... insulating semiconductor, 304 ... case, 305 ... frame, 306 ... insertion hole, 308 ... flange, 311 ... positioning part, 312 ... O-ring groove, 315 ... conductor plate, 315D Positive terminal, 318 ... Conductor plate, 319 ... Conductor plate, 320 ... Conductor plate, 319D ... Negative electrode side terminal, 320D ... AC terminal, 321A ... Heat radiation surface, 321B ... Heat radiation surface, 327L ... Signal terminal, 327U ... Signal terminal, 328 ... IGBT, 329A ... intermediate electrode, 329B ... intermediate electrode, 330 ... IGBT, 333a and 333b ... insulating material, 350 ... fin, 351a ... first side, 351b ... second side, 352 ... fin forming surface, 354a ... first DESCRIPTION OF SYMBOLS 1 Heat radiator, 354b ... 2nd heat radiator, 355 ... Projection part, 360 ... 1st fin, 360S ... 1st fin projection part, 363 ... Outer periphery, 364 ... Extension line, 370 ... 2nd fin, 370a thru | or 370f ... 2nd fin, 370S ... 2nd fin projection part, 380 ... Power circuit body, 392a ... 1st heat radiator, 392b ... 2nd heat radiator, 393a ... 1st DESCRIPTION OF SYMBOLS 1 heat radiator, 393b ... 2nd heat radiator, 400 ... housing | casing, 401 ... cover, 402a ... channel inlet part, 402b ... channel outlet part, 404 ... flat surface, 406 ... recessed part, 407 ... adjustment member, 408 ... Elastic force, 410: channel forming body, 411: first channel space, 412: second channel space, 413: opening, 414: opening, 415: through hole, 472 ... adjusting member, 473 ... projecting portion 490 ... Storage space, 499 ... Flow of cooling refrigerant, 500 ... Capacitor module, 501 ... Sealing resin, 502 ... Capacitor terminal, 508 ... Negative power supply terminal, 509 ... Positive power supply terminal, 600 ... Insulation mold terminal, 601 ... Auxiliary mold body, 602 ... Groove, 700 ... Bus bar module, 701 ... Terminal, 705 ... Through hole, 800 ... Base part, 801 ... First through hole, 802 ... Recess, 900 ... Lid, EGN Internal combustion engine, MG ... motor-generator, TM ... transmission, TSM ... power distribution mechanism

Claims (8)

  1.  直流電流を交流電流に変換するパワー半導体素子と、
     前記パワー半導体素子を収納する収納空間を形成するケースと、を備え、
     前記ケースは、第1放熱体と、前記収納空間を挟んで当該第1放熱体と対向する第2放熱体と、を有し、
     前記第1放熱体及び前記第2放熱体は、複数の第1フィンと、当該第1フィンの断面の幅よりも大きい断面の幅を形成する第2フィンと、をそれぞれ有し、
     前記第2フィンは、前記複数の第1フィンのうち外側に配置された複数の第1フィンを結んだ第1フィン領域よりも外側に配置されるパワー半導体モジュール。
    A power semiconductor element that converts direct current into alternating current;
    A case for forming a storage space for storing the power semiconductor element,
    The case includes a first radiator and a second radiator that faces the first radiator with the storage space interposed therebetween,
    The first heat radiator and the second heat radiator each have a plurality of first fins and second fins having a cross-sectional width larger than the cross-sectional width of the first fins.
    The said 2nd fin is a power semiconductor module arrange | positioned outside the 1st fin area | region which tied the some 1st fin arrange | positioned outside among the said some 1st fin.
  2.  請求項1に記載されたパワー半導体モジュールであって、
     前記第1放熱体における前記第1フィンが形成されるフィン形成面の垂直方向から投影した場合、
     前記第1フィンは、当該第1フィンの射影部が前記パワー半導体素子の射影部と重なるように配置され、
     前記第2フィンは、当該第2フィンの射影部が前記パワー半導体素子の射影部と重ならないように配置されるパワー半導体モジュール。
    A power semiconductor module according to claim 1,
    When projected from the direction perpendicular to the fin forming surface on which the first fin is formed in the first radiator,
    The first fin is arranged such that a projection part of the first fin overlaps with a projection part of the power semiconductor element,
    The second fin is a power semiconductor module arranged so that a projection part of the second fin does not overlap with a projection part of the power semiconductor element.
  3.  請求項1または2に記載されたパワー半導体モジュールであって、
     前記ケースは、前記第1フィン及び前記第2フィンの高さより大きく形成されたフランジを有し、
     前記第2フィンは、前記フランジに対して前記第1フィンよりも遠くに配置されるパワー半導体モジュール。
    A power semiconductor module according to claim 1 or 2,
    The case has a flange formed larger than the height of the first fin and the second fin,
    The second fin is a power semiconductor module arranged farther than the first fin with respect to the flange.
  4.  請求項1ないし3に記載されたいずれかのパワー半導体モジュールであって、
     前記第2フィンは、複数設けられ、
     前記第1フィン及び前記第2フィンは、前記第1フィン及び前記第2フィンを結んだフィン領域が略矩形状となるように配置され、
     前記複数の第2フィンのうちの4つの第2フィンは、前記略矩形状の4隅を形成するパワー半導体モジュール。
    The power semiconductor module according to any one of claims 1 to 3,
    A plurality of the second fins are provided,
    The first fin and the second fin are arranged so that a fin region connecting the first fin and the second fin has a substantially rectangular shape,
    Four second fins of the plurality of second fins are power semiconductor modules that form four corners of the substantially rectangular shape.
  5.  請求項4に記載されたいずれかのパワー半導体モジュールであって、
     前記4隅に配置された第2フィンとは異なる第2フィンは、前記4隅に配置された第2フィンのうちの隣り合う2つの第2フィンを結ぶ線分の略中点の位置に配置されるパワー半導体モジュール。
    The power semiconductor module according to claim 4,
    The second fins different from the second fins arranged at the four corners are arranged at substantially midpoints of line segments connecting two adjacent second fins among the second fins arranged at the four corners. Power semiconductor module.
  6.  請求項1ないし5に記載されたいずれかのパワー半導体モジュールを備える電力変換装置であって、
     冷却冷媒を流すとともに前記パワー半導体モジュールを収納する流路空間を形成する流路形成体と、
     前記流路空間に配置されるとともに前記冷却冷媒の流れを調整する調整部材と、を備え、
     前記第2フィンは、前記調整部材と接触する位置に配置される電力変換装置。
    A power conversion device comprising any one of the power semiconductor modules according to claim 1,
    A flow path forming body for flowing a cooling refrigerant and forming a flow path space for storing the power semiconductor module;
    An adjustment member that is disposed in the flow path space and adjusts the flow of the cooling refrigerant,
    The second fin is a power conversion device disposed at a position in contact with the adjustment member.
  7.  請求項6に記載された電力変換装置であって、
     前記調整部材は、前記第2フィンに向かって突出する突出部を形成し、
     前記突出部は、前記第2フィンと接触する電力変換装置。
    The power conversion device according to claim 6,
    The adjusting member forms a protruding portion that protrudes toward the second fin,
    The protrusion is a power conversion device in contact with the second fin.
  8.  請求項1ないし3に記載されたパワー半導体モジュールを備えた電力変換装置であって、
     前記第2フィンは複数設けられ、
     前記複数の第1フィンのそれぞれは、前記複数の第2フィンのいずれかを挟んで前記調整部材と対向する位置に配置される電力変換装置。
    A power conversion device comprising the power semiconductor module according to claim 1,
    A plurality of the second fins are provided,
    Each of the plurality of first fins is a power conversion device arranged at a position facing the adjustment member with any one of the plurality of second fins interposed therebetween.
PCT/JP2014/065408 2013-09-20 2014-06-11 Power semiconductor module and power converter using same WO2015040902A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013194801A JP6101609B2 (en) 2013-09-20 2013-09-20 Power semiconductor module and power converter using the same
JP2013-194801 2013-09-20

Publications (1)

Publication Number Publication Date
WO2015040902A1 true WO2015040902A1 (en) 2015-03-26

Family

ID=52688565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/065408 WO2015040902A1 (en) 2013-09-20 2014-06-11 Power semiconductor module and power converter using same

Country Status (2)

Country Link
JP (1) JP6101609B2 (en)
WO (1) WO2015040902A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112017002446T5 (en) * 2016-07-08 2019-02-28 Hitachi Automotive Systems, Ltd. Power conversion device
JP6662242B2 (en) * 2016-08-24 2020-03-11 トヨタ自動車株式会社 Semiconductor device
WO2019021582A1 (en) * 2017-07-25 2019-01-31 日立オートモティブシステムズ株式会社 Electric circuit device, electric power conversion device, and method for manufacturing circuit body containing case
JP2022188312A (en) * 2019-11-27 2022-12-21 日立Astemo株式会社 Power module and method for manufacturing power module
JP7331811B2 (en) 2020-09-21 2023-08-23 株式会社デンソー power converter
WO2022158050A1 (en) * 2021-01-22 2022-07-28 日立Astemo株式会社 Power conversion device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010110143A (en) * 2008-10-31 2010-05-13 Hitachi Automotive Systems Ltd Power conversion device and electric vehicle
JP2012029539A (en) * 2010-07-28 2012-02-09 Hitachi Automotive Systems Ltd Electric power conversion system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004047789A (en) * 2002-07-12 2004-02-12 Mitsubishi Alum Co Ltd Heat sink
JP5948098B2 (en) * 2012-03-16 2016-07-06 株式会社日立製作所 Railway vehicle power converter, power converter cooler

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010110143A (en) * 2008-10-31 2010-05-13 Hitachi Automotive Systems Ltd Power conversion device and electric vehicle
JP2012029539A (en) * 2010-07-28 2012-02-09 Hitachi Automotive Systems Ltd Electric power conversion system

Also Published As

Publication number Publication date
JP6101609B2 (en) 2017-03-22
JP2015061454A (en) 2015-03-30

Similar Documents

Publication Publication Date Title
JP5957396B2 (en) Double-sided cooling power converter
US9877419B2 (en) Power conversion apparatus
JP5591396B2 (en) Semiconductor module and method for manufacturing semiconductor module
JP5581131B2 (en) Power module and power conversion device using the same
JP6349275B2 (en) Power converter
US9054628B2 (en) Power inverter
US9999150B2 (en) Electric power converter
JP5879233B2 (en) Power semiconductor module
JP5789576B2 (en) Power converter
JP6101609B2 (en) Power semiconductor module and power converter using the same
JP5542646B2 (en) Power module manufacturing method, power module design method
JP5486990B2 (en) Power module and power conversion device using the same
JP2011077464A (en) Semiconductor device, power semiconductor module, and power converter equipped with power semiconductor module
US9992915B2 (en) Power conversion device
JP6421055B2 (en) Power converter
JP6228888B2 (en) Power semiconductor module
JP6180857B2 (en) Power converter
JPWO2015025594A1 (en) Power converter
JP6039356B2 (en) Power converter
JP5948106B2 (en) Power semiconductor module and power converter using the same
JP6035615B2 (en) Power converter
JP5966065B2 (en) Power converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14845866

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14845866

Country of ref document: EP

Kind code of ref document: A1