WO2015037101A1 - Semiconductor device and method for manufacturing same - Google Patents

Semiconductor device and method for manufacturing same Download PDF

Info

Publication number
WO2015037101A1
WO2015037101A1 PCT/JP2013/074704 JP2013074704W WO2015037101A1 WO 2015037101 A1 WO2015037101 A1 WO 2015037101A1 JP 2013074704 W JP2013074704 W JP 2013074704W WO 2015037101 A1 WO2015037101 A1 WO 2015037101A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
buffer layer
conductivity type
semiconductor substrate
back surface
Prior art date
Application number
PCT/JP2013/074704
Other languages
French (fr)
Japanese (ja)
Inventor
佑樹 堀内
亀山 悟
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2013/074704 priority Critical patent/WO2015037101A1/en
Publication of WO2015037101A1 publication Critical patent/WO2015037101A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/083Anode or cathode regions of thyristors or gated bipolar-mode devices
    • H01L29/0834Anode regions of thyristors or gated bipolar-mode devices, e.g. supplementary regions surrounding anode regions

Definitions

  • the technology described in this specification relates to a semiconductor device and a manufacturing method thereof.
  • a buffer layer may be formed between the drift layer and the collector layer.
  • the buffer layer is generally formed by implanting impurity ions into the drift layer.
  • the drift layer is thinned by thinning the semiconductor substrate.
  • the IGBT is off, a depletion layer spreads from the PN junction between the body layer and the drift layer.
  • the depletion layer easily reaches the back side of the semiconductor substrate on which the collector layer is formed.
  • a semiconductor device disclosed in the present specification includes a first conductivity type drift layer, a second conductivity type body layer provided on the surface side of the drift layer and a part of which is exposed on the surface of the semiconductor substrate, and a body layer A first conductivity type emitter layer which is exposed on the surface of the semiconductor substrate and separated from the drift layer by the body layer, and a first conductivity type first layer provided on the back surface of the drift layer.
  • the thickness of the first buffer layer is greater than the thickness of the second buffer layer, and the concentration of carriers due to the first conductivity type impurity ions in the second buffer layer is equal to the first conductivity of the first buffer layer. It is higher than the carrier concentration due to the impurity ions of the mold.
  • the semiconductor device includes the first buffer layer having a large thickness at a position on the drift layer side and the second buffer layer having a small thickness at a position on the collector layer side, and the first conductivity of the second buffer layer.
  • the carrier concentration due to the type impurity ions is higher than the carrier concentration due to the first conductivity type impurity ions in the first buffer layer.
  • the first buffer layer secures the entire thickness of the buffer layer, and contributes to securing the breakdown voltage between the collector and the emitter when scratches or foreign substances are transferred from the surface.
  • the second buffer layer is provided between the collector layer and the first buffer layer, and the region where the second buffer layer is formed has a high impurity concentration of the first conductivity type.
  • the impurity concentration of the first conductivity type in the region where the first buffer layer is formed is low, and the influence on the hole injection amount of the first buffer layer is small. For this reason, by adjusting the impurity concentration of the second buffer layer, the hole injection amount into the drift layer can be adjusted. Further, even when a crystal defect exists in the region of the second buffer layer, it can be suppressed that the crystal defect causes a variation in the amount of hole injection. According to the semiconductor device described above, it is possible to achieve both ensuring the breakdown voltage between the collector and the emitter and suppressing variation in the amount of hole injection.
  • the first buffer layer is formed by implanting first impurity ions of the first conductivity type from the back surface of the semiconductor substrate, and the second buffer layer is implanted lower than the first impurity ions.
  • the semiconductor substrate may be formed by implanting second impurity ions of the first conductivity type from the back surface thereof with energy.
  • the first impurity ions may be hydrogen ions
  • the second impurity ions may be impurity ions of the first conductivity type other than hydrogen ions.
  • the first buffer layer is formed by implanting hydrogen ions from the back surface of the semiconductor substrate
  • the second buffer layer is formed of the first conductivity type other than hydrogen ions from the back surface of the semiconductor substrate. It may be formed by implanting impurity ions.
  • the present specification also discloses a method for manufacturing the semiconductor device.
  • annealing is performed to form a second buffer layer, and the second buffer layer is formed.
  • a step of forming a first buffer layer by performing an annealing process after implanting hydrogen ions from the back surface of the semiconductor substrate.
  • the first impurity ions of the first conductivity type are implanted into the semiconductor substrate from the back surface, and annealing is performed to form the first buffer layer, and the semiconductor is implanted with lower implantation energy than the first impurity ions.
  • FIG. 1 is a longitudinal sectional view of a semiconductor device according to Example 1.
  • FIG. 6 is a diagram showing an impurity concentration distribution of a semiconductor device according to Example 1.
  • FIG. 6 is a diagram showing an impurity concentration distribution in a buffer layer of a semiconductor device according to Example 1.
  • FIG. It is a longitudinal cross-sectional view of the semiconductor device which concerns on a comparative example. It is a figure which shows the impurity concentration distribution of the semiconductor device which concerns on a comparative example.
  • FIG. 1 is an example of a semiconductor device manufactured by the manufacturing method disclosed in this specification.
  • the semiconductor device 10 includes a semiconductor substrate 100, a surface electrode 141 in contact with the surface of the semiconductor substrate 100, and a back electrode 142 in contact with the back surface of the semiconductor substrate 100.
  • the semiconductor substrate 100 includes a p-type collector layer 101, an n-type second buffer layer 111, an n-type first buffer layer 113, an n-type drift layer 102, a p-type first body layer 104, , An n-type emitter layer 105 and a p-type second body layer 106.
  • the first body layer 104 is in contact with the surface of the drift layer 102.
  • the second body layer 106 is provided on a part of the surface of the first body layer 104 and is exposed on the surface of the semiconductor substrate 100.
  • the emitter layer 105 is provided on a part of the surface of the first body layer 104 and is exposed on the surface of the semiconductor substrate 100.
  • the emitter layer 105 is separated from the drift layer 102 by the first body layer 104.
  • the first buffer layer 113 is in contact with the back surface of the drift layer 102.
  • the second buffer layer 111 is in contact with the back surface of the first buffer layer 113 and the surface of the collector layer 101.
  • the collector layer 101 is exposed on the back surface of the semiconductor substrate 100.
  • the emitter layer 105 and the second body layer 106 are in contact with the surface electrode 141.
  • the collector layer 101 is in contact with the back electrode 142.
  • the first buffer layer 113 is thicker than the second buffer layer 111.
  • a trench gate 120 is formed on the surface side of the semiconductor substrate 100.
  • the trench gate 120 covers the trench 121 extending from the surface of the semiconductor substrate 100 through the first body layer 104 to the drift layer 102, the gate insulating film 122 formed on the inner wall surface of the trench 121, and the gate insulating film 122.
  • the gate electrode 123 faces the first body layer 104 in a range separating the emitter layer 105 and the drift layer 102 with the gate insulating film 122 interposed therebetween.
  • FIG. 2 is a diagram showing the p-type or n-type impurity concentration of the semiconductor device 10.
  • the vertical axis in FIG. 2 indicates the position of the semiconductor device 10 in the depth direction, and the horizontal axis indicates the p-type or n-type impurity concentration at that position.
  • A1 shown on the vertical axis indicates the position of the surface of the semiconductor substrate 100.
  • B 1 indicates the position of the boundary between the first body layer 104 and the drift layer 102.
  • C1 indicates the position of the boundary between the drift layer 102 and the first buffer layer 113.
  • D1 indicates the position of the boundary between the first buffer layer 113 and the second buffer layer 111.
  • E1 indicates the position of the boundary between the second buffer layer 111 and the collector layer 101.
  • F ⁇ b> 1 indicates the position of the back surface of the semiconductor substrate 100.
  • A1 to B1 represent p-type impurity concentrations
  • B1 to E1 represent n-type impurity concentrations
  • E1 to F1 represent p-type impurity concentrations.
  • FIG. 3 illustrates the hydrogen ion concentration distribution (indicated by reference numeral 33) of the first buffer layer 113 and the phosphorus ion concentration distribution (indicated by reference numeral 31) of the second buffer layer 111.
  • the vertical axis in FIG. 3 indicates the impurity ion concentration, and the horizontal axis indicates the distance from the back surface of the semiconductor substrate 100.
  • phosphorus ions have an impurity concentration peak at a position closer to the back surface of the semiconductor substrate 100, and the spread in the depth direction of the semiconductor substrate 100 is small.
  • hydrogen ions have an impurity concentration peak at a position close to the surface of the semiconductor substrate 100, and the semiconductor substrate 100 has a large spread in the depth direction.
  • the first buffer layer 113 includes a hydrogen ion concentration peak
  • the second buffer layer 111 includes a phosphorus ion concentration peak.
  • the carrier concentration due to phosphorus ions in the second buffer layer 111 is higher than the carrier concentration due to hydrogen ions in the first buffer layer 113.
  • the manufacturing method of the semiconductor device 10 includes a step of forming the second buffer layer 111 and a step of forming the first buffer layer 113.
  • annealing treatment is performed after implanting n-type impurity ions other than hydrogen ions from the back surface of the semiconductor substrate 100.
  • annealing is performed after hydrogen ions are implanted from the back surface of the semiconductor substrate 100 on which the second buffer layer is formed.
  • the structure and the like on the surface side of the semiconductor device 10 can be manufactured by a conventionally known method for manufacturing a semiconductor device in which an IGBT element is formed, and thus description thereof is omitted.
  • the first buffer layer 113 is formed on the semiconductor substrate 100 after the second buffer layer 111.
  • a structure on the surface side of the semiconductor substrate 100 such as the first body layer 104, the second body layer 106, and the trench gate 120 is formed on an n-type semiconductor wafer (which becomes the drift layer 102).
  • ions for example, phosphorus ions
  • an annealing process is performed at a temperature higher than 500 ° C. (for example, a temperature of about 800 ° C. or higher).
  • Two buffer layers 111 are formed.
  • a first buffer layer 113 is formed.
  • the hydrogen ion implantation position when forming the first buffer layer 113 is located closer to the surface side (emitter layer 105 side) of the semiconductor substrate 100 than the phosphorus ion implantation position when forming the second buffer layer 111. adjust. Thereby, the first buffer layer 113 and the second buffer layer 111 can be formed with the positional relationship and thickness as shown in FIGS.
  • the semiconductor device 90 is different from the semiconductor device 10 in that a buffer layer 903 is provided instead of the first buffer layer 113 and the second buffer layer 111 of the semiconductor device 10 shown in FIG.
  • the buffer layer 903 is in contact with the back surface of the drift layer 902 and the surface of the collector layer 101.
  • the buffer layer 903 is formed by implanting hydrogen ions into the semiconductor substrate 900 from the back side and performing an annealing process at a relatively low temperature of about 500 ° C. or lower.
  • A2 shown on the vertical axis indicates the position of the surface of the semiconductor substrate 900.
  • B2 indicates the position of the boundary between the first body layer 104 and the drift layer 902.
  • C2 indicates the position of the boundary between the drift layer 902 and the buffer layer 903.
  • E2 indicates the position of the boundary between the buffer layer 903 and the collector layer 101.
  • F2 indicates the position of the back surface of the semiconductor substrate 900.
  • A2 to B2 indicate p-type impurity concentrations
  • B2 to E2 indicate n-type impurity concentrations
  • E2 to F2 indicate p-type impurity concentrations.
  • the buffer layer 903 has a higher n-type impurity concentration than the drift layer 902.
  • the buffer layer 903 can prevent the depletion layer extending from the PN junction between the body layer 104 and the drift layer 902 from reaching the collector layer 101 when the IGBT formed in the semiconductor device 90 is turned off. If the semiconductor substrate 900 has scratches or foreign matter on the back side, and the above depletion layer reaches the back side, the collector-emitter breakdown voltage may be reduced. According to the semiconductor device 90, the buffer layer 903 can suppress the depletion layer from reaching the back surface side of the semiconductor substrate 900, so that the collector-emitter breakdown voltage can be prevented from decreasing.
  • the buffer layer 903 when hydrogen ions are implanted from the back side of the semiconductor substrate 900 at a particularly high acceleration voltage, crystal defects may be formed in a region through which the hydrogen ions pass. This crystal defect functions as a lifetime killer, affects the life of holes injected from the collector layer 101 into the drift layer 902, and causes variations in the amount of holes injected. As shown in FIG. 5, the peak of the n-type impurity concentration of the buffer layer 903 is located near the central position in the thickness direction of the buffer layer 903, and the n-type impurity concentration of the buffer layer 903 in the vicinity of the collector layer 101. Is relatively low.
  • the semiconductor device 90 it is difficult to sufficiently increase the n-type impurity concentration with respect to the crystal defect density in the region of the buffer layer 903 in the vicinity of the collector layer 101. For this reason, the influence of crystal defects on the amount of holes injected from the collector layer 101 into the drift layer 902 increases. As a result, variations in IGBT characteristics (ON voltage, breakdown voltage, etc.) are likely to occur.
  • the semiconductor device 10 includes a first buffer layer 113 and a second buffer layer 111. Similar to the buffer layer 903, the first buffer layer 113 suppresses the depletion layer from spreading from the PN junction between the body layer 104 and the drift layer 102 and reaching the collector layer 101. As a result, it is possible to prevent the breakdown voltage between the collector and the emitter of the semiconductor device 10 from decreasing. Since the activation rate of hydrogen ions is about several percent of the activation rate of phosphorus ions, the implantation amount of hydrogen ions is inevitably higher than the implantation amount of phosphorus ions, and crystal defects formed by implantation of hydrogen ions are More than crystal defects formed by implantation of phosphorus ions.
  • the second buffer layer 111 Since the second buffer layer 111 is formed by implanting a relatively small amount of phosphorus ions with low energy into the semiconductor substrate 100, the second buffer layer 111 has a crystal defect in the semiconductor substrate 100 compared to the case where the first buffer layer 113 is formed. Is difficult to form. As shown in FIG. 2, since the semiconductor device 10 includes the second buffer layer 111, the n-type impurity concentration is high in a region near the collector layer 101 of the second buffer layer 111. In the semiconductor device 10, it is easy to increase the impurity concentration of the second buffer layer 111, and in the region near the collector layer 101 of the second buffer layer 111, the n-type impurity concentration is set to the crystal defect density. Can be high enough.
  • the first buffer layer 113 and the second buffer layer are provided, thereby ensuring a breakdown voltage between the collector and the emitter, and variation in the amount of hole injection. It is possible to achieve both. Crystal defects that may occur when forming the first buffer layer 113 may cause variations in the amount of hole injection. However, since the dose amount of the n-type impurity in the second buffer layer is large, the crystal defects are not sufficient in the amount of hole injection. It can suppress that it causes variation. Further, since the first buffer layer 113 can be designed for the purpose of ensuring the breakdown voltage between the collector and the emitter, and the second buffer layer 111 can be designed for the purpose of adjusting the hole injection amount, the degree of freedom in design is improved.
  • the time for irradiating the semiconductor substrate 100 with hydrogen ions when the time for irradiating the semiconductor substrate 100 with hydrogen ions is shortened, the n-type impurity concentration derived from the hydrogen ions decreases in the vicinity of the collector layer 101 side.
  • the time for irradiating the semiconductor substrate 100 with hydrogen ions can be shortened to a time sufficient to ensure the collector-emitter breakdown voltage.
  • the first buffer layer 113 is formed by hydrogen ion implantation and the second buffer layer 111 is formed by phosphorus ion implantation.
  • the second buffer layer can be formed by implanting n-type impurity ions other than phosphorus ions.
  • the n-type impurity ions used for forming the second buffer layer are preferably ions different from the n-type impurity ions used for forming the first buffer layer.
  • the height of the acceleration voltage of the impurity ion implantation when forming the first buffer layer 113 and the second buffer layer 111 is not particularly limited, and either one may be high, or both may be the same level. Also good.
  • n-type impurity ions other than hydrogen ions can be implanted.
  • impurity ions for forming the first buffer layer in order to ensure a breakdown voltage between the collector and the emitter, it is preferable to implant impurity ions for forming the first buffer layer with relatively high energy.
  • impurity ions using a high energy ion implantation apparatus having an acceleration voltage in the energy region of about several hundred keV to several MeV.
  • the second buffer layer is preferably formed by implanting impurity ions with lower energy than when forming the first buffer layer.
  • the amount of beam current is generally limited from several ⁇ A region to several mA region, and it may be difficult to increase the dose amount of impurity ions in the first buffer layer. Even in this case, the n-type impurity ion concentration in the vicinity of the collector layer can be ensured by the second buffer layer. Since the second buffer layer is not intended to ensure a breakdown voltage between the collector and the emitter, impurities can be implanted with relatively low energy.
  • the beam current amount can be made relatively large, about 100 ⁇ A to 2 mA, and the dose amount of the second buffer layer is sufficiently large. Can be high.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

In the present invention, a semiconductor device is provided with the following: a drift layer of a first conductivity type; a body layer of a second conductivity type that is disposed on the front side of the drift layer and one part of which is exposed to the front of a semiconductor substrate; an emitter layer of the first conductivity type that is disposed on part of the front of the body layer, is exposed to the front of the semiconductor substrate, and is separated from the drift layer by the body layer; a first buffer layer of the first conductivity type that is disposed on the back of the drift layer; a second buffer layer of the first conductivity type that is disposed on the back of the first buffer layer; a collector layer of the first conductivity type that is in contact with the back of the second buffer layer and is exposed to the back of the semiconductor substrate; and a gate electrode that faces the body layer within the range in which the emitter layer and the drift layer are separated, with an insulating film interposed between the gate electrode and the body layer. In this semiconductor device, the thickness of the first buffer layer is greater than the thickness of the second buffer layer and the carrier concentration due to impurity ions of the first conductivity type in the second buffer layer is greater than the carrier concentration due to impurity ions of the first conductivity type in the first buffer layer.

Description

半導体装置とその製造方法Semiconductor device and manufacturing method thereof
 本明細書に記載の技術は、半導体装置とその製造方法に関する。 The technology described in this specification relates to a semiconductor device and a manufacturing method thereof.
 縦型構造のIGBTにおいては、ドリフト層とコレクタ層の間に、バッファ層が形成されている場合がある。バッファ層は、一般に、ドリフト層に不純物イオンを注入することによって形成される。IGBTのオン時の電力損失を低減する手段として、半導体基板を薄板化してドリフト層を薄くすることが行われている。IGBTのオフ時には、ボディ層とドリフト層とのPN接合部から空乏層が広がる。ドリフト層の厚さが薄くなると、この空乏層がコレクタ層の形成されている半導体基板の裏面側に到達し易くなる。半導体基板の製造工程において、半導体基板の裏面側に傷や異物混入があった場合、裏面側に空乏層が到達することによって、コレクタ-エミッタ間の耐圧が低下するという課題がある。この課題を解決するために、バッファ層を厚くした構造が提案されている。厚いバッファ層を形成するために、例えば、特許文献1に記載されているような、水素イオン等の軽イオンをIGBTのドリフト層内に高い加速電圧で注入し、熱処理を行う手法が用いられている。 In a vertical structure IGBT, a buffer layer may be formed between the drift layer and the collector layer. The buffer layer is generally formed by implanting impurity ions into the drift layer. As a means for reducing the power loss when the IGBT is turned on, the drift layer is thinned by thinning the semiconductor substrate. When the IGBT is off, a depletion layer spreads from the PN junction between the body layer and the drift layer. When the thickness of the drift layer is reduced, the depletion layer easily reaches the back side of the semiconductor substrate on which the collector layer is formed. In the manufacturing process of a semiconductor substrate, if there is a scratch or a foreign substance on the back side of the semiconductor substrate, there is a problem that the breakdown voltage between the collector and the emitter is lowered by the depletion layer reaching the back side. In order to solve this problem, a structure with a thick buffer layer has been proposed. In order to form a thick buffer layer, for example, a method of performing heat treatment by injecting light ions such as hydrogen ions into the IGBT drift layer at a high acceleration voltage as described in Patent Document 1 is used. Yes.
特開2009-176892号公報JP 2009-176892 A
 特許文献1に記載されているような手法で厚いバッファ層を形成する場合、水素イオン等を高い加速電圧で半導体基板に注入する際に、注入するイオン等が通過する領域に結晶欠陥が形成される。この結晶欠陥は、ライフタイムキラーとして機能し、コレクタ層からドリフト層に注入されるホールの寿命に影響を与え、ホールの注入量のばらつきの原因となる。ホールの注入量のばらつきは、IGBTの特性(オン電圧や耐圧等)のばらつきの原因となる。 When a thick buffer layer is formed by the technique described in Patent Document 1, when a hydrogen ion or the like is implanted into a semiconductor substrate at a high acceleration voltage, a crystal defect is formed in a region through which the implanted ion or the like passes. The This crystal defect functions as a lifetime killer, affects the lifetime of holes injected from the collector layer into the drift layer, and causes variations in the amount of holes injected. Variations in the amount of injected holes cause variations in IGBT characteristics (ON voltage, breakdown voltage, etc.).
 本明細書が開示する半導体装置は、第1導電型のドリフト層と、ドリフト層の表面側に設けられるとともにその一部が半導体基板の表面に露出する第2導電型のボディ層と、ボディ層の表面の一部に設けられ、半導体基板の表面に露出し、ボディ層によってドリフト層と分離されている第1導電型のエミッタ層と、ドリフト層の裏面に設けられた第1導電型の第1バッファ層と、第1バッファ層の裏面に設けられた第1導電型の第2バッファ層と、第2バッファ層の裏面に接するとともに半導体基板の裏面に露出する第2導電型のコレクタ層と、エミッタ層とドリフト層を分離している範囲のボディ層に絶縁膜を介して対向しているゲート電極とを備えている。この半導体装置では、第1バッファ層の厚さは、第2バッファ層の厚さよりも厚く、第2バッファ層の第1導電型の不純物イオンによるキャリアの濃度は、第1バッファ層の第1導電型の不純物イオンによるキャリアの濃度よりも高い。 A semiconductor device disclosed in the present specification includes a first conductivity type drift layer, a second conductivity type body layer provided on the surface side of the drift layer and a part of which is exposed on the surface of the semiconductor substrate, and a body layer A first conductivity type emitter layer which is exposed on the surface of the semiconductor substrate and separated from the drift layer by the body layer, and a first conductivity type first layer provided on the back surface of the drift layer. 1 buffer layer, a first conductivity type second buffer layer provided on the back surface of the first buffer layer, a second conductivity type collector layer in contact with the back surface of the second buffer layer and exposed on the back surface of the semiconductor substrate, And a gate electrode facing the body layer in a range where the emitter layer and the drift layer are separated via an insulating film. In this semiconductor device, the thickness of the first buffer layer is greater than the thickness of the second buffer layer, and the concentration of carriers due to the first conductivity type impurity ions in the second buffer layer is equal to the first conductivity of the first buffer layer. It is higher than the carrier concentration due to the impurity ions of the mold.
 上記の半導体装置は、ドリフト層側となる位置に厚みの厚い第1バッファ層を備え、コレクタ層側となる位置に厚みの薄い第2バッファ層を備えており、第2バッファ層の第1導電型の不純物イオンによるキャリアの濃度は、第1バッファ層の第1導電型の不純物イオンによるキャリアの濃度よりも高い。第1バッファ層は、バッファ層の全体の厚さを確保し、表面から傷や異物の移入があった場合のコレクタ-エミッタ間の耐圧確保に寄与する。第2バッファ層は、コレクタ層と第1バッファ層との間に備えられており、第2バッファ層が形成されている領域は、第1導電型の不純物濃度が高い。すなわち、第1バッファ層が形成されている領域の第1導電型の不純物濃度は低く、第1バッファ層のホール注入量への影響は小さい。このため、第2バッファ層の不純物濃度を調整することによって、ドリフト層へのホール注入量を調整することが可能となる。また、第2バッファ層の領域に結晶欠陥が存在する場合であっても、結晶欠陥がホール注入量のばらつきの原因となることを抑制できる。上記の半導体装置によれば、コレクタ-エミッタ間の耐圧を確保することと、ホール注入量のばらつきを抑制することとを、両立できる。 The semiconductor device includes the first buffer layer having a large thickness at a position on the drift layer side and the second buffer layer having a small thickness at a position on the collector layer side, and the first conductivity of the second buffer layer. The carrier concentration due to the type impurity ions is higher than the carrier concentration due to the first conductivity type impurity ions in the first buffer layer. The first buffer layer secures the entire thickness of the buffer layer, and contributes to securing the breakdown voltage between the collector and the emitter when scratches or foreign substances are transferred from the surface. The second buffer layer is provided between the collector layer and the first buffer layer, and the region where the second buffer layer is formed has a high impurity concentration of the first conductivity type. That is, the impurity concentration of the first conductivity type in the region where the first buffer layer is formed is low, and the influence on the hole injection amount of the first buffer layer is small. For this reason, by adjusting the impurity concentration of the second buffer layer, the hole injection amount into the drift layer can be adjusted. Further, even when a crystal defect exists in the region of the second buffer layer, it can be suppressed that the crystal defect causes a variation in the amount of hole injection. According to the semiconductor device described above, it is possible to achieve both ensuring the breakdown voltage between the collector and the emitter and suppressing variation in the amount of hole injection.
 上記の半導体装置では、第1バッファ層は、半導体基板にその裏面から第1導電型の第1の不純物イオンを注入して形成され、第2バッファ層は、第1の不純物イオンよりも低い注入エネルギーで半導体基板にその裏面から第1導電型の第2の不純物イオンを注入して形成されてもよい。さらには、第1の不純物イオンは、水素イオンであり、第2の不純物イオンは、水素イオン以外の第1導電型の不純物イオンであってもよい。 In the above-described semiconductor device, the first buffer layer is formed by implanting first impurity ions of the first conductivity type from the back surface of the semiconductor substrate, and the second buffer layer is implanted lower than the first impurity ions. The semiconductor substrate may be formed by implanting second impurity ions of the first conductivity type from the back surface thereof with energy. Furthermore, the first impurity ions may be hydrogen ions, and the second impurity ions may be impurity ions of the first conductivity type other than hydrogen ions.
 または、上記の半導体装置では、第1バッファ層は、半導体基板にその裏面から水素イオンを注入して形成され、第2バッファ層は、半導体基板にその裏面から水素イオン以外の第1導電型の不純物イオンを注入して形成されてもよい。 Alternatively, in the above semiconductor device, the first buffer layer is formed by implanting hydrogen ions from the back surface of the semiconductor substrate, and the second buffer layer is formed of the first conductivity type other than hydrogen ions from the back surface of the semiconductor substrate. It may be formed by implanting impurity ions.
 本明細書はまた、上記の半導体装置の製造方法を開示する。この製造方法は、半導体基板の裏面から水素イオン以外の第1導電型の不純物イオンを注入した後、アニール処理を行って、第2バッファ層を形成する工程と、第2バッファ層が形成された半導体基板の裏面から水素イオンを注入した後、アニール処理を行って、第1バッファ層を形成する工程とを含んでいてもよい。または、半導体基板にその裏面から第1導電型の第1の不純物イオンを注入し、アニール処理を行って、第1バッファ層を形成する工程と、第1の不純物イオンよりも低い注入エネルギーで半導体基板にその裏面から第1導電型の第2の不純物イオンを注入し、第2バッファ層を形成する工程とを含んでいてもよい。 The present specification also discloses a method for manufacturing the semiconductor device. In this manufacturing method, after implanting first conductivity type impurity ions other than hydrogen ions from the back surface of the semiconductor substrate, annealing is performed to form a second buffer layer, and the second buffer layer is formed. A step of forming a first buffer layer by performing an annealing process after implanting hydrogen ions from the back surface of the semiconductor substrate. Alternatively, the first impurity ions of the first conductivity type are implanted into the semiconductor substrate from the back surface, and annealing is performed to form the first buffer layer, and the semiconductor is implanted with lower implantation energy than the first impurity ions. A step of implanting second impurity ions of the first conductivity type into the substrate from the back surface thereof to form a second buffer layer.
実施例1に係る半導体装置の縦断面図である。1 is a longitudinal sectional view of a semiconductor device according to Example 1. FIG. 実施例1に係る半導体装置の不純物濃度分布を示す図である。6 is a diagram showing an impurity concentration distribution of a semiconductor device according to Example 1. FIG. 実施例1に係る半導体装置のバッファ層の不純物濃度分布を示す図である。6 is a diagram showing an impurity concentration distribution in a buffer layer of a semiconductor device according to Example 1. FIG. 比較例に係る半導体装置の縦断面図である。It is a longitudinal cross-sectional view of the semiconductor device which concerns on a comparative example. 比較例に係る半導体装置の不純物濃度分布を示す図である。It is a figure which shows the impurity concentration distribution of the semiconductor device which concerns on a comparative example.
 図1は、本明細書が開示する製造方法によって製造される半導体装置の一例である。半導体装置10は、半導体基板100と、半導体基板100の表面に接する表面電極141と、半導体基板100の裏面に接する裏面電極142とを備えている。半導体基板100は、p型のコレクタ層101と、n型の第2バッファ層111と、n型の第1バッファ層113と、n型のドリフト層102と、p型の第1ボディ層104と、n型のエミッタ層105と、p型の第2ボディ層106とを備えている。第1ボディ層104は、ドリフト層102の表面に接している。第2ボディ層106は、第1ボディ層104の表面の一部に設けられ、半導体基板100の表面に露出している。エミッタ層105は、第1ボディ層104の表面の一部に設けられ、半導体基板100の表面に露出している。エミッタ層105は、第1ボディ層104によってドリフト層102と分離されている。第1バッファ層113は、ドリフト層102の裏面に接する。第2バッファ層111は、第1バッファ層113の裏面およびコレクタ層101の表面に接する。コレクタ層101は、半導体基板100の裏面に露出している。エミッタ層105および第2ボディ層106は、表面電極141に接している。コレクタ層101は、裏面電極142に接している。図1に示すように、第1バッファ層113の厚さは、第2バッファ層111より厚い。 FIG. 1 is an example of a semiconductor device manufactured by the manufacturing method disclosed in this specification. The semiconductor device 10 includes a semiconductor substrate 100, a surface electrode 141 in contact with the surface of the semiconductor substrate 100, and a back electrode 142 in contact with the back surface of the semiconductor substrate 100. The semiconductor substrate 100 includes a p-type collector layer 101, an n-type second buffer layer 111, an n-type first buffer layer 113, an n-type drift layer 102, a p-type first body layer 104, , An n-type emitter layer 105 and a p-type second body layer 106. The first body layer 104 is in contact with the surface of the drift layer 102. The second body layer 106 is provided on a part of the surface of the first body layer 104 and is exposed on the surface of the semiconductor substrate 100. The emitter layer 105 is provided on a part of the surface of the first body layer 104 and is exposed on the surface of the semiconductor substrate 100. The emitter layer 105 is separated from the drift layer 102 by the first body layer 104. The first buffer layer 113 is in contact with the back surface of the drift layer 102. The second buffer layer 111 is in contact with the back surface of the first buffer layer 113 and the surface of the collector layer 101. The collector layer 101 is exposed on the back surface of the semiconductor substrate 100. The emitter layer 105 and the second body layer 106 are in contact with the surface electrode 141. The collector layer 101 is in contact with the back electrode 142. As shown in FIG. 1, the first buffer layer 113 is thicker than the second buffer layer 111.
 半導体基板100の表面側には、トレンチゲート120が形成されている。トレンチゲート120は、半導体基板100の表面から第1ボディ層104を貫通してドリフト層102に至るトレンチ121と、トレンチ121の内壁面に形成されたゲート絶縁膜122と、ゲート絶縁膜122に覆われてトレンチ121内に充填されているゲート電極123とを備えている。ゲート電極123は、エミッタ層105とドリフト層102を分離している範囲の第1ボディ層104にゲート絶縁膜122を介して対向している。 A trench gate 120 is formed on the surface side of the semiconductor substrate 100. The trench gate 120 covers the trench 121 extending from the surface of the semiconductor substrate 100 through the first body layer 104 to the drift layer 102, the gate insulating film 122 formed on the inner wall surface of the trench 121, and the gate insulating film 122. And a gate electrode 123 filled in the trench 121. The gate electrode 123 faces the first body layer 104 in a range separating the emitter layer 105 and the drift layer 102 with the gate insulating film 122 interposed therebetween.
 図2は、半導体装置10のp型又はn型の不純物濃度を示す図である。図2の縦軸は、半導体装置10の深さ方向の位置を示しており、横軸は、その位置におけるp型又はn型の不純物濃度を示している。縦軸に示すA1は、半導体基板100の表面の位置を示す。B1は、第1ボディ層104とドリフト層102との境界の位置を示す。C1は、ドリフト層102と第1バッファ層113との境界の位置を示す。D1は、第1バッファ層113と第2バッファ層111との境界の位置を示す。E1は、第2バッファ層111とコレクタ層101との境界の位置を示す。F1は、半導体基板100の裏面の位置を示す。A1~B1はp型の不純物濃度を示し、B1~E1の間はn型の不純物濃度を示し、E1~F1はp型の不純物濃度を示している。 FIG. 2 is a diagram showing the p-type or n-type impurity concentration of the semiconductor device 10. The vertical axis in FIG. 2 indicates the position of the semiconductor device 10 in the depth direction, and the horizontal axis indicates the p-type or n-type impurity concentration at that position. A1 shown on the vertical axis indicates the position of the surface of the semiconductor substrate 100. B 1 indicates the position of the boundary between the first body layer 104 and the drift layer 102. C1 indicates the position of the boundary between the drift layer 102 and the first buffer layer 113. D1 indicates the position of the boundary between the first buffer layer 113 and the second buffer layer 111. E1 indicates the position of the boundary between the second buffer layer 111 and the collector layer 101. F <b> 1 indicates the position of the back surface of the semiconductor substrate 100. A1 to B1 represent p-type impurity concentrations, B1 to E1 represent n-type impurity concentrations, and E1 to F1 represent p-type impurity concentrations.
 図3に、第1バッファ層113の水素イオン濃度分布(参照番号33で示す)と、第2バッファ層111のリンイオン濃度分布(参照番号31で示す)を図示する。図3の縦軸はそれぞれの不純物イオン濃度を示しており、横軸は、半導体基板100の裏面からの距離を示している。図3に示すように、リンイオンは、半導体基板100の裏面により近い位置に不純物濃度のピークを有しており、半導体基板100の深さ方向の広がりが小さい。水素イオンは、リンイオンと比較して、半導体基板100の表面に近い位置に不純物濃度のピークを有しており、半導体基板100の深さ方向の広がりが大きい。第1バッファ層113は、水素イオンの濃度のピークを含んでおり、第2バッファ層111は、リンイオンの濃度のピークを含んでいる。第2バッファ層111のリンイオンによるキャリアの濃度は、第1バッファ層113の水素イオンによるキャリアの濃度よりも高い。 3 illustrates the hydrogen ion concentration distribution (indicated by reference numeral 33) of the first buffer layer 113 and the phosphorus ion concentration distribution (indicated by reference numeral 31) of the second buffer layer 111. The vertical axis in FIG. 3 indicates the impurity ion concentration, and the horizontal axis indicates the distance from the back surface of the semiconductor substrate 100. As shown in FIG. 3, phosphorus ions have an impurity concentration peak at a position closer to the back surface of the semiconductor substrate 100, and the spread in the depth direction of the semiconductor substrate 100 is small. Compared with phosphorus ions, hydrogen ions have an impurity concentration peak at a position close to the surface of the semiconductor substrate 100, and the semiconductor substrate 100 has a large spread in the depth direction. The first buffer layer 113 includes a hydrogen ion concentration peak, and the second buffer layer 111 includes a phosphorus ion concentration peak. The carrier concentration due to phosphorus ions in the second buffer layer 111 is higher than the carrier concentration due to hydrogen ions in the first buffer layer 113.
 半導体装置10の製造方法は、第2バッファ層111を形成する工程と、第1バッファ層113を形成する工程を含んでいる。第2バッファ層を形成する工程では、半導体基板100の裏面から水素イオン以外のn型の不純物イオンを注入した後、アニール処理を行う。第1バッファ層113を形成する工程では、第2バッファ層が形成された半導体基板100の裏面から水素イオンを注入した後、アニール処理を行う。半導体装置10の表面側の構造等は、従来公知のIGBT素子が形成された半導体装置の製造方法によって製造することができるため、説明を省略する。 The manufacturing method of the semiconductor device 10 includes a step of forming the second buffer layer 111 and a step of forming the first buffer layer 113. In the step of forming the second buffer layer, annealing treatment is performed after implanting n-type impurity ions other than hydrogen ions from the back surface of the semiconductor substrate 100. In the step of forming the first buffer layer 113, annealing is performed after hydrogen ions are implanted from the back surface of the semiconductor substrate 100 on which the second buffer layer is formed. The structure and the like on the surface side of the semiconductor device 10 can be manufactured by a conventionally known method for manufacturing a semiconductor device in which an IGBT element is formed, and thus description thereof is omitted.
 第1バッファ層113は、第2バッファ層111よりも後に半導体基板100に形成される。まず、n型の半導体ウェハ(ドリフト層102となる)に、第1ボディ層104、第2ボディ層106、トレンチゲート120等の半導体基板100の表面側の構造を形成する。次に、この半導体ウェハにその裏面側から、水素イオン以外のイオン(例えば、リンイオン)を注入し、500℃よりも高い温度(例えば800℃程度以上の温度)でアニール処理を行うことによって、第2バッファ層111を形成する。次に、半導体ウェハにその裏面側(コレクタ層101側)から、水素イオンを注入し、500℃程度以下の比較的低い温度(例えば200~500℃未満の温度)でアニール処理を行うことによって、第1バッファ層113を形成する。第1バッファ層113を形成する際の水素イオンの注入位置は、第2バッファ層111を形成する際のリンイオンの注入位置よりも、半導体基板100の表面側(エミッタ層105側)となるように調整する。これによって、図1,2に示すような位置関係と厚さで、第1バッファ層113、第2バッファ層111を形成することができる。 The first buffer layer 113 is formed on the semiconductor substrate 100 after the second buffer layer 111. First, a structure on the surface side of the semiconductor substrate 100 such as the first body layer 104, the second body layer 106, and the trench gate 120 is formed on an n-type semiconductor wafer (which becomes the drift layer 102). Next, ions (for example, phosphorus ions) other than hydrogen ions are implanted into the semiconductor wafer from the back surface side, and an annealing process is performed at a temperature higher than 500 ° C. (for example, a temperature of about 800 ° C. or higher). Two buffer layers 111 are formed. Next, hydrogen ions are implanted into the semiconductor wafer from its back side (collector layer 101 side), and annealing is performed at a relatively low temperature of about 500 ° C. or lower (for example, a temperature of 200 to less than 500 ° C.), A first buffer layer 113 is formed. The hydrogen ion implantation position when forming the first buffer layer 113 is located closer to the surface side (emitter layer 105 side) of the semiconductor substrate 100 than the phosphorus ion implantation position when forming the second buffer layer 111. adjust. Thereby, the first buffer layer 113 and the second buffer layer 111 can be formed with the positional relationship and thickness as shown in FIGS.
 比較のため、図4に示すIGBTが形成された従来公知の半導体装置90と、図5に示す半導体装置90の不純物濃度についても併せて説明する。半導体装置90は、図1に示す半導体装置10の第1バッファ層113および第2バッファ層111に替えて、バッファ層903を備えている点において、半導体装置10と相違する。バッファ層903は、ドリフト層902の裏面およびコレクタ層101の表面に接している。バッファ層903は、第1バッファ層113と同様に、半導体基板900にその裏面側から、水素イオンを注入し、500℃程度以下の比較的低い温度でアニール処理を行うことによって形成される。 For comparison, the impurity concentration of the conventionally known semiconductor device 90 in which the IGBT shown in FIG. 4 is formed and the semiconductor device 90 shown in FIG. 5 will also be described together. The semiconductor device 90 is different from the semiconductor device 10 in that a buffer layer 903 is provided instead of the first buffer layer 113 and the second buffer layer 111 of the semiconductor device 10 shown in FIG. The buffer layer 903 is in contact with the back surface of the drift layer 902 and the surface of the collector layer 101. Similarly to the first buffer layer 113, the buffer layer 903 is formed by implanting hydrogen ions into the semiconductor substrate 900 from the back side and performing an annealing process at a relatively low temperature of about 500 ° C. or lower.
 図5の縦軸は、半導体装置90の深さ方向の位置を示しており、横軸は、その位置におけるp型又はn型の不純物濃度を示している。縦軸に示すA2は、半導体基板900の表面の位置を示す。B2は、第1ボディ層104とドリフト層902との境界の位置を示す。C2は、ドリフト層902とバッファ層903との境界の位置を示す。E2は、バッファ層903とコレクタ層101との境界の位置を示す。F2は、半導体基板900の裏面の位置を示す。A2~B2はp型の不純物濃度を示し、B2~E2の間はn型の不純物濃度を示し、E2~F2はp型の不純物濃度を示している。 5 indicates the position in the depth direction of the semiconductor device 90, and the horizontal axis indicates the p-type or n-type impurity concentration at that position. A2 shown on the vertical axis indicates the position of the surface of the semiconductor substrate 900. B2 indicates the position of the boundary between the first body layer 104 and the drift layer 902. C2 indicates the position of the boundary between the drift layer 902 and the buffer layer 903. E2 indicates the position of the boundary between the buffer layer 903 and the collector layer 101. F2 indicates the position of the back surface of the semiconductor substrate 900. A2 to B2 indicate p-type impurity concentrations, B2 to E2 indicate n-type impurity concentrations, and E2 to F2 indicate p-type impurity concentrations.
 バッファ層903は、ドリフト層902よりもn型の不純物濃度が高い。バッファ層903によって、半導体装置90に形成されたIGBTのオフ時に、ボディ層104とドリフト層902とのPN接合部から広がる空乏層がコレクタ層101に到達することを抑制することができる。仮に半導体基板900の裏面側に傷や異物混入があった場合に、裏面側に上記の空乏層が到達すると、コレクタ-エミッタ間の耐圧が低下する可能性がある。半導体装置90によれば、バッファ層903によって、半導体基板900の裏面側に空乏層が到達することを抑制できるため、コレクタ-エミッタ間の耐圧が低下することを抑制できる。 The buffer layer 903 has a higher n-type impurity concentration than the drift layer 902. The buffer layer 903 can prevent the depletion layer extending from the PN junction between the body layer 104 and the drift layer 902 from reaching the collector layer 101 when the IGBT formed in the semiconductor device 90 is turned off. If the semiconductor substrate 900 has scratches or foreign matter on the back side, and the above depletion layer reaches the back side, the collector-emitter breakdown voltage may be reduced. According to the semiconductor device 90, the buffer layer 903 can suppress the depletion layer from reaching the back surface side of the semiconductor substrate 900, so that the collector-emitter breakdown voltage can be prevented from decreasing.
 一方で、バッファ層903の製造工程において、水素イオンを特に高い加速電圧で半導体基板900の裏面側から注入すると、水素イオンが通過する領域に結晶欠陥が形成されることがある。この結晶欠陥は、ライフタイムキラーとして機能し、コレクタ層101からドリフト層902に注入されるホールの寿命に影響を与え、ホールの注入量のばらつきの原因となる。図5に示すように、バッファ層903のn型の不純物濃度のピークは、バッファ層903の厚さ方向の中央位置付近に位置し、コレクタ層101の近傍におけるバッファ層903のn型の不純物濃度は、比較的低くなっている。半導体装置90では、バッファ層903のコレクタ層101の近傍の領域において、結晶欠陥密度に対して、n型の不純物濃度を十分に高くすることが困難である。このため、コレクタ層101からドリフト層902に注入されるホールの注入量に対する結晶欠陥の影響が大きくなる。その結果、IGBTの特性(オン電圧や耐圧等)のばらつきの生じ易くなる。 On the other hand, in the manufacturing process of the buffer layer 903, when hydrogen ions are implanted from the back side of the semiconductor substrate 900 at a particularly high acceleration voltage, crystal defects may be formed in a region through which the hydrogen ions pass. This crystal defect functions as a lifetime killer, affects the life of holes injected from the collector layer 101 into the drift layer 902, and causes variations in the amount of holes injected. As shown in FIG. 5, the peak of the n-type impurity concentration of the buffer layer 903 is located near the central position in the thickness direction of the buffer layer 903, and the n-type impurity concentration of the buffer layer 903 in the vicinity of the collector layer 101. Is relatively low. In the semiconductor device 90, it is difficult to sufficiently increase the n-type impurity concentration with respect to the crystal defect density in the region of the buffer layer 903 in the vicinity of the collector layer 101. For this reason, the influence of crystal defects on the amount of holes injected from the collector layer 101 into the drift layer 902 increases. As a result, variations in IGBT characteristics (ON voltage, breakdown voltage, etc.) are likely to occur.
 これに対して、実施例に係る半導体装置10は、第1バッファ層113と第2バッファ層111とを備えている。第1バッファ層113は、バッファ層903と同様に、ボディ層104とドリフト層102とのPN接合部から空乏層が広がって、コレクタ層101に到達することを抑制する。これによって、半導体装置10のコレクタ-エミッタ間の耐圧が低下することを抑制できる。水素イオンの活性化率は、リンイオンの活性化率の数%程度であるため、水素イオンの注入量は、リンイオンの注入量より必然的に高くなり、水素イオンの注入によって形成される結晶欠陥は、リンイオンの注入によって形成される結晶欠陥よりも多くなる。第2バッファ層111は、半導体基板100に低エネルギーで比較的に少量のリンイオンを注入することによって形成されるため、第1バッファ層113を形成する場合と比較して、半導体基板100に結晶欠陥が形成されにくい。また、図2に示すように、半導体装置10は、第2バッファ層111を備えているため、第2バッファ層111のコレクタ層101の近傍の領域において、n型の不純物濃度が高い。半導体装置10では、第2バッファ層111の不純物濃度を高くすることが容易であり、第2バッファ層111のコレクタ層101の近傍の領域において、結晶欠陥密度に対して、n型の不純物濃度を十分に高くすることができる。その結果、相対的に、第1バッファ層113を形成する際に生じ得る結晶欠陥によるホール注入量への影響を小さくすることができる。すなわち、第1バッファ層113を形成する際に生じ得る結晶欠陥がホール注入量のばらつきの原因となることを抑制できる。また、第2バッファ層111の不純物濃度を調整することによって、ドリフト層102へのホール注入量を調整することができる。 In contrast, the semiconductor device 10 according to the embodiment includes a first buffer layer 113 and a second buffer layer 111. Similar to the buffer layer 903, the first buffer layer 113 suppresses the depletion layer from spreading from the PN junction between the body layer 104 and the drift layer 102 and reaching the collector layer 101. As a result, it is possible to prevent the breakdown voltage between the collector and the emitter of the semiconductor device 10 from decreasing. Since the activation rate of hydrogen ions is about several percent of the activation rate of phosphorus ions, the implantation amount of hydrogen ions is inevitably higher than the implantation amount of phosphorus ions, and crystal defects formed by implantation of hydrogen ions are More than crystal defects formed by implantation of phosphorus ions. Since the second buffer layer 111 is formed by implanting a relatively small amount of phosphorus ions with low energy into the semiconductor substrate 100, the second buffer layer 111 has a crystal defect in the semiconductor substrate 100 compared to the case where the first buffer layer 113 is formed. Is difficult to form. As shown in FIG. 2, since the semiconductor device 10 includes the second buffer layer 111, the n-type impurity concentration is high in a region near the collector layer 101 of the second buffer layer 111. In the semiconductor device 10, it is easy to increase the impurity concentration of the second buffer layer 111, and in the region near the collector layer 101 of the second buffer layer 111, the n-type impurity concentration is set to the crystal defect density. Can be high enough. As a result, the influence on the hole injection amount due to crystal defects that may occur when the first buffer layer 113 is formed can be relatively reduced. That is, it is possible to suppress crystal defects that may occur when forming the first buffer layer 113 from causing variations in the amount of hole injection. Further, the amount of holes injected into the drift layer 102 can be adjusted by adjusting the impurity concentration of the second buffer layer 111.
 上記のとおり、実施例に係る半導体装置10によれば、第1バッファ層113と第2バッファ層とを備えていることによって、コレクタ-エミッタ間の耐圧を確保することと、ホール注入量のばらつきを抑制することとを、両立できる。第1バッファ層113を形成する際に生じ得る結晶欠陥は、ホール注入量のばらつきの原因となり得るが、第2バッファ層のn型の不純物のドーズ量が多いため、結晶欠陥がホール注入量のばらつきの原因となることを抑制できる。また、第1バッファ層113をコレクタ-エミッタ間の耐圧確保を目的として設計し、第2バッファ層111をホール注入量の調整を目的として設計することができるため、設計の自由度が向上する。例えば、第1バッファ層113について、半導体基板100に水素イオンを照射する時間を短縮すると、コレクタ層101側の近傍において水素イオンに由来するn型の不純物濃度が低くなる。この場合、第2バッファ層111のn型の不純物濃度を十分に高くすることで、結晶欠陥がホール注入量のばらつきの原因となることを抑制できる。すなわち、半導体基板100に水素イオンを照射する時間をコレクタ-エミッタ間の耐圧を確保するのに十分な時間にまで短縮することができる。 As described above, according to the semiconductor device 10 according to the embodiment, the first buffer layer 113 and the second buffer layer are provided, thereby ensuring a breakdown voltage between the collector and the emitter, and variation in the amount of hole injection. It is possible to achieve both. Crystal defects that may occur when forming the first buffer layer 113 may cause variations in the amount of hole injection. However, since the dose amount of the n-type impurity in the second buffer layer is large, the crystal defects are not sufficient in the amount of hole injection. It can suppress that it causes variation. Further, since the first buffer layer 113 can be designed for the purpose of ensuring the breakdown voltage between the collector and the emitter, and the second buffer layer 111 can be designed for the purpose of adjusting the hole injection amount, the degree of freedom in design is improved. For example, in the first buffer layer 113, when the time for irradiating the semiconductor substrate 100 with hydrogen ions is shortened, the n-type impurity concentration derived from the hydrogen ions decreases in the vicinity of the collector layer 101 side. In this case, by sufficiently increasing the n-type impurity concentration of the second buffer layer 111, it is possible to suppress crystal defects from causing variations in the amount of hole injection. That is, the time for irradiating the semiconductor substrate 100 with hydrogen ions can be shortened to a time sufficient to ensure the collector-emitter breakdown voltage.
 上記においては、第1バッファ層113は、水素イオンの注入によって形成され、第2バッファ層111は、リンイオンの注入によって形成される例を挙げて説明したが、これに限定されない。例えば、第2バッファ層は、リンイオン以外のn型の不純物イオンを注入することで形成することもできる。なお、第2バッファ層を形成するために用いるn型の不純物イオンは、第1バッファ層を形成するために用いるn型の不純物イオンとは異なるイオンであることが好ましい。第1バッファ層113、第2バッファ層111を形成する際の不純物イオンの注入の加速電圧の高さは、特に限定されず、いずれか一方が高くてもよいし、双方が同程度であってもよい。 In the above description, the first buffer layer 113 is formed by hydrogen ion implantation and the second buffer layer 111 is formed by phosphorus ion implantation. However, the present invention is not limited to this. For example, the second buffer layer can be formed by implanting n-type impurity ions other than phosphorus ions. Note that the n-type impurity ions used for forming the second buffer layer are preferably ions different from the n-type impurity ions used for forming the first buffer layer. The height of the acceleration voltage of the impurity ion implantation when forming the first buffer layer 113 and the second buffer layer 111 is not particularly limited, and either one may be high, or both may be the same level. Also good.
 また、第1バッファ層を形成するに際して、水素イオン以外のn型の不純物イオンを注入することもできる。この場合、コレクタ-エミッタ間の耐圧を確保するために、第1バッファ層を形成するための不純物イオンの注入は、比較的高いエネルギーで注入することが好ましい。例えば、加速電圧が数百keV~数MeV程度のエネルギー領域にある高エネルギーイオン注入装置を用いて、不純物イオンの注入を行うことが好ましい。この場合、第2バッファ層は、第1バッファ層を形成する際よりも低いエネルギーで、不純物イオンの注入を行って形成することが好ましい。 Also, when forming the first buffer layer, n-type impurity ions other than hydrogen ions can be implanted. In this case, in order to ensure a breakdown voltage between the collector and the emitter, it is preferable to implant impurity ions for forming the first buffer layer with relatively high energy. For example, it is preferable to implant impurity ions using a high energy ion implantation apparatus having an acceleration voltage in the energy region of about several hundred keV to several MeV. In this case, the second buffer layer is preferably formed by implanting impurity ions with lower energy than when forming the first buffer layer.
 高エネルギーイオン注入装置を用いる場合、一般にビーム電流量は数μA領域から数mA領域に制限され、第1バッファ層の不純物イオンのドーズ量を増加することが困難な場合がある。この場合であっても、第2バッファ層によって、コレクタ層の近傍におけるn型の不純物イオン濃度を確保することができる。第2バッファ層は、コレクタ-エミッタ間の耐圧の確保を目的としないことから、比較的低いエネルギーで不純物の注入を行うことができる。例えば、加速電圧か数keV~数百keVの領域にある中電流イオン注入装置を用いれば、ビーム電流量は100μA~2mA程度と比較的大きくすることができ、第2バッファ層のドーズ量を十分に高くすることができる。 When a high energy ion implantation apparatus is used, the amount of beam current is generally limited from several μA region to several mA region, and it may be difficult to increase the dose amount of impurity ions in the first buffer layer. Even in this case, the n-type impurity ion concentration in the vicinity of the collector layer can be ensured by the second buffer layer. Since the second buffer layer is not intended to ensure a breakdown voltage between the collector and the emitter, impurities can be implanted with relatively low energy. For example, if a medium current ion implantation apparatus having an acceleration voltage of several keV to several hundred keV is used, the beam current amount can be made relatively large, about 100 μA to 2 mA, and the dose amount of the second buffer layer is sufficiently large. Can be high.
 以上、本発明の実施例について詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。 As mentioned above, although the Example of this invention was described in detail, these are only illustrations and do not limit a claim. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.
 本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。 The technical elements described in the present specification or drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the technology exemplified in this specification or the drawings can achieve a plurality of objects at the same time, and has technical usefulness by achieving one of the objects.

Claims (6)

  1.  第1導電型のドリフト層と、
     ドリフト層の表面側に設けられるとともにその一部が半導体基板の表面に露出する第2導電型のボディ層と、
     ボディ層の表面の一部に設けられ、半導体基板の表面に露出し、ボディ層によってドリフト層と分離されている第1導電型のエミッタ層と、
     ドリフト層の裏面に設けられた第1導電型の第1バッファ層と、
     第1バッファ層の裏面に設けられた第1導電型の第2バッファ層と、
     第2バッファ層の裏面に接するとともに半導体基板の裏面に露出する第2導電型のコレクタ層と、
     エミッタ層とドリフト層を分離している範囲のボディ層に絶縁膜を介して対向しているゲート電極とを備え、
     第1バッファ層の厚さは、第2バッファ層の厚さよりも厚く、
     第2バッファ層の第1導電型の不純物イオンによるキャリアの濃度は、第1バッファ層の第1導電型の不純物イオンによるキャリアの濃度よりも高い、半導体装置。
    A first conductivity type drift layer;
    A body layer of a second conductivity type provided on the surface side of the drift layer and a part of which is exposed on the surface of the semiconductor substrate;
    An emitter layer of a first conductivity type provided on a part of the surface of the body layer, exposed on the surface of the semiconductor substrate and separated from the drift layer by the body layer;
    A first buffer layer of a first conductivity type provided on the back surface of the drift layer;
    A second buffer layer of the first conductivity type provided on the back surface of the first buffer layer;
    A collector layer of a second conductivity type in contact with the back surface of the second buffer layer and exposed on the back surface of the semiconductor substrate;
    A gate electrode facing the body layer in a range separating the emitter layer and the drift layer through an insulating film;
    The first buffer layer is thicker than the second buffer layer,
    The semiconductor device, wherein the carrier concentration due to the first conductivity type impurity ions in the second buffer layer is higher than the carrier concentration due to the first conductivity type impurity ions in the first buffer layer.
  2.  第1バッファ層は、半導体基板にその裏面から第1導電型の第1の不純物イオンを注入して形成され、
     第2バッファ層は、第1の不純物イオンよりも低い注入エネルギーで半導体基板にその裏面から第1導電型の第2の不純物イオンを注入して形成される、請求項1に記載の半導体装置。
    The first buffer layer is formed by implanting first impurity ions of the first conductivity type from the back surface of the semiconductor substrate,
    2. The semiconductor device according to claim 1, wherein the second buffer layer is formed by implanting second impurity ions of the first conductivity type from a back surface of the semiconductor substrate with an implantation energy lower than that of the first impurity ions.
  3.  第1の不純物イオンは、水素イオンであり、
     第2の不純物イオンは、水素イオン以外の第1導電型の不純物イオンである、請求項2に記載の半導体装置。
    The first impurity ions are hydrogen ions,
    The semiconductor device according to claim 2, wherein the second impurity ions are impurity ions of a first conductivity type other than hydrogen ions.
  4.  第1バッファ層は、半導体基板にその裏面から水素イオンを注入して形成され、
     第2バッファ層は、半導体基板にその裏面から水素イオン以外の第1導電型の不純物イオンを注入して形成される、請求項1に記載の半導体装置。
    The first buffer layer is formed by implanting hydrogen ions from the back surface of the semiconductor substrate,
    2. The semiconductor device according to claim 1, wherein the second buffer layer is formed by implanting impurity ions of a first conductivity type other than hydrogen ions from a back surface of the semiconductor substrate.
  5.  請求項1に記載の半導体装置の製造方法であって、
     半導体基板の裏面から水素イオン以外の第1導電型の不純物イオンを注入した後、アニール処理を行って、第2バッファ層を形成する工程と、
     第2バッファ層が形成された半導体基板の裏面から水素イオンを注入した後、アニール処理を行って、第1バッファ層を形成する工程とを含む、半導体装置の製造方法。
    A method of manufacturing a semiconductor device according to claim 1,
    A step of forming a second buffer layer by implanting impurity ions of a first conductivity type other than hydrogen ions from the back surface of the semiconductor substrate and then performing an annealing process;
    Forming a first buffer layer by implanting hydrogen ions from the back surface of the semiconductor substrate on which the second buffer layer is formed, and then performing an annealing process.
  6.  請求項1に記載の半導体装置の製造方法であって、
     半導体基板にその裏面から第1導電型の第1の不純物イオンを注入し、アニール処理を行って、第1バッファ層を形成する工程と、
     第1の不純物イオンよりも低い注入エネルギーで半導体基板にその裏面から第1導電型の第2の不純物イオンを注入し、第2バッファ層を形成する工程とを含む、半導体装置の製造方法。
    A method of manufacturing a semiconductor device according to claim 1,
    Injecting first impurity ions of the first conductivity type into the semiconductor substrate from its back surface and performing an annealing process to form a first buffer layer;
    And a step of implanting a second impurity ion of the first conductivity type into the semiconductor substrate from its back surface with an implantation energy lower than that of the first impurity ion to form a second buffer layer.
PCT/JP2013/074704 2013-09-12 2013-09-12 Semiconductor device and method for manufacturing same WO2015037101A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/074704 WO2015037101A1 (en) 2013-09-12 2013-09-12 Semiconductor device and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/074704 WO2015037101A1 (en) 2013-09-12 2013-09-12 Semiconductor device and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2015037101A1 true WO2015037101A1 (en) 2015-03-19

Family

ID=52665243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/074704 WO2015037101A1 (en) 2013-09-12 2013-09-12 Semiconductor device and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2015037101A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106098553A (en) * 2015-04-30 2016-11-09 英飞凌科技股份有限公司 Semiconductor device is manufactured by epitaxial growth
JP2018107303A (en) * 2016-12-27 2018-07-05 三菱電機株式会社 Semiconductor device, power conversion device, and manufacturing method of semiconductor device
CN111354639A (en) * 2020-04-27 2020-06-30 上海华虹宏力半导体制造有限公司 IGBT device and preparation method thereof
CN113345959A (en) * 2020-03-02 2021-09-03 三菱电机株式会社 Semiconductor device and method for manufacturing semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001230415A (en) * 2000-02-16 2001-08-24 Toshiba Corp Semiconductor device and its manufacturing method
JP2008091853A (en) * 2006-09-07 2008-04-17 Fuji Electric Device Technology Co Ltd Semiconductor device, and its manufacturing method
JP2008211148A (en) * 2007-02-28 2008-09-11 Fuji Electric Device Technology Co Ltd Semiconductor device and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001230415A (en) * 2000-02-16 2001-08-24 Toshiba Corp Semiconductor device and its manufacturing method
JP2008091853A (en) * 2006-09-07 2008-04-17 Fuji Electric Device Technology Co Ltd Semiconductor device, and its manufacturing method
JP2008211148A (en) * 2007-02-28 2008-09-11 Fuji Electric Device Technology Co Ltd Semiconductor device and manufacturing method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106098553A (en) * 2015-04-30 2016-11-09 英飞凌科技股份有限公司 Semiconductor device is manufactured by epitaxial growth
US10243066B2 (en) 2015-04-30 2019-03-26 Infineon Technologies Austria Ag Producing a semiconductor device by epitaxial growth
JP2018107303A (en) * 2016-12-27 2018-07-05 三菱電機株式会社 Semiconductor device, power conversion device, and manufacturing method of semiconductor device
CN113345959A (en) * 2020-03-02 2021-09-03 三菱电机株式会社 Semiconductor device and method for manufacturing semiconductor device
JP2021141094A (en) * 2020-03-02 2021-09-16 三菱電機株式会社 Semiconductor device and manufacturing method for semiconductor device
JP7361634B2 (en) 2020-03-02 2023-10-16 三菱電機株式会社 Semiconductor device and semiconductor device manufacturing method
CN111354639A (en) * 2020-04-27 2020-06-30 上海华虹宏力半导体制造有限公司 IGBT device and preparation method thereof

Similar Documents

Publication Publication Date Title
US10629678B2 (en) Semiconductor device and method of manufacturing semiconductor device
US9620499B2 (en) Semiconductor device and method of manufacturing the semiconductor device
JP6119593B2 (en) Semiconductor device
EP2793267B1 (en) Semiconductor device and semiconductor device manufacturing method
WO2015159953A1 (en) Semiconductor device
JP2013074181A (en) Semiconductor device and manufacturing method of the same
JP5505498B2 (en) Semiconductor device and manufacturing method thereof
JP5742962B2 (en) Semiconductor device and manufacturing method thereof
US9887125B2 (en) Method of manufacturing a semiconductor device comprising field stop zone
US10516020B2 (en) Semiconductor device including crystal defect region and method for manufacturing the same
US20160027867A1 (en) Semiconductor device
WO2014087499A1 (en) Semiconductor device
JP2007036221A (en) Semiconductor component having channel blocking zone
JP2014236120A (en) Semiconductor device and manufacturing method therefor
WO2015037101A1 (en) Semiconductor device and method for manufacturing same
JP6665713B2 (en) Semiconductor device
JP2013004982A (en) Bipolar punch-through semiconductor device and method for manufacturing such semiconductor device
US9673308B2 (en) Semiconductor device manufacturing method
JP6639739B2 (en) Semiconductor device
US9252292B2 (en) Semiconductor device and a method for forming a semiconductor device
JP2017092283A (en) Semiconductor device and manufacturing method of the same
JP5609078B2 (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13893315

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13893315

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP