WO2015038031A1 - Method for producing crystalline diamond particles - Google Patents

Method for producing crystalline diamond particles Download PDF

Info

Publication number
WO2015038031A1
WO2015038031A1 PCT/RU2014/000516 RU2014000516W WO2015038031A1 WO 2015038031 A1 WO2015038031 A1 WO 2015038031A1 RU 2014000516 W RU2014000516 W RU 2014000516W WO 2015038031 A1 WO2015038031 A1 WO 2015038031A1
Authority
WO
WIPO (PCT)
Prior art keywords
diamond particles
graphite
crystalline diamond
pressure
powder
Prior art date
Application number
PCT/RU2014/000516
Other languages
French (fr)
Russian (ru)
Inventor
Федор Михайлович ШАХОВ
Сергей Викторович КИДАЛОВ
Павел Георгиевич БАРАНОВ
Роман Андреевич БАБУНЦ
Дмитрий Андреевич САКСЕЕВ
Александр Евграфович АЛЕКСЕНСКИЙ
Марина Владимировна БАЙДАКОВА
Александр Яковлевич ВУЛЬ
Original Assignee
Федеральное государственное бюджетное учреждение науки Физико-технический институт им. А.Ф. Иоффе Российской академии наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Физико-технический институт им. А.Ф. Иоффе Российской академии наук filed Critical Федеральное государственное бюджетное учреждение науки Физико-технический институт им. А.Ф. Иоффе Российской академии наук
Publication of WO2015038031A1 publication Critical patent/WO2015038031A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Definitions

  • the invention relates to nanotechnology of materials, specifically, to processes for producing crystalline diamond particles with sizes in the range of 50-500 nm, and can be used in industry for the synthesis of diamonds needed for finishing grinding and polishing of various products and for creating biotags.
  • a known method for producing microcrystalline diamonds including exposure to graphite with fullerene and a catalyst from an alloy of nickel with manganese pressure and heating in the field of diamond stability with subsequent exposure at pressure and temperature synthesis.
  • Fullerene is introduced in an amount of 10 ⁇ 2 - frlO " May 1. % Of the mass of graphite, while fullerene is distributed in the mass of graphite.
  • the known method provides a high diamond yield at reduced pressures not exceeding 5.5 GPa, but it also has serious disadvantages.
  • the size of the diamond particles obtained in a known manner reaches several hundred microns, therefore, it is necessary to purify them from the catalyst and the residues of graphite and then crush them to the required size of 50-500 nm, which greatly complicates the process.
  • a known method of producing crystalline diamond particles by shock compression of a carbon-containing material by means of a pressure-transmitting element accelerated by the products of explosion of a calculated portion of an explosive substances.
  • a metal striker made in the form of a cylinder is used, which is informed of speeds in the range from the speed corresponding to the amplitude of the pressure created in the mass of the formed diamond powder at the lower boundary of the diamond stability region in the carbon phase diagram to the speed corresponding to pressure amplitude at the lower boundary of the liquid phase of carbon.
  • an ultrafine fraction of diamond powder is used, and the choice of the impactor speeds and the calculation of the mass of the explosive in the pulse source are made taking into account the readings of the photodetector, which records the moment of appearance of intense nonequilibrium radiation on the spectral line of diamond luminescence.
  • the known method allows to obtain diamond particles with sizes from 1 to 600 microns, so they must be further crushed to a size of 50-500 nm, which is required for finish polishing, as well as use as biotag.
  • the closest set of essential features to the present invention is the method for producing crystalline diamond particles adopted as a prototype (see patent RU2223220, IPC ⁇ 01 ⁇ 31 / 06, B01J3 / 06, ⁇ 30 ⁇ 28 / 00, ⁇ 30 ⁇ 29 / 04, ⁇ 30 ⁇ 29 / 60, B24D3 / 10, published 02/10/2004).
  • the particles of refined nanodispersed diamonds are mixed with graphite particles of nanometric size, mixed for 2-3 hours, and the processing of the resulting mixture is carried out at a pressure of from 0.133 ⁇ 10 to 2.0 GPa and a temperature of from 20 to 1200 ° C extract from 10 seconds to b hours in the following ratio of components, May.%:
  • Graphite particles can be applied to the surface of diamond particles by heat treatment of the purified nanodispersed diamond powder with graphitization of their surface layer, heating them in vacuum at a temperature of from 1000 to 1500 ° C. It is possible that the surface of the initial diamond particles is wetted with a carbon-containing liquid or carbon-containing groups of carbon-containing gas are deposited onto the surface of these particles by heating gas to a temperature of 300 ° C and maintaining the temperature of the diamond particles not more than 300 ° C.
  • nanometric particles of graphite or carbon on the surface of diamond particles allows, firstly, to recrystallize 5 deposited graphite or carbon into dense carbon modifications in the pressure and temperature range, which is traditionally considered to be the area of thermodynamic stability of “loose” carbon modifications (graphite, soot). Secondly, it contributes to the growth of particle sizes of nanodispersed diamond.
  • the present invention was the development of such a method.
  • the problem is solved in that the method for producing crystalline diamond particles involves impregnation of nanodiamond powder,
  • Ethyl alcohol or isopropyl alcohol may be used as the monobasic alcohol.
  • the present method for producing crystalline diamond particles is illustrated in the drawing, which shows the size distribution of crystalline diamond particles obtained by the present method.
  • the present method is as follows. Prepare a portion of nanodiamonds obtained by detonation synthesis (the so-called detonation nanodiamonds), the size of which usually lies in the range of 2-40 nm.
  • the powder of detonation nanodiamonds is impregnated with an acyclic hydrocarbon or monobasic alcohol in an amount of May 35-50. % by weight of detonation diamonds.
  • the resulting composition is placed in a graphite sleeve of a high-pressure container based on a lithographic stone and maintained at a static pressure of 5-8 GPa and a temperature of 1300-1800 ° C for 10-60 seconds.
  • the resulting powder is treated with hydrochloric acid to remove particles of lithographic stone from the container and then washed in deionized water. After that, the powder is placed in a liquid bromoform (SNVg 3 ) having a density of 2.89 g / cm 3 to separate graphite and crystalline diamond particles. The crystalline diamond particles are filtered off and washed in deionized water.
  • the size of the crystalline diamond particles obtained by this method lies in the range of 30-250 nm with a maximum in the region of 60-80 nm.
  • the choice of pressure, temperature and holding time intervals is determined by the following circumstances. At a pressure of less than 5 GPa, the conditions for the thermodynamic stability of graphite are created, and diamond particles turn into graphite, since the synthesis conditions are not stable, and at a pressure of more than 8 GPa, the standard equipment is intensively destroyed to create high pressure. At a holding temperature of less than 1300 ° C, no reaction occurs between the hydrocarbon and nanodiamonds and there is no enlargement of detonation nanodiamonds; their size does not exceed 12 nm. When holding at a temperature of more than 1800 ° C, the conditions of thermodynamic stability of graphite are created, and diamond particles pass into graphite.
  • the exposure time is less than 10 seconds, a uniform temperature distribution in the high chamber is not achieved pressure and only a partial transition of detonation nanodiamond into crystalline diamond particles is possible, and with a holding time of more than 60 seconds, the hard alloy of the high-pressure chamber is intensively destroyed.
  • Example 1 A portion of detonation nanodiamonds impregnated with hexane taken in the amount of May 27 was prepared. % by weight of detonation nanodiamonds.
  • a high-pressure container 9 mm high and its end washers were pressed in a mold by pressing at 700 GPa from a mixture of graphite powders and lithographic stone with the addition of an aqueous solution of polyvinyl alcohol.
  • a cylindrical sleeve with an outer diameter of 6 mm, an inner diameter of 4 mm and a height of 6 mm was made from a graphite rod with a diameter of 6 mm. The lower end washer and the graphite sleeve were installed in the high-pressure container.
  • Powder of detonation nanodiamonds impregnated with hexane was placed in a graphite sleeve, which was then pressed with a punch with a diameter of 4 mm to a density of 0.87 g / cm 3 . Then, the high-pressure container was closed with the upper end washer and placed between two high-pressure matrices, the center of which was made of hard alloy. High-pressure matrices with a high-pressure container were installed in a hydraulic press with a force of 1000 i.e. The composition in the graphite sleeve of the high-pressure container was kept at a static pressure of 7 GPa and a temperature of 1510 ° C for 15 seconds.
  • the resulting powder was treated with hydrochloric acid to remove particles of a lithographic stone of a high-pressure container that got into it and then washed in deionized water. After that, the powder was placed in a liquid bromoform having a density of 2.89 g / cm 3 to separate graphite and crystalline diamond particles. The crystalline diamond particles were filtered off and washed in deionized water. The size of the obtained crystalline diamond particles was in the range of 30-250 nm with a maximum of 60-80 nm (see the graph in the drawing).
  • Example 2 Received crystalline diamond particles in the same way as in example 1, except that the powder detonation nanodiamonds were impregnated with ethanol, taken in the amount of May 37. % of the weight of detonation nanodiamonds, ethanol-impregnated powder of detonation nanodiamonds was pressed by a punch with a diameter of 4 mm to density of 0.93 g / cm 3 , the exposure of the composition was carried out at a temperature of 1500 ° C for 15 seconds. The size of the obtained crystalline diamond particles was in the range of 30-250 nm with a maximum of 60-80 nm.
  • Example 3 Received crystalline diamond particles in the same way as in example 1, except that the powder detonation nanodiamonds were impregnated with isopropyl alcohol, taken in an amount in the amount of May 32. % of the weight of detonation nanodiamonds, isopropyl alcohol impregnated powder of detonation nanodiamonds was pressed by a punch to a density of 0.90 g / cm 3 . The composition was aged at a temperature of 1640 ° C for 15 seconds. The size of the obtained crystalline diamond particles was in the range of 30-250 nm with a maximum of 60-80 nm.
  • Example 4 Crystalline diamond particles were obtained in the same manner as in Example 1, except that ethyl alcohol, taken in an amount of May 20, was added to the powder of detonation nanodiamonds. % of the weight of detonation nanodiamonds, which did not provide uniform impregnation of nanodiamonds. After synthesis, the sample contained two parts: one part, the reacted one, was white crystalline diamond particles, and the second part consisted of black particles of detonation nanodiamonds, which were not completely moistened with ethanol.
  • Example 5 Crystalline diamond particles were obtained in the same manner as in Example 1, except that ethyl alcohol, taken in an amount of May 60, was added to the powder of detonation nanodiamonds. % of the weight of detonation nanodiamonds, which was excessive for the impregnation of nanodiamonds. During the synthesis process, a high-pressure container ruptured, which indicates an excess concentration of hydrogen.
  • Example 6 Received crystalline diamond particles in the same manner as in example 2, except that the composition was kept at a static pressure of 4.8 GPa. After synthesis, the sample contained two parts: one part, the reacted one, consisted of white diamond crystalline particles, and the second part of the sample consisted of black particles of graphite-like carbon, which formed in the region of thermodynamic stability of graphite. There was an unstable process occurring with partial or complete graphitization of diamonds.
  • Example 7 Received crystalline diamond particles in the same manner as in example 2, except that the composition was kept for 9 seconds. After synthesis, color inhomogeneity of the sample was observed, which indicates the heterogeneity of heating of the sample. It can be concluded that a process of this duration is unstable from the point of view of homogeneity of the obtained sample.
  • Example 8 Received crystalline diamond particles in the same manner as in example 2, except that the composition was kept for 62 seconds. As a result of the synthesis, crystalline diamond particles were obtained, however, the synthesis process of such a duration leads to intense heating of the high-pressure chamber, which leads to a decrease in the possible number of synthesis cycles before its destruction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

The present method for producing crystalline diamond particles involves impregnating a detonation nanodiamond powder with a saturated acyclic hydrocarbon or a monobasic alcohol, and holding the resultant mixture at a static pressure of 5-8 GPa and a temperature of 1300-1800°C for 10-60 seconds.

Description

СПОСОБ ПОЛУЧЕНИЯ КРИСТАЛЛИЧЕСКИХ АЛМАЗНЫХ ЧАСТИЦ  METHOD FOR PRODUCING CRYSTAL DIAMOND PARTICLES
ОБЛАСТЬ ТЕХНИКИ  FIELD OF TECHNOLOGY
Изобретение относится к нанотехнологии материалов, конкретно, к процессам получения кристаллических алмазных частиц с размерами в диапазоне 50-500 нм, и может быть использован в промышленности для синтеза алмазов, необходимых для финишной шлифовки и полировки различных изделий и для создания биометок.  The invention relates to nanotechnology of materials, specifically, to processes for producing crystalline diamond particles with sizes in the range of 50-500 nm, and can be used in industry for the synthesis of diamonds needed for finishing grinding and polishing of various products and for creating biotags.
ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ  BACKGROUND OF THE INVENTION
С начала 60-х годов прошлого века известен способ синтеза алмазов из графита при высоких давлениях и температурах, так называемый high-pressure- high temperature synthesis (НРНТ), в присутствии металла катализатора (например, патент US2947609, МПК B01J 3/06, опубликован 02.08.1960). Типичные значения давлений и температур составляют Р=5-8 ГПа, Т= 1300-1500 °С, исходным материалом является смесь графита и металла катализатора в соотношении, как правило, 50/50 или 70/30, а время синтеза варьируется от десятков секунд до десятков минут.  Since the beginning of the 60s of the last century, a method of synthesizing diamonds from graphite at high pressures and temperatures, the so-called high-pressure-high temperature synthesis (НРНТ), in the presence of a catalyst metal (for example, patent US2947609, IPC B01J 3/06, published 08/02/1960). Typical pressures and temperatures are P = 5-8 GPa, T = 1300-1500 ° C, the starting material is a mixture of graphite and catalyst metal in a ratio, usually 50/50 or 70/30, and the synthesis time varies from tens of seconds up to tens of minutes.
Известен способ получения микрокристаллических алмазов (см. патент RU2131763, МПК B01J3/06, С30В29/04, опубликован 20.06.1999), включающий воздействие на графит с фуллереном и катализатор из сплава никеля с марганцем давлением и нагревом в области стабильности алмаза с последующей выдержкой при давлении и температуре синтеза. Фуллерен вводят в количестве 10~2 - frlO"1 мае. % от массы графита, при этом фуллерен распределяют в массе графита. A known method for producing microcrystalline diamonds (see patent RU2131763, IPC B01J3 / 06, C30B29 / 04, published 06/20/1999), including exposure to graphite with fullerene and a catalyst from an alloy of nickel with manganese pressure and heating in the field of diamond stability with subsequent exposure at pressure and temperature synthesis. Fullerene is introduced in an amount of 10 ~ 2 - frlO " May 1. % Of the mass of graphite, while fullerene is distributed in the mass of graphite.
Известный способ обеспечивает высокий выход алмаза при пониженных давлениях, не превышающих 5,5 ГПа, однако ему присущи и серьезные недостатки. Размер получаемых известным способом частиц алмаза доходит до нескольких сотен мкм, поэтому необходимо проводить их очистку от катализатора и остатков графита и затем осуществлять дробление до необходимого размера 50-500 нм, что значительно усложняет технологический процесс.  The known method provides a high diamond yield at reduced pressures not exceeding 5.5 GPa, but it also has serious disadvantages. The size of the diamond particles obtained in a known manner reaches several hundred microns, therefore, it is necessary to purify them from the catalyst and the residues of graphite and then crush them to the required size of 50-500 nm, which greatly complicates the process.
Известен способ получения кристаллических алмазных частиц (см. заявка RU94040324, МПК С01В31/06, опубликована 20.09.1996) путем ударного сжатия углеродсодержащего материала посредством передающего импульс давления элемента, разгоняемого продуктами взрыва расчетной порции взрывчатого вещества. В качестве элемента, передающего импульс давления, используют металлический ударник, выполненный в виде цилиндра, которому сообщают скорости в диапазоне от скорости, соответствующей амплитуде давления, создаваемого в массе формуемого алмазного порошка на нижней границе области стабильности алмаза на фазовой диаграмме углерода, до скорости, соответствующей амплитуде давления на нижней границе жидкой фазы углерода. В качестве углеродсодержащего материала используют ультрадисперсную фракцию алмазного порошка, а выбор скоростей ударника и расчет массы взрывчатого вещества в источнике импульса производят с учетом показаний фотоприемника, регистрирующего момент появления интенсивного неравновесного излучения на спектральной линии люминесценции алмаза. A known method of producing crystalline diamond particles (see application RU94040324, IPC С01В31 / 06, published September 20, 1996) by shock compression of a carbon-containing material by means of a pressure-transmitting element accelerated by the products of explosion of a calculated portion of an explosive substances. As an element transmitting a pressure impulse, a metal striker made in the form of a cylinder is used, which is informed of speeds in the range from the speed corresponding to the amplitude of the pressure created in the mass of the formed diamond powder at the lower boundary of the diamond stability region in the carbon phase diagram to the speed corresponding to pressure amplitude at the lower boundary of the liquid phase of carbon. As a carbon-containing material, an ultrafine fraction of diamond powder is used, and the choice of the impactor speeds and the calculation of the mass of the explosive in the pulse source are made taking into account the readings of the photodetector, which records the moment of appearance of intense nonequilibrium radiation on the spectral line of diamond luminescence.
Известный способ позволяет получать частицы алмаза размерами от 1 до 600 мкм, поэтому их необходимо дополнительно дробить до размера 50-500 нм, который требуется для финишной полировки, а также использования в качестве биометок.  The known method allows to obtain diamond particles with sizes from 1 to 600 microns, so they must be further crushed to a size of 50-500 nm, which is required for finish polishing, as well as use as biotag.
Наиболее близким по совокупности существенных признаков к настоящему изобретению является способ получения кристаллических алмазных частиц, принятый за прототип (см. патент RU2223220, МПК С01В31/06, B01J3/06, С30В28/00, С30В29/04, С30В29/60, B24D3/10, опубликован 10.02.2004). В способе-прототипе смешивают частицы очищенных нанодисперсных алмазов с частицами графита нанометричных размеров, перемешивают в течение 2-3 часов, а обработку полученной шихты осуществляют при давлении от 0,133'Ю"10 до 2,0 ГПа и температуре от 20 до 1200 °С с выдержкой от 10 секунд до б часов при следующем соотношении составных частей, мае. %: The closest set of essential features to the present invention is the method for producing crystalline diamond particles adopted as a prototype (see patent RU2223220, IPC С01В31 / 06, B01J3 / 06, С30В28 / 00, С30В29 / 04, С30В29 / 60, B24D3 / 10, published 02/10/2004). In the prototype method, the particles of refined nanodispersed diamonds are mixed with graphite particles of nanometric size, mixed for 2-3 hours, and the processing of the resulting mixture is carried out at a pressure of from 0.133 × 10 to 2.0 GPa and a temperature of from 20 to 1200 ° C extract from 10 seconds to b hours in the following ratio of components, May.%:
порошок нанодисперсных алмазов с размерами кристаллитов 2-10 нм - powder of nanodispersed diamonds with crystallite sizes of 2-10 nm -
10-50, 10-50,
порошок нанодисперсных алмазов, на поверхность которых нанесен графит или углерод - остальное.  powder of nanodispersed diamonds on the surface of which graphite or carbon is applied - the rest.
Частицы графита можно наносить на поверхность частиц алмаза путем термической обработки очищенного порошка нанодисперсных алмазов с графитизацией их поверхностного слоя, нагревая их в вакууме при температуре от 1000 до 1500 °С. Возможен вариант, когда поверхность исходных частиц алмаза смачивают углеродсодержащей жидкостью или осаждают на поверхность этих частиц углеродсодержащие группы из углеродсодержащего газа, нагревая газ до температуры от 300 °С и поддерживая температуру частиц алмаза не более 300 °С. Graphite particles can be applied to the surface of diamond particles by heat treatment of the purified nanodispersed diamond powder with graphitization of their surface layer, heating them in vacuum at a temperature of from 1000 to 1500 ° C. It is possible that the surface of the initial diamond particles is wetted with a carbon-containing liquid or carbon-containing groups of carbon-containing gas are deposited onto the surface of these particles by heating gas to a temperature of 300 ° C and maintaining the temperature of the diamond particles not more than 300 ° C.
Нанесение на поверхность частиц алмаза нанометричных частиц графита или углерода позволяет, во-первых, производить перекристаллизацию 5 нанесенного графита или углерода в плотные углеродные модификации в области давлений и температур, которая традиционно считается областью термодинамической стабильности "рыхлых" углеродных модификаций (графит, сажа). Во-вторых, способствует росту размеров частиц нанодисперсного алмаза.  The application of nanometric particles of graphite or carbon on the surface of diamond particles allows, firstly, to recrystallize 5 deposited graphite or carbon into dense carbon modifications in the pressure and temperature range, which is traditionally considered to be the area of thermodynamic stability of “loose” carbon modifications (graphite, soot). Secondly, it contributes to the growth of particle sizes of nanodispersed diamond.
Известным способом получают алмазные частицы в диапазоне от 1 до 500 ю мкм с содержанием несгораемых примесей не более 2 мае. %, в то время как для финишной полировки, а также использования в качестве биометок требуются микрокристаллические алмазные частицы размером 50-500 нм. Поэтому полученные известным способом-прототипом алмазные частицы необходимо подвергать дополнительному измельчению до требуемого размера, 15 что ведет к усложнению технологии и применяемого оборудования, а также увеличивает продолжительность технологического процесса получения микрокристаллических алмазных частиц требуемого размера.  In a known manner receive diamond particles in the range from 1 to 500 microns with a content of non-combustible impurities not more than May 2. %, while for final polishing, as well as use as biotag, microcrystalline diamond particles with a size of 50-500 nm are required. Therefore, the obtained diamond particles obtained by the known prototype method must be subjected to additional grinding to the required size, 15 which leads to a complication of the technology and the equipment used, and also increases the duration of the technological process for producing microcrystalline diamond particles of the required size.
РАСКРЫТИЕ ИЗОБРЕТЕНИЯ  SUMMARY OF THE INVENTION
Задачей настоящего изобретения являлась разработка такого способа The present invention was the development of such a method.
20 получения кристаллических алмазных частиц, который бы позволял получать непосредственно алмазные частицы размером 50-500 нм, и тем самым исключить необходимость дополнительного их измельчения. 20 to obtain crystalline diamond particles, which would make it possible to directly obtain diamond particles with a size of 50-500 nm, and thereby eliminate the need for additional grinding.
Поставленная задача решается тем, что способ получения кристаллических алмазных частиц включает пропитку порошка наноалмазов, The problem is solved in that the method for producing crystalline diamond particles involves impregnation of nanodiamond powder,
25 полученных детонационным синтезом, предельным ациклическим углеводородом или одноосновным спиртом, выдержку полученного состава при статическом давлении 5-8 ГПа и температуре 1300-1800 °С в течение 10-60 секунд и отделение полученных кристаллических алмазных частиц от графита седиментацией в жидкости. Новым в способе является пропитка детонационных25 obtained by detonation synthesis, saturated acyclic hydrocarbon or monobasic alcohol, holding the resulting composition at a static pressure of 5-8 GPa and a temperature of 1300-1800 ° C for 10-60 seconds and separating the obtained crystalline diamond particles from graphite by sedimentation in a liquid. New in the method is impregnation of detonation
30 наноалмазов предельным ациклическим углеводородом или одноосновным спиртом, выдержка полученного состава при величине статического давления и температуры, отличных от способа-прототипа, и отделение полученных кристаллических алмазных частиц от графита седиментацией в жидкости. 30 nanodiamonds with a limiting acyclic hydrocarbon or monobasic alcohol, holding the obtained composition at a static pressure and temperature different from the prototype method, and separating the obtained crystalline diamond particles from graphite by sedimentation in a liquid.
В качестве предельного ациклического углеводорода может быть As a limiting acyclic hydrocarbon may be
35 использован гексан. В качестве одноосновного спирта может быть использован этиловый спирт или изопропиловый спирт. 35 used hexane. Ethyl alcohol or isopropyl alcohol may be used as the monobasic alcohol.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ  BRIEF DESCRIPTION OF THE DRAWINGS
Настоящий способ получения кристаллических алмазных частиц поясняется чертежом, где приведено распределение по размерам кристаллических алмазных частиц, полученных настоящим способом.  The present method for producing crystalline diamond particles is illustrated in the drawing, which shows the size distribution of crystalline diamond particles obtained by the present method.
ЛУЧШИЙ ВАРИАНТ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ  BEST MODE FOR CARRYING OUT THE INVENTION
Настоящий способ осуществляют следующим образом. Подготавливают порцию наноалмазов, полученных детонационным синтезом (так называемые детонационные наноалмазы), размер которых обычно лежит в интервале 2- 40 нм. Пропитывают порошок детонационных наноалмазов ациклическим углеводородом или одноосновным спиртом в количестве 35-50 мае. % от веса детонационных алмазов. Помещают полученный состав в графитовую втулку контейнера высокого давления на основе литографского камня и выдерживают его при статическом давлении 5-8 ГПа и температуре 1300-1800 °С в течение 10- 60 секунд. Полученный порошок обрабатывает соляной кислотой для удаления попавших в него частиц литографского камня контейнера и затем промывают его в деионизованной воде. После чего порошок помещают в жидкость бромоформ (СНВг3), имеющую плотность 2,89 г/см3, для разделения графита и кристаллических алмазных частиц. Кристаллические алмазные частицы отфильтровывают и промывают в деионизованной воде. Размер кристаллических алмазных частиц, полученных настоящим способом (см. график на чертеже), лежит в интервале 30-250 нм с максимумом в области 60-80 нм. The present method is as follows. Prepare a portion of nanodiamonds obtained by detonation synthesis (the so-called detonation nanodiamonds), the size of which usually lies in the range of 2-40 nm. The powder of detonation nanodiamonds is impregnated with an acyclic hydrocarbon or monobasic alcohol in an amount of May 35-50. % by weight of detonation diamonds. The resulting composition is placed in a graphite sleeve of a high-pressure container based on a lithographic stone and maintained at a static pressure of 5-8 GPa and a temperature of 1300-1800 ° C for 10-60 seconds. The resulting powder is treated with hydrochloric acid to remove particles of lithographic stone from the container and then washed in deionized water. After that, the powder is placed in a liquid bromoform (SNVg 3 ) having a density of 2.89 g / cm 3 to separate graphite and crystalline diamond particles. The crystalline diamond particles are filtered off and washed in deionized water. The size of the crystalline diamond particles obtained by this method (see the graph in the drawing) lies in the range of 30-250 nm with a maximum in the region of 60-80 nm.
Выбор интервалов давления, температуры и времени выдержки определяется следующими обстоятельствами. При давлении менее 5 ГПа создаются условия термодинамической стабильности графита, и алмазные частицы превращаются в графит, так как условия синтеза не стабильны, а при давлении более 8 ГПа происходит интенсивное разрушение стандартной технологической оснастки для создания высокого давления. При температуре выдержки менее 1300 °С не происходит реакции между углеводородом и наноалмазами и не происходит укрупнения детонационных наноалмазов, их размер не превышает 12 нм. При выдержке при температуре более 1800 °С создаются условия термодинамической стабильности графита, и алмазные частицы переходят в графит. При длительности выдержки менее 10 секунд не достигается равномерного распределения температуры в камере высокого давления и возможен лишь частичный переход детонационного наноалмаза в кристаллические алмазные частицы, а при длительности выдержки более 60 секунд происходит интенсивное разрушение твердого сплава камеры высокого давления. The choice of pressure, temperature and holding time intervals is determined by the following circumstances. At a pressure of less than 5 GPa, the conditions for the thermodynamic stability of graphite are created, and diamond particles turn into graphite, since the synthesis conditions are not stable, and at a pressure of more than 8 GPa, the standard equipment is intensively destroyed to create high pressure. At a holding temperature of less than 1300 ° C, no reaction occurs between the hydrocarbon and nanodiamonds and there is no enlargement of detonation nanodiamonds; their size does not exceed 12 nm. When holding at a temperature of more than 1800 ° C, the conditions of thermodynamic stability of graphite are created, and diamond particles pass into graphite. When the exposure time is less than 10 seconds, a uniform temperature distribution in the high chamber is not achieved pressure and only a partial transition of detonation nanodiamond into crystalline diamond particles is possible, and with a holding time of more than 60 seconds, the hard alloy of the high-pressure chamber is intensively destroyed.
ПРОМЫШЛЕННАЯ ПРИМЕНИМОСТЬ  INDUSTRIAL APPLICABILITY
Пример 1. Подготавливали порцию детонационных наноалмазов, пропитанных гексаном, взятом в количестве 27 мае. % от веса детонационных наноалмазов. В пресс-форме изготавливали контейнер высокого давления высотой 9 мм и его торцовые шайбы прессованием при 700 ГПа из смеси порошков графита и литографского камня с добавлением водного раствора поливинилового спирта. Из графитового стержня диаметром 6 мм изготавливали цилиндрическую втулку с внешним диаметром 6 мм, внутренним диаметром 4 мм и высотой б мм. Устанавливали в контейнер высокого давления нижнюю торцовую шайбу и графитовую втулку. В графитовую втулку помещали пропитанный гексаном порошок детонационных наноалмазов, который затем придавливали пуансоном с диаметром 4 мм до плотности 0,87 г/см3. Затем контейнер высокого давления закрывали верхней торцовой шайбой и помещали между двух матриц высокого давления, центр которых был выполнен из твердого сплава. Матрицы высокого давления с контейнером высокого давления устанавливали в гидравлический пресс с усилием 1000 т.е. Состав в графитовой втулке контейнера высокого давления выдерживали при статическом давлении 7 ГПа и температуре 1510 °С в течение 15 секунд. Полученный порошок обрабатывали соляной кислотой для удаления попавших в него частиц литографского камня контейнера высокого давления и затем промывали его в деионизованной воде. После чего порошок помещали в жидкость бромоформ, имеющую плотность 2,89 г/см3, для разделения графита и кристаллических алмазных частиц. Кристаллические алмазные частицы отфильтровывали и промывали в деионизованной воде. Размер полученных кристаллических алмазных частиц лежал в интервале 30-250 нм с максимумом 60-80 нм (см. график на чертеже). Example 1. A portion of detonation nanodiamonds impregnated with hexane taken in the amount of May 27 was prepared. % by weight of detonation nanodiamonds. A high-pressure container 9 mm high and its end washers were pressed in a mold by pressing at 700 GPa from a mixture of graphite powders and lithographic stone with the addition of an aqueous solution of polyvinyl alcohol. A cylindrical sleeve with an outer diameter of 6 mm, an inner diameter of 4 mm and a height of 6 mm was made from a graphite rod with a diameter of 6 mm. The lower end washer and the graphite sleeve were installed in the high-pressure container. Powder of detonation nanodiamonds impregnated with hexane was placed in a graphite sleeve, which was then pressed with a punch with a diameter of 4 mm to a density of 0.87 g / cm 3 . Then, the high-pressure container was closed with the upper end washer and placed between two high-pressure matrices, the center of which was made of hard alloy. High-pressure matrices with a high-pressure container were installed in a hydraulic press with a force of 1000 i.e. The composition in the graphite sleeve of the high-pressure container was kept at a static pressure of 7 GPa and a temperature of 1510 ° C for 15 seconds. The resulting powder was treated with hydrochloric acid to remove particles of a lithographic stone of a high-pressure container that got into it and then washed in deionized water. After that, the powder was placed in a liquid bromoform having a density of 2.89 g / cm 3 to separate graphite and crystalline diamond particles. The crystalline diamond particles were filtered off and washed in deionized water. The size of the obtained crystalline diamond particles was in the range of 30-250 nm with a maximum of 60-80 nm (see the graph in the drawing).
Пример 2. Получали кристаллические алмазные частицы так же, как в примере 1, за исключением того, что порошок детонационных наноалмазов пропитывали этиловым спиртом, взятым в количестве 37 мае. % от веса детонационных наноалмазов, пропитанный этиловым спиртом порошок детонационных наноалмазов придавливали пуансоном с диаметром 4 мм до плотности 0,93 г/см3, выдержку состава проводили при температуре 1500 °С в течение 15 секунд. Размер полученных кристаллических алмазных частиц лежал в интервале 30-250 нм с максимумом 60-80 нм. Example 2. Received crystalline diamond particles in the same way as in example 1, except that the powder detonation nanodiamonds were impregnated with ethanol, taken in the amount of May 37. % of the weight of detonation nanodiamonds, ethanol-impregnated powder of detonation nanodiamonds was pressed by a punch with a diameter of 4 mm to density of 0.93 g / cm 3 , the exposure of the composition was carried out at a temperature of 1500 ° C for 15 seconds. The size of the obtained crystalline diamond particles was in the range of 30-250 nm with a maximum of 60-80 nm.
Пример 3. Получали кристаллические алмазные частицы так же, как в примере 1, за исключением того, что порошок детонационных наноалмазов пропитывали изопропиловым спиртом, взятым в количестве в количестве 32 мае. % от веса детонационных наноалмазов, пропитанный изопропиловым спиртом порошок детонационных наноалмазов придавливали пуансоном до плотности 0,90 г/см3. Выдержку состава проводили при температуре 1640 °С в течение 15 секунд. Размер полученных кристаллических алмазных частиц лежал в интервале 30-250 нм с максимумом 60-80 нм. Example 3. Received crystalline diamond particles in the same way as in example 1, except that the powder detonation nanodiamonds were impregnated with isopropyl alcohol, taken in an amount in the amount of May 32. % of the weight of detonation nanodiamonds, isopropyl alcohol impregnated powder of detonation nanodiamonds was pressed by a punch to a density of 0.90 g / cm 3 . The composition was aged at a temperature of 1640 ° C for 15 seconds. The size of the obtained crystalline diamond particles was in the range of 30-250 nm with a maximum of 60-80 nm.
Пример 4. Получали кристаллические алмазные частицы так же, как в примере 1, за исключением того, что к порошку детонационных наноалмазов добавили этиловый спирт, взятым в количестве 20 мае. % от веса детонационных наноалмазов, которое не обеспечило однородную пропитку наноалмазов. После синтеза образец содержал две части: одна часть - прореагировавшая, представляла собой белые кристаллические алмазные частицы, а вторая часть состояла из черных частиц детонационного наноалмаза, который не был полностью смочен этиловым спиртом.  Example 4. Crystalline diamond particles were obtained in the same manner as in Example 1, except that ethyl alcohol, taken in an amount of May 20, was added to the powder of detonation nanodiamonds. % of the weight of detonation nanodiamonds, which did not provide uniform impregnation of nanodiamonds. After synthesis, the sample contained two parts: one part, the reacted one, was white crystalline diamond particles, and the second part consisted of black particles of detonation nanodiamonds, which were not completely moistened with ethanol.
Пример 5. Получали кристаллические алмазные частицы так же, как в примере 1, за исключением того, что к порошку детонационных наноалмазов добавили этиловый спирт, взятым в количестве 60 мае. % от веса детонационных наноалмазов, которое было избыточным для пропитки наноалмазов. В процессе синтеза происходил разрыв контейнера высокого давления, что свидетельствует об избыточной концентрации водорода.  Example 5. Crystalline diamond particles were obtained in the same manner as in Example 1, except that ethyl alcohol, taken in an amount of May 60, was added to the powder of detonation nanodiamonds. % of the weight of detonation nanodiamonds, which was excessive for the impregnation of nanodiamonds. During the synthesis process, a high-pressure container ruptured, which indicates an excess concentration of hydrogen.
Пример 6. Получали кристаллические алмазные частицы так же, как в примере 2, за исключением того, что состав выдерживали при статическом давлении 4,8 ГПа. После синтеза образец содержал две части: одна часть - прореагировавшая, состояла из белых алмазных кристаллических частиц, а вторая часть образца состояла из черных частиц графитоподобного углерода, который образовался в области термодинамической стабильности графита. Имел место неустойчивый процесс, происходящий с частичной или полной графитизацией алмазов.  Example 6. Received crystalline diamond particles in the same manner as in example 2, except that the composition was kept at a static pressure of 4.8 GPa. After synthesis, the sample contained two parts: one part, the reacted one, consisted of white diamond crystalline particles, and the second part of the sample consisted of black particles of graphite-like carbon, which formed in the region of thermodynamic stability of graphite. There was an unstable process occurring with partial or complete graphitization of diamonds.
Пример 7. Получали кристаллические алмазные частицы так же, как в примере 2, за исключением того, что состав выдерживали в течение 9 секунд. После синтеза наблюдалась цветовая неоднородность образца, что свидетельствует о неоднородности нагрева образца. Можно заключить, что процесс такой длительности является неустойчивым с точки зрения однородности получаемого образца. Example 7. Received crystalline diamond particles in the same manner as in example 2, except that the composition was kept for 9 seconds. After synthesis, color inhomogeneity of the sample was observed, which indicates the heterogeneity of heating of the sample. It can be concluded that a process of this duration is unstable from the point of view of homogeneity of the obtained sample.
5 Пример 8. Получали кристаллические алмазные частицы так же, как в примере 2, за исключением того, что состав выдерживали в течение 62 секунд. В результате синтеза получены кристаллические алмазные частицы, однако процесс синтеза такой длительности приводит к интенсивному разогреву камеры высокого давления, что ведет к уменьшению возможного количества циклов ю синтеза до ее разрушения.  5 Example 8. Received crystalline diamond particles in the same manner as in example 2, except that the composition was kept for 62 seconds. As a result of the synthesis, crystalline diamond particles were obtained, however, the synthesis process of such a duration leads to intense heating of the high-pressure chamber, which leads to a decrease in the possible number of synthesis cycles before its destruction.

Claims

ФОРМУЛА ИЗОБРЕТЕНИЯ CLAIM
1. Способ получения кристаллических алмазных частиц, включающий пропитку порошка наноалмазов, полученных детонационным синтезом, предельным ациклическим углеводородом или одноосновным спиртом, выдержку полученного состава при статическом давлении 5-8 ГПа и температуре 1300-1800 °С в течение 10-60 секунд.  1. A method of obtaining crystalline diamond particles, including impregnating a powder of nanodiamonds obtained by detonation synthesis, acyclic saturated hydrocarbon or monobasic alcohol, holding the resulting composition at a static pressure of 5-8 GPa and a temperature of 1300-1800 ° C for 10-60 seconds.
2. Способ по п. 1, отличающийся тем, что в качестве ациклического углеводорода используют гексан.  2. The method according to p. 1, characterized in that hexane is used as an acyclic hydrocarbon.
3. Способ по п. 1, отличающийся тем, что в качестве одноосновного спирта используют спирт.  3. The method according to p. 1, characterized in that alcohol is used as the monobasic alcohol.
4. Способ по п. 3, отличающийся тем, что в качестве одноосновного спирта используют этиловый спирт.  4. The method according to p. 3, characterized in that ethanol is used as the monobasic alcohol.
5. Способ по п. 3, отличающийся тем, что в качестве одноосновного спирта используют изопропиловый спирт.  5. The method according to p. 3, characterized in that isopropyl alcohol is used as the monobasic alcohol.
PCT/RU2014/000516 2013-09-12 2014-07-15 Method for producing crystalline diamond particles WO2015038031A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2013141859 2013-09-12
RU2013141859/05A RU2576055C2 (en) 2013-09-12 2013-09-12 Method of production of crystalline diamond particles

Publications (1)

Publication Number Publication Date
WO2015038031A1 true WO2015038031A1 (en) 2015-03-19

Family

ID=52666013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2014/000516 WO2015038031A1 (en) 2013-09-12 2014-07-15 Method for producing crystalline diamond particles

Country Status (2)

Country Link
RU (1) RU2576055C2 (en)
WO (1) WO2015038031A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023276443A1 (en) 2021-06-28 2023-01-05 株式会社ディスコ Method for producing single crystal diamond, and single crystal diamond

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2628617C2 (en) * 2015-11-24 2017-08-21 Федеральное государственное бюджетное учреждение науки Физико-технический институт им. А.Ф. Иоффе Российской академии наук Method of crystalline diamond particles obtaining

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2223220C2 (en) * 2000-11-01 2004-02-10 Тадеуш Брониславович Сенють Method of preparing diamond particles, method of preparing diamond crystals, and method of preparing blanks containing diamond particles
WO2011130023A2 (en) * 2010-04-14 2011-10-20 Baker Hughes Incorporated Method of preparing polycrystalline diamond from derivatized nanodiamond

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2223220C2 (en) * 2000-11-01 2004-02-10 Тадеуш Брониславович Сенють Method of preparing diamond particles, method of preparing diamond crystals, and method of preparing blanks containing diamond particles
WO2011130023A2 (en) * 2010-04-14 2011-10-20 Baker Hughes Incorporated Method of preparing polycrystalline diamond from derivatized nanodiamond

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023276443A1 (en) 2021-06-28 2023-01-05 株式会社ディスコ Method for producing single crystal diamond, and single crystal diamond

Also Published As

Publication number Publication date
RU2013141859A (en) 2015-03-20
RU2576055C2 (en) 2016-02-27

Similar Documents

Publication Publication Date Title
US4931068A (en) Method for fabricating fracture-resistant diamond and diamond composite articles
KR830002648A (en) Method for preparing cubic boron nitride from hexagonal boron nitride milled without catalyst
DE102011010422B4 (en) Process for the production of synthetic diamonds
JP6871173B2 (en) Fragile ceramic bonded diamond composite particles and their manufacturing method
WO2023276443A1 (en) Method for producing single crystal diamond, and single crystal diamond
KR102072258B1 (en) Functionalization of cubic boron nitride and method of making the same
WO2015038031A1 (en) Method for producing crystalline diamond particles
CN106829968B (en) A method of nano-multicrystal stishovite is prepared using phase transition under high pressure method
RU2631692C1 (en) Method for production of fine-dispersed spherical titanium-containing powders
RU2628617C2 (en) Method of crystalline diamond particles obtaining
CN103667845B (en) A kind of method that utilization superhigh-pressure high-temp prepares the compound bulk of nanostructured tungsten carbide
CN1281487C (en) Method fro directly synthesizing diamond by sintering nanometer carbon tube under low-pressure
RU2131763C1 (en) Method of manufacturing artificial diamonds
CN109012496B (en) Method for preparing diamond film by shock wave method
Bobrovnitchii et al. Some peculiarities of the diamond micro-powder sintering
Voropaev et al. Face-centered cubic carbon synthesis under cavitation compression
RU2060933C1 (en) Method for production of polycrystalline diamond having predetermined shape
JP2958449B2 (en) Method for producing cubic boron nitride particles
JPH0437650A (en) Fracture resisting diamond and processing of diamond-combined article
Gou et al. Investigation of the process of diamond formation from SiC under high pressure and high temperature
KR102111284B1 (en) Unique cubic boron nitride crystals and method of manufacturing them
Vityaz et al. Compaction of nanodiamonds produced under detonation conditions and properties of composite and polycrystalline materials made on their basis
Danelska et al. Post-synthesis treatment of silicon carbide nanowires obtained in combustion synthesis
Modin et al. Consolidation by spark plasma sintering of a ceramic material based on silicon carbide with good physicomechanical properties, mechanochemically activated with boron
CN110479187B (en) Method for generating local shear stress in high-pressure sample cavity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14844022

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14844022

Country of ref document: EP

Kind code of ref document: A1