WO2015037191A1 - 遅延推定装置、遅延推定方法、記録媒体、及び、情報システム - Google Patents

遅延推定装置、遅延推定方法、記録媒体、及び、情報システム Download PDF

Info

Publication number
WO2015037191A1
WO2015037191A1 PCT/JP2014/004276 JP2014004276W WO2015037191A1 WO 2015037191 A1 WO2015037191 A1 WO 2015037191A1 JP 2014004276 W JP2014004276 W JP 2014004276W WO 2015037191 A1 WO2015037191 A1 WO 2015037191A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
time
state
delay estimation
index
Prior art date
Application number
PCT/JP2014/004276
Other languages
English (en)
French (fr)
Inventor
健夫 大西
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2015037191A1 publication Critical patent/WO2015037191A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/64Hybrid switching systems
    • H04L12/6418Hybrid transport

Definitions

  • IP network is a communication network (hereinafter referred to as “network”) that transmits and receives information between a plurality of information processing devices (including “communication devices”) by using IP technology. ").
  • IP technology a communication network that transmits and receives information between a plurality of information processing devices (including “communication devices”) by using IP technology. ").
  • TCP is a transmission control protocol (Transmission_Control_Protocol). Since the communication apparatus can repeatedly transmit the packet according to TCP, the packet can be reliably transmitted to the information processing apparatus that is the communication destination.
  • Such a communication apparatus adjusts the timing (time) at which a packet is retransmitted according to a communication delay time (hereinafter, referred to as “delay time”) that occurs between a plurality of information processing apparatuses that transmit and receive the packet. For this reason, the load applied to the communication network does not become excessive. As a result, even when a packet is lost in the communication network, the communication delay (hereinafter referred to as “delay”) does not become excessive.
  • a wireless communication network that conforms to the W-CDMA (Wideband_Code_Division_Multiple_Access) standard.
  • W-CDMA Wideband_Code_Division_Multiple_Access
  • a wireless communication network that conforms to a standard such as LTE (Long_Term_Evolution) or HSPA (High_Speed_Packet_Access).
  • the probability that a packet is delayed in a predetermined period greatly varies depending on the resource state in the information processing apparatus using the wireless communication network.
  • the delay time required until the information processing apparatus in “CRC_DCH” in W-CDMA and “RRC_CONNECTED” in LTE receives a packet is about 100 milliseconds.
  • resource states in LTE, W-CDMA, and HSPA are defined in accordance with 3GPP established by a standardization body related to communication standards.
  • 3GPP represents “Third_Generation_Partnership_Project”. Since these resource state transitions and the like are described in detail in Non-Patent Document 1 and Non-Patent Document 2, detailed description thereof is omitted here.
  • the resource state as described above is represented as a predetermined resource state.
  • 3GPP TS 25.331 Radio Resource Control (RRC); Protocol specification, [online], [search January 30, 2013], Internet ⁇ http: //www.3GPP TS 25.331: Radio Resource Control (RRC); 3 gpp. org / ftp / Specs / archive / 25_series / 25.331 /> 3GPP TS 36.331: Evolved_Universal_Terrestrial_Radio_Access (E-UTRA); Radio_Resource_Control_ (RRC); Protocol_specific. 30 days / day 3 gpp. org / ftp / Specs / archive / 36_series / 36.331 />
  • the delay time when a wireless communication network is used varies greatly depending on the resource state in the information processing apparatus.
  • a main object of the present invention is to provide a delay estimation device and the like that accurately estimate a delay time associated with communication by a communication device.
  • the delay estimation device has the following configuration.
  • the delay estimation device Based on communication history information representing a history of communication with a communication device, state estimation means for calculating an index representing a specific resource state among resource states representing a state in the communication device; Delay estimation means for estimating a time during which communication by the communication device is delayed based on the time associated with the specific resource state and the index.
  • the delay estimation method is: Using an information processing device, based on communication history information representing a history of communication performed by the communication device, an index representing a specific resource state is calculated out of resource states representing the state in the communication device, and the specific Based on the time associated with the resource state and the index, the time for which communication by the communication device is delayed is estimated.
  • this object is also realized by such a delay estimation program and a computer-readable recording medium for recording the program.
  • the delay time associated with communication by the communication device can be estimated with high accuracy.
  • the delay estimation apparatus 101 includes a state estimation unit 102 and a delay estimation unit 103.
  • the delay estimation apparatus 101 can transmit / receive information to / from the communication apparatus 105 via the communication network 104.
  • the communication device 105 changes the resource state according to a situation in which information is transmitted / received via the communication network 104.
  • the resource state includes a plurality of states such as a communicable state and a suspended state.
  • a communicable state includes a communicable state and a suspended state.
  • the communication device 105 is a communication device operated by a user.
  • the communication device 105 transmits / receives information to / from the delay estimation device 101 via the communication network 104 using a wireless communication technology or the like that complies with standards such as W-CDMA and LTE.
  • the communication device 105 sets the resource state to a communicable state when the resource state is a paused state in a situation where the communication device 105 communicates with another information processing device. Thereafter, the communication device 105 communicates with other information processing devices.
  • the communication device 105 may include an inactivity timer (not shown) that measures a time during which communication is not performed. When the time measured by the inactivity timer is equal to or longer than a predetermined first time (hereinafter referred to as “time T 1 ”), the communication device 105 sets the resource state to a paused state.
  • time T 1 a predetermined first time
  • the state estimation unit 102 receives communication index information indicating the number of times the communication device 105 communicates per unit time. Next, based on the received communication index information, the state estimation unit 102 calculates an index indicating that the resource state in the communication device 105 is a specific resource state among predetermined resource states.
  • the communication device 105 when no communication at time T 1, sets the resource state to a suspended state.
  • the state estimation unit 102 estimates the probability that the resource state is in a suspended state at time (timing) t.
  • the probability estimated by the state estimation unit 102 is based on the fact that the probability that the resource state is in the suspended state at time t is equal to the probability that the information processing apparatus does not communicate from time (t ⁇ T 1 ) to time t.
  • the communication index information ⁇ (t) represents the probability that the communication device 105 communicates per unit time at time t.
  • PI (t) represents the probability that the resource state is in a suspended state at time t. Since the communication device 105 sets the resource state to the suspended state after the predetermined first time T 1 , the communication device 105 does not communicate at the time (t ⁇ T 1 ) to the time t. It can also be called a probability.
  • the probability that the communication device 105 communicates from time t to time (t + ⁇ t) is ⁇ (t) ⁇ ⁇ t.
  • the communication device 105 does not communicate at the time (t ⁇ T 1 ) to the time (t + ⁇ t) when the resource state is the suspended state at the time t and further does not communicate at the time t to the time (t + ⁇ t).
  • PI (t + ⁇ t) represents the probability that the resource state is in a suspended state at time (t + ⁇ t).
  • PI (t + ⁇ t) is the product of the probability PI (t) that the resource state is in a suspended state at time t and the probability (1 ⁇ (t) ⁇ ⁇ t) that there is no communication from time t to time (t + ⁇ t) (ie, Equation 1). (Equation 1).
  • Equation 1 When ⁇ t is extremely small, Equation 1 is Equation 2. (Equation 2).
  • the probability that the resource state is in a communicable state at time t is equal to the probability that communication device 105 communicates at least once from time (t ⁇ T 1 ) to time t. Based on this, the state estimation unit 102 estimates the probability that the resource state is a communicable state at time t.
  • the state estimation unit 102 estimates the probability PI (t) that the resource state is a suspended state according to Equation 3.
  • the state estimation unit 102 estimates the probability PC (t) that the resource state is a communicable state according to Equation 4.
  • the delay estimation unit 103 determines the time for which communication is delayed based on the time associated with the specific resource state calculated by the state estimation unit 102 and the index indicating that the resource state is the specific resource state. presume.
  • the delay estimation unit 103 uses the resource state and the processing time associated with the specific resource state calculated by the state estimation unit 102 from the communication time information (FIG. 2) when the communication device 105 is in the resource state. Read.
  • the communication time information associates a processing time required for communicating with another communication device 105.
  • FIG. 2 is a diagram conceptually illustrating an example of communication time information.
  • the “communication enabled state” is associated with “50”. This indicates that when the resource state in the communication apparatus 105 is a communicable state, it takes 50 milliseconds to perform communication.
  • the “pause state” is associated with “1000”. This indicates that when the resource state in the communication apparatus 105 is a suspended state, it takes 1000 milliseconds to perform communication.
  • the processing time is expressed in milliseconds, but it is not necessarily required to be in milliseconds. Further, an administrator who manages the delay estimation apparatus 101 may measure the processing time in each resource state, and store the average value of the measured processing time as the processing time in the communication time information.
  • the processing time is uniformly stored in the communication time information without distinguishing the type of the communication device 105 and the communication carrier providing the communication network.
  • the communication time information may be an individual processing time according to the type of the information processing apparatus and the communication carrier.
  • the resource state may be associated with the processing time for each communication carrier.
  • the delay estimation unit 103 performs the following processing according to the communication carrier.
  • the processing performed by the delay estimation unit 103 when the state estimation unit 102 performs estimation as in cases 1 to 3 described later will be described.
  • Case 1 The probability that the resource state is communicable is 100%, the probability that the resource state is suspended is 0%, Case 2: The probability that the resource state is communicable is 0%, the probability that the resource state is suspended is 100%, Case 3: The probability that the resource state is a communicable state is 80%, and the probability that the resource state is a suspended state is 20%.
  • the delay estimation unit 103 reads “50” associated with the “communication enabled state” in the communication time information, and estimates the read “50” as the delay time. Further, in the case 2, the delay estimation unit 103 reads “1000” associated with the “pause state” in the communication time information, and estimates the read “1000” as the delay time.
  • the delay estimation unit 103 reads “50” and “1000” associated with the “communication enabled state” and the “pause state” in the communication time information, respectively.
  • the delay time is calculated based on the expected value.
  • the delay time does not necessarily have to be the expected value.
  • the communication time information is previously stored in a specific resource state and a specific resource state. A certain probability may be included.
  • the delay estimation unit 103 reads the processing time associated with the specific resource state and the probability of being the specific resource state, and estimates the read processing time as the delay time.
  • the delay estimation apparatus 101 estimates the delay time based on the resource state.
  • the delay time associated with the communication by the communication apparatus 105 can be estimated with high accuracy.
  • the systems disclosed in Patent Document 2 and Patent Document 3 estimate the delay time without being based on the resource state. As described above, the delay time greatly varies depending on the resource state. Therefore, the systems disclosed in Patent Document 2 and Patent Document 3 cannot estimate the delay time with high accuracy in, for example, a wireless communication network.
  • the probability has been described.
  • the probability is not necessarily a mathematically defined probability.
  • a numerical value multiplied by a constant or a value obtained by adding a constant may be used.
  • Equivalent processing can be performed. That is, since the probability is not limited to a mathematically defined probability, the “probability” described above may be expressed as an “index” hereinafter.
  • the delay estimation apparatus 101 can estimate the delay time with high accuracy even in the case of a wired communication network or a communication network that combines both.
  • FIG. 3 is a block diagram showing the configuration of the delay estimation apparatus 301 according to the second embodiment of the present invention.
  • the delay estimation apparatus 301 includes an index calculation unit 302, a state estimation unit 102, and a delay estimation unit 103.
  • the delay estimation apparatus 301 can transmit / receive information to / from the communication apparatus 105 via the communication network 104.
  • the index calculation unit 302 calculates communication index information ⁇ (t) based on the number of times of communication in a predetermined time zone representing a predetermined first time to a predetermined second time.
  • the state estimation unit 102 calculates an index indicating that the resource state in the communication device 105 is a specific resource state based on the communication index information ⁇ (t) calculated by the index calculation unit 302.
  • the predetermined first time is time (t ⁇ T 1 )
  • the predetermined second time is time t.
  • the predetermined time zone is from time (t ⁇ T 1 ) to time t.
  • the index calculating unit 302 calculates, for example, “the number of times ⁇ T 1 ” as communication index information ⁇ (t) based on the number of times the communication apparatus 105 communicates from time (t ⁇ T 1 ) to time t.
  • the predetermined time zone may be a plurality of time zones.
  • the predetermined first time is time (t ⁇ T 1 ⁇ N) (where N is an integer greater than or equal to 0, for example, 1 day, 2 days, etc.), and the predetermined second time is the time (TN) may also be used.
  • the index calculation unit 302 calculates “M (1) based on the number of times M (1) the communication device 105 communicates from time (t ⁇ T 1 ) to time t one day ago. 1) ⁇ T 1 ”is calculated as communication index information ⁇ (t).
  • the number of times that the communication apparatus 105 communicates from time (t ⁇ T 1 ) to time t N days ago is represented as M (N).
  • the index calculation unit 302 calculates “M” based on the number of times M (1) the communication device 105 communicates from time (t ⁇ T 1 ) to time t one day ago. (1) ⁇ T 1 ”is calculated. Next, the index calculation unit 302 calculates “M (2) ⁇ T 1 ” based on the number of times M (2) the communication device 105 communicates from time (t ⁇ T 1 ) two days ago to time t. Next, the index calculation unit 302 calculates communication index information ⁇ (t) by calculating an average value regarding the two calculated values.
  • the index calculation unit 302 calculates the communication index information ⁇ (t) by calculating an average value for each calculated value as described above.
  • the index calculation unit 302 calculates the average value for each calculated value, but it is not necessarily the average value.
  • the index calculating unit 302 performs communication by statistically processing the weighted average value or the calculated value (for example, checking the transition between N and the value calculated for each N).
  • the index information ⁇ (t) may be calculated. That is, the procedure for calculating the communication index information ⁇ (t) from the calculated values is not limited to the above-described example.
  • the index calculation unit 302 When it is determined that the number of times the communication device 105 communicates has a periodicity of one day, the index calculation unit 302 performs the processing as described above, thereby performing communication index information ⁇ (t (t) based on the periodicity. ) Is calculated. As a result, the index calculation unit 302 calculates the communication index information ⁇ (t) with high accuracy.
  • the estimation in the state estimation unit 102 and the delay estimation unit 103 is more accurate.
  • N is 1 and 2 (days), but is not necessarily limited to two. N may be a different value such as one week or one month.
  • the delay estimation apparatus 301 according to the second embodiment includes the same configuration as that of the first embodiment, the second embodiment can enjoy the same effects as those of the second embodiment. That is, according to the delay estimation apparatus 301 according to the second embodiment, the delay time associated with communication by the communication apparatus 105 can be estimated with high accuracy.
  • a plurality of communication devices 105 may be provided. Further, a plurality of delay estimation devices 301 may be provided. That is, the number of delay estimation devices 301 and the number of communication devices 105 are not limited to the above-described example.
  • the communication apparatus 105 may include a monitoring unit 905, a communication unit 906, a history transmission unit 907, a state setting unit 908, and a transmission determination unit 909.
  • FIG. 4 is a block diagram illustrating a configuration of the communication apparatus 105 according to the second embodiment. In this case, each unit in the communication apparatus 105 performs processing shown in an example described later.
  • the monitoring unit 905 detects the time at which communication occurs in the communication unit 906. Next, the monitoring unit 905 associates the detected time with an identifier (identifier, hereinafter referred to as “ID”) for identifying the communication device 105, and stores it as communication history information as illustrated in FIG. Stored in the figure).
  • ID identifier
  • FIG. 5 is a diagram conceptually illustrating an example of communication history information.
  • the ID “20a” is associated with the time “187, 418, 754”. This indicates that the communication device 105 associated with the ID “20a” communicates via the communication unit 906 at time “187”, time “418”, and time “754”.
  • the communication history information includes a communication start time as a communication time, but may be stored at another time related to the communication.
  • the communication time may be a time when a packet is transmitted / received.
  • the communication unit 906 transmits / receives information to / from the communication apparatus 105 including the delay estimation apparatus 901 and the Web server on the Internet via the communication network 104 in accordance with a standard regarding a wireless communication network such as W-CDMA and LTE.
  • the communication unit 906 transmits information to the communication apparatus 105 (hereinafter referred to as “first information processing apparatus”) as a communication destination in accordance with various applications (not shown in FIG. 4) processed by the communication apparatus 105. Further, the communication unit 906 reads communication destination information related to the communication destination from the received information, and transmits the read communication destination information to the first information processing apparatus.
  • the first information processing apparatus receives the communication destination information and processes the received communication destination information according to the application.
  • the history transmission unit 907 transmits communication history information stored in a storage unit (not shown) to the history reception unit 902 as illustrated in FIG.
  • FIG. 6 is a diagram conceptually illustrating an example of communication history information.
  • the communication history information associates an identifier that uniquely identifies the communication device 105 with time information related to the time at which the communication device 105 communicates.
  • the communication history information associates, for example, an identifier “20c”, a time “98778619”, a time “9905742”, and a time “999995259”. This indicates that the communication device 105 associated with the identifier “20c” performs communication at the time “98778619”, the time “9905742”, and the time “99995259”.
  • the state setting unit 908 changes the resource state in the communication device 105 according to the communication performed by the communication unit 906.
  • FIG. 7 is a flowchart showing processing in which the communication apparatus 105 according to the second embodiment stores communication history information.
  • FIG. 8 is a sequence diagram illustrating processing in which the communication device 105 according to the second embodiment transmits communication history information to the delay estimation device 901.
  • FIG. 9 is a flowchart showing processing for estimating the delay time related to the communication device 105 based on the communication history information received from the communication device 105 by the delay estimation device 901.
  • the delay estimation device 901 estimates a delay time related to a specific communication device 105 (for example, “communication device 20a”). Further, it is assumed that the communication device 20a is connected to the LTE communication network. Furthermore, it is assumed that the resource state in the communication device 20a is a communicable state (ie, “RRC_CONNECTED”) or a dormant state (ie, “RRC_IDLE”).
  • the communication unit 906 performs communication (step S601).
  • the state setting unit 908 changes the resource state in the communication device 20a to a communicable state.
  • the monitoring unit 905 determines whether or not the timing (time) interval at which the communication unit 906 communicates is equal to or longer than a predetermined period (hereinafter referred to as “TN”) (step S602).
  • the period TN is 10,000 milliseconds. Further, it is assumed that the communication unit 906 performs communication at time “485987” and does not perform communication from time “485987” to time “589754”.
  • the monitoring unit 905 determines that the timing interval (that is, the interval between the time “485987” and the time “589754”) at which the communication unit 906 communicates is 10000 milliseconds or more (YES in step S602).
  • the monitoring unit 905 determines that the communication unit 906 has performed two different communications, and stores the time “589754” in the storage unit (not shown). If the storage unit (not shown) has already stored a different time, the monitoring unit 905 adds the time “589754” to the stored information. For example, when the storage unit (not shown) stores “485418”, the monitoring unit 905 stores “485418, 589754” by updating “485418” (step S603). Next, the monitoring unit 905 does not perform the above-described processing until the communication unit 906 starts communication (step S604).
  • the communication unit 906 communicates at time “485987” and time “485990”.
  • step S602 the monitoring unit 905 determines that the communication timing interval is less than 10000 milliseconds (determined NO in step S602). The monitoring unit 905 determines that the communication at time “485987” continues until time “485990”. In this case, the monitoring unit 905 does not perform the processing shown in step S603, and does not perform the above-described processing until the communication unit 906 performs communication next time (step S604).
  • the monitoring unit 905 repeats the processing after step S601.
  • step S701 the communication device 20a transmits communication history information to the delay estimation device 901 at a predetermined time.
  • the predetermined time is, for example, “1:00 am”. Note that the predetermined time and the number of times are not limited to the above-described example. Further, the predetermined time may be different for each information processing apparatus.
  • the history transmission unit 907 reads the communication time from the storage unit (not shown). Thereafter, the history transmission unit 907 creates communication history information illustrated in FIG. 5 by associating the read time with an identifier representing the communication device 20a (ie, “20a”) (step S702). Thereafter, the history transmission unit 907 may delete the read time.
  • the history transmission unit 907 transmits the communication history information to the delay estimation apparatus 901 (step S703).
  • the history receiving unit 902 receives the communication history information (step S704).
  • the history receiving unit 902 updates the communication history information (FIG. 6) stored in the storage unit (not shown).
  • the storage unit (not shown) does not store the information associated with the identifier “20a”
  • the history receiving unit 902 creates a new area for storing the identifier “20a” in the storage unit (not shown).
  • the received communication history information is stored in the created area.
  • the storage unit (not shown) stores information associated with the identifier “20a”
  • the history receiving unit 902 stores the received communication history information at the time associated with the identifier “20a”. The included time is added (step S705).
  • the delay estimation apparatus 901 starts an estimation process triggered by, for example, an information processing apparatus (server, not shown) in the cloud sending an update notification to the communication apparatus 20a.
  • an information processing apparatus server, not shown
  • the index calculation unit 903 calculates communication index information with which the communication device 20a performs communication.
  • the index calculation unit 903 reads the time when the communication device 20a communicates from the communication history information, and based on the read time, for example, as shown in the first embodiment, the communication index information ⁇ with which the communication device 20a communicates (T) is calculated (step S801).
  • the state estimation unit 102 calculates the probability related to the resource state in the communication device 20a based on the calculated communication index information ⁇ (t) according to Equation 3 and Equation 4 (Step S802).
  • the delay estimation unit 103 estimates the delay time related to the communication device 20a based on the following two items (step S802).
  • Item 1 Resource state calculated by the state estimation unit 102 and a probability related to the resource state
  • Item 2 Delay time associated with the resource state in the communication time information illustrated in FIG.
  • the delay time changes according to the resource state in the communication device 20a.
  • the delay estimation device 901 estimates a resource state in the communication device 20a, and estimates a delay time based on the estimated resource state. Therefore, according to the delay estimation apparatus 901 according to the present embodiment, the delay time associated with communication by the communication apparatus 105 can be estimated with high accuracy.
  • the delay estimation apparatus 1301 includes an index calculation unit 1302, a state estimation unit 1303, and a delay estimation unit 103.
  • the communication device 105 When determining that the interval is equal to or longer than the predetermined period (determined as YES in step S1002), the communication device 105 stores the third time as communication history information in a storage unit (not shown) (step S1003). ). That is, in this case, the communication apparatus 105 determines that the communication at the third time is different from the communication before the third time.
  • communication apparatus 105 determines that difference TD is greater than or equal to TG (YES in step S1004).
  • the communication device 105 transmits the communication history information to the delay estimation device 1301 (step S1005). Since the process in which the communication apparatus 105 transmits the communication history information to the delay estimation apparatus 1301 is the same as that in the first embodiment (sequence diagram shown in FIG. 6), detailed description thereof is omitted here.
  • step S1004 for example, when the TD is 540000 milliseconds (that is, 9 minutes), the communication device 105 determines that the difference TD is less than TG (determined NO in step S1004). In this case, the communication device 105 does not transmit the communication history information to the delay estimation device 1301. Thereafter, the communication device 105 stands by until communication is performed (step S1006). Thereafter, the communication device 105 may repeat the above-described processing.
  • the communication device 105 changes the resource state to a communicable state with large power consumption in response to transmitting the communication history information to the delay estimation device 1301.
  • the probability related to the communication device 105 is calculated based on the communication index information ⁇ (t) about one hour before several minutes before the time when the measurement is performed.
  • the delay estimation device 1301 starts a process for estimating the delay time related to the communication device 20a.
  • the state estimation unit 1303 calculates the time between the time LT and the time CT (hereinafter referred to as TL).
  • the state estimation unit 1303 estimates the resource state in the communication device 20a based on the calculated TL and communication index information ⁇ (t).
  • Resource state in the communication device 20a after the communication device 20a has communicated, with even if transfer is not performed in a period of time (T 1), the communicable state until T 1 is elapsed (i.e., "RRC_CONNECTED") is there.
  • Resource state in the communication device 20a when transfer is not performed for a certain period T 1, hibernate (in the case of LTE communication network, "RRC_IDLE") transitions to.
  • the state estimation unit 1303 when the TL is T 1 or less, the resource state in the communication device 20a is transitioned to the "RRC_CONNECTED", then estimates not been shifted from the "RRC_IDLE". Therefore, the state estimation unit 1303 estimates that the probability that the resource state is “RRC_CONNECTED” is 1 (that is, the probability that it is “RRC_IDLE” is 0).
  • T 1 is 10 seconds, but other values may be used. Since the communication carrier sets a value related to the inactivity timer (T 1 in the above example), the state estimation unit 1303 estimates the resource state based on the value set by the communication carrier.
  • the delay estimation unit 103 estimates a delay time related to the communication device 20a based on the resource state estimated by the state estimation unit 1303.
  • the delay estimation apparatus 1301 according to the third embodiment includes the same configuration as that of the first embodiment, the first embodiment can enjoy the same effects as those of the third embodiment. That is, according to the delay estimation apparatus 1301 according to the third embodiment, it is possible to estimate the delay time associated with communication by the communication apparatus with high accuracy.
  • the delay estimation device 1301 estimates the resource state in the communication device 20a based on communication history information regarding the frequency with which communication occurs. For this reason, for example, when the frequency of occurrence of communication has periodicity, the delay estimation device 1301 can estimate the resource state in the communication device with higher accuracy based on the periodicity.
  • the delay time associated with communication by the communication device 105 can be estimated with high accuracy.
  • the delay estimation device 1301 may estimate the resource state based on communication history information including information related to communication index information at a time close to the time at which the resource state is estimated. Since the communication index information at a time close to the estimated time is likely to be similar to the communication index information at the estimated time, the delay estimation device 1301 can estimate the resource state in the communication device 105 with higher accuracy. it can.
  • FIG. 12 is a block diagram showing the configuration of the delay estimation apparatus 1101 according to the fourth embodiment of the present invention.
  • FIG. 13 is a flowchart showing the flow of processing in the delay estimation apparatus 1101 according to the fourth embodiment.
  • the delay estimation apparatus 1101 includes an index calculation unit 302, a state estimation unit 1103, a delay estimation unit 103, and a periodic communication detection unit 1102.
  • the delay estimation device 1101 can transmit / receive information to / from the communication device 105 via the communication network 104.
  • the periodic communication detection unit 1102 determines that communication periodically performed in the period C has been detected.
  • the periodic communication detection unit 1102 may detect a plurality of periodically performed communications.
  • the delay estimation device 1101 starts processing for estimating a delay time related to the communication device 20a.
  • the periodic communication detection unit 1102 reads communication history information related to communication performed by the communication device 20a from a storage unit (not shown). Next, for example, according to the processing method as described above, the periodic communication detection unit 1102 detects whether communication is periodically performed based on the time in the read communication history information (step S1202).
  • the periodic communication detection unit 1102 estimates that the resource state in the communication device 20a is a communicable state and is not in a dormant state.
  • the communicable state is “RRC_CONNECTED”.
  • the dormant state is “RRC_IDLE”.
  • Periodic communication detection section 1102 transmits a signal related to the estimated result to state estimation section 1103.
  • the state estimation unit 1103 receives the signal, and estimates that the probability that the resource state is “RRC_CONNECTED” is 1 based on the received signal (step S1206).
  • the delay estimation unit 103 estimates a delay time related to the communication device 20a based on the resource state estimated by the state estimation unit 1103 (step S1207).
  • the periodic communication detection unit 1102 performs the processing in step S1203, step S1204, or step S1205 as described above.
  • Condition 1 It is determined that there is no t n satisfying (t ⁇ T 1 ) ⁇ t n ⁇ t (where n is an integer of 1 or more) among t n in Expression 7.
  • Condition 2 It is determined that communication is not performed periodically (determined as NO in step S1202).
  • the periodic communication detection unit 1102 detects that the communication is periodic when the communication is periodically performed.
  • the state estimation unit 102 estimates the resource state in the communication device 105 based on the period. For this reason, the precision which estimates the resource state in the communication apparatus 105 improves further.
  • FIG. 14 is a diagram schematically illustrating a hardware configuration of a calculation processing apparatus that can implement the delay estimation apparatus according to the first to fourth embodiments.
  • the computing device 20 includes a central processing unit (Central Processing Unit, hereinafter referred to as “CPU”) 21, a memory 22, a disk 23, and a nonvolatile recording medium 24.
  • the calculation processing device 20 further includes an input device 25, an output device 26, and a communication interface (hereinafter referred to as “communication IF”) 27.
  • the calculation processing device 20 can transmit / receive information to / from other calculation processing devices and communication devices via the communication IF 27.
  • the non-volatile recording medium 24 refers to a computer-readable medium, holds the program without being supplied with power, and can be carried.
  • the nonvolatile recording medium 24 is, for example, a medium described later. That is, ⁇ Compact Disc, ⁇ Digital Versatile Disc (Digital_Versatile_Disc), ⁇ Blu-ray Disc (registered trademark), -Universal serial bus memory (USB memory), Solid state drive (Solid State Drive).
  • the CPU 21 copies a software program (computer program: hereinafter simply referred to as “program”) stored in the disk 23 to the memory 22 and executes arithmetic processing.
  • the CPU 21 reads data necessary for program execution from the memory 22. When the display is necessary, the CPU 21 displays the output result on the output device 26. When inputting a program from the outside, the CPU 21 reads the program from the input device 25.
  • the CPU 21 executes a delay estimation program (FIG. 8, FIG. 9, FIG. 9) in the memory 22 corresponding to the function (processing) represented by each unit shown in FIG. 1, FIG. 3, FIG. 4, FIG. Alternatively, FIG. 13) is interpreted and executed.
  • the CPU 21 sequentially performs the processes described in the above-described embodiments of the present invention.
  • the present invention can also be realized by such a delay estimation program. Furthermore, it can be understood that the present invention can also be realized by a computer-readable non-volatile recording medium in which the delay estimation program is recorded.
  • Communication history storage means capable of storing the communication history information;
  • history creating means for associating the identifier with the specific time and storing it in the communication history storage means; Further comprising
  • the index calculation unit reads the time associated with the identifier representing the communication device from the communication history storage unit, and calculates the communication index information based on the read time.
  • the state estimation means calculates the index in response to the communication device transmitting the communication history information to the delay estimation device via a wireless communication network. Delay estimation device.
  • a delay estimation system comprising: the delay estimation device according to any one of supplementary notes 1 to 10.
  • an index representing a specific resource state is calculated out of resource states representing the state in the communication device, and the specific A delay estimation method for estimating a time during which communication by the communication device is delayed based on a time associated with a resource state and the index.
  • a recording medium for storing a delay estimation program that causes a computer to implement a delay estimation function that estimates a time during which communication by the communication device is delayed based on the time associated with the specific resource state and the index.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 通信装置による通信に伴う遅延時間を高精度に推定することができる遅延推定装置等が開示される。 遅延推定装置101は、通信装置105が通信する履歴を表す通信履歴情報に基づき、通信装置105における状態を表すリソース状態のうち、特定のリソース状態であることを表す指標を算出する状態推定部102と、特定のリソース状態に関連付けされた時間と指標とに基づき、通信装置105による通信が遅延する時間を推定する遅延推定部103とを有する。

Description

遅延推定装置、遅延推定方法、記録媒体、及び、情報システム
 本発明は、たとえば、通信ネットワークを介して実施する通信に関する遅延時間を推定する遅延推定装置等に関する。
 インターネットプロトコル(以降、「IP」と表す)ネットワークは、IP技術を利用することにより、複数の情報処理装置(「通信装置」を含む)間において相互に情報を送受信する通信ネットワーク(以降、「ネットワーク」と表す)である。IPネットワークにおいて広く使われる要素技術の一つとして、パケットを通信する際に生じる遅延時間に基づいて通信を制御する方法がある。
 たとえば、TCPに従い通信する場合に、通信装置は、パケットロスを検知するのに応じて、該パケットを通信先である情報処理装置に再送する。ここで、TCPは、トランスミッションコントロールプロトコル(Transmission_Control_Protocol)である。係る通信装置は、TCPに従い、係るパケットを繰り返し送信することができるので、該パケットを通信先である情報処理装置に確実に送信できる。
 このような通信装置は、パケットを送受信する複数の情報処理装置間に生じる通信遅延時間(以降、「遅延時間」と表す)に応じて、パケットを再送するタイミング(時刻)を調整する。このため、通信ネットワークにかかる負荷は、過大にならない。この結果、通信ネットワークにおいてパケットがロスされる場合でも、通信遅延(以降、「遅延」と表す)は、過大にならない。
 特許文献1及び特許文献2は、上述したような通信ネットワークを制御する技術を開示する。
 特許文献1は、該遅延に係る時間に応じて、コンテンツを再生するタイミングを調整することにより、IPネットワークを介して情報を送受信する情報処理装置が、相互に同期しながら、同一のコンテンツを再生する技術を開示する。ただし、特許文献1が開示する技術に基づき過大な遅延を防ぐためには、複数の情報処理装置間に生じる遅延時間を、高精度に推定する必要がある。
 特許文献2は、パケットを送信する時刻と、パケットを受信する時刻とを測定し、測定した受信時刻と送信時刻との差に基づいて、パケットに関する遅延時間を推定する技術を開示する。特許文献2が開示する技術は、たとえば、固定通信ネットワークのように、所定の期間に一定の確率においてパケットに関する遅延が生じる場合に、遅延時間を高精度に推定する。
 一方、無線通信ネットワークにおいてパケットを通信する一例として、W-CDMA(Wideband_Code_Division_Multiple_Access)の規格に準拠する無線通信ネットワークがある。また、一例として、LTE(Long_Term_Evolution)、または、HSPA(High_Speed_Packet_Access)等の規格に準拠する無線通信ネットワークがある。
 上記の規格においては、通信するパケットの量等に応じて、リソースに関する状態(Radio_Resource_Control、「RRC状態」、以降、「リソース状態」とも表す)を変更する技術が知られている。該規格に従えば、リソース状態を設定することにより、消費電力を低減することができる。たとえば、上記の技術は、情報処理装置が、所定の期間にパケットを通信しない場合に、リソース状態を、消費電力が大きな通信可能状態から、消費電力が小さな一時停止状態へと切り替える。たとえば、通信可能状態は、「RRC_CONNECTED」である。たとえば、一時停止状態は、「RRC_IDLE」である。また、該技術は、情報処理装置におけるリソース状態が一時停止状態である状況において、パケットを送受信する場合に、リソース状態を通信可能状態に切り替え、その後、該パケットを送受信する。
 したがって、所定の期間にパケットが遅延する確率は、無線通信ネットワークを利用する情報処理装置におけるリソース状態に応じて大きく変化する。
 たとえば、W-CDMAにおける「CELL_DCH」や、LTEにおいて、「RRC_CONNECTED」にある情報処理装置が、パケットを受信するまでに要する遅延時間は、100ミリ秒程度である。
 一方、W-CDMAにおいて「IDLE」、及び、LTEにおいて「RRC_IDLE」にある情報処理装置にパケットを送信する場合に、遅延時間は、1秒弱乃至数秒程度である。この遅延時間は、リソース状態を通信可能状態に切り替える時間と、パケットを受信するまでに要する遅延時間とを合算した値である。
 尚、LTE、W-CDMA、及び、HSPAにおけるリソース状態の種別及びリソース状態の遷移に関する仕組みについては、通信規格に関する標準化団体が設立する3GPPに従って規定されている。3GPPは、「Third_Generation_Partnership_Project」を表す。そして、これらリソース状態の遷移等については非特許文献1及び非特許文献2に詳細に記載されているので、ここでは詳細な説明を省略する。以降、上述したようなリソース状態を、所定のリソース状態と表す。
 特許文献3乃至特許文献6は、本発明に関連する技術を開示する。
 特許文献3が開示する情報処理装置は、無線通信において、接続対象である基地局と無線通信装置との干渉度合いを表す干渉指標と、該干渉指標に係る位置に関する位置情報とを取得する。該情報処理装置は、該位置情報に基づいて該干渉指標を推定し、推定した干渉指標に基づいて、通信状態を通知するための通信状態情報を作成する。
 該情報処理装置は、基地局における混雑具合を表す混雑度に基づき、該通信状態情報の一部である通信速度に関する情報を作成する。該情報処理装置は、混雑度を時間帯ごとに分類し、前日の同じ時間帯における該混雑度に応じて、通信速度を推定する。該情報処理装置により、無線通信における通信状態を把握することが可能になる。
 特許文献4が開示する基地局装置は、移動局との通信において、特定の周波数帯域を使用可能か否かについて定期的に判定する。該基地局装置は、移動局と通信する場合に、該移動局との通信状態に応じて、使用可能と判定された周波数帯域を利用する。該基地局装置により、周波数帯域を効率よく利用することが可能になる。
 特許文献5が開示する通信システムは、計測された通信ネットワークの状況に応じて、パケットに対する冗長度を決定する。該通信システムは、該冗長度に応じた割合において、冗長なパケットを生成し、生成した冗長なパケットを受信端末に送信する。該通信システムにより、多大なコストを必要とすることなく、パケットを用いた音声通信を高音質化することが可能になる。
 特許文献6が開示する通信システムは、1つの通信プロトコルレイヤから、他の1つの通信プロトコルレイヤへ、データを受信したことを表すメッセージを送信するタイミングを制御する。該通信システムにより、通信リソースを効率的に利用することが可能になる。
特開2005-210491号公報 特開2013-106305号公報 国際公開第2013/038777号 特開2007-202039号公報 特開2006-109325号公報 特表2005-525748号公報
3GPP TS 25.331 : Radio Resource Control (RRC) ; Protocol specification、[online]、[2013年1月30日検索]、インターネット<http://www.3gpp.org/ftp/Specs/archive/25_series/25.331/> 3GPP TS 36.331 :  Evolved_Universal_Terrestrial_Radio_Access (E-UTRA); Radio_Resource_Control_(RRC) ; Protocol_specification、[online]、[2013年1月30日検索]、インターネット<http://www.3gpp.org/ftp/Specs/archive/36_series/36.331/>
 上述したように、たとえば、無線通信ネットワークを利用する場合における遅延時間は、情報処理装置におけるリソース状態に応じて大きく変化する。
 特許文献2が開示する技術は、所定の時間に一定の確率で遅延が生じるという仮定に基づき遅延時間を推定するので、情報処理装置が一時停止状態であるとしても、遅延時間を100ミリ秒程度であると推定する。ところが、実際には、一時停止状態にある情報処理装置にパケットを送信する場合に、遅延時間は、上述したように数秒程度である。したがって、該技術が推定する遅延時間と、実際の遅延時間とは大きく異なる。
 たとえば、無線通信ネットワーク等のように、パケットに関する通信遅延が生じる確率が大きく変動する場合に、特許文献2が開示する技術は、パケットに関する遅延時間を正確に推定することができない。この原因は、該技術において所定の時間に一定の確率において遅延が生じるという仮定が、時刻に応じて確率が大きく変化する状況に適合しないからである。
 また、特許文献3が開示する情報処理装置は、前日の同じ時間帯における混雑度に応じて通信速度を推定する。しかし、前日の同じ時間帯における混雑度が通信速度を推定する時刻における混雑度を表すとは限らないので、該情報処理装置は、通信速度を高精度に推定できるとは限らない。
 そこで、本発明の主たる目的は、通信装置による通信に伴う遅延時間を高精度に推定する遅延推定装置等を提供することである。
 前述の目的を達成するために、本発明の一態様において、遅延推定装置は、以下の構成を備える。
 すなわち、遅延推定装置は、
 通信装置が通信する履歴を表す通信履歴情報に基づき、前記通信装置における状態を表すリソース状態のうち、特定のリソース状態であることを表す指標を算出する状態推定手段と、
 前記特定のリソース状態に関連付けされた時間と前記指標とに基づき、前記通信装置による通信が遅延する時間を推定する遅延推定手段と
 を備える。
 また、本発明の他の見地として、遅延推定方法は、
 情報処理装置を用いて、通信装置が通信する履歴を表す通信履歴情報に基づき、前記通信装置における状態を表すリソース状態のうち、特定のリソース状態であることを表す指標を算出し、前記特定のリソース状態に関連付けされた時間と前記指標とに基づき、前記通信装置による通信が遅延する時間を推定する。
 さらに、同目的は、係る遅延推定プログラム、および、そのプログラムを記録するコンピュータ読み取り可能な記録媒体によっても実現される。
 本発明に係る遅延推定装置等によれば、通信装置による通信に伴う遅延時間を高精度に推定することができる。
本発明の第1の実施形態に係る遅延推定装置が有する構成を示すブロック図である。 通信時間情報の一例を概念的に表す図である。 本発明の第2の実施形態に係る遅延推定装置が有する構成を示すブロック図である。 第2の実施形態に係る情報処理装置が有する構成を表すブロック図である。 通信履歴情報の一例を概念的に表す図である。 通信履歴情報の一例を概念的に表す図である。 第2の実施形態に係る情報処理装置が通信履歴情報を格納する処理を表すフローチャートである。 第2の実施形態に係る情報処理装置が通信履歴情報を遅延推定装置に送信する処理を表すシーケンス図である。 第2の実施形態に係る情報処理装置に関する遅延時間を推定する処理を表すフローチャートである。 本発明の第3の実施形態に係る遅延推定装置が有する構成を示すブロック図である。 第3の実施形態に係る遅延推定装置における処理の流れを示すフローチャートである。 本発明の第4の実施形態に係る遅延推定装置が有する構成を示すブロック図である。 第4の実施形態に係る遅延推定装置における処理の流れを示すフローチャートである。 本発明の各実施形態に係る遅延推定装置を実現可能な計算処理装置のハードウェア構成を、概略的に示すブロック図である。
 次に、本発明を実施する実施形態について図面を参照しながら詳細に説明する。
 <第1の実施形態>
 本発明の第1の実施形態に係る遅延推定装置101が有する構成と、遅延推定装置101が行う処理とについて、図1を参照しながら詳細に説明する。図1は、本発明の第1の実施形態に係る遅延推定装置101が有する構成を示すブロック図である。
 第1の実施形態に係る遅延推定装置101は、状態推定部102と、遅延推定部103とを有する。
 遅延推定装置101は、通信ネットワーク104を介して、通信装置105と情報を送受信することができる。
 通信装置105は、背景技術において上述したように、通信ネットワーク104を介して情報を送受信する状況に応じて、リソース状態を変更する。
 リソース状態は、たとえば、通信可能状態、及び、一時停止状態等、複数の状態を含む。以降においては、説明の便宜上、リソース状態は、通信可能状態、及び、一時停止状態とから構成されるとする。
 たとえば、通信装置105は、ユーザが操作する通信装置である。通信装置105は、たとえば、W―CDMA及びLTE等の規格に準拠する無線通信技術等を用いる通信ネットワーク104を介して、遅延推定装置101と情報を送受信する。
 通信装置105は、他の情報処理装置と通信する状況において、リソース状態が一時停止状態である場合に、該リソース状態を通信可能状態に設定する。その後、通信装置105は、他の情報処理装置と通信する。
 一方、通信装置105は、通信しない時間を測定するインアクティブタイマー(不図示)を有してもよい。通信装置105は、インアクティブタイマーが測定する時間が、所定の第1時間(以降、「時間T」と表す)以上である場合に、リソース状態を一時停止状態に設定する。
 まず、状態推定部102は、単位時間あたりに、通信装置105が通信する回数を表す通信指標情報を受信する。次に、状態推定部102は、受信した通信指標情報に基づいて、通信装置105におけるリソース状態が、所定のリソース状態のうち特定のリソース状態であることを表す指標を算出する。
 上述したように、通信装置105は、時間Tにおいて通信しない場合に、リソース状態を一時停止状態に設定する。次に、状態推定部102は、時刻(タイミング)tにおいてリソース状態が一時停止状態である確率を推定する。状態推定部102が推定する確率は、時刻tにおいてリソース状態が一時停止状態である確率が、時刻(t-T)乃至時刻tにおいて情報処理装置が通信しない確率に等しいことに基づく。
 ここで、通信指標情報λ(t)は、時刻tにおいて単位時間あたりに通信装置105が通信する確率を表すとする。また、PI(t)は、時刻tにおいて、リソース状態が一時停止状態である確率を表すとする。通信装置105が、所定の第1時間Tを経た後に、リソース状態を一時停止状態に設定するので、PI(t)は、通信装置105が時刻(t-T)乃至時刻tにおいて通信しない確率ともいうことができる。
 この場合に、時刻t乃至時刻(t+Δt)において、通信装置105が通信する確率は、λ(t)×Δtである。
 通信装置105は、リソース状態が時刻tにおいて一時停止状態であり、さらに、時刻t乃至時刻(t+Δt)において通信しない場合に、時刻(t-T)乃至時刻(t+Δt)において通信しない。
 さて、PI(t+Δt)は、時刻(t+Δt)においてリソース状態が一時停止状態である確率を表す。
 PI(t+Δt)は、時刻tにおいてリソース状態が一時停止状態である確率PI(t)と、時刻t乃至時刻(t+Δt)において通信しない確率(1-λ(t)×Δt)の積(すなわち、式1)となる。
Figure JPOXMLDOC01-appb-I000001
       ・・・(式1)。
 Δtが極めて小さい場合に、式1は、式2である。
Figure JPOXMLDOC01-appb-I000002
          ・・・(式2)。
 式2を時刻(t-T)乃至時刻tにおいて積分し、積分した式に、PI(t-T)=1(すなわち、間隔が0の場合に、通信が発生しない確率は、1である)を適用することにより、式3が得られる。

Figure JPOXMLDOC01-appb-I000003
                   ・・・(式3)。
   (ただし、expは、指数関数を表す)。
 また、時刻tにおいてリソース状態が通信可能状態である確率は、時刻(t-T)乃至時刻tにおいて通信装置105が少なくとも1回通信する確率と等しい。これに基づき、状態推定部102は、時刻tにおいてリソース状態が通信可能状態である確率を推定する。
 したがって、状態推定部102は、式3に従い、リソース状態が一時停止状態である確率PI(t)を推定する。
 すなわち、状態推定部102は、式4に従い、リソース状態が通信可能状態である確率PC(t)を推定する。
  PC(t)=1-PI(t)・・・(式4)。
 次に、遅延推定部103は、状態推定部102が算出する特定のリソース状態に関連付けされた時間と、リソース状態が特定のリソース状態であることを表す指標とに基づき、通信が遅延する時間を推定する。
 たとえば、遅延推定部103は、リソース状態と、通信装置105が該リソース状態である場合に、通信時間情報(図2)から、状態推定部102が算出する特定のリソース状態に関連付けされた処理時間を読み取る。通信時間情報は、他の通信装置105と通信するのに要する処理時間とを関連付けする。図2は、通信時間情報の一例を概念的に表す図である。
 たとえば、図2において、「通信可能状態」は、「50」に関連付けされている。これは、通信装置105におけるリソース状態が通信可能状態である場合に、通信を実施するまでに50ミリ秒を要することを表す。また、図2において、「一時停止状態」は、「1000」に関連付けされている。これは、通信装置105におけるリソース状態が一時停止状態である場合に、通信を実施するまでに1000ミリ秒を要することを表す。
 図2において、処理時間をミリ秒単位にて表したが、必ずしも、ミリ秒単位でなくてもよい。また、遅延推定装置101を管理する管理者が、各リソース状態における処理時間を測定し、測定した処理時間の平均値を処理時間として、通信時間情報に格納してもよい。
 また、上述した例においては、通信装置105の種別、及び、通信ネットワークを提供する通信事業者を区別せずに、通信時間情報に処理時間を一律に格納する。しかし、通信時間情報は、情報処理装置の種別、及び、通信事業者等に応じた個別の処理時間であってもよい。
 たとえば、通信時間情報が通信事業者に関する情報を含む場合に、通信事業者ごとに、リソース状態が処理時間に関連付けされていてもよい。この場合に、遅延推定部103は、通信事業者に応じて、以降に示す処理を実施する。
 たとえば、状態推定部102が、後述のケース1乃至ケース3のように推定する場合に、遅延推定部103が行う処理について説明する。
  ケース1:リソース状態が通信可能状態である確率が100%、リソース状態が一時停止状態である確率が0%、
  ケース2:リソース状態が通信可能状態である確率が0%、リソース状態が一時停止状態である確率が100%、
  ケース3:リソース状態が通信可能状態である確率が80%、リソース状態が一時停止状態である確率が20%。
 遅延推定部103は、ケース1の場合に、通信時間情報において、「通信可能状態」に関連付けされた「50」を読み取り、読み取った「50」を遅延時間として推定する。また、遅延推定部103は、ケース2の場合に、通信時間情報において、「一時停止状態」に関連付けされた「1000」を読み取り、読み取った「1000」を遅延時間として推定する。
 さらに、遅延推定部103は、ケース3の場合に、通信時間情報において、「通信可能状態」及び「一時停止状態」に関連付けされた「50」及び「1000」を、それぞれ読み取る。次に、遅延推定部103は、「50」である確率が80%、「1000」である確率が20%であるので、期待値として算出される240(=50×80%+1000×20%)を遅延時間として推定する。
 尚、上述した説明において、期待値に基づいて遅延時間を算出したが、必ずしも、期待値である必要はなく、たとえば、あらかじめ、通信時間情報が、特定のリソース状態、及び、特定のリソース状態である確率を含んでいてもよい。この場合に、遅延推定部103は、特定のリソース状態、及び、特定のリソース状態である確率に関連付けされた処理時間を読み取り、読み取った処理時間を遅延時間として推定する。
 たとえば、無線通信ネットワークの場合に、リソース状態に応じて処理時間は相互に大きく異なる。このような場合にも、遅延推定装置101は、リソース状態に基づき遅延時間を推定する。この結果、第1の実施形態に係る遅延推定装置101によれば、通信装置105による通信に伴う遅延時間を高精度に推定することができる。
 一方、特許文献2及び特許文献3が開示するシステムは、リソース状態に基づかずに遅延時間を推定する。上述したように、遅延時間は、リソース状態に応じて大きく変化する。したがって、特許文献2及び特許文献3が開示するシステムは、たとえば、無線通信ネットワークにおいて、遅延時間を高精度に推定することができない。
 上記の説明において、説明の便宜上、確率を用いて説明したが、必ずしも、数学的に定義される確率である必要はなく、たとえば、定数倍した数値や、定数を足した値等を用いても、同等の処理を行うことができる。すなわち、数学的に定義される確率には限定されないので、以降では、上述した「確率」を「指標」と表すこともある。
 尚、上述した無線通信ネットワークの他、有線通信ネットワーク、または、両者を組み合わせた通信ネットワークの場合にも、本実施形態に係る遅延推定装置101は、遅延時間を高精度に推定することができる。
 <第2の実施形態>
 次に、上述した第1の実施形態を基本とする本発明の第2の実施形態について説明する。
 以降の説明においては、本実施形態に係る特徴的な部分を中心に説明すると共に、上述した第1の実施形態と同様な構成については、同一の参照番号を付すことにより、重複する説明を省略する。
 図3を参照しながら、第2の実施形態に係る遅延推定装置301が有する構成と、遅延推定装置301が行う処理とについて説明する。図3は、本発明の第2の実施形態に係る遅延推定装置301が有する構成を示すブロック図である。
 第2の実施形態に係る遅延推定装置301は、指標算出部302と、状態推定部102と、遅延推定部103とを有する。
 遅延推定装置301は、通信ネットワーク104を介して、通信装置105と情報を送受信することができる。
 まず、指標算出部302は、所定の第1時刻乃至所定の第2時刻を表す所定の時間帯に通信する回数に基づき、通信指標情報λ(t)を算出する。
 次に、状態推定部102は、指標算出部302が算出する通信指標情報λ(t)に基づいて、通信装置105におけるリソース状態が、特定のリソース状態であることを表す指標を算出する。
 たとえば、時刻tがリソース状態を推定する時刻を表す場合に、所定の第1時刻は、時刻(t-T)であり、所定の第2時刻は、時刻tであるとする。この場合に、所定の時間帯は、時刻(t-T)乃至時刻tである。
 指標算出部302は、通信装置105が時刻(t-T)乃至時刻tにおいて通信する回数に基づき、たとえば、「該回数÷T」を通信指標情報λ(t)として算出する。
 また、所定の時間帯は、複数の時間帯であってもよい。たとえば、所定の第1時刻は、時刻(t-T-N)(ただし、Nは0以上の整数である、たとえば、1日間、2日間等)であり、所定の第2時刻は、時刻(t-N)であってもよい。
 たとえば、N=1(日間)である場合に、指標算出部302は、通信装置105が1日前の時刻(t-T)乃至時刻tにおいて通信する回数M(1)に基づき、「M(1)÷T」を通信指標情報λ(t)として算出する。
 以降、通信装置105がN日前の時刻(t-T)乃至時刻tにおいて通信する回数を、M(N)と表す。
 たとえば、N=1及び2(日間)である場合に、指標算出部302は、通信装置105が1日前の時刻(t-T)乃至時刻tにおいて通信する回数M(1)に基づき「M(1)÷T」を算出する。次に、指標算出部302は、通信装置105が2日前の時刻(t-T)乃至時刻tにおいて通信する回数M(2)に基づき「M(2)÷T」を算出する。次に、指標算出部302は、算出した2つの値に関する平均値を算出することにより、通信指標情報λ(t)を算出する。
 また、指標算出部302は、Nが2以上である場合には、上述したように、それぞれ算出した値に関する平均値を算出することにより、通信指標情報λ(t)を算出する。
 尚、上述した説明においては、指標算出部302が、それぞれ算出した値に関する平均値を算出したが、必ずしも、平均値である必要はない。たとえば、指標算出部302は、重みつきの平均値、または、算出した値を統計的に処理すること(たとえば、Nと、それぞれのNにおいて算出された値との推移を調べる等)によって、通信指標情報λ(t)を算出してもよい。すなわち、それぞれ算出した値から通信指標情報λ(t)を算出する手順は、上述した例に限定されない。
 通信装置105が通信する回数が、周期1日の周期性を有すると判定される場合に、指標算出部302は、上述したように処理することにより、該周期性に基づき通信指標情報λ(t)を算出する。この結果、指標算出部302は、通信指標情報λ(t)を、高精度に算出する。
 すなわち、状態推定部102及び遅延推定部103における推定は、さらに高精度になる。
 尚、上述した例において、Nは、1及び2(日間)であるとしたが、必ずしも、2つに限定されない。また、Nは、1週間、あるいは、1ヶ月間等、異なる値であってもよい。
 第2の実施形態に係る遅延推定装置301は、第1の実施形態と同様の構成を含むので、第2の実施形態は、第2の実施形態と同様の効果を享受することができる。すなわち、第2の実施形態に係る遅延推定装置301によれば、通信装置105による通信に伴う遅延時間を高精度に推定することができる。
 また、通信装置105は、複数台であってもよい。また、遅延推定装置301は、複数台であってもよい。すなわち、遅延推定装置301の台数、及び、通信装置105の台数は、上述した例に限定されない。
 図4に示すように、通信装置105は、監視部905、通信部906、履歴送信部907、状態設定部908、及び、送信判定部909を有してもよい。図4は、第2の実施形態に係る通信装置105が有する構成を表すブロック図である。この場合に、通信装置105における各部は後述の例に示す処理を行う。
 まず、監視部905は、通信部906において通信が発生する時刻を検出する。次に、監視部905は、検出した時刻と、通信装置105を識別する識別子(identifier、以降「ID」と表す)とを関連付けて、図5に例示するような通信履歴情報として記憶部(不図示)に格納する。
 図5は、通信履歴情報の一例を概念的に表す図である。図5において、ID「20a」は、時刻「187、418、754」に関連付けされている。これは、ID「20a」に関連付けされた通信装置105が、時刻「187」、時刻「418」、及び、時刻「754」に通信部906を介して通信することを表す。
 以降の説明においては、1回の通信は、通信部906が通信を実施した後に、一定の期間(以降、「期間TN」と表す)通信しないことに応じて終了するとする。また、通信時刻は、期間TNにおいて通信しない場合に、最初に通信する時刻であるとする。また、以降の例において、説明の便宜上、期間TNは、10秒間であるとする。尚、通信履歴情報は、通信を開始する時刻を通信時刻として含むが、該通信に関する他の時刻で記憶してもよい。たとえば、通信時刻は、パケットを送受信する時刻であってもよい。
 通信部906は、W―CDMAやLTE等の無線通信ネットワークに関する規格等に従い、通信ネットワーク104を介して、遅延推定装置901及びインターネットにおけるWebサーバ等を含む通信装置105と情報を送受信する。通信部906は、通信装置105が処理する各種アプリケーション(図4に図示せず)に従い、通信先の通信装置105(以降、「第1情報処理装置」と表す)に情報を送信する。さらに、通信部906は、受信した情報から通信先に関する通信先情報を読み取り、読み取った通信先情報を、第1情報処理装置に送信する。第1情報処理装置は、該通信先情報を受信し、受信した通信先情報をアプリケーションに従い処理する。
 履歴送信部907は、図6に例示すような、記憶部(不図示)が記憶する通信履歴情報を履歴受信部902に送信する。図6は、通信履歴情報の一例を概念的に表す図である。
 通信履歴情報は、通信装置105を一意に識別する識別子と、該通信装置105が通信する時刻に関する時刻情報とを関連付ける。図6において、通信履歴情報は、たとえば、識別子「20c」、時刻「9878619」、時刻「9905742」、及び、時刻「9995259」を関連付ける。これは、識別子「20c」に関連付けされた通信装置105が、時刻「9878619」、時刻「9905742」、及び、時刻「9995259」において、通信を実施することを表す。
 状態設定部908は、通信部906が実施する通信に応じて、通信装置105におけるリソース状態を変更する。
 次に、図7乃至図9を参照しながら、本実施形態に係る通信装置105における処理について説明する。図7は、第2の実施形態に係る通信装置105が通信履歴情報を格納する処理を表すフローチャートである。図8は、第2の実施形態に係る通信装置105が通信履歴情報を遅延推定装置901に送信する処理を表すシーケンス図である。図9は、遅延推定装置901が通信装置105から受信する通信履歴情報に基づき、通信装置105に関する遅延時間を推定する処理を表すフローチャートである。
 尚、以降の説明においては、説明の便宜上、遅延推定装置901は、特定の通信装置105(たとえば、「通信装置20a」と表す)に関する遅延時間を推定するとする。また、通信装置20aは、LTE通信ネットワークに接続しているとする。さらに、通信装置20aにおけるリソース状態は、通信可能状態(すなわち、「RRC_CONNECTED」)、または、休止状態(すなわち、「RRC_IDLE」)であるとする。
 図7を参照しながら、通信装置20aが、通信履歴情報を記憶部(不図示)に格納する処理について説明する。
 まず、通信部906は、通信を実施する(ステップS601)。通信を実施するにあたり、通信装置20aにおけるリソース状態が休止状態である場合に、状態設定部908は、通信装置20aにおけるリソース状態を、通信可能状態に変更する。
 監視部905は、通信部906が通信するタイミング(時刻)の間隔が所定の期間(以降、「TN」と表す)以上であるか否かを判定する(ステップS602)。
 説明の便宜上、期間TNは、10000ミリ秒間であるとする。また、通信部906は、時刻「485987」において通信を実施するとし、時刻「485987」乃至時刻「589754」において、通信を実施しないとする。
 監視部905は、通信部906が通信するタイミングの間隔(すなわち、時刻「485987」と時刻「589754」との間隔)が10000ミリ秒以上であると判定する(ステップS602にてYESと判定)。
 監視部905は、この場合に、通信部906が異なる2つの通信を実施したと判定するので、時刻「589754」を記憶部(不図示)に格納する。監視部905は、既に記憶部(不図示)が異なる時刻を記憶している場合に、記憶している情報に時刻「589754」を追記する。たとえば、記憶部(不図示)が「485418」を記憶している場合に、監視部905は、「485418」を更新することにより、「485418、589754」を格納する(ステップS603)。次に、監視部905は、通信部906が通信を開始するまでの間、上述した処理を行わない(ステップS604)。
 たとえば、通信部906は、時刻「485987」及び時刻「485990」に通信するとする。
 この場合に、監視部905は、ステップS602において、通信するタイミングの間隔が10000ミリ秒未満であると判定(ステップS602にてNOと判定)する。監視部905は、時刻「485987」における通信が時刻「485990」まで継続していると判定する。この場合に、監視部905は、ステップS603に示す処理を行わず、通信部906が、次回、通信を行うまでの間、上述した処理を行わない(ステップS604)。
 以降、監視部905は、ステップS601以降の処理を繰り返す。
 次に、図8を参照しながら、通信装置20aが、通信履歴情報を遅延推定装置901に送信する処理の例について説明する。
 まず、通信装置20aは、所定の時刻において、通信履歴情報を遅延推定装置901に送信する(ステップS701)とする。
 所定の時刻は、たとえば、「午前1:00」である。尚、所定の時刻、及び、回数は、上述した例に限定されない。また、所定の時刻は、情報処理装置ごとに異なってもよい。
 履歴送信部907は、記憶部(不図示)から、通信を実施した時刻を読み取る。その後、履歴送信部907は、読み取った時刻と、通信装置20aを表す識別子(すなわち、「20a」)とを関連付けることにより、図5に例示する通信履歴情報を作成する(ステップS702)。その後、履歴送信部907は、読み取った時刻を消去してもよい。
 履歴送信部907は、該通信履歴情報を遅延推定装置901に送信する(ステップS703)。
 履歴受信部902は、該通信履歴情報を受信する(ステップS704)。
 次に、履歴受信部902は、記憶部(不図示)が記憶する通信履歴情報(図6)を更新する。記憶部(不図示)が、識別子「20a」に関連付けされた情報を記憶していない場合に、履歴受信部902は、記憶部(不図示)に新規に識別子「20a」を格納する領域を作成し、作成した領域に受信した通信履歴情報を格納する。また、記憶部(不図示)が、識別子「20a」に関連付けされた情報を記憶している場合に、履歴受信部902は、識別子「20a」に関連付けされた時刻に、受信した通信履歴情報に含まれる時刻を追加する(ステップS705)。
 次に、図9を参照しながら、遅延推定装置901が通信装置20aに関する遅延時間を推定する処理について説明する。
 まず、遅延推定装置901は、たとえば、クラウドにおける情報処理装置(サーバ、不図示)が、更新通知を通信装置20aに送信するのをきっかけとして、推定する処理を開始する。
 指標算出部903は、通信装置20aが通信を実施する通信指標情報を算出する。指標算出部903は、通信履歴情報から通信装置20aが通信する時刻を読み取り、読み取った時刻に基づいて、たとえば、第1の実施形態に示したように、通信装置20aが通信する通信指標情報λ(t)を算出する(ステップS801)。次に、状態推定部102は、算出した通信指標情報λ(t)に基づき、式3及び式4に従い、通信装置20aにおけるリソース状態に関する確率を算出する(ステップS802)。
 即ち、遅延推定部103は、下記の2つの項目に基づき、通信装置20aに関する遅延時間を推定する(ステップS802)。
   項目1:状態推定部102が算出したリソース状態、及び、該リソース状態に関する確率、
   項目2:図2が例示する通信時間情報において、該リソース状態に関連付けされた遅延時間。
 上述したように、遅延時間は、通信装置20aにおけるリソース状態に応じて変化する。遅延推定装置901は、通信装置20aにおけるリソース状態を推定し、推定したリソース状態に基づいて遅延時間を推定する。したがって、本実施形態に係る遅延推定装置901によれば、通信装置105による通信に伴う遅延時間を高精度に推定することができる。
 さらに、通信指標情報λ(t)が特定の周期に基づき変化する場合に、遅延推定装置901は、該特定の周期に基づき、通信指標情報λ(t)を推定する。したがって、本実施形態に係る遅延推定装置901によれば、通信装置105による通信に伴う遅延時間をさらに正確に推定することができる。
 <第3の実施形態>
 次に、上述した第1の実施形態を基本とする本発明の第3の実施形態について説明する。
 以下の説明においては、本実施形態に係る特徴的な部分を中心に説明すると共に、上述した第1の実施形態と同様な構成については、同一の参照番号を付すことにより、重複する説明を省略する。
 図10と図11とを参照しながら、第3の実施形態に係る遅延推定装置1301が有する構成と、遅延推定装置1301が行う処理とについて説明する。図10は、本発明の第3の実施形態に係る遅延推定装置1301が有する構成を示すブロック図である。図11は、第3の実施形態に係る遅延推定装置1301における処理の流れを示すフローチャートである。
 第3の実施形態に係る遅延推定装置1301は、指標算出部1302と、状態推定部1303と、遅延推定部103とを有する。
 遅延推定装置1301は、通信ネットワーク104を介して、通信装置105と情報を送受信することができる。
 通信装置105は、第3時刻に通信を実施する(ステップS1001)。次に、通信装置105は、通信を実施するタイミングの間隔が所定の期間(時間)以上であるか否かを判定する(ステップS1002)。すなわち、通信装置105は、第3時刻と、該第3時刻以前に通信を実施した時刻との間隔が、所定の期間以上であるか否かを判定する。
 通信装置105は、該間隔が所定の期間以上であると判定する場合に(ステップS1002にてYESと判定)、該第3時刻を記憶部(不図示)に通信履歴情報として格納する(ステップS1003)。すなわち、この場合に、通信装置105は、第3時刻における通信が、第3時刻以前における通信とは異なると判定する。
 その後、通信装置105は、遅延推定装置1301に該通信履歴情報を送信するのか否かを判定する(ステップS1004)。通信装置105は、たとえば、前回送信した通信履歴情報を遅延推定装置1301に送信した時刻と、今回処理を開始した時刻CTとの差TDを算出する。次に、通信装置105は、前回送信し通信履歴情報を遅延推定装置1301に送信し、その後、算出した差TDが所定の第2時間TG以上であるか否かを判定する(ステップS1004)。
 説明の便宜上、たとえば、TGが600000ミリ秒(すなわち、10分)であるとする。尚、TGの値は、上記に例示した値以外であってもよい。
 たとえば、TDが660000ミリ秒(すなわち、11分)である場合に、通信装置105は、差TDは、TG以上であると判定する(ステップS1004にてYESと判定)。
 この場合に、通信装置105は、通信履歴情報を遅延推定装置1301に送信する(ステップS1005)。通信装置105が遅延推定装置1301に通信履歴情報を送信する処理は、第1の実施形態と同一である(図6に示すシーケンス図)ので、ここでは、詳細な説明を省略する。
 通信装置105は、ステップS1004において、たとえば、TDが540000ミリ秒(すなわち、9分)である場合に、差TDがTG未満であると判定する(ステップS1004にてNOと判定)。この場合に、通信装置105は、通信履歴情報を遅延推定装置1301に送信しない。その後、通信装置105は、通信を実施するまで待機する(ステップS1006)。以降、通信装置105は、上述した処理を繰り返してもよい。
 通信装置105は、リソース状態が休止状態である場合に、通信履歴情報を遅延推定装置1301に送信するのに応じて、該リソース状態を、消費電力の大きな通信可能状態に変更する。
 通信装置105が、通信を実施した後に遅延推定装置1301に通信履歴情報を送信するので、通信履歴情報を送信する場合におけるリソース状態は、通信可能状態である。したがって、通信履歴情報を送信するので、通信装置105におけるリソース状態は、通信可能状態から休止状態に遷移することはない。このため、通信装置105は、通信履歴情報を送信し、その後、略所定の期間を経過した後に通信履歴情報を送信することによって、通信可能状態を保つことができる。この結果、遅延推定装置1301は、通信履歴情報を受信する際における負荷を低減することができる。
 次に、通信装置105に関する確率を、測定を実施する時刻の数分前から1時間程度前における通信指標情報λ(t)に基づき算出する場合について説明する。
 説明の便宜上、後述の例において、遅延推定装置1301は、識別子「20a」に関連付けされた通信装置105(以降、「通信装置20a」と表す)における遅延時間を推定するとする。また、通信装置20aは、LTE通信ネットワークを介して、遅延推定装置1301と情報を送受信可能であるとする。遅延推定装置1301における時刻と、通信装置20aにおける時刻とは、ネットワークタイムプロトコル(Network_Time_Protocol:NTP)等にあらかじめ同期されているとする。
 遅延推定装置1301は、通信装置20aに関する遅延時間を推定する処理を開始する。
 指標算出部1302は、記憶部(不図示)から、通信装置20aに関する通信履歴情報を読み取る(入手する)。次に、指標算出部1302は、通信時刻(LT-w)乃至時刻TLの期間において通信する回数(以降、Nとする)を算出する。ただし、通信時刻LTは、記憶部(不図示)における通信時刻のうち最も遅い通信時刻である。また、wは、所定の期間である。次に、指標算出部1302は、算出した回数に基づき、式5に従い、通信が発生する通信指標情報を算出する。
   通信指標情報λ(t)=N÷w・・・(式5)
 たとえば、w=300000ミリ秒(すなわち、5分)とする。LTが589754であり、さらに、時刻289754乃至時刻589754(=589754―300000ミリ秒)における通信回数が2回であるとする。この場合に、指標算出部1302は、0.0067(回/秒)(=2回÷300000ミリ秒)を算出することにより、通信指標情報λ(t)を算出する。
 λ(t)を算出する手順において、まず、たとえば、時刻を5分間隔に区切り、それぞれの期間において通信する回数と、間隔(すなわち、この例の場合に、5分)とに基づき、通信指標情報を算出する。次に、算出した通信指標情報を、指数関数を用いて平滑化することにより算出される値を通信指標情報λ(t)とする。尚、間隔は、上述した例に限定されない。
 上述した例において、遅延推定装置1301が、通知された通信装置20aに関する通信履歴情報に基づき、通信指標情報λ(t)を算出する。尚、通信装置20aが通信指標情報λ(t)を算出し、算出した通信指標情報λ(t)を通信履歴情報として送信する態様であってもよい。この場合に、遅延推定装置1301は、通信指標情報λ(t)を受信すればよい。
 次に、状態推定部1303は、時刻LTと時刻CTとの時間(以降、TLとする)を算出する。
 状態推定部1303は、算出したTLと通信指標情報λ(t)とに基づき、通信装置20aにおけるリソース状態を推定する。通信装置20aにおけるリソース状態は、通信装置20aが通信した後、一定期間(T)に送受信を行わない場合であっても、Tが経過するまで通信可能状態(すなわち、「RRC_CONNECTED」)である。通信装置20aにおけるリソース状態は、一定期間Tに送受信を行わない場合に、休止状態(LTE通信ネットワークの場合に、「RRC_IDLE」)に遷移する。
 したがって、状態推定部1303は、TLがT以下である場合に、通信装置20aにおけるリソース状態が、「RRC_CONNECTED」に遷移し、その後に、「RRC_IDLE」に遷移していないと推定する。したがって、状態推定部1303は、リソース状態が「RRC_CONNECTED」である確率が1(すなわち、「RRC_IDLE」である確率が0)であると推定する。
 また、状態推定部1303は、TLがTGより大きい場合に、(TL-TG)の期間に、通信装置20aが通信を実施していないと推定する。すなわち、状態推定部1303は、(TL-TG)の値が「T」以上である場合に、通信装置20aにおけるリソース状態が「RRC_IDLE」であると推定する。すなわち、状態推定部1303は、通信装置20aにおけるリソース状態が「RRC_CONNECTED」である確率が0(すなわち、「RRC_IDLE」である確率が1)であると推定する。
 状態推定部1303は、上述した条件を満たさない場合に、指標算出部1302が算出した通信指標情報λ(t)に基づき、式3及び式4に従い、リソース状態が「RRC_CONNECTED」である確率、及び、「RRC_IDLE」である確率を推定する。たとえば、インアクティブタイマー(すなわち、T)が10秒である場合に、状態推定部1303は、式3に従い、リソース状態が「RRC_IDLE」である確率が0.94(=exp(-0.0067×10))であると推定する。さらに、状態推定部1303は、「RRC_CONNECTED」である確率が0.06(=1-0.94)であると推定する。
 尚、上述した例において、Tが10秒であるとしたが、他の値であってもよい。通信事業者がインアクティブタイマーに関する値(上述した例の場合に、T)を設定するので、状態推定部1303は、通信事業者が設定した値に基づき、リソース状態を推定する。
 その後、遅延推定部103は、状態推定部1303が推定したリソース状態に基づき通信装置20aに関する遅延時間を推定する。
 第3の実施形態に係る遅延推定装置1301は、第1の実施形態と同様の構成を含むので、第1の実施形態は、第3の実施形態と同様の効果を享受することができる。すなわち、第3の実施形態に係る遅延推定装置1301によれば、通信装置による通信に伴う遅延時間を高精度に推定することができる。
 さらに、遅延推定装置1301は、通信が発生する頻度に関する通信履歴情報に基づき、通信装置20aにおけるリソース状態を推定する。このため、たとえば、通信が発生する頻度が周期性を有する場合に、遅延推定装置1301は、該周期性に基づいて、より通信装置におけるリソース状態を高精度に推定することができる。
 すなわち、本実施形態に係る遅延推定装置1301によれば、通信装置105による通信に伴う遅延時間を高精度に推定することができる。
 さらに、遅延推定装置1301は、リソース状態を推定する時刻に近い時間における通信指標情報に関する情報を含む通信履歴情報に基づき、リソース状態を推定してもよい。推定する時刻に近い時刻における通信指標情報が、該推定する時刻における通信指標情報に類似する可能性が高いので、遅延推定装置1301は、通信装置105におけるリソース状態をより高精度に推定することができる。
 <第4の実施形態>
 次に、上述した第2の実施形態を基本とする本発明の第4の実施形態について説明する。
 以降の説明においては、本実施形態に係る特徴的な部分を中心に説明すると共に、上述した第1の実施形態と同様な構成については、同一の参照番号を付すことにより、重複する説明を省略する。
 図12と図13とを参照しながら、第4の実施形態に係る遅延推定装置1101が有する構成と、遅延推定装置1101が行う処理とについて説明する。図12は、本発明の第4の実施形態に係る遅延推定装置1101が有する構成を示すブロック図である。図13は、第4の実施形態に係る遅延推定装置1101における処理の流れを示すフローチャートである。
 本実施形態に係る遅延推定装置1101は、指標算出部302と、状態推定部1103と、遅延推定部103と、周期通信検出部1102とを有する。
 遅延推定装置1101は、通信ネットワーク104を介して、通信装置105と情報を送受信することができる。
 たとえば、スマートフォン等の通信装置105が実行可能なアプリケーションには、コンテンツが更新されたか否かを確認する等、バックグラウンドにおいて周期的にアプリケーションサーバと通信するアプリケーションが存在する。以降の説明においては、説明の便宜上、通信装置105は、周期的に通信を実施するとする。
 周期通信検出部1102は、通信履歴情報を解析する等により、通信装置105が周期的に通信を実施するのか否かを検知する。たとえば、周期通信検出部1102は、特定の通信装置105(たとえば、「通信装置20a」とする)が周期的に実施する通信を検知する場合に、記憶部(不図示)における通信履歴情報から、通信装置20aが通信した時刻を読み取る。次に、周期通信検出部1102は、読み取った時刻のうち、式6を満たす組み合わせが存在するか否かを調べる。
   t=t+C×n・・・(式6)、
   (ただし、n=-k+1,・・・,0である。tは、通信する時刻を表す。Cは、周期を表す。また、nは、(-k+1)乃至0の整数を表す。kは、周期に関するサイクル回数を表す)。
 また、t(以降、「基準時刻」と表す)は、通信時刻のうち、記憶部(不図示)が記憶する通信装置20aに関する通信時刻LTに、もっとも近い時刻とする(t≦LT)。また、式5においてn=1を代入することにより算出されるTは、記憶部(不図示)が記憶する時刻LT以降の時刻(T≧LT)である。
 記憶部(不図示)は、上述したようなt(ただし、n=-k+1、・・・、0)を満たす通信時刻を、通信装置20aに関する通信履歴情報として記憶するとする。この場合に、周期通信検出部1102は、周期Cにて周期的に実施される通信を検出したと判定する。尚、周期通信検出部1102は、周期的に実施される通信を、複数、検出してもよい。
 また、上述した時刻は、誤差を含んでいてもよい。
 次に、図13を参照しながら、本発明の第4の実施形態に係る遅延推定装置1101における処理について説明する。
 ここで、通信装置20aは、LTE通信ネットワークに接続しているとする。
 まず、遅延推定装置1101は、通信装置20aに関する遅延時間を推定する処理を開始する。次に、周期通信検出部1102は、記憶部(不図示)から、通信装置20aが実施する通信に関する通信履歴情報を読み取る。次に、周期通信検出部1102は、たとえば、上述したような処理方法に従い、読み取った通信履歴情報における時刻に基づき、通信が周期的に実施されるか否かを検知する(ステップS1202)。
 たとえば、周期通信検出部1102は、時刻(t-T)乃至時刻tにおいて、通信装置20aが実施する通信が周期的であるか否かを判定する。この場合に、周期通信検出部1102は、検出された周期的な通信に関する、基準時刻(t)と周期(C)とに基づいて、ステップS1202に示される判定を行う。すなわち、周期通信検出部1102は、式7に示すtのうち、(t-T)≦t≦tを満たすもの(ただし、nは、1以上の整数である)が存在するか否かを判定する(ステップS1202)。
   t=t+C×n(ただし、nは、1以上の整数である)・・・(式7)。
 周期通信検出部1102は、上述したnが存在すると判定する場合に(ステップS1202にてYESと判定)、通信装置20aにおけるリソース状態が、通信可能状態であり、休止状態になっていないと推定する。たとえば、通信可能状態は、「RRC_CONNECTED」である。また、たとえば、休止状態は、「RRC_IDLE」である。周期通信検出部1102は、推定した結果に関する信号を、状態推定部1103に送信する。
 この場合に、状態推定部1103は、該信号を受信し、受信した信号に基づき、リソース状態が「RRC_CONNECTED」である確率が1であると推定する(ステップS1206)。
 その後、遅延推定部103は、状態推定部1103が推定したリソース状態に基づき、通信装置20aに関する遅延時間を推定する(ステップS1207)。
 一方、周期通信検出部1102は、下記の条件1または条件2を満たす場合に、上述したように、ステップS1203、ステップS1204、乃至、ステップS1205における処理を実施する。
   条件1:式7におけるtのうち、(t-T)≦t≦tを満たすもの(ただし、nは1以上の整数である)が存在しないと判定する、
   条件2:通信が周期的に実施されない(ステップS1202にてNOと判定)と判定する。
 第4の実施形態に係る遅延推定装置1101は、第1の実施形態と同様の構成を含むので、第1の実施形態は、第4の実施形態と同様の効果を享受することができる。すなわち、第4の実施形態に係る遅延推定装置1101によれば、通信装置105による通信に伴う遅延時間を高精度に推定することができる。
 さらに、周期通信検出部1102は、通信が周期的に実施される場合に、通信が周期的であることを検知する。周期通信検出部1102が、上述したように検知することにより、状態推定部102は、該周期に基づき、通信装置105におけるリソース状態を推定する。このため、通信装置105におけるリソース状態を推定する精度は、一層、向上する。
 (ハードウェア構成例)
 上述した本発明の各実施形態における遅延推定装置を、1つの計算処理装置(情報処理装置、コンピュータ)を用いて実現するハードウェア資源の構成例について説明する。但し、係る遅延推定装置は、物理的または機能的に少なくとも2つの計算処理装置を用いて実現してもよい。また、係る遅延推定装置は、専用の装置として実現してもよい。
 図14は、第1の実施形態乃至第4の実施形態に係る遅延推定装置を実現可能な計算処理装置のハードウェア構成を概略的に示す図である。計算処理装置20は、中央処理演算装置(Central Processing Unit、以降「CPU」と表す)21、メモリ22、ディスク23、及び、不揮発性記録媒体24を有する。計算処理装置20は、さらに、入力装置25、出力装置26、及び、通信インターフェース(以降、「通信IF」と表す)27を有する。計算処理装置20は、通信IF27を介して、他の計算処理装置、及び、通信装置と情報を送受信することができる。
 不揮発性記録媒体24は、コンピュータが読み取り可能な媒体を指しており、電源を供給しなくても係るプログラムを保持し、持ち運びを可能にする。不揮発性記録媒体24は、たとえば、後述の媒体である。すなわち、
   ・コンパクトディスク(Compact Disc)、
   ・デジタルバーサタイルディスク(Digital_Versatile_Disc)、
   ・ブルーレイディスク(Blu-ray Disc。登録商標)、
   ・ユニバーサルシリアルバスメモリ(USBメモリ)、
   ・ソリッドステートドライブ(Solid State Drive)。
 また、不揮発性記録媒体24は、上述した媒体に限定されない。また、不揮発性記録媒体24の代わりに、通信IF27を介して、通信ネットワークを介して係るプログラムを持ち運びしてもよい。
 すなわち、CPU21は、ディスク23が記憶するソフトウェア・プログラム(コンピュータ・プログラム:以下、単に「プログラム」と称する)を、実行する際にメモリ22にコピーし、演算処理を実行する。CPU21は、プログラム実行に必要なデータをメモリ22から読み取る。表示が必要な場合には、CPU21は、出力装置26に出力結果を表示する。外部からプログラムを入力する場合に、CPU21は、入力装置25からプログラムを読み取る。CPU21は、上述した図1、図3、図4、図10、あるいは、図12に示した各部が表す機能(処理)に対応するところのメモリ22にある遅延推定プログラム(図8、図9、あるいは、図13)を解釈し実行する。CPU21は、上述した本発明の各実施形態において説明した処理を順次行う。
 すなわち、このような場合に、本発明は、係る遅延推定プログラムによっても成し得ると捉えることができる。更に、係る遅延推定プログラムが記録されたコンピュータ読み取り可能な不揮発性の記録媒体によっても、本発明は成し得ると捉えることができる。
 尚、上述した各実施形態の一部又は全部は、以下の付記のようにも記載されうる。しかし、上述した各実施形態により例示的に説明した本発明は、以下には限られない。
 (付記1)
 通信装置が通信する履歴を表す通信履歴情報に基づき、前記通信装置における状態を表すリソース状態のうち、特定のリソース状態であることを表す指標を算出する状態推定手段と、
 前記特定のリソース状態に関連付けされた時間と前記指標とに基づき、前記通信装置による通信が遅延する時間を推定する遅延推定手段と
 を備える遅延推定装置。
 (付記2)
 前記状態推定手段は、前記指標を算出する処理に係る時刻と、前記通信装置が通信した時刻が最も遅い時刻との差を算出し、前記差と、第1時間と、所定の第2時間とに基づき、前記指標を算出し、
 前記第1時間は、該第1時間において前記通信装置が通信しない場合に、前記リソース状態が休止状態となる時間である
 付記1に記載の遅延推定装置。
 (付記3)
 前記通信履歴情報から、所定の第1時刻乃至所定の第2時刻を表す所定の時間帯に前記通信装置が通信する回数に基づき、単位時間あたりに通信する指標を表す通信指標情報を算出する指標算出手段
 を更に備え、
 前記状態推定手段は、前記指標算出手段が算出する前記通信指標情報に基づき、前記指標を算出する
 付記1または付記2に記載の遅延推定装置。
 (付記4)
 前記通信履歴情報から、前記通信装置が通信を断続的に繰り返す周期的な通信を実施するか否かを判定する周期通信検出手段
 を更に備え、
 前記状態推定手段は、前記周期通信検出手段が前記周期的な通信であると判定する場合に、前記周期的な通信における周期に基づき、前記特定のリソース状態であることを表す指標を算出する
 付記3に記載の遅延推定装置。
 (付記5)
 前記通信履歴情報は、前記通信装置を識別可能な識別子と、前記通信装置が通信する時刻とを関連付けする情報である
 付記1乃至付記4のいずれかに記載の遅延推定装置。
 (付記6)
 前記所定の時間帯は、前記遅延推定手段が前記時間を推定する時刻から、特定の時間を差し引いた時刻を含む
 付記3乃至付記5のいずれかに記載の遅延推定装置。
 (付記7)
 前記特定の時間は、1日乃至N日(ただし、Nは正の整数である)である
 付記6に記載の遅延推定装置。
 (付記8)
 前記第2時刻は、前記通信装置が通信した時刻のうち、最新の時刻である
 付記3乃至付記7のいずれかに記載の遅延推定装置。
 (付記9)
 前記通信履歴情報を記憶可能な通信履歴記憶手段と、
 前記識別子に関連付けされた前記通信装置が特定の時刻に通信する場合に、前記識別子と前記特定の時刻とを関連付けて前記通信履歴記憶手段に格納する履歴作成手段と、
をさらに備え、
 前記指標算出手段は、前記通信履歴記憶手段から、前記通信装置を表す前記識別子に関連付けされた前記時刻を読み取り、読み取った前記時刻に基づいて前記通信指標情報を算出する
 付記5乃至付記8のいずれかに記載の遅延推定装置。
 (付記10)
 前記通信装置が、無線通信ネットワークを介して、前記通信履歴情報を前記遅延推定装置に送信するのに応じて、前記状態推定手段は、前記指標を算出する
 付記1乃至付記9のいずれかに記載の遅延推定装置。
 (付記11)
 前記通信履歴情報を作成し、作成した前記通信履歴情報を前記遅延推定装置に送信する前記通信装置と、
 付記1乃至付記10のいずれかに記載の前記遅延推定装置と
 を備える遅延推定システム。
 (付記12)
 情報処理装置を用いて、通信装置が通信する履歴を表す通信履歴情報に基づき、前記通信装置における状態を表すリソース状態のうち、特定のリソース状態であることを表す指標を算出し、前記特定のリソース状態に関連付けされた時間と前記指標とに基づき、前記通信装置による通信が遅延する時間を推定する遅延推定方法。
 (付記13)
 通信装置が通信する履歴を表す通信履歴情報に基づき、前記通信装置における状態を表すリソース状態のうち、特定のリソース状態であることを表す指標を算出する状態推定機能と、
 前記特定のリソース状態に関連付けされた時間と前記指標とに基づき、前記通信装置による通信が遅延する時間を推定する遅延推定機能と
 をコンピュータに実現させる遅延推定プログラムを格納する記録媒体。
 以上、上述した実施形態を模範的な例として本発明を説明した。しかし、本発明は、上述した実施形態には限定されない。すなわち、本発明は、本発明のスコープ内において、当業者が理解し得る様々な態様を適用することができる。
 この出願は、2013年9月10日に出願された日本出願特願2013-186844を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 101  遅延推定装置
 102  状態推定部
 103  遅延推定部
 104  通信ネットワーク
 105  通信装置
 901  遅延推定装置
 902  履歴受信部
 903  指標算出部
 905  監視部
 906  通信部
 907  履歴送信部
 908  状態設定部
 909  送信判定部
 1301  遅延推定装置
 1302  指標算出部
 1303  状態推定部
 1101  遅延推定装置
 1102  周期通信検出部
 1103  状態推定部
 20  計算処理装置
 21  CPU
 22  メモリ
 23  ディスク
 24  不揮発性記録媒体
 25  入力装置
 26  出力装置
 27  通信IF

Claims (10)

  1.  通信装置が通信する履歴を表す通信履歴情報に基づき、前記通信装置における状態を表すリソース状態のうち、特定のリソース状態であることを表す指標を算出する状態推定手段と、
     前記特定のリソース状態に関連付けされた時間と前記指標とに基づき、前記通信装置による通信が遅延する時間を推定する遅延推定手段と
     を備える遅延推定装置。
  2.  前記状態推定手段は、前記指標を算出する処理に係る時刻と、前記通信装置が通信した時刻が最も遅い時刻との差を算出し、前記差と、第1時間と、所定の第2時間とに基づき、前記指標を算出し、
     前記第1時間は、該第1時間において前記通信装置が通信しない場合に、前記リソース状態が休止状態となる時間である
     請求項1に記載の遅延推定装置。
  3.  前記通信履歴情報から、所定の第1時刻乃至所定の第2時刻を表す所定の時間帯に前記通信装置が通信する回数に基づき、単位時間あたりに通信する指標を表す通信指標情報を算出する指標算出手段
     を更に備え、
     前記状態推定手段は、前記指標算出手段が算出する前記通信指標情報に基づき、前記指標を算出する
     請求項1または請求項2に記載の遅延推定装置。
  4.  前記通信履歴情報から、前記通信装置が通信を断続的に繰り返す周期的な通信を実施するか否かを判定する周期通信検出手段
     を更に備え、
     前記状態推定手段は、前記周期通信検出手段が前記周期的な通信であると判定する場合に、前記周期的な通信における周期に基づき、前記特定のリソース状態であることを表す指標を算出する
     請求項3に記載の遅延推定装置。
  5.  前記通信履歴情報は、前記通信装置を識別可能な識別子と、前記通信装置が通信する時刻とを関連付けする情報である
     請求項1乃至請求項4のいずれかに記載の遅延推定装置。
  6.  前記所定の時間帯は、前記遅延推定手段が前記時間を推定する時刻から、特定の時間を差し引いた時刻を含む
     請求項2乃至請求項5のいずれかに記載の遅延推定装置。
  7.  前記通信履歴情報を記憶可能な通信履歴記憶手段と、
     前記識別子に関連付けされた前記通信装置が特定の時刻に通信する場合に、前記識別子と前記特定の時刻とを関連付けて前記通信履歴記憶手段に格納する履歴作成手段と、
    をさらに備え、
     前記指標算出手段は、前記通信履歴記憶手段から、前記通信装置を表す前記識別子に関連付けされた前記時刻を読み取り、読み取った前記時刻に基づいて前記通信指標情報を算出する
     請求項5または請求項6に記載の遅延推定装置。
  8.  前記通信履歴情報を作成し、作成した前記通信履歴情報を前記遅延推定装置に送信する前記通信装置と、
     請求項1乃至請求項7のいずれかに記載の前記遅延推定装置と
     を備える情報システム。
  9.  情報処理装置を用いて、通信装置が通信する履歴を表す通信履歴情報に基づき、前記通信装置における状態を表すリソース状態のうち、特定のリソース状態であることを表す指標を算出し、前記特定のリソース状態に関連付けされた時間と前記指標とに基づき、前記通信装置による通信が遅延する時間を推定する遅延推定方法。
  10.  通信装置が通信する履歴を表す通信履歴情報に基づき、前記通信装置における状態を表すリソース状態のうち、特定のリソース状態であることを表す指標を算出する状態推定機能と、
     前記特定のリソース状態に関連付けされた時間と前記指標とに基づき、前記通信装置による通信が遅延する時間を推定する遅延推定機能と
     をコンピュータに実現させる遅延推定プログラムを格納する記録媒体。
PCT/JP2014/004276 2013-09-10 2014-08-21 遅延推定装置、遅延推定方法、記録媒体、及び、情報システム WO2015037191A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013186844 2013-09-10
JP2013-186844 2013-09-10

Publications (1)

Publication Number Publication Date
WO2015037191A1 true WO2015037191A1 (ja) 2015-03-19

Family

ID=52665324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/004276 WO2015037191A1 (ja) 2013-09-10 2014-08-21 遅延推定装置、遅延推定方法、記録媒体、及び、情報システム

Country Status (1)

Country Link
WO (1) WO2015037191A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019190164A1 (en) * 2018-03-26 2019-10-03 Samsung Electronics Co., Ltd. Improvements in and relating to random access in a telecommunication network

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013101449A (ja) * 2011-11-08 2013-05-23 Kddi Corp 携帯端末を所持したユーザの生活パターンを推定する装置、プログラム及び方法
US20130155954A1 (en) * 2011-12-14 2013-06-20 Interdigital Patent Holdings, Inc. Method and apparatus for triggering machine type communications applications
JP2013143670A (ja) * 2012-01-11 2013-07-22 Sumitomo Electric Ind Ltd 無線基地局装置、通信制御方法および通信制御プログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013101449A (ja) * 2011-11-08 2013-05-23 Kddi Corp 携帯端末を所持したユーザの生活パターンを推定する装置、プログラム及び方法
US20130155954A1 (en) * 2011-12-14 2013-06-20 Interdigital Patent Holdings, Inc. Method and apparatus for triggering machine type communications applications
JP2013143670A (ja) * 2012-01-11 2013-07-22 Sumitomo Electric Ind Ltd 無線基地局装置、通信制御方法および通信制御プログラム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TAKAHIRO SHIROSHIMA ET AL.: "The proposition of a messaging system that communication delay with RRC state transition in a mobile terminal was considered", IEICE TECHNICAL REPORT, 28 February 2013 (2013-02-28), pages 349 - 354 *
TAKEO ONISHI ET AL.: "Latency reduction method for message delivery of server push in which RRC state of mobile terminal is considered", IPSJ SIG TECHNICAL REPORT, 15 April 2013 (2013-04-15), pages 1 - 6 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019190164A1 (en) * 2018-03-26 2019-10-03 Samsung Electronics Co., Ltd. Improvements in and relating to random access in a telecommunication network

Similar Documents

Publication Publication Date Title
JP6994505B2 (ja) モバイルエッジアプリケーションの再配置
US9998994B2 (en) Low power redundant transmission network
EP2756717B1 (en) Methods and apparatus for interference based joint scheduling of peer to peer links with wwan
KR102632177B1 (ko) 선점을 위한 논리적 채널 우선순위화
JP5362801B2 (ja) データ送信方法及び装置
US20170127445A1 (en) Apparatus and method for controlling connection interval in wireless communication system supporting bluetooth scheme
TWI745686B (zh) 超可靠鏈路設計(二)
WO2015037191A1 (ja) 遅延推定装置、遅延推定方法、記録媒体、及び、情報システム
EP4046334B1 (en) Method and system for estimating network performance using machine learning and partial path measurements
JP5839999B2 (ja) 通信端末装置
US10601716B2 (en) Communication prediction apparatus and communication prediction method, and recording medium storing computer program
WO2015038787A2 (en) Apparatus and method for asynchronous peer-to-peer discovery
US9781734B2 (en) Communication apparatus, communication method, and recording medium
US20100278198A1 (en) Method and apparatus for providing quantization of synchronization signals
JP4678046B2 (ja) 通信装置、通信システム、遅延時間の測定時間設定方法、遅延時間算出方法およびプログラム
US9998294B1 (en) System for distributed audio output using designated audio devices
JP2013197716A (ja) 送信制御装置、フィードバック情報送信装置、協調送信システム、送信制御方法、フィードバック情報送信方法及びプログラム
WO2017068663A1 (ja) 通信装置及び通信方法及び通信プログラム
JP6607194B2 (ja) 設定装置、設定方法、設定プログラム、通信システム、クライアント装置、及び、サーバ装置
JP5319775B2 (ja) 無線通信システムにおける適応的アップリンクレート制御
WO2021145039A1 (ja) 通信装置、及び通信装置に用いられるプログラム及び方法
WO2015117485A1 (zh) 一种传输格式组合的选择方法、装置及存储介质
US9369906B2 (en) Optimizing communication for mobile and embedded devices
Bacınoğlu et al. Scheduling Status Updates to Minimize Age of Information with an Energy Harvesting Sensor
JP2015095678A (ja) 通信先切替装置、通信先切替方法、及び通信先切替プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14844660

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14844660

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP