WO2015035959A1 - 换热器 - Google Patents

换热器 Download PDF

Info

Publication number
WO2015035959A1
WO2015035959A1 PCT/CN2014/086623 CN2014086623W WO2015035959A1 WO 2015035959 A1 WO2015035959 A1 WO 2015035959A1 CN 2014086623 W CN2014086623 W CN 2014086623W WO 2015035959 A1 WO2015035959 A1 WO 2015035959A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
refrigerant
vapor
compartment
heat exchanger
Prior art date
Application number
PCT/CN2014/086623
Other languages
English (en)
French (fr)
Inventor
蒋建龙
徐阳
Original Assignee
丹佛斯公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 丹佛斯公司 filed Critical 丹佛斯公司
Publication of WO2015035959A1 publication Critical patent/WO2015035959A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/05Cost reduction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/06Damage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/18Optimization, e.g. high integration of refrigeration components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0085Evaporators

Definitions

  • the invention relates to the fields of HVAC, automobile, refrigeration and transportation, in particular to a heat exchanger such as a microchannel evaporator, a parallel flow evaporator and a heat pump.
  • a heat exchanger such as a microchannel evaporator, a parallel flow evaporator and a heat pump.
  • the refrigerant entering the heat exchanger is a two-phase refrigerant or a refrigerant, and in particular, whether the liquid refrigerant can be evenly distributed to each channel or heat exchange tube for heat exchange,
  • the design of this type of heat exchanger is critical.
  • microchannel heat exchangers generally have a problem of uneven distribution of two-phase refrigerant, resulting in uneven flow of refrigerant in different heat exchange tubes. In this way, the flow rate in the heat exchange tube is less quickly evaporated, the superheat of the pipeline outlet is higher; the evaporation in the heat exchange tube is more incomplete, resulting in less superheat of the outlet, and even in some cases, liquid refrigerant exists. This results in the heat transfer area of the microchannel heat exchanger not being effectively utilized.
  • the gaseous refrigerant and the liquid refrigerant are separated in the same chamber, and enter the conduit and the heat exchange tubes in the same chamber, respectively. In this way, it is difficult to completely separate the gaseous refrigerant and the liquid refrigerant, and there is still a gaseous refrigerant entering the heat exchange tube to affect the distribution of the liquid refrigerant in each heat exchange tube.
  • the gaseous refrigerant is directly separated and exported to the heat exchanger outlet. The gaseous refrigerant does not exchange heat with the working fluid such as air, resulting in heat loss of the heat exchanger.
  • One of the objects of the present invention is to solve the problem of uneven distribution of two-phase refrigerant in a heat exchanger such as a microchannel heat exchanger.
  • a heat exchanger includes an inlet header and an outlet a header and a heat exchange tube and a gas conduit connected between the inlet header and the outlet header, wherein the inlet header comprises at least two compartments, the at least two compartments comprising The vapor-liquid two-phase refrigerant compartment of the vapor-liquid two-phase refrigerant entering the inlet header and the liquid refrigerant compartment for accommodating the separated liquid refrigerant, and the vapor-liquid two-phase refrigerant entering the inlet header first It is accommodated in a vapor-liquid two-phase refrigerant compartment. After separation, the liquid refrigerant enters the liquid refrigerant compartment and then enters the heat exchange tube for heat exchange, and enters the outlet header after heat exchange, and the vapor refrigerant It is led out of the gas conduit into the outlet header.
  • the vapor-liquid two-phase refrigerant is subjected to vapor-liquid refrigerant separation in a filtered manner in the inlet header.
  • the at least two compartments further include a vaporous refrigerant compartment for containing the separated vaporous refrigerant, the vaporous refrigerant compartment being provided with a passage for vaporous refrigerant to enter, the passage being configured to Only the vapor refrigerant is allowed to pass without allowing the liquid refrigerant to pass, so that the vapor-liquid refrigerant is separated.
  • liquid refrigerant in the vapor-liquid two-phase refrigerant compartment flows into the liquid refrigerant compartment through a liquid conduit or hole connected to the liquid refrigerant compartment, and the passage is located in the vapor-liquid refrigerant compartment and the vapor-liquid two-phase state
  • the top or upper portion of the refrigerant compartment is substantially at the same level of height.
  • the vapor-liquid two-phase refrigerant performs vapor-liquid refrigerant separation in the inlet header by means of refrigerant flow deceleration.
  • a blocking member is arranged in the flow direction of the vapor-liquid two-phase refrigerant, so that the flow of the vapor-liquid two-phase refrigerant is decelerated, and the vapor-liquid refrigerant is separated.
  • liquid refrigerant in the vapor-liquid two-phase refrigerant compartment flows into the liquid refrigerant compartment through the liquid conduit, and the gas conduit is directly connected to the top or upper portion of the vapor-liquid two-phase refrigerant compartment to pass the vapor refrigerant through the gas conduit Export to the outlet header.
  • the vapor-liquid two-phase refrigerant is subjected to vapor-liquid refrigerant separation by gravity in the inlet header.
  • the inlet header is disposed at an upper portion of the heat exchanger
  • the vapor-liquid two-phase refrigerant compartment is disposed in the form of a compartment (for example, a cylindrical compartment) and is located at the center of the inlet header, and the vapor refrigerant compartment is separated.
  • the chamber is located in the upper portion of the vapor-liquid two-phase refrigerant compartment
  • the liquid refrigerant compartment is located in the lower portion of the vapor-liquid two-phase refrigerant compartment.
  • liquid refrigerant in the vapor-liquid two-phase refrigerant compartment flows into the liquid refrigerant compartment by gravity through a hole connected to the liquid refrigerant compartment, and the vapor refrigerant in the vapor-liquid two-phase refrigerant compartment passes through The pores connected to the vapor-state refrigerant compartment flow into the vapor-state refrigerant compartment to complete the separation of the vapor-liquid two-phase refrigerant.
  • a heat exchanger includes an inlet header and an outlet a header pipe, comprising: a vapor-liquid separator, a vapor-state refrigerant chamber and a liquid refrigerant chamber respectively communicating with the vapor-liquid separator, between the liquid refrigerant chamber and the outlet header a plurality of liquid refrigerant heat exchange tubes are disposed, and a plurality of vapor-state refrigerant heat exchange tubes are disposed between the vapor-state refrigerant chamber and the outlet header; wherein the vapor-liquid two-phase refrigerant enters the inlet header After separation by the vapor-liquid separator, the vapor-state refrigerant enters the vapor-state refrigerant chamber and then flows into the outlet header through the vapor-state refrigerant heat exchange tube, while the liquid refrigerant enters the liquid refrigerant chamber and then passes through the liquid refrigerant heat exchange tube. Flow into the outlet header.
  • the vaporous refrigerant chamber and the liquid refrigerant chamber are arranged along the longitudinal direction of the heat exchanger and are separated by a barrier.
  • the vapor-liquid separator includes at least two compartments including a vapor-liquid two-phase refrigerant compartment for containing vapor-liquid two-phase refrigerant entering the inlet header and a liquid refrigerant compartment for containing the separated liquid refrigerant, and a vapor-liquid two-phase refrigerant entering the inlet header is first accommodated in the vapor-liquid two-phase refrigerant compartment, and after separation, the liquid refrigerant enters the at least two The liquid refrigerant in the compartments enters the liquid refrigerant chamber and then enters the liquid refrigerant chamber, and the vapor refrigerant enters the vapor refrigerant chamber, wherein the liquid refrigerant compartment communicates with the liquid refrigerant chamber or together constitutes a separate component, wherein
  • the at least two compartments also include a vaporous refrigerant compartment for containing the separated vaporous refrigerant, the vaporous refrigerant compartments being in communication with or together with the vapor
  • the vapor-liquid two-phase refrigerant is subjected to vapor-liquid refrigerant separation in a vapor-liquid separator in a filtered manner.
  • the vapor-state refrigerant compartment is provided with a passage for vapor refrigerant to enter, the passage being arranged to allow only the passage of the vapor refrigerant without allowing the liquid refrigerant to pass for vapor-liquid refrigerant separation.
  • liquid refrigerant in the vapor-liquid two-phase refrigerant compartment flows into the liquid refrigerant compartment through a liquid conduit or hole connected to the liquid refrigerant compartment, and the passage is located in the vapor-liquid refrigerant compartment and the vapor-liquid two-phase state
  • the top or upper portion of the refrigerant compartment is substantially at the same level of height.
  • the vapor-liquid two-phase refrigerant performs vapor-liquid refrigerant separation in a vapor-liquid separator in a refrigerant flow deceleration manner.
  • a blocking member is arranged in the flow direction of the vapor-liquid two-phase refrigerant, so that the flow of the vapor-liquid two-phase refrigerant is decelerated, and the vapor-liquid refrigerant is separated.
  • the liquid refrigerant in the vapor-liquid two-phase refrigerant compartment flows into the liquid refrigerant compartment through the liquid conduit, and the vapor refrigerant flows into the vapor through the gas conduit directly connected to the top or upper portion of the vapor-liquid two-phase refrigerant compartment.
  • the state of the refrigerant cavity is not limited to the liquid refrigerant compartment.
  • the vapor-liquid two-phase refrigerant is subjected to vapor-liquid refrigerant separation by gravity in a vapor-liquid separator.
  • the inlet header is disposed at an upper portion of the heat exchanger
  • the vapor-liquid two-phase refrigerant compartment is disposed in the form of a compartment (for example, a cylindrical compartment) and is located at the center of the vapor-liquid separator, and the vapor-state refrigerant compartment
  • the chamber is located in the upper portion of the vapor-liquid two-phase refrigerant compartment
  • the liquid refrigerant compartment is located in the lower portion of the vapor-liquid two-phase refrigerant compartment.
  • the liquid refrigerant in the vapor-liquid two-phase refrigerant compartment flows into the liquid refrigerant compartment by gravity through a hole connected to the liquid refrigerant compartment, and the vapor refrigerant in the vapor-liquid two-phase refrigerant compartment passes through The pores connected to the vapor-state refrigerant compartment flow into the vapor-state refrigerant compartment to complete the separation of the vapor-liquid two-phase refrigerant.
  • the present invention solves the problem that the two-phase refrigerant (or refrigerant) of the heat exchanger is difficult to be evenly distributed. Further, the present invention can effectively improve the heat exchange area of the heat exchanger and increase the heat exchange performance. Additionally, the heat exchangers of the present invention or embodiments including structures that achieve two-phase refrigerant separation do not require separate optimized dispensing, resulting in significant time and resource savings.
  • vapor state and “gaseous state” may be used interchangeably or in place of each other.
  • qi and “steam” may be used interchangeably or interchangeably.
  • Figure 1 is a side elevational cross-sectional view of a heat exchanger in accordance with a first embodiment of the present invention
  • Figure 2 is a side elevational cross-sectional view of a heat exchanger in accordance with a second embodiment of the present invention
  • Figure 3 is a side elevational cross-sectional view of a heat exchanger in accordance with a third embodiment of the present invention.
  • Figure 4 is a side elevational cross-sectional view of a heat exchanger in accordance with a fourth embodiment of the present invention.
  • Figure 5 is a side elevational cross-sectional view of a heat exchanger in accordance with a fifth embodiment of the present invention.
  • Figure 6 is a side elevational cross-sectional view of a heat exchanger in accordance with a sixth embodiment of the present invention.
  • the heat exchanger 100 includes an inlet header 10 located at a lower portion of the heat exchanger 100, an outlet header 20 located at an upper portion of the heat exchanger 100, and at least one connected between the inlet header 10 and the outlet header 20.
  • the inlet header 10 includes at least two compartments. As shown, the inlet header 10 includes a vapor-liquid two-phase refrigerant compartment 12 for containing vapor-liquid two-phase refrigerant entering the inlet header 10 for containing the separated vapor refrigerant.
  • a vaporous refrigerant compartment 14 and a liquid refrigerant compartment 16 for containing the separated liquid refrigerant As can be seen, the bottom of the vapor-liquid two-phase refrigerant compartment 12 (shown in phantom) shows a liquid refrigerant, while in the upper part of the vapor-liquid two-phase refrigerant compartment 12, it is shown to have a vapor-state refrigerant. (shown in a blank area). Correspondingly, the vaporous refrigerant compartment 14 contains vaporous refrigerant (shown as a blank area therein); and the liquid refrigerant compartment 16 contains liquid refrigerant (shown in phantom).
  • the inlet header 10 is divided into upper and lower compartments by a spacer 70 disposed at the middle of the cross section of the inlet header 10 shown in FIG.
  • the upper compartment is the liquid refrigerant compartment 16 described herein.
  • the lower compartment is divided into a lower left compartment and a lower right compartment by a protruding member or blocking member 72 projecting from the bottom of the inlet header 10.
  • the lower left compartment is the vapor-liquid two-phase refrigerant compartment 12 described herein, and accordingly, the lower right compartment is the vapor-state refrigerant compartment 14 described herein.
  • the vapor-liquid two-phase refrigerant compartment 12 is connected or connected to the refrigerant inlet 40 of the heat exchanger 100.
  • the vapor-liquid two-phase refrigerant compartment 12 and the vapor-state refrigerant compartment 14 are not completely isolated, that is, there is a passage 60 between the protruding member 72 and the spacer 70.
  • the passage 60 is sized to be small enough to allow passage of vapor refrigerant and liquid refrigerant to pass.
  • the vapor-state refrigerant compartment 14 is provided with a passage 60 for vapor refrigerant entry.
  • the size of the passage 60 is made small.
  • the passage 60 is disposed at a position at substantially the same level as the top or upper portion of the vapor-liquid two-phase refrigerant compartment 12 of the vapor-state refrigerant compartment 14.
  • the passage 60 can also be placed at other locations as long as the height of the liquid refrigerant in the vapor-liquid two-phase refrigerant compartment 12 does not exceed the height of the passage 60.
  • the position and structural arrangement of the passage 60 can also be set to other forms as needed, and is not limited to the specific form shown in FIG. 1; as long as the passage 60 or the equivalent structure can be realized, only the vapor refrigerant can be allowed to enter the vapor-state refrigerant compartment. Chamber 14 does not allow liquid refrigerant to enter. Therefore, the functions of the present invention can be implemented Many variations on the structure or position of the passage 60 should also fall within the scope of the present invention.
  • the vapor-liquid two-phase refrigerant enters the vapor-liquid two-phase refrigerant compartment 12 of the inlet header 10 through the inlet 40 of the heat exchanger, and then the liquid refrigerant will be in the vapor-liquid two-phase refrigerant compartment 12 Under the pressure, the liquid conduit 50 connected to the liquid refrigerant compartment 16 flows into the liquid refrigerant compartment 16 (as indicated by the upward arrow in the conduit 50), and then the liquid refrigerant enters the corresponding heat exchange tube for heat exchange. (Normally, the liquid refrigerant will become vapor after complete heat exchange) and will flow into the outlet header 20 after the heat exchange is completed. Accordingly, the vaporous refrigerant will enter the vaporous refrigerant compartment 14 through passage 60 and thereafter be directed by gas conduit 30 into outlet header 20 (as indicated by the upward arrow in Figure 1).
  • a pressure adjusting device 80 is provided on the air duct 30.
  • the wavy line in the middle of the heat exchanger shown in Fig. 1 indicates that the length of the heat exchanger is not limited to the specific length as shown, and it may be set to have any length as needed.
  • the same contents as those described in the first embodiment or descriptions of the same structures are omitted.
  • FIG. 2 a partial cross-sectional side view of a heat exchanger 200 incorporating a second embodiment of the present invention is shown.
  • the heat exchanger 200 is substantially identical to the heat exchanger 100 described in the first embodiment, except for the position of the inlet header 10 and the outlet header 20, the vapor-liquid two-phase refrigerant compartment and the vapor state.
  • the relative position of the refrigerant compartment to the liquid refrigerant compartment and the manner in which the liquid refrigerant is introduced into the liquid refrigerant compartment 16 are excluded. Therefore, in the second embodiment, the same components as those of the heat exchanger of the first embodiment are given the same reference numerals for the sake of simplification and clarity.
  • the inlet header 10 is disposed at an upper portion of the heat exchanger 200 and the outlet header 20 is disposed at a lower portion of the heat exchanger 200.
  • the liquid refrigerant in the vapor-liquid two-phase refrigerant compartment 12 flows to the liquid refrigerant compartment 16 through the orifices 52 that communicate to the liquid refrigerant compartment 16.
  • the liquid refrigerant compartment 16 is located at the lower portion of the inlet header 10, and the vapor-state refrigerant compartment 14 and the vapor-liquid two-phase refrigerant compartment 12 are located at the upper portion of the inlet header 10, respectively in the upper left and upper right portions thereof. , as shown on the page shown in Figure 2.
  • the vapor-liquid two-phase refrigerant enters the vapor-liquid two-phase refrigerant compartment 12 of the inlet header 10 through the inlet 40 of the heat exchanger, and then the liquid refrigerant will be under gravity (due to the vapor-liquid two-phase state)
  • the refrigerant compartment 12 is located The upper portion of the liquid refrigerant compartment 16 flows into the liquid refrigerant compartment 16 through a hole 52 communicating with the liquid refrigerant compartment 16, and then the liquid refrigerant enters the corresponding heat exchange tube for heat exchange (generally, after complete heat exchange, liquid)
  • the refrigerant will become vaporous) and will flow into the outlet header 20 after the heat exchange is completed.
  • the vaporous refrigerant will enter the vaporous refrigerant compartment 14 through the passage 60 and then be directed by the gas conduit 30 into the outlet header 20 under the pressure within the vapor-liquid two-phase refrigerant compartment 12 (e.g. The downward arrow in Figure 2).
  • the principle of the vapor-liquid refrigerant separation of the heat exchangers of the first and second embodiments is based on the filtration of the passage 60 to perform vapor-liquid refrigerant separation.
  • FIG. 3 a partial cross-sectional side view of a heat exchanger 300 in accordance with a third embodiment of the present invention is shown.
  • the heat exchanger 300 is substantially identical to the heat exchanger 100 of the first embodiment, except for the structure of the vapor-liquid two-phase refrigerant compartment 12 and/or the vapor-state refrigerant compartment 14 and the realization of vapor-liquid refrigerant. Separate structural arrangement. Therefore, in the third embodiment, the same components as those of the heat exchanger of the first embodiment are given the same reference numerals for the sake of simplification and clarity.
  • the heat exchanger 300 of the third embodiment differs from the heat exchanger 100 of the first embodiment in the manner of achieving vapor-liquid separation in that the vapor-liquid two-phase refrigerant flows in the inlet manifold with refrigerant.
  • the deceleration mode performs vapor-liquid separation.
  • the inlet header 10 is separated by spacers 70 into the upper and lower compartments as in the page shown in Figure 3, i.e., the upper compartment is the liquid refrigerant compartment 16 and the lower compartment is vaporized.
  • at least one blocking member 56 is disposed in the vapor-liquid two-phase refrigerant compartment 12 in the flow direction of the vapor-liquid two-phase refrigerant.
  • the blocking member 56 can take any form, such as a rod, mesh or plate shaped barrier such as a baffle.
  • the number of the blocking members 56 can be set as needed.
  • Two blocking members 56 are shown in Fig. 3, one blocking member being arranged to protrude from the bottom of the inlet header 10 and the other blocking member being arranged to protrude from the spacer 70 toward the vapor-liquid two-phase refrigerant compartment 12. .
  • the vapor-liquid two-phase refrigerant flows from the inlet 40 on the left side of the inlet header 10 in the page of Fig. 3 to the right side of the vapor-liquid two-phase compartment 12, the vapor-liquid two-phase refrigerant is made The flow is decelerated, thereby achieving vapor-liquid separation of the refrigerant. After the separation, the liquid refrigerant flows into the liquid refrigerant compartment through the two liquid conduits 50 shown in Fig.
  • the heat exchanger 400 of the fourth embodiment differs from the heat exchanger 200 of the second embodiment in the manner of achieving vapor-liquid separation in that the vapor-liquid two-phase refrigerant passes through the inlet header 10.
  • the action of gravity performs vapor-liquid separation.
  • the inlet header 10 forms a cylindrical compartment at its center by a spacer 76 for use as a vapor-liquid two-phase refrigerant compartment 12.
  • a liquid refrigerant compartment 16 is formed by a separator 70.
  • a vapor-state refrigerant compartment 14 is formed above the vapor-liquid two-phase refrigerant compartment 12.
  • the vaporous refrigerant compartment 14 can be separated into two compartments by a further spacer 74, namely a left and right vaporous refrigerant compartment. It is shown that the left vaporous refrigerant compartment 14 and the liquid refrigerant compartment 16 are in communication with the vapor-liquid two-phase refrigerant compartment 12 through holes 54, 56, respectively.
  • the liquid refrigerant in the vapor-liquid two-phase refrigerant compartment 12 flows by gravity into the lower liquid refrigerant compartment 16 through the pores 56, and then flows into the heat exchange tubes for heat exchange, as in the first embodiment.
  • the vaporous refrigerant in the vapor-liquid two-phase refrigerant compartment 12 flows into the vapor-state refrigerant compartment 16 through the orifices 54 and is then discharged into the outlet header 20 through the gas conduits 30.
  • FIG. 4 only shows that the left vaporous refrigerant compartment 14 is in communication with the vapor-liquid two-phase refrigerant compartment through the orifice 54, the vaporous refrigerant compartment on the right side may also pass through a similar orifice or another orifice and vapor-liquid.
  • the two-phase refrigerant compartment or the left-side vapor refrigerant compartment is connected.
  • the form of the compartment is not limited to the above-described cylindrical form, and may be square, rectangular, elliptical or the like.
  • the fifth and sixth embodiments described in Figs. 5 and 6 are modifications of the heat exchangers described in the above first to fourth embodiments.
  • the heat exchangers of the first to fourth embodiments are not provided with independent vapor-liquid separators for separating the vapor-liquid two-phase refrigerant, and the separation of the vapor refrigerant and the liquid refrigerant is at the inlet manifold. Completed in the tube, and the vapor state The refrigerant is conducted through the conduit without heat exchange, causing partial heat loss.
  • the principle and structure of the vapor-liquid separator in principle and structure are related to the principle and structure of achieving vapor-liquid separation in the first to fourth embodiments. Substantially the same, except that the vaporous refrigerant is introduced into the vaporous refrigerant chamber and then heat is exchanged through the vaporous refrigerant heat exchange tubes.
  • the heat exchanger 500 includes an inlet header disposed at a lower portion of the heat exchanger 500 and an outlet header 520 disposed at an upper portion of the heat exchanger 500.
  • the inlet header includes a vapor-liquid separator 512 for separating the vapor-liquid two-phase refrigerant, a vapor refrigerant chamber 514 and a liquid refrigerant chamber 516 respectively communicating with the vapor-liquid separator 512.
  • the vaporous refrigerant chamber 514 is separated from the liquid refrigerant chamber 516 by a partition 532 in the longitudinal direction of the heat exchanger 500 (i.e., the left-right direction of the page of FIG. 5).
  • a plurality of vapor-state refrigerant heat exchange tubes 534 are disposed between the vapor-state refrigerant chamber 514 and the outlet header 520, and a plurality of liquid refrigerant heat exchanges are disposed between the liquid refrigerant chamber 516 and the outlet header 520.
  • Tube 536 any form, any structure, and any number of fins may be provided on the liquid refrigerant and vapor refrigerant heat exchange tubes described herein and the heat exchange tubes described in the first to fourth embodiments as needed.
  • the structure or configuration for realizing the vapor-liquid two-phase refrigerant separation described in the first to fourth embodiments can be used as the vapor-liquid separator shown in FIGS. 5 and 6 to obtain the corresponding heat exchange. Device.
  • the vaporous refrigerant compartment (if provided) in the vapor-liquid separator for containing the vaporous refrigerant and the liquid refrigerant compartment for containing the liquid refrigerant (such as the first to fourth implementations)
  • the examples are in communication with the chamber and liquid refrigerant chambers shown in Figures 5 and 6, respectively.
  • liquid refrigerant compartments and liquid refrigerant chambers described herein can also be viewed or fabricated as a single component as they are in communication.
  • the vapor-state refrigerant compartment and the vapor-state refrigerant chamber can be viewed together or fabricated as a single component.
  • they will be considered or described as two components, respectively.
  • the vapor-liquid separator 512 package when combined with the vapor-liquid refrigerant separation structure or configuration shown in the embodiment of FIG. Including at least two compartments including a vapor-liquid two-phase refrigerant compartment for containing vapor-liquid two-phase refrigerant entering the inlet header and a liquid refrigerant for containing the separated liquid refrigerant
  • the vapor-liquid two-phase refrigerant entering the inlet header is first accommodated in the vapor-liquid two-phase refrigerant compartment, and after separation, the liquid refrigerant enters the liquid refrigerant compartment in the at least two compartments And then enters the liquid refrigerant chamber 516, and the vaporous refrigerant enters the vapor refrigerant chamber 514.
  • the at least two compartments further include a vaporous refrigerant compartment for containing the separated vaporous refrigerant, the vaporous refrigerant compartment being provided with a passage for vaporous refrigerant to enter, the passage being configured to allow only steam The refrigerant passes through without allowing the liquid refrigerant to pass through to perform vapor-liquid refrigerant separation.
  • the liquid refrigerant in the vapor-liquid two-phase refrigerant compartment flows into the liquid refrigerant compartment through the liquid conduit connected to the liquid refrigerant compartment, and the passage is located in the vapor refrigerant compartment in order to allow only the vapor refrigerant to enter the vapor refrigerant compartment through the passage.
  • the chamber is at approximately the same height level as the top or upper portion of the vapor-liquid two-phase refrigerant compartment.
  • the vapor-liquid two-phase refrigerant is subjected to vapor-liquid refrigerant separation in the vapor-liquid separator 512 by the refrigerant flow deceleration.
  • a blocking member is arranged in the flow direction of the vapor-liquid two-phase refrigerant, so that the flow of the vapor-liquid two-phase refrigerant is decelerated, and the vapor-liquid refrigerant is separated.
  • the liquid refrigerant in the vapor-liquid two-phase refrigerant compartment flows into the liquid refrigerant compartment through the liquid conduit, and the vapor refrigerant flows into the vapor refrigerant chamber through the gas conduit directly connected to the top or upper portion of the vapor-liquid two-phase refrigerant compartment.
  • the liquid refrigerant in the vapor-liquid two-phase refrigerant compartment flows into the liquid refrigerant compartment through the liquid conduit, and the vapor refrigerant flows into the vapor refrigerant chamber through the gas conduit directly connected to the top or upper portion of the vapor-liquid two-phase refrigerant compartment.
  • the structure for realizing vapor-liquid refrigerant separation in the heat exchangers shown in Figs. 1 and 3 can be directly regarded as The vapor-liquid separator shown in Fig. 5, wherein the vapor-state refrigerant compartments are in communication with the vapor-state refrigerant chambers in Fig. 5, they may be used as a single member or as a single component;
  • the liquid refrigerant compartments may be in communication with the liquid refrigerant chambers of FIG. 5, and they may be used as a single member or as a separate component.
  • the vapor-state refrigerant may be directly introduced into the vapor or gas refrigerant chamber by means of a conduit or a hole.
  • the heat exchanger 600 includes an inlet header disposed at an upper portion of the heat exchanger 600 and an outlet header 620 disposed at a lower portion of the heat exchanger 600.
  • the inlet header includes a vapor-liquid separator 612 for separating vapor-liquid two-phase refrigerant, a vapor-state refrigerant chamber 614 and a liquid refrigerant chamber 616 that are in communication with the vapor-liquid separator 612, respectively.
  • the vaporous refrigerant chamber 614 passes through the partition 632 in the longitudinal direction of the heat exchanger 600 (ie, the left side of the page of Figure 6) The right direction) is separated from the liquid refrigerant chamber 616.
  • a plurality of vapor-state refrigerant heat exchange tubes 634 are disposed between the vapor-state refrigerant chamber 614 and the outlet header 620, and a plurality of liquid refrigerant heat exchanges are disposed between the liquid refrigerant chamber 616 and the outlet header 620.
  • Tube 636 is
  • the vapor-liquid two-phase refrigerant is filtered in the vapor-liquid separator 612.
  • the vapor-liquid refrigerant is separated.
  • the at least two compartments further comprise a vaporous refrigerant compartment for containing the separated vaporous refrigerant, the vaporous refrigerant compartment being provided with a passage for vaporous refrigerant to enter, the passage being configured to Only the vaporous refrigerant is allowed to pass without allowing the liquid refrigerant to pass, for vapor-liquid refrigerant separation.
  • the liquid refrigerant in the vapor-liquid two-phase refrigerant compartment flows into the liquid refrigerant compartment through the hole connected to the liquid refrigerant compartment, and the passage is located in the vapor in order to allow only the vapor refrigerant to enter the vapor refrigerant compartment through the passage.
  • the state of the refrigerant compartment is substantially at the same level as the top or upper portion of the vapor-liquid two-phase refrigerant compartment.
  • the vapor-liquid two-phase refrigerant is subjected to vapor-liquid refrigerant by gravity in the vapor-liquid separator 612. Separation.
  • the inlet header is arranged at the upper part of the heat exchanger, the vapor-liquid two-phase refrigerant compartment is arranged as a cylindrical compartment and is located at the center of the vapor-liquid separator, and the vapor-state refrigerant compartment is located in the vapor-liquid two-phase refrigerant compartment.
  • the upper portion of the vapor-liquid two-phase refrigerant compartment is located in the upper portion of the vapor-liquid two-phase refrigerant compartment.
  • the liquid refrigerant in the vapor-liquid two-phase refrigerant compartment flows into the liquid refrigerant compartment through the pores connected to the liquid refrigerant compartment, and the vapor refrigerant in the vapor-liquid two-phase refrigerant compartment passes through the steam to the vapor.
  • the pores of the refrigerant compartment flow into the vapor refrigerant compartment to complete the separation of the vapor-liquid two-phase refrigerant.
  • the heat exchangers shown in Figures 2 and 4 when combining the heat exchangers shown in Figures 2 and 4 to form the heat exchanger shown in Figure 6, it is equally possible to achieve steam directly in the heat exchangers shown in Figures 2 and 4.
  • the structure of the liquid refrigerant separation is made into the vapor-liquid separator shown in Fig. 5, wherein the vapor-state refrigerant compartments are in communication with the vapor-state refrigerant chambers in Fig. 5, and they may be used as a single member or as A separate component; similarly, the liquid refrigerant compartments may be in communication with the liquid refrigerant chamber of Figure 5, either as a single component or as a separate component.
  • microchannel heat exchanger or the parallel flow heat exchanger disclosed by the invention adopts flat tube enhanced heat transfer technology, and is an all-aluminum heat exchanger, which has low cost, strong corrosion resistance, less refrigerant charge, and optimized flow path. Simple and simple welding process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

一种换热器(100),包括进口集流管(10)、出口集流管(20)以及连接在进口集流管(10)和出口集流管(20)之间的换热管和气体导管(30),其中进口集流管(10)包括至少两个隔室,两个隔室包括用于容纳进入到进口集流管(10)内的汽液两相态冷媒的汽液两相态冷媒隔室(12)和容纳分离后的液态冷媒的液态冷媒隔室(16),进入进口集流管(10)的汽液两相态冷媒首先容纳在汽液两相态冷媒隔室(12)内,分离后,液态冷媒进入液态冷媒隔室(16)且之后进入换热管换热,换热之后进入出口集流管(20),汽态冷媒由气体导管(30)导出到出口集流管(20)。

Description

换热器
本申请要求于2013年9月16日递交的、申请号为201310421785.5、发明名称为“换热器”的中国专利申请的优先权,其全部内容通过引用并入本申请中。
技术领域
本发明涉及暖通空调、汽车、制冷以及运输领域,尤其涉及微通道蒸发器、平行流蒸发器、热泵等换热器。
背景技术
目前,市场上空调换热器还是以翅片铜管换热器为主,但是翅片铜管换热器存在成本高、抗电腐蚀性差、焊接工艺复杂等问题。
当换热器用作蒸发器时,进入换热器的制冷剂为两相态制冷剂或冷媒,特别是其中的液态冷媒能否均匀地分配到每一路通道或换热管中进行换热,是该类型换热器的设计关键。目前,微通道换热器普遍存在两相态冷媒分配不均匀的问题,从而导致不同换热管内冷媒流量不均匀。这样,换热管内流量较少的很快蒸发,管路出口过热度较高;换热管内流量较多的蒸发不完全,导致出口过热度较小,甚至在一些情况下还有液态冷媒存在。这导致了微通道换热器换热面积没有被有效地利用。
如上所述,气态冷媒和液态冷媒在同一个腔体内分离,并且在同一个腔体分别进入导管和换热管。这样,很难将气态冷媒和液态冷媒完全分离,仍然会有气态冷媒进入换热管影响液态冷媒在各换热管内的分配。其次,气态冷媒分离后直接被导出到换热器出口,气态冷媒没有与诸如空气的工作流体进行热交换,导致换热器的热损失。
有鉴于此,确有需要提供一种能够至少部分地解决上述问题的新型的换热器。
发明内容
本发明的目的旨在解决现有技术中存在的上述问题和缺陷的至少一个方面。
本发明的目的之一是解决诸如微通道换热器的换热器内两相态冷媒分配不均匀的问题。
本发明的还一目的是提供一种能够提高换热器内的热损失的技术方案。
根据本发明的一个方面,提供了一种换热器。该换热器包括进口集流管、出口 集流管以及连接在进口集流管和出口集流管之间的换热管和气体导管,其中所述进口集流管包括至少两个隔室,所述至少两个隔室包括用于容纳进入到进口集流管内的汽液两相态冷媒的汽液两相态冷媒隔室和用于容纳分离后的液态冷媒的液态冷媒隔室,进入进口集流管的汽液两相态冷媒首先被容纳在汽液两相态冷媒隔室内,在分离后,液态冷媒进入所述液态冷媒隔室内且之后进入换热管进行换热,在换热之后进入到出口集流管内,而汽态冷媒由气体导管导出到出口集流管内。
在一个实施例中,汽液两相态冷媒在进口集流管内以过滤的方式进行汽液冷媒分离。
具体地,所述至少两个隔室还包括用于容纳分离后的汽态冷媒的汽态冷媒隔室,所述汽态冷媒隔室设置有用于汽态冷媒进入的通道,该通道被设置成仅允许汽态冷媒通过而不允许液态冷媒通过,以进行汽液冷媒的分离。
进一步地,汽液两相态冷媒隔室内的液态冷媒通过连通至液态冷媒隔室的液体导管或孔流入到液态冷媒隔室内,而所述通道位于汽态冷媒隔室的与汽液两相态冷媒隔室的顶部或上部大致同一高度水平的位置处。
在另一实施例中,汽液两相态冷媒在进口集流管内以冷媒流动减速的方式进行汽液冷媒的分离。
具体地,在汽液两相态冷媒隔室内,在汽液两相态冷媒流动方向上设置阻挡件,使得汽液两相态冷媒的流动减速,实现汽液冷媒分离。
进一步地,汽液两相态冷媒隔室内的液态冷媒通过液体导管流入到液态冷媒隔室内,而气体导管直接连接至汽液两相态冷媒隔室的顶部或上部从而通过气体导管将汽态冷媒导出到出口集流管内。
在另一实施例中,汽液两相态冷媒在进口集流管内通过重力的作用进行汽液冷媒分离。
具体地,进口集流管设置在换热器的上部,汽液两相态冷媒隔室设置成一隔室的形式(例如圆筒形隔室)且位于进口集流管的中心,汽态冷媒隔室位于汽液两相态冷媒隔室的上部,而液态冷媒隔室位于汽液两相态冷媒隔室的下部。
进一步地,汽液两相态冷媒隔室内的液态冷媒通过连通至液态冷媒隔室的孔在重力的作用下流入到液态冷媒隔室内,而汽液两相态冷媒隔室内的汽态冷媒则通过连通至汽态冷媒隔室的孔流入到汽态冷媒隔室内,从而完成汽液两相态冷媒的分离。
根据本发明的另一方面,提供了一种换热器。该换热器包括进口集流管和出口 集流管,所述进口集流管包括汽液分离器、分别与汽液分离器连通的汽态冷媒腔体和液态冷媒腔体,所述液态冷媒腔体与所述出口集流管之间设置有多个液态冷媒换热管,所述汽态冷媒腔体与所述出口集流管之间设置有多个汽态冷媒换热管;其中进入进口集流管的汽液两相态冷媒经过汽液分离器分离后,汽态冷媒进入汽态冷媒腔体且之后通过汽态冷媒换热管流入到出口集流管中,同时液态冷媒进入液态冷媒腔体且之后通过液态冷媒换热管流入到所述出口集流管中。
优选地,所述汽态冷媒腔体和液态冷媒腔体沿着换热器的纵长方向布置且通过阻挡件分隔开。
具体地,所述汽液分离器包括至少两个隔室,所述至少两个隔室包括用于容纳进入到进口集流管内的汽液两相态冷媒的汽液两相态冷媒隔室和用于容纳分离后的液态冷媒的液态冷媒隔室,进入进口集流管的汽液两相态冷媒首先被容纳在汽液两相态冷媒隔室内,在分离后,液态冷媒进入所述至少两个隔室中的液态冷媒隔室内且之后进入到液态冷媒腔体内,而汽态冷媒进入汽态冷媒腔体内,其中液态冷媒隔室与液态冷媒腔体连通或一起构成一个单独的构件,其中,所述至少两个隔室还包括用于容纳分离后的汽态冷媒的汽态冷媒隔室,所述汽态冷媒隔室与汽态冷媒腔体连通或一起构成一个单独的构件。
在一个实施例中,汽液两相态冷媒在汽液分离器内以过滤的方式进行汽液冷媒分离。
具体地,所述汽态冷媒隔室设置有用于汽态冷媒进入的通道,该通道被设置成仅允许汽态冷媒通过而不允许液态冷媒通过,以进行汽液冷媒分离。
进一步地,汽液两相态冷媒隔室内的液态冷媒通过连通至液态冷媒隔室的液体导管或孔流入到液态冷媒隔室内,而所述通道位于汽态冷媒隔室的与汽液两相态冷媒隔室的顶部或上部大致同一高度水平的位置处。
在另一实施例中,汽液两相态冷媒在汽液分离器内以冷媒流动减速的方式进行汽液冷媒分离。
具体地,在汽液两相态冷媒隔室内,在汽液两相态冷媒流动方向上设置阻挡件,使得汽液两相态冷媒的流动减速,实现汽液冷媒分离。
优选地,汽液两相态冷媒隔室内的液态冷媒通过液体导管流入到液态冷媒隔室内,而汽态冷媒通过直接连接至汽液两相态冷媒隔室的顶部或上部的气体导管流入到汽态冷媒腔体内。
在另一实施例中,汽液两相态冷媒在汽液分离器内通过重力的作用进行汽液冷媒分离。
具体地,进口集流管设置在换热器的上部,汽液两相态冷媒隔室设置成一隔室的形式(例如圆筒形隔室)且位于汽液分离器的中心,汽态冷媒隔室位于汽液两相态冷媒隔室的上部,而液态冷媒隔室位于汽液两相态冷媒隔室的下部。
优选地,汽液两相态冷媒隔室内的液态冷媒通过连通至液态冷媒隔室的孔在重力的作用下流入到液态冷媒隔室内,而汽液两相态冷媒隔室内的汽态冷媒则通过连通至汽态冷媒隔室的孔流入到汽态冷媒隔室内,从而完成汽液两相态冷媒的分离。
综上所述,本发明解决了换热器两相态冷媒(或制冷剂)难以均匀分配的问题。进一步地,本发明可以有效地提高换热器的换热面积、增大换热性能。另外,本发明的换热器或包括实现两相态冷媒分离的结构的各实施例不需要单独的优化分配,大大节省了时间和资源。
在本发明的描述中,在一些情况下,术语“汽态”和“气态”可以相互通用或替代。或者说在一些情况下,词语“气”和“汽”可以通用或相互替代。
附图说明
本发明的这些和/或其他方面和优点从下面结合附图对优选实施例的描述中将变得明显和容易理解,其中:
图1是根据本发明的第一实施例的换热器的侧视部分剖视图;
图2是根据本发明的第二实施例的换热器的侧视部分剖视图;
图3是根据本发明的第三实施例的换热器的侧视部分剖视图;
图4是根据本发明的第四实施例的换热器的侧视部分剖视图;
图5是根据本发明的第五实施例的换热器的侧视部分剖视图;和
图6是根据本发明的第六实施例的换热器的侧视部分剖视图。
具体实施方式
下面通过实施例,并结合附图1-6,对本发明的技术方案作进一步具体的说明。在说明书中,相同或相似的附图标号指示相同或相似的部件。下述参照附图对本发明实施方式的说明旨在对本发明的总体发明构思进行解释,而不应当理解为对本发明的一种限制。
参见图1,示出了根据本发明的第一实施例的换热器100的侧视部分剖视图。该换热器100包括位于换热器100下部的进口集流管10、位于换热器100上部的出口集流管20以及连接在进口集流管10和出口集流管20之间的至少一根或多根换热管(未示出)和一根或多根气体导管30。所述进口集流管10包括至少两个隔室。如图所示,进口集流管10包括用于容纳进入到进口集流管10内的汽液两相态冷媒的汽液两相态冷媒隔室12、用于容纳分离后的汽态冷媒的汽态冷媒隔室14和用于容纳分离后的液态冷媒的液态冷媒隔室16。如图所见,汽液两相态冷媒隔室12内的底部(以虚线示出)显示出具有液态冷媒,而在该汽液两相态冷媒隔室12的上部则显示出具有汽态冷媒(以空白区域显示)。对应地,汽态冷媒隔室14内包含有汽态冷媒(以其中的空白区域显示);而液态冷媒隔室16内包括有液态冷媒(以虚线显示)。
可以理解,本领域技术人员可以根据需要设置进口集流管10内的隔室(例如汽液两相态冷媒隔室、液态冷媒隔室和汽态冷媒隔室)的数量和结构,而不限于此处所述的三个隔室的形式和结构。
具体地,进口集流管10通过设置在图1显示的进口集流管10的横截面中部的隔离件70被分割成上下两个隔室。所述上隔室即为此处所述的液态冷媒隔室16。而下部隔室通过从进口集流管10底部突出的突出件或阻挡件72分隔成左下隔室和右下隔室。左下隔室即为此处所述的汽液两相态冷媒隔室12,相应地,右下隔室即为此处所述的汽态冷媒隔室14。汽液两相态冷媒隔室12与换热器100的冷媒入口40相连接或连通。
在此需要说明的是,汽液两相态冷媒隔室12和汽态冷媒隔室14之间并未完全隔离开,即在突出件72和隔离件70之间具有通道60。通常,该通道60的尺寸设置成小到仅能够使得汽态冷媒通过而液态冷媒不能通过。
或者说,汽态冷媒隔室14设置有用于汽态冷媒进入的通道60。为了能够实现汽液冷媒分离,该通道60的尺寸被制定成很小。优选地,该通道60设置在位于汽态冷媒隔室14的与汽液两相态冷媒隔室12的顶部或上部大致同一高度水平的位置处。当然,通道60还可以设置成位于其他位置,只要保证汽液两相态冷媒隔室12内的液态冷媒的高度不超过通道60所在的高度即可。
可以理解,关于通道60的位置和结构设置还可以根据需要设置成其他形式,而不限于图1所示的具体形式;只要能够实现通道60或与其等同结构仅允许汽态冷媒进入汽态冷媒隔室14而不允许液态冷媒进入即可。因此,能够实现本发明所述功能 的、关于通道60结构或位置方面的诸多变化例,也应当落入到本发明的保护范围内。
在使用中,汽液两相态冷媒通过换热器的入口40进入进口集流管10的汽液两相态冷媒隔室12内,然后液态冷媒将在汽液两相态冷媒隔室12内的压力作用下通过连通至液态冷媒隔室16的液体导管50流入到液态冷媒隔室16(如导管50内的向上的箭头所显示的),然后液态冷媒进入到相应的换热管内进行换热(通常,在完全换热后,液态冷媒将变成汽态),在换热完成后流入到出口集流管20内。相应地,汽态冷媒将通过通道60进入到汽态冷媒隔室14中,之后由气体导管30导出到出口集流管20内(如图1中的向上的箭头所示)。
可知,由气体导管30导出的汽态冷媒和经过换热后的液态冷媒将在出口集流管20内混合,并最终通过与出口集流管20相连通的出口90从换热器100流走。
进一步地,为了实现压力控制,在空气导管30上设置有压力调整装置80。
需要注意的是,图1所示的换热器中部的波浪线表示换热器的长度不限于如图所示的具体长度,其可以根据需要设置成具有任何长度。另外,在下面所述的第二至第六实施例中,其中与第一实施例所述的相同的内容或对相同结构的描述被省略。
参见图2,示出了根拥本发明的第二实施例的换热器200的部分剖视侧视图。如图所示,换热器200与第一实施例所述的换热器100大致相同,除进口集流管10和出口集流管20的位置、汽液两相态冷媒隔室和汽态冷媒隔室与液态冷媒隔室的相对位置、以及液态冷媒导入到液态冷媒隔室16中的方式之外。因此,在第二实施例中,与第一实施例的换热器相同的部件被赋予相同的参考标号,以便于简化和清楚的目的。
以下将主要说明第二实施例的换热器200与第一实施例的换热器100的结构和工作原理上的不同之处。
具体地,在图2中,进口集流管10设置在换热器200的上部而出口集流管20设置在换热器200的下部。汽液两相冷媒隔室12中的液态冷媒则通过连通至液态冷媒隔室16的孔52流至液态冷媒隔室16。液态冷媒隔室16位于进口集流管10的下部,而汽态冷媒隔室14和汽液两相态冷媒隔室12则位于进口集流管10的上部,具体分别在其的左上部和右上部,如在图2所示的页面所示出的。
在使用中,汽液两相态冷媒通过换热器的入口40进入进口集流管10的汽液两相态冷媒隔室12内,然后液态冷媒将在重力作用下(由于汽液两相态冷媒隔室12位于 液态冷媒隔室16的上方)通过连通至液态冷媒隔室16的孔52流入到液态冷媒隔室16,然后液态冷媒进入到相应的换热管内进行换热(通常,在完全换热后,液态冷媒将变成汽态),在换热完成后流入到出口集流管20内。相应地,汽态冷媒将通过通道60进入到汽态冷媒隔室14中,之后在汽液两相态冷媒隔室12内的压力作用下由气体导管30导出到出口集流管20内(如图2中的向下的箭头所示)。
如上所述,第一和第二实施例所述的换热器实现汽液冷媒分离的原理都是依靠诸如通道60的过滤的方式进行汽液冷媒分离。
参见图3,示出了根据本发明的第三实施例的换热器300的部分剖视侧视图。如图所示,换热器300与第一实施例所述的换热器100大致相同,除汽液两相态冷媒隔室12和/或汽态冷媒隔室14的结构以及实现汽液冷媒分离的结构布置之外。因此,在第三实施例中,与第一实施例的换热器相同的部件被赋予相同的参考标号,以便于简化和清楚的目的。
以下将主要说明第三实施例的换热器300与第一实施例的换热器100的结构和工作原理上的不同之处。
首先,第三实施例所述的换热器300在实现汽液分离的方式上与第一实施例的换热器100不同之处在于,汽液两相态冷媒在进口集流管内以冷媒流动减速的方式进行汽液分离。
如图3所示,进口集流管10仅通过隔离件70分隔成如在图3所示的页面中的上下两个隔室,即上隔室为液体冷媒隔室16而下隔室为汽液两相态冷媒隔室12。具体地,在该汽液两相态冷媒隔室12内沿着汽液两相态冷媒流动方向上设置有至少一个阻挡件56。可以理解,阻挡件56可以采用任何形式,例如是杆状、网状或板状的阻挡件,诸如挡板。另外,阻挡件56的数量可以根据需要进行设置。
在图3中示出了两个阻挡件56,一个阻挡件设置成从进口集流管10的底部突出,而另一个阻挡件设置成从隔离件70朝向汽液两相态冷媒隔室12突出。这样,当汽液两相态冷媒从位于图3的页面中的进口集流管10左侧的入口40流动至汽液两相态隔室12的右侧时,使得汽液两相态冷媒的流动减速,从而实现了冷媒的汽液分离。在分离后,液态冷媒通过图3中所示的两个液体导管50流入到液态冷媒隔室内,之后液态冷媒流入到换热管中进行换热,如关于第一实施例所述的那样。而汽态冷媒则通过连接至汽液两相态冷媒隔室上部或顶部附近处的气体导管30导出到出口集流管20内。标号18显示出了气态或汽态冷媒进入气体导管30中的大致位置。
参见图4,示出了根据本发明的第四实施例的换热器400的部分剖视侧视图。如图所示,换热器400与第二实施例所述的换热器200大致相同,除汽液两相态冷媒隔室12和/或隔室14的结构以及实现汽液分离的结构布置之外。因此,在第四实施例中,与第二实施例的换热器相同的部件被赋予相同的参考标号,以便于简化和清楚的目的。
以下将主要说明第四实施例的换热器400与第二实施例的换热器200的结构和工作原理上的不同之处。
首先,第四实施例所述的换热器400在实现汽液分离的方式上与第二实施例的换热器200不同之处在于,汽液两相态冷媒在进口集流管10内通过重力的作用进行汽液分离。
如图4所示,进口集流管10通过隔离件76在其中心处形成圆筒形隔室,用作汽液两相态冷媒隔室12。在汽液两相态冷媒隔室12的下面,通过隔离件70形成液态冷媒隔室16。这样,在汽液两相态冷媒隔室12的上面则形成了汽态冷媒隔室14。进一步地,该汽态冷媒隔室14则可以通过另一隔离件74分离成两个隔室,即左右汽态冷媒隔室。在图中示出了,左面的汽态冷媒隔室14和液态冷媒隔室16分别通过孔54、56与汽液两相态冷媒隔室12连通。
汽液两相态冷媒隔室12中的液态冷媒在重力作用下通过孔56流入到下面的液态冷媒隔室16中,且之后流入到换热管中进行换热,如关于第一实施例所述的那样。另外,汽液两相态冷媒隔室12中的汽态冷媒则通过孔54流入到汽态冷媒隔室16中,之后通过气体导管30导出到出口集流管20内。
虽然图4仅示出了左面的汽态冷媒隔室14通过孔54与汽液两相态冷媒隔室连通,但是右面的汽态冷媒隔室也可以通过类似的孔或另一孔与汽液两相态冷媒隔室或左边的汽态冷媒隔室连通。
需要说明的是,在本发明中,所述隔室的形式不限于上述的圆筒形的形式,还可以是方形、矩形、椭圆形等等。
变形例
图5和6所述的第五和第六实施例是对上述的第一至第四实施例所述的换热器的变形。如前面所述,第一至第四实施例所述的换热器并没有设置用于分离汽液两相态冷媒的独立的汽液分离器,汽态冷媒和液态冷媒的分离在进口集流管内完成,且汽态 冷媒经由导管导出而未进行换热,造成了部分热损失。
图5和6所示的变形例的区别在于,进口集流管内设置有单独的用于分离汽液两相态冷媒的汽液分离器、汽态冷媒腔体和液态冷媒腔体,其中汽态冷媒未被直接导出而是经过专门的汽态冷媒换热管进行换热,从而减小了换热器内的热损失,提高了换热的效率。
可以理解,在本发明第五和第六实施例所述的换热器中,汽液分离器在原理和和结构上与在第一至第四实施例中关于实现汽液分离的原理和结构基本上相同,除了汽态冷媒被导入到汽态冷媒腔体内,且随后通过汽态冷媒换热管进行换热之外。
如图5所示,该换热器500包括设置在换热器500的下部的进口集流管和设置在换热器500的上部的出口集流管520。该进口集流管包括用于分离汽液两相态冷媒的汽液分离器512、分别与汽液分离器512连通的汽态冷媒腔体514和液态冷媒腔体516。汽态冷媒腔体514通过隔板532在换热器500的纵长方向(即图5的页面的左右方向)上与液态冷媒腔体516分隔开。
进一步地,汽态冷媒腔体514与出口集流管520之间设置有多个汽态冷媒换热管534,液态冷媒腔体516与出口集流管520之间设置有多个液态冷媒换热管536。当然,可以根据需要,在此处所述的液态冷媒和汽态冷媒换热管以及第一至第四实施例所述的换热管上设置任何形式、任何结构以及任何数量的翅片。
可以理解,可以将第一至第四实施例中所述的用于实现汽液两相态冷媒分离的结构或构造用作图5和6所示的汽液分离器,以获得相应的换热器。当进行这样的修改后,汽液分离器中的用于容纳汽态冷媒的汽态冷媒隔室(如果设置了的话)和用于容纳液态冷媒的液态冷媒隔室(如第一至第四实施例所述的)分别与图5和6所示的腔体和液态冷媒腔体连通。
当然,在适合的情况下,由于他们之间是连通的,也可以将此处所述的液体冷媒隔室和液态冷媒腔体一起看做成或制造成一个单独的构件。同理,可以将所述的汽态冷媒隔室和汽态冷媒腔体一起看做成或制造成一个单独的构件。在此,为了说明简洁和清楚的目的,将把他们分别看做成或描述成两个构件。
下述具体说明了图1-4显示的实施例如何与图5-6的换热器进行结合。关于它们结合时的情形,在此仅给出了关于他们结合在一起时需要修改部分的描述。更详细的细节请参见关于图1-4的各实施例的相关描述。
结合图1的实施例所显示的汽液冷媒分离结构或构造时,所述汽液分离器512包 括至少两个隔室,所述至少两个隔室包括用于容纳进入到进口集流管内的汽液两相态冷媒的汽液两相态冷媒隔室和用于容纳分离后的液态冷媒的液态冷媒隔室,进入进口集流管的汽液两相态冷媒首先被容纳在汽液两相态冷媒隔室内,在分离后,液态冷媒进入所述至少两个隔室中的液态冷媒隔室内且之后进入到液态冷媒腔体516内,而汽态冷媒则进入汽态冷媒腔体514内。
此时,汽液两相态冷媒在汽液分离器512内以过滤的方式进行汽液冷媒分离。所述至少两个隔室还包括用于容纳分离后的汽态冷媒的汽态冷媒隔室,所述汽态冷媒隔室设置有用于汽态冷媒进入的通道,该通道被设置成仅允许汽态冷媒通过而不允许液态冷媒通过,以进行汽液冷媒分离。
汽液两相态冷媒隔室内的液态冷媒通过连通至液态冷媒隔室的液体导管流入到液态冷媒隔室内,而为了仅使得汽态冷媒通过通道进入汽态冷媒隔室内,通道位于汽态冷媒隔室的与汽液两相态冷媒隔室的顶部或上部大致同一高度水平的位置处。
另外,在结合图3实施例所示的汽液冷媒分离配置时,汽液两相态冷媒在汽液分离器512内以冷媒流动减速的方式进行汽液冷媒分离。在汽液两相态冷媒隔室内,在汽液两相态冷媒流动方向上设置阻挡件,使得汽液两相态冷媒的流动减速,实现汽液冷媒分离。
汽液两相态冷媒隔室内的液态冷媒通过液体导管流入到液态冷媒隔室内,而汽态冷媒通过直接连接至汽液两相态冷媒隔室的顶部或上部的气体导管流入到汽态冷媒腔体514内。
如上所述,在结合图1和3所示的换热器以形成图5的换热器时,可以直接将在图1和3所示的换热器中实现汽液冷媒分离的结构看做成图5所示的汽液分离器,其中的汽态冷媒隔室与图5中的汽态冷媒腔体连通即可,他们可以单独作为一个构件,也可以形成为一个单独的部件;同理,其中的液态冷媒隔室与图5中的液态冷媒腔体连通即可,他们可以单独作为一个构件,也可以形成为一个单独的部件。需要说明的是,如在图3所示的示例中,如果没有设置汽态冷媒隔室的话,可以将使用导管或孔的方式将汽态冷媒直接导入到汽体或气体冷媒腔体内。
如图6所示,该换热器600包括设置在换热器600的上部的进口集流管和设置在换热器600的下部的出口集流管620。该进口集流管包括用于分离汽液两相态冷媒的汽液分离器612、分别与汽液分离器612连通的汽态冷媒腔体614和液态冷媒腔体616。汽态冷媒腔体614通过隔板632在换热器600的纵长方向(即图6的页面的左 右方向)上与液态冷媒腔体616分隔开。
进一步地,汽态冷媒腔体614与出口集流管620之间设置有多个汽态冷媒换热管634,液态冷媒腔体616与出口集流管620之间设置有多个液态冷媒换热管636。
具体地,结合图2实施例所示的实现汽液冷媒分离的配置或构造以获得图6所示的换热器时,汽液两相态冷媒在汽液分离器612内以过滤的方式进行汽液冷媒分离。
进一步地,所述至少两个隔室还包括用于容纳分离后的汽态冷媒的汽态冷媒隔室,所述汽态冷媒隔室设置有用于汽态冷媒进入的通道,该通道被设置成仅允许汽态冷媒通过而不允许液态冷媒通过,以进行汽液冷媒分离。在应用中,汽液两相态冷媒隔室内的液态冷媒通过连通至液态冷媒隔室的孔流入到液态冷媒隔室内,而为了仅使得汽态冷媒通过通道进入汽态冷媒隔室内,通道位于汽态冷媒隔室的与汽液两相态冷媒隔室的顶部或上部大致同一高度水平的位置处。
结合图4实施例所显示的用于实现汽液冷媒分离的配置或构造以形成图6所示的换热器时,汽液两相态冷媒在汽液分离器612内通过重力进行汽液冷媒分离。进口集流管设置在换热器的上部,汽液两相态冷媒隔室设置成圆筒形隔室且位于汽液分离器的中心,汽态冷媒隔室位于汽液两相态冷媒隔室的上部,而液态冷媒隔室位于汽液两相态冷媒隔室的下部。
汽液两相态冷媒隔室内的液态冷媒通过连通至液态冷媒隔室的孔在重力的作用下流入到液态冷媒隔室内,而汽液两相态冷媒隔室内的汽态冷媒则通过连通至汽态冷媒隔室的孔流入到汽态冷媒隔室内,从而完成汽液两相态冷媒的分离。
在可替代的实施例中,在结合图2和4所示的换热器以形成图6所示的换热器时,同样可以直接将在图2和4所示的换热器中实现汽液冷媒分离的结构看做成图5所示的汽液分离器,其中的汽态冷媒隔室与图5中的汽态冷媒腔体连通即可,他们可以单独作为一个构件,也可以形成为一个单独的部件;同理,其中的液态冷媒隔室与图5中的液态冷媒腔体连通即可,他们可以单独作为一个构件,也可以形成为一个单独的部件。
可以理解,可以将图1-6中所述的实施例中相应结构进行任意组合以获得新型的换热器,但是通过这样的组合获得的换热器也应当落入到本发明的保护范围内。
本发明公开的微通道换热器或平行流换热器采用扁管强化传热技术,是一种全铝换热器,具有成本低、耐腐蚀性强、冷媒充注量少、流路优化简单以及焊接工艺简单等优点。
以上仅为本发明的一些实施例,本领域普通技术人员将理解,在不背离本总体发明构思的原则和精神的情况下,可对这些实施例做出改变,本发明的范围以权利要求和它们的等同物限定。

Claims (22)

  1. 一种换热器,其特征在于,
    该换热器包括进口集流管、出口集流管以及连接在进口集流管和出口集流管之间的换热管和气体导管,
    其中所述进口集流管包括至少两个隔室,所述至少两个隔室包括用于容纳进入到进口集流管内的汽液两相态冷媒的汽液两相态冷媒隔室和用于容纳分离后的液态冷媒的液态冷媒隔室,
    进入进口集流管的汽液两相态冷媒首先被容纳在汽液两相态冷媒隔室内,在分离后,液态冷媒进入所述液态冷媒隔室内且之后进入换热管进行换热,在换热之后进入到出口集流管内,而汽态冷媒由气体导管导出到出口集流管内。
  2. 根据权利要求1所述的换热器,其特征在于,
    汽液两相态冷媒在进口集流管内以过滤的方式进行汽液冷媒分离。
  3. 根据权利要求2所述的换热器,其特征在于,
    所述至少两个隔室还包括用于容纳分离后的汽态冷媒的汽态冷媒隔室,所述汽态冷媒隔室设置有用于汽态冷媒进入的通道,该通道被设置成仅允许汽态冷媒通过而不允许液态冷媒通过,以进行汽液冷媒的分离。
  4. 根据权利要求3所述的换热器,其特征在于,
    汽液两相态冷媒隔室内的液态冷媒通过连通至液态冷媒隔室的液体导管或孔流入到液态冷媒隔室内,而所述通道位于汽态冷媒隔室的与汽液两相态冷媒隔室的顶部或上部大致同一高度水平的位置处。
  5. 根据权利要求1所述的换热器,其特征在于,
    汽液两相态冷媒在进口集流管内以冷媒流动减速的方式进行汽液冷媒的分离。
  6. 根据权利要求5所述的换热器,其特征在于,
    在汽液两相态冷媒隔室内,在汽液两相态冷媒流动方向上设置阻挡件,使得汽 液两相态冷媒的流动减速,实现汽液冷媒分离。
  7. 根据权利要求6所述的换热器,其特征在于,
    汽液两相态冷媒隔室内的液态冷媒通过液体导管流入到液态冷媒隔室内,而气体导管直接连接至汽液两相态冷媒隔室的顶部或上部从而通过气体导管将汽态冷媒导出到出口集流管内。
  8. 根据权利要求1所述的换热器,其特征在于,
    汽液两相态冷媒在进口集流管内通过重力的作用进行汽液冷媒分离。
  9. 根据权利要求8所述的换热器,其特征在于,
    进口集流管设置在换热器的上部,汽液两相态冷媒隔室设置成一隔室的形式且位于进口集流管的中心,汽态冷媒隔室位于汽液两相态冷媒隔室的上部,而液态冷媒隔室位于汽液两相态冷媒隔室的下部。
  10. 根据权利要求9所述的换热器,其特征在于,
    汽液两相态冷媒隔室内的液态冷媒通过连通至液态冷媒隔室的孔在重力的作用下流入到液态冷媒隔室内,而汽液两相态冷媒隔室内的汽态冷媒则通过连通至汽态冷媒隔室的孔流入到汽态冷媒隔室内,从而完成汽液两相态冷媒的分离。
  11. 一种换热器,其特征在于,
    该换热器包括进口集流管和出口集流管,
    所述进口集流管包括汽液分离器、分别与汽液分离器连通的汽态冷媒腔体和液态冷媒腔体,
    所述液态冷媒腔体与所述出口集流管之间设置有多个液态冷媒换热管,所述汽态冷媒腔体与所述出口集流管之间设置有多个汽态冷媒换热管;
    其中进入进口集流管的汽液两相态冷媒经过汽液分离器分离后,汽态冷媒进入汽态冷媒腔体且之后通过汽态冷媒换热管流入到出口集流管中,同时液态冷媒进入液态冷媒腔体且之后通过液态冷媒换热管流入到所述出口集流管中。
  12. 根据权利要求11所述的换热器,其特征在于,
    所述汽态冷媒腔体和液态冷媒腔体沿着换热器的纵长方向布置且通过阻挡件分隔开。
  13. 根据权利要求11或12所述的换热器,其特征在于,
    所述汽液分离器包括至少两个隔室,所述至少两个隔室包括用于容纳进入到进口集流管内的汽液两相态冷媒的汽液两相态冷媒隔室和用于容纳分离后的液态冷媒的液态冷媒隔室,
    进入进口集流管的汽液两相态冷媒首先被容纳在汽液两相态冷媒隔室内,在分离后,液态冷媒进入所述至少两个隔室中的液态冷媒隔室内且之后进入到液态冷媒腔体内,而汽态冷媒进入汽态冷媒腔体内,
    其中液态冷媒隔室与液态冷媒腔体连通或一起构成一个单独的构件,
    其中,所述至少两个隔室还包括用于容纳分离后的汽态冷媒的汽态冷媒隔室,所述汽态冷媒隔室与汽态冷媒腔体连通或一起构成一个单独的构件。
  14. 根据权利要求13所述的换热器,其特征在于,
    汽液两相态冷媒在汽液分离器内以过滤的方式进行汽液冷媒分离。
  15. 根据权利要求14所述的换热器,其特征在于,
    所述汽态冷媒隔室设置有用于汽态冷媒进入的通道,该通道被设置成仅允许汽态冷媒通过而不允许液态冷媒通过,以进行汽液冷媒分离。
  16. 根据权利要求15所述的换热器,其特征在于,
    汽液两相态冷媒隔室内的液态冷媒通过连通至液态冷媒隔室的液体导管或孔流入到液态冷媒隔室内,而所述通道位于汽态冷媒隔室的与汽液两相态冷媒隔室的顶部或上部大致同一高度水平的位置处。
  17. 根据权利要求13所述的换热器,其特征在于,
    汽液两相态冷媒在汽液分离器内以冷媒流动减速的方式进行汽液冷媒分离。
  18. 根据权利要求17所述的换热器,其特征在于,
    在汽液两相态冷媒隔室内,在汽液两相态冷媒流动方向上设置阻挡件,使得汽 液两相态冷媒的流动减速,实现汽液冷媒分离。
  19. 根据权利要求18所述的换热器,其特征在于,
    汽液两相态冷媒隔室内的液态冷媒通过液体导管流入到液态冷媒隔室内,而汽态冷媒通过直接连接至汽液两相态冷媒隔室的顶部或上部的气体导管流入到汽态冷媒腔体内。
  20. 根据权利要求13所述的换热器,其特征在于,
    汽液两相态冷媒在汽液分离器内通过重力的作用进行汽液冷媒分离。
  21. 根据权利要求20所述的换热器,其特征在于,
    进口集流管设置在换热器的上部,汽液两相态冷媒隔室设置成一隔室的形式且位于汽液分离器的中心,汽态冷媒隔室位于汽液两相态冷媒隔室的上部,而液态冷媒隔室位于汽液两相态冷媒隔室的下部。
  22. 根据权利要求21所述的换热器,其特征在于,
    汽液两相态冷媒隔室内的液态冷媒通过连通至液态冷媒隔室的孔在重力的作用下流入到液态冷媒隔室内,而汽液两相态冷媒隔室内的汽态冷媒则通过连通至汽态冷媒隔室的孔流入到汽态冷媒隔室内,从而完成汽液两相态冷媒的分离。
PCT/CN2014/086623 2013-09-16 2014-09-16 换热器 WO2015035959A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310421785.5A CN104457038B (zh) 2013-09-16 2013-09-16 换热器
CN201310421785.5 2013-09-16

Publications (1)

Publication Number Publication Date
WO2015035959A1 true WO2015035959A1 (zh) 2015-03-19

Family

ID=52665104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/086623 WO2015035959A1 (zh) 2013-09-16 2014-09-16 换热器

Country Status (2)

Country Link
CN (1) CN104457038B (zh)
WO (1) WO2015035959A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108645243A (zh) * 2018-07-08 2018-10-12 江西新电汽车空调系统有限公司 一种热泵空调用的室外平行流换热器
IT202100007865A1 (it) * 2021-03-30 2022-09-30 Thermokey S P A Scambiatore di calore

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109282537B (zh) * 2016-06-06 2019-10-29 珠海格力电器股份有限公司 换热器及空调器
DE102017109313B4 (de) * 2017-05-02 2021-09-16 Hanon Systems Vorrichtung zur Wärmeübertragung für einen Kältemittelkreislauf eines Klimatisierungssystems eines Kraftfahrzeugs und Klimatisierungssystem mit der Vorrichtung
CN107036338A (zh) * 2017-05-11 2017-08-11 青岛易图令科技有限公司 平行流热交换器及空调
CN111692784B (zh) 2019-03-15 2021-05-28 浙江三花智能控制股份有限公司 气液分离装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005249313A (ja) * 2004-03-04 2005-09-15 Denso Corp 熱交換器
CN101298950A (zh) * 2008-06-20 2008-11-05 清华大学 一种自带分液结构的空调用风冷换热器
CN102997505A (zh) * 2012-11-29 2013-03-27 重庆美的通用制冷设备有限公司 单流程干式蒸发器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005249313A (ja) * 2004-03-04 2005-09-15 Denso Corp 熱交換器
CN101298950A (zh) * 2008-06-20 2008-11-05 清华大学 一种自带分液结构的空调用风冷换热器
CN102997505A (zh) * 2012-11-29 2013-03-27 重庆美的通用制冷设备有限公司 单流程干式蒸发器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108645243A (zh) * 2018-07-08 2018-10-12 江西新电汽车空调系统有限公司 一种热泵空调用的室外平行流换热器
IT202100007865A1 (it) * 2021-03-30 2022-09-30 Thermokey S P A Scambiatore di calore

Also Published As

Publication number Publication date
CN104457038A (zh) 2015-03-25
CN104457038B (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
WO2015035959A1 (zh) 换热器
EP2784428B1 (en) Heat exchanger
US10234181B2 (en) Flash gas bypass evaporator
WO2015180661A1 (zh) 换热器
US9062919B2 (en) Condenser
TWI646288B (zh) 一種空調系統及其換熱器
US20130199288A1 (en) Fluid flow distribution device
EP2913618B1 (en) Heat exchanger
WO2016192653A1 (zh) 换热器系统
US10094601B2 (en) Condenser
WO2014032488A1 (zh) 一种微通道热交换器
WO2014146544A1 (zh) 集流管以及具有集流管的换热器
US20160320136A1 (en) Distributor for falling film evaporator
US10337808B2 (en) Condenser
US20150226498A1 (en) Heat exchanger
CN105518391B (zh) 用于降膜蒸发器的集成分离器-分配器
US20160102893A1 (en) Refrigerant evaporator
CN102997505B (zh) 单流程干式蒸发器
CN105258411B (zh) 用于换热器的气液分离管及换热器
CN104214996B (zh) 平行流蒸发器
CN105650946A (zh) 一种微通道换热器
WO2014137217A1 (en) Heat exchanger inlet and outlet design
JP2010139089A (ja) 熱交換器
CN211204511U (zh) 一种具有对制冷剂进行气液分离功能的v型翅片管换热器
JP2010065880A (ja) コンデンサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14844801

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14844801

Country of ref document: EP

Kind code of ref document: A1