WO2015039198A1 - Processo para obtenção de composição química para produção de adição ativa capaz de substituir clínquer portland, composição química e uso desta composição - Google Patents
Processo para obtenção de composição química para produção de adição ativa capaz de substituir clínquer portland, composição química e uso desta composição Download PDFInfo
- Publication number
- WO2015039198A1 WO2015039198A1 PCT/BR2014/000208 BR2014000208W WO2015039198A1 WO 2015039198 A1 WO2015039198 A1 WO 2015039198A1 BR 2014000208 W BR2014000208 W BR 2014000208W WO 2015039198 A1 WO2015039198 A1 WO 2015039198A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cao
- chemical composition
- composition
- cement
- red
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B7/00—Hydraulic cements
- C04B7/24—Cements from oil shales, residues or waste other than slag
- C04B7/243—Mixtures thereof with activators or composition-correcting additives, e.g. mixtures of fly ash and alkali activators
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
- C04B28/04—Portland cements
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/10—Production of cement, e.g. improving or optimising the production methods; Cement grinding
Definitions
- the present invention relates to a bauxite waste treatment process called red mud (red mud r ) for the production of active addition capable of substituting Portand clinker, preferably 1.0 to 50.0% Portland clinker. .
- Red mud is generated from the Bayer Process in the production of aluminum oxide. Its field of application is the manufacture of concrete cement and mortar.
- the Bayer process of producing aluminum oxide from bauxite consists in solubilizing the alumina present in bauxite as gibbsite (AI (OH) 3 or AI2O3.3H2O), known in the aluminum industry as "Useful Alumina”. , in caustic soda (NaOH) solution at a temperature of 150 ° C (digestion). This produces a supersaturated solution of sodium aluminate and the other bauxite components, called bauxite residue (RB), which are in the form of solids and are separated by the settling and filtration process. The generated RB, which still contains alkalinity even after washing, is usually deposited in wet or dry waste storage ponds. Storage of this material due to its high alkalinity and cation exchange capacity can cause serious environmental damage and requires a large area for disposal.
- the amount of RB generated in the process is directly related to the quality of the ore and its components. Its ratio may vary from 0.5 to 2 tons of RB per tonne of aluminum oxide produced.
- the Rio Branco cement factory is a large consumer of fly ash pozzolan from power plants coal base.
- a noteworthy example is the capping material of the Rio Branco cement limestone mine, which has sufficient kaolinitic clay for the production of good quality pozzolan, however, it has about 14% Fe203 in its chemical composition, making the pozzolan color after calcination brick red, making its application in cement manufacturing impossible due to the effect on the final (brownish) coloration of the product, which the market rejects.
- Tables 1 and 2 below show the typical chemical compositions of bauxite and Bauxite Residue produced in the city of Alum ⁇ nio - SP.
- Document CN101439938 deals with a rapid method for the treatment of hardening of ferrous aluminate made of red mud.
- the method comprises a) processing the red sludge, ie drying, grinding and filtering through a 100 mesh sieve, b) calculating the ingredients in a raw material composition by formulating clinker aggregate minerals including G2S , G4A3S and OAF; c) weigh the raw materials by weight percentage: 40 to 55% of red mud, 20 to 30% of limestone, 1.5 to 3% of iron dust, 20 to 30% of aluminum ores and it 5% of gibbsite; (d) mixing and calcining by uniformly mixing and grinding the ingredients in which the calcining temperature is between 1250 ° C and 1350 ° C; ee) prepare different types of fast hardening ferrous aluminate cement.
- the fast hardening of ferrous aluminate cement has the advantages that the fast hardening of ferrous aluminate cement has high initial strength, good cold resistance, corrosion resistance and high impermeability. Ferrous aluminate cement is suitable for cold weather, recovery, projected concrete preparation, prefabricated limb production, and so on. In addition, fast hardening cement using red mud creates greater social benefit and economic benefit.
- Document C 102500592 deals with processing the alkaline content in red alumina sludge comprising: i) reducing the red alumina sludge and transporting it to a dealkylation reaction tank, ii) performing the dealkylation, transmitting the sludge to a vacuum filter after washing, perform solid-liquid separation and transmit the solid in a rotary kiln, iii) perform calcination reduction and calcium addition in the alkaline material, iv) transport the red slurry in a separator, separating magnetic and non-magnetic parts, transport the magnetic part in a mill, perform pressure filtration of the non-magnetic part, and dry using a dry mortar.
- Document PI9602657-0 deals with a red mud bauxite residue produced by the Bayer Process, treated in various centrifuges and re-grinding tanks to successively wash and remove water from the red mud.
- a final concentrated liquor is obtained in a first upstream centrifuge stage which is rich in alumina and caustics for their recovery and reuse.
- the concentrated red mud cake produced in the final downstream centrifuge / wash step is lower in caustic and alumina concentration allowing for environmentally acceptable disposal.
- the concentrated red mud cake is re-rolled and mixed with bauxite sand for disposal in a dry stacked damming area.
- PI9602530-1 deals with a process in which red sludge, the residue in the production of alumina by the Bayer Process, is leached with sulfuric and hydrochloric acids under stirring and heating.
- the solid residue is separated from the solution containing the extracted metal ions by filtration.
- the solid residue containing silicates, low aluminum and titanium content, low calcium, magnesium, sodium, potassium and iron content is a low cost raw material for the in vitro ceramic industry.
- this residue is fused and the vitreous mass is crystallized by heat treatment.
- Iron II present in the filtered solution is oxidized to iron III by the oxidizing action of hydrogen peroxide and is precipitated as ferric hydroxide by the addition of a caustic solution.
- After separation by filtration aluminum is recovered from the solution by precipitation as aluminum hydroxide by the addition of the same caustic solution as previously used.
- the technology under this patent uses at least 70% red mud, correcting the chemical composition with limestone to a minimum of 10% CaO, and with silicose material to a minimum percentage. 30% SiO 2. Said red sludge is burned at temperatures in the order of 1250 ° C, resulting in a product that has no hydraulic properties per se. Thus, it is an active addition that only acquires cementing properties when combined with Portland cement clinker, and to complement the mineralogy of the material produced is mainly amorphous material.
- This patent application is intended to make it feasible to use existing raw materials in already open mining areas, thus avoiding the opening of new deposits at greater distances from the factories by costing them and increasing CO2 emissions due to transport over long distances.
- the coloring of the pozzolan was a limiting factor to its use.
- the purpose of this application is to solve the problem of the many deposits of raw materials for the production of pozzolans that are red in color, or become red after calcination, making their use in cement manufacture impossible.
- the present application describes an alternative to changing the color of bauxite residues (Red mud ”) from red to dark gray or black, such that the final color of the cement is not changed.
- the main advantage of using this technology is that it can transform an environmentally toxic waste into a product of important commercial and social value such as Portland cement, thereby reducing pressure on the environment. environment in various areas, mining the cement, landfills for the aluminum plant, bringing strong benefits to society as a whole, and creating an important synergy between the cement and aluminum industries.
- - Fig 1 Flowchart of bauxite waste reuse.
- - Fig 2 Thermographic evaluation of the reduction of thermal consumption for the production of the active addition of red sludge when compared with a typical clinker flour.
- IAP- with lime pozzolanic activity index with lime.
- IAP-CAL pozzolanic activity index with lime.
- IAP CIM pozzolanic activity index with cement.
- MPA mega Pascal.
- a process for obtaining a chemical composition for active addition production capable of replacing Portland clinker comprising the following steps:
- cooling the cooling process occurs in a satellite or grid chiller
- (e) final product the final product is obtained when the color of the active addition is dark gray, with performance similar to n fly ash "e. the presence of free CaO is less than 1.0%;
- (f) grinding the final product is then subjected to the grinding process in conjunction with Portland cement clinker to produce cements containing the active addition according to Brazilian standard NBR 12653, and particle size in the range of 0.01 to 5 inches. size.
- n red-mud The bauxite residue named n red-mud 'has in its chemical composition high iron contents, which makes the material red intense.
- the technology proposed in the present invention differs from the others because it is mandatory to adjust the chemical composition of the waste, and after its calcination at high temperature in a preferential range from 1150 ° C to 1300 ° C, we have as The result is an active addition of a high performance dark gray color capable of partially replacing clinker without loss of mechanical performance in the cement and concrete resulting from its application.
- the process of obtaining the chemical composition for use of active addition of Portland clinker substituent becomes highly due to the fact that there is a reduction in the carbon emission of the cement produced with the partial replacement of the Portland clinker.
- the technology of the present application is a process for obtaining chemical composition for active addition production comprising the following steps:
- cooling the cooling process occurs in a satellite or grid chiller
- (e) final product the final product is obtained when the color of the active addition is dark gray, with performance similar to fly ash and the presence of free CaO is less than 1.0%;
- (f) grinding the final product is then subjected to the grinding process in conjunction with Portland cement clinker to produce cements containing the active addition according to Brazilian standard NBR 12653, and particle size in the range of 0.01 to 5 inches. size.
- the composition comprising the bauxite processing residue has a SiO 2 content> 30% and CaO> 10%, ie the SiO2: CaO ratio is 3: 1 and gray in color, similar to cement. .
- the end result is obtained by a mixture of red clay + limestone + silica clay + burning at a preferred temperature range of 1150 ° C to 1300 ° C, even more preferably 1250 ° C. This combination produces an active addition with characteristics suitable to Brazilian Standards (NBR 12653).
- the new product is a high performance active addition that allows up to 30% replacement of cement with satisfactory cement performance, significantly contributing to the reduction of carbon emissions from cement and concrete.
- the process according to the invention departs from processing residues of bauxite or alumina which are generally reddish in color due to excess iron (Fe203) in the composition causing the material to turn red after burning.
- This coloration is a major barrier to its use in cement manufacturing, as this market is very conservative and strongly rejects any change in cement coloration.
- the usual composition of this waste is also known by the name of red sludge (Vc mucf) and is generally disposed of as sludge in landfills.
- the basic chemical composition of this residue is mainly the components AI2O3, Fe203, S1O2, GaO and a20. Its coloring is due to the presence of iron ions, which in this case is about 20% of the composition of the red mud. It has now been found that in order to eliminate red staining and further improve the mineralogical properties of this residue its S1O2 content must be> 30% and CaO> 10%.
- limestone + clay of suitable chemical composition in such a way as to meet the aforementioned condition in a molar or mass ratio ranging from 10:30 to CaO and 30:50 of S1O2 or silicates. or sand in relation to the waste mass to be treated.
- the a2O percentage of the alumina residue is reduced by chemical processing and filtration to values less than 6.0% by mass.
- the mixture obtained in the previous item undergoes the homogenization process.
- the dough obtained in the homogenization process is introduced in a rotary oven and heated to a temperature greater than 1000 ° C or partial melting temperature, preferably between about 1150 ° C to 1500 ° C, even more preferably 1250 ° C. for more than 30 minutes or until the color turns from red to dark gray or black.
- Partial fusion process is critical to ensure the pozzolanic property of the calcined material and also to correct the color of the active addition from red to dark gray and / or black, as well as to optimize the cooling process in satellite chillers. and / or grilles.
- the presence of 10 to 50% of liquid in the calcined material is fundamental to guarantee the above mentioned properties.
- the cooling process takes place in either a satellite (cement kiln chiller type), or a grid (also a kiln chiller type) chiller. cement). After the product cooling step, it is collected in silos and / or covered deposits.
- the final product is obtained when the color of the active addition is dark gray, with performance similar to n fly as "and the presence of free CaO is less than 1.0% and much of its mineralogical structure is amorphous. or not crystalline.
- the coloration of the active addition is measured according to the CIE L * a * b * (CIELAB) colorimetric model.
- the final product is then subjected to the grinding process in conjunction with Portland cement clinker to produce cements containing the active addition according to the Brazilian standard NBR 12653, and particle size in the range of 0.01 to 5 inches in size.
- composition of the active addition through the use of red mud is as follows in table 3 below:
- any CaO-containing source such as basic blast furnace slag, other industrial wastes such as lime sludge from CaO can be added. gas scrubbing and / or other sources of calcium.
- color correction using the addition of limestone + high calcination temperature corrected the problem, making it feasible to use existing raw materials in already open mining areas, thus avoiding the opening of new deposits to Longer distances from factories costing them and increasing CO2 emissions from transport over long distances, as well as preventing a large area from being contaminated, since dam pond soil is not recoverable and is useful for only 5 years .
- the flour referred to in this table is the raw material prior to calcination for the manufacture of Portland cement clinker.
- Table 4 Comparison of the common flour chemical composition and active addition of the present invention.
- Table 5 Red mud composition and active addition composition of the present invention.
- Test 1 Red sludge heated to temperature> 1150 ° C.
- the test for measuring pozzolanic activity with lime was zero, when the minimum limit of NBR 12653 is 6.0 Mpa, indicating that the material thus produced is not a pozzolan.
- the value obtained was 74% of the reference value and the minimum norm value is 75.0%.
- Test 2 In the second test was added 20% silicose material to correct the percentage of red mud S1O2. After calcination under the same conditions as in test 1, the pozzolanic activity index with lime was evaluated and a value of 2.2 Mpa was obtained, when the minimum pozzolanic activity index is 6.0 Mpa. However, in the evaluation with cement, the value obtained was 84%, when the minimum limit is 75%; therefore, the product is only partially approved.
- Test 3 Due to the unsatisfactory results of tests 1 and 2, 10% limestone was added to the composition of test 2 in order to obtain a mixture with a minimum value of 30% S1O2 and 10% CaO. With this new composition and calcination under the same conditions of previous tests, material was obtained whose evaluation of the pozzolanic activity index with lime was 3.5 Mpa, and the pozzolanic activity index with cement was 94.4%, when the value minimum required by standard is 75.0%.
- Test 4 For test # 4 the chemical composition of test # 3 was maintained, but the percentage of a20 was reduced from 12.0% to less than 6.0%, which was the change in the composition that was missing. so that the results to be obtained with the active addition allowed the fulfillment of the Brazilian norms.
- Test No. 4 was carried out in a pilot kiln with the aim of producing a larger volume of material sufficient to perform the performance evaluation tests on cement and concrete.
- Figure 6 shows the evolution of results as a result of changes in chemical compositions.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Treatment Of Sludge (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
Abstract
O pedido em questão trata de um processo para a obtenção de uma composição para substituição parcial de clínquer Portland. O resíduo do processamento da bauxita (lama vermelha) passa inicialmente por uma etapa de tratamento químico, em que são adicionados carbonatos (calcários) e derivados dè sílica (areia, argilas silicosas, etc) até a obtenção de teores de SiO2 > 30%, CaO > 10% e Na2O< 10%. Após a homogenização, o material é termicamente tratado (entre 1000°C e 1500°C), passando por fusão parcial e adquirindo, ao resfriar, coloração cinza escura e teor de CaO livre inferior a 1,0%. O produto final é então cominuído para granulometria entre 0,01 e 5 polegadas. Consta ainda no pedido a composição obtida pelo processo e seu uso, como substituinte de até 30% de clínquer Portland em cimentos do tipo pozolânicos.
Description
Processo para obtenção de composição química para produção de adição ativa capaz de substituir clínquer Portland, composição química e uso desta
composição
[001] A presente invenção se refere a um processo de tratamento de resíduos de bauxita, denominado de lama vermelha Ç red mudr) para produção de adição ativa capaz de substituir clínquer Portand, preferencialmente clínquer Portland de 1,0 a 50,0 %. A lama vermelha é gerada a partir do Processo Bayer na produção de óxido de alumínio. Seu campo de aplicação é a fabricação de cimento concreto e argamassas.
Estado da Técnica
[002] O processo Bayer de produção de óxido de alumínio a partir da bauxita consiste em solubilizar a alumina presente na bauxita na forma de gibsita (AI(OH)3 ou AI2O3.3H2O), conhecida na indústria do alumínio como "Alumina Aproveitável", em solução de soda cáustica (NaOH) a uma temperatura de 150°C (digestão). Isto produz uma solução supersaturada de aluminato de sódio e os outros componentes da bauxita, chamados de resíduo de bauxita (RB), que ficam na forma de sólidos e são separados pelo processo de decantação e filtração. O RB gerado, que ainda contém alcalinidade mesmo depois de lavado, é geralmente depositado em lagos de armazenamento de resíduos que podem ser úmidos ou secos. O armazenamento desse material, em função de sua elevada alcalinidade e capacidade de troca catiônica pode causar sérios danos ambientais e requer uma grande área para a sua disposição.
[003] A quantidade de RB gerado no processo está diretamente relacionada com a qualidade do minério e seus componentes. Sua proporção pode variar de 0,5 á 2 toneladas de RB por tonelada de óxido de alumínio produzido.
[004] A título de conhecimento, a fábrica de cimento Rio Branco é grande consumidora de pozolana oriunda de cinzas volantes proveniente de usinas geradoras de energia elétrica a
base de carvão mineral. Um exemplo passível de ser citado é o material de capeamento da mina de calcário do cimento Rio Branco, que possui argila caulinítica suficiente para a produção de pozolana de boa qualidade, no entanto, esta possui cerca de 14% de Fe203 na sua composição química, fazendo com que a cor da pozolana após calcinação seja vermelha cor de tijolo, tornando sua aplicação na fabricação de cimento impossível devido ao efeito na coloração final (amarronzado) do produto, o qual o mercado rejeita.
[005] As tabelas 1 e 2 abaixo mostram as composições químicas típicas da bauxita e do Resíduo de Bauxita produzido na cidade de Alumínio - SP.
[006] Uma alternativa para os problemas causados pela enorme produção de Resíduo de Bauxita é o desenvolvimento de tecnologias que visem a sua reutilização.
[007] A origem da tecnologia a que se refere este pedido de patente foi a solução do problema da cor avermelhada das pozolanas, procurando, desta forma, alternativas para alterar a cor da pozolana de vermelha para cinza escura ou preta, de tal forma que a cor final do cimento não fosse alterada.
[008] Foi encontrado na literatura alguns documentos que tratam deste assunto, conforme descrito abaixo:
[009] O documento CN101439938 trata de um método rápido para o tratamento de endurecimento de aluminato ferroso feito de lama vermelha. O método compreende a) processar a lama vermelha, ou seja, secar, moer e filtrar através de uma peneira de malha 100, b) calcular os ingredientes em uma composição de matéria-prima por meio da formulação de minerais agregados de clínquer que incluem G2S, G4A3S e OAF; c) pesar as matérias-primas por porcentagem em peso: 40 a 55% de lama vermelha, 20 a 30% de calcário, 1,5 a 3% de pó de ferro, 20 a 30% de minérios de alumínio e l a 5% de gibsita; d) misturar e calcinar, misturando e triturando uniformemente os ingredientes, em que a temperatura de calcinagem seja entre 1250°C a 1350°C; e e) preparar tipos diferentes de endurecimento rápido de cimento de aluminato ferroso. O endurecimento rápido de cimento de aluminato ferroso possui as vantagens de que o rápido endurecimento do cimento de aluminato ferroso tem alta resistência inicial, boa resistência ao frio, resistência à corrosão e alta impermeabilidade. O cimento de aluminato ferroso é adequado para o tempo frio, recuperação, preparação de concreto projetado, a produção dos membros pré-fabricados, e assim por diante. Além disso, o cimento de endurecimento rápido com utilização de lama vermelha cria maior benefício social e benefício económico.
[0010] O documento C 102500592 trata de um processamento do conteúdo alcalino em lama vermelha de alumina que compreende: i) reduzir a lama vermelha de alumina e transportá-la para um tanque de reação de desalquilação, ii) realizar a desalquilação, transmitir a lama para um filtro à vácuo após lavagem, realizar uma separação sólido- líquido e transmitir o sólido em um forno rotativo, iii) realizar a redução de calcinação e adição de cálcio no material alcalino, iv) transportar a lama vermelha em um separador, separando em parte magnética e não-magnética, transportar a parte magnética em um moinho, realizar filtração por pressão da parte não-magnética, e secar utilizando uma argamassa seca.
[0011] O documento PI9602657-0 trata de um resíduo de bauxita de lama vermelha produzido pelo Processo Bayer, tratado em várias centrífugas e tanques de re-trituração para lavar sucessivamente e retirar a água da lama vermelha. Um licor concentrado final é obtido em uma primeiro estágio de centrífuga a montante que é rico em valores de alumina e cáusticos para respectiva recuperação e re-utilização. O bolo de lama vermelha concentrado produzido na etapa de centrífuga/lavagem a jusante final é inferior em concentração de cáustico e alumina permitindo descarte ambientalmente aceitável. O bolo de lama vermelha concentrado é re-lameado e misturado com areia de bauxita para descarte em uma área de represamento de empilhado a seco.
[0012] A patente PI9602530-1 trata de um processo em que a lama vermelha, resíduo na produção da alumina pelo Processo Bayer, é lixiviada com os ácidos sulfúricos e clorídricos sob agitação e aquecimento. O resíduo sólido é separado da solução, que contém os íons metálicos extraídos, através de uma filtração. O resíduo sólido que contem silicatos, teores reduzidos de alumínio e titânio, baixos teores de cálcio, magnésio, sódio, potássio e ferro, constitui-se numa matéria-prima de baixo custo para a indústria vitro-cerâmica. Para a fabricação de materiais vitro-cerâmicos, esse resíduo é fundido, sendo a massa vítrea
cristalizada através de um tratamento térmico. O ferro II presente na solução filtrada é oxidado a ferro III pela ação oxidante do peróxido de hidrogénio e é precipitado como hidróxido férrico através da adição de uma solução cáustica. Após sua separação por filtração o alumínio é recuperado da solução por precipitação como hidróxido de alumínio, através da adição da mesma solução cáustica usada anteriormente.
[0013] Os documentos apresentados no estado da técnica tratam da correção da coloração avermelhada da argila calcinada para a cor cinza, a partir da mistura de carvão com argila durante a queima em ambiente redutor, o que requer equipamento especial para tal, elevando os custos de maneira não atrativa.
[0014] Em contrapartida, a tecnologia que se trata o presente pedido de patente utiliza no mínimo 70% de lama vermelha, corrigindo-se a composição química com calcário para um mínimo de 10% de CaO, e com material silicoso para uma porcentagem mínima de 30% de SiO2. Queima-se a dita lama vermelha a temperaturas na ordem de 1250°C, resultando em um produto que não possui nenhuma propriedade hidráulica por si só. Desta maneira, trata-se de uma adição ativa que só adquire propriedades cimentantes quando em combinação com clínquer de cimento Portland, e para complementar a mineralogia do material produzido é principalmente material amorfo.
Objetivos:
[0015] O presente pedido de patente tem como intenção tornar viável a utilização de matérias primas existentes em áreas de mineração já abertas, evitando assim a abertura de novas jazidas a distâncias maiores das fábricas onerando seus custos e aumentando as emissões de CO2 por conta do transporte a longas distâncias.
[0016] Ainda no âmbito ambiental, o presente pedido evita que novos lagos de represamento sejam abertos. Isto significa evitar que uma área de cerca de 50-70 acres seja contaminada, pois o solo destes lagos de represamento não é recuperável e são úteis
por apenas 5 anos, fora o fato destes lagos apresentarem pH muito alto (suas águas são muito cáusticas) e de apresentarem seus ecossistemas totalmente danificado. No mundo há casos de rompimento de barreiras de lagos com depósito de "red mud" ou iesíduos de bauxita, com consequências desastrosas para a população e para o meio ambiente. Enfim, tanto o monitoramento de um lago para este tipo de depósito como a criação de novos lagos custam muito caro para a indústria e ainda representam danos à natureza e perigos para o ser humano.
[0017] Além disso, a coloração da pozolana era um fator limitante a sua utilização. Com isso, o presente pedido tem por objetivo solucionar o problema das muitas jazidas de matérias primas para a fabricação de pozolanas que possuem coloração vermelha, ou se tornam vermelhas após a calcinação, impossibilitando sua utilização na fabricação de cimento. O presente pedido descreve uma alternativa para alterar a cor dos resíduos de bauxita ÇVed mud") de vermelha para cinza escura ou preta, de tal forma que a cor final do cimento não seja alterada.
[0018] Tendo em vista os documentos apresentados no Estado da Técnica, a principal vantagem da utilização desta tecnologia é poder transformar um resíduo tóxico ao meio ambiente em um produto de valor comercial e social importante como cimento Portland, diminuindo assim, a pressão sobre o meio ambiente em várias áreas, mineração da cimenteira, aterros para a planta de alumínio, trazendo fortes benefícios para a sociedade como um todo, e criando uma importante sinergia entre as indústrias de cimento e alumínio.
Descrição das Figuras
[0019] O invento será mais bem compreendido à luz das figuras em anexo, dadas a título meramente exemplificativo, mas não limitativo, nas quais:
- Fig 1: Fluxograma da reutilização de resíduos de bauxita.
- Fig 2: Avaliação termogravi métrica da redução do consumo térmico para a produção da adição ativa de lama vermelha f red-mucf) quando comparada com uma farinha típica para fabricação de clínquer.
- Fig 3: Teste de queima da lama vermelha em laboratório:
1 - amostra de lama vermelha;
2 - teste da etapa de queima em laboratório;
3 - lama vermelha à temperatura de 1250°C após a queima.
- Fig 4: Fotos do forno piloto especialmente projetado e construído para o desenvolvimento do presente pedido, equipamento único no Brasil.
4 - é uma vista frontal do forno piloto;
5 - é uma vista lateral do forno piloto;
6 - amostra de adição ativa coletada no interior do forno piloto;
7 - final de batelada - descarga do material produzido.
- Fig 5: Lama vermelha e seus estágios de processamento até corpos de prova, em que se pode verificar a alteração de cor da referida lama vermelha após seu processamento, para avaliação do desempenho da mistura com cimento.
8 - lama vermelha úmida
9 - lama vermelha seca
10 - lama vermelha calcinada
11 - lama vermelha com cal
12 - lama vermelha com cimento
- Fig. 6: Gráfico dos testes de qualificação da adição ativa fabricada com lama vermelha. IAP- com cal = índice de atividade pozolânica com cal. IAP-CAL = índice de atividade pozolânica com cal. IAP CIM = índice de atividade pozolânica com cimento. MPA = mega Pascal.
- Hg. 7: Gráfico do desempenho da adição ativa no cimento e no concreto. MPA = mega Pascal.
- Fig 8: Gráfico dos resultados dos primeiros testes efetuados em bancada para avaliar desempenho da adição ativa produzida com RED-MUD frente as normas Brasileiras referente ao produto Pozolana (adição ativa). Os primeiros testes não foram satisfatórios até que a composição química e a temperatura de queima fossem adequadamente ajustadas. O teste efetuado no forno piloto (Figura 4) já contemplava os ajustes das composições químicas e de temperatura, e por este motivo os requisitos mínimos de norma foram atendidos. Em função disso, foi avaliada a eficiência do desempenho da adição ativa assim produzida em cimentos e concretos, cujos resultados foram satisfatórios, e equivalentes aos obtidos quando da utilização de pozolanas típicas tais como flyash. IAP = índice de Atividade pozolanica.
- Fig. 9: Gráfico dos resultados da avaliação do desempenho da adição ativa com cimento e com concreto, onde é possível constatar que o desempenho mecânico atende as necessidades da fabricação de cimento e concreto e atende aos requisitos das Normas Brasileiras de cimento. Mpa= Mega Pascal
Descrição Resumida da Invenção
[0020] Processo para obtenção de composição química para produção de adição ativa capaz de substituir clínquer Portland compreendendo as seguintes etapas:
(a) tratamento químico: ao resíduo do processamento de bauxita adiciona-se calcário ou derivados de carbonatos de cálcio e areia ou derivados de sílica ou argilas silicosas até obter-se um teor de S1O2 > 30%, de CaO > 10% % e a2O < 10,0%; preferencialmente S1O2 entre 30 a 40%, CaO entre 10 a 15% %, e a2O entre 4 e 6,0%;
(b) etapa de homogeinização: a mistura obtida no item anterior sofre o processo de homogenização;
(c) tratamento térmico: em seguida a massa da mistura obtida no processo (b) é aquecida à temperatura entre 1000°C a 1500°C com fusão parcial e alteração de cor;
(d) resfriamento: o processo de resfriamento ocorre em resfriador que pode ser de satélite ou grelha;
(e) produto final: o produto final é obtido quando a cor da adição ativa estiver cinza escura, com desempenho similar as cinzas nfly ash"e. a presença de CaO livre for inferior a 1,0%;
(f) moagem: o produto final é então submetido ao processo de moagem em conjunto com clínquer de cimento Portland para a produção de cimentos contendo a adição ativa segundo a norma brasileira NBR 12653, e granulometria na faixa de 0,01 a 5 polegadas de tamanho.
Descrição Detalhada da Invenção
[0021] O resíduo de bauxita denominado nred-mud' possui na sua composição química altos teores de ferro, o que torna o material vermelho intenso.
[0022] Sabe-se que nem todos os resíduos de bauxita podem ser transformados em pozolanas ou em adição ativa, apenas pelo efeito de calcinação, pois as composições químicas dos resíduos são muito variadas.
[0023] Desta forma, a tecnologia proposta na presente invenção se diferencia das demais porque obrigatoriamente é feito um ajuste da composição química do resíduo, e após sua calcinação a alta temperatura em uma faixa preferencial de 1150°C a 1300°C, temos como resultado uma adição ativa de cor cinza escura de alto desempenho capaz de substituir parcialmente o clínquer sem perdas de desempenho mecânico no cimento e concreto resultante de sua aplicação. Desta forma, o processo de obtenção da composição química para emprego de adição ativa substituinte de clínquer Portland se torna altamente
ecológico, pelo fato de haver redução da emissão de carbono do cimento produzido com a substituição parcial do clínquer Portland.
[0024] A tecnologia do presente pedido consiste em um processo para obtenção de composição química para produção de adição ativa compreendendo as seguintes etapas:
(a) tratamento químico: ao resíduo do processamento de bauxita adiciona-se calcário ou derivados de carbonatos de cálcio e areia ou derivados de sílica ou argilas silicosas até obter-se um teor de Si02 > 30%, de CaO > 10% % e Na20 < 10,0%; preferencialmente Si02 entre 30 a 40%, CaO entre 10 a 15% %, e Na2O entre 4 e 6,0%;
(b) etapa de homogeinização: a mistura obtida no item anterior sofre o processo de homogenização;
(c) tratamento térmico: em seguida a massa da mistura obtida no processo (b) é aquecida à temperatura entre 1000°C a 1500°C com fusão parcial e alteração de cor;
(d) resfriamento: o processo de resfriamento ocorre em resfriador que pode ser de satélite ou grelha;
(e) produto final: o produto final é obtido quando a cor da adição ativa estiver cinza escura, com desempenho similar as cinzas "fly ash"e a presença de CaO livre for inferior a 1,0%;
(f) moagem: o produto final é então submetido ao processo de moagem em conjunto com clínquer de cimento Portland para a produção de cimentos contendo a adição ativa segundo a norma brasileira NBR 12653, e granulometria na faixa de 0,01 a 5 polegadas de tamanho.
[0025] A composição compreendendo o resíduo de processamento da bauxita apresenta um teor de SiO2 > 30% e de CaO > 10%, ou seja, a proporção de SiO2:CaO é de 3:1, e coloração cinza, similar ao cimento.
[0026] O resultado final é obtido através de uma mistura entre argila vermelha + calcário + argila silicosa + queima a uma faixa de temperatura preferencial de 1150°C a 1300°C, ainda mais preferencialmente 1250°C. Esta combinação produz uma adição ativa com características adequadas em relação às Normas Brasileiras (NBR 12653).
[0027] A correção da composição química, a temperatura de queima elevada acima de 1150°C com fusão parcial do material e alteração de cor, são as principais inovações deste processo em relação às tecnologias existentes. O estado da técnica não faz menção à alteração de cor e temperaturas de queima acima de 1000°C, pois as tecnologias existentes recomendam queimas do material a temperaturas de 500°C a 900°C.
[0028] O novo produto é uma adição ativa de alto desempenho, que permite a substituição de até 30% de cimento com desempenho satisfatório deste, contribuindo de maneira significativa para redução da emissão de carbono do cimento e concreto.
1. Tratamento químico do resíduo de bauxita:
[0029] O processo segundo a invenção parte de resíduos do processamento da bauxita ou alumina que em geral apresentam a coloração avermelhada devido ao excesso de ferro (Fe203) na composição fazendo com que após a queima, o material adquira a cor vermelha. Esta coloração é um grande entrave para o seu emprego na fabricação de cimento, pois este mercado é muito conservador e rejeita fortemente qualquer alteração na coloração do cimento.
[0030] A composição habitual deste resíduo também é conhecida pelo nome de lama vermelha ÇVe mucf) e em geral é descartado na forma de lama em aterros. A composição química de base deste resíduo é principalmente os componentes AI2O3, Fe203, S1O2, GaO e a20. Sua coloração é devida a presença de íons ferro, que neste caso é cerca de 20% da composição da lama vermelha.
[0031] Descobriu-se agora que para se eliminar a coloração vermelha e ainda melhorar as propriedades mineralógicas deste resíduo seus teores de S1O2 deve ser > 30% e de CaO > 10%. Para isso, ao resíduo de alumina deve-se adicionar calcário + argila de composição química adequada de tal maneira a atender a condição acima mencionada numa proporção molar ou de massa que varie de 10:30 para CaO e de 30:50 de S1O2 ou silicatos ou areia em relação à massa de resíduo a ser tratada.
[0032] Preferencialmente reduz-se a porcentagem de a2O do resíduo de alumina por processamento químico e filtragem para valores menores que 6,0% em massa.
2. Etapa de homogeneização:
[0033] A mistura obtida no item anterior sofre o processo de homogeneização.
3. Tratamento térmico:
[0034] A massa obtida no processo de homogeneização é introduzida em forno rotativo e aquecida a uma temperatura maior do que 1000°C ou temperatura de fusão parcial, preferencialmente entre cerca de 1150°C até 1500°C, ainda mais preferencialmente 1250°C, por intervalo de tempo maior do que 30 minutos ou até que a coloração saia de vermelho para cinza escura ou preta.
[0035] O processo de fusão parcial é fundamental para garantir a propriedade pozolânica do material calcinado e também para a correção da cor da adição ativa de vermelho para cinza escuro e/ou preto, bem como para otimizar o processo de resfriamento nos resfriadores de satélite e/ou grelhas. A presença de 10 a 50% de líquido no material calcinado é fundamental para garantir as propriedades acima mencionadas.
4. Resfriamento:
[0036] O processo de resfriamento ocorre em resfriador que pode ser de satélite (tipo de resfriador de forno de cimento), ou grelha (também tipo de resfriador de forno de
cimento). Após a etapa de resfriamento do produto, este é recolhido em silos e/ou depósitos cobertos.
5. Produto final:
[0037] O produto final é obtido quando a cor da adição ativa estiver cinza escura, com desempenho similar as cinzas nfly as "e a presença de CaO livre for inferior a 1,0% bem como boa parte da sua estrutura mineralógica estiver amorfa ou não cristalina.
[0038] A coloração da adição ativa é medida de acordo com o modelo colori métrico CIE L*a*b* (CIELAB). Este modelo descreve todas as cores visíveis para o olho humano, no qual uma cor é localizada por três valores: L (luminância, expressa em porcentagem), em que L = 0,0 se refere ao preto absoluto (ausência de cor) e L = 100,0 se refere ao branco absoluto (reflete todas as cores); a e b são duas gamas de cor que vão respectivamente do verde ao vermelho e do azul ao amarelo com valores que vão de -120 a +120.
6. Moagem:
[0039] O produto final é então submetido ao processo de moagem em conjunto com clínquer de cimento Portland para a produção de cimentos contendo a adição ativa segundo a norma brasileira NBR 12653, e granulometria na faixa de 0,01 a 5 polegadas de tamanho.
[0040] De modo preferencial, a composição da adição ativa através da utilização da lama vermelha é o que segue na tabela 3 abaixo:
[0041] Além do calcário como fornecedor de CaO para que a porcentagem mínima de CaO seja superior a 10%, pode-se adicionar qualquer fonte contendo CaO, tais como escória básica de alto forno, outros resíduos industriais, como lama de cal oriunda da lavagem de gases e/ou outras fontes de cálcio.
[0042] Desta forma, a composição da adição ativa da presente invenção compreende resíduo de processamento da bauxita apresentando um teor de S1O2 > 30%, de CaO > 10%, porcentagem de Na2O < 6,0% e coloração máxima de L = 10 a 50, preferencialmente L=< 40.
[0043] Assim, a correção da cor utilizando a adição de calcário + alta temperatura de calcinação, veio corrigir o problema, tornando viável a utilização de matérias primas existentes em áreas de mineração já abertas, evitando, assim, a abertura de novas jazidas a distâncias maiores das fábricas onerando seus custos e aumento das emissões de CO2 por conta do transporte a longas distâncias, além de evitar que uma vasta área seja contaminada, uma vez que o solo dos lagos de represamento não é recuperável e é útil por apenas 5 anos.
Exemplo 1:
[0044] Abaixo se encontra a tabela comparativa entre a composição química da matéria prima da fabricação de clínquer denominada de farinha crua comum e a adição ativa da presente invenção. A farinha a que se refere esta tabela é a matéria prima crua antes da calcinação para fabricação de clínquer de cimento Portland.
Tabela 4: Comparação da composição química da farinha comum e da adição ativa da presente invenção.
[0045] Foram efetuados inúmeros testes de bancada conforme as figuras 3 a 7. Os testes foram efetuados para definição da composição química e temperaturas ideais para obtenção das propriedades desejadas para o material (adição ativa). Desta maneira, partiu-se da calcinação da lama vermelha pura a temperaturas de 500°C, e após cada teste foram avaliadas as composições mineralógicas do produto formado, e seus desempenhos como adição ativa. Identificada a composição química mínima necessária para obtenção das propriedades desejadas e a temperatura adequada para obtenção da cor cinza, foi efetuado um teste em forno piloto (Figura 5), para obtenção do material em maior escala a fim de avaliar o desempenho da adição ativa produzida em misturas com cimento nas porcentagens de 15% e 30% de substituição do cimento Portland, avaliando o desempenho da adição ativa no cimento e no concreto em testes preconizados pelas normas brasileiras (figura 7).
[0046] Partiu-se de 100% de lama vermelha com a seguinte composição abaixo, até a composição química final (figura 5, subitem 12).
Exemplo 3:
[0047] Testes de qualificação para as normas brasileiras NBR 12653 da adição ativa fabricada com lama vermelha (Tabela 6).
Teste 1 - lama vermelha aquecida à temperatura > 1150°C. Quando avaliada segundo a NBR 12653, o teste de medição da atividade pozolânica com cal foi zero, quando o limite mínimo da norma NBR 12653 é de 6,0 Mpa, indicando com isso, que o material assim produzido não é uma pozolana. Em teste com cimento, o valor obtido foi de 74% do valor de referência sendo que o valor mínimo de norma é de 75,0% -Desta forma, foi confirmado no teste anterior em que o material não é uma pozolana capaz de atender aos requisitos da norma Brasileira.
Teste 2 - No segundo teste foi acrescentado 20% de material silicoso para corrigir a porcentagem de S1O2 da lama vermelha (red mud). Após calcinação nas mesmas condições do teste 1, foi efetuado a avaliação do índice de atividade pozolânica com cal e foi obtido valor de 2,2 Mpa, quando o índice de atividade pozolânica mínimo é de 6,0 Mpa. No entanto, na avaliação com cimento, o valor obtido foi de 84%, quando o limite mínimo é de 75%; portanto, o produto está aprovado apenas parcialmente.
Teste 3 - Em função dos resultados insatisfatórios dos testes 1 e 2, foi acrescentado 10% de calcário na composição do teste 2, afim de obter uma mistura com o valor mínimo de 30% de S1O2 e 10% de CaO. Com esta nova composição e calcinação nas mesmas condições dos testes anteriores, foi obtido material cuja avaliação do índice de atividade pozolânica com cal foi de 3,5 Mpa, e o índice de atividade pozolânica com cimento foi de 94,4%, quando o valor mínimo exigido por norma é de 75,0%.
Teste 4 - Para o teste n°4 foi mantida a composição química do teste n°3, porém, foi reduzida a porcentagem de a20 de 12,0% para menos de 6,0%, sendo esta a alteração da composição que estava faltando para que os resultados a serem obtidos com a adição ativa permitissem o atendimento das normas Brasileiras. Desta forma, podemos observar que o IAP (índice de Atividade Pozoiânica) com cal obtido no teste n°4 foi de 6,2 Mpa, sendo que o valor mínimo de norma é de 6,0 Mpa. O teste de IAP (índice de Atividade Pozoiânica) com cimento obtido no teste n°4 foi de 94% quando o mínimo da norma Brasileira é de 75,0%. Assim, estes resultados confirmam que a adição ativa assim produzida atende integralmente aos requisitos das normas Brasileiras para que este produto esteja habilitado a substituir parcialmente o clínquer Portland na fabricação de cimento Portland.
[0048] O teste n°4 foi efetuado em forno piloto, com o objetivo de produzir um volume maior de material suficiente para serem efetuados os testes de avaliação de desempenho em cimento e concreto. A Figura 6 mostra a evolução dos resultados em função das alterações nas composições químicas.
[0049] Podemos avaliar o desempenho da adição ativa NBR 12653 no cimento e no concreto através dos resultados obtidos nos testes finais de aplicação da adição ativa de resíduos de bauxita na fabricação de cimentos e concreto através da Figura 7. Foram efetuados dois testes de avaliação do desempenho da adição ativa de resíduo de bauxita em substituição parcial ao clínquer Portland, substituindo-se em 15% e 30%. Os resultados mínimos exigidos pelas normas Brasileiras para ambas as misturas são de resistência mecânica obtida em argamassa padrão aos 3 dias, mínimo de 10 Mpa (valores obtidos nos testes 15% = 27,7 MPa e 30%= 22,2 Mpa), as resistências mecânicas aos 7 dias, mínimo de 20,0 Mpa (valores obtidos nos testes 15%=31,4 Mpa e 30% = 25,7 Mpa), as resistências mecânicas aos 28 dias, mínimo de 32,0 Mpa (valores obtidos nos
testes 15% = 37,8 Mpa e 30% 34,2 Mpa). Os desempenhos em concreto não necessitam atender a norma especifica, porém, foram comparados com os resultados obtidos de cimentos similares produzidos com pozolanas tradicionais tais como fly ash (fíy ash = cinza volante, ou cinza produzida em caldeira de usina termoelétrica), e os resultados obtidos são equivalentes. Portanto, é possível concluir que a adição ativa produzida com a lama vermelha de composição química corrigida através do processo mencionado, atende a todos os requisitos das normas Brasileiras de pozolana e de cimento, e permite a produção de concretos com desempenho similares as pozolanas tradicionais utilizadas.
Claims
Reivindicações
1. Processo de obtenção de composição química para produção de adição ativa capaz de substituir clínquer Portland caracterizado pelo fato de compreender as etapas:
(a) tratamento químico: ao resíduo do processamento de bauxita adiciona-se calcário ou derivados de carbonatos de cálcio e areia ou derivados de sílica ou argilas silicosas até obter-se um teor de S1O2 > 30%, de CaO > 10% % e a20 < 10,0%; preferencialmente S1O2 entre 30 a 40%, CaO entre 10 a 15% %, e a20 entre 4 e 6,0%;
(b) etapa de homogeinização: a mistura obtida no item anterior sofre o processo de homogenização;
(c) tratamento térmico: em seguida a massa da mistura obtida no processo (b) é aquecida à temperatura entre 1000°C a 1500°C com fusão parcial e alteração de cor;
(d) resfriamento: o processo de resfriamento ocorre em resfriador que pode ser de satélite ou grelha;
(e) produto final: o produto final é obtido quando a cor da adição ativa estiver cinza escura, com desempenho similar as cinzas nffy ash"e a presença de CaO livre for inferior a 1,0%;
(f) moagem: o produto final é então submetido ao processo de moagem em conjunto com clínquer de cimento Portland para a produção de cimentos contendo a adição ativa segundo a norma brasileira NBR 12653, e granulometria na faixa de 0,01 a 5 polegadas de tamanho.
2. Processo de acordo com a reivindicação 1, caracterizado pelo fato de se adicionar ao resíduo de alumina, CaO e S1O2 em uma relação molar CaO:Si02 que pode variar de 10 a 30:30 a 50 em relação à massa total a ser tratada.
3. Processo de acordo com a reivindicação 1, caracterizado pelo fato de que a proporção de Si02:CaO é de 3:1, e Na20 < 10,0%.
4. Processo de acordo com a reivindicação 1, caracterizado pelo fato da presença de CaO livre ser inferior a 2,0%, preferencialmente entre 0,5 e 1,0%, bem como boa parte da sua estrutura mineralógica estiver amorfa ou não cristalina.
5. Processo de acordo com a reivindicação 1, caracterizado pelo fato da porcentagem de a20 do resíduo de alumina ser reduzida por processamento químico e filtragem para valores menores que 10,0% em massa, preferencialmente entre 2 e 6,0% em massa.
6. Processo de acordo com a reivindicação 1, caracterizado pelo fato da temperatura de fusão ser preferencialmente de 1150°C a 1300°C, por um intervalo de tempo maior do que 30 minutos ou até que a coloração saia de vermelho para cinza escura ou preta.
7. Composição química de acordo com qualquer uma das reivindicações anteriores, caracterizado pelo fato de ser uma composição química de resíduo de processamento de bauxita para emprego em adição ativa com teor de Si02 > 30% e de CaO > 10% e Na20 < 10,0% com alteração de sua coloração de vermelho para cinza.
10. Composição química de acordo com as reivindicações 7, a 9, caracterizado pelo fato da composição da adição ativa consistir
preferencialmente de: 9 a 12% de CaO; 30 a 38% de Si02; 0,0 a 6,0% de Na20, em relação a massa total da composição.
11. Composição química de acordo com as reivindicações 7, a 11, caracterizado pelo fato da composição da adição ativa consistir ainda mais preferencialmente de: 11% de CaO; 36% de S1O2; < 6% de a20.
12. Uso da composição química, de acordo com as reivindicações 7 a 11, caracterizado pelo fato da dita composição poder substituir até 30% de clínquer Portland em cimentos do tipo pozolânicos.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BR102013024226-8A BR102013024226B1 (pt) | 2013-09-20 | 2013-09-20 | Process for obtaining chemical composition for production of active addition capable of replacing portland clinker, chemical composition and use of this composition |
BRBR102013024226-8 | 2013-09-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015039198A1 true WO2015039198A1 (pt) | 2015-03-26 |
Family
ID=52688017
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/BR2014/000208 WO2015039198A1 (pt) | 2013-09-20 | 2014-06-24 | Processo para obtenção de composição química para produção de adição ativa capaz de substituir clínquer portland, composição química e uso desta composição |
Country Status (2)
Country | Link |
---|---|
BR (1) | BR102013024226B1 (pt) |
WO (1) | WO2015039198A1 (pt) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102020211750A1 (de) | 2020-09-21 | 2022-03-24 | Thyssenkrupp Ag | Energierückgewinnung bei der Kühlung farboptimierter aktivierter Tone |
WO2022058206A1 (de) | 2020-09-21 | 2022-03-24 | Thyssenkrupp Industrial Solutions Ag | Energierückgewinnung bei der kühlung farboptimierter aktivierter tone |
BE1028620A1 (de) | 2020-09-21 | 2022-04-12 | Thyssenkrupp Ag | Energierückgewinnung bei der Kühlung farboptimierter aktivierter Tone |
DE102021203044A1 (de) | 2021-03-26 | 2022-09-29 | Thyssenkrupp Ag | Regelungsverfahren zur Steuerung der Calcinierung von Tonen für die Zementindustrie |
WO2022200112A1 (de) | 2021-03-26 | 2022-09-29 | Thyssenkrupp Industrial Solutions Ag | Regelungsverfahren zur steuerung der calcinierung von tonen für die zementindustrie |
BE1029247A1 (de) | 2021-03-26 | 2022-10-19 | Thyssenkrupp Ag | Regelungsverfahren zur Steuerung der Calcinierung von Tonen für die Zementindustrie |
LU103013B1 (de) | 2022-09-20 | 2024-03-21 | Thyssenkrupp Ag | Gebrauchsfertiger Portlandpuzzolanzement |
DE102022209876A1 (de) | 2022-09-20 | 2024-03-21 | Thyssenkrupp Ag | Gebrauchsfertiger Portlandpuzzolanzement |
WO2024061710A1 (de) | 2022-09-20 | 2024-03-28 | thyssenkrupp Polysius GmbH | Gebrauchsfertiger portlandpuzzolanzement |
EP4238950A4 (en) * | 2020-10-27 | 2024-08-28 | Fct Holdings Pty Ltd | PROCESS FOR PRODUCING ACTIVATED/CALCINED CLAY WITH CALCIUM ALUMINOFERRITE OR CALCIUM FERRITE AND CLAY COMPOSITION OBTAINED BY THIS PROCESS |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115466632B (zh) * | 2022-07-15 | 2024-04-09 | 陈松涛 | 固定床高料层连续气化炉提高和均化料层温度的生产方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2089231A5 (pt) * | 1970-04-06 | 1972-01-07 | Tatabanyai Szenbanyak | |
CN1609031A (zh) * | 2004-11-09 | 2005-04-27 | 张立省 | 新型生态水泥及其制备方法与应用 |
CN102092971A (zh) * | 2011-01-11 | 2011-06-15 | 天津城市建设学院 | 一种赤泥制备道路硅酸盐水泥的方法 |
CN102491657A (zh) * | 2011-11-22 | 2012-06-13 | 中国铝业股份有限公司 | 一种利用赤泥、铝土矿选尾矿生产聚合胶凝材料的方法 |
-
2013
- 2013-09-20 BR BR102013024226-8A patent/BR102013024226B1/pt active IP Right Grant
-
2014
- 2014-06-24 WO PCT/BR2014/000208 patent/WO2015039198A1/pt active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2089231A5 (pt) * | 1970-04-06 | 1972-01-07 | Tatabanyai Szenbanyak | |
CN1609031A (zh) * | 2004-11-09 | 2005-04-27 | 张立省 | 新型生态水泥及其制备方法与应用 |
CN102092971A (zh) * | 2011-01-11 | 2011-06-15 | 天津城市建设学院 | 一种赤泥制备道路硅酸盐水泥的方法 |
CN102491657A (zh) * | 2011-11-22 | 2012-06-13 | 中国铝业股份有限公司 | 一种利用赤泥、铝土矿选尾矿生产聚合胶凝材料的方法 |
Non-Patent Citations (2)
Title |
---|
MANFROI, E. P.: "Avaliação da lama vermelha como material pozolânico em substituição ao cimento- para produção de argamassas", DISSERTAÇÃO DE MESTRADO), UNIVERSIDADE FEDERAL DE SANTA CATARINA, 2009, FLORIANóPOLIS - SC, BRASIL, pages 47,48, 59, 74 AND 106 - 110 * |
MERCURY, J.M.R. ET AL.: "Estudo do comportamento térmico e propriedades físico-mecânicas da lama vermelha", REVISTA MATÉRIA, vol. 15, 2010, pages 445 - 460 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102020211750A1 (de) | 2020-09-21 | 2022-03-24 | Thyssenkrupp Ag | Energierückgewinnung bei der Kühlung farboptimierter aktivierter Tone |
WO2022058206A1 (de) | 2020-09-21 | 2022-03-24 | Thyssenkrupp Industrial Solutions Ag | Energierückgewinnung bei der kühlung farboptimierter aktivierter tone |
BE1028620A1 (de) | 2020-09-21 | 2022-04-12 | Thyssenkrupp Ag | Energierückgewinnung bei der Kühlung farboptimierter aktivierter Tone |
EP4238950A4 (en) * | 2020-10-27 | 2024-08-28 | Fct Holdings Pty Ltd | PROCESS FOR PRODUCING ACTIVATED/CALCINED CLAY WITH CALCIUM ALUMINOFERRITE OR CALCIUM FERRITE AND CLAY COMPOSITION OBTAINED BY THIS PROCESS |
DE102021203044A1 (de) | 2021-03-26 | 2022-09-29 | Thyssenkrupp Ag | Regelungsverfahren zur Steuerung der Calcinierung von Tonen für die Zementindustrie |
WO2022200112A1 (de) | 2021-03-26 | 2022-09-29 | Thyssenkrupp Industrial Solutions Ag | Regelungsverfahren zur steuerung der calcinierung von tonen für die zementindustrie |
BE1029247A1 (de) | 2021-03-26 | 2022-10-19 | Thyssenkrupp Ag | Regelungsverfahren zur Steuerung der Calcinierung von Tonen für die Zementindustrie |
LU103013B1 (de) | 2022-09-20 | 2024-03-21 | Thyssenkrupp Ag | Gebrauchsfertiger Portlandpuzzolanzement |
DE102022209876A1 (de) | 2022-09-20 | 2024-03-21 | Thyssenkrupp Ag | Gebrauchsfertiger Portlandpuzzolanzement |
WO2024061710A1 (de) | 2022-09-20 | 2024-03-28 | thyssenkrupp Polysius GmbH | Gebrauchsfertiger portlandpuzzolanzement |
Also Published As
Publication number | Publication date |
---|---|
BR102013024226B1 (pt) | 2017-09-19 |
BR102013024226A2 (pt) | 2016-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015039198A1 (pt) | Processo para obtenção de composição química para produção de adição ativa capaz de substituir clínquer portland, composição química e uso desta composição | |
Buruberri et al. | Preparation of clinker from paper pulp industry wastes | |
Rashad | Potential use of phosphogypsum in alkali-activated fly ash under the effects of elevated temperatures and thermal shock cycles | |
Locher | Cement: principles of production and use | |
Bye | Portland cement: composition, production and properties | |
Mármol et al. | Use of granite sludge wastes for the production of coloured cement-based mortars | |
Trezza et al. | Burning wastes as an industrial resource: Their effect on Portland cement clinker | |
US8852339B2 (en) | Industrial process for the production of a clinker with a high content of belite | |
TWI760829B (zh) | 自鐵礦石選礦過程中產生的砂性尾礦獲取粉狀矽酸鈉之方法 | |
JP2017019712A (ja) | テルネサイト−ベライト−スルホアルミン酸カルシウムクリンカーの製造方法 | |
CA2922533A1 (en) | Fluxes/mineralizers for calcium sulfoaluminate cements | |
ES2819901T3 (es) | Método para producir materiales cementosos suplementarios que comprenden sedimentos dragados | |
WO2014176656A1 (pt) | Processo para produção de agregado fino para cimento a partir da lama vermelha resultante do processo de beneficiamento de bauxita (processo bayer) | |
Kulkarni et al. | Production of composite clay bricks: A value-added solution to hazardous sludge through effective heavy metal fixation | |
WO2012172138A1 (es) | Procedimiento para la fabricación de cementos alcalinos a partir de residuos vítreos urbanos e industriales | |
CN104761160B (zh) | 一种改性矿渣粉的制备方法 | |
Skinner et al. | Effect of TiO2, Fe2O3, and alkali on mineralogical and physical properties of mullite‐type and mullite‐forming Al2O3‐SiO2 mixtures: I | |
CN106966615A (zh) | 利用锂盐渣配制生料煅烧硅酸盐水泥熟料的方法 | |
Glasser | Application of the phase rule to cement chemistry | |
JP6318482B2 (ja) | セメント組成物及びセメント組成物の製造方法 | |
JP4842211B2 (ja) | セメント添加材用焼成物、セメント添加材及びセメント組成物 | |
Staněk et al. | Berlinite substitution in the cement clinker | |
KR100241223B1 (ko) | 전자부품 제조 공정 폐수의 슬러지를 이용한 벽돌의 제조 방법 | |
GB2063240A (en) | Hydraulic binders based on Portland cement clinkers | |
Parr | Calcium aluminate cement—what happens when things go wrong |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14846435 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08.09.2016) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14846435 Country of ref document: EP Kind code of ref document: A1 |