WO2015035916A1 - 横向磁动力系统 - Google Patents

横向磁动力系统 Download PDF

Info

Publication number
WO2015035916A1
WO2015035916A1 PCT/CN2014/086238 CN2014086238W WO2015035916A1 WO 2015035916 A1 WO2015035916 A1 WO 2015035916A1 CN 2014086238 W CN2014086238 W CN 2014086238W WO 2015035916 A1 WO2015035916 A1 WO 2015035916A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnets
potential energy
magnetic field
magnetic material
elastic force
Prior art date
Application number
PCT/CN2014/086238
Other languages
English (en)
French (fr)
Inventor
赵红日
Original Assignee
Zhao Hongri
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhao Hongri filed Critical Zhao Hongri
Publication of WO2015035916A1 publication Critical patent/WO2015035916A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/0231Magnetic circuits with PM for power or force generation
    • H01F7/0242Magnetic drives, magnetic coupling devices

Definitions

  • the invention belongs to the field of mechanics research by using the permanent magnet magnetic field as a medium, and forms a complete thermal process scheme, that is, a core device for forming a thermal effect under the action of a permanent magnet magnetic field.
  • the basic theory of the background of the present invention is mainly as follows: 1. The Chinese Journal of Engineering Science, Vol. 9, No. 4, 2007, published on page 88 of Fan Liangzao's "Science News”. The article introduces Feng Jinsong's relationship between the magnetic field of permanent magnets and temperature changes. Different permanent magnet materials are accompanied by temperature changes while attracting or mutually repelling each other, with a minimum of 2-3 °C, and more than 7-8 °C; Second, Nature Volume492 Issue7429 Published online19 December 2012 The Josephson heat interferometer introduced Francesco Giazotto and Maria Jose Martinez-Perez, scientists at the NEST Nanoscience Institute in Pisa, Italy, to find that magnetic fields can control the direction of heat transfer between individuals, allowing heat to pass from colder individuals to hotter individuals.
  • E p2 that the permanent magnet and the moving permanent magnet repel each other, the other moving permanent magnet is close to the direction of the fixed permanent magnet, and the approaching process is divided into two stages.
  • the magnetic field force overcomes the repulsive resistance to convert the negative work into E p3 , and then because The redistribution of the magnetic field spontaneously acquires the mutually attractive E p4 . It is possible to implement
  • the transverse magnetic power system is still supported by the magnetic field action and temperature change as the basic theory.
  • the purpose is to simplify the principle of the magnetic power system in principle, making it more suitable for application technology research.
  • the two permanent magnets with the same traits correspond to the same pole, giving the intuition that they are repelled in a straight line in the opposite direction (ie, longitudinal direction).
  • the elastic potential energy of the repulsive process is shown in Fig. 2 (F— x curve 1); if artificially fixed one permanent magnet and set horizontal guide rail for the other permanent magnet, as shown in Figure 3, the lateral repulsive force, the longitudinal repulsive force is limited by the guide rail, and the elastic potential energy of the lateral repulsion process
  • the total potential energy of the comparison curves 1 and 2 is equal in actual measurement and theoretically.
  • the magnetic field elastic force of the return stroke can be represented by the curve of Fig. 4F-x. If the return is in the lateral direction, the magnetic field elastic force can be expressed in the F-x curve 3 in Fig. 2, and the contrast curve 3 and In the curve in Fig. 4, the algebra and the equalization of the potential energy can be judged.
  • the principle of the magnetic power system is greatly improved, and the new arrangement structure, as shown in Fig. 5, still consists of four permanent magnets - fixed permanent magnets a, b and their auxiliary permanent magnets, dynamic permanent magnet c, d, composed of a soft magnetic material plate, the opposite pairs of permanent magnets are slightly apart, and the magnetic fields do not interfere with each other.
  • the moving permanent magnets c and d are connected together by a non-magnetic material, and the operation thereof can be clearly expressed as follows: the soft magnetic material plate moves to the left (or right) one time, and the moving permanent magnets c and d can be obtained to the right (or The horizontal direction of the left side is repelled, the soft magnetic material plate moves once in a single pass, and the magnetic field elastic force performs negative work. It is represented by E p1 (such as the F-x curve shown in Fig.
  • E p1 is the potential energy for the negative work transformation of the magnetic field elastic force, taking a negative value
  • E p2 is the spontaneous formation of the magnetic field energy, taking a positive value.
  • Figure 1 is a mutual exclusion diagram of permanent magnets in conventional thinking
  • Figure 2 is an F-x graph of three potential energies of magnetic field elastic force
  • Figure 3 is a schematic view of lateral repulsion of a permanent magnet
  • Figure 4 is a F-x graph showing the process of the permanent magnets being homogenous magnetic poles under the action of a soft magnetic material plate;
  • Figures 5, 6, 7, and 8 are schematic views of a cycle in which the transverse magnetic power system completes
  • Figure 9 The potential energy curve of a soft magnetic material plate with a single stroke magnetic field elastic force being converted into negative work
  • Figure 10 shows the potential energy curve of a permanent magnet that is repelled from one end to the other.
  • FIG. 5 is a drawing of the abstract of the specification.
  • the lateral magnetic power system can form a releasable elastic potential energy greater than the elastic energy to store the potential energy of the negative power, and the principle of the magnetic power system is greatly improved.
  • the new arrangement structure, as shown in Fig. 5, is still composed of four permanent magnets.
  • E p1 F-x curve shown in Figure 9
  • E p2 represents (F-x curve as shown in Fig. 10)
  • Figs. 5, 6, 7, and 8 are one cycle.
  • E pl is the potential energy for the negative work transformation of the magnetic field elastic force, taking a negative value
  • E p2 is the spontaneous formation of the magnetic field energy. Taking a positive value completes a cycle of the magnetic power system, which is verified according to the specific experiment.
  • the permanent magnets are made of ferrite permanent magnets produced by Jinan Magnet Materials Factory.
  • the specifications are 50 ⁇ 50 ⁇ 25mm, and the moving permanent magnets are four series connected to form 50 ⁇ 50 ⁇ 100mm.
  • the permanent magnets and their auxiliary permanent magnets are composed of Eight parallel connected together to form a specification of 50 ⁇ 100 ⁇ 100mm;
  • Soft magnetic material plate material soft iron specification 400 ⁇ 120 ⁇ 2.8mm
  • the material of the fixed permanent magnet is austenitic 202 stainless steel material
  • the slide rail of the soft magnetic material board is an austenitic 202 stainless steel ball slide rail;
  • the permanent magnet is disposed in a guide rail made of austenitic 202 stainless steel;
  • the measuring instrument is the HF-200 digital display force gauge produced by Shenzhen Enci Electronics Co., Ltd., and the indication error is 0.5%;
  • the gap between the soft magnetic material plate and the fixed permanent magnet is 1.5 mm, and the gap between the dynamic permanent magnet and the fixed permanent magnet is 2.2 mm;
  • the soft magnetic material board has a single stroke distance of 55 mm, and the magnetic field force is converted into the E p1 value.
  • the F-x image is shown as the curve of FIG. 9;
  • the two permanent magnets are connected together and the left and right stroke is 109mm.
  • the potential energy E p2 value measured is shown in the F-x image as the curve of FIG.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

横向磁动力系统,由两个动永磁体(4,5)、两个定永磁体及其辅助永磁体(7,8)、一个软磁材料板(6)组成,磁场力弹性力做功可以势能形式体现,单次移动软磁材料板(6)由磁场力做负功转化为Ep1,不释放Ep1可以获得动永磁体c、d(4,5)向右(或向左)的一次横向被排斥,磁场弹性力做正功,用Ep2表示。系统内在形成可释放的弹性势能大于弹性力做负功储存的势能的情况下,化简磁动力系统的运行步骤,用最简单的方式实现|Ep2|>|Ep1|。

Description

横向磁动力系统 技术领域
本发明属于以永磁体磁场为媒介应用于力学研究技术领域,形成一套完备的热力过程方案,也就是在永磁体磁场作用下,形成热力效应的核心装置。
背景技术
本发明的背景基础理论主要在于,一、《中国工程科学》2007年第9卷第4期88页公布的范良藻撰《科学新闻》,文中介绍冯劲松的关于永磁体磁场作用与温度变化的关系,不同的永磁材料在相互吸引或相互排斥过程的同时,都伴随着温度变化,少的有2—3℃,多的有7—8℃之多;二、Nature Volume492 Issue7429 Published online19 December 2012 The Josephson heat interferometer介绍意大利比萨的 NEST 纳米科学研究所的科学家Francesco Giazotto和Maria Jose Martinez-Perez在研究中发现,磁场能控制个体间热流传递的方向,使热量可能从较冷个体传递到较热个体。该发现在一定程度上颠覆了热传递,使热量可能从较冷个体传递到较热个体。这显然违反热力学第二定律-热量永远从较热个体传递到较冷个体;三、背景技术是中国专利2013年第29卷18号公布了《磁动力系统》,是由两个动永磁体、两个定永磁体及其辅助永磁体、一个软磁材料板组成,磁场弹性力做功可以势能形式体现,单次移动软磁材料板由磁场力做负功转化为Epl,不释放Epl即可获得定永磁体与动永磁体相互排斥的Ep2,另一动永磁体向定永磁体方向靠拢,靠拢过程分为两个阶段,首先是磁场力克服排斥阻力做负功转化为Ep3,进而因为磁场再分布,自发的获得相互吸引的Ep4。可以实现|Ep2+Ep4|>|Epl+Ep3|。
技术问题
横向磁动力系统仍以磁场作用与温度变化作为基础理论支撑,目的在于对磁动力系统在原理上进行步骤简化,使其更适合于应用技术研究。
技术解决方案
经试验发现,有益于本发明的实验现象如下:
将两个性状相同的永磁体同极相对应,给人的直觉是,它们个自向相反方向(即纵向)沿直线排斥,如图1所示,排斥过程的弹性势能如图2(F—x曲线1)所示;如果人为的将一个永磁体固定,并为另一个永磁体设定横向的导轨,按照要求如图3横向排斥,纵向的排斥力被导轨限制,横向排斥过程的弹性势能如图2(F—x曲线2)所示,对比曲线1及曲线2,其势能总量在实际测量及理论上都是相等的。
对磁动力系统动永磁体的返程过程,可由图4F—x曲线表示返程的磁场弹性力,如果沿横向返程,其磁场弹性力可在图2中F—x曲线3表现出来,对比曲线3与图4中曲线,可以判断出势能的代数和相等。
以此作为理论基础,对磁动力系统的原理进行重大改进,从新布置结构,图5所示,仍由四个永磁体——定永磁体a、b及其辅助永磁体,动永磁体c、d,与一个软磁材料板组成,相对的两对永磁体相距略远,磁场互不干扰。动永磁体c、d用无磁性材料连接在一起,其运行可以清晰的表述如下:软磁材料板向左(或向右)单程移动一次,可以获得动永磁体c、d向右(或向左)的一次横向被排斥,软磁材料板单程移动一次,磁场弹性力做负功,用Ep1表示(如图9所示F—x曲线),可以获得动永磁体c、d向右(或向左)的一次横向被排斥,磁场弹性力做负正功,用Ep2表示(如图10所示P—x曲线),图5、6、7、8为一个循环。系统内就能够形成可释放的弹性势能大于弹性力做负功储存的势能的情况,用不等式表示:
|Ep2|>|Ep1|
式中Ep1为磁场弹性力做负功转化的势能,取负值,Ep2为磁场能量自发形成,取正值。
有益效果
横向磁动力系统中的磁场弹性势能不等式辩证解析:如果不考虑磁动力系统中的摩擦及阻力,维持磁动力系统中所有永磁体位置不变,软磁材料板从左止点运行到右止点,再返回左止点,在总位移为零,总功量为零;维持磁动力系统中的软磁材料板处于一侧位置不变,动永磁体一次往返,总位移为零,总功量为零;如按磁动力系统具体实现方式运行,形成|Ep2|>|Ep1|,描述为磁场弹性力做负功转化为Epl,Epl不释放就可以得到Ep2的增量储存,根据能量守恒定律,所增储存量来源于永磁体在排斥及吸引过程中伴随温度变化的热量,说明热力学第二定律不能适合于磁动力系统,则磁动力系统就成为磁场热力过程的核心技术。如果考虑磁动力系统中的摩擦及阻力,摩擦及阻力最终将以转化为热的形式传递到磁动力系统以外,但是不影响磁动力系统内部热力效应的客观形成。|Ep2|—|Epl|所剩数值就可开发出可用能。
附图说明
图1是传统思维中的永磁体相互排斥图;
图2磁场弹性力三种势能的F—x曲线图;
图3是永磁体横向排斥示意图;
图4是研究永磁体同性磁极在软磁材料板的作用下,相互靠拢过程的F—x曲线图;
图5、6、7、8是横向磁动力系统完成一个循环的示意图;
图9、软磁材料板单次行程磁场弹性力做负功转化成的势能曲线;
图10动永磁体从一端到另一端受排斥的势能曲线。
其中图5是说明书摘要附图。
图中,1永磁体纵向排斥势能曲线,2永磁体横向排斥势能曲线,3单一一个动永磁体横向返程势能曲线,4动永磁体c,5动永磁体d,6软磁材料板,7定永磁体a与其辅助永磁体,8定永磁体b及其辅助永磁体。
本发明的实施方式
横向磁动力系统内能够形成可释放的弹性势能大于弹性力做负功储存的势能的情况,对磁动力系统的原理进行重大改进,从新布置结构,图5所示,仍由四个永磁体一一定永磁体a、b及其辅助永磁体,动永磁体c、d,与一个软磁材料板组成,动永磁体c、d用无磁性材料连接在一起,其运行可以清晰的表述如下:软磁材料板向左(或向右)单程移动一次,可以获得动永磁体c、d向右(或向左)的一次横向被排斥,软磁材料板单程移动一次,磁场弹性力做负功,用Ep1表示(如图9所示F—x曲线),不释放Ep1可以获得动永磁体c、d向右 (或向左)的一次横向被排斥,磁场弹性力做正功,用Ep2表示(如图10所示F—x曲线),图5、6、7、8为一个循环。系统内就能够形成可释放的弹性势能大于弹性力做负功储存的势能的情况,用不等式表示:
|Ep2|>|Epl|
式中Epl为磁场弹性力做负功转化的势能,取负值,Ep2为磁场能量自发形成,取正值这就完成了磁动力系统的一个循环,根据具体实验验证
实验材料:永磁体采用济南磁铁材料厂生产的铁氧体永磁体,规格50×50×25mm,动永磁体为四个串联形成50×50×100mm的规格;定永磁体及其辅助永磁体由八个并联在一起形成50×100×100mm的规格;
软磁材料板材料软铁,规格400×120×2.8mm;
固定永磁体的材料为奥氏体202不锈钢材料;
软磁材料板的滑轨为奥氏体202不锈钢滚珠滑轨;
动永磁体设置在奥氏体202不锈钢制作的导轨内;
测量仪器为深圳市恩慈电子有限公司出品的HF—200型数显推拉力计,示值误差为0.5%;
软磁材料板与定永磁体间隙为1.5mm,与动永磁体间隙为2.2mm;
软磁材料板单次行程距离55mm,磁场力做负功转化为Ep1数值在F—x图像显示为图9曲线;
俩个动永磁体连接在一起左右行程为109mm。测量其势能Ep2值在F—x图像显示为图10曲线。
上述数值均包含摩擦及阻力,又因为横向设置的导轨对动永磁体的摩擦阻力,在此情况下积分计算并对比,|Ep2|:|Epl|=1.13:1。多出的13%可视为可开发的可用能。在实验中没有达到20%以上的预期,但是横向磁动力系统完成了简化过程的目的,使磁动力系统向技术研究过度提供了可能。

Claims (2)

  1. 横向磁动力系统,特征是:两个动永磁体、两个定永磁体及其辅助永磁体,相对的两对永磁体相距略远,磁场互不干扰,在定永磁体与动永磁体的中间有一块软磁材料板横向往复运行,两个动永磁体用无磁性材料连接在一起在横向导轨上往复运行。
  2. 根据权利要求1,获得势能增量储存的方法是:软磁材料板向左(或向右)单程移动一次,可以获得动永磁体c、d向右(或向左)的一次横向被排斥,软磁材料板单程移动一次,磁场弹性力做负功,用Ep1表示,可以获得动永磁体c、d向右(或向左)的一次横向被排斥,磁场弹性力做负正功,用Ep2表示,系统内就能够形成可释放的弹性势能大于弹性力做负功储存的势能的情况,用不等式表示:|Ep2|>|Ep1|。
PCT/CN2014/086238 2013-09-10 2014-09-10 横向磁动力系统 WO2015035916A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310432412.8 2013-09-10
CN201310432412.8A CN103532438A (zh) 2013-09-10 2013-09-10 横向磁动力系统

Publications (1)

Publication Number Publication Date
WO2015035916A1 true WO2015035916A1 (zh) 2015-03-19

Family

ID=49934192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/086238 WO2015035916A1 (zh) 2013-09-10 2014-09-10 横向磁动力系统

Country Status (2)

Country Link
CN (1) CN103532438A (zh)
WO (1) WO2015035916A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113336298A (zh) * 2021-07-01 2021-09-03 南京中衡元环保科技有限公司 液压磁力式刮渣系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103532438A (zh) * 2013-09-10 2014-01-22 赵红日 横向磁动力系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100327671A1 (en) * 2009-06-29 2010-12-30 Dah-Prong Lai Motor capable of generating a driving output based on a magnetic field
CN103078561A (zh) * 2013-01-15 2013-05-01 赵红日 磁动力系统
CN103248273A (zh) * 2013-01-14 2013-08-14 王长存 磁动机
CN103532438A (zh) * 2013-09-10 2014-01-22 赵红日 横向磁动力系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100327671A1 (en) * 2009-06-29 2010-12-30 Dah-Prong Lai Motor capable of generating a driving output based on a magnetic field
CN103248273A (zh) * 2013-01-14 2013-08-14 王长存 磁动机
CN103078561A (zh) * 2013-01-15 2013-05-01 赵红日 磁动力系统
CN103532438A (zh) * 2013-09-10 2014-01-22 赵红日 横向磁动力系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GIAZOTTO, FRANCE SCO ET AL.: "The Josephson heat interferometer", NATURE, vol. 492, no. 7429, 19 December 2012 (2012-12-19), pages 401 - 405 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113336298A (zh) * 2021-07-01 2021-09-03 南京中衡元环保科技有限公司 液压磁力式刮渣系统

Also Published As

Publication number Publication date
CN103532438A (zh) 2014-01-22

Similar Documents

Publication Publication Date Title
Vokoun et al. Magnetostatic interactions and forces between cylindrical permanent magnets
CN102072125B (zh) 基于单程形状记忆效应的双程线性驱动器及方法
WO2015035916A1 (zh) 横向磁动力系统
CN104813570A (zh) 永磁发电装置
EP2390884A3 (en) Superconducting magnetizer
GB2456968A (en) Magnets for use in magnetic resonance imaging
Namba et al. Design optimization of a hybrid trapped field magnet lens (HTFML)
Yang et al. Investigation on stresses of superconductors under pulsed magnetic fields based on multiphysics model
CN103078561A (zh) 磁动力系统
RU2012148778A (ru) Система зажима/разжима для совмещаемых деталей
侯雨雷 et al. Evaluation Index and Performance Analysis of Power Consumption Ratio of Spherical Parallel Mechanisms
Brayton et al. Anaplasma
Tripodi et al. Dynamics of a non-hysteretic superconductive passive magnetic linear bearing
Bewlay Bewlay, Gradečak, Heilshorn, Spolenak, and Venkatesan to chair 2016 MRS Fall Meeting
Zhiguo Intelligent control system of district heating based on fixed structure phase change heat storage module
ITAP20070004U1 (it) Macchina per proiettare un oggetto a grande distanza
LV15625A (lv) Magnētiskais paātrinātājs 'WILEG'
Tsuchimoto et al. IFN-γ-promote innate defense against gonococcal infection via producing B cells
Li et al. Measurement of the armature speed in electromagnetic launching process using B-dot probes
Xie et al. Corrigendum: A CsH2PO4-based composite electrolyte membrane for intermediate temperature fuel cells
CN1314744A (zh) 曲轴连杆法利用磁能
Geng et al. Unified Theoretical Approach to Electronic Transport from Diffusive to Ballistic Regimes
Ding et al. 6D “Garren” snake cooler and ring cooler for µ±cooling of a muon collider
Zhao et al. Design Research of Linear Motion Unit based on Magnetic Suspension Principle
Eley et al. Dramatic Increase in Vortex Creep Rate with Decreasing Film Thickness in Disordered Superconductors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14843293

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14843293

Country of ref document: EP

Kind code of ref document: A1