WO2015037350A1 - Sensor - Google Patents

Sensor Download PDF

Info

Publication number
WO2015037350A1
WO2015037350A1 PCT/JP2014/069821 JP2014069821W WO2015037350A1 WO 2015037350 A1 WO2015037350 A1 WO 2015037350A1 JP 2014069821 W JP2014069821 W JP 2014069821W WO 2015037350 A1 WO2015037350 A1 WO 2015037350A1
Authority
WO
WIPO (PCT)
Prior art keywords
power storage
storage device
state
charge
sensor
Prior art date
Application number
PCT/JP2014/069821
Other languages
French (fr)
Japanese (ja)
Inventor
恭孝 前川
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2015037350A1 publication Critical patent/WO2015037350A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for

Definitions

  • the present invention relates to a sensor provided with a power storage device.
  • an operational amplifier for amplifying an output signal from the sensor is necessary. Therefore, an operational amplifier power supply must be prepared.
  • a commercial power source is used as the power source, it is necessary to provide wiring for the commercial power source.
  • the power storage device In the case of using a power storage device as a power source, the power storage device must be periodically replaced according to the degree of consumption of the power storage device. There is a need for a sensor that does not require periodic replacement of a power storage device.
  • Patent Document 1 discloses a lighting system that is independent from commercial power and does not require maintenance.
  • FIG. 9 shows a block diagram of this illumination system.
  • the lighting system includes a power supply unit 110 and a lighting unit 120.
  • the power supply unit 110 includes a solar cell module 111, a secondary battery 112, a backflow prevention diode 113, and a sunshine discrimination switch circuit 114.
  • the illumination unit 120 includes a light emitting diode 121 and a lighting control circuit 122.
  • the solar cell module 111 has a function as a power generation element and a function of a sunshine discrimination sensor.
  • the sunshine discrimination switch circuit 114 is turned on / off depending on whether or not there is an output from the solar cell module 111.
  • the secondary battery 112 is charged with the electric power generated by the solar cell module 111.
  • the power stored in the secondary battery 112 is supplied to the lighting unit 120.
  • the light-emitting diode 121 blinks by the lighting control circuit 122 controlling the blinking period, the duty ratio, the peak current value, and the like.
  • An object of the present invention is to provide a sensor that does not require replacement of a power storage device even when the state of charge of the power storage device decreases.
  • An energy conversion element that harvests energy from the surrounding environment to generate electrical energy and outputs it as an electrical signal;
  • a power storage device An amplifier that operates by receiving power from the power storage device;
  • a sensor having a current path for inputting an electric signal output from the energy conversion element to the power storage device and the amplifier is provided.
  • the power storage device When the electric signal output from the energy conversion element is input to the power storage device, the power storage device is charged. For this reason, the battery replacement resulting from the reduced state of charge of the power storage device is unnecessary.
  • the amplifier when the electrical signal output from the energy conversion element is input to the amplifier, the amplifier outputs an electrical signal corresponding to the surrounding environmental energy. Thereby, the output of the amplifier can be used as the sensor output.
  • the power output terminal for taking out power from the power storage device may be further included.
  • the sensor can be used as a power source for an external device.
  • the current path includes a switching element that switches between a first connection state in which an electrical signal output from the energy conversion element is input to the power storage device and a second connection state input to the amplifier. It is good also as a structure. When the switching element is in the first connection state, the power storage device is charged, so that a decrease in the state of charge can be compensated.
  • the power storage device may further include a power storage monitoring circuit that detects a charge state of the power storage device and switches a connection state of the switching element based on the charge state of the power storage device. An excessive decrease in the state of charge of the power storage device can be prevented.
  • a power storage monitoring circuit for detecting a state of charge of the power storage device;
  • a charge state output terminal for outputting an electrical signal corresponding to the charge state detected by the power storage monitoring circuit; It is good also as a structure which further has a state switching terminal into which the switching signal for switching the connection state of the said switching element is input.
  • the external control device can determine the state of charge of the power storage device and charge the power storage device. Further, if necessary, the sensor output can be obtained from the amplifier by switching the switching element to the second connection state.
  • the energy conversion element may be configured to convert light energy into electrical energy. As a result, an optical sensor that does not require periodic replacement based on consumption of the power storage device is realized.
  • the power storage device When the electric signal output from the energy conversion element is input to the power storage device, the power storage device is charged. For this reason, the battery replacement resulting from the reduced state of charge of the power storage device is unnecessary.
  • the amplifier when the electrical signal output from the energy conversion element is input to the amplifier, the amplifier outputs an electrical signal corresponding to the surrounding environmental energy. Thereby, the output of the amplifier can be used as the sensor output.
  • FIG. 1 is a block diagram of a sensor according to the first embodiment.
  • FIG. 2A is a graph showing an example of the current-voltage characteristics of the energy conversion element used in the sensor according to Example 1
  • FIG. 2B is a graph showing an example of the relationship between the illuminance of the energy conversion element and the amount of power generation. It is.
  • FIG. 3 is a graph showing an example of the relationship between the illuminance of the energy conversion element used in the sensor according to Example 1 and the open circuit voltage.
  • FIG. 4 is a graph illustrating an example of a time change of various signals of the sensor according to the first embodiment.
  • FIG. 5 is a block diagram of a sensor according to the second embodiment.
  • FIG. 6 is a block diagram of a sensor according to the third embodiment.
  • FIG. 7 is a graph illustrating an example of temporal changes of various signals of the sensor according to the third embodiment.
  • FIG. 8 is a block diagram of a sensor according to the fourth embodiment.
  • FIG. 9 is
  • FIG. 1 shows a block diagram of a sensor 10 according to the first embodiment.
  • the energy conversion element 11 harvests energy from the surrounding environment to generate electric energy, and outputs the electric energy as an electric signal.
  • the energy conversion element 11 for example, a solar cell, an optical sensor, a vibration sensor, or the like can be used. When solar cells and light sensors are used, light energy is harvested from the surrounding environment. When a vibration sensor is used, vibration energy is harvested from the surrounding environment.
  • the electrical signal output from the energy conversion element 11 is input to the power storage device 15 and the amplifier 16 via the current path 12.
  • a capacitor, a secondary battery, or the like is used for the power storage device 15.
  • the amplifier 16 for example, a non-inverting amplifier circuit using an operational amplifier (op amp) is used.
  • the input impedance of the amplifier 16 is almost infinite, and the output impedance is almost zero.
  • the current path 12 includes a switching element 13 and a charging step-up / down circuit 14.
  • the switching element 13 switches between a first connection state in which the electrical signal output from the energy conversion element 11 is input to the power storage device 15 and a second connection state input to the amplifier 16.
  • the step-up / step-down circuit 14 steps up or down the voltage of the electronic signal output from the energy conversion element 11 to match the rated charging voltage of the power storage device 15.
  • the step-up / down circuit 14 may be omitted.
  • the power storage device 15 is charged by the electrical signal from the energy conversion element 11. The operation in which the power storage device 15 is charged is referred to as “charging mode”.
  • the power output from the power storage device 15 is supplied as power to the amplifier 16 via the step-up / step-down circuit 17.
  • the step-up / step-down circuit 17 steps up or down the output voltage of the power storage device 15 to match the rated power supply voltage of the amplifier 16.
  • the amplifier 16 operates by receiving power supply from the power storage device 15 and outputs a voltage signal depending on the electric signal output from the energy conversion element 11 from the sensor output terminal 20. This operation is referred to as “sensor mode”.
  • the power storage monitoring circuit 18 monitors the state of charge (SOC) of the power storage device 15 and switches the switching element 13 based on the state of charge of the power storage device 15.
  • SOC state of charge
  • the stored electric energy is proportional to the square of the output voltage. For this reason, monitoring the state of charge of the power storage device 15 is equivalent to monitoring the output voltage.
  • the state of charge of the power storage device 15 rises.
  • the storage monitoring circuit 18 switches the switching element 13 from the first connection state to the second connection state.
  • the electrical signal output from the energy conversion element 11 is input to the amplifier 16.
  • the storage monitoring circuit 18 switches the switching element 13 from the second connection state to the first connection state.
  • FIG. 2A shows an example of the current-voltage characteristics of the energy conversion element 11, and FIG. 2B shows an example of the relationship between the illuminance of the energy conversion element 11 and the amount of power generation.
  • the horizontal axis of FIG. 2A represents the voltage in the unit “V”, and the vertical axis represents the current density in the unit “ ⁇ A / cm 2 ”.
  • the horizontal axis of FIG. 2B represents the illuminance in the unit “lx”, and the vertical axis represents the power generation amount in the unit “ ⁇ W / cm 2 ”.
  • the current-voltage characteristics shown in FIG. 2A are measured under conditions where the illuminance is 200 lux.
  • the power generation amount shown in FIG. 2B represents the maximum power that can be extracted from the energy conversion element 11. It can be seen that when the illuminance of the surrounding environment is 200 lux, a power generation amount of about 7 ⁇ W / cm 2 can be obtained.
  • FIG. 3 shows the relationship between the illuminance of the energy conversion element 11 and the open circuit voltage.
  • the horizontal axis represents illuminance in the unit “lx”, and the vertical axis represents the open circuit voltage in the unit “mV”. It can be seen that the open circuit voltage increases as the illuminance increases. For this reason, the energy conversion element 11 can be utilized as an illuminance detection element.
  • the open circuit voltage when the illuminance is 200 lux is about 460 mV. This open circuit voltage corresponds to the voltage when the current density is 0 in FIG. 2A.
  • FIG. 4 shows an example of a time change of various signals of the sensor according to the first embodiment.
  • the upper graph in FIG. 4 represents the time change of the input from the environment, for example, the illuminance
  • the second graph represents the time change in the state of charge of the power storage device
  • the third graph represents the switching element 13.
  • the connection state is shown, and the lowermost graph shows the time change of the output of the amplifier 16.
  • the switching element 13 is set to the first connection state CS1.
  • the power storage device 15 is charged by the output power from the energy conversion element 11, so that the state of charge of the power storage device 15 increases with time.
  • the state of charge reaches the upper limit threshold SOCU.
  • the power storage monitoring circuit 18 FIG. 1 detects that the charging state has reached the upper limit threshold value SOCU, the switching element 13 is switched from the first connection state CS1 to the second connection state CS2.
  • the switching element 13 When the switching element 13 is in the second connection state CS2, the electrical signal output from the energy conversion element 11 is input to the amplifier 16 (FIG. 1). As a result, a voltage signal corresponding to the illuminance of the surrounding environment is output from the amplifier 16. Since electric power is supplied from the power storage device 15 to the amplifier 16, the state of charge of the power storage device 15 decreases with the passage of time.
  • the state of charge of the power storage device 15 decreases to the lower limit threshold SOCL.
  • the switching element 13 is switched from the second connection state CS2 to the first connection state CS1.
  • the charging of the power storage device 15 is resumed, and the state of charge rises with time.
  • the state of charge reaches the upper limit threshold SOCU.
  • the power storage monitoring circuit 18 switches the switching element 13 from the first connection state to the second connection state. As a result, a voltage signal corresponding to the illuminance of the surrounding environment is output from the amplifier 16.
  • the energy conversion element 11 acts as a power generation element during the period from time t0 to t1, and from time t2 to t3, the period from time t1 to t2, and the period after time t3, energy conversion.
  • the element 11 functions as an illuminance detection element.
  • the sensor 10 (FIG. 1) can detect illuminance in the period from time t1 to t2 and in the period after time t3.
  • the sensor 10 Since the electric power necessary for the sensor 10 to operate in the sensor mode is stored in the power storage device 15, the sensor 10 according to the first embodiment does not need to be supplied with electric power from a commercial power source. Furthermore, since the power storage device 15 is charged by the electric power generated by the energy conversion element 11, periodic replacement based on a decrease in the charged state of the power storage device 15 is also unnecessary. Since the energy conversion element 11 serves as both a power generation element and an illuminance detection element, it is possible to reduce the size and cost as compared with a case where the power generation element and the illuminance detection element are prepared separately. is there.
  • FIG. 5 is a block diagram of the sensor 10 according to the second embodiment.
  • differences from the first embodiment will be described, and description of the same configuration will be omitted.
  • the sensor 10 according to the second embodiment has a power output terminal 21.
  • the power output terminal 21 is connected to the power storage device 15. Power can be taken from the power storage device 15 to an external device via the power output terminal 21.
  • the sensor 10 according to the second embodiment can be used as a power source for external devices in addition to the function as a sensor.
  • FIG. 6 is a block diagram of the sensor 10 according to the third embodiment.
  • differences from the first embodiment will be described, and description of the same configuration will be omitted.
  • the sensor 10 includes a charging state output terminal 22 and a state switching terminal 23.
  • the power storage monitoring circuit 18 monitors the charge state of the power storage device 15 and outputs the charge state monitoring result to the charge state output terminal 22.
  • the charge state monitoring result output from the charge state output terminal 22 is input to the external control device 30.
  • the control device 30 inputs a state switching signal to the state switching terminal 23 based on the charge state monitoring result.
  • the connection state of the switching element 13 is switched by the state switching signal input to the state switching terminal 23.
  • Example 1 the sensor mode and the charging mode of the sensor 10 are autonomously switched based on the charging state of the power storage device 15.
  • the sensor mode and the charging mode can be switched from the external control device 30.
  • FIG. 7 shows an example of a time change of various signals of the sensor according to the third embodiment.
  • the first to fourth graphs in FIG. 7 represent the same signal time change as the first to fourth graphs in FIG. 4, respectively.
  • the switching element 13 is set to the first connection state CS1.
  • Control device 30 (FIG. 6) periodically determines whether or not the state of charge of power storage device 15 is equal to or greater than intermediate threshold value SOCM at determination times t11, t21, t31,.
  • the control device 30 sends a state switching signal for switching from the first connection state to the second connection state to the switching element 13.
  • the state switching in which the control device 30 switches the switching element 13 from the first connection state to the second connection state at the determination times t11, t21, t31, t41, t51, t71, and t91. Send a signal.
  • the switching element 13 enters the second connection state, and the operation of the sensor 10 is switched to the sensor mode. Thereby, the state of charge of power storage device 15 is lowered.
  • the control device 30 sends to the switching element 13 a state switching signal for switching from the second connection state to the first connection state. Thereby, charging of the power storage device 15 is resumed.
  • the state of charge at the next determination time is determined according to the state of charge at the sensor mode end time and the amount of power generated by the energy conversion element 11.
  • the state of charge at the next determination time t21 has recovered to the intermediate threshold SOCM or more.
  • the state of charge at the sensor mode end time t22 is equal to or greater than the intermediate threshold value SOCM. For this reason, even if the amount of power generation in the period from the sensor mode end time t22 to the next determination time t31 is not large, the state of charge at the next determination time t31 becomes equal to or greater than the intermediate threshold value SOCM.
  • control device 30 When the state of charge at the sensor mode end time t52 is equal to or lower than the intermediate threshold value SOCM and the amount of power generation until the next determination time t61 is small, the state of charge at the determination time t61 does not recover to the intermediate threshold value SOCM. When the state of charge of power storage device 15 at the determination time is less than intermediate threshold value SOCM, control device 30 does not send a state switching signal to switching element 13. At the next determination time t71, when the charging state is recovered to the intermediate threshold value SOCM or more, the control device 30 sends a state switching signal to the switching element 13.
  • the intermediate threshold value SOCM in the charged state is set to a value with a sufficient margin as compared with the electric energy consumed from the determination time to the sensor mode end time. Therefore, the sensor 10 can operate in the sensor mode from the determination time to the sensor mode end time.
  • the state of charge is determined at a constant cycle. However, the state of charge may be determined in response to a request for illuminance measurement.
  • the time from the determination time to the sensor mode end time is constant, but it is not always necessary to be constant. For example, when there is a sufficient margin in the state of charge, it is possible to lengthen the time from the determination time to the sensor mode end time.
  • Example 1 the illuminance was measured autonomously, but in Example 3, the illuminance can be measured in response to a request from the outside.
  • FIG. 8 is a block diagram of the sensor 10 according to the fourth embodiment.
  • FIG. 5 differences from the second embodiment (FIG. 5) will be described, and description of the same configuration will be omitted.
  • the switching element 13 inserted in the current path 12 (FIG. 5) of the second embodiment is omitted.
  • the electrical signal output from the energy conversion element 11 is supplied to both the power storage device 15 and the amplifier 16 at the same time. For this reason, the sensor 10 according to the fourth embodiment can always measure the illuminance.
  • Example 4 when the output signal from the energy conversion element 11 is input to the amplifier 16, the load impedance of the energy conversion element 11 does not become infinite. For this reason, a current is extracted from the energy conversion element 11. As shown in FIG. 2A, when a current is extracted from the energy conversion element 11, the voltage between its output terminals is lower than the open circuit voltage. In order to suppress a decrease in measurement accuracy of illuminance, it is preferable to use an energy conversion element 11 having a current-voltage characteristic with a small amount of voltage decrease when the current is increased from zero. Specifically, it is preferable to use an energy conversion element in which the shape of the graph showing the current-voltage characteristics (FIG. 2A) is close to a rectangle.

Abstract

An energy conversion element gathers energy from the surrounding environment, generates electrical energy, and outputs same as an electrical signal. An amplifier operates on power supplied by an electricity-storage device. The electrical signal outputted by the energy conversion element is inputted to the electricity-storage device and the amplifier via a current pathway. This results in a sensor in which, even if the state of charge of an electricity-storage device drops, said electricity-storage device does not need to be replaced.

Description

センサSensor
 本発明は、蓄電装置を備えたセンサに関する。 The present invention relates to a sensor provided with a power storage device.
 光センサ等の各種センサを動作させるためには、センサからの出力信号を増幅するための演算増幅器(オペアンプ)が必要である。従って、演算増幅器の電源を準備しなければならない。電源として商用電源を用いる場合には、商用電源用の配線を設ける必要がある。電源として蓄電装置を用いる場合には、蓄電装置の消耗の程度に応じて、定期的に蓄電装置を交換しなければならない。蓄電装置の定期的な交換が不要なセンサが求められている。 In order to operate various sensors such as an optical sensor, an operational amplifier (op amp) for amplifying an output signal from the sensor is necessary. Therefore, an operational amplifier power supply must be prepared. When a commercial power source is used as the power source, it is necessary to provide wiring for the commercial power source. In the case of using a power storage device as a power source, the power storage device must be periodically replaced according to the degree of consumption of the power storage device. There is a need for a sensor that does not require periodic replacement of a power storage device.
 特許文献1に、商用電力から独立し、保守不要な照明システムが開示されている。図9に、この照明システムのブロック図を示す。照明システムは、電源部110と照明部120とを含む。電源部110は、太陽電池モジュール111、二次電池112、逆流防止ダイオード113、及び日照判別スイッチ回路114を含む。照明部120は、発光ダイオード121及び点灯制御回路122を含む。 Patent Document 1 discloses a lighting system that is independent from commercial power and does not require maintenance. FIG. 9 shows a block diagram of this illumination system. The lighting system includes a power supply unit 110 and a lighting unit 120. The power supply unit 110 includes a solar cell module 111, a secondary battery 112, a backflow prevention diode 113, and a sunshine discrimination switch circuit 114. The illumination unit 120 includes a light emitting diode 121 and a lighting control circuit 122.
 太陽電池モジュール111は、発電素子としての機能と、日照判別センサの機能とを有する。太陽電池モジュール111からの出力の有無により、日照判別スイッチ回路114がオン、オフされる。日中は、太陽電池モジュール111で発電された電力が、二次電池112に充電される。夜間は、二次電池112に蓄えられている電力が照明部120に供給される。点灯制御回路122が、点滅周期、デューティ比、ピーク電流値等を制御することにより、発光ダイオード121が点滅する。 The solar cell module 111 has a function as a power generation element and a function of a sunshine discrimination sensor. The sunshine discrimination switch circuit 114 is turned on / off depending on whether or not there is an output from the solar cell module 111. During the day, the secondary battery 112 is charged with the electric power generated by the solar cell module 111. At night, the power stored in the secondary battery 112 is supplied to the lighting unit 120. The light-emitting diode 121 blinks by the lighting control circuit 122 controlling the blinking period, the duty ratio, the peak current value, and the like.
特開平7-219467号公報JP-A-7-219467
 図9に示した照明システムにおいては、日中の太陽光のエネルギによって二次電池112が充電されるため、定期的な電池交換が不要である。ところが、日中は、太陽電池モジュール111の出力電力が二次電池に供給されているため、太陽電池モジュール111を光センサとして利用することが困難である。 In the lighting system shown in FIG. 9, since the secondary battery 112 is charged by sunlight energy during the day, periodic battery replacement is unnecessary. However, since the output power of the solar cell module 111 is supplied to the secondary battery during the daytime, it is difficult to use the solar cell module 111 as an optical sensor.
 本発明の目的は、蓄電装置の充電状態が低下しても、蓄電装置の交換が不要なセンサを提供することである。 An object of the present invention is to provide a sensor that does not require replacement of a power storage device even when the state of charge of the power storage device decreases.
 本発明の一観点によると、
 周囲の環境からエネルギを収穫して電気エネルギを生成し、電気信号として出力するエネルギ変換素子と、
 蓄電装置と、
 前記蓄電装置から電力の供給を受けて動作する増幅器と、
 前記エネルギ変換素子から出力された電気信号を、前記蓄電装置及び前記増幅器に入力する電流路と
を有するセンサが提供される。
According to one aspect of the invention,
An energy conversion element that harvests energy from the surrounding environment to generate electrical energy and outputs it as an electrical signal;
A power storage device;
An amplifier that operates by receiving power from the power storage device;
A sensor having a current path for inputting an electric signal output from the energy conversion element to the power storage device and the amplifier is provided.
 エネルギ変換素子から出力された電気信号が蓄電装置に入力されることにより、蓄電装置が充電される。このため、蓄電装置の充電状態が低下することに起因する電池交換が不要である。また、エネルギ変換素子から出された電気信号が増幅器に入力されることにより、増幅器が、周囲の環境エネルギに応じた電気信号を出力する。これにより、増幅器の出力をセンサ出力として利用することができる。 When the electric signal output from the energy conversion element is input to the power storage device, the power storage device is charged. For this reason, the battery replacement resulting from the reduced state of charge of the power storage device is unnecessary. In addition, when the electrical signal output from the energy conversion element is input to the amplifier, the amplifier outputs an electrical signal corresponding to the surrounding environmental energy. Thereby, the output of the amplifier can be used as the sensor output.
 前記蓄電装置から電力を取り出すための電力出力端子を、さらに有する構成としてもよい。これにより、センサを、外部機器の電源として利用することが可能になる。 The power output terminal for taking out power from the power storage device may be further included. As a result, the sensor can be used as a power source for an external device.
 前記電流路が、前記エネルギ変換素子から出力された電気信号が前記蓄電装置に入力される第1の接続状態と、前記増幅器に入力される第2の接続状態との間で切り替わるスイッチング素子を含む構成としてもよい。スイッチング素子が第1の接続状態のとき、蓄電装置が充電されるため、その充電状態の低下を補うことができる。 The current path includes a switching element that switches between a first connection state in which an electrical signal output from the energy conversion element is input to the power storage device and a second connection state input to the amplifier. It is good also as a structure. When the switching element is in the first connection state, the power storage device is charged, so that a decrease in the state of charge can be compensated.
 前記蓄電装置の充電状態を検出し、前記蓄電装置の充電状態に基づいて、前記スイッチング素子の接続状態を切り替える蓄電監視回路を、さらに有する構成としてもよい。蓄電装置の充電状態の過度の低下を防止することができる。 The power storage device may further include a power storage monitoring circuit that detects a charge state of the power storage device and switches a connection state of the switching element based on the charge state of the power storage device. An excessive decrease in the state of charge of the power storage device can be prevented.
 前記蓄電装置の充電状態を検出する蓄電監視回路と、
 前記蓄電監視回路で検出された充電状態に対応する電気信号を出力する充電状態出力端子と、
 前記スイッチング素子の接続状態を切り替えるための切り替え信号が入力される状態切り替え端子と
をさらに有する構成としてもよい。
 外部の制御装置により、蓄電装置の充電状態を判定し、蓄電装置の充電を行うことができる。さらに、必要に応じて、スイッチング素子を第2の接続状態に切り替えることにより、増幅器から、センサ出力を得ることができる。
A power storage monitoring circuit for detecting a state of charge of the power storage device;
A charge state output terminal for outputting an electrical signal corresponding to the charge state detected by the power storage monitoring circuit;
It is good also as a structure which further has a state switching terminal into which the switching signal for switching the connection state of the said switching element is input.
The external control device can determine the state of charge of the power storage device and charge the power storage device. Further, if necessary, the sensor output can be obtained from the amplifier by switching the switching element to the second connection state.
 前記エネルギ変換素子は、光エネルギを電気エネルギに変換する構成としてもよい。これにより、蓄電装置の消耗に基づく定期的な交換が不要な光センサが実現される。 The energy conversion element may be configured to convert light energy into electrical energy. As a result, an optical sensor that does not require periodic replacement based on consumption of the power storage device is realized.
 エネルギ変換素子から出力された電気信号が蓄電装置に入力されることにより、蓄電装置が充電される。このため、蓄電装置の充電状態が低下することに起因する電池交換が不要である。また、エネルギ変換素子から出された電気信号が増幅器に入力されることにより、増幅器が、周囲の環境エネルギに応じた電気信号を出力する。これにより、増幅器の出力をセンサ出力として利用することができる。 When the electric signal output from the energy conversion element is input to the power storage device, the power storage device is charged. For this reason, the battery replacement resulting from the reduced state of charge of the power storage device is unnecessary. In addition, when the electrical signal output from the energy conversion element is input to the amplifier, the amplifier outputs an electrical signal corresponding to the surrounding environmental energy. Thereby, the output of the amplifier can be used as the sensor output.
図1は、実施例1によるセンサのブロック図である。FIG. 1 is a block diagram of a sensor according to the first embodiment. 図2Aは、実施例1によるセンサに用いられているエネルギ変換素子の電流電圧特性の一例を示すグラフであり、図2Bは、このエネルギ変換素子の照度と発電量との関係の一例を示すグラフである。FIG. 2A is a graph showing an example of the current-voltage characteristics of the energy conversion element used in the sensor according to Example 1, and FIG. 2B is a graph showing an example of the relationship between the illuminance of the energy conversion element and the amount of power generation. It is. 図3は、実施例1によるセンサに用いられているエネルギ変換素子の照度と開路電圧との関係の一例を示すグラフである。FIG. 3 is a graph showing an example of the relationship between the illuminance of the energy conversion element used in the sensor according to Example 1 and the open circuit voltage. 図4は、実施例1によるセンサの各種信号の時間変化の一例を示すグラフである。FIG. 4 is a graph illustrating an example of a time change of various signals of the sensor according to the first embodiment. 図5は、実施例2によるセンサのブロック図である。FIG. 5 is a block diagram of a sensor according to the second embodiment. 図6は、実施例3によるセンサのブロック図である。FIG. 6 is a block diagram of a sensor according to the third embodiment. 図7は、実施例3によるセンサの各種信号の時間変化の一例を示すグラフである。FIG. 7 is a graph illustrating an example of temporal changes of various signals of the sensor according to the third embodiment. 図8は、実施例4によるセンサのブロック図である。FIG. 8 is a block diagram of a sensor according to the fourth embodiment. 図9は、従来の照明システムのブロック図である。FIG. 9 is a block diagram of a conventional lighting system.
 [実施例1]
 図1に、実施例1によるセンサ10のブロック図を示す。エネルギ変換素子11が、周囲の環境からエネルギを収穫して電気エネルギを生成し、電気エネルギを電気信号として出力する。エネルギ変換素子11として、例えば太陽電池、光センサ、振動センサ等を用いることができる。太陽電池及び光センサが用いられる場合には、周囲の環境から光エネルギが収穫される。振動センサが用いられる場合には、周囲の環境から振動エネルギが収穫される。
[Example 1]
FIG. 1 shows a block diagram of a sensor 10 according to the first embodiment. The energy conversion element 11 harvests energy from the surrounding environment to generate electric energy, and outputs the electric energy as an electric signal. As the energy conversion element 11, for example, a solar cell, an optical sensor, a vibration sensor, or the like can be used. When solar cells and light sensors are used, light energy is harvested from the surrounding environment. When a vibration sensor is used, vibration energy is harvested from the surrounding environment.
 エネルギ変換素子11から出力された電気信号が、電流路12を介して蓄電装置15及び増幅器16に入力される。蓄電装置15には、例えばキャパシタ、二次電池等が用いられる。増幅器16には、例えば演算増幅器(オペアンプ)を用いた非反転増幅回路が用いられる。増幅器16の入力インピーダンスはほぼ無限大であり、出力インピーダンスはほぼ0である。 The electrical signal output from the energy conversion element 11 is input to the power storage device 15 and the amplifier 16 via the current path 12. For example, a capacitor, a secondary battery, or the like is used for the power storage device 15. As the amplifier 16, for example, a non-inverting amplifier circuit using an operational amplifier (op amp) is used. The input impedance of the amplifier 16 is almost infinite, and the output impedance is almost zero.
 電流路12は、スイッチング素子13及び充電用の昇降圧回路14を含む。スイッチング素子13は、エネルギ変換素子11から出力された電気信号が蓄電装置15に入力される第1の接続状態と、増幅器16に入力される第2の接続状態との切り替えを行う。昇降圧回路14は、スイッチング素子13が第1の接続状態のとき、エネルギ変換素子11から出力された電子信号の電圧を昇圧または降圧して、蓄電装置15の定格充電電圧に整合させる。エネルギ変換素子11から出力される電気信号の電圧が、蓄電装置15の定格充電電圧の範囲内である場合には、昇降圧回路14を省略してもよい。スイッチング素子13が第1の接続状態のとき、エネルギ変換素子11からの電気信号によって蓄電装置15が充電される。蓄電装置15が充電される動作を、「充電モード」ということとする。 The current path 12 includes a switching element 13 and a charging step-up / down circuit 14. The switching element 13 switches between a first connection state in which the electrical signal output from the energy conversion element 11 is input to the power storage device 15 and a second connection state input to the amplifier 16. When the switching element 13 is in the first connection state, the step-up / step-down circuit 14 steps up or down the voltage of the electronic signal output from the energy conversion element 11 to match the rated charging voltage of the power storage device 15. When the voltage of the electric signal output from the energy conversion element 11 is within the range of the rated charging voltage of the power storage device 15, the step-up / down circuit 14 may be omitted. When the switching element 13 is in the first connection state, the power storage device 15 is charged by the electrical signal from the energy conversion element 11. The operation in which the power storage device 15 is charged is referred to as “charging mode”.
 蓄電装置15から出力される電力が、昇降圧回路17を介して増幅器16に、電源として供給される。昇降圧回路17は、蓄電装置15の出力電圧を昇圧または降圧して、増幅器16の定格電源電圧に整合させる。増幅器16は、蓄電装置15から電力の供給を受けて動作し、エネルギ変換素子11から出力された電気信号に依存する電圧信号を、センサ出力端子20から出力する。この動作を「センサモード」ということとする。 The power output from the power storage device 15 is supplied as power to the amplifier 16 via the step-up / step-down circuit 17. The step-up / step-down circuit 17 steps up or down the output voltage of the power storage device 15 to match the rated power supply voltage of the amplifier 16. The amplifier 16 operates by receiving power supply from the power storage device 15 and outputs a voltage signal depending on the electric signal output from the energy conversion element 11 from the sensor output terminal 20. This operation is referred to as “sensor mode”.
 蓄電監視回路18が、蓄電装置15の充電状態(SOC)を監視し、蓄電装置15の充電状態に基づいて、スイッチング素子13の切り替えを行う。蓄電装置15にキャパシタが用いられている場合には、蓄積された電気エネルギが出力電圧の2乗に比例する。このため、蓄電装置15の充電状態を監視することは、出力電圧を監視することと等価である。 The power storage monitoring circuit 18 monitors the state of charge (SOC) of the power storage device 15 and switches the switching element 13 based on the state of charge of the power storage device 15. When a capacitor is used for the power storage device 15, the stored electric energy is proportional to the square of the output voltage. For this reason, monitoring the state of charge of the power storage device 15 is equivalent to monitoring the output voltage.
 スイッチング素子13が第1の接続状態の期間、蓄電装置15の充電状態が上昇する。充電状態が上限閾値以上になると、蓄電監視回路18がスイッチング素子13を第1の接続状態から第2の接続状態に切り替える。これにより、エネルギ変換素子11から出力された電気信号が増幅器16に入力される。スイッチング素子13が第2の接続状態の期間は、蓄電装置15から増幅器16に電力が供給されることにより、充電状態が低下する。充電状態が下限閾値以下になると、蓄電監視回路18がスイッチング素子13を第2の接続状態から第1の接続状態に切り替える。これにより、蓄電装置15の充電が開始され、充電状態が上昇する。 During the period when the switching element 13 is in the first connection state, the state of charge of the power storage device 15 rises. When the state of charge becomes equal to or greater than the upper limit threshold, the storage monitoring circuit 18 switches the switching element 13 from the first connection state to the second connection state. As a result, the electrical signal output from the energy conversion element 11 is input to the amplifier 16. During the period in which the switching element 13 is in the second connection state, power is supplied from the power storage device 15 to the amplifier 16, so that the charge state is lowered. When the state of charge becomes equal to or lower than the lower limit threshold, the storage monitoring circuit 18 switches the switching element 13 from the second connection state to the first connection state. Thereby, charge of the electrical storage apparatus 15 is started and a charge state rises.
 図2Aに、エネルギ変換素子11の電流電圧特性の一例を示し、図2Bに、エネルギ変換素子11の照度と発電量との関係の一例を示す。図2Aの横軸は電圧を単位「V」で表し、縦軸は電流密度を単位「μA/cm」で表す。図2Bの横軸は照度を単位「lx」で表し、縦軸は発電量を単位「μW/cm」で表す。図2Aに示した電流電圧特性は、照度が200ルクスの条件下で測定されたものである。図2Bに示した発電量は、エネルギ変換素子11から取り出し得る最大の電力を表している。周囲の環境の照度が200ルクスである場合、約7μW/cmの発電量が得られることがわかる。 FIG. 2A shows an example of the current-voltage characteristics of the energy conversion element 11, and FIG. 2B shows an example of the relationship between the illuminance of the energy conversion element 11 and the amount of power generation. The horizontal axis of FIG. 2A represents the voltage in the unit “V”, and the vertical axis represents the current density in the unit “μA / cm 2 ”. The horizontal axis of FIG. 2B represents the illuminance in the unit “lx”, and the vertical axis represents the power generation amount in the unit “μW / cm 2 ”. The current-voltage characteristics shown in FIG. 2A are measured under conditions where the illuminance is 200 lux. The power generation amount shown in FIG. 2B represents the maximum power that can be extracted from the energy conversion element 11. It can be seen that when the illuminance of the surrounding environment is 200 lux, a power generation amount of about 7 μW / cm 2 can be obtained.
 図3に、エネルギ変換素子11の照度と開路電圧との関係を示す。横軸は照度を単位「lx」で表し、縦軸は開路電圧を単位「mV」で表す。照度が増大するに従って、開路電圧が上昇することがわかる。このため、エネルギ変換素子11を照度検出素子として利用することができる。図3において、照度が200ルクスのときの開路電圧が約460mVである。この開路電圧は、図2Aにおいて電流密度が0であるときの電圧に一致する。 FIG. 3 shows the relationship between the illuminance of the energy conversion element 11 and the open circuit voltage. The horizontal axis represents illuminance in the unit “lx”, and the vertical axis represents the open circuit voltage in the unit “mV”. It can be seen that the open circuit voltage increases as the illuminance increases. For this reason, the energy conversion element 11 can be utilized as an illuminance detection element. In FIG. 3, the open circuit voltage when the illuminance is 200 lux is about 460 mV. This open circuit voltage corresponds to the voltage when the current density is 0 in FIG. 2A.
 図4に、実施例1によるセンサの各種信号の時間変化の一例を示す。図4の上段のグラフは、環境からの入力、例えば照度の時間変化を表し、2段目のグラフは、蓄電装置の充電状態の時間変化を表し、3段目のグラフは、スイッチング素子13の接続状態を表し、最下段のグラフは、増幅器16の出力の時間変化を表す。 FIG. 4 shows an example of a time change of various signals of the sensor according to the first embodiment. The upper graph in FIG. 4 represents the time change of the input from the environment, for example, the illuminance, the second graph represents the time change in the state of charge of the power storage device, and the third graph represents the switching element 13. The connection state is shown, and the lowermost graph shows the time change of the output of the amplifier 16.
 時刻t0において、スイッチング素子13が第1の接続状態CS1に設定されている。スイッチング素子13が第1の接続状態CS1のとき、エネルギ変換素子11からの出力電力によって蓄電装置15が充電されるため、蓄電装置15の充電状態が時間の経過とともに上昇する。時刻t1において、充電状態が上限閾値SOCUに達する。充電状態が上限閾値SOCUに達したことを、蓄電監視回路18(図1)が検出すると、スイッチング素子13を第1の接続状態CS1から第2の接続状態CS2に切り替える。 At time t0, the switching element 13 is set to the first connection state CS1. When the switching element 13 is in the first connection state CS1, the power storage device 15 is charged by the output power from the energy conversion element 11, so that the state of charge of the power storage device 15 increases with time. At time t1, the state of charge reaches the upper limit threshold SOCU. When the power storage monitoring circuit 18 (FIG. 1) detects that the charging state has reached the upper limit threshold value SOCU, the switching element 13 is switched from the first connection state CS1 to the second connection state CS2.
 スイッチング素子13が第2の接続状態CS2のとき、エネルギ変換素子11から出力された電気信号が増幅器16(図1)に入力される。これにより、増幅器16から、周囲の環境の照度に応じた電圧信号が出力される。蓄電装置15から増幅器16に電力が供給されるため、蓄電装置15の充電状態が、時間の経過とともに低下する。 When the switching element 13 is in the second connection state CS2, the electrical signal output from the energy conversion element 11 is input to the amplifier 16 (FIG. 1). As a result, a voltage signal corresponding to the illuminance of the surrounding environment is output from the amplifier 16. Since electric power is supplied from the power storage device 15 to the amplifier 16, the state of charge of the power storage device 15 decreases with the passage of time.
 時刻t2において、蓄電装置15の充電状態が下限閾値SOCLまで低下する。充電状態が下限閾値SOCLまで低下したことを、蓄電監視回路18が検出すると、スイッチング素子13を第2の接続状態CS2から第1の接続状態CS1に切り替える。 At time t2, the state of charge of the power storage device 15 decreases to the lower limit threshold SOCL. When the power storage monitoring circuit 18 detects that the state of charge has decreased to the lower limit threshold SOCL, the switching element 13 is switched from the second connection state CS2 to the first connection state CS1.
 蓄電装置15の充電が再開され、充電状態が時間の経過とともに上昇する。時刻t3において、充電状態が上限閾値SOCUに達する。蓄電監視回路18がスイッチング素子13を第1の接続状態から第2の接続状態に切り替える。これにより、増幅器16から、周囲の環境の照度に応じた電圧信号が出力される。 The charging of the power storage device 15 is resumed, and the state of charge rises with time. At time t3, the state of charge reaches the upper limit threshold SOCU. The power storage monitoring circuit 18 switches the switching element 13 from the first connection state to the second connection state. As a result, a voltage signal corresponding to the illuminance of the surrounding environment is output from the amplifier 16.
 上記実施例1では、時刻t0からt1までの期間、及び時刻t2からt3までの期間、エネルギ変換素子11が発電素子として働き、時刻t1からt2までの期間、及び時刻t3以降の期間、エネルギ変換素子11が照度検知素子として働く。このため、センサ10(図1)は、時刻t1からt2までの期間、及び時刻t3以降の期間に、照度を検出することができる。 In the first embodiment, the energy conversion element 11 acts as a power generation element during the period from time t0 to t1, and from time t2 to t3, the period from time t1 to t2, and the period after time t3, energy conversion. The element 11 functions as an illuminance detection element. For this reason, the sensor 10 (FIG. 1) can detect illuminance in the period from time t1 to t2 and in the period after time t3.
 センサ10がセンサモードで動作するために必要な電力が、蓄電装置15に蓄積されているため、実施例1によるセンサ10は、商用電源からの電力供給を受ける必要がない。さらに、蓄電装置15は、エネルギ変換素子11で発電された電力によって充電されるため、蓄電装置15の充電状態の低下に基づく定期的な交換も不要である。エネルギ変換素子11が発電素子と照度検知素子との両方の役割を兼ねているため、発電素子及び照度検知素子を別々に準備する場合に比べて、小型化及び低コスト化を図ることが可能である。 Since the electric power necessary for the sensor 10 to operate in the sensor mode is stored in the power storage device 15, the sensor 10 according to the first embodiment does not need to be supplied with electric power from a commercial power source. Furthermore, since the power storage device 15 is charged by the electric power generated by the energy conversion element 11, periodic replacement based on a decrease in the charged state of the power storage device 15 is also unnecessary. Since the energy conversion element 11 serves as both a power generation element and an illuminance detection element, it is possible to reduce the size and cost as compared with a case where the power generation element and the illuminance detection element are prepared separately. is there.
 [実施例2]
 図5に、実施例2によるセンサ10のブロック図を示す。以下、実施例1との相違点について説明し、同一の構成については説明を省略する。
[Example 2]
FIG. 5 is a block diagram of the sensor 10 according to the second embodiment. Hereinafter, differences from the first embodiment will be described, and description of the same configuration will be omitted.
 実施例2によるセンサ10は、電力出力端子21を有する。電力出力端子21は、蓄電装置15に接続されている。電力出力端子21を介して、蓄電装置15から外部機器に電力を取り出すことができる。 The sensor 10 according to the second embodiment has a power output terminal 21. The power output terminal 21 is connected to the power storage device 15. Power can be taken from the power storage device 15 to an external device via the power output terminal 21.
 実施例2によるセンサ10は、センサとしての機能に加えて、外部機器用の電源としても利用することが可能である。 The sensor 10 according to the second embodiment can be used as a power source for external devices in addition to the function as a sensor.
 [実施例3]
 図6に、実施例3によるセンサ10のブロック図を示す。以下、実施例1との相違点について説明し、同一の構成については説明を省略する。
[Example 3]
FIG. 6 is a block diagram of the sensor 10 according to the third embodiment. Hereinafter, differences from the first embodiment will be described, and description of the same configuration will be omitted.
 実施例3によるセンサ10は、充電状態出力端子22及び状態切り替え端子23を有する。蓄電監視回路18が蓄電装置15の充電状態を監視し、充電状態の監視結果を充電状態出力端子22に出力する。 The sensor 10 according to the third embodiment includes a charging state output terminal 22 and a state switching terminal 23. The power storage monitoring circuit 18 monitors the charge state of the power storage device 15 and outputs the charge state monitoring result to the charge state output terminal 22.
 充電状態出力端子22から出力された充電状態の監視結果が、外部の制御装置30に入力される。制御装置30は、充電状態の監視結果に基づいて、状態切り替え端子23に状態切り替え信号を入力する。状態切り替え端子23に入力された状態切り替え信号によって、スイッチング素子13の接続状態が切り替えられる。 The charge state monitoring result output from the charge state output terminal 22 is input to the external control device 30. The control device 30 inputs a state switching signal to the state switching terminal 23 based on the charge state monitoring result. The connection state of the switching element 13 is switched by the state switching signal input to the state switching terminal 23.
 実施例1では、センサ10のセンサモードと充電モードとが、蓄電装置15の充電状態に基づいて自律的に切り替わった。実施例3では、外部の制御装置30から、センサモードと充電モードとの切り替えを行うことができる。 In Example 1, the sensor mode and the charging mode of the sensor 10 are autonomously switched based on the charging state of the power storage device 15. In the third embodiment, the sensor mode and the charging mode can be switched from the external control device 30.
 図7に、実施例3によるセンサの各種信号の時間変化の一例を示す。図7の1段目から4段目のグラフは、それぞれ図4の1段目から4段目のグラフと同一の信号の時間変化を表す。時刻t0において、スイッチング素子13が第1の接続状態CS1に設定されている。制御装置30(図6)は、周期的に、例えば判定時刻t11、t21、t31・・・に、蓄電装置15の充電状態が中間閾値SOCM以上か否かを判定する。 FIG. 7 shows an example of a time change of various signals of the sensor according to the third embodiment. The first to fourth graphs in FIG. 7 represent the same signal time change as the first to fourth graphs in FIG. 4, respectively. At time t0, the switching element 13 is set to the first connection state CS1. Control device 30 (FIG. 6) periodically determines whether or not the state of charge of power storage device 15 is equal to or greater than intermediate threshold value SOCM at determination times t11, t21, t31,.
 蓄電装置15の充電状態が中間閾値SOCM以上である場合、制御装置30が、スイッチング素子13に、第1の接続状態から第2の接続状態に切り替える状態切り替え信号を送出する。図7に示した例では、判定時刻t11、t21、t31、t41、t51、t71、及びt91において、制御装置30がスイッチング素子13に、第1の接続状態から第2の接続状態に切り替える状態切り替え信号を送出する。これにより、スイッチング素子13が第2の接続状態になり、センサ10の動作がセンサモードに切り替わる。これにより、蓄電装置15の充電状態が低下する。 When the state of charge of the power storage device 15 is equal to or greater than the intermediate threshold value SOCM, the control device 30 sends a state switching signal for switching from the first connection state to the second connection state to the switching element 13. In the example illustrated in FIG. 7, the state switching in which the control device 30 switches the switching element 13 from the first connection state to the second connection state at the determination times t11, t21, t31, t41, t51, t71, and t91. Send a signal. As a result, the switching element 13 enters the second connection state, and the operation of the sensor 10 is switched to the sensor mode. Thereby, the state of charge of power storage device 15 is lowered.
 スイッチング素子13に状態切り替え信号を送出した時点から一定時間が経過した時点(以下、「センサモード終了時刻」という。図7では、時刻t12、t22、t32、t42、t52、t72、t92)で、制御装置30がスイッチング素子13に、第2の接続状態から第1の接続状態に切り替える状態切り替え信号を送出する。これにより、蓄電装置15の充電が再開される。センサモード終了時刻における充電状態、及びエネルギ変換素子11による発電量に応じて、次の判定時刻における充電状態が決定される。 At the time when a certain time has elapsed from the time when the state switching signal is sent to the switching element 13 (hereinafter referred to as “sensor mode end time”; in FIG. 7, times t12, t22, t32, t42, t52, t72, and t92). The control device 30 sends to the switching element 13 a state switching signal for switching from the second connection state to the first connection state. Thereby, charging of the power storage device 15 is resumed. The state of charge at the next determination time is determined according to the state of charge at the sensor mode end time and the amount of power generated by the energy conversion element 11.
 例えば、センサモード終了時刻t12から判定時刻t21までの期間は、エネルギ変換素子11の発電量が多いため、次の判定時刻t21における充電状態が中間閾値SOCM以上まで回復している。センサモード終了時刻t22における充電状態は、中間閾値SOCM以上である。このため、センサモード終了時刻t22から次の判定時刻t31までの期間の発電量が多くなくても、次の判定時刻t31における充電状態が中間閾値SOCM以上になる。 For example, during the period from the sensor mode end time t12 to the determination time t21, since the amount of power generated by the energy conversion element 11 is large, the state of charge at the next determination time t21 has recovered to the intermediate threshold SOCM or more. The state of charge at the sensor mode end time t22 is equal to or greater than the intermediate threshold value SOCM. For this reason, even if the amount of power generation in the period from the sensor mode end time t22 to the next determination time t31 is not large, the state of charge at the next determination time t31 becomes equal to or greater than the intermediate threshold value SOCM.
 センサモード終了時刻t52における充電状態が中間閾値SOCM以下であり、次の判定時刻t61までの発電量が少ない場合には、判定時刻t61における充電状態が中間閾値SOCMまで回復しない。判定時刻における蓄電装置15の充電状態が中間閾値SOCM未満である場合には、制御装置30はスイッチング素子13に状態切り替え信号を送出しない。次の判定時刻t71において、充電状態が中間閾値SOCM以上まで回復すると、制御装置30はスイッチング素子13に状態切り替え信号を送出する。 When the state of charge at the sensor mode end time t52 is equal to or lower than the intermediate threshold value SOCM and the amount of power generation until the next determination time t61 is small, the state of charge at the determination time t61 does not recover to the intermediate threshold value SOCM. When the state of charge of power storage device 15 at the determination time is less than intermediate threshold value SOCM, control device 30 does not send a state switching signal to switching element 13. At the next determination time t71, when the charging state is recovered to the intermediate threshold value SOCM or more, the control device 30 sends a state switching signal to the switching element 13.
 充電状態の中間閾値SOCMは、判定時刻からセンサモード終了時刻までに消費される電気エネルギに比べて、十分な余裕を持った値に設定される。このため、センサ10は、判定時刻からセンサモード終了時刻まで、センサモードで動作可能である。 The intermediate threshold value SOCM in the charged state is set to a value with a sufficient margin as compared with the electric energy consumed from the determination time to the sensor mode end time. Therefore, the sensor 10 can operate in the sensor mode from the determination time to the sensor mode end time.
 図7では、一定の周期で充電状態の判定を行ったが、照度測定の要請に応じて、充電状態の判定を行ってもよい。また、図7では、判定時刻からセンサモード終了時刻までの時間を一定にしたが、必ずしも一定にする必要はない。例えば、充電状態に十分な余裕がある場合、判定時刻からセンサモード終了時刻までの時間を長くすることも可能である。 In FIG. 7, the state of charge is determined at a constant cycle. However, the state of charge may be determined in response to a request for illuminance measurement. In FIG. 7, the time from the determination time to the sensor mode end time is constant, but it is not always necessary to be constant. For example, when there is a sufficient margin in the state of charge, it is possible to lengthen the time from the determination time to the sensor mode end time.
 実施例1では、自律的に照度の測定が行われたが、実施例3では、外部からの要請に応じて照度の測定を行うことが可能である。 In Example 1, the illuminance was measured autonomously, but in Example 3, the illuminance can be measured in response to a request from the outside.
 [実施例4]
 図8に、実施例4によるセンサ10のブロック図を示す。以下、実施例2(図5)との相違点について説明し、同一の構成については説明を省略する。
[Example 4]
FIG. 8 is a block diagram of the sensor 10 according to the fourth embodiment. Hereinafter, differences from the second embodiment (FIG. 5) will be described, and description of the same configuration will be omitted.
 実施例4によるセンサ10では、実施例2の電流路12(図5)に挿入されていたスイッチング素子13が省略されている。エネルギ変換素子11から出力された電気信号が、蓄電装置15及び増幅器16の両方に、同時に供給されている。このため、実施例4によるセンサ10は、照度を常時測定することが可能である。 In the sensor 10 according to the fourth embodiment, the switching element 13 inserted in the current path 12 (FIG. 5) of the second embodiment is omitted. The electrical signal output from the energy conversion element 11 is supplied to both the power storage device 15 and the amplifier 16 at the same time. For this reason, the sensor 10 according to the fourth embodiment can always measure the illuminance.
 実施例4においては、エネルギ変換素子11からの出力信号が増幅器16に入力されているとき、エネルギ変換素子11の負荷インピーダンスが無限大にならない。このため、エネルギ変換素子11から電流が取り出されている。図2Aに示したように、エネルギ変換素子11から電流が取り出されているとき、その出力端子間の電圧は開路電圧よりも低くなる。照度の測定精度の低下を抑制するために、エネルギ変換素子11として、電流を0から増加させたときの電圧の低下量が少ない電流電圧特性を有するものを用いることが好ましい。具体的には、電流電圧特性を示すグラフ(図2A)の形状が長方形に近いエネルギ変換素子を用いることが好ましい。 In Example 4, when the output signal from the energy conversion element 11 is input to the amplifier 16, the load impedance of the energy conversion element 11 does not become infinite. For this reason, a current is extracted from the energy conversion element 11. As shown in FIG. 2A, when a current is extracted from the energy conversion element 11, the voltage between its output terminals is lower than the open circuit voltage. In order to suppress a decrease in measurement accuracy of illuminance, it is preferable to use an energy conversion element 11 having a current-voltage characteristic with a small amount of voltage decrease when the current is increased from zero. Specifically, it is preferable to use an energy conversion element in which the shape of the graph showing the current-voltage characteristics (FIG. 2A) is close to a rectangle.
 以上実施例に沿って本発明を説明したが、本発明はこれらに制限されるものではない。例えば、種々の変更、改良、組み合わせ等が可能なことは当業者に自明であろう。 Although the present invention has been described with reference to the embodiments, the present invention is not limited thereto. It will be apparent to those skilled in the art that various modifications, improvements, combinations, and the like can be made.
10 センサ
11 エネルギ変換素子
12 電流路
13 スイッチング素子
14 昇降圧回路
15 蓄電装置
16 増幅器
17 昇降圧回路
18 蓄電監視回路
20 センサ出力端子
21 電力出力端子
22 充電状態出力端子
23 状態切り替え端子
30 制御装置
110 電源部
111 太陽電池モジュール
112 二次電池
113 逆流防止ダイオード
114 日照判別スイッチ回路
120 照明部
121 発光ダイオード
122 点灯制御回路
DESCRIPTION OF SYMBOLS 10 Sensor 11 Energy conversion element 12 Current path 13 Switching element 14 Buck-boost circuit 15 Power storage device 16 Amplifier 17 Buck-boost circuit 18 Power storage monitoring circuit 20 Sensor output terminal 21 Power output terminal 22 Charge state output terminal 23 State switching terminal 30 Control device 110 Power supply unit 111 Solar cell module 112 Secondary battery 113 Backflow prevention diode 114 Sunlight discrimination switch circuit 120 Illumination unit 121 Light emitting diode 122 Lighting control circuit

Claims (6)

  1.  周囲の環境からエネルギを収穫して電気エネルギを生成し、電気信号として出力するエネルギ変換素子と、
     蓄電装置と、
     前記蓄電装置から電力の供給を受けて動作する増幅器と、
     前記エネルギ変換素子から出力された電気信号を、前記蓄電装置及び前記増幅器に入力する電流路と
    を有するセンサ。
    An energy conversion element that harvests energy from the surrounding environment to generate electrical energy and outputs it as an electrical signal;
    A power storage device;
    An amplifier that operates by receiving power from the power storage device;
    A sensor having a current path for inputting an electrical signal output from the energy conversion element to the power storage device and the amplifier.
  2.  前記蓄電装置から電力を取り出すための電力出力端子をさらに有する請求項1に記載のセンサ。 The sensor according to claim 1, further comprising a power output terminal for taking out power from the power storage device.
  3.  前記電流路は、前記エネルギ変換素子から出力された電気信号が前記蓄電装置に入力される第1の接続状態と、前記増幅器に入力される第2の接続状態との間で切り替わるスイッチング素子を含む請求項1または2に記載のセンサ。 The current path includes a switching element that switches between a first connection state in which an electrical signal output from the energy conversion element is input to the power storage device and a second connection state input to the amplifier. The sensor according to claim 1 or 2.
  4.  前記蓄電装置の充電状態を検出し、前記蓄電装置の充電状態に基づいて、前記スイッチング素子の接続状態を切り替える蓄電監視回路を、さらに有する請求項3に記載のセンサ。 The sensor according to claim 3, further comprising a power storage monitoring circuit that detects a charge state of the power storage device and switches a connection state of the switching element based on the charge state of the power storage device.
  5.  前記蓄電装置の充電状態を検出する蓄電監視回路と、
     前記蓄電監視回路で検出された充電状態に対応する電気信号を出力する充電状態出力端子と、
     前記スイッチング素子の接続状態を切り替えるための切り替え信号が入力される状態切り替え端子と
    をさらに有する請求項3に記載のセンサ。
    A power storage monitoring circuit for detecting a state of charge of the power storage device;
    A charge state output terminal for outputting an electrical signal corresponding to the charge state detected by the power storage monitoring circuit;
    The sensor according to claim 3, further comprising a state switching terminal to which a switching signal for switching the connection state of the switching element is input.
  6.  前記エネルギ変換素子は、光エネルギを電気エネルギに変換する請求項1乃至5のいずれか1項に記載のセンサ。 The sensor according to any one of claims 1 to 5, wherein the energy conversion element converts light energy into electrical energy.
PCT/JP2014/069821 2013-09-10 2014-07-28 Sensor WO2015037350A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-186835 2013-09-10
JP2013186835 2013-09-10

Publications (1)

Publication Number Publication Date
WO2015037350A1 true WO2015037350A1 (en) 2015-03-19

Family

ID=52665472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069821 WO2015037350A1 (en) 2013-09-10 2014-07-28 Sensor

Country Status (1)

Country Link
WO (1) WO2015037350A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62274400A (en) * 1986-05-22 1987-11-28 株式会社日立製作所 Instrumentation rack
JPH02238323A (en) * 1989-03-10 1990-09-20 Toshiba Corp Sunshine duration recording apparatus using non-volatile semiconductor memory
JP2008292319A (en) * 2007-05-24 2008-12-04 Kobe Steel Ltd Vibration sensor system
JP2012029513A (en) * 2010-07-27 2012-02-09 Selco Corp Charging/discharging control device in accordance with photovoltaic power generation, and charging/discharging control method in accordance with photovoltaic power generation
JP2012518183A (en) * 2009-02-19 2012-08-09 ザ・ボーイング・カンパニー Sensor network with stretchable silicon

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62274400A (en) * 1986-05-22 1987-11-28 株式会社日立製作所 Instrumentation rack
JPH02238323A (en) * 1989-03-10 1990-09-20 Toshiba Corp Sunshine duration recording apparatus using non-volatile semiconductor memory
JP2008292319A (en) * 2007-05-24 2008-12-04 Kobe Steel Ltd Vibration sensor system
JP2012518183A (en) * 2009-02-19 2012-08-09 ザ・ボーイング・カンパニー Sensor network with stretchable silicon
JP2012029513A (en) * 2010-07-27 2012-02-09 Selco Corp Charging/discharging control device in accordance with photovoltaic power generation, and charging/discharging control method in accordance with photovoltaic power generation

Similar Documents

Publication Publication Date Title
JP6122974B2 (en) Sensor node and sensor node control method
WO2016098802A1 (en) Electrical storage system, and electrical storage method
JP5857119B1 (en) Power storage system and power storage method
US7400911B2 (en) Wireless node and method of powering a wireless node employing ambient light to charge an energy store
US7566828B2 (en) Power source device and charge controlling method to be used in same
US20120176078A1 (en) Solar chargeable battery for portable devices
US9997954B2 (en) Power storage system and power storage method
JP6646218B2 (en) Charging circuit and electronic device
US20140217261A1 (en) Ambient lighting control system
US20110006194A1 (en) Method and device for measuring solar irradiance using a photovoltaic panel
US8736179B2 (en) Lighting apparatus with hybrid power supply device, and method utilizing the same
JP2009153306A (en) Photovoltaic power generating system
JP2010104117A (en) Power supply apparatus using solar cell and charging method thereof
JP5857118B1 (en) Power storage system and power storage method
CN103384072B (en) The electronic equipment of circuit is controlled with charging and discharging
WO2015037350A1 (en) Sensor
CN203747444U (en) Solar energy charging control apparatus
US9742210B2 (en) Self-powered remote control device
JP2015169646A (en) Object detection device
JP4086800B2 (en) Power supply
JP6495055B2 (en) Charger and cover for mobile electronic device with charger
JP6127108B2 (en) Power storage system and power storage method
JP2019030097A (en) Electric power supply
JP2020202640A (en) Cut-off circuit
JP2018064307A (en) Environmental power generator and power supply method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14844842

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14844842

Country of ref document: EP

Kind code of ref document: A1