WO2015039428A1 - 低温液力透平闭式实验系统和测试方法 - Google Patents

低温液力透平闭式实验系统和测试方法 Download PDF

Info

Publication number
WO2015039428A1
WO2015039428A1 PCT/CN2014/074902 CN2014074902W WO2015039428A1 WO 2015039428 A1 WO2015039428 A1 WO 2015039428A1 CN 2014074902 W CN2014074902 W CN 2014074902W WO 2015039428 A1 WO2015039428 A1 WO 2015039428A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic turbine
valve
liquefied gas
oil
inlet
Prior art date
Application number
PCT/CN2014/074902
Other languages
English (en)
French (fr)
Inventor
孙金菊
王科
宋鹏
Original Assignee
西安交通大学
孙金菊
王科
宋鹏
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安交通大学, 孙金菊, 王科, 宋鹏 filed Critical 西安交通大学
Publication of WO2015039428A1 publication Critical patent/WO2015039428A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts

Definitions

  • the invention belongs to the technical field of residual pressure recovery in the fields of low temperature liquefaction, low temperature air separation and the like, and relates to an experimental system and a testing method, in particular to a low temperature hydraulic penetrating closed experimental system and a testing method.
  • the cryogenic hydraulic turbine is a substitute for the Jiaoyitang liquid throttle valve in high-energy low-temperature circulation devices such as air separation and liquefied natural gas. It can effectively suppress vaporization and avoid cavitation while satisfying the process requirements.
  • the rotor adopts an impeller cantilever horizontal structure to solve the demanding requirements of the existing liquid expander for medium flow and brake generators. It can be braked by ordinary generator, pump or fan, which is suitable for medium pressure drop of any size flow.
  • a liquid expander discloses a liquid-flow full-liquid expander that can solve the existing conventional air separation In the process, the pressure head loss and cavitation damage caused by the Jiaoyitang throttle valve are used.
  • the "Optimization Design Method for Runoff Hydraulic Turbine” discloses the overall design optimization method for the flow-through hydraulic turbine flow-through components, including the one-dimensional optimization design, the initial shape design of the flow-through components, and the optimization design method.
  • a low-temperature hydraulic turbine discloses a hydraulic turbine for low-temperature and high-pressure liquid throttling, which is used to solve the large loss of the existing cryogenic hydraulic turbine, the large flow loss at the impeller, and the positioning and installation of the whole structure. Difficult problem.
  • Ebara discloses a vertical submersible cryogenic hydraulic turbine with a turbine rotor coaxial with the generator rotor.
  • the low temperature hydraulic penetrating closed experimental system comprises a liquefied gas storage tank, a cryopump, a vaporizer, a petrol station, a hydraulic turbine and a dynamometer; the liquefied gas in the liquefied gas storage tank passes through a pipeline and a cryopump After the pressure is increased, the hydraulic turbine is used as a working medium for the hydraulic turbine. The liquefied gas that has been throttled and depressurized in the hydraulic turbine is returned to the liquefied gas storage tank through the pipeline.
  • each of the above pipes is wrapped with a heat insulating material.
  • the hydraulic turbine is placed in a cold box for thermal insulation.
  • the above cryopump is regulated by frequency conversion.
  • the above-mentioned hydraulic turbine bearings are lubricated using a forced oil system.
  • the oil station is composed of an oil tank, an oil pump, an oil pipeline and a cooler.
  • the lubricating oil pressurized by the oil pump flows into the hydraulic turbine bearing through the oil pipe, and the used lubricating oil is returned to the oil tank through the oil pipe, and then cooled by the oil cooler. Enter the oil pump.
  • the outlet of the liquefied gas storage tank is connected to the inlet of the cryopump through a pipe and a first valve, and the outlet of the cryopump is divided into three paths, and the first passage is connected to the cryogenic liquid through the pipeline, the fourth valve and the flow meter.
  • the second passage is connected to the inlet conduit of the liquefied gas storage tank through the pipeline and the second valve;
  • the third passage is connected to the inlet of the vaporizer through the pipeline and the sixth valve;
  • the cryogenic hydraulic turbine The low-pressure liquefied gas outlet is connected to the inlet pipe of the liquefied gas storage tank through a pipe and a fifth valve, a third valve is arranged on the inlet pipe of the liquefied gas storage tank, and a release valve is connected through the pipe; the outlet of the vaporizer Connected to the inlet of the shaft seal chamber of the hydraulic turbine through a pipe and a seventh valve.
  • the low temperature hydraulic turbine closed cycle system and test method described in the present invention can complete the test work of the low temperature hydraulic turbine product or prototype. Compared with the existing complex industrial cryogenic air separation system and low temperature liquefaction system, the initial investment cost of the test system and the test method is low, and has the advantages of low operating cost and easy realization.
  • test system and method described in the present invention have universal applicability and wide application range, and can be used for low temperature hydraulic turbine test work of different media, such as liquid air hydraulic turbine, LNG hydraulic turbine, liquid hydrogen liquid Efforts are equal.
  • FIG. 1 is a diagram of a hydraulic turbine test system of the present invention.
  • 1 is a liquefied gas storage tank; 2 is a cryogenic pump; 3 is a vaporizer; 4 is a gas station; 5 is a hydraulic turbine; 6 is a dynamometer; 7 is a release valve; 8 is a flow meter; .
  • the cryogenic hydraulic turbine closed-type experimental system of the present invention comprises a liquefied gas storage tank 1, a cryopump 2, a vaporizer 3, a petrol station 4, a hydraulic turbine 5, and a dynamometer 6;
  • the liquefied gas in the storage tank 1 is pressurized by the pipe and the cryopump 2, and then enters the hydraulic turbine 5 through the pipeline as a working medium of the hydraulic turbine 5 (Cryogenic Liquid Turbine), which is
  • the liquefied gas after throttling and depressurization is returned to the liquefied gas storage tank 1 through the pipeline, and the other passage enters the vaporizer 3 through the pipeline, flashes into a gas, and is introduced into the seal chamber of the hydraulic turbine 5 through the pipeline as a hydraulic force.
  • the sealing gas of the turbine 5; the hydraulic turbine 5 is connected to the dynamometer 6 through a coupling; the oil station 4 is connected to the hydraulic turbine 5 through an oil pipe.
  • the specific relationship of the present invention is as follows:
  • the outlet of the liquefied gas storage tank 1 is connected to the inlet of the cryopump 2 through a pipe and a first valve A.
  • the outlet of the cryopump 2 is divided into three paths, and the first passage is connected to the fourth valve D and the flow meter 8 through a pipe.
  • the second passage is connected to the inlet conduit of the liquefied gas storage tank 1 through the pipeline and the second valve B; the third passage is connected to the inlet of the vaporizer 3 through the conduit and the sixth valve F;
  • the low-pressure liquefied gas outlet of the low-temperature hydraulic turbine 5 is connected to the inlet pipe of the liquefied gas storage tank 1 through a pipe and a fifth valve E, and a third valve C is disposed on the inlet pipe of the liquefied gas storage tank 1, and A release valve 7 is connected through a pipe; the outlet of the carburetor 3 is connected to the shaft seal chamber inlet of the hydraulic turbine 5 through a pipe and a seventh valve G.
  • each of the above conduits are wrapped with a thermally insulating material.
  • the hydraulic turbine 5 is placed in a cold box for thermal insulation.
  • the cryopump is regulated by frequency conversion.
  • the bearings of the hydraulic turbine 5 are lubricated using a forced oil system.
  • the oil station 4 is composed of an oil tank, an oil pump, an oil pipeline and a cooler.
  • the lubricating oil pressurized by the oil pump flows into the bearing of the hydraulic turbine 5 through the oil pipe, and the used lubricating oil is returned to the oil tank through the oil pipe, and is cooled by the oil cooler. Then enter the oil pump.
  • the above test method for the cryogenic hydraulic turbine closed experimental system includes the following steps:
  • the system needs to be pre-cooled before testing.
  • the pre-cooling is divided into two: the cooling of the cryopump and the cooling of the hydraulic turbine.
  • the first, second and third valves A, B and C are opened, while the fourth, fifth and sixth valves D, E and F are closed, as shown in Figure 1, forming a closed circuit for cooling the cryopump 2;
  • a small amount of liquefied gas is evaporated into a gas, and these small amounts of gas are discharged to the atmosphere through the release valve 7;
  • the second valve B is closed, and the first valve A and the third to seventh valves CG are both opened; wherein the fourth valve D and the fifth valve E of the valve are respectively used for the regulating liquid
  • the inlet and outlet pressures of the force turbine, the sixth valve F and the seventh valve G are used to control the inlet and outlet flow of the vaporizer 3; in this cooling phase, all the components in each circuit are in operation; the oil pump of the oil station 4 is maintained Lubricating oil circulation;
  • the test of the hydraulic turbine can be started when the entire closed test system is pre-cooled and all components in each circuit are stable.
  • the test work mainly includes the adjustment of test condition points and the collection of experimental data, which are achieved by the following methods. Adjustment of working conditions
  • the adjustment of working conditions mainly includes the adjustment of the inlet and outlet pressure of the hydraulic turbine, the adjustment of the hydraulic turbine flow and the adjustment of the hydraulic turbine speed:
  • the adjustment of the inlet and outlet pressure is mainly accomplished by adjusting the fourth valve D and the fifth valve E, and the third valve D is used as an auxiliary adjustment.
  • Adjustment of hydraulic turbine flow The required flow rate is obtained by changing the opening of the adjustable nozzle of the hydraulic turbine. During the adjustment of the flow rate, the fourth valve D and the first of the inlet and outlet of the hydraulic turbine are required to be adjusted simultaneously. Five valves E to complete.
  • the speed regulation of the hydraulic turbine is realized by setting the indicated speed of the dynamometer 6 by its control.
  • the test data is collected through the test platform.
  • the pressure and temperature measurement points are arranged as shown in the figure. There are 8 temperature measurement points and 6 pressure measurement points.
  • Pressure measurements can be made using a pressure transmitter or pressure gauge.
  • the temperature is measured using a platinum resistor.
  • the flow rate can be measured using a vortex flowmeter or orifice flowmeter.
  • the dynamometer 6 is used to brake the hydraulic turbine, while the measurement of the rotational speed and torque is performed using the dynamometer 6.
  • the collected data is integrated into the computer terminal integrated display through the data acquisition system to realize the dynamic monitoring of the hydraulic turbine data. Under test conditions, data can be recorded when the hydraulic turbine and its test system enter a stable operating state. Using the obtained hydraulic turbine inlet and outlet pressure and experimental data of temperature, flow, torque, and rotational speed, the performance of the liquid turbine can be evaluated to complete the test of the hydraulic turbine.

Abstract

一种低温液力透平闭式实验系统,该系统的液化气储槽(1)中的液化气经过管道和低温泵(2)提升压力后,一路经管道进入液力透平(5),在液力透平(5)中被节流降压后的液化气通过管道再回到液化气储槽(1)中,另一路通过管道进入汽化器(3),通过管道引入液力透平(5)的轴封密封腔,作为液力透平(5)的密封气;液力透平(5)通过联轴器和测功仪(6)连接;油站(4)通过油管与液力透平(5)连接。还提供一种低温液力透平闭式实验测试方法。

Description

说 明 书
低温液力透平闭式实验系统和测试方法 技术领域
本发明属于低温液化、 低温空分等领域的余压回收技术领域, 涉及 一种实验系统和测试方法, 尤其是一种低温液力透平闭式实验系统和测 试方法。
背景技术
大型耗能装置中工业余能的回收是节能减排的关键措施之一, 具有 重大的社会效益和经济价值。 低温液力透平是空分、 液化天然气等高能 耗低温循环装置中焦一汤液体节流阀的替代产品, 它在满足工艺流程需 要降压的同时, 能有效的抑制汽化, 避免汽蚀产生的破坏和高压液体能 量的不可逆损失, 并利用回收的高压能量发电, 具有可观的经济效益。
在近年来已公开的专利中, 涉及低温液力透平的有 "一种高压液体 节流用膨胀机转子" , 专利号 200810150526. 2 ; "—种液体膨胀机" , 专利号为 200910023562. 7; "径流式液力透平优化设计方法" , 专利号 为 201110439235. 7; "一种低温液力透平",专利号为 201110455237. 5。 还有日本 Ebara公司公开的用于液化天然气降压的潜液式液力透平, 其 专利号为 US2006/0186671A1。 "一种高压液体节流用膨胀机转子"公开 了一种高压液体节流用膨胀机转子, 转子采用叶轮悬臂卧式结构, 用以 解决现有液体膨胀机对介质流量及制动发电机的苛刻要求, 可以采用普 通发电机、 泵或风机制动, 适用于任意大小流量的介质降压。 "一种液 体膨胀机"公开了一种液体节流用全液体膨胀机, 可解决现有传统空分 流程中采用焦一汤节流阀所带来压力头损失、 汽蚀损坏等问题。 "径流 式液力透平优化设计方法"公开了径流式液力透平通流部件的整机优化 设计方法, 包括一元优化设计、 通流部件的初始形状设计、 优化设计方 法。 "一种低温液力透平" 公开了一种低温高压液体节流用液力透平, 用以解决现有低温液力透平冷量损失大、 叶轮出口流动损失较大以及整 机结构定位安装困难之问题。 另外, Ebara 公司公开了一种透平转子与 发电机转子同轴的立式潜液式低温液力透平。
在低温液力透平的技术应用和产品开发中, 低温液力透平的测试系 统和方法作用重大。但就国内和国外范围看,未发现这方面的公开资料。 发明内容
本发明的目的在于克服上述现有技术的缺点,提供一种低温液力透 平闭式实验系统和测试方法。
本发明的目的是通过以下技术方案来实现的:
这种低温液力透平闭式实验系统, 包括液化气储槽、 低温泵、 汽化 器、 油站、 液力透平以及测功仪; 所述液化气储槽中的液化气经过管道 和低温泵提升压力后, 一路经管道进入液力透平, 作为液力透平的工作 介质, 在液力透平中被节流降压后的液化气通过管道再回到液化气储槽 中, 另一路通过管道进入汽化器, 闪蒸为气体, 通过管道引入液力透平 的轴封密封腔, 作为液力透平的密封气; 所述液力透平通过联轴器和测 功仪连接; 所述油站通过油管与液力透平连接。
上述各管道的外侧均用隔温绝热材料包裹。
上述液力透平置于冷箱内隔热保温。 上述低温泵采用变频调节。
上述液力透平的轴承使用强制油系统润滑。
上述油站由油槽、 油泵、 油管道和冷却器组成, 油泵加压后的润滑 油经油管流入液力透平的轴承, 使用过的润滑油经油管回到油槽, 由油 冷却器冷却后再进入油泵。
进一歩, 上述液化气储槽的出口通过管道和第一阀门与低温泵的进 口连接, 所述低温泵的出口分为三路, 第一路通过管道、 第四阀门和流 量计连接至低温液力透平的高压液化气进口; 第二路通过管道和第二阀 门与液化气储槽的进口管道连接; 第三路通过管道和第六阀门连接至汽 化器的入口; 所述低温液力透平的低压液化气出口通过管道和第五阀门 与液化气储槽的进口管道连接, 所述液化气储槽的进口管道上设置有第 三阀门, 并通过管道连接有释放阀; 所述汽化器的出口通过管道和第七 阀门连接至液力透平的轴封密封腔入口。
本发明具有以下有益效果:
1.本发明所描述的低温液力透平闭式循环系统和测试方法可完成 低温液力透平产品或样机的测试工作。 与现有复杂的工业低温空分系统 和低温液化系统相比, 所述测试系统和测试方法初始投资成本很低, 且 具有运行费用少、 易于实现等优点。
2. 本发明所描述测试系统和方法具有普适性, 适用范围较广, 可 用于不同介质的低温液力透平测试工作, 如液空液力透平、 LNG液力透 平、 液氢液力透平等。
附图说明 图 1为本发明的液力透平测试系统图。
其中: 1为液化气储槽; 2为低温泵; 3为汽化器; 4为油站; 5为 液力透平; 6为测功仪; 7为释放阀; 8为流量计; 9为冷箱。
具体实施方式
下面结合附图对本发明做进一歩详细描述:
参见图 1, 本发明的低温液力透平闭式实验系统, 包括液化气储槽 1、 低温泵 2、 汽化器 3、 油站 4、 液力透平 5以及测功仪 6; 所述液化气 储槽 1中的液化气经过管道和低温泵 2提升压力后, 一路经管道进入液 力透平 5, 作为液力透平 5 (Cryogenic Liquid Turbine ) 的工作介质, 在液力透平 5中被节流降压后的液化气通过管道再回到液化气储槽 1中, 另一路通过管道进入汽化器 3, 闪蒸为气体, 通过管道引入液力透平 5 的轴封密封腔, 作为液力透平 5的密封气; 所述液力透平 5通过联轴器 和测功仪 6连接; 所述油站 4通过油管与液力透平 5连接。 本发明的具 体关系如下:
液化气储槽 1的出口通过管道和第一阀门 A与低温泵 2的进口连接, 所述低温泵 2的出口分为三路, 第一路通过管道、 第四阀门 D和流量计 8连接至低温液力透平 5的高压液化气进口; 第二路通过管道和第二阀 门 B与液化气储槽 1的进口管道连接; 第三路通过管道和第六阀门 F连 接至汽化器 3的入口; 所述低温液力透平 5的低压液化气出口通过管道 和第五阀门 E与液化气储槽 1的进口管道连接, 所述液化气储槽 1的进 口管道上设置有第三阀门 C, 并通过管道连接有释放阀 7; 所述汽化器 3 的出口通过管道和第七阀门 G连接至液力透平 5的轴封密封腔入口。 在本发明的最佳实施例中, 以上各管道的外侧均用隔温绝热材料包 裹。 液力透平 5置于冷箱内隔热保温。 低温泵采用变频调节。 液力透平 5的轴承使用强制油系统润滑。 油站 4由油槽、 油泵、 油管道和冷却器 组成, 油泵加压后的润滑油经油管流入液力透平 5的轴承, 使用过的润 滑油经油管回到油槽, 由油冷却器冷却后再进入油泵。
以上低温液力透平闭式实验系统的测试方法, 包括以下歩骤:
1 ) 对低温泵 2进行冷却;
在开展测试之前, 需要将系统进行预冷。 预冷分为两歩: 即低温泵 的冷却和液力透平的冷却。
将第一、 二和三阀门 A、 B和 C打开, 而第四、 五和六阀门 D、 E和 F关闭,如图 1所示,形成一个闭式回路用于冷却低温泵 2 ;在此过程中, 少量液化气蒸发为气体, 这些少量气体通过释放阀 7排放到大气中;
2 ) 液力透平 5的冷却;
待歩骤 1 )的低温泵的冷却完成后, 将第二阀门 B关闭, 第一阀门 A 以及第三至七阀门 C-G均打开; 其中阀门第四阀门 D和第五阀门 E分别 用于调节液力透平的进出口压力, 第六阀门 F和第七阀门 G用于控制汽 化器 3的进出口流量; 在此冷却阶段中, 各回路中的所有部件均处于运 行状态; 油站 4的油泵维持润滑油的循环;
3 ) 测试
当整个闭式试验系统预冷完毕, 且各回路中所有部件运行稳定后, 就可开始所述液力透平的测试实验。 测试工作主要包括测试工况点的调 节以及实验数据的采集, 它们是通过下述方法实现的。 工况点的调节
工况的调节主要包括液力透平进出口压力的调节、 液力透平流量的 调节以及液力透平转速的调节:
进出口压力的调节:主要通过调节第四阀门 D和第五阀门 E来完成, 而第三阀门 D作为辅助调节。
液力透平流量的调节: 通过改变液力透平的可调喷嘴的开度获得所 需的流量, 在此流量的调节过程中需要同时调节液力透平进出口的第四 阀门 D和第五阀门 E来完成。
液力透平的转速调节:通过设置测功仪 6的指示转速由其控制实现。 试验数据的采集通过测试平台来完成, 压力和温度的测点布置如图 中所示, 共有 8个温度测点和 6个压力测点。
温度的测点有 8个, 分别用于监测液力透平的进出口温度、 轴承轴 瓦温度、 润滑油温度, 在图 1中, 分别表示为 Tl, Τ2, Τ3, Τ4, Τ5, Τ6, Τ7, 和 Τ8。 压力测点有 6个, 分别用于监测液力透平的进出口压力、 叶 轮前后侧间隙的压力、 以及密封气压力。在图 1中, 分别表示为 Pl, Ρ2, Ρ3, Ρ4, Ρ5 和 Ρ6。
压力的测量可采用压力变送器或压力表完成。 温度的测量采用铂电 阻完成。 流量的测量可采用涡街流量计或孔板流量计完成。 测功仪 6用 于制动液力透平, 同时转速和扭矩的测量采用测功仪 6来完成。 采集的 数据通过数据采集系统汇总于计算机终端集成显示, 实现液力透平数据 的动态监测。 在测试工况下, 当液力透平及其测试系统进入稳定运行状态后, 即 可记录数据。 利用获得的液力透平进出口压力和温度、 流量、 扭矩、 转 速等实验数据, 可对液体透平的性能进行评估, 完成所述液力透平的测 试工作。

Claims

权 利 要 求 书
1. 一种低温液力透平闭式实验系统, 其特征在于, 包括液化气储槽 ( 1 ) 、 低温泵 (2 ) 、 汽化器 (3 ) 、 油站 (4) 、 低温液力透平 (5 ) 、 测功仪 (6) ; 所述液化气储槽 (1 ) 中的液化气经过管道和低温泵 (2 ) 提升压力后, 一路经管道进入液力透平 (5 ) , 作为液力透平 (5) 的工作 介质, 在液力透平 (5) 中被节流降压后的液化气通过管道再回到液化气 储槽(1 ) 中, 另一路通过管道进入汽化器 (3 ) , 闪蒸为气体, 通过管道 引入液力透平 (5) 的轴封密封腔, 作为液力透平 (5) 的密封气; 所述液 力透平 (5) 通过联轴器和测功仪 (6) 连接; 所述油站 (4) 通过油管与 液力透平 (5) 连接。
2. 根据权利要求 1所述的低温液力透平闭式实验系统,其特征在于, 所述各管道的外侧均用隔温绝热材料包裹。
3. 根据权利要求 1所述的低温液力透平闭式实验系统,其特征在于, 所述低温泵采用变频调节。
4. 根据权利要求 1所述的低温液力透平闭式实验系统,其特征在于, 所述液力透平 (5 ) 的轴承使用强制油系统润滑。
5. 根据权利要求 1或 4所述的低温液力透平闭式实验系统, 其特征 在于, 所述油站 (4) 由油槽、 油泵、 油管道和冷却器组成, 油泵加压后 的润滑油经油管流入液力透平 (5) 的轴承, 使用过的润滑油经油管回到 油槽, 由油冷却器冷却后再进入油泵。
6. 根据权利要求 1所述的低温液力透平闭式实验系统,其特征在于, 所述液化气储槽 (1 ) 的出口通过管道和第一阀门 (A) 与低温泵 (2) 的 进口连接, 所述低温泵 (2 ) 的出口分为三路, 第一路通过管道、 第四阀 门 (D) 和流量计 (8) 连接至低温液力透平 (5 ) 的高压液化气进口; 第 二路通过管道和第二阀门 (B) 与液化气储槽(1 ) 的进口管道连接; 第三 路通过管道和第六阀门 (F) 连接至汽化器 (3) 的入口; 所述低温液力透 平 (5 ) 的低压液化气出口通过管道和第五阀门 (E) 与液化气储槽 (1 ) 的进口管道连接,所述液化气储槽( 1 )的进口管道上设置有第三阀门(C), 并通过管道连接有释放阀 (7) ; 所述汽化器 (3) 的出口通过管道和第七 阀门 (G) 连接至液力透平 (5) 的轴封密封腔入口。
7. 一种低温液力透平闭式实验系统的测试方法, 其特征在于, 包括 以下歩骤:
1 ) 对低温泵 (2) 进行冷却;
将第一、 二和三阀门 (A、 B和 C) 打开, 而第四、 五和六阀门 (D、 E 和 F)关闭; 形成一个闭式回路用于冷却低温泵(2) ; 在此过程中, 少量 液化气蒸发为气体, 这些少量气体通过释放阀 (7) 排放到大气中;
2) 液力透平 (5) 的冷却;
待歩骤 1 ) 的低温泵的冷却完成后, 将第二阀门 (B)关闭, 第一阀门 (A) 以及第三至七阀门 (C-G) 均打开; 其中阀门第四阀门 (D) 和第五 阀门 (E) 分别用于调节液力透平的进出口压力, 第六阀门 (F)和第七阀 门 (G)用于控制汽化器 (3) 的进出口流量; 在此冷却阶段中, 各回路中 的所有部件均处于运行状态; 油站 (4) 的油泵维持润滑油的循环;
3) 测试
包括测试工况点的调节以及实验数据的采集:
( 1 ) 工况点的调节
包括液力透平进出口压力的调节、液力透平流量的调节以及液力透平 转速的调节: 进出口压力的调节: 通过调节第四阀门(D)和第五阀门(E)来完成, 而第三阀门 (D) 作为辅助调节;
液力透平流量的调节:通过改变液力透平的可调喷嘴的开度获得所需 的流量,在此流量的调节过程中需要同时调节液力透平进出口的第四阀门 (D) 和第五阀门 (E) 来完成;
液力透平的转速调节: 通过设置测功仪 (6) 的指示转速由其控制实 现;
(2 ) 实验数据的采集
采集压力和温度数据, 在压力和温度的测点布置中, 共有 8个温度测 点和 6个压力测点; 压力的测量采用压力变送器或压力表完成; 温度的测 量采用铂电阻完成; 流量的测量采用涡街流量计或孔板流量计完成; 转速 和扭矩的测量采用测功仪 (6) 来完成; 采集的数据通过数据采集系统汇 总于计算机终端集成显示, 实现液力透平数据的动态监测。
PCT/CN2014/074902 2013-09-23 2014-04-08 低温液力透平闭式实验系统和测试方法 WO2015039428A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310432913.6 2013-09-23
CN201310432913.6A CN103512738B (zh) 2013-09-23 2013-09-23 低温液力透平闭式实验系统和测试方法

Publications (1)

Publication Number Publication Date
WO2015039428A1 true WO2015039428A1 (zh) 2015-03-26

Family

ID=49895814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/074902 WO2015039428A1 (zh) 2013-09-23 2014-04-08 低温液力透平闭式实验系统和测试方法

Country Status (2)

Country Link
CN (1) CN103512738B (zh)
WO (1) WO2015039428A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103512738B (zh) * 2013-09-23 2015-04-29 西安交通大学 低温液力透平闭式实验系统和测试方法
CN103758744B (zh) * 2014-02-24 2016-04-13 大连深蓝泵业有限公司 一种低温泵试验台
CN104865043B (zh) * 2015-05-07 2017-03-15 中国石油大学(华东) 一种lng低温流动特性实验装置
CN104931248B (zh) * 2015-06-23 2018-06-01 江苏大学 一种高压余能回收液力透平试验台及其控制方法
CN105937415B (zh) * 2016-06-08 2017-06-06 西安交通大学 一种可适应大范围背压及流量的超临界二氧化碳透平装置
CN106226089B (zh) * 2016-07-28 2019-01-22 上海发电设备成套设计研究院 全温等膨胀比旋转透平流动冷却试验装置及参数设计方法
CN107063726B (zh) * 2017-04-07 2019-04-09 合肥通用机械研究院有限公司 一种多种烃混合冷剂换热器传热与流动特性测试系统
CN107044911A (zh) * 2017-05-16 2017-08-15 大连深蓝泵业有限公司 低温试验系统及液化天然气降压工况用lng液力透平低温试验方法
CN107702431B (zh) * 2017-11-01 2020-11-10 西安交通大学 一种低温液体膨胀机热启动系统及方法
CN108444718B (zh) * 2018-01-30 2019-06-04 清华大学 泵与透平两用多相特性测试台及其测试方法
CN108894837A (zh) * 2018-05-16 2018-11-27 广州莱仑特种装备有限公司 一种用于天然气压力能发电装置的潜液式降噪及升温装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU507798A1 (ru) * 1974-11-20 1976-03-25 Ленинградский Ордена Ленина Политехнический Институт Им.М.И.Калинина Стенд дл испытани гидромашин
SU1083089A2 (ru) * 1982-12-17 1984-03-30 Красноярский Политехнический Институт Стенд дл кавитационных исследований гидротурбин
WO2008046931A2 (en) * 2007-01-10 2008-04-24 Shell Internationale Research Maatschappij B.V. Method and device to measure, test and/or monitor turbine performance
CN202305215U (zh) * 2011-10-14 2012-07-04 桑增产 涡轴发动机的压气机压力畸变特性试验系统
CN202326150U (zh) * 2011-10-14 2012-07-11 桑增产 一种轴流压气机的综合特性试验系统
CN102589894A (zh) * 2012-03-01 2012-07-18 南京航空航天大学 微型压气机/涡轮联合试验台及试验方法
CN102749197A (zh) * 2012-05-28 2012-10-24 兰州理工大学 适用于气液两相介质时液力透平实验装置
CN103512738A (zh) * 2013-09-23 2014-01-15 西安交通大学 低温液力透平闭式实验系统和测试方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU507798A1 (ru) * 1974-11-20 1976-03-25 Ленинградский Ордена Ленина Политехнический Институт Им.М.И.Калинина Стенд дл испытани гидромашин
SU1083089A2 (ru) * 1982-12-17 1984-03-30 Красноярский Политехнический Институт Стенд дл кавитационных исследований гидротурбин
WO2008046931A2 (en) * 2007-01-10 2008-04-24 Shell Internationale Research Maatschappij B.V. Method and device to measure, test and/or monitor turbine performance
CN202305215U (zh) * 2011-10-14 2012-07-04 桑增产 涡轴发动机的压气机压力畸变特性试验系统
CN202326150U (zh) * 2011-10-14 2012-07-11 桑增产 一种轴流压气机的综合特性试验系统
CN102589894A (zh) * 2012-03-01 2012-07-18 南京航空航天大学 微型压气机/涡轮联合试验台及试验方法
CN102749197A (zh) * 2012-05-28 2012-10-24 兰州理工大学 适用于气液两相介质时液力透平实验装置
CN103512738A (zh) * 2013-09-23 2014-01-15 西安交通大学 低温液力透平闭式实验系统和测试方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YANG, SUNSHENG ET AL.: "Numerical calculation and experiment of hydraulic turbine", JOURNAL OF JIANGSU UNIVERSITY ( NATURAL SCIENCE EDITION, vol. 33, no. 2, 31 March 2013 (2013-03-31) *

Also Published As

Publication number Publication date
CN103512738A (zh) 2014-01-15
CN103512738B (zh) 2015-04-29

Similar Documents

Publication Publication Date Title
WO2015039428A1 (zh) 低温液力透平闭式实验系统和测试方法
Wang et al. Preliminary experimental study of single screw expander prototype
An et al. Design and testing of a high performance liquid phase cold storage system for liquid air energy storage
Hou et al. Study on the matching performance of a low temperature reverse Brayton air refrigerator
Xu et al. Dynamic heat transfer model for temperature drop analysis and heat exchange system design of the air-powered engine system
Yang et al. Study on the coupling performance of a turboexpander compressor applied in cryogenic reverse Brayton air refrigerator
Du et al. Off-design performance comparative analysis of a transcritical CO2 power cycle using a radial turbine by different operation methods
PT104023A (pt) Instalação para redução da pressão de um gás ou mistura de gases
CN104390803A (zh) 一种冰箱换热器性能测试系统制冷剂供应装置及测试方法
Wang et al. Experimental study of cryogenic liquid turbine expander with closed-loop liquefied nitrogen system
Jiang et al. Performance assessment of an organic Rankine–Vapor compression cycle (ORC-VCR) for Low-Grade compression heat recovery
Sun et al. Wetness loss prediction for a wet-type cryogenic turbo-expander based on 3-D numerical simulation
CN104391002A (zh) 一种模拟烘缸旋转冷凝测试装置及方法
CN102562170B (zh) 一种低温液力透平
CN108458888B (zh) 一种20k以下温区低温换热器性能测试装置
Wan et al. A technical feasibility study of a liquid carbon dioxide energy storage system: Integrated component design and off-design performance analysis
Pan et al. Thermo-economic analysis of combined transcritical CO2 power cycle based on a novel liquefied-biomethane energy storage system
CN105003310A (zh) 一种天热气管网压力能发电加压系统
CN106289791A (zh) 降温等膨胀比旋转透平流动冷却试验装置及参数设计方法
Meng et al. Performance optimization of turboexpander-compressors for energy recovery in small air-separation plants
Tropea et al. Design, construction and commissioning of a 15 kW CO $ _2 $ evaporative cooling system for particle physics detectors: lessons learnt and perspectives for further development
CN202928199U (zh) 利用天然气压力能分步提供冷量热量的系统
Yang et al. Study on the coupled characteristics of high-speed centrifugal compressor and turboexpander of a reverse Brayton air refrigerator
CN203010996U (zh) 一种利用液氮快速制冷系统
Zhu et al. Off-design performance research of an axial helium compressor for HTGR-10 power conversion unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14845239

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14845239

Country of ref document: EP

Kind code of ref document: A1