WO2015039178A1 - Commande de thermostat par gestes - Google Patents

Commande de thermostat par gestes Download PDF

Info

Publication number
WO2015039178A1
WO2015039178A1 PCT/AU2014/000929 AU2014000929W WO2015039178A1 WO 2015039178 A1 WO2015039178 A1 WO 2015039178A1 AU 2014000929 W AU2014000929 W AU 2014000929W WO 2015039178 A1 WO2015039178 A1 WO 2015039178A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermostat
sensor
hvac
hand gestures
gesture
Prior art date
Application number
PCT/AU2014/000929
Other languages
English (en)
Inventor
Rohan Smith
Alina Loscher
James Muraca
Original Assignee
Planet Intellectual Property Enterprises Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2013903632A external-priority patent/AU2013903632A0/en
Application filed by Planet Intellectual Property Enterprises Pty Ltd filed Critical Planet Intellectual Property Enterprises Pty Ltd
Publication of WO2015039178A1 publication Critical patent/WO2015039178A1/fr

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1902Control of temperature characterised by the use of electric means characterised by the use of a variable reference value
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/52Indication arrangements, e.g. displays
    • F24F11/523Indication arrangements, e.g. displays for displaying temperature data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • F24F11/58Remote control using Internet communication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants

Definitions

  • This invention relates to a method and apparatus to enable the control of a building HVAC thermostat using hand gestures so that there is no need to physically touch the thermostat to change its state.
  • a thermostat controller for building HVAC systems responsive to hand gestures including:
  • At least one sensor responsive to hand gestures
  • a recognition circuit coupled to receive signals from the at least one sensor and adapted to determine gesture parameters therefrom;
  • a processor coupled to the recognition circuit and adapted to determine HVAC control parameters from the gesture parameters
  • HVAC control circuitry for controlling HVAC systems in accordance with HVAC control parameters communicated from the processor circuit.
  • the at least one sensor may be supported by a housing, wherein the at least one sensor is responsive to hand gestures only in proximity to the housing.
  • the at least one sensor may be one or a combination of a capacitive sensor, an inductive sensor, or an infrared optical sensor.
  • the thermostat controller may include a plurality of sensor electrodes arranged in a two-dimensional pattern, wherein the recognition circuit is operative, in use, to determine gesture parameters in response to two-dimensional hand gestures substantially parallel to and in proximity of the sensor electrode pattern.
  • a thermostat display screen may be mounted in the housing, wherein the pattern of sensor electrodes is arranged in front of and/or around the periphery of the display screen.
  • a method for controlling a building HVAC system including:
  • thermostat unit within the building, the thermostat unit being capable of communication with the building HVAC system and having at least one sensor capable of detecting hand movements in the vicinity thereof;
  • gesture or "hand gesture” is used herein to describe a movement or sequence of movements of a limb, hand, digit or the like.
  • HVAC heating, ventilation and/or air- conditioning apparatus and like systems for effecting control of interior environmental conditions although a given HVAC system may not necessarily include each of or separate heating, ventilation and air-conditioning equipment.
  • gestures that may be used to control the thermostat are primarily based on the motion of a hand in 2-dimensions.
  • this may include: - a swipe of the hand from left to right, up to down or diagonally;
  • Figure 1 is a functional block diagram of a building HVAC system incorporating a gesture control thermostat in accordance with an embodiment of the present invention
  • Figure 2 is a diagrammatic front view illustration of a gesture control thermostat in accordance with an embodiment of the present invention.
  • Figure 3 is a diagrammatic side view illustration of a gesture control thermostat in accordance with an embodiment of the present invention
  • Figure 4 is a schematic block diagram of primary functional components of a gesture control thermostat in accordance with an embodiment of the present invention
  • FIG. 5 is a flow-chart diagram of a thermostat gesture control procedure in accordance with an embodiment of the present invention.
  • Figures 6, 7 and 8 are diagrammatic front view illustrations indicating examples of hand gestures.
  • thermostat Without the need to physically touch the front panel, the thermostat remains clean and smudge-free. This is something that is increasing valued by consumers who treat consumer electronics as "trophy pieces" (e.g. the proliferation of smartphone covers and protection sleeves).
  • the invention may be embodied in a gesture control thermostat that uses sensors, which may include capacitive sensors, inductive or infra-red optical sensors, oriented to face the user, the raw output of which is connected to a signal processing chip, with algorithms specifically designed to recognise gestures made by the hand, to detect the movement of a hand at a distance from the thermostat front panel.
  • the signal processing chip mentioned above may be a dedicated circuit chip adapted for use with a gesture control thermostat or, alternatively it may be embodied in the form of the signal processing circuity that is part of a processor chip with multiple features, for example, a microcontroller.
  • the gesture recognition chip then outputs a signal to the central electronic controller of the thermostat, which defines the type, direction, speed and other parameters of the gesture. Based on these outputs, the thermostat controller will change its state (e.g. increase set-point temperature, change operation from heating to cooling mode).
  • FIG. 1 A functional block diagram of a building HVAC system 10 employing a gesture control thermostat 100 according to an embodiment of the invention is illustrated in Figure 1 .
  • the HVAC system may be used to control the interior environment of commercial or domestic premises, such as a home or office, by heating, cooling and ventilation.
  • the thermostat is of a specific type that has a wireless connection to a home automation system 60.
  • the home automation system allows for changing the state of the thermostat using a personal computer 70 or smartphone 80, and in particular enables a very wide and complex range of commands to be sent to the thermostat. Consequently, the set of commands that the user is required to execute by direct interaction with the thermostat front panel is drastically reduced. Given the much smaller and simpler command set, use of gestures becomes a practical control method as the user only has to remember a few movements (e.g. up, down, left right) to control the wall panel, and all other more complex control may be done remotely through the smartphone/home automation system.
  • the thermostat has wired connections to the heating 30, cooling 50 or ventilation 40 appliances, a set of control relays and sensors and a microprocessor which controls the relays based on input from the sensors.
  • the microprocessor may receive input from the user as to the desired environmental conditions (set-point, heating mode, fan speed, switch-on time, etc.), from two sources, either directly from the gesture recognition sensors and circuitry of the thermostat, or through a wireless link with a home automation system.
  • the gesture control thermostat unit 100 is illustrated diagrammatically in front and side views in Figures 2 and 3, respectively.
  • the thermostat 100 may typically be contained in a housing 1 10 that is mounted on or in an interior wall surface of a home or office with the front surface (1 12) exposed.
  • the front of the thermostat has a display panel 120, such as a TFT display for indicating information such as temperature and HVAC equipment status, and a plurality of sensors 132, 134, 136, 138.
  • the sensors may be arranged on a circuit board 130 and the display 120 and other control circuitry on a separate circuit board 140, although other configurations are possible.
  • the thermostat 100 as shown also includes a power supply 150, which may be permanently wired or battery operated, and terminals 160 for connection to HVAC equipment (heaters, air-conditioner, fans, etc.) through cabling 165.
  • HVAC equipment herein below.
  • FIG. 4 A schematic block diagram of primary functional components of a gesture control thermostat according to a particular embodiment of the present invention is shown in Figure 4.
  • the thermostat includes a microcontroller circuit 190 coupled to control HVAC equipment, and to receive ambient temperature information from a temperature sensor 195.
  • the microcontroller circuit 190 is coupled to a display screen 120 for providing status information and the like, and is also coupled to receive input signals from a gesture recognition circuit 180.
  • the gesture recognition circuit is in turn coupled to sensors 132, 134, 136, 138 arranged around the periphery of the display screen 120.
  • the gesture recognition circuit 180 may include, for example, a single- zone 3D tracking and gesture controller chip such as that designated MGC3130 and available from Microchip Technology Inc.
  • the sensors 132-138 are in the form of receiver electrodes arranged in a two dimensional pattern around or in front of the display screen 120.
  • Four receiver electrodes can be utilised with optionally a centrally located fifth receiver electrode (not shown), in conjunction with a transmitter electrode (not shown).
  • Other configurations of sensors are also possible.
  • the gesture recognition circuit generates an electric field through the transmitter electrode and can use the receiver electrodes to sense variations or distortions in the electric field brought about by the introduction and movement of a user's hand in the proximity of the receiver electrodes. By detecting the electric field variations at different positions over time the gesture recognition circuit is able to measure the origin of the electric field distortion from the varying signals received. The information is used to calculate the position, track movements and to classify movement patterns (gestures).
  • the gesture recognition chip, the sensors and the thermostat microprocessor may be located on a single PCB, or on multiple PCB's which are wired together. It is preferable to have the sensors as close as possible to the user (i.e. close to the front surface of the thermostat unit), so that the level of interference from other components is minimised. Accordingly, the electrodes may be formed from transparent conductors patterned on a transparent panel made from glass or plastics material that sits in front of the display screen in the thermostat unit.
  • the exact algorithm for recognition of gestures is defined by the specification of the gesture recognition chip purchased as an off the shelf component.
  • the configuration and physical arrangement of the sensors is such that they are located at points close the expected endpoints of the gestures (i.e. the top, bottom, left and right sides).
  • FIG. 5 shows a flow-chart diagram of a procedure 200 for thermostat control of an HVAC system according to embodiments of the invention.
  • the thermostat uses sensors, which may include capacitive sensors, inductive or infra-red optical sensors, oriented to face the user, the raw output of which is connected to a commercially available signal processing chip, with algorithms specifically designed to recognise gestures made by the hand, to detect the movement of a hand at a distance from the thermostat front panel.
  • the sensors are monitored (202) and signals therefrom are decoded according to recognised hand gestures (204).
  • the gesture recognition chip then outputs a signal (206) to the microprocessor which defines the type, direction, speed and other parameters of the gesture.
  • FIGS 6, 7 and 8 are diagrammatic front views of a gesture control thermostat illustrating examples of hand gestures that may be used to control functions of an HVAC system.
  • the gestures used by embodiments of the invention are primarily based on the motion of a hand in 2-dimensions. This includes, but is not limited to:
  • the sensitivity of the gesture recognition chip can be adjusted to ensure that the recognition of gestures in the vicinity of the controller is robust, but that gestures made a distance away (which may not be intended as control gestures) are not recognised.
  • the sensitivity can be set using a combination of adjustment of signal processing parameters and the placement of the sensors, and may be calibrated during production or by the user using a predefined set of gestures.
  • the microcontroller contains a look-up table of the possible gesture signals that can be received from the gesture recognition chip, including parameters such as gesture type (swipe, clockwise, point, multi-swipe), gesture orientation (up, down, clockwise) and velocity.
  • the microcontroller may be configured to associate execution of any command relating the control of the HVAC system with any specific gesture parameter set.
  • the thermostat may be supplied with a default configuration that can be changed by the user through the remote interface provided by the home automation system (e.g. default way to increase temperature is to swipe up, but user can change settings such that increasing temperature is done by swiping across).
  • some gestures may be associated with functions of the thermostat that do not control external HVAC components, but modify the state of the thermostat microcontroller. For example, a gesture (or lack of a gesture for a period of time) may be used to indicate that the thermostat should change to an idle state where it uses less power and turns off the display.
  • Gestures may have multiple associations depending on the state of the thermostat. For example, if the thermostat is in idle state, then any gesture may be used to move it out of idle and into normal operating mode. Once in normal operating mode, the gestures may have associations as described above.
  • the user may also be able to provide input to the control panel of a home automation system to which the thermostat is connected.
  • the home automation system may relay the control inputs to the thermostat using a wired or wireless (Zigbee, Wifi, Z-wave etc.) protocol.
  • the interface to the home automation system may include a smartphone or PC which can be complex, and include multiple screen pages and have many different settings beyond what is available to be input directly onto the front panel of the thermostat via gesture control.
  • logic blocks e.g., programs, modules, functions, or subroutines
  • logic elements may be added, modified, omitted, performed in a different order, or implemented using different logic constructs (e.g., logic gates, looping primitives, conditional logic, and other logic constructs) without changing the overall results or otherwise departing from the true scope of the invention.
  • Various embodiments of the invention may be embodied in many different forms, including computer program logic for use with a processor (e.g., a microprocessor, microcontroller, digital signal processor, or general purpose computer and for that matter, any commercial processor may be used to implement the embodiments of the invention either as a single processor, serial or parallel set of processors in the system.
  • a processor e.g., a microprocessor, microcontroller, digital signal processor, or general purpose computer and for that matter, any commercial processor may be used to implement the embodiments of the invention either as a single processor, serial or parallel set of processors in the system.
  • Computer program logic implementing all or part of the functionality where described herein may be embodied in various forms, including a source code form, a computer executable form, and various intermediate forms (e.g., forms generated by an assembler, compiler, linker, or locator).
  • Source code may include a series of computer program instructions implemented in any of various programming languages (e.g., an object code, an assembly language, or a high-level language).
  • the source code may define and use various data structures and communication messages.
  • the source code may be in a computer executable form (e.g., via an interpreter), or the source code may be converted (e.g., via a translator, assembler, or compiler) into a computer executable form.
  • the computer program may be fixed in any form (e.g., source code form, computer executable form, or an intermediate form) either permanently or transitorily in a tangible storage medium, such as a semiconductor memory device (eg, a RAM, ROM, PROM, EEPROM, or Flash-Programmable RAM), a magnetic memory device (e.g., a diskette or fixed disk), an optical memory device (e.g., a CD-ROM or DVD- ROM), or other memory device.
  • the computer program may be fixed in any form in a signal that is transmittable to a computer using any of various communication technologies, including, but in no way limited to, analog technologies, digital technologies, optical technologies, wireless technologies (e.g., Bluetooth), networking technologies, and inter-networking technologies.
  • Hardware logic including programmable logic for use with a programmable logic device
  • implementing all or part of the functionality where described herein may be designed using traditional manual methods, or may be designed, captured, simulated, or documented electronically using various tools, such as Computer Aided Design (CAD), a hardware description language (e.g., VHDL or AHDL), or a PLD programming language (e.g., PALASM, ABEL, or CUPL).
  • Hardware logic may also be incorporated into display screens for implementing embodiments of the invention and which may be segmented display screens, analogue display screens, digital display screens, CRTs, LED screens, Plasma screens, liquid crystal diode screen, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

L'invention concerne un procédé et un appareil destinés à permettre la commande d'un thermostat de CVC de bâtiment par des gestes de la main de telle façon qu'il ne soit pas nécessaire de toucher physiquement le thermostat pour en modifier l'état. Une commande de thermostat pour systèmes de CVC de bâtiment qui réagit à des gestes de la main peut comprendre: au moins un capteur réagissant à des gestes de la main; un circuit de reconnaissance couplé de façon à recevoir des signaux en provenance du ou des capteurs et prévu pour déterminer des paramètres de gestes à partir de ceux-ci; un processeur couplé au circuit de reconnaissance et prévu pour déterminer des paramètres de commande de CVC à partir des paramètres de gestes; et une circuiterie de commande de CVC servant à commander des systèmes de CVC en fonction de paramètres de commande de CVC communiqués à partir du circuit de processeur. Le ou les capteurs peuvent être portés par un boîtier, le ou les capteurs réagissant à des gestes de la main uniquement à proximité du boîtier. La commande de thermostat peut comprendre un écran d'affichage de thermostat monté dans le boîtier, une pluralité d'électrodes de capteur étant disposée suivant un motif bidimensionnel devant et/ou autour de la périphérie de l'écran d'affichage.
PCT/AU2014/000929 2013-09-20 2014-09-22 Commande de thermostat par gestes WO2015039178A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AU2013903632A AU2013903632A0 (en) 2013-09-20 Thermostat Gesture Control
AU2013903632 2013-09-20

Publications (1)

Publication Number Publication Date
WO2015039178A1 true WO2015039178A1 (fr) 2015-03-26

Family

ID=52688002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AU2014/000929 WO2015039178A1 (fr) 2013-09-20 2014-09-22 Commande de thermostat par gestes

Country Status (1)

Country Link
WO (1) WO2015039178A1 (fr)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017001066A1 (fr) * 2015-07-01 2017-01-05 Rwe Effizienz Gmbh Thermostat pour installations de chauffage, climatisation et/ou ventilation
WO2017001214A1 (fr) * 2015-07-01 2017-01-05 Danfoss A/S Dispositif de commande configuré pour la régulation thermique d'un procédé
WO2017035227A1 (fr) * 2015-08-26 2017-03-02 Google Inc. Thermostat dans lequel sont intégrés de multiples systèmes de détection
US9890971B2 (en) 2015-05-04 2018-02-13 Johnson Controls Technology Company User control device with hinged mounting plate
US9909777B2 (en) 2015-08-26 2018-03-06 Google Llc Thermostat with multiple sensing systems including presence detection systems integrated therein
DE102016219844A1 (de) * 2016-10-12 2018-04-12 Bayerische Motoren Werke Aktiengesellschaft Hupensteuerung
US10162327B2 (en) 2015-10-28 2018-12-25 Johnson Controls Technology Company Multi-function thermostat with concierge features
US10318266B2 (en) 2015-11-25 2019-06-11 Johnson Controls Technology Company Modular multi-function thermostat
US10410300B2 (en) 2015-09-11 2019-09-10 Johnson Controls Technology Company Thermostat with occupancy detection based on social media event data
US10458669B2 (en) 2017-03-29 2019-10-29 Johnson Controls Technology Company Thermostat with interactive installation features
US10546472B2 (en) 2015-10-28 2020-01-28 Johnson Controls Technology Company Thermostat with direction handoff features
US10655881B2 (en) 2015-10-28 2020-05-19 Johnson Controls Technology Company Thermostat with halo light system and emergency directions
US10677484B2 (en) 2015-05-04 2020-06-09 Johnson Controls Technology Company User control device and multi-function home control system
US10691214B2 (en) 2015-10-12 2020-06-23 Honeywell International Inc. Gesture control of building automation system components during installation and/or maintenance
US10712038B2 (en) 2017-04-14 2020-07-14 Johnson Controls Technology Company Multi-function thermostat with air quality display
US10760809B2 (en) 2015-09-11 2020-09-01 Johnson Controls Technology Company Thermostat with mode settings for multiple zones
US10941951B2 (en) 2016-07-27 2021-03-09 Johnson Controls Technology Company Systems and methods for temperature and humidity control
US11107390B2 (en) 2018-12-21 2021-08-31 Johnson Controls Technology Company Display device with halo
US11131474B2 (en) 2018-03-09 2021-09-28 Johnson Controls Tyco IP Holdings LLP Thermostat with user interface features
US11162698B2 (en) 2017-04-14 2021-11-02 Johnson Controls Tyco IP Holdings LLP Thermostat with exhaust fan control for air quality and humidity control
US11216020B2 (en) 2015-05-04 2022-01-04 Johnson Controls Tyco IP Holdings LLP Mountable touch thermostat using transparent screen technology
US11277893B2 (en) 2015-10-28 2022-03-15 Johnson Controls Technology Company Thermostat with area light system and occupancy sensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080238665A1 (en) * 2006-12-15 2008-10-02 Robin Peng Sensory feedback systems for non-contact electrical switches
US7834847B2 (en) * 2005-12-01 2010-11-16 Navisense Method and system for activating a touchless control
US8106749B2 (en) * 2008-07-14 2012-01-31 Sony Ericsson Mobile Communications Ab Touchless control of a control device
US20130204408A1 (en) * 2012-02-06 2013-08-08 Honeywell International Inc. System for controlling home automation system using body movements

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7834847B2 (en) * 2005-12-01 2010-11-16 Navisense Method and system for activating a touchless control
US20080238665A1 (en) * 2006-12-15 2008-10-02 Robin Peng Sensory feedback systems for non-contact electrical switches
US8106749B2 (en) * 2008-07-14 2012-01-31 Sony Ericsson Mobile Communications Ab Touchless control of a control device
US20130204408A1 (en) * 2012-02-06 2013-08-08 Honeywell International Inc. System for controlling home automation system using body movements

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10627126B2 (en) 2015-05-04 2020-04-21 Johnson Controls Technology Company User control device with hinged mounting plate
US9890971B2 (en) 2015-05-04 2018-02-13 Johnson Controls Technology Company User control device with hinged mounting plate
US11216020B2 (en) 2015-05-04 2022-01-04 Johnson Controls Tyco IP Holdings LLP Mountable touch thermostat using transparent screen technology
US9964328B2 (en) 2015-05-04 2018-05-08 Johnson Controls Technology Company User control device with cantilevered display
US10677484B2 (en) 2015-05-04 2020-06-09 Johnson Controls Technology Company User control device and multi-function home control system
US10907844B2 (en) 2015-05-04 2021-02-02 Johnson Controls Technology Company Multi-function home control system with control system hub and remote sensors
US10808958B2 (en) 2015-05-04 2020-10-20 Johnson Controls Technology Company User control device with cantilevered display
WO2017001214A1 (fr) * 2015-07-01 2017-01-05 Danfoss A/S Dispositif de commande configuré pour la régulation thermique d'un procédé
WO2017001066A1 (fr) * 2015-07-01 2017-01-05 Rwe Effizienz Gmbh Thermostat pour installations de chauffage, climatisation et/ou ventilation
WO2017035227A1 (fr) * 2015-08-26 2017-03-02 Google Inc. Thermostat dans lequel sont intégrés de multiples systèmes de détection
US9909777B2 (en) 2015-08-26 2018-03-06 Google Llc Thermostat with multiple sensing systems including presence detection systems integrated therein
US11080800B2 (en) 2015-09-11 2021-08-03 Johnson Controls Tyco IP Holdings LLP Thermostat having network connected branding features
US10410300B2 (en) 2015-09-11 2019-09-10 Johnson Controls Technology Company Thermostat with occupancy detection based on social media event data
US10760809B2 (en) 2015-09-11 2020-09-01 Johnson Controls Technology Company Thermostat with mode settings for multiple zones
US10510127B2 (en) 2015-09-11 2019-12-17 Johnson Controls Technology Company Thermostat having network connected branding features
US10559045B2 (en) 2015-09-11 2020-02-11 Johnson Controls Technology Company Thermostat with occupancy detection based on load of HVAC equipment
US10769735B2 (en) 2015-09-11 2020-09-08 Johnson Controls Technology Company Thermostat with user interface features
US11087417B2 (en) 2015-09-11 2021-08-10 Johnson Controls Tyco IP Holdings LLP Thermostat with bi-directional communications interface for monitoring HVAC equipment
US10691214B2 (en) 2015-10-12 2020-06-23 Honeywell International Inc. Gesture control of building automation system components during installation and/or maintenance
US10655881B2 (en) 2015-10-28 2020-05-19 Johnson Controls Technology Company Thermostat with halo light system and emergency directions
US10969131B2 (en) 2015-10-28 2021-04-06 Johnson Controls Technology Company Sensor with halo light system
US11277893B2 (en) 2015-10-28 2022-03-15 Johnson Controls Technology Company Thermostat with area light system and occupancy sensor
US10732600B2 (en) 2015-10-28 2020-08-04 Johnson Controls Technology Company Multi-function thermostat with health monitoring features
US10162327B2 (en) 2015-10-28 2018-12-25 Johnson Controls Technology Company Multi-function thermostat with concierge features
US10345781B2 (en) 2015-10-28 2019-07-09 Johnson Controls Technology Company Multi-function thermostat with health monitoring features
US10180673B2 (en) 2015-10-28 2019-01-15 Johnson Controls Technology Company Multi-function thermostat with emergency direction features
US10310477B2 (en) 2015-10-28 2019-06-04 Johnson Controls Technology Company Multi-function thermostat with occupant tracking features
US10546472B2 (en) 2015-10-28 2020-01-28 Johnson Controls Technology Company Thermostat with direction handoff features
US10318266B2 (en) 2015-11-25 2019-06-11 Johnson Controls Technology Company Modular multi-function thermostat
US10941951B2 (en) 2016-07-27 2021-03-09 Johnson Controls Technology Company Systems and methods for temperature and humidity control
DE102016219844A1 (de) * 2016-10-12 2018-04-12 Bayerische Motoren Werke Aktiengesellschaft Hupensteuerung
US10458669B2 (en) 2017-03-29 2019-10-29 Johnson Controls Technology Company Thermostat with interactive installation features
US11441799B2 (en) 2017-03-29 2022-09-13 Johnson Controls Tyco IP Holdings LLP Thermostat with interactive installation features
US11162698B2 (en) 2017-04-14 2021-11-02 Johnson Controls Tyco IP Holdings LLP Thermostat with exhaust fan control for air quality and humidity control
US10712038B2 (en) 2017-04-14 2020-07-14 Johnson Controls Technology Company Multi-function thermostat with air quality display
US11131474B2 (en) 2018-03-09 2021-09-28 Johnson Controls Tyco IP Holdings LLP Thermostat with user interface features
US11107390B2 (en) 2018-12-21 2021-08-31 Johnson Controls Technology Company Display device with halo
US12033564B2 (en) 2018-12-21 2024-07-09 Johnson Controls Technology Company Display device with halo

Similar Documents

Publication Publication Date Title
WO2015039178A1 (fr) Commande de thermostat par gestes
EP3189511B1 (fr) Commande domotique à l'aide de menus sensibles au contexte
US11057238B2 (en) Automatic scene creation using home device control
CA2914236C (fr) Automatisation de boitier de decodage
US20140253483A1 (en) Wall-Mounted Multi-Touch Electronic Lighting- Control Device with Capability to Control Additional Networked Devices
GB2533646A (en) System and method for controlling energy consuming devices within a building
CN103918279B (zh) 设备控制系统以及遥控器
EP2586050B1 (fr) Commutateur à bascule doté d'une commande magnétique, mécanique et électrique
WO2015157229A1 (fr) Four à micro-ondes avec affichage et commande de température d'imagerie thermique
EP2711731B1 (fr) Procédé pour détecter un objet à l'aide d'ondes ultra-acoustiques et dispositif de détection d'un objet à l'aide de celui-ci
JP6242535B2 (ja) ユーザ入力に基づいて制御システムのためのジェスチャ区域定義データを取得する方法
US10447785B2 (en) Digital device and method for controlling same
US20230155587A1 (en) Touch-based control device to detect touch input without blind spots
WO2015134987A1 (fr) Thermostat numérique, sortie de courant, et gradateur d'éclairage
KR20170037409A (ko) 전자 장치 및 그 ui 제공 방법
KR20170075333A (ko) 냉난방 공기조화기용 스마트 제어 장치 및 에너지 관리 시스템
CN105279518B (zh) 物体检测方法及装置
KR102524586B1 (ko) 전자 장치 및 그 동작방법
KR20150039439A (ko) Hvac 컨트롤러
KR102536267B1 (ko) 슬라이더 트랙 및 슬라이더를 표시하기 위한 전자 장치 및 그의 동작 방법
CN102063182B (zh) 动作识别模组、应用动作识别模组的电子装置及识别方法
CN105677176A (zh) 信息处理方法及电子设备
US20140214185A1 (en) Somatosensory Household Electricity Control Equipment and System Thereof
US10389149B2 (en) Sensory and control platform for an automation system
US20170336767A1 (en) HVAC Control

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14846391

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 140716)

122 Ep: pct application non-entry in european phase

Ref document number: 14846391

Country of ref document: EP

Kind code of ref document: A1