WO2015039316A1 - 调度方法和基站 - Google Patents

调度方法和基站 Download PDF

Info

Publication number
WO2015039316A1
WO2015039316A1 PCT/CN2013/083818 CN2013083818W WO2015039316A1 WO 2015039316 A1 WO2015039316 A1 WO 2015039316A1 CN 2013083818 W CN2013083818 W CN 2013083818W WO 2015039316 A1 WO2015039316 A1 WO 2015039316A1
Authority
WO
WIPO (PCT)
Prior art keywords
packet
data packet
ping
data
scheduling
Prior art date
Application number
PCT/CN2013/083818
Other languages
English (en)
French (fr)
Inventor
周小勇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201380002412.2A priority Critical patent/CN103797836B/zh
Priority to PCT/CN2013/083818 priority patent/WO2015039316A1/zh
Publication of WO2015039316A1 publication Critical patent/WO2015039316A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/24Negotiation of communication capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/02Topology update or discovery
    • H04L45/026Details of "hello" or keep-alive messages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/36Flow control; Congestion control by determining packet size, e.g. maximum transfer unit [MTU]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information

Definitions

  • the embodiments of the present invention relate to communication technologies, and in particular, to a scheduling method and a base station. Background technique
  • LTE Long Term EvoiutioTi
  • PING Packet Internet Groper
  • the PING delay is the delay of the terminal connected to the Internet server.
  • the PING delay is affected by many parameters and scenarios. As a result, the PING delay results in different scenarios are very different.
  • the pre-scheduling technology is introduced, that is, when the base station does not receive the scheduling request SR reported by the user equipment (UE) or the buffer status report BSR is empty, the base station actively performs UL Grant (uplink authorization) on the UE in a certain period. ), let the terminal send the uplink packet.
  • the base station In the prior art, the base station always performs uplink scheduling on the user cycle, which wastes system resources and causes network uplink interference to rise.
  • the base station side In the prior art, the base station side usually performs a pre-scheduling of a fixed packet length; If the value is large, the user equipment needs to upload the uplink PING packet. Therefore, the prior art increases the delay in which the user equipment sends the PING packet. Summary of the invention
  • the embodiment of the invention provides a scheduling method and a base station, which reduces PING delay and improves network performance.
  • a first aspect of the embodiments of the present invention provides a scheduling method, including:
  • the data packet is a PING packet, start pre-scheduling, and adjust the length of the uplink pre-scheduled packet. The whole is greater than or equal to the length of the data packet.
  • the method includes:
  • the device is a user equipment, and the data packet is an uplink data packet;
  • the device is a network side server, and the data packet is a downlink data packet.
  • the receiving, by the device, the data packet sent by the device specifically:
  • any one of the data packet groups is a PING packet
  • the pre-scheduling is started.
  • the pre-scheduling duration of the PING packet is adjusted such that the pre-scheduling duration is greater than or equal to a transmission interval of the PING packet in the packet group.
  • the method further includes:
  • the initial error block rate IBLER value corresponding to the PING packet is reduced to reduce the retransmission probability of the PING packet.
  • the data packet is used
  • the Internet Control Message ICMP protocol is configured to: identify whether the data packet is a PING packet, specifically: identifying, by the packet data convergence protocol PDCP layer, an ICMP header of a data packet adopting the ICMP protocol.
  • the second aspect of the embodiment of the present invention provides a base station, including:
  • a receiving module configured to receive a data packet sent by the device
  • An identification module configured to identify whether the data packet is a PING packet for an Internet packet
  • an adjustment module configured to start pre-scheduling if the data packet is a PING packet, and adjust a pre-scheduled packet length to be greater than or equal to The length of the packet.
  • the method includes: The device is a user equipment, and the data packet is an uplink data packet;
  • the device is a network side server, and the data packet is a downlink data packet.
  • the receiving module is specifically configured to receive a data packet group that is sent by the device, where the data packet group is Include a plurality of said data packets;
  • the identifying module is specifically configured to start pre-scheduling if it is identified that any one of the data packet groups is a PING packet.
  • the adjusting module is further configured to:
  • the pre-scheduling duration of the PING packet is adjusted such that the pre-scheduling duration is greater than or equal to a transmission interval of the PING packet in the packet group.
  • the adjusting module is further configured to:
  • the initial error block rate IBLER value corresponding to the PING packet is reduced to reduce the retransmission probability of the PING packet.
  • the PDCP layer identifies the ICMP header of the packet using the Internet Control Message ICMP protocol.
  • the third aspect of the embodiment of the present invention provides a base station, including:
  • a receiver configured to receive a data packet sent by the device
  • a processor configured to identify whether the data packet is a PING packet for an Internet packet; if the data packet is a PING packet, start pre-scheduling, and adjust a pre-scheduled packet length to be greater than or equal to a length of the PING packet .
  • the device is a user equipment, and the data packet is an uplink data packet;
  • the device is a network side server, and the data packet is a downlink data packet.
  • the receiver is configured to receive a data packet group that is sent by the device, where the data packet is The group includes a plurality of the data packets;
  • the processor is specifically configured to: if any one of the data packet groups is identified as
  • the PING package starts the pre-scheduling.
  • the processor is further configured to:
  • the pre-scheduling duration of the PING packet is adjusted such that the pre-scheduling duration is greater than or equal to a transmission interval of the PING packet in the packet group.
  • the processor is further configured to:
  • the initial error block rate IBLER value corresponding to the PING packet is reduced to reduce the retransmission probability of the PING packet.
  • the first, the second, the third, and the fourth possible implementation manner in a fifth possible implementation manner of the third aspect, For: Identifying the ICMP header of the packet using the Internet Control Message ICMP protocol at the PDCP layer of the Packet Data Convergence Protocol.
  • the pre-scheduling permission packet length is adjusted to be greater than or equal to the PING packet length according to the PING packet length, so as to save the base station from transmitting the PING packet fragmentation, and reducing the device sending PING. Packet delay, improve network performance.
  • FIG. 1 is a schematic diagram of uplink scheduling in pre-scheduling
  • Embodiment 1 of a scheduling method according to the present invention
  • Embodiment 1 of a base station according to the present invention is a schematic structural diagram of Embodiment 1 of a base station according to the present invention.
  • Embodiment 2 is a schematic structural diagram of Embodiment 2 of a base station according to the present invention.
  • the technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention. It is obvious that the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of the present invention without departing from the inventive scope are the scope of the present invention.
  • GSM Global System for Mobile Communications
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • WMA Wideband code division multiple access
  • WCDMA Wideband Code Division Multiple Access Wireless
  • FDMA Frequency Division Multiple Addressing system
  • OFDMA Orthogonal Frequency-Division Multiple Access
  • SC-FDMA single carrier FDMA
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • the user equipment involved in the present application may be a wireless terminal or a wired terminal, and the wireless terminal may be a device that provides voice and/or data connectivity to the user, a handheld device with wireless connectivity, or a wireless modem. Other processing equipment.
  • the wireless terminal can communicate with one or more core networks via a radio access network (eg, RAN, Radio Access Network), which can be a mobile terminal, such as a mobile phone (or "cellular" phone) and with a mobile terminal
  • RAN Radio Access Network
  • the computers for example, can be portable, pocket-sized, handheld, computer-integrated or in-vehicle mobile devices that exchange language and/or data with the wireless access network.
  • a wireless terminal may also be called a system, a Subscriber Unit, a Subscriber Station, a Mobile Station, a Mobile, a Remote Station, and an Access Point. ), Remote Terminal, Access Terminal, User Terminal, User Agent, User Device, or User Equipment.
  • a base station (eg, an access point) referred to in this application may refer to an air interface in an access network.
  • the IP packets are converted to each other as a router between the wireless terminal and the rest of the access network, wherein the remainder of the access network may include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the base station can also coordinate attribute management of the air interface.
  • the base station may be a base station (BTS, Base Transceiver Station) in GSM or CDMA, or may be a base station (NodeB) in WCDMA, or may be an evolved base station in LTE (NodeB or eNB or e-NodeB, evolutional Node B), this application is not limited.
  • the base station controller may be a base station controller (BSC) in GSM or CDMA, or may be a radio network controller (RNC) in WCDMA, which is not limited in this application.
  • BSC base station controller
  • RNC radio network controller
  • 1 is a schematic diagram of uplink scheduling in pre-scheduling. As shown in FIG. 1 , the pre-scheduling refers to that the base station actively performs periodic scheduling to the UE when it does not receive the scheduling request SR reported by the user equipment UE or the buffer status report BSR is empty. Perform an upstream grant (UL Grant). After receiving the uplink grant, the UE may send a data packet to the base station.
  • UL Grant upstream grant
  • FIG. 2 is a flowchart of Embodiment 1 of a scheduling method according to the present invention.
  • the scheduling method of the present invention is applicable to both uplink scheduling and downlink scheduling. Specific includes:
  • Step 201 Receive a data packet sent by a user equipment.
  • the data packet sent by the device received by the base station may be a data packet group, where the data packet group includes multiple data packets.
  • the received data packet is an uplink data packet; when the device is a network side server, the received data packet is a downlink data packet.
  • These data packets can use various existing network protocols, such as: Internet Control Message ICMP Protocol.
  • Step 202 Identify whether the data packet is an Internet package and explore a PING packet.
  • the base station After receiving the data packet, the base station can identify the data packet and analyze whether the data packet is a PING packet.
  • the PING packet may be an uplink PING packet or a downlink PING packet.
  • the base station may identify the received ICMP packet header of the ICMP protocol packet at the PDCP layer of the packet data convergence protocol.
  • the base station recognizes that any one of the data packet groups is a PING packet, and starts pre-scheduling in a subsequent period of time, for example, pre-scheduling in time T, if the PING packet interval is 1 second. , T can be selected as 1.2 seconds, or you can choose another time.
  • Step 103 If the data packet is a PING packet, start pre-scheduling, and adjust the pre-scheduled packet length to be greater than or equal to the length of the data packet.
  • the base station can further identify the size of the PING packet (that is, the length of the data packet, and the length of the data packet can be measured by the number of bits included in the data packet), then the base station can The length of the pre-scheduled packet is further adjusted to be greater than or equal to the length of the identified data packet, so that the length of the PING packet sent by the user is less than or equal to the length of the pre-scheduled packet, so that the uplink PING packet of the user does not need to be fragmented. Thereby reducing the delay.
  • the base station may further adjust the pre-scheduling duration of the PING packet, so that the pre-scheduling duration is greater than or equal to the sending interval of the PING packet in the packet group. That is to say, the base station recognizes that any one of the data packet groups is a PING packet, and after adjusting the length of the pre-scheduled PING packet, the other data packets in the data packet group need not be fragmented.
  • the base station may further reduce the initial error block rate IBLER value corresponding to the PING packet, so as to reduce the retransmission probability of the PING packet, thereby further reducing the transmission delay of the PING packet.
  • the format of the data packet in the packet group received by the base station can be as follows:
  • the PDCP layer of the base station can identify whether the PING service is identified by identifying the ICMP header.
  • the uplink PING packet or the downlink PING packet may be identified, and the uplink and downlink PING packets may be identified at the same time.
  • the base station may not identify other data packets in the data packet group, and identify whether the PING service is a PING service, and the base station may further identify the size of the PING packet (ie, the data).
  • the length of the packet, the length of the packet can be measured by the number of bits included in the packet.
  • the PING package test generally tests multiple groups (such as 100 groups) of data.
  • the interval between each PING packet is generally a fixed value (the default is 1 second), and the size of each PING packet remains stable. After the first PING packet is identified, the subsequent PING packet is specially processed to shorten the PING delay.
  • the base station may further adjust the pre-scheduled packet length to be greater than or equal to the length of the identified data packet, so that the length of the packet sent by the user is less than or equal to the pre-scheduled packet.
  • the uplink pre-scheduling packet is 100 bytes long, and the PING packet size is 300 bytes.
  • the base station can re-allocate the allowed uplink packet length to be 300 bytes or more, and the uplink pre-schedule allocated uplink packet length or downlink packet. The length cannot exceed the maximum value of the base station protocol. If the packet length exceeds the maximum allowed packet length, set the maximum packet length allowed and reduce the number of slices.
  • the base station may further adjust the pre-scheduling duration of the PING packet, so that the pre-scheduling duration is greater than or equal to the sending interval of the PING packet in the data packet group.
  • the uplink is pre-scheduled (the length of T can cover the next PING packet, for example, when the PING packet interval is 1 second, T is set to 1.2 seconds)
  • the smaller pre-scheduling interval is used in the pre-scheduling process to avoid the impact of the SR period and the SR-triggered uplink scheduling delay on the PING delay.
  • the T and pre-scheduling period can be set according to the actual situation.
  • the base station may further reduce the initial block error rate IBLER value corresponding to the PING packet, that is, use the lower IBLER value in the uplink and downlink scheduling in the T duration, and reduce the retransmission probability of the PING packet, thereby further reducing PING.
  • the transmission delay of the packet may be reduced.
  • the embodiment of the scheduling method of the present invention determines whether the data packet is a PING packet, and adjusts the pre-scheduling allowable packet length to be greater than or equal to the PING packet length according to the PING packet length, so as to save the fragment transmission of the PING packet by the base station, and reduce the device transmission.
  • the delay of the PING packet improves network performance.
  • FIG. 3 is a schematic structural diagram of Embodiment 1 of a base station according to the present invention. As shown in FIG. 3, the base station in this embodiment includes:
  • the receiving module 31 is configured to receive a data packet sent by the device.
  • the identification module 32 is configured to identify whether the data packet is an Internet package and explore a PING packet;
  • the adjusting module 33 is configured to start pre-scheduling if the data packet is a PING packet, and adjust the length of the pre-scheduled PING packet to be greater than or equal to the length of the data packet.
  • the device is a user equipment, and the data packet is an uplink data packet;
  • the device is a network side server, and the data packet is a downlink data packet.
  • the receiving module 31 is specifically configured to receive a data packet group sent by the device, where the data packet group includes multiple data packets;
  • the identifying module 32 is specifically configured to: if any one of the data packet groups is identified as PING The package starts the pre-scheduling.
  • the adjustment module 33 is further configured to:
  • the adjustment module 33 is further configured to:
  • the initial error block rate IBLER value corresponding to the PING packet is reduced to reduce the retransmission probability of the PING packet.
  • the identification module 32 is specifically configured to:
  • the PDCP layer identifies the ICMP header of the packet using the Internet Control Message ICMP protocol.
  • the base station provided in this embodiment corresponding to the method embodiment provided in FIG. 2 of the present invention, is used to perform the technical solution of the method embodiment shown in FIG. 2, and the method, the principle, and the technical effect of the base station execution may be referred to the method embodiment. , will not repeat them here.
  • FIG. 4 is a schematic structural diagram of Embodiment 2 of a base station according to the present invention. As shown in FIG. 4, the base station in this embodiment includes:
  • a receiver 41 configured to receive a data packet sent by the device
  • the processor 42 is configured to identify whether the data packet is a PING packet for the Internet packet; if the data packet is a PING packet, start pre-scheduling, and adjust the pre-scheduled packet length to be greater than or equal to the length of the data packet, and the device For the user equipment, the data packet is an uplink data packet;
  • the device is a network side server, and the data packet is a downlink data packet.
  • the receiver 41 is specifically configured to receive a data packet group sent by the device, where the data packet group includes multiple data packets;
  • the processor 42 is specifically configured to start pre-scheduling if it is identified that any one of the data packet groups is a PING packet.
  • the processor 42 is further configured to:
  • the processor 42 is further configured to:
  • the initial error block rate IBLER value corresponding to the PING packet is reduced to reduce the retransmission probability of the PING packet.
  • the processor 42 is specifically configured to:
  • the packet data aggregation protocol PDCP layer identifies the ICMP header of the data packet using the Internet Control Message ICMP protocol.
  • the base station provided in this embodiment corresponding to the method embodiment provided in FIG. 2 of the present invention, is used to perform the technical solution of the method embodiment shown in FIG. 2, and the method, the principle, and the technical effect of the base station execution may be referred to the method embodiment. , will not repeat them here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种调度方法和基站,本发明调度方法,包括:接收设备发送的数据包;识别数据包是否为因特网包探索PING包;若数据包为PING包,则启动预调度,并将预调度的包长度调整为大于或等于PING包的长度。本发明调度方法实施例通过识别数据包是否为PING包,根据PING包包长大小调整预调度允许包长大于或者等于PING包长度,以省去基站对PING包的分片传输,减小设备发送PING包的延时,提高网络性能。

Description

调度方法和基站 技术领域
本发明实施例涉及通信技术, 尤其涉及一种调度方法和基站。 背景技术
相比传统的第二、 第三代移动通信技术 (Second/3rd-generation, 2/3G) 网络, 长期演进(Long Term EvoiutioTi , LTE) 网络能提供更高的业务速率和 更短的业务时延, 因特网包探索 (Packet Internet Groper, PING) 时延测试结 果是衡量 LTE网络的一个非常重要的指标,是 LTE网络验收测试以及第三方对 比测试中必测的一个项目。
在 LTE网络技术下, PING时延为终端连接至互联网服务器的时延, PING 时延受很多参数和场景的影响, 导致不同场景 PING时延的结果差别很大, 部 分网络为了提升 PING时延指标, 引入预调度技术, 也就是指基站在没有收到 用户设备 (User Equipment, UE) 上报的调度请求 SR或缓存状态报告 BSR为 空时, 仍然主动地对 UE按一定周期进行 UL Grant (上行授权) , 让终端进行 上行数据包的发送。
现有技术中, 基站会一直对用户周期进行上行调度, 浪费了系统资源, 同时导致网络上行干扰抬升; 现有技术中, 基站侧通常会进行一个固定包长 大小的预调度; , 如果 PING包较大, 则用户设备需要对上行 PING包分片上 传。 因此现有技术会增加用户设备发送 PING包的时延。 发明内容
本发明实施例提供一种调度方法和基站, 降低 PING延时, 提高网络性 會^
本发明实施例第一方面提供一种调度方法, 包括:
接收设备发送的数据包;
识别所述数据包是否为因特网包探索 PING包;
若所述数据包为 PING包, 则启动预调度, 并将上行预调度的包长度调 整为大于或等于所述数据包的长度。
在第一方面的第一种可能的实施方式中, 包括:
所述设备为用户设备, 所述数据包为上行数据包;
或者, 所述设备为网络侧服务器, 所述数据包为下行数据包。
结合第一方面的第一种可能的实施方式, 在第一方面的第二种可能的实 现方式中所述接收所述设备发送的数据包, 具体为:
接收所述设备发送的数据包组, 所述数据包组中包括多个所述数据包; 所述识别所述数据包是否为 PING包, 具体为:
若识别出所述数据包组中的任意一个数据包为 PING包, 则启动预调度。 结合第一方面的第二种可能的实施方式, 在第一方面的第三种可能的实 现方式中, 所述若识别出所述数据包组中的任意一个数据包为 PING包之后, 还包括:
调整对所述 PING包的预调度时长, 以使所述预调度时长大于或等于所 述数据包组中的 PING包的发送间隔。
结合第一方面、 第一种、 第二种和第三种可能的实施方式中的任一种方 式, 在第一方面的第四种可能的实现方式中, 若所述数据包为 PING包, 则 所述方法还包括:
减小所述 PING包对应的初传误块率 IBLER值, 以减小所述 PING包的 重传概率。
结合第一方面、 第一种、 第二种、 第三种和第四种可能的实施方式中的 任一种方式, 在第一方面的第五种可能的实现方式中, 所述数据包采用因特 网控制报文 ICMP协议; 所述识别所述数据包是否为 PING包, 具体为: 在分组数据汇聚协议 PDCP层对采用所述 ICMP协议的数据包的 ICMP 包头进行识别。
本发明实施例第二面提供一种基站, 包括:
接收模块, 用于接收设备发送的数据包;
识别模块, 用于识别所述数据包是否为因特网包探索 PING包; 调整模块, 用于若所述数据包为 PING包, 则启动预调度, 并将预调度 的包长度调整为大于或等于所述数据包的长度。
在第二方面的第一种可能的实施方式中, 包括: 所述设备为用户设备, 所述数据包为上行数据包;
或者, 所述设备为网络侧服务器, 所述数据包为下行数据包。
结合第二方面的第一种可能的实施方式, 在第二方面的第二种可能的实 现方式中, 所述接收模块具体用于接收所述设备发送的数据包组, 所述数据 包组中包括多个所述数据包;
所述识别模块具体用于若识别出所述数据包组中的任意一个数据包为 PING包, 则启动预调度。
结合第二方面的第二种可能的实施方式, 在第二方面的第三种可能的实 现方式中, 所述调整模块还用于:
调整对所述 PING包的预调度时长, 以使所述预调度时长大于或等于所 述数据包组中的 PING包的发送间隔。
结合第二方面、 第一种、 第二种和第三种可能的实施方式中的任一种方 式, 在第二方面的第四种可能的实现方式中, 所述调整模块还用于:
减小所述 PING包对应的初传误块率 IBLER值, 以减小所述 PING包的 重传概率。
结合第二方面、 第一种、 第二种、 第三种和第四种可能的实施方式中的 任一种方式, 在第二方面的第五种可能的实现方式中, 所述识别模块具体用 于:
在分组数据汇聚协议 PDCP层对采用因特网控制报文 ICMP协议的数据 包的 ICMP包头进行识别。
本发明实施例第三面提供一种基站, 包括:
接收器, 用于接收设备发送的数据包;
处理器, 用于识别所述数据包是否为因特网包探索 PING包; 若所述数 据包为 PING包, 则启动预调度, 并将预调度的包长度调整为大于或等于所 述 PING包的长度。
在第三方面的第一种可能的实施方式中,
所述设备为用户设备, 所述数据包为上行数据包;
或者, 所述设备为网络侧服务器, 所述数据包为下行数据包。
结合第三方面的第一种可能的实施方式, 在第三方面的第二种可能的实 现方式中, 所述接收器具体用于接收所述设备发送的数据包组, 所述数据包 组中包括多个所述数据包;
所述处理器具体用于若识别出所述数据包组中的任意一个数据包为
PING包, 则启动预调度。
结合第三方面的第二种可能的实施方式, 在第三方面的第三种可能的实 现方式中, 所述处理器还用于:
调整对所述 PING包的预调度时长, 以使所述预调度时长大于或等于所 述数据包组中的 PING包的发送间隔。
结合第三方面、 第一种、 第二种和第三种可能的实施方式中的任一种方 式, 在第三方面的第四种可能的实现方式中, 所述处理器还用于:
减小所述 PING包对应的初传误块率 IBLER值, 以减小所述 PING包的 重传概率。
结合第三方面、 第一种、 第二种、 第三种和第四种可能的实施方式中的 任一种方式, 在第三方面的第五种可能的实现方式中, 所述处理器具体用于: 在分组数据汇聚协议 PDCP层对采用因特网控制报文 ICMP协议的数据 包的 ICMP包头进行识别。
本发明实施例通过识别数据包是否为 PING包,根据 PING包包长大小将 预调度允许包长调整至大于或者等于 PING包长度,以省去基站对 PING包分 片传输, 减小设备发送 PING包的延时, 提高网络性能。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作一简单地介绍, 显而易见地, 下 面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员来讲, 在 不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为预调度时的上行调度示意图;
图 2为本发明调度方法实施例一的流程图;
图 3为本发明基站实施例一的结构示意图;
图 4为本发明基站实施例二的结构示意图。 具体实施方式 下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而 不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做 出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本文中描述的技术可用于各种通信系统, 例如当前 2G, 3G通信系统和 下一代通信系统, 例如全球移动通信系统 (GSM, Global System for Mobile communications ) , 码分多址 (CDMA, Code Division Multiple Access )系统, 时分多址 (TDMA, Time Division Multiple Access ) 系统, 宽带码分多址
(WCDMA, Wideband Code Division Multiple Access Wireless) , 步页分多址 ( FDMA , Frequency Division Multiple Addressing ) 系统, 正交步页分多址
( OFDMA, Orthogonal Frequency-Division Multiple Access ) 系统, 单载波 FDMA ( SC-FDMA)系统, 通用分组无线业务(GPRS, General Packet Radio Service) 系统, 长期演进(LTE, Long Term Evolution) 系统, 以及其他此类 通信系统。
本申请中涉及的用户设备, 可以是无线终端也可以是有线终端, 无线终 端可以是指向用户提供语音和 /或数据连通性的设备, 具有无线连接功能的手 持式设备、 或连接到无线调制解调器的其他处理设备。 无线终端可以经无线 接入网(例如, RAN, Radio Access Network)与一个或多个核心网进行通信, 无线终端可以是移动终端, 如移动电话 (或称为"蜂窝"电话) 和具有移动终 端的计算机, 例如, 可以是便携式、 袖珍式、 手持式、 计算机内置的或者车 载的移动装置, 它们与无线接入网交换语言和 /或数据。 例如, 个人通信业务 (PCS, Personal Communication Service)电话、无绳电话、会话发起协议(SIP) 话机、无线本地环路(WLL, Wireless Local Loop)站、个人数字助理(PDA, Personal Digital Assistant ) 等设备。 无线终端也可以称为系统、 订户单元 ( Subscriber Unit)、 订户站 ( Subscriber Station), 移云力站 (Mobile Station)、 移动台 (Mobile) 、 远程站 (Remote Station) 、 接入点 (Access Point) 、 远 程终端(Remote Terminal) 、 接入终端(Access Terminal) 、 用户终端(User Terminal) 、 用户代理 (User Agent) 、 用户设备 (User Device) 、 或用户装 备 (User Equipment) 。
本申请中涉及的基站 (例如, 接入点) 可以是指接入网中在空中接口上 通过一个或多个扇区与无线终端通信的设备。 基站可用于将收到的空中帧与
IP分组进行相互转换, 作为无线终端与接入网的其余部分之间的路由器, 其 中接入网的其余部分可包括网际协议 (IP) 网络。 基站还可协调对空中接口 的属性管理。 例如, 基站可以是 GSM 或 CDMA 中的基站 (BTS, Base Transceiver Station), 也可以是 WCDMA中的基站(NodeB), 还可以是 LTE 中的演进型基站 (NodeB或 eNB或 e-NodeB, evolutional Node B) , 本申请 并不限定。
基站控制器, 可以是 GSM或 CDMA中的基站控制器(BSC, base station controller) , 也可以是 WCDMA中的无线网络控制器(RNC, Radio Network Controller) , 本申请并不限定。 图 1为预调度时的上行调度示意图, 如图 1中所示, 预调度是指基站在 没有收到用户设备 UE上报的调度请求 SR或缓存状态报告 BSR为空时, 仍 然主动的周期性向 UE进行上行授权 (UL Grant) 。 UE在接收上行授权后, 可以向基站发送数据包。
图 2为本发明调度方法实施例一的流程图, 本发明的调度方法既适用于 上行调度也适用于下行调度。 具体的包括:
步骤 201、 接收用户设备发送的数据包;
其中, 基站接收到的设备发送的数据包可以为一个数据包组, 该数据包 组中包括多个数据包。 其中, 设备为用户设备时, 接收的数据包为上行数据 包; 设备为网络侧服务器时, 接收的数据包为下行数据包。 这些数据包可以 采用现有的各种网络协议, 例如: 因特网控制报文 ICMP协议。
步骤 202、 识别数据包是否为因特网包探索 PING包;
基站接收到数据包后, 可以对数据包进行识别, 解析出数据包是否为 PING包, 本发明实施例中, PING包既可以是上行 PING包, 也可以是下行 PING包。 可选的, 如果数据包采用 ICMP协议, 则基站可以在分组数据汇聚 协议 PDCP层对接收到的采用 ICMP协议的数据包的 ICMP包头进行识别。 对于一个数据包组, 则基站识别出数据包组中的任意一个数据包为 PING包 后,在后续的一段时间内启动预调度,例如在时间 T内采用预调度,如果 PING 包间隔为 1秒, T可以选择为 1.2秒, 也可以选择其他时间。
尽量选择较小的预调度间隔, 避免 SR周期和 SR触发上行调度延时对 PING时延的影响。
步骤 103、 若数据包为 PING包, 则启动预调度, 并将预调度的包长度调 整为大于或等于所述数据包的长度。
在上一步骤中识别出了数据包为 PING 包, 则基站可以进一步识别出 PING包的大小(即数据包的长度, 可以以数据包包括的比特数来衡量数据包 的长度) , 则基站可以进一步将预调度的包长度调整为大于或等于识别出的 数据包的长度, 使得用户发送的 PING包的长度小于或等于预调度的包长度, 从而用户的上行 PING包不需要进行分片传输, 从而降低了时延。
可选的, 基站还可以调整对 PING包的预调度时长, 以使预调度时长大 于或等于数据包组中的 PING包的发送间隔。 也就是说, 基站识别出数据包 组中任意一个数据包为 PING包,并且调整预调度的 PING包长度后,数据包 组内的其他数据包均无需进行分片传输。
可选的, 基站还可以进一步减小 PING包对应的初传误块率 IBLER值, 以减小 PING包的重传概率, 从而进一步降低 PING包的发送时延。
以下以数据包采用 ICMP协议进行传输为例进行说明:
基站收到的数据包组中数据包格式可以如下所示:
IP包 ICMP包 PING PACKET
在基站的 PDCP层通过识别 ICMP包头可以对是否为 PING业务进行识别。 具体实现时既可以识别上行 PING包或下行 PING包, 也可以同时对上下行 PING包进行识别。基站识别出数据包组中的任意一个数据包为 PING包后,可 以不对数据包组中的其他数据包进行识别, 通过识别确认是否为 PING业务, 基站可以进一步识别出 PING包的大小 (即数据包的长度, 可以以数据包包括 的比特数来衡量数据包的长度。
2、 识别出 PING包后对调度进行特殊处理
PING包测试一般要测试多组 (如 100组)数据, 每个 PING包的间隔一般为 固定值(默认为 1秒),并且每个 PING包大小保持稳定。在识别出第一个 PING 包后, 对后续的 PING包进行特殊处理, 可以缩短 PING时延。
识别出存在 PING包后, 基站可以进一步将预调度的包长度调整为大于或 等于识别出的数据包的长度, 使得用户发送的包的长度小于或等于预调度的 例如: 上行预调度包长为 100字节, 识别出 PING包大小为 300字节, 基站可重 新分配调度允许的上行包长为大于等于 300字节,上行预调度分配的上行包长 或者下行包长不能超过基站协议的最大值。如果包长超过了允许的最大包长, 设置允许的最大包长, 减少分片次数。
可选的,在识别出存在 PING包后,基站还可以调整对 PING包的预调度时 长, 以使预调度时长大于或等于数据包组中的 PING包的发送间隔。 具体地, 例如在后续的一段时间 T内上行采用预调度(T的长度要能覆盖到下一个 PING 包, 如 PING包间隔为 1秒时, T设置为 1.2秒)
并在预调度过程中使用较小的预调度间隔,可以避免 SR周期以及 SR触发 上行调度时延对 PING时延的影响。 T和预调度周期可以根据实际情况进行设 置。
可选的, 基站还可以进一步减小 PING包对应的初传误块率 IBLER值, 即在 T时长内上下行调度使用偏低的 IBLER值, 减小 PING包的重传概率, 从而进一步降低 PING包的发送时延。
上述的几种可选方案既可以单独执行, 也可以并列执行, 同样可以缩小
PING延时。
本发明调度方法实施例通过识别数据包是否为 PING包,根据 PING包包 长大小调整预调度允许包长大于或者等于 PING包长度, 以省去基站对 PING 包的分片传输, 减小设备发送 PING包的延时, 提高网络性能。
图 3为本发明基站实施例一的结构示意图。 如图 3所示, 本实施例中的 基站包括:
接收模块 31, 用于接收设备发送的数据包;
识别模块 32, 用于识别数据包是否为因特网包探索 PING包;
调整模块 33, 用于若数据包为 PING包, 则启动预调度, 并将预调度的 PING包长度调整为大于或等于数据包的长度。
可选的, 设备为用户设备, 数据包为上行数据包;
或者, 设备为网络侧服务器, 数据包为下行数据包。
可选的, 接收模块 31具体用于接收设备发送的数据包组, 数据包组中包 括多个数据包;
识别模块 32 具体用于若识别出数据包组中的任意一个数据包为 PING 包, 则启动预调度。
可选的, 调整模块 33还用于:
调整对 PING包的预调度时长, 以使预调度时长大于或等于数据包组中 的 PING包的发送间隔。
可选的, 调整模块 33还用于:
减小 PING包对应的初传误块率 IBLER值,以减小 PING包的重传概率。 可选的, 识别模块 32具体用于:
在分组数据汇聚协议 PDCP层对采用因特网控制报文 ICMP协议的数据 包的 ICMP包头进行识别。
本实施例提供的基站, 与本发明图 2所提供的方法实施例相对应, 用 于执行图 2所示方法实施例的技术方案, 该基站执行调度方法、 原理以及 技术效果可参见方法实施例, 此处不再赘述。
图 4为本发明基站实施例二的结构示意图。 如图 4所示, 本实施例中的 基站包括:
接收器 41, 用于接收设备发送的数据包;
处理器 42, 用于识别数据包是否为因特网包探索 PING包; 若数据包为 PING包, 则启动预调度, 并将预调度的包长度调整为大于或等于数据包的长 可选的, 设备为用户设备, 数据包为上行数据包;
或者, 设备为网络侧服务器, 数据包为下行数据包。
可选的, 接收器 41具体用于接收设备发送的数据包组, 数据包组中包括 多个数据包;
处理器 42具体用于若识别出数据包组中的任意一个数据包为 PING包, 则启动预调度。
可选的, 处理器 42还用于:
调整对 PING包的预调度时长, 以使预调度时长大于或等于数据包组中 的 PING包的发送间隔。
可选的, 处理器 42还用于:
减小 PING包对应的初传误块率 IBLER值,以减小 PING包的重传概率。 可选的, 处理器 42具体用于: 在分组数据汇聚协议 PDCP层对采用因特网控制报文 ICMP协议的数据 包的 ICMP包头进行识别。
本实施例提供的基站, 与本发明图 2所提供的方法实施例相对应, 用 于执行图 2所示方法实施例的技术方案, 该基站执行调度方法、 原理以及 技术效果可参见方法实施例, 此处不再赘述。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步骤 可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机可读 取存储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述 的存储介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存储程序代码的介 质。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或者替换, 并 不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims

权利 要 求 书
1、 一种调度方法, 其特征在于, 包括:
接收设备发送的数据包;
识别所述数据包是否为因特网包探索 PING包;
若所述数据包为 PING包, 则启动预调度, 并将预调度的包长度调整为 大于或等于所述 PING包的长度。
2、 根据权利要求 1所述的方法, 其特征在于, 包括:
所述设备为用户设备, 所述数据包为上行数据包;
或者, 所述设备为网络侧服务器, 所述数据包为下行数据包。
3、 根据权利要求 2所述的方法, 其特征在于, 所述接收所述设备发送的 数据包, 具体为:
接收所述设备发送的数据包组, 所述数据包组中包括多个所述数据包; 所述识别所述数据包是否为 PING包, 具体为:
若识别出所述数据包组中的任意一个数据包为 PING包, 则启动预调度。
4、 根据权利要求 3所述的方法, 其特征在于, 所述若识别出所述数据包 组中的任意一个数据包为 PING包之后, 还包括:
调整对所述 PING包的预调度时长, 以使所述预调度时长大于或等于所 述数据包组中的 PING包的发送间隔。
5、 根据权利要求 1-4任一项所述的方法, 其特征在于, 若所述数据包为 PING包, 则所述方法还包括:
减小所述 PING包对应的初传误块率 IBLER值, 以减小所述 PING包的 重传概率。
6、 根据权利要求 1-5任一项所述的方法, 其特征在于, 所述数据包采用 因特网控制报文 ICMP协议; 所述识别所述数据包是否为 PING包, 具体为: 在分组数据汇聚协议 PDCP层对采用所述 ICMP协议的数据包的 ICMP 包头进行识别。
7、 一种基站, 其特征在于, 包括:
接收模块, 用于接收设备发送的数据包;
识别模块, 用于识别所述数据包是否为因特网包探索 PING包; 调整模块, 用于若所述数据包为 PING包, 则启动预调度, 并将预调度 的包长度调整为大于或等于所述 PING包的长度。
8、 根据权利要求 7所述的基站, 其特征在于, 包括:
所述设备为用户设备, 所述数据包为上行数据包;
或者, 所述设备为网络侧服务器, 所述数据包为下行数据包。
9、 根据权利要求 8所述的基站, 其特征在于, 所述接收模块具体用于接 收所述设备发送的数据包组, 所述数据包组中包括多个所述数据包;
所述识别模块具体用于若识别出所述数据包组中的任意一个数据包为
PING包, 则启动预调度。
10、 根据权利要求 9所述的基站, 其特征在于, 所述调整模块还用于: 调整对所述 PING包的预调度时长, 以使所述预调度时长大于或等于所 述数据包组中的 PING包的发送间隔。
11、 根据权利要求 7-10任一项所述的基站, 其特征在于, 所述调整模块 还用于:
减小所述 PING包对应的初传误块率 IBLER值, 以减小所述 PING包的 重传概率。
12、 根据权利要求 7-11任一项所述的基站, 其特征在于, 所述识别模块 具体用于:
在分组数据汇聚协议 PDCP层对采用因特网控制报文 ICMP协议的数据 包的 ICMP包头进行识别。
13、 一种基站, 其特征在于, 包括:
接收器, 用于接收设备发送的数据包;
处理器, 用于识别所述数据包是否为因特网包探索 PING包; 若所述数 据包为 PING包, 则启动预调度, 并将预调度的包长度调整为大于或等于所 述 PING包的长度。
14、 根据权利要求 13所述的基站, 其特征在于, 包括:
所述设备为用户设备, 所述数据包为上行数据包;
或者, 所述设备为网络侧服务器, 所述数据包为下行数据包。
15、 根据权利要求 14所述的基站, 其特征在于, 所述接收器具体用于接 收所述设备发送的数据包组, 所述数据包组中包括多个所述数据包;
所述处理器具体用于若识别出所述数据包组中的任意一个数据包为 PING包, 则启动预调度。
16、 根据权利要求 15所述的基站, 其特征在于, 所述处理器还用于: 调整对所述 PING包的预调度时长, 以使所述预调度时长大于或等于所 述数据包组中的 PING包的发送间隔。
17、 根据权利要求 13-16任一项所述的基站, 其特征在于, 所述处理器 还用于:
减小所述 PING包对应的初传误块率 IBLER值, 以减小所述 PING包的 重传概率。
18、 根据权利要求 13-17任一项所述的基站, 其特征在于, 所述处理器 具体用于:
在分组数据汇聚协议 PDCP层对采用因特网控制报文 ICMP协议的数据 包的 ICMP包头进行识别。
PCT/CN2013/083818 2013-09-18 2013-09-18 调度方法和基站 WO2015039316A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380002412.2A CN103797836B (zh) 2013-09-18 2013-09-18 调度方法和基站
PCT/CN2013/083818 WO2015039316A1 (zh) 2013-09-18 2013-09-18 调度方法和基站

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/083818 WO2015039316A1 (zh) 2013-09-18 2013-09-18 调度方法和基站

Publications (1)

Publication Number Publication Date
WO2015039316A1 true WO2015039316A1 (zh) 2015-03-26

Family

ID=50671636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/083818 WO2015039316A1 (zh) 2013-09-18 2013-09-18 调度方法和基站

Country Status (2)

Country Link
CN (1) CN103797836B (zh)
WO (1) WO2015039316A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105578504A (zh) * 2015-12-11 2016-05-11 京信通信系统(广州)有限公司 一种lte系统中减少ping时延的方法及装置
CN106060134A (zh) * 2016-05-30 2016-10-26 乐视控股(北京)有限公司 数据传输方法及系统
CN109729592B (zh) * 2019-01-17 2023-06-20 中磊电子(苏州)有限公司 基站及其资源分配方法
CN112189375B (zh) * 2020-08-25 2023-10-27 北京小米移动软件有限公司 传输调度方法、装置、通信设备和存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050117515A1 (en) * 2003-11-28 2005-06-02 Ntt Docomo, Inc. Transmitter device for controlling data transmission
CN103297348A (zh) * 2013-05-10 2013-09-11 汉柏科技有限公司 防止esp/ah报文分片的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101677292B (zh) * 2008-09-16 2013-05-08 中兴通讯股份有限公司 一种流控传输协议中数据分片的方法
CN101742564B (zh) * 2009-12-31 2012-07-18 中兴通讯股份有限公司 一种hsupa网络的授权分配方法及装置
CN103108342B (zh) * 2011-11-10 2018-03-23 中兴通讯股份有限公司 Lte系统中的ping时延优化方法及装置
CN102594505A (zh) * 2012-02-08 2012-07-18 华为技术有限公司 数据传输方法及装置
CN102946502B (zh) * 2012-10-10 2016-06-08 西安诺瓦电子科技有限公司 一种高速数据多路拆分传输处理装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050117515A1 (en) * 2003-11-28 2005-06-02 Ntt Docomo, Inc. Transmitter device for controlling data transmission
CN103297348A (zh) * 2013-05-10 2013-09-11 汉柏科技有限公司 防止esp/ah报文分片的方法

Also Published As

Publication number Publication date
CN103797836A (zh) 2014-05-14
CN103797836B (zh) 2017-12-01

Similar Documents

Publication Publication Date Title
JP7232852B2 (ja) 低減された待ち時間システムにおけるタイミングアドバンスおよび処理能力
RU2767040C2 (ru) Способ отправки данных и устройство для этого
KR101087118B1 (ko) 버퍼 상태 리포트를 유발하기 위한 타이머를 핸들링하는 방법 및 장치
US10165556B2 (en) Data transmission method and user equipment
KR101227471B1 (ko) 무선 통신 시스템에서 프로시저들을 경감하기 위한 방법 및 장치
TW202205901A (zh) 小資料上鏈傳輸方法、裝置及系統
WO2020119195A1 (zh) 一种数据传输方法及装置
KR20150010965A (ko) 효율적인 매체 접근 제어 (mac) 헤더
US9942910B2 (en) Method for transmitting data on wireless local area network, user equipment, and access point
WO2012163185A1 (zh) 功率控制方法、设备和系统
WO2015158004A1 (zh) 一种功率配置方法、用户设备及基站
WO2013166670A1 (zh) 上行信道资源配置方法和设备
JP7488839B2 (ja) 通信方法、端末装置及びネットワーク装置
WO2018177115A1 (zh) 一种免调度传输的方法及装置
WO2014043857A1 (zh) 信道接入处理方法及其装置
WO2015039316A1 (zh) 调度方法和基站
WO2019137483A1 (zh) 数据包的传输方法及通信装置
WO2013020452A1 (zh) 一种高速专用物理控制信道上行反馈方法及相关设备
EP3471486B1 (en) Uplink data transmission confirmation apparatus, device, and method
TWI616111B (zh) 在未授權頻譜中的無線電資源排程方法及使用其之基地台
WO2012146150A1 (zh) 数据传输中速率的调整方法和设备
CN114342535B (zh) 上行信号的发送和接收方法以及装置
CN114071768B (zh) 一种时间同步方法、装置及存储介质
CN108702691B (zh) 一种发送通信消息的方法和装置
US9088913B2 (en) Method and apparatus for reporting scheduling information

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13893822

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13893822

Country of ref document: EP

Kind code of ref document: A1