WO2015037230A1 - ヘリオスタット装置ならびに太陽熱集熱装置および太陽光集光発電装置 - Google Patents

ヘリオスタット装置ならびに太陽熱集熱装置および太陽光集光発電装置 Download PDF

Info

Publication number
WO2015037230A1
WO2015037230A1 PCT/JP2014/004645 JP2014004645W WO2015037230A1 WO 2015037230 A1 WO2015037230 A1 WO 2015037230A1 JP 2014004645 W JP2014004645 W JP 2014004645W WO 2015037230 A1 WO2015037230 A1 WO 2015037230A1
Authority
WO
WIPO (PCT)
Prior art keywords
east
west
north
south
reflecting
Prior art date
Application number
PCT/JP2014/004645
Other languages
English (en)
French (fr)
Inventor
裕 玉浦
Original Assignee
株式会社SolarFlame
美浜株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013187393A external-priority patent/JP6342632B2/ja
Priority claimed from JP2014137635A external-priority patent/JP2015118360A/ja
Priority claimed from JP2014143387A external-priority patent/JP2016018205A/ja
Application filed by 株式会社SolarFlame, 美浜株式会社 filed Critical 株式会社SolarFlame
Priority to EP14844674.3A priority Critical patent/EP3045838A4/en
Priority to US15/021,163 priority patent/US10008977B2/en
Publication of WO2015037230A1 publication Critical patent/WO2015037230A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/77Arrangements for concentrating solar-rays for solar heat collectors with reflectors with flat reflective plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/45Arrangements for moving or orienting solar heat collector modules for rotary movement with two rotation axes
    • F24S30/455Horizontal primary axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/20Arrangements for controlling solar heat collectors for tracking
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/10Control of position or direction without using feedback
    • G05D3/105Solar tracker
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • H02S20/32Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S2023/87Reflectors layout
    • F24S2023/872Assemblies of spaced reflective elements on common support, e.g. Fresnel reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S2030/10Special components
    • F24S2030/13Transmissions
    • F24S2030/133Transmissions in the form of flexible elements, e.g. belts, chains, ropes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a heliostat device, a solar heat collecting device, and a solar light collecting power generation device that reflects and concentrates sunlight toward a desired position by a reflecting mirror.
  • the trough-type heat collecting device reflects sunlight by using a bowl-shaped parabolic mirror, collects the reflected light on a receiver, and collects solar heat.
  • the linear Fresnel-type heat collector has a plurality of reflecting mirrors installed on a plurality of reflecting lines set in parallel in the north-south direction, and on a light receiving line set in the north-south direction above these reflecting mirrors.
  • a receiver is installed, and sunlight is reflected by a reflecting mirror and condensed on the receiver to collect solar heat.
  • the tower-type heat collecting device collects solar heat by collecting sunlight reflected by a plurality of reflecting mirrors arranged around the tower on a receiver provided on the tower.
  • a cross linear type heat collecting apparatus has a plurality of reflecting mirrors installed on a plurality of reflecting lines set in parallel in the north-south direction, and is orthogonal to the reflecting lines above these reflecting mirrors (that is, in the east-west direction).
  • a receiver is installed on the set light receiving line, sunlight is reflected by a reflecting mirror and condensed on the receiver to collect solar heat.
  • FIG. 11 is a top view of a conventional heliostat device.
  • the heliostat device 101 of FIG. 11 has two mirror frames 103 and 104 that support one reflecting mirror 102, and the mirror frame 104 is formed so as to surround the mirror frame 103.
  • the mirror frame 103 is connected to the mirror frame 104 so as to be rotatable in the north-south direction with the east-west bar 105 as a rotation axis.
  • the mirror frame 104 is configured to be rotatable in the east-west direction with the north-south rod 106 as a rotation axis. With such a configuration, the reflecting mirror 102 rotates in the north-south direction and the east-west direction, and the angle of the reflecting surface is adjusted.
  • the present invention has been made in view of the above-described problems, and an object thereof is to provide a heliostat device with lower cost.
  • the present invention is a heliostat device that adjusts the angle of the reflecting surface of one or more reflecting mirrors that reflect sunlight to follow the movement of the sun, and includes the one or more heliostat devices.
  • An east-west rotating shaft rod whose rotation axis is the north-south direction for rotation, a pair of arms projecting from the east-west rotating shaft rod toward the east side and the west side, and the east-west rotating shaft rod are supported so as to be axially rotatable.
  • the pair of north-south rotary shaft rods are arranged at the front ends of the pair of arms so as to be capable of rotating with respect to each other, and the east-west rotary shaft rod is used as a rotary shaft.
  • the pair of And the pair of north-south rotary shafts and the mirror frame are integrally rotated in the east-west direction, so that the angle in the east-west direction of the reflection surface of one or more reflectors supported by the mirror frame is increased.
  • the angle of the reflecting surface of the one or more reflecting mirrors in the north-south direction is adjusted by rotating the mirror frame in the north-south direction with the pair of north-south rotary shafts as the rotation axis.
  • a heliostat device is provided at the front ends of the pair of arms so as to be capable of rotating with respect to each other, and the east-west rotary shaft rod is used as a rotary shaft.
  • the angle of the reflecting surface can be easily adjusted by rotating the reflecting mirror in the east-west direction and the north-south direction, and the number of mirror frames required in the past is reduced to one. can do. For this reason, the number of parts can be reduced, cost can be reduced, and transportation can be facilitated.
  • it may further include a motor connected to the east-west rotating shaft rod and controlling the shaft rotation of the east-west rotating shaft rod.
  • the reflector can be easily rotated in the east-west direction by means of a motor via a pair of arms, a pair of north-south rotating means, and a mirror frame.
  • it further comprises an east-west chain attached to both ends of the pair of arms, and an east-west chain length adjusting means on which the east-west chain is hung, and the east-west chain is driven by the driving of the east-west chain length adjusting means. While the length of the east-west chain from the chain length adjusting means to the mounting position of the arm is adjusted, the pair of arms are rotated in the east-west direction integrally with the mirror frame about the east-west rotating shaft rod as a rotation axis. Can be.
  • the reflecting mirror can be easily rotated in the east-west direction via an arm or the like. Moreover, since the arm can be held by the tension of the east-west chain, it is possible to effectively suppress the reflector from being shaken by the wind. Therefore, the adverse effect on light collection by wind can be reduced, and the light collection rate can be improved.
  • it further comprises an north-south chain attached to the mirror frame from north to south, and an north-south chain length adjusting means on which the north-south chain is hung, and the north-south chain length is driven by driving the north-south chain length adjusting means. While the length of the north-south chain from the height adjusting means to the mounting position of the mirror frame is adjusted, the mirror frame can be rotated in the north-south direction with the north-south rotary shaft as a rotation axis.
  • the reflecting mirror can be easily rotated in the north-south direction via an arm or the like. Moreover, since the arm can be held by the tension of the north-south chain, it is possible to effectively suppress the reflector from being shaken by the wind. Therefore, the adverse effect on light collection by wind can be reduced, and the light collection rate can be improved.
  • it may further have a structure for holding the shape of the mirror frame.
  • the mirror frame has a quadrangular frame and a back support member, and each of the four sides of the frame is provided with one reflecting mirror inclined toward the inside of the frame.
  • the back surface supporting member can support the back surface of the reflecting mirror disposed in an inclined manner.
  • each reflecting mirror is inclined as described above, it is possible to easily focus on the four sheets, and since it is supported by the back surface support member, it is possible to suppress shaking by the wind. Therefore, the light collection rate can be improved. Furthermore, when considering the case where the range of light collection by reflecting sunlight is the same area, compared to the case where one large reflecting mirror is provided as in the prior art, there are four reflections as in the present invention. When a mirror is provided, the area of the reflecting mirror per sheet can be reduced, which is easy and effective in terms of manufacturing and transportation.
  • the weight per sheet can be reduced, and the deflection due to its own weight can be suppressed. Since the adverse effect on light collection due to deflection can be reduced, the light collection rate can also be improved in this respect.
  • the reflecting surface of the reflecting mirror can be a Fresnel surface.
  • the reflecting mirror includes a base and a plurality of plate-like reflecting mirror pieces disposed on the base, and the reflecting surface of the reflecting mirror is a set of reflecting surfaces of the reflecting mirror pieces.
  • a reflecting surface of each of the plurality of reflecting mirror pieces is formed by overlapping the reflected light of sunlight to form a focal point, and is reflected by each of the plurality of reflecting mirror pieces disposed on the base.
  • the angle of the mounting surface is adjusted for each mounting surface on which each of the plurality of reflecting mirror pieces is disposed in the base so that the reflected light of sunlight from the surface is collected at the focal point. Can be.
  • reflected light can be more simply condensed more appropriately to a desired area
  • the shape of the focal point may be a polygon.
  • the shape of the focal point is usually circular.
  • the reflecting mirror of the present invention is composed of a plurality of reflecting mirror pieces, and the shape of the focal point is a polygon.
  • each mounting surface of the base is adjacent to another mounting surface through a step, and the step is formed by connecting the adjacent mounting surfaces to each other to form the step. It is possible that a hole to be opened is formed.
  • the wind blown to the reflector can escape to the opposite side of the reflector through the hole. For this reason, wind resistance can be reduced, the reflection mirror can be prevented from swaying and bending due to wind, and the light collection rate can be prevented from decreasing. Moreover, since the weight of the base itself can be reduced, it becomes easy to handle the reflecting mirror.
  • the present invention includes one or more of the above-described heliostat devices, and receives the reflected light of sunlight by the one or more reflecting mirrors supported by each heliostat device and the angle of the reflecting surface being adjusted.
  • a solar heat collecting apparatus is provided that collects solar heat and collects solar heat.
  • one or more of the above-described heliostat devices are provided, and the reflected light of sunlight by the one or more reflecting mirrors, which are supported by each heliostat device and the angle of the reflecting surface is adjusted, is collected on a solar cell.
  • a solar concentrating power generation device is provided.
  • the heliostat device of the present invention can be used for, for example, a tower type or cross linear type heat collecting device or a condensing power generation device.
  • the solar cell may be provided with a heat exchanger.
  • the heat energy can be recovered by the heat exchanger.
  • the solar cell is provided with a cylindrical secondary concentrator for guiding the reflected light collected by the one or more reflecting mirrors to the light receiving surface of the solar cell. Can do.
  • the reflected light from the reflecting mirror can be directly condensed on the solar cell, and can be condensed on the solar cell if it is condensed on the secondary condenser. Therefore, the condensing range can be expanded, and the solar cell can be condensed more easily and more efficiently.
  • the heliostat device includes a condensing receiver supported by the mirror frame, and the condensing receiver includes the solar cell and a sensor that senses the position of the sun by sunlight and transmits a signal.
  • the pair of arms, the pair of north-south rotary shafts, and the mirror frame are integrated with the electric power of the solar cell so as to follow the movement of the sun based on the signal transmitted by the sensor.
  • the rotation in the east-west direction and the rotation in the north-south direction of the mirror frame are controlled so that the east-west and north-south angles of the reflecting surfaces of the one or more reflectors can be automatically adjusted. it can.
  • the angle of the reflecting surface of the reflecting mirror can be automatically adjusted by the solar cell and sensor so as to automatically track the sun, so it is very easy to collect the reflected sunlight from the solar cell. It is possible to make it light. Complicated calculation by a computer for tracking the sun as in the past can be omitted, and both labor and cost can be reduced. That is, it can be a self-supporting type that does not require central control.
  • the heliostat device further includes an auxiliary storage battery or an auxiliary solar battery, and the electric power from the auxiliary storage battery or the auxiliary solar battery is used to generate the pair of arms and the pair of north-south rotation shafts from night to morning in the next day.
  • the angle of the rod and the mirror frame can be automatically adjusted so that the reflecting surface of the one or more reflecting mirrors faces east as the rod and the mirror frame integrally rotate from west to east.
  • the solar concentrating power generation apparatus includes a reflection line and one or more receivers, and the reflection line is set in a north-south direction, and sunlight is emitted on the reflection line.
  • a plurality of reflecting mirrors are installed in series, and the plurality of reflecting mirrors include a heliostat mechanism that adjusts the angle of the reflecting surface by following the movement of the sun, the heliostat mechanism, It has east-west angle adjusting means capable of adjusting the reflection surfaces of the plurality of reflectors in the east-west direction, and north-south angle adjusting means capable of individually adjusting the angle in the north-south direction, and the one or more receivers are: Each is provided with a receiver rotation mechanism that causes the receiver to follow the movement of the sun and rotate in the east-west direction so as to draw an arc around the reflection line as a central axis, and the receiver is provided with a solar cell.
  • the solar power Receiving surface of the light reflected sunlight from the plurality of reflecting mirrors can be made for condensing
  • FIG. 35 a solar battery panel in which a plurality of solar battery cells are connected is disposed on the ground.
  • a panel having a size of 2 m ⁇ 2 m can be mentioned. This panel generates electricity by direct sunlight.
  • the present invention first, sunlight is collected by a reflecting mirror and irradiated to the light receiving surface of the solar cell, so that the number and area of solar cells and land are different from the conventional device as shown in FIG.
  • the area can be reduced, and the cost required for land charges and other device wiring can be reduced.
  • the number and area of the solar cells can be significantly reduced by arranging a plurality of reflecting mirrors and arranging the solar cells at the focused spot. Significant reduction can be achieved.
  • the entire panel becomes heavy, and it is difficult to adjust the angle of the large-area panel surface in accordance with the movement of the sun.
  • the area of the solar cell in the receiver at the light collecting destination can be reduced, and it is easy to rotate the receiver and adjust the angle of the reflecting surface of the reflecting mirror. .
  • the present invention relates to the condensing of sunlight at any time zone during the day. Aberration can be reduced. Since blurring and distortion of image formation can be suppressed, as shown in FIG. 31, a portion with high intensity is more extensive than the conventional condensing method in which the intensity of light is increased only near the center as described above. Thus, uniform light collection is possible. It does not have a divergent shape as in the conventional method, and the degree of light collection is high even at locations other than the vicinity of the center, so that energy loss can be prevented and light can be collected stably and efficiently during the day. Is possible.
  • FIG. 34 shows the daytime transition of the light collection degree in the light collection method as shown in FIG.
  • FIG. 33 shows the daytime transition of the light concentration in the light condensing method of the present invention.
  • the light concentration is particularly low in the morning and evening, and is unstable throughout the day.
  • a high concentration can be obtained even in the morning or evening, and can be obtained uniformly at a high value throughout the day.
  • the conventional cross linear type condensing method has improved condensing rate compared to other condensing methods, but the receiver is fixed at a fixed position.
  • the receiver is fixed at a fixed position.
  • control structure for adjusting the angle of the reflecting surface of the reflector has the east-west angle adjusting means and the north-south angle adjusting means as described above. If it divides into what to do, it can divide and control to the angle of the east-west direction and the north-south direction, can simplify control, and can raise a precision significantly. That is, the angle of the reflecting surface can be adjusted easily, at low cost, and with high accuracy. Therefore, it is easy to reflect sunlight toward the receiver at an appropriate angle, and from this point, it is possible to improve the light collection rate and thereby improve the power generation efficiency.
  • the east-west angle adjusting means and the receiver rotation mechanism respectively determine an east-west direction angle of the reflecting surface of the plurality of reflecting mirrors and an east-west direction rotation angle of the rotationally moving receiver as a solar azimuth angle. It can be adjusted to be the same.
  • the reflecting surface of the reflecting mirror can be made perpendicular to sunlight at an angle in the east-west direction, and can be reflected more efficiently from the reflecting mirror to the receiver. It can concentrate well.
  • the number of large mirror frames and the amount of materials required for the mirror frame can be reduced, the cost is reduced, handling such as transportation is easy, and the angle of the reflecting surface can be easily adjusted.
  • a heliostat device can be provided. Furthermore, it is possible to provide a solar heat collecting apparatus and a solar concentrating power generating apparatus capable of stable heat collection and power generation. In addition, sunlight can be collected efficiently and with high accuracy by using solar cells.
  • FIG. 1 shows an example of the heliostat device of the present invention.
  • the main configuration includes one mirror frame 3 that supports the reflecting mirror 2, a pair of north-south rotary shafts 16, an east-west rotary shaft 5, a pair of arms 6, and a column 7.
  • the number of the reflecting mirrors 2 that can be attached may be one or more. Accordingly, a plurality of reflecting mirrors 2 may be used. However, a case where one reflecting mirror is attached will be described below as an example.
  • the reflecting mirror 2 is made transparent in the drawings including FIG. Moreover, in the reflecting mirror 2 of the present invention, as will be described later, there is a mode consisting of a base, a plurality of reflecting mirror pieces, and the like. In this mode, this point is also made easy to understand for explanation. Except for FIGS. 26-30 relating to the specific configuration of the reflecting mirror, those components are not shown in the figure, and only the outline of the entire reflecting mirror is drawn.
  • the east-west rotating shaft rod 5 is attached to the column 7 installed on the ground or the like so as to be rotatable.
  • the north-south direction is the rotation axis direction.
  • the arm 6 protrudes from the east-west rotating shaft rod 5 toward the east side and the west side, respectively.
  • a north-south rotary shaft 16 is disposed so as to be rotatable about the shaft so as to face each other.
  • the pair of north-south rotary shafts 16 are aligned in a straight line and share the rotary axis, and the direction of the rotary axis is the east-west direction.
  • These north-south rotary shafts 16 are connected to the mirror frame 3.
  • the angle adjustment of the reflecting surface of the reflecting mirror 2 is as follows.
  • the arm 6, the north-south rotation shaft 16 and the mirror frame 3 are integrally rotated in the east-west direction with the east-west rotation shaft 5 as the rotation axis, thereby adjusting the angle of the reflecting mirror 2.
  • the mirror frame 3 is rotated in the north-south direction with the pair of north-south rotary shafts 16 as the rotation axis, whereby the angle of the reflecting mirror 2 is adjusted.
  • FIG. 2 shows an example of the relationship between the column and the east / west rotary shaft.
  • FIG. 2 is a view taken in the direction of arrow A in FIG. As shown in FIG.
  • a through hole 8 is provided in the upper part of the support column 7, and the support shaft 9 connected to the east-west rotating shaft rod 5 can be disposed through the through hole 8.
  • the east-west rotary shaft 5 can be rotated by rotating the support shaft 9.
  • the length of the east-west rotary shaft 5 is not particularly limited, but can be shortened so as not to hinder the rotation of the mirror frame 3 in the north-south direction. If the length is short, the material cost can be reduced, and handling and transportation are easy.
  • a pair of arms 6 are attached to both sides (east-west direction) of the east-west rotating shaft rod 5.
  • the length of the arm 6 can be determined according to the size of the mirror frame 3 connected via the north-south rotation means 4.
  • the shape of the arm 6 is not particularly limited, and can be determined as appropriate, such as a cylindrical shape or a plate shape. Depending on the weight of the mirror frame 3 and the reflecting mirror 2 and the like, it is possible to prepare what can be appropriately supported.
  • the arm 6 can be rotated integrally with the mirror frame 3 in the east-west direction by the shaft rotation of the east-west rotating shaft rod 5.
  • the means for rotating the east-west rotary shaft 5 is not particularly limited, and for example, a motor can be used.
  • a motor 10 is provided and connected to the support shaft 9. It is possible to control the shaft rotation of the support shaft 9 and the shaft rotation of the east-west rotary shaft 5 by driving control of the motor 10.
  • the motor 10 only needs to have an output necessary for rotating the arm 6 or the like via the east-west rotary shaft 5 or the like. In the first place, since the rotation of the arm 6 and the like in the east-west direction rotates around the east-west rotating shaft rod 5, a motor having a relatively small output is sufficient. A small motor can reduce the cost.
  • FIG. 3 shows another example of a mechanism for rotating an arm or the like in the east-west direction using an east-west rotating shaft rod as a rotation axis.
  • it has the east-west chain 11 attached to the both ends of a pair of arms 6, and the east-west chain length adjustment means 30 with which this east-west chain 11 is hung.
  • the east-west chain length adjusting means 30 an example having the drum pulley 12 is shown.
  • the east-west chain 11 can be a ladder chain, for example, but is not particularly limited. Any device that can be appropriately hooked on the drum type pulley 12, wound by the rotation of the drum type pulley, and sent to the opposite side may be used.
  • FIG. 12 An example of the drum type pulley 12 is shown in FIG.
  • the drum type pulley 12 can be driven to rotate, and the outer diameter changes like a drum in the direction of the rotation axis. That is, the outer diameter decreases toward the inside in the rotation axis direction.
  • a projection 13 is spirally provided on the outer circumference like a groove or a gear as shown in FIG. 4, and a chain 11 such as a ladder chain can be hung on the projection 13.
  • the range in which the east-west chain 11 is hung on the outside having a large outer diameter in the direction of the rotation axis becomes wider (the range in which the east-west chain 11 is wound up becomes longer), and the rotation axis In the direction where the outer diameter is small, the range where the east-west chain 11 is hooked is narrow (the range where the east-west chain 11 is wound is shortened).
  • the length of the east-west chain 11 from the drum-type pulley 12 to the mounting position of the arm 6 is adjusted by the rotational drive of the drum-type pulley 12, and the pair of arms 6 and the like are also used as the east-west rotary shaft 5 as the rotation axis. It can be rotated in the east-west direction.
  • the arrangement and the like of the protrusions 13 can be determined as appropriate so that the arm 6 and the like rotate smoothly.
  • the means for rotating the drum pulley 12 is not particularly limited, but another motor 14 can be used as shown in FIG. 3, for example. Even in this case, the arm 6 and the like rotate about the east-west rotating shaft 5, and thus the arm 6 and the like can be sufficiently rotated even with a small motor.
  • the position where the drum pulley 12 and the motor 14 are disposed is not particularly limited. However, by disposing them below the arm 6, the center of gravity of the entire heliostat device 1 can be lowered, and stability is increased. Can do.
  • the east / west chain length adjusting means 30 is for rotating a pulley 32 on which the east / west chain 11 is hung, two springs 33 connected above and below the pulley 32, and the pulley 32. It consists of a motor 31.
  • the fixing position of the other end of the spring 33 is not particularly limited, and can be fixed to a support column, for example.
  • the pulley 32 is rotated by rotating the motor 31 to adjust the length of the east-west chain 11 from the pulley 32 to the mounting position a and the length of the east-west chain 11 from the pulley 32 to the mounting position b.
  • the arm 6 rotates integrally with the mirror frame so that the east end is lowered and the west end is raised.
  • the position of the pulley 32 is determined by the balance of the attractive force of the spring 33 and the tension of the east-west chain. Although the tension of the east-west chain 11 changes with the rotation of the pulley 32, a balance is automatically constructed again between the changed tension of the east-west chain 11 and the attractive force of the spring 33. For this reason, the position of the pulley 32 moves up and down so that the balance is maintained according to the rotation thereof.
  • the east-west chain length adjusting means 30 is connected to the gear 44 on which the east-west chain 11 is hung, the rail 45 provided on the column 7, and the gear 44, and moves up and down along the rail 45. It consists of a possible lifting body 46.
  • a motor for rotating the gear 44 is built in the lifting body 46, but a motor can be prepared separately from the lifting body 46.
  • the gear 44 is rotated by rotationally driving the motor in the elevating body 46 so that the length of the east-west chain 11 from the gear 44 to the mounting position A and the length of the east-west chain 11 from the gear 44 to the mounting position B are increased. Is adjusted, the arm 6 rotates in the east-west direction integrally with the mirror frame. Further, the rotation of the gear 44 causes a change in the tension of the east-west chain 11, and in response to the change in the tension, the lifting body 46 connected to the gear 44 automatically moves up and down along the rail 45 to move them. Height position is determined.
  • the east-west chain length adjusting means has been described with respect to the rotation in the east-west direction.
  • the arm 6 can be held in that position by the tension of the east-west chain 11. Therefore, it is possible to prevent the arm 6 and the reflecting mirror 2 from being shaken by the wind, and it is possible to prevent the reflected light from deviating from the position where sunlight should be reflected. For this reason, sunlight can be stably reflected to a predetermined position, and the improvement of a condensing rate can be aimed at.
  • the present invention is not limited to the drum type pulley as shown in FIG. 4, the pulley with the spring as shown in FIG. 13, the gear and the lifting body as shown in FIG.
  • the east-west chain 11 can be properly wound up, the length of the east-west chain 11 from these pulleys to the mounting position can be adjusted appropriately, and the arm 6 and the like can be rotated appropriately.
  • FIG. 2 As a mechanism for rotating the arm 6 and the like, the structure of only the motor 10 shown in FIG. 2 can be used, or only the mechanism shown in FIGS. 3, 13, and 21 can be used. 3 (or FIG. 13, FIG. 21) can also be provided.
  • FIG. 5 shows an enlarged view of the vicinity of the tip of one arm 6, and particularly shows an example of the north-south rotating means having the north-south rotating shaft 16.
  • the north-south rotation means 4 is provided at both ends of the pair of arms 6.
  • the north-south rotation means 4 having the north-south rotation shaft 16 is provided inside the columnar tip 15 of each arm 6.
  • a motor is attached to the north-south rotary shaft 16, and the north-south rotary shaft 16 can be rotated by the attached motor.
  • Each of the north-south rotary shafts 16 faces each other and is connected to the mirror frame 3 (here, a rectangular frame), and the mirror frame 3 can be rotated in the north-south direction by rotating the shaft.
  • FIG. 6 shows another example of the north-south rotation means.
  • the north-south rotary shaft 16 is not provided with a motor provided, but an actuator 17 is also provided at the tip 15 of the arm 6, and the tip of the actuator 17 is north-south. It is connected to the side surface of the rotary shaft 16.
  • the actuator 17 is driven so that the tip part moves forward and backward, and the north-south rotary shaft 16 connected thereby rotates in the circumferential direction (that is, the shaft rotates), and further, the mirror frame 3 rotates in the north-south direction. ing.
  • the north-south rotation means 4 is not limited to these modes, and any mechanism that can appropriately rotate the mirror frame 3 in the north-south direction using the north-south rotation shaft 16 as a rotation axis is sufficient. 5 and 6, since the mirror frame 3 can be rotated with a relatively small torque, the motor attached to the north-south rotary shaft 16 or the like can be used. Can be small.
  • the north-south rotary shaft 16 is provided on the inner side of the tip portion 15, but the arrangement position is not limited to this.
  • it can also be arrange
  • FIG. 14 By providing the north-south rotary shaft 16 at such an end, the mirror frame 3 and the arm 6 connected to the north-south rotary shaft 16 can be further separated. That is, a relatively wide space can be provided between the mirror frame 3 and the arm 6. If such a space is provided, even when the mirror frame 3 includes a back surface support member as described later, the back surface support member comes into contact with the arm 6 and the rotation of the mirror frame 3 is hindered. Can be effectively prevented.
  • the north-south rotary shaft 16 is driven to rotate by using an attached motor or actuator, but the present invention is not limited to this.
  • a form using a chain as shown in FIGS. As shown above, in FIGS. 3, 13 and 21, the east-west chain is attached to the east and west ends of the arm for the east-west rotation of the arm with the east-west rotation axis rod as the rotation axis.
  • FIG. 15 shows an example of the north-south chain length adjusting means 34.
  • the north-south chain length adjusting means 34 is configured to rotate the pulley 35 on which the north-south chain 38 is hung, two springs 36 connected above and below the pulley 35, and the pulley 35. It consists of a motor 37.
  • the fixing position of the other end of the spring 36 is not particularly limited, and can be fixed to, for example, a support column.
  • the mechanism for driving the north-south chain length adjusting means 34 and the mechanism for rotating the mirror frame 3 are the same as the mechanism for driving the east-west chain length adjusting means and the mechanism for rotating the arm (east-west direction) in FIG. can do.
  • a drum-type pulley can be used instead of a pulley with a spring as shown in FIG.
  • the drum type pulley shown in FIG. 3 can be used, and the same mechanism can be used.
  • a heliostat mechanism as shown in FIG. 12 is used in addition to the one shown in FIG.
  • a T-shaped support (T-bone) is attached to the back surface of the reflecting mirror.
  • the reflecting mirror can be arbitrarily rotated according to the movement of the sun. it can.
  • a large torque is required particularly when rotating around the support (rotation R). That is, a small motor may not be sufficient for controlling the angle of the reflecting mirror.
  • the arm can be sufficiently armed with a smaller torque by using a small motor as described above. 6 and the mirror frame 3 can be rotated to adjust the angle of the reflecting mirror 2 to a desired angle.
  • the angle adjustment of the reflecting surface can be performed separately in the east-west direction and the north-south direction, so that the control can be made simpler than the T-bone and the accuracy can be greatly improved, and the light collection efficiency Can be improved.
  • FIG. 7 is a plan view of the mirror frame 3.
  • the mirror frame 3 shown in FIG. 7 includes a back surface support member 19 in addition to one rectangular frame (frame 18).
  • the four corners of the frame 18 are arranged so as to be located in the directions of east, west, south, and north, respectively, and the back surface support member 19 is arranged from the northeast to the southwest. It is connected to the.
  • the reflecting mirror 2 is also illustrated.
  • four rectangular mirrors 2 are disposed here, but the reflecting mirror 2 is not limited to a square, and can be appropriately determined such as a circular one.
  • Each reflecting mirror 2 is placed on each of the four sides of the frame 18.
  • the diagonal line of the reflecting mirror 2 and the position of the side of the frame 18 are placed so as to overlap, and the reflecting mirror 2 is rotatable about the side of the frame 18 as a fulcrum.
  • the reflecting mirror 2 is disposed so as to incline toward the inside of the frame 18 (the reflecting mirror 2 disposed in an inclined manner is drawn with a solid line.
  • the back surface support member 19 When not inclined (horizontal disposition) ) Is indicated by a dotted line), and the back surface thereof is supported by the back surface support member 19. It is arranged in such a manner that the reflected light of sunlight by the four reflecting mirrors can be collected at one point.
  • the tilt angle can be appropriately determined according to the position of the focal point.
  • FIG. 8 further shows the positional relationship between the frame 18 and the back surface support member 19.
  • FIG. 8 is a view taken in the direction of arrow B in FIG. 7 (that is, a longitudinal sectional view of the back surface support member 19).
  • a plan view of the mirror frame 3 is also shown in FIG. 8 so that the positional relationship can be easily understood.
  • the shape or the like of the back surface support member 19 is not particularly limited, but here is configured by combining a plurality of plate materials. It is composed of two support plates 20 having one end connected to the side of the frame 18, a bottom plate 21 connecting the other ends of the support plate 20, and a beam 22. The crossing points of the support plates 20 can be devised such as making cuts and fitting them together.
  • the support plate 20 is inclined and can support the back surface of the reflecting mirror 2 on its upper surface. As described above, the inclination angle can be appropriately determined according to the position of the focal point of the reflected light.
  • the structure of the back surface support member 19 can be strengthened, and the reflecting mirror 2 can be supported more firmly.
  • the same back surface supporting member can also be provided from northwest to southeast.
  • two back surface supporting members can be appropriately combined and integrated to use a material that can support the back surfaces of all four reflecting mirrors.
  • a back surface supporting member having an appropriate shape can be prepared so as not to interfere with parts of a rotating mechanism such as an arm or an east / west rotating shaft rod.
  • the reflector The larger the reflector that is used, the heavier it is, and the reflector itself tends to bend greatly, which adversely affects light collection.
  • the mirror frame 3 as described above is used and a plurality of reflecting mirrors are used, the area and weight per sheet can be reduced, so that bending can be suppressed. Therefore, the light collection rate can be improved.
  • the reflector can be manufactured and transported more easily, and the cost and handling can be improved.
  • the back surface of the reflecting mirror 2 can be supported by the back surface supporting member 19, the swinging of the reflecting mirror due to wind can be extremely suppressed. This can also lead to an improvement in the light collection rate.
  • the mirror frame 3 (especially the back support member 19) is not spaced from the arm 6 and the east-west rotating shaft rod 5 at an appropriate distance therebetween.
  • the shapes of the back support member 19 and the arm 6 can be determined as appropriate.
  • FIG. 16 shows another type of mirror frame.
  • the mirror frame 40 has a shape in which two adjacent rhombus (square) frames are further connected by two bars. Further, the positional relationship between the mirror frame 40 and other members is shown in FIG. 17 as a plan view (upper view) and a longitudinal sectional view (lower view). Here, the relationship among the east-west rotating shaft rod 5, the arm 6, the north-south rotating shaft rod 16, and the support column 7 is shown. Moreover, as an example, it shall be used for the solar concentrating power generation apparatus which is mentioned later, and the solar cell 41 and the support stand 42 which supports it are also illustrated.
  • a total of two reflecting mirrors 2 can be placed.
  • a total of eight reflecting mirrors can be placed by dividing each of them.
  • a support base 42 is connected to the mirror frame 40 at the upper side, and two solar cells 41 are arranged on the support base 42, and the reflected light of sunlight from the reflecting mirror 2 is collected on the solar cell 41. It can be done.
  • the shape of the mirror frame is not particularly limited, and can be various shapes.
  • the mirror frame can be further provided with a structure for holding the shape.
  • FIG. 18 shows an example of a structure for maintaining the shape. 18 shows the case where the north-south chain 38 is attached to the mirror frame 3, the mechanism is basically the same when the east-west chain is attached.
  • the structure 43 is particularly preferably provided on the side opposite to the north-south chain 38 with respect to the mirror frame 3. By providing such a structure 43 and holding the mirror frame 3, sufficient tension can be applied to the north-south chain 38 that pulls the mirror frame 3 from the opposite side.
  • the support stand 42 (receiver) like FIG. 17 can also have the function of the said structure 43.
  • the number of reflecting mirrors may be one or more, and the shape thereof is not particularly limited.
  • the reflective surface can be a Fresnel surface.
  • the cross-sectional view of FIG. 19 is an example in the case where a reflecting surface having a Fresnel surface is used. With such a Fresnel surface, sunlight can be more easily reflected and condensed at one point.
  • FIG. 20 is a form in which a single large reflecting mirror as shown in FIG. 19 is divided into four parts.
  • the reflecting mirror is inclined, when focusing on the same position as in FIG. The thickness of the reflecting mirror can be further reduced. This is because the angle on the Fresnel surface can be reduced by the inclined arrangement. As a result, the reflecting mirror can be made lighter and can be easily handled.
  • the inclination-angle in FIG. 20 is 5 degrees, naturally it is not limited to this and can determine suitably.
  • the Fresnel surface cutting structure is point-symmetric with respect to the central point of the four reflecting mirrors as a whole. Therefore, when each reflecting mirror is square, there is only one type of Fresnel surface cutting structure. In the case of a rectangle, there are two types. Thus, the type of the cutting structure of the Fresnel surface of the reflecting mirror can be reduced to half or less.
  • FIG. 29 shows details of each reflecting mirror (that is, the reflecting mirror of the present invention).
  • the reflecting mirror 2 of the present invention mainly includes a base 60 and a plurality of reflecting mirror pieces 61.
  • a plurality of reflecting mirror pieces 61 are arranged on the base 60 to form a mosaic (mosaic surface).
  • a reflecting surface 63 of one reflecting mirror 2 is constituted by a set of reflecting surfaces 62 of the reflecting mirror piece 61.
  • the reflecting surface 63 of the reflecting mirror 2 forms a focal point by overlapping sunlight reflected by the reflecting surfaces 62 of the reflecting mirror pieces 61.
  • the reflected light reflected by the reflecting surface 62 of each reflecting mirror piece 61 is configured to be condensed at the focal point F.
  • the reflecting mirror piece 61 has a flat plate shape as shown in FIG. Since it is flat, it can be prepared more easily than a concave one, for example. Further, the outer shape can be determined each time, such as a regular square, a diamond, or a round. The size and the number of sheets are not limited, and can be determined as appropriate according to, for example, the uniformity of the target focused image, ease of transportation and handling, and the like. Therefore, since it has a small area and a simple shape with respect to one large reflecting mirror, it can be mass-produced and can be prepared at low cost.
  • the shape of the focal point F is a polygon.
  • the focus shape is circular in a single large concave mirror as in the prior art.
  • the base 60 is divided into upper surfaces, and each is a mounting surface 64 on which the reflecting mirror piece 61 is disposed.
  • the plurality of placement surfaces 64 are appropriately adjusted in angle according to each position and the like, so that the reflected light of sunlight forms a focus by the reflection surface 63 formed by the reflection mirror piece 61 placed.
  • the back side of the base is flat, and on the side where the reflecting mirror piece 61 is disposed on the opposite side, the angle with respect to the back side plane for each of the above-mentioned sections (for each mounting surface). Is attached. For example, the angle between the mounting surface 64S located on the leftmost and foremost side in FIG.
  • the mounting surface 64S also has a predetermined angle with respect to the back surface in the depth direction.
  • the back surface of the base 60 is described as a flat surface and the reference surface of the mounting surface 64 is defined as an angle, but the present invention is not limited to this. That is, the reference surface can be set as appropriate, and the angle of the placement surface may be determined with respect to the set reference surface.
  • the angle on the mounting surface 64 in this way, the reflected light from the plurality of reflecting mirror pieces 61 is collected at one point even though the reflecting mirror piece 61 disposed thereon is flat. Can be lighted.
  • the material of the base 60 is not particularly limited, but a light material is preferable because it can reduce the output of a motor or the like for transporting or rotating itself. Moreover, it can have appropriate strength so that it does not easily break due to resistance such as wind.
  • the formation method and the like are not limited.
  • fine adjustment is required on the reflective surface, etc., for the focus adjustment, and it takes time and effort to manufacture, and it becomes expensive. It was.
  • the present invention comprising a base and a plurality of reflecting mirror pieces, once the angle of the mounting surface of the base is determined, it can be easily mass-produced using the determined mold. Moreover, even if it is a reflecting mirror piece, since it is flat as described above, preparation is relatively easy. The present invention can greatly reduce manufacturing effort and cost.
  • a reflecting mirror composed of such a base and reflecting mirror pieces, a uniform focused image can be formed at the focal point as compared with the case of using one large concave mirror. Further, by condensing the reflected light while forming such a uniform condensed image, it is possible to further improve the stability of power generation and the like.
  • the base 60 is formed with a hole penetrating the base.
  • the positions where these holes are formed are shown in FIG.
  • the mounting surface 64 whose angle has been adjusted is provided with a step 65 between adjacent mounting surfaces (for example, mounting surfaces 64A, 64B, 64C, and 64D with respect to the mounting surface 64T).
  • the size of the step 65 is not particularly limited, and all the steps can be the same height or different heights depending on the position.
  • the hole 67 is formed in the level
  • FIG. 28 shows an example of a cross section of the reflecting mirror.
  • the hole 67 is opened so as to penetrate the base 60.
  • a part of the wind blown against the front side of the reflecting mirror 2 that is, the side where the reflecting mirror piece 61 is disposed
  • the hole 67 can be blown through the hole 67.
  • the weight of the base 60 can be reduced. Therefore, it is preferable because the reflecting mirror 2 can be easily supported and rotated and can be easily transported.
  • the hole 67 may be formed in a straight line shape, or may be formed so as to bend at an angle in the middle. It can be opened in an appropriate shape so that the wind can pass through efficiently.
  • the number of holes is not limited, and holes having an appropriate number and size can be formed in consideration of the strength of the foundation and the like.
  • FIG. 9 is an example of a solar heat collector.
  • the solar heat collecting device 23 is a cross linear type, and a plurality of reflection lines (north-south direction) and one or more light receiving lines (east-west direction) are set.
  • One or more heliostat devices 1 are arranged in each reflection line.
  • One or more receivers 24 are arranged in the light receiving line. It is possible to collect solar heat by collecting the reflected light of sunlight from the reflecting mirror 2 whose angle is adjusted by the heliostat device 1 on the reflection line on the receiver 24. And the medium can be warmed using the heat collected by the receiver 24 and sent to a steam turbine, a gas turbine, etc. (not shown) to generate electricity.
  • FIG. 10 shows an example of a solar concentrating power generation device.
  • the solar concentrating power generation device 25 cross linear type
  • one or more heliostat devices 1 are disposed on a plurality of reflection lines, and the receiver disposed on the one or more light receiving lines has a sun.
  • a battery 26 is supported. And it can generate electric power by condensing the reflected light of the sunlight from the reflecting mirror 2 angle-adjusted by the heliostat device 1 on the solar cell 26.
  • the cross linear type device has been described.
  • the present invention is not limited to this, and the heliostat device 1 of the present invention can be used for a tower type device, for example.
  • a heat exchanger 48 and a secondary condenser 49 are provided for the solar cell 47.
  • the heat exchanger 48 itself is not particularly limited. For example, it can be set as the heat exchanger using various refrigerant
  • the secondary concentrator 49 is not particularly limited as long as it is arranged with respect to the solar cell 47 and can collect the reflected light on the light receiving surface 55 of the solar cell 47. Even if the reflected light is reflected so as to deviate from the solar cell itself, it can be condensed on the solar cell if it is reflected toward the inside of the secondary condenser. Therefore, the light collection range (reflection allowable range) can be expanded and the accuracy of the reflection angle of the reflecting mirror can be relaxed, which is convenient. It can collect light efficiently.
  • a cylindrical shape can be mentioned.
  • it may be a cone or a pyramid with a narrowed solar cell arrangement side.
  • the side opposite to the position where the solar cell is disposed, that is, the entrance side of the reflected light can be, for example, a trumpet type having a rounded edge as shown in FIG. If it is such, it will be easy to take in the reflected light reflected toward the edge toward the inner side of a secondary collector (namely, toward a solar cell), and it can condense efficiently.
  • the secondary concentrator is not limited to such an edge shape.
  • the material for example, aluminum can be used, and the oxide film can be formed on the surface.
  • the weight can be reduced and transportation is facilitated.
  • the solar cell supporter when the solar cell supporter is integrated with the reflector, mirror frame, etc. (in this case, including the secondary concentrator), it rotates together. This is preferable because the weight of the secondary condenser is less likely to become a load.
  • a condensing receiver 50 is fixed to the mirror frame 3.
  • the condensing receiver 50 is provided with a solar cell 51 on the inner side, and the reflected light from the reflecting mirror 2 is condensed.
  • a sensor 52 is disposed outside the condensing receiver 50.
  • the shape of the mirror frame is not particularly limited, and the shape of the condensing receiver fixed thereto is not particularly limited. However, it is preferable to consider the shape so that sunlight to the reflecting mirror is prevented from being blocked by the presence of the condensing receiver and more sunlight is irradiated to the reflecting mirror.
  • This sensor 52 senses the irradiation direction by the irradiation of sunlight. That is, the position of the sun is sensed by the irradiation of sunlight, and signals relating to the position and direction of the sun can be transmitted.
  • the sensor 52 is connected to each means for controlling the angle of the reflecting mirrors in the east-west direction and the north-south direction as described above. Based on a signal regarding the position of the sun transmitted from the sensor 52, a program is set so that the angle of the reflecting mirror is automatically adjusted by each means so as to follow the movement of the sun.
  • the sensor 52 is provided at the top of the concentrating receiver 50, and while the sun is rising, the sun is chased, so that the solar cell, sensor, The sun is lined up.
  • the arrangement position of the sensor 52 is not particularly limited, and may be disposed at a position where it is easy to receive sunlight.
  • the solar cell 51 is also connected to each means for controlling the angle such as a reflecting mirror, and the means is driven by a part of the electric power generated by the solar cell 51 by collecting the reflected light.
  • each means shown in FIG. 1 and the like can sufficiently control with a part of the electric power from the solar cell 51 because the reflection mirror and the like can be rotationally controlled with relatively little electric power as described above.
  • the solar cell 51 and the sensor 52 as described above, it is possible to automatically drive the angle of the reflecting mirror or the like and to perform specific angle control during the daytime. Even if there is no computer corresponding to the central control which calculates the sun position and informs each means, it is convenient because it can be automatically controlled. In addition, since central control is not required and the apparatus is a self-supporting device, a cable or the like connected to the central control is not required, and the space and cost can be reduced.
  • the sun can be automatically tracked by using the sensor 52 or the like during the day. Therefore, when the sun goes down, the reflecting surface of the reflecting mirror 2 and the sensor 52 face west. Then, even if the sun goes down and the sun rises from the east the next morning, the solar cell 51, the reflecting surface of the reflecting mirror, and the sensor 52 are hidden behind the reflecting mirror 2 so that no sunlight is radiated. Automatic adjustment is not possible. Therefore, an auxiliary solar cell for adjusting the angle by automatically rotating the reflecting mirror or the like facing west in the evening of the previous day to the east may be provided at night or in the morning. The presence of an auxiliary solar cell is also effective when the sensor 52 cannot capture the sun's position on a cloudy day (that is, when the sensor 52 loses sight of the sun and cannot send a signal regarding the position of the sun). It is.
  • FIG. 24 An example provided with this auxiliary solar cell is shown in FIG.
  • power is generated by the auxiliary solar cell 53 by the morning sunlight irradiation, and the electric power can be used to drive the reflecting surface of the reflecting mirror to face east.
  • the shape and arrangement position of the auxiliary solar cell 53 for example, a hemispherical one can be provided at the end of the mirror frame.
  • the present invention is not limited to this, and any position or shape that can be easily irradiated with sunlight when it recovers from the morning or cloudy weather may be used.
  • it can be disposed on the back side of the reflecting mirror or on a support column, or can be a curved plate.
  • an auxiliary storage battery 54 may be provided as shown in FIG. Since it is sufficient if the reflecting mirror can be rotated once a day or when it is cloudy, it is sufficient to use a low-capacity one. Moreover, it can also be charged with a part of electric power by the solar cell 51. In such a case, the angle can be adjusted so that the reflecting surface of the reflecting mirror faces east at night.
  • the equipment can be appropriately determined depending on the cost, the sunshine conditions in the installation area, and the like.
  • FIG. 36 shows another example of the solar light collecting power generation apparatus of the present invention.
  • a case where one receiver is provided for one reflection line will be described as an example.
  • the number of receivers is not limited to one, and a plurality of receivers may be provided.
  • the overall mechanism of the solar concentrating power generation apparatus 101 will be described.
  • One reflection line 102 is set, and a plurality of reflecting mirrors 104 are installed on the reflection line 102.
  • one receiver 105 is provided.
  • the receiver 105 can be rotated and moved in the east-west direction so as to draw an arc with the reflection line 102 as a central axis by a receiver rotation mechanism.
  • the sunlight is irradiated to the reflecting mirror 104 and reflected, and the reflected light is collected on the receiver 105 to collect the sunlight.
  • the solar cell 103 is arrange
  • the plurality of reflecting mirrors 104 only needs to have a reflecting surface 106 that can reflect sunlight, and the shape of the reflecting mirror 104 is not particularly limited.
  • the sunlight reflecting surface 106 can be flat or concave.
  • the size is not limited, and for example, the reflective surface 106 can have an area of about 60 cm ⁇ 60 cm.
  • a plurality of reflecting mirrors 104 are installed on the reflecting line 102.
  • FIG. 36 shows an example in which three are installed, the number is not limited to this. For example, it can be increased or decreased according to the size of the installation location.
  • the reflecting mirror 104 includes a heliostat mechanism 107 having east-west angle adjusting means and north-south angle adjusting means.
  • the reflecting mirror 104 can be made of a single plane or concave surface, or can be made of a mosaic surface as shown in FIG. Furthermore, it can be composed of a plurality of sheets as shown in FIG.
  • the heliostat mechanism 107 having the east-west angle adjusting means and the north-south angle adjusting means includes a heliostat device as shown in FIG.
  • the east-west angle and the north-south direction angle of the reflecting surface of the reflector can be adjusted with the east-west rotation axis rod or the north-south rotation axis rod as the rotation axis. That is, the east-west rotation shaft rod or the like serves as the east-west angle adjustment means, and the north-south rotation shaft rod or the like serves as the north-south rotation adjustment means.
  • the receiver 105 can be separated from the heliostat device as shown in FIG. 10, or can be a condensing receiver fixed to the mirror frame as shown in FIG. And as a receiver rotation mechanism, in the case like FIG. 10, what can rotate separately the receiver separated from the heliostat apparatus in the east-west direction can be prepared separately.
  • the receiver is fixed to and integrated with the mirror frame (heliostat device), so that the east-west axis of rotation of the heliostat device also serves as a receiver rotation mechanism. It will be.
  • the heliostat mechanism 107 In addition to simply adjusting the reflecting surface 106 to an arbitrary angle, the heliostat mechanism 107 must actually be adjusted so that the angle follows the movement of the sun.
  • the angle adjustment data of the reflecting mirror 104 with respect to the movement of the sun according to the calendar and true sun time may be incorporated in the east-west angle adjusting means and the north-south angle adjusting means.
  • the position of the sun may be calculated sequentially, and the angle of the reflecting surface corresponding to the position of the sun may be calculated to control the east-west angle adjusting means and the north-south angle adjusting means.
  • the conventional sequential calculation is not necessary, and the angle of the reflecting surface is not adjusted after performing such a sequential calculation. Therefore, it is possible to respond quickly without delaying the movement of the sun, and it is simple and highly accurate. It can also lead to an increase in light collection rate. It can be determined appropriately according to the cost and the like.
  • the east / west angle adjusting means and the north / south angle adjusting means can be controlled independently of each other.
  • the present invention is not limited to this, and a central controller 125 is provided as shown in FIG. It is also possible to connect to the angle adjusting means and control it uniformly by the central control device 125.
  • the central controller 125 can control the initial angle of the reflecting surface 106 at the start of light collection or maintenance. Based on the position of the sun, it is possible to calculate an appropriate angle of the reflecting surface 106 and control data for adjusting to the angle, and adjust the initial angle of the reflecting surface 106 by the central controller 125 based on the calculation result. it can. Then, after adjusting the initial angle, the central controller 125 may continue to adjust the angle, or the angle may be adjusted using the built-in data as described above.
  • FIG. 38 shows a focused image when the receiver is placed at a fixed position (south). It shows about sunrise (east) and south-central time (south). In the east-west rotation plane of the reflector, the sun, the receiver, and the reflector are arranged in a straight line at the time of South and Central, and sunlight is incident perpendicularly to the reflecting surface of the reflector. It collects light efficiently so as to gather. On the other hand, at sunrise, sunlight is incident on the reflecting mirror with a deviation from the vertical direction, resulting in a difference in reflection angle at both ends of the reflecting surface. It will spread. The larger the difference between the solar azimuth and the receiver position (south), such as at sunrise (for example, in the morning or evening), the condensed image expands and the concentration rate decreases.
  • FIG. 37 shows a condensed image when the receiver is rotated in the east-west direction.
  • the east-west angle adjustment means and the receiver rotation mechanism respectively make the angle of the reflecting surface of the reflector mirror in the east-west direction and the east-west direction of the receiver that rotates and moves.
  • the case where the rotation angle of the direction is adjusted to be the same as the solar azimuth angle will be described.
  • the south-central time it is the same as FIG.
  • Even in the morning (including at sunrise), the sun, receiver, and reflector are arranged in a straight line in the plane of rotation of the reflector in the east-west direction. It is possible to obtain the same high light collection rate as time. The same applies to the evening.
  • the solar concentrating power generation apparatus 101 of the present invention includes the receiver rotation mechanism described above, and rotates the receiver 105 in the east-west direction so as to draw an arc with the reflection line as the central axis by following the movement of the sun. Therefore, it is possible to collect light more efficiently than a device in which a receiver as shown in FIG. In order to follow the rotational movement of the receiver 105 to the movement of the sun, it is sufficient even if the angle of the reflecting surface 106 of the reflecting mirror 104 and the rotation angle of the receiver 105 in the east-west direction are adjusted to values different from the solar azimuth. An improvement in light collection rate can be obtained. However, as shown in FIG. 37, it is more preferable to adjust so that they may become the same as a solar azimuth angle, and much more light energy can be obtained.
  • receiver rotation mechanism can be controlled by using the built-in data or the central controller 125, as with the heliostat mechanism 107.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Automation & Control Theory (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 本発明は、ヘリオスタット装置(1)であって、反射鏡(2)を支持する1つのミラーフレーム(3)と、ミラーフレーム(3)を南北方向に回転させるための一対の南北回転軸棒(16,16)と、ミラーフレーム(3)を東西方向に回転させるための南北方向を回転軸方向とする東西回転軸棒(5)と、該東西回転軸棒(5)から東側および西側に向かって突き出ている一対のアーム(6,6)と、東西回転軸棒(5)を軸回転可能に支持する支柱(7)とを有し、一対のアーム(6,6)の先端には、一対の南北回転軸棒(16,16)が互いに対向して配設されており、東西回転軸棒(5)を回転軸として、ミラーフレーム(3)等が一体的に東西方向に回転されることで、反射 鏡(2)の反射面の東西方向の角度が調整されるものであり、一対の南北回転軸棒(16,16)を回転軸として、ミラーフレーム(3)が南北方向に回転されることで1枚以上の反射鏡(2)の反射面の南北方向の角度が調整されるものであるヘリオスタット装置(1)を提供する。これにより、より低コストのヘリオスタット装置(1)が提供される。

Description

ヘリオスタット装置ならびに太陽熱集熱装置および太陽光集光発電装置
 本発明は、反射鏡によって所望の位置に向けて太陽光を反射させて集光するヘリオスタット装置ならびに太陽熱集熱装置および太陽光集光発電装置に関する。
 従来より石油など化石燃料からエネルギーを得てきたが、近年では、これらの化石燃料の枯渇や、該化石燃料の使用により排出される二酸化炭素等の温室効果ガス、さらには化石燃料の購入のためのコスト(燃料費)が問題となっている。
 そこで、再生可能であり、燃料費が不要の太陽光が、新たなエネルギー源の1つとして注目されている。
 この太陽光をエネルギー源として利用する太陽熱集熱装置としては、太陽光の集光方式の違いから数種挙げられる(特許文献1等参照)。これらの中には、例えばトラフ型や線形フレネル型、タワー型と呼ばれるタイプの集熱装置がある。
 ここで、トラフ型の集熱装置は、桶状の放物面鏡を用いて太陽光を反射し、該反射光をレシーバに集光して太陽熱を集熱するものである。
 また、線形フレネル型の集熱装置は、南北方向に並列に設定した複数の反射ライン上に複数枚の反射鏡を設置するとともに、これらの反射鏡の上方に南北方向に設定した受光ライン上にレシーバを設置し、反射鏡により太陽光を反射してレシーバに集光して太陽熱を集熱するものである。
 さらに、タワー型の集熱装置は、タワー周辺に配置した複数枚の反射鏡により反射した太陽光をタワーに設けたレシーバに集光して太陽熱を集熱するものである。
特開2012-63086号公報
 上述したような集熱装置の他、クロスリニア型のものが挙げられる。
 クロスリニア型の集熱装置は、南北方向に並列に設定した複数の反射ライン上に複数枚の反射鏡を設置するとともに、これらの反射鏡の上方に、反射ラインに直交して(すなわち東西方向に)設定した受光ライン上にレシーバを設置し、反射鏡により太陽光を反射してレシーバに集光して太陽熱を集熱するものである。
 そして、このようなクロスリニア型のものにおいて、反射光をレシーバに集光させるために反射鏡の反射面の角度を調整する装置として、例えば図11に示すようなものが挙げられる。図11が従来のヘリオスタット装置の上面図である。
 図11のヘリオスタット装置101では、1枚の反射鏡102を支持する2つのミラーフレーム103、104を有しており、ミラーフレーム104はミラーフレーム103を囲うよう形成されている。そして、ミラーフレーム103が東西棒105を回転軸にして南北方向に回転可能なようにミラーフレーム104に連結されている。さらには、ミラーフレーム104が南北棒106を回転軸として東西方向に回転可能なように構成されている。このような構成によって、反射鏡102が南北方向および東西方向に回転し、その反射面の角度が調整される。
 しかしながら、このような従来のヘリオスタット装置では、1枚の反射鏡の反射面の角度調整をするにあたって、反射鏡を囲う、少なくとも2つの大きなミラーフレームが必要となってしまい、部品数も増え、コスト面等で問題が生じてくる。
 本発明は、上記問題点に鑑みてなされたものであって、より低コストのヘリオスタット装置を提供することを目的とする。
 上記目的を達成するために、本発明は、太陽光を反射する1枚以上の反射鏡の反射面の角度を太陽の動きに追従させて調整するヘリオスタット装置であって、前記1枚以上の反射鏡を支持する1つのミラーフレームと、該ミラーフレームと連結してミラーフレームを南北方向に回転させるための東西方向を回転軸方向とする一対の南北回転軸棒と、前記ミラーフレームを東西方向に回転させるための南北方向を回転軸方向とする東西回転軸棒と、該東西回転軸棒から東側および西側に向かって突き出ている一対のアームと、前記東西回転軸棒を軸回転可能に支持する支柱とを有しており、前記一対のアームの先端には、前記一対の南北回転軸棒が互いに対向して軸回転可能に配設されており、前記東西回転軸棒を回転軸として、前記一対のアームと前記一対の南北回転軸棒と前記ミラーフレームとが一体的に東西方向に回転されることで、前記ミラーフレームに支持された1枚以上の反射鏡の反射面の東西方向の角度が調整されるものであり、前記一対の南北回転軸棒を回転軸として、前記ミラーフレームが南北方向に回転されることで前記1枚以上の反射鏡の反射面の南北方向の角度が調整されるものであることを特徴とするヘリオスタット装置を提供する。
 このようなものであれば、反射鏡を東西方向および南北方向に回転させて、反射面の角度を簡便に調整することができるとともに、従来では2つ必要だったミラーフレームの数を1つにすることができる。このため部品数を減少させ、コストの低減、運搬の容易化を図ることができる。
 また、前記東西回転軸棒に接続されており該東西回転軸棒の軸回転を制御するモーターをさらに有するものとすることができる。
 このようなものであれば、モーターによって、一対のアーム、一対の南北回転手段、ミラーフレームを介して反射鏡を東西方向に簡便に回転させることができる。
 また、前記一対のアームの両端に取り付けられた東西チェーンと、該東西チェーンが掛けられた東西チェーン長さ調整手段とをさらに有しており、該東西チェーン長さ調整手段の駆動により、該東西チェーン長さ調整手段から前記アームの取り付け位置までの東西チェーンの長さが調整されつつ、前記一対のアームが前記ミラーフレームと一体的に前記東西回転軸棒を回転軸として東西方向に回転されるものとすることができる。
 このようなものであれば、簡便にアーム等を介して反射鏡を東西方向に回転させることができる。
 また、東西チェーンの張力によってアームを保持することができるため、風によって反射鏡が揺れるのを効果的に抑制することができる。したがって風による集光への悪影響を低減することができ、集光率を改善することができる。
 また前記ミラーフレームに南北にわたって取り付けられた南北チェーンと、該南北チェーンが掛けられた南北チェーン長さ調整手段とをさらに有しており、該南北チェーン長さ調整手段の駆動により、該南北チェーン長さ調整手段から前記ミラーフレームの取り付け位置までの南北チェーンの長さが調整されつつ、前記ミラーフレームが前記南北回転軸棒を回転軸として南北方向に回転されるものとすることができる。
 このようなものであれば、簡便にアーム等を介して反射鏡を南北方向に回転させることができる。
 また、南北チェーンの張力によってアームを保持することができるため、風によって反射鏡が揺れるのを効果的に抑制することができる。したがって風による集光への悪影響を低減することができ、集光率を改善することができる。
 また、前記ミラーフレームの形状を保持するための構造体をさらに有するものとすることができる。
 上記のような東西チェーンを備えた場合、チェーンの張力によって、材質によってはアーム、さらにはミラーフレームに、しなりが発生する場合がある。南北チェーンを備えた場合についても同様である。
 そこで、上記のような構造体を有するものであれば、しなりなどの変形が発生するのを防止することができ、それによって各チェーンの張力も十分となり、上記のような東西方向や南北方向のミラーフレームの回転機構に十分な強度を与えることができ、風などによる揺れも一層防止でき、回転の安定性や精度を向上させることができる。
 また、前記ミラーフレームは、四角形の枠と裏面支持部材とを有しており、前記枠の四辺の各々には前記反射鏡が1枚ずつ枠の内側に向かって傾斜して配設されるものであり、前記裏面支持部材は前記傾斜して配設される反射鏡の裏面を支持するものとすることができる。
 このようなものであれば、1つのヘリオスタット装置に対して4枚の反射鏡を配置することができ、より広い範囲で太陽光を反射させて集光することができる。しかも各反射鏡は上記のように傾斜配設されるので4枚分の焦点を簡単に合わすことができるし、裏面支持部材によって支えられているので、風によって揺れるのも抑制することができる。したがって集光率を改善することができる。
 さらには、太陽光を反射させて集光する範囲が同面積の場合を考えた場合、従来のように大きな1枚の反射鏡を配設する場合に比べ、本発明のように4枚の反射鏡を配設する場合は、一枚あたりの反射鏡の面積を小さくすることができるため、製造や運搬の面で容易になり有効である。このためコスト面で改善を図ることができ、取り扱いの手間もかからない。
 また一枚あたりの重量も小さくすることができ、自重によるたわみも抑制することができる。たわみによる集光への悪影響を低減することができるので、この点でも集光率を向上させることができる。
 また、前記反射鏡の反射面が、フレネル面であるものとすることができる。
 このようなものであれば、より簡便に、太陽光を反射して集光させることができる。
 また、前記反射鏡は、土台と、該土台上に配設された平板状の複数の反射鏡片とを備えており、前記反射鏡の反射面は、前記複数の反射鏡片の反射面の集合からなるモザイク面であり、前記複数の反射鏡片の各々の反射面による太陽光の反射光が重なりあって焦点を形成するものであり、前記土台上に配設された複数の反射鏡片の各々の反射面による太陽光の反射光が前記焦点に集光するように、前記土台において、前記複数の反射鏡片の各々が配設される各載置面ごとに該載置面の角度が調整されているものとすることができる。
 このようなものであれば、反射鏡の反射面が大きなものであっても、より簡便に、より適切に反射光を所望の領域に集光させることができる。
 すなわち、平板状の複数の反射鏡片からなるものであるので、例えば大面積の反射面を有する1枚の凹面鏡を用意するよりも簡単に用意することができる。また、焦点において、より均一な集光像を形成することができる。反射光を例えば太陽電池に集光したりして発電する場合などには、集光像の均一性のため安定して発電しやすく、電力の安定供給が可能になる。
 このとき、前記焦点の形状は、多角形であるものとすることができる。
 従来の反射鏡、すなわち、一枚の大きな凹面鏡であれば、通常、焦点の形状は円形になる。しかしながら、本願発明の反射鏡は複数の反射鏡片からなっており、焦点の形状は多角形になる。
 また、前記土台の各載置面は、段差を介して他の載置面と隣り合っており、該隣り合う載置面同士をつないで前記段差を構成する段差面には、前記土台を貫通する孔が開けられているものとすることができる。
 このようなものであれば、反射鏡に対して吹く風を、上記孔を通じて反射鏡の反対側へ逃すことができる。このため、風の抵抗を減らすことができ、風による反射鏡の揺れ、撓みを防ぎ、集光率が低下するのを抑制することができる。また、土台自体の重量を減らすことができるため、反射鏡を取り扱いやすくなる。
 また、本発明は、上記ヘリオスタット装置を一つ以上備えており、各々のヘリオスタット装置により支持され、反射面の角度が調整された前記1枚以上の反射鏡による太陽光の反射光をレシーバに集光して太陽熱を集熱するものであることを特徴とする太陽熱集熱装置を提供する。
 または、上記ヘリオスタット装置を一つ以上備えており、各々のヘリオスタット装置により支持され、反射面の角度が調整された前記1枚以上の反射鏡による太陽光の反射光を太陽電池に集光するものであることを特徴とする太陽光集光発電装置を提供する。
 このように、本発明のヘリオスタット装置を用いた太陽熱集熱装置あるいは太陽光集光発電装置を提供することができ、低コストで効率良く太陽エネルギーを利用することができる。なお、本発明のヘリオスタット装置は、例えばタワー型やクロスリニア型の集熱装置や集光発電装置に利用することが挙げられる。
 また、前記太陽電池には、熱交換器が設けられているものとすることができる。
 このようなものであれば、集光による温度上昇で太陽電池での発電効率が低下するのを抑制することができる。しかも、熱交換器で熱エネルギーを回収することができる。
 また、前記太陽電池には、前記1枚以上の反射鏡により集光された反射光を前記太陽電池の受光面に導くための筒状の二次集光器が設けられているものとすることができる。
 このようなものであれば、反射鏡からの反射光を太陽電池に直接的に集光させるほか、二次集光器に集光させれば太陽電池へ集光させることができる。したがって集光範囲を広げることができ、より簡便に、より効率良く太陽電池に集光させることができる。
 また、前記ヘリオスタット装置は、前記ミラーフレームにより支持された集光レシーバを備えており、該集光レシーバは、前記太陽電池と、太陽光により太陽の位置を感知して信号を発信するセンサとを有しており、前記センサにより発信された信号に基づき、太陽の動きに追従するように、前記太陽電池による電力で、前記一対のアームと一対の南北回転軸棒とミラーフレームの一体的な東西方向の回転、および、前記ミラーフレームの南北方向の回転が制御されて、前記1枚以上の反射鏡の反射面の東西方向および南北方向の角度が自動的に調整可能なものとすることができる。
 このようなものであれば、太陽電池とセンサによって、太陽を自動追尾するように反射鏡の反射面の角度を自動調整することができるので、極めて簡単に太陽光の反射光を太陽電池に集光させることが可能である。従来のような太陽追尾のためのコンピュータによる複雑な計算も省略することができ、手間もコストも削減できる。すなわち、中央制御の必要がない自立型のものとすることができる。
 また、前記ヘリオスタット装置は、補助蓄電池または補助太陽電池をさらに備えており、前記補助蓄電池または前記補助太陽電池による電力で、夜から翌日の朝に、前記一対のアームと前記一対の南北回転軸棒と前記ミラーフレームとが一体的に西から東へ回転して、前記1枚以上の反射鏡の反射面が東へ向くように自動的に角度調整可能なものとすることができる。
 このようなものであれば、自動的に、翌日の朝に、前述したセンサによる太陽の自動追尾が可能な状態にしておくことができるため簡便である。したがって、より完全に自立型のものとすることができる。
 また、前記太陽光集光発電装置は、反射ラインと1基以上のレシーバとを有しており、前記反射ラインは、南北方向に設定されたものであり、該反射ライン上には太陽光を反射する複数枚の反射鏡が直列に設置されており、該複数枚の反射鏡は太陽の動きに追従させて反射面の角度を調整するヘリオスタット機構を備えており、該ヘリオスタット機構は、前記複数枚の反射鏡の反射面を東西方向に角度調整可能な東西角度調整手段と、南北方向に個別に角度調整可能な南北角度調整手段を有しており、前記1基以上のレシーバは、各々、レシーバを太陽の動きに追従させて前記反射ラインを中心軸にして弧を描くように東西方向に回転移動させるレシーバ回転機構を備えており、かつ、該レシーバには太陽電池が配設されており、該太陽電池の受光面に、前記複数枚の反射鏡からの太陽光の反射光を集光するものとすることができる。
 従来では、前述したような太陽熱集熱装置の他にも太陽光をエネルギー源として利用するものとして、太陽電池を配設したものがある。図35にその一例を示す。
 図35に示すように、複数の太陽電池セルをつなぎ合わせた太陽電池パネルを地上に配設している。パネルの大きさとしては、例えば2m×2mのものが挙げられる。このパネルに太陽光を直射して発電するものである。
 しかしながら、本発明では、まず、太陽光を反射鏡により集光して太陽電池の受光面に照射することで、従来の図35のような装置とは異なり、太陽電池の数や面積、および土地面積を低減できるし、土地代、その他デバイスの配線等に要するコストを低減することができる。太陽電池を配設したパネルを多数配設するよりも、反射鏡を複数配設するとともに集光した先に太陽電池を配設することで太陽電池自体の数や面積を著しく抑制でき、コストの大幅な低減を図ることができる。
 また、図35のような装置においては、大面積の太陽電池を有するためにパネル全体が重くなってしまい、太陽の動きに合わせてその大面積のパネル面を角度調整するのは困難である。
 一方本発明では、集光先のレシーバ中の太陽電池の面積を小さくすることもできるし、該レシーバを回転移動させるとともに反射鏡の反射面の角度調整を行えばいいだけであるので容易である。
 また、集光された光の強度分布が図32のようになる従来のタワー型等の集光方式とは異なり、本発明では、日中においてどのような時間帯でも、太陽光の集光に関して収差を小さくすることができる。結像のぼやけ・歪みを抑制することができるため、前述したような中央付近のみ光の強度が高くなる従来の集光方式に比べて、図31に示すように強度が高い箇所がより広範囲になり、均一な集光が可能なものとなる。従来方式のような末広がりの形状ではなく、また、中央付近以外の箇所でも集光度が高く、そのためエネルギーロスが生じてしまうのを防ぐことができるし、日中に、安定して効率良く集光することが可能である。
 また、図35のような装置においてパネル面の角度を固定したタイプに比べ、反射鏡の反射面の角度やレシーバの回転角を太陽の動きに追従させる本発明では集光率を高くすることができる。
 図34に、図35のような集光方式における集光度の日中の推移を示す。また、図33に本発明の集光方式における集光度の日中の推移を示す。これらの図に示すように、従来方式では、集光度は特に朝方や夕方に低く、一日を通して不安定である。一方で本発明では、朝方や夕方でも高い集光度を得ることができ、一日を通して高い値で均一に得ることができる。その結果、一日あたりで、本発明では従来方式よりも1.5倍もの光エネルギーを太陽電池に集光することができる。したがって、装置を設置するに要する土地面積を低減することができ、日本のような比較的狭い土地であっても充分に高い発電量を得ることができる。
 また、従来のようなクロスリニア型の集光方式では他の集光方式に比べて集光率が改善されているものの、レシーバは定位置に固定されているため、レシーバ(太陽電池)へ集光するにあたって、特に朝方や夕方、また、高緯度の場合においては、やはり集光像が拡がって焦点がぼけてしまう。したがってそのような条件下では集められる光エネルギー量は低くなってしまい、得られる光エネルギー量は日中を通して不安定になる。
 しかしながら本発明では、前述したように反射鏡の反射面の角度のみならずレシーバの東西方向の回転角も調整するものであるので、上記のような焦点ぼけを1日中低減することができる。このため、1日を通して安定して均一に高効率で集光することができ、光エネルギーをより多く集めることができる。
 また、レシーバに配設した太陽電池を用いて発電を行うことができるため、従来の太陽熱集熱装置等で発電する際に必要なタービン等が不要になる。タービン自体やその設置に要する土地面積、土地代をなくすことができるため、これらの点で本発明はさらに有効である。
 また、上記のように東西角度調整手段、南北角度調整手段を有し、反射鏡の反射面の角度を調整するための制御構造を、東西方向の角度を調整するものと南北方向の角度を調整するものとに分ければ、東西方向と南北方向の角度に分けて制御することで制御を単純なものとすることができるとともに、精度を大幅に高めることができる。すなわち簡便に、低コストで、しかも高精度で反射面の角度を調整することができる。したがって、太陽光を適切な角度でレシーバに向けて反射し易く、この点からも集光率の向上およびそれによる発電効率の向上を図ることができる。
 このとき、前記東西角度調整手段と前記レシーバ回転機構は、それぞれ、前記複数枚の反射鏡の反射面の東西方向の角度と、前記回転移動するレシーバの東西方向の回転角とを、太陽方位角と同じになるように調整するものとすることができる。
 このようなものであれば、東西方向の角度において、太陽光に対して反射鏡の反射面を垂直にすることができるし、また、反射鏡からレシーバに対して垂直に反射できるのでより一層効率よく集光することができる。
 以上のように、本発明によれば、大きなミラーフレームの数やそれに必要な材料の量を減らすことができ、コストが低減され、運搬等の取り扱いも容易な上、簡便に反射面の角度調整をすることができるヘリオスタット装置を提供することができる。
 さらには、安定した集熱・発電等が可能な太陽熱集熱装置、太陽光集光発電装置を提供することができる。
 また、効率よく、低コストで、かつ高精度に太陽光を集光して太陽電池により発電することができる。
本発明のヘリオスタット装置の一例を示す概略図である。 支柱と東西回転軸棒との関係の一例を示す説明図である。 アーム等を東西方向に回転させるための機構の一例を示す説明図である。 鼓型プーリーの一例を示す概略図である。 南北回転手段の一例を示す説明図である。 南北回転手段の他の一例を示す説明図である。 ミラーフレームの一例を示す説明図である。 枠と裏面支持部材との位置関係の一例を示す説明図である。 太陽熱集熱装置の一例を示す概略図である。 太陽光集光発電装置の一例を示す概略図である。 従来のヘリオスタット装置の一例を示す説明図である。 従来のヘリオスタット装置の他の一例を示す説明図である。 アーム等を東西方向に回転させるための機構の他の一例を示す説明図である。 南北回転手段の他の一例を示す説明図である。 南北チェーン長さ調整手段34の一例を示す説明図である。 ミラーフレームの他の一例を示す説明図である。 ミラーフレームと他の部材との位置関係の一例を示す説明図である。 ミラーフレームの形状を保持する構造体の一例を示す説明図である。 反射面がフレネル面である形態の一例を示す説明図である。 反射鏡が複数枚であり、反射面がフレネル面である形態の一例を示す説明図である。 アーム等を東西方向に回転させるための機構の他の一例を示す説明図である。 太陽電池の周辺構造の一例を示す説明図である。 太陽光集光発電装置の他の一例を示す概略図である。 補助太陽電池を備えた一例を示す説明図である。 補助蓄電池を備えた一例を示す説明図である。 土台の一例を示す概略図である。 土台に形成された孔の位置の一例を示す説明図である。 反射鏡における孔の形態の一例を示す断面図である。 本発明の反射鏡の一例を示す概略図である。 反射鏡片の一例を示す概略図である。 本発明の集光方式における集光された光の強度分布を示すグラフである。 従来の集光方式における集光された光の強度分布を示すグラフである。 本発明の集光方式における集光度の日中の推移を示すグラフである。 従来の集光方式における集光度の日中の推移を示すグラフである。 従来の太陽電池を利用した発電装置の一例を示す概略図である。 本発明の太陽光集光発電装置の他の一例を示す概略図である。 レシーバを東西方向に回転移動させる場合の集光像を示す説明図である。 レシーバを定位置に配置した場合の集光像を示す説明図である。
 以下、本発明について、実施態様の一例として、図を参照しながら詳細に説明するが、本発明はこれに限定されるものではない。
 図1に本発明のヘリオスタット装置の一例を示す。
 まず、ヘリオスタット装置1の全体的な仕組みについて説明する。主な構成としては、反射鏡2を支持する1つのミラーフレーム3と、一対の南北回転軸棒16と、東西回転軸棒5と、一対のアーム6と、支柱7が挙げられる。なお、取り付け可能な反射鏡2の枚数は、1枚以上であれば良く、したがって複数枚とすることもできるが、以下では1枚の反射鏡を取り付ける場合を例に挙げて説明する。また、説明上、ヘリオスタット装置1の構造が分かりやすいようにするため、図1を含めて図中において反射鏡2は透明にしている。
 また、本発明の反射鏡2においては、後述するように、土台や複数の反射鏡片等からなるものの態様があるが、この態様の場合、この点に関しても、説明上、分かりやすいようにするため、反射鏡の具体的な構成に関する図26-30以外は、図中において、それらの構成要素は省略して描かれており、反射鏡全体の外形のみ描かれている。
 地面等に設置された支柱7に対し、東西回転軸棒5が軸回転可能なように取り付けられている。なお南北方向が回転軸方向である。また、東西回転軸棒5から東側および西側に向かって、それぞれアーム6が突き出ている。そして各々のアーム6の先端には、南北回転軸棒16が互いに対向するようにして軸回転可能に配設されている。なお、これらの一対の南北回転軸棒16は一直線上に並んでいて回転軸を共有しており、その回転軸方向は東西方向である。また、これらの南北回転軸棒16はミラーフレーム3と連結している。
 反射鏡2の反射面の角度調整に関しては以下の通りである。
 東西方向については、東西回転軸棒5を回転軸として、アーム6、南北回転軸棒16、ミラーフレーム3とが一体的に東西方向に回転されることで、反射鏡2の角度が調整される。
 一方、南北方向については、一対の南北回転軸棒16を回転軸として、ミラーフレーム3が南北方向に回転されることで、反射鏡2の角度が調整される。
 以下、さらに詳述する。
(東西方向の回転について)
 東西回転軸棒5は、前述したように南北方向が回転軸方向となるように支柱7に取り付けられている。支柱7への取り付け方法は特に限定されず、東西回転軸棒5が軸回転可能であれば良い。また、支柱7の形状等は特に限定されず、東西回転軸棒5等や反射鏡2を強固に支持できるものであれば良い。
 図2に支柱と東西回転軸棒との関係の一例を示す。図2は図1におけるA矢視図である。
 図2のように、支柱7の上部に貫通孔8を設け、東西回転軸棒5と接続された支軸9を、貫通孔8を通して配設することができる。このような構造であれば、支軸9を軸回転させることにより、東西回転軸棒5を軸回転させることができる。
 東西回転軸棒5は、その長さは特に限定されないが、ミラーフレーム3の南北方向の回転の妨げにならないように短くすることができる。長さが短ければ材料費も低減することができるし、取り扱いや運搬も容易である。
 また、図1に示すように東西回転軸棒5の両側(東西方向)には一対のアーム6が取り付けられている。このアーム6の長さは南北回転手段4を介して連結されたミラーフレーム3の大きさに応じて決定することができる。またアーム6の形状は特に限定されず、円柱状のものや板状のものなど適宜決定することができる。ミラーフレーム3や反射鏡2の重さ等に応じて、適切に支持できるものを用意することができる。
 東西回転軸棒5の軸回転により、アーム6をミラーフレーム3と一体になって東西方向に回転させることができる。
 また、東西回転軸棒5を軸回転させる手段は特に限定されないが、例えばモーターを用いることができる。
 図2に示すように、モーター10を設けて支軸9と接続する。モーター10の駆動制御によって、支軸9の軸回転および東西回転軸棒5の軸回転を制御することが可能である。モーター10は東西回転軸棒5等を介してアーム6等を回転させるのに必要な出力を有するものであれば良い。そもそもアーム6等の東西方向の回転は東西回転軸棒5を中心に回転するものであるため、比較的出力の小さいモーターでも十分である。小型のモーターであればコストを低減することができる。
 また、図3にアーム等を、東西回転軸棒を回転軸として東西方向に回転させるための機構の他の一例を示す。
 図3に示すように、一対のアーム6の両端に取り付けられた東西チェーン11と、該東西チェーン11が掛けられている東西チェーン長さ調整手段30とを有している。なお、ここでは東西チェーン長さ調整手段30の一例として鼓型プーリー12を有しているものを例に示す。
 東西チェーン11は例えばラダーチェーンとすることができるが特には限定されない。鼓型プーリー12に適切に引っ掛かることができ、鼓型プーリーの回転により巻き取られ、反対側へと送り出されるものであれば良い。
 また、鼓型プーリー12の一例を図4に示す。鼓型プーリー12は回転駆動可能なものであり、回転軸方向で鼓のように外径が変化している。すなわち、回転軸方向において内側に向かって外径が小さくなっている。
 そして外周には、溝あるいは図4のように歯車のように突起13が螺旋状に設けられており、該突起13にラダーチェーン等のチェーン11を掛けることが可能である。
 このような鼓型プーリー12の構成により、回転軸方向において外径の大きな外側では東西チェーン11が掛かっている範囲が広くなり(東西チェーン11が巻き取られている範囲が長くなり)、回転軸方向において外径の小さな内側では東西チェーン11が掛かっている範囲が狭くなる(東西チェーン11が巻き取られている範囲が短くなる)。
 そして、鼓型プーリー12の回転駆動によって、鼓型プーリー12からアーム6の取り付け位置までの東西チェーン11の長さが調整され、併せて一対のアーム6等を東西回転軸棒5を回転軸として東西方向に回転させることができる。
 スムーズにアーム6等が回転するように、突起13の配置等を適宜決定することができる。
 なお、鼓型プーリー12を回転させる手段は特に限定されないが、例えば図3のように別のモーター14を用いることができる。この場合においてもアーム6等は東西回転軸棒5を中心に回転するので、小型のモーターでも十分にアーム6等を適切に回転させることができる。
 鼓型プーリー12やモーター14を配設する位置は特に限定されないが、これらをアーム6よりも下方に配設することで、ヘリオスタット装置1全体の重心を下げることができ、安定性を増すことができる。
 また、東西チェーン長さ調整手段の他の例について図13を参照して説明する。
 図13に示すように、東西チェーン長さ調整手段30は、東西チェーン11が掛けられているプーリー32、該プーリー32の上方および下方に接続される2つのスプリング33、プーリー32を回転させるためのモーター31からなっている。スプリング33の他端の固定位置は特に限定されず、例えば支柱等に固定可能である。
 そしてモーター31を回転駆動させることでプーリー32を回転させて、プーリー32から取り付け位置aまでの東西チェーン11の長さと、プーリー32から取り付け位置bまでの東西チェーン11の長さが調整されつつ、例えば東端が下がり西端が上がるようにしてアーム6がミラーフレームと一体的に回転する。
 なお、スプリング33による引力や東西チェーンの張力などのバランスによってプーリー32の位置は決まる。このプーリー32の回転に伴い東西チェーン11の張力の変化が生じるものの、その変化した東西チェーン11の張力とスプリング33による引力との間で再度バランスが自動構築される。このためプーリー32は、その回転に応じて上記バランスが保たれるように位置が上下動することになる。
 また、東西チェーン長さ調整手段のさらに他の例について図21を参照して説明する。
 図21に示すように、東西チェーン長さ調整手段30は、東西チェーン11が掛けられているギア44、支柱7に設けられたレール45、ギア44と連結されており、レール45に沿って昇降可能な昇降体46からなっている。なお、ここでは昇降体46にギア44を回転させるためのモーターが内蔵されているが、昇降体46と分離してモーターを用意することも可能である。
 そして、昇降体46内のモーターを回転駆動させることでギア44を回転させて、ギア44から取り付け位置Aまでの東西チェーン11の長さと、ギア44から取り付け位置Bまでの東西チェーン11の長さが調整されつつ、アーム6がミラーフレームと一体的に東西方向に回転する。
 また、ギア44の回転によって東西チェーン11の張力に変化が生じ、該張力の変化に応じて、自動的に、ギア44と連結している昇降体46がレール45に沿って昇降してそれらの高さ位置が決まる。
 以上、東西方向の回転に関して東西チェーン長さ調整手段について説明してきたが、図3や図13、図21などのような機構を有していれば、単にアーム6等を東西方向に回転させるばかりでなく、東西チェーン11の張力によって、アーム6をその位置に保持することができる。したがって風によって、アーム6や反射鏡2が揺れるのを防ぐことができ、太陽光を反射させるべき位置から反射光がずれてしまうのを抑制することができる。このため、所定位置に太陽光を安定して反射させることができ、集光率の向上を図ることができる。
 なお、図4のような鼓型プーリーや、図13のようなスプリング付のプーリー、図21のギアと昇降体に限定されない。東西チェーン11を適切に巻き取り、これらのプーリーから取り付け位置までの東西チェーン11の長さを適切に調整することができ、アーム6等を適切に回転させることができるものであれば良く、他の形状のプーリーを用いることができるし、あるいは他の器具を用いたものとすることもできる。また、チェーンに限らずワイヤ等を用いた機構とすることもできる。
 また、アーム6等を回転させる機構として、図2に示すモーター10のみの構成とすることもできるし、図3や図13、図21に示す機構のみとすることもできるが、図2と図3(または図13、図21)の構成を併設することもできる。
(南北方向の回転について)
 次に、南北回転軸棒16について説明する。
 図5は、一方のアーム6の先端付近の拡大図を示しており、特には南北回転軸棒16を有する南北回転手段の一例を示している。
 南北回転手段4は、一対のアーム6のそれぞれの両端に設けられている。図5に示す例では、各々のアーム6の円柱状の先端部15の内側に、南北回転軸棒16を有する南北回転手段4が設けられている。この南北回転軸棒16にはモーターが付属しており、該付属モーターにより南北回転軸棒16を軸回転可能である。そして、各々の南北回転軸棒16は対向しており、ミラーフレーム3(ここでは四角形の枠)と連結されており、その軸回転によりミラーフレーム3を南北方向に回転させることが可能である。
 図6に南北回転手段の他の一例を示す。
 図5と異なって南北回転軸棒16には備え付けのモーターは設けられていないものの、アーム6の先端部15にはアクチュエータ17が併せて設けられており、かつ、該アクチュエータ17の先端部が南北回転軸棒16の側面と連結されている。アクチュエータ17の駆動により先端部が前進後退運動し、それによって連結された南北回転軸棒16が周方向に回転(すなわち軸回転)し、さらにはミラーフレーム3が南北方向に回転するように構成されている。
 南北回転手段4はこれらの態様に限定されず、南北回転軸棒16を回転軸として、ミラーフレーム3を南北方向に適切に回転させることができる機構であれば十分である。なお、図5、6のような南北回転軸棒16の軸回転を利用する機構であれば、ミラーフレーム3を比較的小さなトルクで回転させることができるため、南北回転軸棒16の付属モーター等は小型のものでも済ますことができる。
 また、図5、6では南北回転軸棒16を先端部15の内側に設けたが、配設位置はこれに限定されない。例えば、図14の他の一例のように、アーム6に対して垂直に、先端部15から突き出た箇所の端部に配設することもできる。このような端部に南北回転軸棒16を設けることで、該南北回転軸棒16に連結されたミラーフレーム3とアーム6とをより一層離すことができる。すなわち、ミラーフレーム3とアーム6との間に比較的広い空間を設けることができる。このような空間を設けておけば、ミラーフレーム3が、後述するような裏面支持部材を備える場合であっても、該裏面支持部材がアーム6と接触してミラーフレーム3の回転が阻害されることを効果的に防ぐことができる。
 また、図5、6、14に示す例では、付属モーターやアクチュエータを利用して南北回転軸棒16自体を回転駆動させているが、これに限定されない。例えば、図3、13、21等のようにチェーンを利用する形態が挙げられる。
 上記のように図3、13、21では東西回転軸棒を回転軸とするアームの東西回転のためにアームの東端と西端に東西チェーンを取り付けているが、南北回転軸棒を回転軸としてミラーフレームを南北方向に回転させるにあたっては、ミラーフレームの南北の2箇所に南北チェーンを取り付ける。例えば、ミラーフレームが四角形の枠である図1の場合、四隅のうちの北側と南側の角に取り付けることができる。
 図15に南北チェーン長さ調整手段34の一例を示す。図15に示すように、南北チェーン長さ調整手段34は、南北チェーン38が掛けられているプーリー35、該プーリー35の上方および下方に接続される2つのスプリング36、プーリー35を回転させるためのモーター37からなっている。スプリング36の他端の固定位置は特に限定されず、例えば支柱等に固定可能である。
 なお、南北チェーン長さ調整手段34の駆動やミラーフレーム3の回転(南北方向)の仕組みは、例えば図13の東西チェーン長さ調整手段の駆動やアームの回転(東西方向)の仕組みと同様とすることができる。
 また、南北チェーン調整手段として、図15のようなスプリング付のプーリーではなく、鼓型プーリーを用いることもできる。この場合は、例えば図3の鼓型プーリーと同様のものとすることができ、同様の仕組みとすることができる。
 あるいは、図21のようなギアと昇降体の組み合わせを用いることも可能である。
 以上のように本発明における回転機構について説明してきたが、一方で従来のヘリオスタット装置としては、図11に挙げたようなものの他、図12のようなヘリオスタット機構が用いられている。反射鏡の裏面にT字の支柱(Tボーン)が取り付けられており、図12に示すようにTボーンの各部を回転させることによって、太陽の動きに合わせて反射鏡を任意に回転させることができる。
 しかしながら、特には支柱周りに回転させる場合に(回転R)大きなトルクが必要となってしまう。すなわち、反射鏡の角度を制御するにあたって小型のモーターでは不十分な場合が生じる。
 一方、図1-図6、図13-図15、図21のような東西方向および南北方向の回転機構であれば、前述したように小型のモーター等を用いて、より小さなトルクで十分にアーム6やミラーフレーム3を回転させ、反射鏡2の角度を所望の角度に調整することが可能である。
 また、反射面の角度調整を東西方向と南北方向に分けて行うことができるので、Tボーンよりも制御を単純なものとすることができるとともに、精度を大幅に高めることができ、集光効率の向上を図ることができる。
 次に、ミラーフレーム3について説明する。
 ミラーフレーム3は1つだけ配設されており、反射鏡2を1枚以上支持することができるものであれば良く、その形状等は特に限定されない。図1のように、単に1枚のミラーの外周を囲う枠のものとすることもできるし、あるいは図7のようなものとすることもできる。
 図7はミラーフレーム3の平面図である。位置関係が分かりやすいように、南北回転軸棒16、東西回転軸棒5、アーム6等も併せて図示した。
 図7に示すミラーフレーム3は1つの四角形の枠(枠18)の他、裏面支持部材19からなっている。なお、ここでは枠18の4つの角がそれぞれ東西南北の方向に位置するよう配設されており、裏面支持部材19が北東から南西にかけて配設されていて枠18の北東の辺と南西の辺に接続されている。
 なお、反射鏡2も併せて図示している。反射鏡2は、ここでは四角形のものが4枚配設されているが、四角形に限られず、円形のものなど適宜決定できる。枠18の四辺の各々の上に各々の反射鏡2が載置されている。反射鏡2の対角線と枠18の辺の位置が重なるように載置されており、反射鏡2は枠18の辺を支点に回転可能になっている。ここでは反射鏡2は枠18の内側に向かって傾斜するように配設されており(傾斜配設した反射鏡2は実線で描かれている。なお、参考として、傾斜させない場合(水平配設)を点線で示している)、その裏面は裏面支持部材19によって支持されている。このように傾斜して配設されており、4枚の反射鏡による太陽光の反射光を一点に集光することができる。傾斜角は焦点の位置に応じて適宜決定することができる。
 また、例えば4枚とも傾斜せずに配設した場合、すなわち、4枚全体で1枚の平らな反射鏡のような状態では、反射鏡の正面方向から吹いてくる風をまともに受けてしまい、たわんだり揺れやすくなり、太陽光を集光させるのに効率が悪くなる。一方、上記のように4枚の反射鏡を傾斜配設することによって、正面からの風による抵抗を減らすことができ、集光率が低下するのを抑制できる。また、風による抵抗の影響を受けにくいので、反射鏡を回転させるための動力源の出力も比較的小さなものとすることが可能になる。
 図8に枠18と裏面支持部材19との位置関係をさらに示す。図8は、図7におけるB矢視図である(すなわち、裏面支持部材19の縦断面図である)。なお、位置関係が分かりやすいようにミラーフレーム3の平面図も図8に併せて示す。
 裏面支持部材19の形状等は特に限定されないが、ここでは複数の板材を組み合わせて構成されている。一端が枠18の辺と接続された2枚の支持板20や、支持板20の他の一端同士を接続する底板21、さらには梁22等から構成されている。支持板20の交差する箇所は切れ目の加工を入れて互いに嵌合し合うようにするなどの工夫を施すことができる。支持板20は傾斜して配設されており、その上面で反射鏡2の裏面を支持することができる。傾斜角は、前述したように反射光の焦点の位置に応じて適宜決定することができる。
 なお、底板21や梁22を設けることによって、裏面支持部材19の構造をより強固にすることができ、反射鏡2をより一層強固に支持することができる。
 当然これらの構造に限定されず、反射鏡2の裏面を支持できるものであればよく、適宜その構造を決定することができる。
 また、北西から南東にかけて同様の裏面支持部材を設けることもできる。あるいは2つの裏面支持部材を適切に組み合わせて一体化させ、4枚全ての反射鏡の裏面を支持可能なものを用いることもできる。アームや東西回転軸棒などの回転機構の部品と干渉しないように適切な形状の裏面支持部材を用意することができる。
 用いる反射鏡が大きくなればなるほど、それ自体の重さが重くなり、反射鏡自体に大きな撓みが生じやすく集光に悪影響が生じてしまう。しかし、上記のようなミラーフレーム3を使用し、複数の反射鏡を用いる形態であれば、1枚あたりの面積や重さを小さくすることができるため、撓みを抑制することができる。したがって集光率の向上を図ることができる。また反射鏡の製造や運搬をより容易に行うことができ、コスト面や取り扱いの面での改善を図ることができる。
 さらには、反射鏡2の裏面を裏面支持部材19で支えることができるので、風による反射鏡の揺れを極めて抑制することができる。この点も集光率の向上につなげることができる。
 なお、反射鏡2やミラーフレーム3を南北回転させる際に、ミラーフレーム3(特には裏面支持部材19)が、アーム6や東西回転軸棒5と接触しないように、それらの間に適当な間隔が設けられるよう、裏面支持部材19やアーム6等の形状を適宜決定することができる。
 また、図16に他の形態のミラーフレームを示す。
 このミラーフレーム40は、隣接する2つの菱形(正方形)の枠をさらに2本の棒で連結した形状となっている。
 また、ミラーフレーム40と他の部材との位置関係を、図17において平面図(上図)と縦断面図(下図)で示す。ここでは、特に東西回転軸棒5、アーム6、南北回転軸棒16、支柱7との関係を示した。また、一例として、後述するような太陽光集光発電装置に用いられるものとし、太陽電池41およびそれを支持する支持台42も図示している。
 図17に示すように、計2枚の反射鏡2が載置可能なものである。なお、各々分割して計8枚の反射鏡を載置させることもできる。またミラーフレーム40には上方に支持台42が連結されており、該支持台42に2つの太陽電池41が配設されており、反射鏡2による太陽光の反射光が太陽電池41に集光できるようになっている。
 このように、ミラーフレームの形状は特に限定されず、種々の形状とすることができる。
 また、図3や図15などのように、回転機構として東西チェーンや南北チェーンを備える形態の場合、ミラーフレームに、その形状を保持するための構造体をさらに設けることができる。
 図18に形状保持のための構造体の一例を示す。なお、図18にはミラーフレーム3に南北チェーン38を取り付けた場合を示したが、東西チェーンを取り付ける場合も仕組みとしては基本的に同様である。構造体43はミラーフレーム3に対し、南北チェーン38と反対側に設けると特に良い。このような構造体43を設けてミラーフレーム3を保持することで、反対側からミラーフレーム3を引っ張る南北チェーン38に十分な張力を付与することができる。このため、チェーンの弛みなども防止することができ、回転機構に強度を付与して風などにも対抗しやすく、ミラーフレーム3の回転をより高精度で制御することができる。
 なお、太陽光集光発電装置に用いる場合は、図17のような支持台42(レシーバ)を上記構造体43の機能を兼ね備えたものとすることもできる。
 また、ミラーフレームにより支持される反射鏡の形態について説明する。
 前述したように反射鏡の枚数は1枚以上であれば良く、その形状などは特に限定されない。例えば反射面がフレネル面であるものを用いることができる。図19の断面図は反射面にフレネル面を有するものを用いた場合の一例である。このようなフレネル面であれば、より簡便に太陽光を反射して1点に集光させることができる。
 特には、図20のように複数枚の反射鏡を配設し(例えば4枚配設)、各反射鏡を傾斜配設して1点に集光させる場合と組み合わせると有効である。すなわち、図20は、図19のような1枚の大きな反射鏡を4分割したような形態であるが、反射鏡を傾斜配置させるのであれば、図19と同様の位置に焦点を合わせる場合、反射鏡の厚さをより一層小さくすることができる。傾斜配置させる分、フレネル面における角度を小さくすることができるからである。これによって反射鏡をより軽くすることができ、その扱いも容易にすることができる。なお、図20での傾斜角は5°であるが、当然これに限定されず、適宜決定することができる。
 また、4枚の反射鏡の場合、フレネル面の切削構造は、その4枚の反射鏡全体の中心点を基準にした点対称となる。したがって各々の反射鏡が正方形の場合はフレネル面の切削構造は1種類のみとなる。また、長方形の場合は2種類となる。このように、反射鏡のフレネル面の切削構造の種類も半分以下にすることができる。
 また、ミラーフレームにより支持される反射鏡の他の形態について説明する。
 前述したように反射鏡の枚数は1枚以上であれば良い。
 ここで、1枚1枚の反射鏡(すなわち、本発明の反射鏡)の詳細を図29に示す。図29に示すように、本発明の反射鏡2は、主に、土台60と複数の反射鏡片61とからなっている。土台60上に反射鏡片61が複数枚配設されていることによりモザイク状になっている(モザイク面)。この反射鏡片61の反射面62の集合によって、1枚の反射鏡2の反射面63が構成されている。
 そして、この反射鏡2の反射面63は、反射鏡片61の各々の反射面62による太陽光の反射光が重なりあって焦点を形成するものである。各々の反射鏡片61の反射面62によって反射された反射光は上記焦点Fに集光されるように構成されている。
 なお、図7、8のように複数枚の反射鏡を配設するヘリオスタット装置では、それらの全ての反射鏡による反射光が一箇所に集光されるように、各反射鏡の配置位置等に応じて、各々の焦点が調整されている。
 反射鏡2の各構成要素について詳述する。
 反射鏡片61は図30に示すように平板状のものである。平板状であるため、例えば凹面のものよりも簡単に用意することができる。また外形は、正四角形、菱形、丸形などその都度決定することができる。大きさや枚数は限定されず、例えば目標とする集光像の均一性や、運搬、取扱いのしやすさ等に応じて適宜決定できる。従って、大きな1枚の反射鏡に対して、小面積で簡単な形状であるため、大量生産ができ、低コストで準備できる。
 そして反射鏡2の反射面63は、上記のような複数の反射鏡片61の反射面62から構成されているため、焦点Fの形状は多角形になる。一方で従来のような一枚の大きな凹面鏡では焦点の形状は円形になる。
 次に、土台60について図26を参照して説明する。
 土台60は、その上面が区分けされており、各々、反射鏡片61が配設される載置面64となっている。この複数の載置面64は、各々の位置等に応じて角度が適切に調整され、載置された反射鏡片61により形成される反射面63によって、太陽光の反射光が焦点を形成するようにされている。図26の例では土台の裏側は平面状になっており、その反対側である反射鏡片61が配設される側では、上記区分ごとに(載置面ごとに)裏側の平面に対して角度がついている。例えば、図26の一番左、かつ、一番手前に位置する載置面64Sと裏面のなす角度はA(左右方向)である。なお、図26では省略しているが、奥行き方向においても、載置面64Sは裏面に対して所定の角度がついている。なお、上記例では土台60の裏面を平面とし、かつ載置面64の角度の基準面として説明したが、これに限定されるものではない。すなわち、基準面は適宜設定することができ、該設定した基準面に対して載置面の角度を決定すれば良い。
 そしてこのように載置面64における角度が調整されていることによって、その上に配設される反射鏡片61が平板状であるにも関わらず、複数の反射鏡片61による反射光を一点に集光させることができる。
 また、土台60の材質等は特に限定されないが、軽い材質のものであれば、運搬やそれ自体を回転させるためのモーター等の出力を小さなものとすることができるので好ましい。また、風等の抵抗を受けて簡単に折れないよう、適切な強度を有するものとすることができる。
 さらにはその形成方法等も限定されない。従来のように反射鏡を用意するにあたって1枚の大きな凹面鏡を用意する場合、その焦点調整のため、反射面などにおいて細やかな調整が必要であり、製造にも手間がかかり、高価なものになっていた。
 しかしながら、土台と複数の反射鏡片からなる本発明であれば、土台の載置面の角度等、一旦決定してしまえば、決定したその型を利用して簡単に大量生産することができる。また反射鏡片にしても前述したように平板状のため用意は比較的簡単である。本発明は製造の手間やコストを大きく低減することが可能である。
 このような土台と反射鏡片からなる反射鏡を用いることで、1枚の大きな凹面鏡を用いる場合よりも、焦点において均一な集光像を形成することができる。そしてこのような均一な集光像を形成しつつ反射光を集光することで、より一層、発電等の安定性を図ることができる。
 また、上記土台60には該土台を貫通する孔が形成されている。この孔の形成位置を図27に示す。図27に示すように、角度調整された載置面64は、隣り合う載置面(例えば載置面64Tに対する載置面64A、64B、64C、64D)の間に段差65が設けられている。段差65の大きさは特に限定されず、また、全て同じ高さの段差とすることもできるし、位置等に応じて異なる高さの段差とすることもできる。
 そして、この隣り合う載置面同士をつないで段差65を形成する段差面66において、孔67が形成されている。
 孔の形状に関して、図28に反射鏡の断面の一例を示す。図28に示すように、孔67は土台60を貫通するように開けられている。
 このような孔67を設けておくことで、反射鏡2の例えば表側(すなわち反射鏡片61が配設されている側)に対して吹きつける風を、一部、孔67を通して吹き抜けさせることができる。これによって反射鏡2が受ける風による抵抗を低減することが可能である。また、土台60の重さも減らすことができる。したがって、反射鏡2の支持や回転を簡単に行うことができるし、運搬なども容易になるので好ましい。
 なお、孔67は直線状に形成されていても良いし、途中で角度をつけて曲がるように形成されていても良い。風が効率よく通り抜けられるように、適切な形状に開けることができる。また、本数も限定されず、土台の強度等も考慮して適切な本数および大きさの孔を形成することができる。
 そして、上記本発明のヘリオスタット装置1を1つ以上備えた太陽熱集熱装置や太陽光集光発電装置を提供することができる。これらの装置は、効率良く簡便に反射鏡で集光することができる上、従来よりも低コストのヘリオスタット装置1を用いるため、装置全体のコストも低減することが可能である。また、図29等の反射鏡2を用いれば、より適切に集光することができ、発電や集熱の安定性も増す。
 図9は太陽熱集熱装置の一例である。この太陽熱集熱装置23はクロスリニア型であり、複数本の反射ライン(南北方向)と1本以上の受光ライン(東西方向)が設定されている。各々の反射ラインにはヘリオスタット装置1が1つ以上配設されている。そして、受光ラインには1基以上のレシーバ24が配設されている。
 反射ライン上のヘリオスタット装置1で角度調整された反射鏡2からの太陽光の反射光をレシーバ24に集光することで太陽熱を集熱することが可能になっている。そして、レシーバ24に集熱された熱を利用して媒体を温め、不図示の蒸気タービンやガスタービン等へ送られて発電することができる。
 また、図10に太陽光集光発電装置の一例を示す。太陽光集光発電装置25(クロスリニア型)では、複数本の反射ライン上にヘリオスタット装置1が1つ以上配設されており、1本以上の受光ラインに配設されたレシーバには太陽電池26が支持されている。
 そして、ヘリオスタット装置1で角度調整された反射鏡2からの太陽光の反射光を太陽電池26に集光することで発電することができる。
 なお、図9や図10ではクロスリニア型の装置について説明したが、これに限定されず、例えばタワー型のものに本発明のヘリオスタット装置1を用いることも可能である。
 また、図10や図17のような太陽電池に集光する装置に関して、太陽電池の周辺構造の一例について図22を参照してさらに説明する。
 この例では、太陽電池47に対して、熱交換器48や二次集光器49を設けている。
 反射光の集光によって太陽電池の温度が上昇するが、この温度上昇に伴って太陽電池での発電効率が低下するのを、熱交換器48を設けることで抑制することができる。この熱交換器自体は特に限定されない。例えば種々の冷媒(ガス、液体等)を用いた熱交換器とすることができる。太陽電池により電気エネルギーを得られるだけでなく、熱交換器48によって熱エネルギーをも回収できるので好ましい。
 また、二次集光器49も、太陽電池47に対して配設され、太陽電池47の受光面55に反射光を集光できるものであれば良く、形状、素材等は特に限定されない。反射光が、太陽電池そのものから外れるように反射されたとしても、二次集光器の内側に向かって反射されていれば太陽電池に集光できる。したがって、集光範囲(反射許容範囲)を拡げることができ、反射鏡の反射角の精度等を弛めることができるので簡便である。効率良く集光することができる。
 形状としては、筒状のものが挙げられる。例えば、太陽電池の配設側が窄まっている円錐や角錐のようなものとすることができる。また、太陽電池の配設位置と反対側、すなわち、反射光の入口側は、例えば、図22に示すように縁が丸まっているトランペット型のものとすることができる。このようなものであれば、縁に向かって反射された反射光を二次集光器の内側に向かって(すなわち太陽電池に向かって)取り入れ易く、効率良く集光することができる。なお、二次集光器は、当然、このような縁の形状のものに限られるものではない。
 また、素材としては、例えばアルミを用いることができ、表面にその酸化皮膜を形成したものとすることができる。アルミを基材とすることで重さが軽いものとすることができ、運搬もし易くなる。また、図17のように太陽電池を支持するもの等が反射鏡やミラーフレーム等と一体になっている場合(この場合では二次集光器も含めて一体になっている場合)、共に回転させる際に二次集光器の重さが負荷になりにくいので好ましい。
 また、太陽光集光発電装置の他の一例について図23を参照して説明する。
 この太陽光集光発電装置のヘリオスタット装置では、ミラーフレーム3に集光レシーバ50が固定されている。該集光レシーバ50には、内側に太陽電池51が配設されており反射鏡2からの反射光が集光されるようになっている。一方、集光レシーバ50の外側にはセンサ52が配設されている。
 ミラーフレームの形状は特に限定されず、また、それに固定された集光レシーバの形状も特に限定されない。ただし、集光レシーバの存在によって、反射鏡への太陽光が遮断されるのを抑制し、より多くの太陽光が反射鏡に照射されるように、その形状を考慮するのが好ましい。
 このセンサ52は、太陽光の照射によってその照射方向を感知するものである。すなわち、太陽光の照射によって太陽の位置を感知するものであり、該太陽の位置・方向に関する信号を発信することができる。また、センサ52は、前述したような、東西方向および南北方向の反射鏡等の角度を制御する各手段に接続されている。そして、センサ52から発信された太陽の位置に関する信号に基づき、太陽の動きに追従するように、各手段によって自動的に反射鏡等の角度が自動調整されるようにプログラムが組まれている。図23に示す例では、集光レシーバ50の頭頂部にセンサ52が設けられており、太陽が昇っている間は、太陽を追いかけるので、常に、反射面の法線上に、太陽電池、センサ、太陽が並ぶようになっている。
 当然、このセンサ52の配設位置は特に限定されず、太陽光を受けやすい位置に配設されていれば良い。
 また、太陽電池51も、反射鏡等の角度を制御する各手段に接続されており、反射光が集光されることによって太陽電池51で発電された電力の一部で各手段を駆動させることが可能である。例えば図1等に示した各手段であれば、前述したように比較的少ない電力で反射鏡等を回転制御できるので、太陽電池51からの一部の電力で十分に制御可能である。
 このように上記の太陽電池51やセンサ52を備えていることによって、日中、反射鏡等の角度の駆動、具体的な角度制御を自動的に行うことができる。たとえ、太陽の位置を計算して各手段に知らせる中央制御に相当するようなコンピュータがなくとも自動的に制御できるため簡便である。また、中央制御も必要なくなり、自立型の装置となるので、中央制御と接続するケーブル等も要らず、場所やコストの低減を図ることができる。
 上記のような装置であれば、日中はセンサ52等の利用によって、太陽を自動追尾することができる。したがって太陽が沈む頃、反射鏡2の反射面やセンサ52は西を向くことになる。すると、太陽が沈んで翌朝に太陽が東から昇っても、太陽電池51、反射鏡の反射面、センサ52が反射鏡2の陰に隠れて太陽光が照射されず、反射鏡等の角度の自動調整ができない。そこで、夜間あるいは朝方に、前日の夕方に西を向いた反射鏡等を東へ自動的に回転させて角度調整するための補助太陽電池を設けると良い。
 また、曇りが多い日で、センサ52で太陽の位置を捉えきれないとき(すなわち、センサ52が太陽を見失い、太陽の位置に関する信号を発信できないとき)などにも、補助太陽電池の存在は有効である。
 この補助太陽電池を備えた例を図24に示す。図24に示すように、朝方の太陽光の照射によって補助太陽電池53で発電され、その電力を用いて反射鏡の反射面を東へ向くように回転駆動させることが可能である。補助太陽電池53の形状や配設位置としては、例えばミラーフレームの端部に半球状のものを設けることができる。しかしながら、当然これに限定されず、朝方や、曇りから回復したときに、太陽光が照射されやすい位置、形状であれば良い。例えば、反射鏡の裏側や支柱に配設したり、湾曲した板状のものとすることもできる。
 また、補助太陽電池の代わりに、図25に示すように補助蓄電池54を備えたものとすることもできる。一日に一度、あるいは曇りのときを想定して数度程度、反射鏡等を回転させることができれば良いので、低容量のもので十分に済ますことができる。また太陽電池51による電力の一部で充電できるものとすることもできる。
 このようなものであれば、夜のうちに反射鏡の反射面を東に向くように角度調整可能である。
 このような補助手段をも備えておくことで、より一層、完全な自立型の装置とすることができる。コストや、設置地域の日照条件等によって、その装備を適宜決定することができる。
 また、図36に本発明の太陽光集光発電装置の他の一例を示す。なお、ここでは1本の反射ラインに対して1基のレシーバを有する場合を例に挙げて説明するが、レシーバは1基に限らず、複数基設けることもできる。
 まず、太陽光集光発電装置101の全体的な仕組みについて説明する。1本の反射ライン102が設定されており、反射ライン102上には複数枚の反射鏡104が設置されている。また、1基のレシーバ105を備えている。このレシーバ105はレシーバ回転機構により反射ライン102を中心軸にして弧を描くように東西方向に回転移動可能である。そして太陽光が反射鏡104に照射して反射され、該反射光をレシーバ105へ集光することで、太陽光を集光するものである。
 そしてレシーバ105には太陽電池103が配設されており、その受光面に太陽光が集光され、発電が行われる。
 このように反射鏡を使って太陽光を集光した先に太陽電池を配設することで、従来の図35の方式よりも、効率よく簡便に、しかも大幅に低いコストで発電を行うことができる。太陽電池を多数配設するパネルを沢山設置するよりも、低コストの反射鏡を設置し、レシーバに設けた太陽電池に集光することで、高効率・低コストの発電を達成することが可能である。
 また従来のような太陽熱発電と異なり太陽電池を有しており、発電のためのタービン等の大がかりな装置が不要である。このため、さらに低コストのものとすることができる。タービン等の設置に必要な土地等も不要になる。
 以下、各部について詳述する。
(反射鏡について)
 複数枚の反射鏡104について説明する。反射鏡104は太陽光を反射できる反射面106を有しているものであれば良く、反射鏡104の形状等は特に限定されない。例えば、太陽光の反射面106が平らなものとすることもできるし、凹面状のものとすることもできる。大きさも限定されず、例えば反射面106が60cm×60cm程度の面積を有するものとすることができる。
 反射鏡104は反射ライン102上に複数枚設置されている。図36には3枚設置されている例を示したが、この枚数に限定されない。例えば設置箇所の広さに応じて増減することができる。
 また、反射鏡104は、東西角度調整手段や南北角度調整手段を有するヘリオスタット機構107を備えている。
 なお、反射鏡104、ヘリオスタット機構107(東西角度調整手段、南北角度調整手段)、レシーバ105、レシーバ回転機構などは、今まで説明してきたものからなるものとすることができる。
 例えば、反射鏡104は前述したように1枚の平面、凹面からなるものとすることができるし、図29のようなモザイク面からなるものとすることもできる。さらには図7のように複数枚からなるものとすることができる。
 東西角度調整手段、南北角度調整手段を有するヘリオスタット機構107としては、図1のようなヘリオスタット装置を含んでいる。前述したように、東西回転軸棒や南北回転軸棒を回転軸として、反射鏡の反射面の東西方向の角度および南北方向の角度を調整可能である。すなわち、東西回転軸棒等が東西角度調整手段としての役割を果たし、南北回転軸棒等が南北回転調整手段としての役割を果たすことになる。
 また、レシーバ105としては、図10のようにヘリオスタット装置と分離したものとすることができるし、あるいは、図23のようにミラーフレームに固定された集光レシーバとすることもできる。
 そして、レシーバ回転機構としては、図10のような場合では、ヘリオスタット装置と分離しているレシーバを東西方向に回転移動させるものを別個に用意することができる。あるいは、図23のような場合では、レシーバがミラーフレーム(ヘリオスタット装置)に固定されて一体的になっているため、ヘリオスタット装置の東西回転軸棒等が、レシーバ回転機構としての役割も果たすことになる。
 なお、単に反射面106を任意の角度に調整できるだけでなく、ヘリオスタット機構107として、実際に、太陽の動きに追従するように角度が調整されるものでなければならない。
 このような角度調整を円滑にすすめるため、例えば、東西角度調整手段および南北角度調整手段に、暦および真太陽時に応じた太陽の動きに対する反射鏡104の角度調整データを内蔵しておくと良い。
 当然、従来のように、逐次、太陽の位置を計算し、さらにその太陽の位置に対応した反射面の角度を計算して東西角度調整手段および南北角度調整手段を制御しても良い。しかしながら、上記のようにパターン化された内蔵データを利用するのであれば、従来のような逐次計算は必要なく、また、そのような逐次計算を行ってから反射面の角度調整を行うのではないので、より一層、太陽の動きに遅れることなくいち早く対応させることが可能であるし、簡便である上に精度も高い。また集光率の上昇につなげることができる。コスト等に応じて適宜決定することができる。
 また、東西角度調整手段および南北角度調整手段は各々独立して制御可能であるが、これに限定されず、図36に示すように中央制御装置125を設け、それぞれの、東西角度調整手段や南北角度調整手段と接続し、中央制御装置125によって、統一的に制御することも可能である。例えば、集光開始時やメンテナンス時の反射面106の初期角度の調整を行うときに中央制御装置125で制御することができる。太陽の位置に基づいて、適切な反射面106の角度やその角度に調整するための制御データを計算し、該計算結果に基づき、中央制御装置125によって反射面106の初期角度を調整することができる。
 そして、初期角度を調整した後、引き続き中央制御装置125により角度調整を行っても良いし、あるいは前述したように内蔵データを利用して角度調整を行うこともできる。
<レシーバの回転移動の有効性について>
 ここで、太陽の動きに追従させてレシーバを東西方向に回転移動させる有効性について説明する。レシーバを定位置に配置する場合と回転移動させる場合との反射鏡(ここでは分かりやすいように、反射面が凹面のものとし、反射鏡に垂直に太陽光が入射してきた場合に1点に集光させることができるものとする)からの反射光の集光像の差異を挙げて説明する。
 まず、図38にレシーバを定位置(南)に配置する場合の集光像を示す。日の出時(東)と南中時(南)について示す。反射鏡の東西方向の回転面内において、南中時においては太陽、レシーバ、反射鏡は直線状に並んでおり、太陽光は反射鏡の反射面に垂直に入射するため、反射光がレシーバに集まるよう効率良く集光できている。一方、日の出時においては、太陽光は反射鏡に対して垂直方向からずれて入射するため、反射面の両端において反射角度に差異が生じてしまい、反射光がレシーバに集まらずに集光像が拡がってしまう。日の出時のように太陽方位角とレシーバの位置(南)との差異が大きいときほど(例えば朝方や夕方)、集光像が拡がってしまい、集光率が低下してしまう。
 図37にレシーバを東西方向に回転移動させる場合の集光像を示す。ここでは、レシーバの回転移動の有効性がより一層分かりやすいようにするため、東西角度調整手段とレシーバ回転機構により、それぞれ、反射鏡の反射面の東西方向の角度と、回転移動するレシーバの東西方向の回転角とを、太陽方位角と同じに調整する場合について示す。
 南中時においては図38と同様である。そして、朝方(日の出時含む)においても、反射鏡の東西方向の回転面内において、太陽、レシーバ、反射鏡は直線状に並んでいるため、太陽光は反射鏡に垂直に入射し、南中時と同様の高い集光率を得ることが可能である。さらに夕方においても同様である。したがって、一日を通して(日中)焦点ぼけをなくし、安定して均一に高効率で集光することが可能になる。すなわち、より一層多くの光エネルギーを得ることができる。
 このように、太陽光を集光するにあたってレシーバを東西方向に回転移動させるのは極めて有効であることが分かる。
 本発明の太陽光集光発電装置101は上述したレシーバ回転機構を備えており、太陽の動きに追従させて反射ラインを中心軸にして弧を描くように東西方向にレシーバ105を回転移動させることができるため、図38のようなレシーバが定位置に配置された装置に比べて効率良く集光することができる。なお、レシーバ105の回転移動を太陽の動きに追従させるにあたっては、反射鏡104の反射面106の角度やレシーバ105の東西方向の回転角を太陽方位角とは異なる値に調整したとしても十分に集光率の改善を得ることができる。ただし、図37に示すようにそれらが太陽方位角と同じになるように調整するのがより好ましく、一層多くの光エネルギーを得ることができる。
 なお、レシーバ回転機構の制御は、ヘリオスタット機構107と同様、内蔵データを利用したり、中央制御装置125を用いることが可能である。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (18)

  1.  太陽光を反射する1枚以上の反射鏡の反射面の角度を太陽の動きに追従させて調整するヘリオスタット装置であって、
     前記1枚以上の反射鏡を支持する1つのミラーフレームと、該ミラーフレームと連結してミラーフレームを南北方向に回転させるための東西方向を回転軸方向とする一対の南北回転軸棒と、前記ミラーフレームを東西方向に回転させるための南北方向を回転軸方向とする東西回転軸棒と、該東西回転軸棒から東側および西側に向かって突き出ている一対のアームと、前記東西回転軸棒を軸回転可能に支持する支柱とを有しており、
     前記一対のアームの先端には、前記一対の南北回転軸棒が互いに対向して軸回転可能に配設されており、
     前記東西回転軸棒を回転軸として、前記一対のアームと前記一対の南北回転軸棒と前記ミラーフレームとが一体的に東西方向に回転されることで、前記ミラーフレームに支持された1枚以上の反射鏡の反射面の東西方向の角度が調整されるものであり、
     前記一対の南北回転軸棒を回転軸として、前記ミラーフレームが南北方向に回転されることで前記1枚以上の反射鏡の反射面の南北方向の角度が調整されるものであることを特徴とするヘリオスタット装置。
  2.  前記東西回転軸棒に接続されており該東西回転軸棒の軸回転を制御するモーターをさらに有するものであることを特徴とする請求項1に記載のヘリオスタット装置。
  3.  前記一対のアームの両端に取り付けられた東西チェーンと、該東西チェーンが掛けられた東西チェーン長さ調整手段とをさらに有しており、
     該東西チェーン長さ調整手段の駆動により、該東西チェーン長さ調整手段から前記アームの取り付け位置までの東西チェーンの長さが調整されつつ、前記一対のアームが前記ミラーフレームと一体的に前記東西回転軸棒を回転軸として東西方向に回転されるものであることを特徴とする請求項1または請求項2に記載のヘリオスタット装置。
  4.  前記ミラーフレームに南北にわたって取り付けられた南北チェーンと、該南北チェーンが掛けられた南北チェーン長さ調整手段とをさらに有しており、
     該南北チェーン長さ調整手段の駆動により、該南北チェーン長さ調整手段から前記ミラーフレームの取り付け位置までの南北チェーンの長さが調整されつつ、前記ミラーフレームが前記南北回転軸棒を回転軸として南北方向に回転されるものであることを特徴とする請求項1から請求項3のいずれか一項に記載のヘリオスタット装置。
  5.  前記ミラーフレームの形状を保持するための構造体をさらに有するものであることを特徴とする請求項3または請求項4に記載のヘリオスタット装置。
  6.  前記ミラーフレームは、四角形の枠と裏面支持部材とを有しており、
     前記枠の四辺の各々には前記反射鏡が1枚ずつ枠の内側に向かって傾斜して配設されるものであり、前記裏面支持部材は前記傾斜して配設される反射鏡の裏面を支持するものであることを特徴とする請求項1から請求項5のいずれか一項に記載のヘリオスタット装置。
  7.  前記反射鏡の反射面が、フレネル面であることを特徴とする請求項1から請求項6のいずれか一項に記載のヘリオスタット装置。
  8.  前記反射鏡は、土台と、該土台上に配設された平板状の複数の反射鏡片とを備えており、
     前記反射鏡の反射面は、前記複数の反射鏡片の反射面の集合からなるモザイク面であり、前記複数の反射鏡片の各々の反射面による太陽光の反射光が重なりあって焦点を形成するものであり、
     前記土台上に配設された複数の反射鏡片の各々の反射面による太陽光の反射光が前記焦点に集光するように、前記土台において、前記複数の反射鏡片の各々が配設される各載置面ごとに該載置面の角度が調整されているものであることを特徴とする請求項1から請求項6のいずれか一項に記載のヘリオスタット装置。
  9.  前記焦点の形状は、多角形であることを特徴とする請求項8に記載のヘリオスタット装置。
  10.  前記土台の各載置面は、段差を介して他の載置面と隣り合っており、
     該隣り合う載置面同士をつないで前記段差を構成する段差面には、前記土台を貫通する孔が開けられているものであることを特徴とする請求項8または請求項9に記載のヘリオスタット装置。
  11.  請求項1から請求項10のいずれか一項に記載のヘリオスタット装置を一つ以上備えており、各々のヘリオスタット装置により支持され、反射面の角度が調整された前記1枚以上の反射鏡による太陽光の反射光をレシーバに集光して太陽熱を集熱するものであることを特徴とする太陽熱集熱装置。
  12.  請求項1から請求項10のいずれか一項に記載のヘリオスタット装置を一つ以上備えており、各々のヘリオスタット装置により支持され、反射面の角度が調整された前記1枚以上の反射鏡による太陽光の反射光を太陽電池に集光するものであることを特徴とする太陽光集光発電装置。
  13.  前記太陽電池には、熱交換器が設けられているものであることを特徴とする請求項12に記載の太陽光集光発電装置。
  14.  前記太陽電池には、前記1枚以上の反射鏡により集光された反射光を前記太陽電池の受光面に導くための筒状の二次集光器が設けられているものであることを特徴とする請求項12または請求項13に記載の太陽光集光発電装置。
  15.  前記ヘリオスタット装置は、前記ミラーフレームにより支持された集光レシーバを備えており、該集光レシーバは、前記太陽電池と、太陽光により太陽の位置を感知して信号を発信するセンサとを有しており、
     前記センサにより発信された信号に基づき、太陽の動きに追従するように、前記太陽電池による電力で、前記一対のアームと一対の南北回転軸棒とミラーフレームの一体的な東西方向の回転、および、前記ミラーフレームの南北方向の回転が制御されて、前記1枚以上の反射鏡の反射面の東西方向および南北方向の角度が自動的に調整可能なものであることを特徴とする請求項12から請求項14のいずれか一項に記載の太陽光集光発電装置。
  16.  前記ヘリオスタット装置は、補助蓄電池または補助太陽電池をさらに備えており、
     前記補助蓄電池または前記補助太陽電池による電力で、夜から翌日の朝に、前記一対のアームと前記一対の南北回転軸棒と前記ミラーフレームとが一体的に西から東へ回転して、前記1枚以上の反射鏡の反射面が東へ向くように自動的に角度調整可能なものであることを特徴とする請求項15に記載の太陽光集光発電装置。
  17.  前記太陽光集光発電装置は、反射ラインと1基以上のレシーバとを有しており、
     前記反射ラインは、南北方向に設定されたものであり、該反射ライン上には太陽光を反射する複数枚の反射鏡が直列に設置されており、該複数枚の反射鏡は太陽の動きに追従させて反射面の角度を調整するヘリオスタット機構を備えており、
     該ヘリオスタット機構は、前記複数枚の反射鏡の反射面を東西方向に角度調整可能な東西角度調整手段と、南北方向に個別に角度調整可能な南北角度調整手段を有しており、
     前記1基以上のレシーバは、各々、レシーバを太陽の動きに追従させて前記反射ラインを中心軸にして弧を描くように東西方向に回転移動させるレシーバ回転機構を備えており、かつ、該レシーバには太陽電池が配設されており、該太陽電池の受光面に、前記複数枚の反射鏡からの太陽光の反射光を集光するものであることを特徴とする請求項12から請求項16のいずれか一項に記載の太陽光集光発電装置。
  18.  前記東西角度調整手段と前記レシーバ回転機構は、それぞれ、前記複数枚の反射鏡の反射面の東西方向の角度と、前記回転移動するレシーバの東西方向の回転角とを、太陽方位角と同じになるように調整するものであることを特徴とする請求項17に記載の太陽光集光発電装置。
PCT/JP2014/004645 2013-09-10 2014-09-10 ヘリオスタット装置ならびに太陽熱集熱装置および太陽光集光発電装置 WO2015037230A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14844674.3A EP3045838A4 (en) 2013-09-10 2014-09-10 Heliostat device, solar thermal collection device, and solar concentrating photovoltaic device
US15/021,163 US10008977B2 (en) 2013-09-10 2014-09-10 Heliostat apparatus and solar heat collecting apparatus and concentrating photovoltaic apparatus

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2013-187393 2013-09-10
JP2013187393A JP6342632B2 (ja) 2013-09-10 2013-09-10 太陽光集光発電装置
JP2013-237742 2013-11-18
JP2013237742 2013-11-18
JP2014-137635 2014-07-03
JP2014137635A JP2015118360A (ja) 2013-11-18 2014-07-03 ヘリオスタット装置ならびに太陽熱集熱装置および太陽光集光発電装置
JP2014143387A JP2016018205A (ja) 2014-07-11 2014-07-11 反射鏡およびヘリオスタット装置ならびに太陽熱集熱装置および太陽光集光発電装置
JP2014-143387 2014-07-11

Publications (1)

Publication Number Publication Date
WO2015037230A1 true WO2015037230A1 (ja) 2015-03-19

Family

ID=52665361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/004645 WO2015037230A1 (ja) 2013-09-10 2014-09-10 ヘリオスタット装置ならびに太陽熱集熱装置および太陽光集光発電装置

Country Status (1)

Country Link
WO (1) WO2015037230A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106054941A (zh) * 2016-07-18 2016-10-26 段翔 一种智能反射太阳能系统
CN106322782A (zh) * 2016-08-25 2017-01-11 广东工业大学 一种穹顶式定焦点自动跟踪装置及其制造方法
CN106940571A (zh) * 2017-04-14 2017-07-11 天津清芸主力能源科技有限公司 一种塔式定日镜聚光偏差传感器
CN107370451A (zh) * 2017-06-28 2017-11-21 贵州绿卡能科技实业有限公司 低日照地区高效光伏发电站
CN107402585A (zh) * 2016-05-18 2017-11-28 北京天诚同创电气有限公司 光伏板的太阳方位角测量及转角控制方法、装置和系统
JP2017229195A (ja) * 2016-06-24 2017-12-28 株式会社SolarFlame 太陽光発電方法
JP2017227408A (ja) * 2016-06-24 2017-12-28 株式会社SolarFlame ヘリオスタット装置
WO2017222026A1 (ja) * 2016-06-24 2017-12-28 株式会社SolarFlame ヘリオスタット装置および太陽光発電方法
CN109341109A (zh) * 2018-12-06 2019-02-15 西北农林科技大学 一种用于寒区冬季输水渠道基土辅热的光热蓄集系统
CN111596698A (zh) * 2020-05-22 2020-08-28 浙江中光新能源科技有限公司 一种用于塔式光热发电的定日镜系统
NO20190814A1 (en) * 2019-06-28 2020-12-29 Kyoto Group As A heliostat

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110043433A1 (en) * 2009-08-24 2011-02-24 Jurgen Zimmermann Positioning equipment for aligning a device
WO2011055719A1 (ja) * 2009-11-06 2011-05-12 Kuno Hiromitsu 多数列の反射板を2軸制御する太陽光集光器
JP2012063086A (ja) 2010-09-16 2012-03-29 Tokyo Institute Of Technology 太陽光のビームダウン集光システムのキャビティ型レシーバ
WO2012042888A1 (en) * 2010-10-01 2012-04-05 Tokyo Institute Of Technology Cross linear type solar heat collecting apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110043433A1 (en) * 2009-08-24 2011-02-24 Jurgen Zimmermann Positioning equipment for aligning a device
WO2011055719A1 (ja) * 2009-11-06 2011-05-12 Kuno Hiromitsu 多数列の反射板を2軸制御する太陽光集光器
JP2012063086A (ja) 2010-09-16 2012-03-29 Tokyo Institute Of Technology 太陽光のビームダウン集光システムのキャビティ型レシーバ
WO2012042888A1 (en) * 2010-10-01 2012-04-05 Tokyo Institute Of Technology Cross linear type solar heat collecting apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3045838A4 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107402585A (zh) * 2016-05-18 2017-11-28 北京天诚同创电气有限公司 光伏板的太阳方位角测量及转角控制方法、装置和系统
CN107402585B (zh) * 2016-05-18 2020-02-14 北京天诚同创电气有限公司 光伏板的太阳方位角测量及转角控制方法、装置和系统
CN109690208A (zh) * 2016-06-24 2019-04-26 Sfi株式会社 定日镜装置及太阳能发电方法
JP2017229195A (ja) * 2016-06-24 2017-12-28 株式会社SolarFlame 太陽光発電方法
JP2017227408A (ja) * 2016-06-24 2017-12-28 株式会社SolarFlame ヘリオスタット装置
WO2017222026A1 (ja) * 2016-06-24 2017-12-28 株式会社SolarFlame ヘリオスタット装置および太陽光発電方法
EP3477219A4 (en) * 2016-06-24 2020-01-29 SFI Corporation HELIOSTAT APPARATUS AND METHOD FOR GENERATING SOLAR ENERGY
CN106054941A (zh) * 2016-07-18 2016-10-26 段翔 一种智能反射太阳能系统
CN106054941B (zh) * 2016-07-18 2023-04-11 段翔 一种智能反射太阳能系统
CN106322782A (zh) * 2016-08-25 2017-01-11 广东工业大学 一种穹顶式定焦点自动跟踪装置及其制造方法
CN106940571A (zh) * 2017-04-14 2017-07-11 天津清芸主力能源科技有限公司 一种塔式定日镜聚光偏差传感器
CN106940571B (zh) * 2017-04-14 2023-06-06 主力能源有限公司 一种塔式定日镜聚光偏差传感器
CN107370451A (zh) * 2017-06-28 2017-11-21 贵州绿卡能科技实业有限公司 低日照地区高效光伏发电站
CN109341109A (zh) * 2018-12-06 2019-02-15 西北农林科技大学 一种用于寒区冬季输水渠道基土辅热的光热蓄集系统
CN109341109B (zh) * 2018-12-06 2024-03-08 西北农林科技大学 一种用于寒区冬季输水渠道基土辅热的光热蓄集系统
NO20190814A1 (en) * 2019-06-28 2020-12-29 Kyoto Group As A heliostat
CN111596698A (zh) * 2020-05-22 2020-08-28 浙江中光新能源科技有限公司 一种用于塔式光热发电的定日镜系统

Similar Documents

Publication Publication Date Title
WO2015037230A1 (ja) ヘリオスタット装置ならびに太陽熱集熱装置および太陽光集光発電装置
US10008977B2 (en) Heliostat apparatus and solar heat collecting apparatus and concentrating photovoltaic apparatus
US4365618A (en) Heliostatic solar energy conversion system
JP4477057B2 (ja) ビームダウン方式太陽熱発電装置
US20100051016A1 (en) Modular fresnel solar energy collection system
AU2014261039B2 (en) System of secondary reflectors with high level of efficiency for storage and use of energy from a solar source
JP6342632B2 (ja) 太陽光集光発電装置
JP5876873B2 (ja) 柱状集光装置が具備された太陽光発電装置
CN103238033A (zh) 太阳能收集器系统
RU2354896C1 (ru) Фотоэнергоустановка
JP2012038954A (ja) 集光型太陽光発電システム
US20090308379A1 (en) Hyperbolic solar trough field system
WO2014061281A1 (ja) 太陽熱集熱装置および太陽熱集熱方法
JP2015014392A (ja) 太陽熱集熱装置
US9273672B2 (en) Solar energy collector with XY or XYZ sun tracking table
JP2016018205A (ja) 反射鏡およびヘリオスタット装置ならびに太陽熱集熱装置および太陽光集光発電装置
JP2015118360A (ja) ヘリオスタット装置ならびに太陽熱集熱装置および太陽光集光発電装置
JP2004271063A (ja) 太陽光発電装置
CN206133100U (zh) 一种用于太阳能塔式热利用的聚光定日镜
JP2017227408A (ja) ヘリオスタット装置
CN106019530A (zh) 一种用于太阳能塔式热利用的聚光定日镜
JP2014135365A (ja) 太陽光集光発電装置
JP6220520B2 (ja) 太陽熱集熱装置および太陽熱集熱方法
KR20100027488A (ko) 집광기 고정형 태양열 고집광시스템
EP2944894B1 (en) Method and apparatus for tracking and concentrating electromagnetic waves coming from a moving source to a fixed focal point

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14844674

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014844674

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014844674

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15021163

Country of ref document: US