WO2015035586A1 - 一种信息发送方法、装置及基站 - Google Patents

一种信息发送方法、装置及基站 Download PDF

Info

Publication number
WO2015035586A1
WO2015035586A1 PCT/CN2013/083398 CN2013083398W WO2015035586A1 WO 2015035586 A1 WO2015035586 A1 WO 2015035586A1 CN 2013083398 W CN2013083398 W CN 2013083398W WO 2015035586 A1 WO2015035586 A1 WO 2015035586A1
Authority
WO
WIPO (PCT)
Prior art keywords
narrow
narrow beam
adjacent
data information
service data
Prior art date
Application number
PCT/CN2013/083398
Other languages
English (en)
French (fr)
Inventor
李红涛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201380001985.3A priority Critical patent/CN104718775B/zh
Priority to PCT/CN2013/083398 priority patent/WO2015035586A1/zh
Publication of WO2015035586A1 publication Critical patent/WO2015035586A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method, an apparatus, and a base station for transmitting information. Background technique
  • the sector splitting technology refers to splitting one physical cell into multiple physical cells, so that the number of physical cells in the coverage area of the same base station is increased, thereby improving the system capacity of the base station.
  • the sector splitting technique is used to split three traditional physical cells under the same base station into six physical cells, split Cell 0 into Cell 00 and Cell 01, and split Cell 1 into Cell 10 and Cell 11 .
  • Cell 2 is split into Cell 20 and Cell 21.
  • the sector splitting technique increases the number of physical cells in the coverage area of the base station, which leads to an increase in the soft handover ratio, thereby increasing resource consumption and reducing system performance.
  • the beam emitted by the antenna of the adjacent physical cell has a certain overlapping area, and the angular expansion of the beam in the wireless network causes the area of the overlapping area. Therefore, the user equipment (UE) located in the overlapping area receives pilot signals from different physical cells, and the power of the pilot signals is similar, which leads to pilot pollution and The neighboring area interference increases, which in turn reduces the Key Performance Indicator (KPI) in the UE communication process.
  • KPI Key Performance Indicator
  • a multi-sector common cell networking technology which can split a physical cell into multiple sectors by Sector Transmit Sector Receive (STSR) technology, and then split by the same physical cell.
  • STSR Sector Transmit Sector Receive
  • the common channels of multiple sectors are combined to combine the sectors into one virtual cell.
  • the beams of adjacent sectors after the cell splitting have a certain overlapping area, and the angular expansion of the beam in the wireless environment will increase the overlapping area between adjacent beams, and the actual area is measured. It can be seen that the UEs in the beam overlap region in the virtual cell cannot perform resource multiplexing, and the cell capacity increase is limited.
  • the more sectors that are split the larger the overlap region, and the limitation on resource reuse. It will be more serious. Summary of the invention
  • the embodiments of the present invention provide a method, an apparatus, and a base station for transmitting information, which are used to solve the problem of interference in a neighboring beam coverage area and an air interface when the sector splitting technology and the multi-sector common cell networking technology are used in the prior art.
  • an embodiment of the present invention provides a method for sending information, including:
  • the signal coverage of the cell is completed by using at least two narrow beams; the time division-based manner passes through any two adjacent narrow beams, respectively, to the respective coverage areas of the adjacent two adjacent narrow beams.
  • the user equipment UE transmits service data information.
  • the UE in the coverage area of each of the adjacent two narrow beams is respectively transmitted by any adjacent two narrow beams in a time division manner.
  • Sending service data information including: a narrow beam;
  • the service data information is transmitted to the UE within the narrow beam coverage of the call based on the invoked narrow beam.
  • a second possible narrow beam in the first aspect includes:
  • the user in the coverage area of each of the adjacent two narrow beams is respectively used by any adjacent two narrow beams in a time division manner.
  • the device UE sends service data information, including:
  • the user in the coverage area of each of the adjacent two narrow beams is respectively used by any adjacent two narrow beams in a time division manner.
  • the device UE sends service data information, including:
  • the single narrow beam When the UE is located within the coverage of a single narrow beam, the single narrow beam is called to send service data information to the UE at a second time, and the narrow beam adjacent to the single narrow beam is not sent at the second time.
  • the adjacent two narrow beams are used as a whole narrow beam, and the service data information is sent to the UE by calling the whole narrow beam at a second time.
  • a narrow beam adjacent to the overall narrow beam does not transmit service data information at the second time.
  • the method further includes:
  • the signal coverage of the cell is completed with a wide beam, and common channel information is transmitted to the UE in the cell through the wide beam.
  • an information sending apparatus including:
  • control module configured to perform signal coverage of the cell by using at least two narrow beams together for one cell
  • a sending module configured to send the service data information to the user equipment UE in the coverage area of each of the adjacent two narrow beams by using any two adjacent narrow beams in a time division manner.
  • the sending module specifically includes:
  • a first submodule configured to, in the same time period, invoke at least one narrow beam that is not adjacent to each other in the at least two narrow beams;
  • a second submodule configured to narrow the coverage of the call based on the narrow beam of the call
  • the UE sends service data information.
  • the first submodule is specifically configured to divide the at least two narrow beams into multiple groups , wherein some narrow beams included in any one of the packets are not adjacent to each other; determining a calling sequence of each packet; and in the same time period, calling a packet according to the determined calling sequence.
  • the sending module is specifically configured to:
  • a second narrow beam adjacent to a narrow beam does not transmit service data information at the first time.
  • the sending module is specifically configured to:
  • the single narrow beam is called to send service data information to the UE at a second time, and the narrow beam adjacent to the single narrow beam is not sent at the second time.
  • Business data information or
  • the adjacent two narrow beams are used as a whole narrow beam, and the service data information is sent to the UE by calling the whole narrow beam at a second time.
  • a narrow beam adjacent to the overall narrow beam does not transmit service data information at the second time.
  • control module is further configured to perform a signal of the cell by using a wide beam cover;
  • the sending module is further configured to send common channel information to the UE in the cell by using the wide beam.
  • an embodiment of the present invention further provides an information sending device, including a transceiver, a processor, and a memory, where the memory is used to store program code, where:
  • the processor is configured to invoke the program code in the memory, and perform the following operations: performing, for one cell, using at least two narrow beams to complete signal coverage of the cell; indicating that the transceiver passes the time division manner Any two adjacent narrow beams respectively send service data information to the user equipment UE in the coverage area of each of the adjacent two narrow beams.
  • the processor is specifically configured to:
  • the processor is specifically configured to:
  • the processor is specifically configured to:
  • the processor is specifically configured to: When the UE is located within the coverage of a single narrow beam, instructing the transceiver to call the single narrow beam to send service data information to the UE at a second time, and the narrow beam adjacent to the single narrow beam is in the Do not send business data information for the second time; or
  • the adjacent two narrow beams are used as a whole narrow beam, and the transceiver is instructed to send the whole narrow beam to the UE at a second time.
  • the service data information, the narrow beam adjacent to the overall narrow beam does not transmit the service data information at the second time.
  • the processor is further configured to:
  • completing signal coverage of the cell with a wide beam; instructing the transceiver to transmit common channel information to UEs in the cell through the wide beam.
  • the embodiment of the present invention transmits the service data information to the UEs in the coverage areas of the respective adjacent two narrow beams by using any two adjacent narrow beams in a time division manner, thereby implementing a time division beam switching mechanism, thus avoiding not only avoiding
  • the signal interference between adjacent beams improves the multiplexing rate of the air interface resources and reduces the RF channel used at the same time, thereby reducing the number of RF channel devices required by the system equipment and reducing the cost of the equipment.
  • FIG. 1 is a sector splitting technique that splits three traditional physical cells in the same base station into six physical cells;
  • 2 is a multi-sector common cell networking technology that splits three traditional physical cells under the same base station by STSR to obtain six virtual sectors;
  • FIG. 3 is a flowchart of a method for transmitting information according to an embodiment of the present invention.
  • FIG. 4A is a schematic diagram of a beam in Embodiment 1 of the present invention.
  • FIG. 4B is a schematic diagram of a beam in Embodiment 2 of the present invention.
  • FIG. 5 is a schematic diagram of an information sending apparatus according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of a base station according to an embodiment of the present disclosure
  • FIG. 7 is a schematic structural diagram of a base station according to Embodiment 3 of the present invention. detailed description
  • the multi-sector co-cell networking technology splits three traditional physical cells (Cell 0, Cell 1, and Cell 2) under the same base station by STSR to obtain six virtual sectors, where Two sectors split by the same physical cell together form a virtual cell.
  • the traditional physical cell Cell O is split into two sectors, and the two sectors are merged into a virtual cell Cell 0'.
  • a base station transmits common channel information and service data over the entire range of the physical cell, and signals in the same physical cell share the same scrambling code.
  • each antenna in the Cell 1 sends SCI (scrambling code information) and service data 1 to user equipment accessing the physical cell.
  • antennas corresponding to two sectors in the same virtual cell transmit the same common channel information, and the base station performs independent resource scheduling for each sector.
  • the base station determines the sector in which the terminal is located, and transmits the traffic channel information and the user data only through the sector in which the terminal is located.
  • the antenna corresponding to the sector in which the UE 1 is located in the cell l' transmits the SC1 and the service data 1 to the UE 1, and the antenna corresponding to the sector in which the UE2 is located, and sends the SC1 and the service data 2 to the UE 2.
  • the base station maintains a set of air interface resource pools for each sector. If the base station independently schedules the air interface resources of each sector, different sectors can reuse the same air interface resources.
  • air interface resources refer to code channel resources and power resources in Long Term Evolution (Long Term Evolution, In the LTE system, an air interface resource refers to a resource block (RB).
  • RB resource block
  • the embodiment of the present invention devises an information sending method, as shown in FIG. 3, including the following steps.
  • Step 301 For one cell, the signal coverage of the cell is completed by using at least two narrow beams.
  • Step 302 Send service data information to UEs in respective coverage areas of the arbitrary adjacent two narrow beams by using any two adjacent narrow beams in a time division manner.
  • the signal coverage of the cell is completed by using a wide beam, and the common channel information is sent to the UE in the cell by using the wide beam.
  • the embodiment of the present invention completes the signal coverage of the entire cell and the bearer of the common channel information by using the wide beam, and completes the signal coverage of the entire cell and the bearer of the service data information by using at least two narrow beams to implement different channel bearer beam separation. Therefore, it is possible to maximize the flexibility of the traffic channel bearer and reduce the channel switching without affecting the mobility of the UE.
  • the wide beam is transmitted by the wide beam antenna
  • the wide beam antenna uses a fixed RF channel to complete the signal coverage of the entire cell
  • the narrow beam is transmitted by the narrow beam antenna
  • the narrow beam antenna refers to the high directivity gain and small side lobes.
  • the antenna has an input impedance that remains constant or decreases over a narrow band.
  • the coverage area of each narrow beam is one sector, and the coverage area of adjacent narrow beams has an overlap area, and narrow beams transmitted by all narrow beam antennas in the cell cover the cell.
  • the base station can maintain UE access through a wide beam.
  • the common channel information in the CDMA system includes: common pilot channel information, common control channel information, and the like.
  • a wide beam can refer to a beam from a macro station, and a narrow beam can be a beam from a micro-station.
  • the micro station carries the data traffic channel and the auxiliary pilot channel of the UE, where The auxiliary pilot channel is used for channel estimation and measurement, and the macro station carries a common channel at the cell level, thereby reducing channel switching.
  • the base station can carry the common channel information through the wide beam, and carry the service data information through the narrow beam to implement different channel bearer beam separation, which can affect the mobility of the UE without affecting the UE.
  • the foregoing step 302 can be implemented by any one of the following methods:
  • Manner 1 In the same time period, at least one narrow beam that is not adjacent to each other is called in the at least two narrow beams; and the service data information is sent to the UE within the narrow beam coverage of the call based on the invoked narrow beam.
  • the method may be implemented by the following process: dividing the at least two narrow beams into a plurality of packets in a same period of time, where some narrow beams included in any one of the packets are not mutually Adjacent
  • Manner 2 The first narrow beam in which the UE with the highest current priority is located is called at the first time; the service data information is sent to the UE in the first narrow beam coverage by using the first narrow beam that is invoked; A narrow beam adjacent to a narrow beam does not transmit service data information at a first time.
  • Manner 3 When the UE is located in the coverage of a single narrow beam, the single narrow beam is sent to send the service data information to the UE at the second time, and the narrow beam adjacent to the single narrow beam does not send the service data at the second time. Information; or, When the UE is located in an overlapping coverage area of two adjacent narrow beams, the adjacent two narrow beams are used as a whole narrow beam, and the service data information is sent to the UE by calling the whole narrow beam at the second time, and the foregoing The narrow beam adjacent to the overall narrow beam does not transmit service data information at the second time. When two adjacent narrow beams are used as a whole narrow beam, the two narrow beams will transmit the same signal and emit the same information.
  • the first time may represent a certain time period or a certain time point, for example, determining a certain time period after the UE position or a start time of a certain period.
  • the base station of cell A has "eight narrow beams - four radio frequency channels", and l-la, l-2a, l-3a, l-4a, l-lb, l-2b, 1-3b and l -4b are respectively 8 narrow beams transmitted by 8 narrow beam antennas.
  • the dashed line including all narrow beams is the wide beam 1 transmitted by the wide beam antenna.
  • the base station of cell A transmits the common channel information to the UE through the wide beam 1.
  • the base station of cell A divides the polling period into two transmission periods, and schedules four narrow beams (l-la, l-2a, l-3a, and l-4a) in the first transmission period, respectively, through each of which is narrow
  • the beam transmits traffic with the UE within the narrow beam coverage; 4 narrow beams (l-lb, l-2b, l-3b, and l-4b) are scheduled in the second transmission period, and each of the narrow beams is respectively passed Transmitting traffic with UEs within the narrow beam coverage.
  • the base station of the cell A carries the common channel information through the wide beam, carries the service data information through the narrow beam, implements different channel bearer beam separation, and calls the adjacent two narrow beams in a time division manner, so that four radio frequency channels are called.
  • Polling the transmitted narrow beams in a certain order not only ensures that each narrow beam has the same duration of transmission time in a complete polling period, but also avoids the interference of adjacent narrow beams, and improves the adjacent narrow beams.
  • the scheduling of beams in other cells with 4 narrow beams or more narrow beams is similar to the above process.
  • the base station of the cell A in Fig. 4B also has "eight narrow beams - four radio frequency channels", and 1-1 to 1-8 are respectively eight narrow beams transmitted by eight narrow beam antennas.
  • the dashed line including all narrow beams is the wide beam 1 transmitted by the wide beam antenna.
  • the base station divides one polling period into two transmission periods, in order to satisfy the transmission signal in the same transmission period.
  • the narrow beam of the information is separated by at least one beam condition, and the narrow beams 1-3, 1-1, 1-5, and 1-7 are divided into one group, and the narrow beams 1-2, 1-4, 1-6, and 1 are divided. -8 is divided into a group.
  • the base station determines that the UE with the highest scheduling priority is UE A, and that UE A is in narrow beams 1-3. Since the base station determines that the UE with the highest scheduling priority is in the narrow beam 1-3, the base station schedules the narrow beams 1-3, 1-1, 1-5, and 1-7 in the first packet in the first transmission period, The second transmission period schedules narrow beams 1-2, 1-4, 1-6, and 1-8 in the second packet.
  • the base station switches one of the radio frequency channels to the narrow beam 1-3 in the first transmission period, and determines, after the UE A uses the air interface resource of the narrow beam 1-3, according to the air interface resource usage of the system, if the narrow beam 1-3 If there are remaining air interface resources, the air interface resources are allocated to other UEs within the coverage of the narrow beam 1-3. At this time, the air interface resources may be allocated to the corresponding UE according to the scheduling priority of the UE in the coverage of the narrow beam 1-3.
  • an air interface resource may be referred to as a code channel resource
  • a hollow port resource in an LTE system may be referred to as a resource block (RB).
  • the base station can determine the narrow beam that needs to transmit data according to the location of the UE with the high scheduling priority, and then switch the radio frequency channel to the corresponding narrow beam, and transmit the service data information to the UE through the narrow beam to complete the transmission of the service data.
  • the time division beam switching mechanism can transmit service data information to the UE by using non-adjacent narrow beams in the same time period, and only need n/2 RF channels to pass n narrow
  • the beam completes the signal coverage of the cell. Therefore, the interference between adjacent narrow beams can be avoided, the multiplexing rate of the cell's hollow port resources can be improved, the system capacity of the cell can be improved, and the Radio Remote Unit (RRU) can be reduced.
  • the number of hardware, etc. reduces the cost of the device, where n is a positive integer greater than one.
  • an embodiment of the present invention also provides an information sending apparatus.
  • the apparatus includes:
  • the control module 501 is configured to perform signal coverage of the foregoing area by using at least two narrow beams together for one cell.
  • the sending module 502 is configured to pass any two adjacent narrow beams in a time division manner, respectively
  • the user equipment UE in the coverage area of each of the adjacent two narrow beams transmits the service data information.
  • the above sending module may have one or more of the following functions.
  • the sending module 502 specifically includes a first submodule and a second submodule, and has the following functions:
  • a first submodule configured to invoke at least one narrow beam that is not adjacent to each other in the at least two narrow beams in the same time period
  • a second submodule configured to send the service data information to the UE in the narrow beam coverage range that is invoked based on the invoked narrow beam.
  • the foregoing first sub-module is specifically configured to divide the at least two narrow beams into a plurality of packets, where some narrow beams included in any one of the packets are not adjacent to each other; determining a calling sequence of each packet ; In the same time period above, a group is called in accordance with the determined calling sequence.
  • the sending module 502 has the following functions:
  • the above sending module 502 has the following functions:
  • the single narrow beam is sent to send the service data information to the UE at the second time, and the narrow beam adjacent to the single narrow beam does not send the service data information at the second time;
  • the adjacent two narrow beams are used as a whole narrow beam, and the service data information is sent to the UE by calling the whole narrow beam at the second time, and the foregoing
  • the narrow beam adjacent to the overall narrow beam does not transmit service data information at the second time.
  • control module 501 in the information sending apparatus is further configured to complete signal coverage of the cell by using a wide beam;
  • the sending module 502 is further configured to send common channel information to the UE in the cell by using the wide beam.
  • the information sending apparatus in the embodiment of the present invention may be an access network device, such as a base station.
  • an embodiment of the present invention further provides a base station.
  • the method includes: a transceiver 601, a processor 602, a memory 603, and a bus 604.
  • the transceiver 601, the processor 602, and the memory 603 pass through the bus. 604 connects and completes communication with each other, wherein:
  • the bus 604 can be an Industry Standard Architecture (ISA) bus, a Peripheral Component (PCI) bus, or an Extended Industry Standard Architecture (ESA) bus.
  • ISA Industry Standard Architecture
  • PCI Peripheral Component
  • ESA Extended Industry Standard Architecture
  • the bus 604 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one line is shown in Figure 6, but it does not mean that there is only one bus or one type of bus.
  • the memory 603 is for storing program code, and the program code includes an operation instruction.
  • Memory 603 may include random access memory (RAM), and may also include non-volatile memory, such as disk storage.
  • the processor 602 may be a Central Processing Unit (CPU), or an Application Specific Integrated Circuit (ASIC), or one or more integrated circuits configured to implement embodiments of the present invention.
  • CPU Central Processing Unit
  • ASIC Application Specific Integrated Circuit
  • the processor 602 is configured to invoke the program code in the foregoing memory 603, and perform the following operations: performing signal coverage of the cell by using at least two narrow beams for one cell; indicating that the transceiver 601 passes any phase based on time division Two narrow beams are adjacent to each other, and the service data information is respectively sent to the user equipment UE in the coverage area of each of the adjacent two narrow beams.
  • the processor 602 is specifically configured to:
  • the above processor 602 invokes the operations performed by the program code in the above memory 603, and may include one or more of the following operations:
  • Operation one: dividing the at least two narrow beams into multiple groups, where any one group The narrow beams included in the plurality are not adjacent to each other; determining the calling sequence of each packet; instructing the transceiver 601 to call a packet according to the determined calling sequence in the same time period as described above, and based on the narrow beam called The UE within the narrow beam coverage of the call transmits service data information.
  • Operation 2 Instructing the transceiver 601 to call the first narrow beam where the UE with the highest current priority is located; sending the service data to the UE in the first narrow beam coverage by using the first narrow beam that is invoked at the first time.
  • the information, the second narrow beam adjacent to the first narrow beam does not transmit the service data information at the first time.
  • Operation 3 when the UE is located in the coverage of a single narrow beam, the transceiver 601 is instructed to send the service data information to the UE by using the single narrow beam at a second time, and the narrow beam adjacent to the single narrow beam is in the foregoing Do not send business data information for two hours; or
  • the adjacent two narrow beams are used as a whole narrow beam, and the transceiver 601 is configured to call the entire narrow beam to send service data to the UE at the second time.
  • the information, the narrow beam adjacent to the above-mentioned overall narrow beam does not transmit the service data information at the second time.
  • the processor 602 is further configured to:
  • the signal coverage of the cell is completed by using a wide beam; the transceiver 601 is instructed to send the common channel information to the UE in the cell by using the wide beam.
  • the processor 602 in the embodiment of the present invention may be a baseband processing unit in the base station.
  • Transceiver 601 can include an antenna (e.g., a wide beam antenna or/and a narrow beam antenna), a beam steering unit, and a radio frequency channel.
  • an antenna e.g., a wide beam antenna or/and a narrow beam antenna
  • a beam steering unit e.g., a beam steering unit
  • a radio frequency channel e.g., a radio frequency channel
  • FIG. 7 is a schematic diagram of a base station structure in an embodiment of the present invention.
  • the transceiver of the base station includes an antenna 701, a beam control unit 702, and a radio frequency channel 703.
  • the processor of the base station includes a base station processing unit 704.
  • the wide beam 1 in Fig. 7 covers the entire cell, and the narrow beams 1 ⁇ N (N > 2) jointly cover the coverage area of the entire wide beam 1.
  • Antenna 0 is a wide beam antenna that completes coverage of the entire cell through RF channel 0.
  • Antenna 0 can carry common channel information that is not suitable for transmission by time division, for example, WCDMA system master Common pilot channel information, common control channel information, and the like.
  • a narrow beam is transmitted through the narrow beam antenna 1 and the narrow beam antenna 4, at this time, the RF channel 1 is switched to the narrow beam antenna 1, and the narrow beam 1 is transmitted; the RF channel 2 is switched to the narrow beam antenna 4 At the same time, a narrow beam 4 is transmitted.
  • the narrow beam is transmitted through the narrow beam antenna 2 and the narrow beam antenna 6.
  • the RF channel 1 is switched to the narrow beam antenna 2, and the narrow beam 2 is transmitted; the RF channel 6 is switched to the narrow beam antenna 6 , transmitting a narrow beam 6.
  • the number of RF channels (that is, the value of n) can be adjusted according to the target capacity of the cell.
  • the RF channel 0 is fixed to correspond to antenna 0.
  • RF channel 1 to RF channel n can be switched to different narrow beams according to requirements. Since the narrow beam coverage angle is small and the antenna gain is high, the power can be used relatively low compared with the RF channel carrying the wide beam.
  • the RF channel carries a narrow beam to reduce hardware costs.
  • Beam control unit 702 is an array of radio frequency switches controlled by baseband processing unit 704.
  • the baseband processing unit 704 periodically determines the location of the UE in the cell and determines the correspondence between the UE and the narrow beam antenna.
  • the beam control unit 602 selects an RF channel and switches the antenna accessed by the RF channel to a narrow beam antenna corresponding to the UE.
  • the baseband processing unit 704 may, but is not limited to, transmit the service data information in the following manner:
  • RF channel 1 is switched between narrow beam antenna 1 and narrow beam antenna 2, and two narrow beam antennas are used to jointly transmit a narrow beam (the service data information is carried in a narrow beam).
  • the RF channel needs to be boosted (for example, , increase the transmit power by 3dB).
  • the number of RF channels working in parallel can be minimized according to the cell capacity, thereby reducing interference and reducing power consumption.
  • the RF channels corresponding to the narrow beams may be in the same
  • the same air interface resource is used in the transmission period.
  • the air interface resource may be a code resource
  • the LTE system air interface resource may be an RB resource.
  • the embodiment of the present invention transmits the service data information to the UEs in the coverage areas of the respective adjacent two narrow beams by using any two adjacent narrow beams in a time division manner, thereby implementing a time division beam switching mechanism, thus avoiding not only avoiding
  • the signal interference between adjacent beams improves the multiplexing rate of the air interface resources and reduces the radio frequency channel used at the same time, thereby reducing the number of RF channel devices required by the system equipment and reducing the cost of the equipment.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种信息发送方法、装置及设备,该方法,包括:针对一个小区,采用至少两个窄波束共同完成所述小区的信号覆盖;基于时分的方式通过任意相邻两个窄波束,分别向所述任意相邻两个窄波束各自的覆盖区域内的用户设备UE发送业务数据信息,用以解决现有技术中采用扇区分裂技术和多扇区共小区组网技术时,相邻波束覆盖区域的干扰较大、空口资源复用率低的问题。

Description

一种信息发送方法、 装置及基站
技术领域
本发明涉及通信技术领域, 特别涉及一种信息发送方法、 装置及基站。 背景技术
现今用户设备数量越来越多, 而网络的频点资源和系统容量有限, 因此 提出使用扇区分裂技术和多扇区共小区组网技术来提升网络的系统容量和覆 盖质量。
扇区分裂技术是指将一个物理小区分裂成多个物理小区, 从而使得同一 基站的覆盖区域中物理小区的数目增加, 从而提升基站的系统容量。
例如, 图 1 中使用扇区分裂技术将同一基站下的三个传统物理小区分裂 成六个物理小区, 将 Cell 0分裂成 Cell 00和 Cell 01 , 将 Cell 1分裂成 Cell 10 和 Cell 11 , 将 Cell 2分裂成 Cell 20和 Cell 21。
扇区分裂技术的缺点包括如下两点:
其一, 扇区分裂技术使得基站的覆盖区域中物理小区的数目增加, 导致 了软切换比例提升, 从而增加了资源的消耗, 降低了系统的性能;
其二, 为了保证信号的连续覆盖, 扇区分裂技术中, 相邻物理小区的天 线发出的波束具有一定的交叠区, 而无线网络中波束的角度扩展作用则会导 致该交叠区的面积较大, 这样, 位于该交叠区的用户设备 ( User Equipment, UE )就会接收到来自不同物理小区的导频信号, 而这些导频信号的功率较为 类似,这就导致了导频污染和邻区干扰增加,进而降低了 UE通信过程中的关 键性能指标(Key Performance Indicator, KPI )。
多扇区共小区组网技术, 通过扇区发射扇区接收( Sector Transmit Sector Receive, STSR )技术可以将一个物理小区劈裂为多个扇区, 然后, 将由同一 个物理小区劈裂而得到的多个扇区的公共信道合并, 从而将这些扇区合并为 一个虚拟小区。 为了保证连续覆盖, 小区劈裂后相邻扇区的波束有一定的交叠区, 加上 无线环境中波束的角度扩展作用, 相邻波束间重叠区将会变大, 而从实际环 境中实测看,处于虚拟小区中的波束交叠区的 UE不能进行资源复用, 小区容 量提升很有限, 并且, 劈裂出的扇区越多, 其重叠区更大, 对于资源复用的 限制问题就会更严重。 发明内容
本发明实施例提供一种信息发送方法、 装置及基站, 用以解决现有技术 中釆用扇区分裂技术和多扇区共小区组网技术时, 相邻波束覆盖区域的干扰 较大、 空口资源复用率低的问题。
第一方面, 本发明实施例提供一种信息发送方法, 包括:
针对一个小区, 釆用至少两个窄波束共同完成所述小区的信号覆盖; 基于时分的方式通过任意相邻两个窄波束, 分别向所述任意相邻两个窄 波束各自的覆盖区域内的用户设备 UE发送业务数据信息。
结合第一方面, 在第一方面的第一种可能的实现方式中, 基于时分的方 式通过任意相邻两个窄波束, 分别向所述任意相邻两个窄波束各自的覆盖区 域内的 UE发送业务数据信息, 具体包括: 窄波束;
基于调用的窄波束向所述调用的窄波束覆盖范围内的 UE发送业务数据 信息。
结合第一方面的第一种可能的实现方式, 在第一方面的第二种可能的实 少一个窄波束, 包括:
将所述至少两个窄波束划分为多个分组, 其中, 任意一个分组中包含的 若干窄波束均互不相邻;
确定每一个分组的调用顺序; 在所述同一个时间段内, 按照确定的调用顺序调用一个分组。 结合第一方面, 在第一方面的第三种可能的实现方式中, 基于时分的方 式通过任意相邻两个窄波束, 分别向所述任意相邻两个窄波束各自的覆盖区 域内的用户设备 UE发送业务数据信息, 包括:
调用当前业务优先级最高的 UE所处的第一窄波束;
在第一时间通过调用的所述第一窄波束向所述第一窄波束覆盖范围内的 UE发送业务数据信息, 与所述第一窄波束相邻的第二窄波束在所述第一时间 不发送业务数据信息。
结合第一方面, 在第一方面的第四种可能的实现方式中, 基于时分的方 式通过任意相邻两个窄波束, 分别向所述任意相邻两个窄波束各自的覆盖区 域内的用户设备 UE发送业务数据信息, 包括:
在 UE位于单个窄波束的覆盖范围内时,在第二时间调用所述单个窄波束 向所述 UE发送业务数据信息,与所述单个窄波束相邻的窄波束在所述第二时 间不发送发送业务数据信息; 或者
在 UE位于相邻两个窄波束的交叠覆盖区域时,将该相邻两个窄波束作为 一个整体窄波束,在第二时间通过调用所述整体窄波束向所述 UE发送业务数 据信息, 与所述整体窄波束相邻的窄波束在所述第二时间不发送业务数据信 息。
结合第一方面或第一方面的上述任意一种可能的实现方式, 在第一方面 的第五种可能的实现方式中, 所述方法还包括:
釆用宽波束完成所述小区的信号覆盖, 并通过所述宽波束向所述小区中 的 UE发送公共信道信息。
第二方面, 本发明实施例提供一种信息发送装置, 包括:
控制模块, 用于针对一个小区, 釆用至少两个窄波束共同完成所述小区 的信号覆盖;
发送模块, 用于基于时分的方式通过任意相邻两个窄波束, 分别向所述 任意相邻两个窄波束各自的覆盖区域内的用户设备 UE发送业务数据信息。 结合第二方面, 在第二方面的第一种可能的实现方式中, 所述发送模块 具体包括:
第一子模块, 用于在同一个时间段内, 在所述至少两个窄波束中调用互 不相邻的至少一个窄波束;
第二子模块, 用于基于调用的窄波束向所述调用的窄波束覆盖范围内的
UE发送业务数据信息。
结合第二方面的第一种可能的实现方式, 在第二方面的第二种可能的实 现方式中, 所述第一子模块, 具体用于将所述至少两个窄波束划分为多个分 组, 其中, 任意一个分组中包含的若干窄波束均互不相邻; 确定每一个分组 的调用顺序; 在所述同一个时间段内, 按照确定的调用顺序调用一个分组。
结合第二方面, 在第二方面的第三种可能的实现方式中, 所述发送模块, 具体用于:
调用当前业务优先级最高的 UE所处的第一窄波束;在第一时间通过调用 的所述第一窄波束向所述第一窄波束覆盖范围内的 UE发送业务数据信息,与 所述第一窄波束相邻的第二窄波束在所述第一时间不发送业务数据信息。
结合第二方面, 在第二方面的第四种可能的实现方式中, 所述发送模块, 具体用于:
在 UE位于单个窄波束的覆盖范围内时,在第二时间调用所述单个窄波束 向所述 UE发送业务数据信息,与所述单个窄波束相邻的窄波束在所述第二时 间不发送业务数据信息; 或者
在 UE位于相邻两个窄波束的交叠覆盖区域时,将该相邻两个窄波束作为 一个整体窄波束,在第二时间通过调用所述整体窄波束向所述 UE发送业务数 据信息, 与所述整体窄波束相邻的窄波束在所述第二时间不发送业务数据信 息。
结合第二方面或第二方面的上述任意一种可能的实现方式, 在第二方面 的第五种可能的实现方式中, 所述控制模块, 还用于釆用宽波束完成所述小 区的信号覆盖; 所述发送模块,还用于通过所述宽波束向所述小区中的 UE发送公共信道 信息。
第三方面, 本发明实施例还提供一种信息发送设备, 包括收发器、 处理 器和存储器, 所述存储器用于存储程序代码, 其中:
所述处理器, 用于调用所述存储器中的程序代码, 执行以下操作: 针对一个小区, 釆用至少两个窄波束共同完成所述小区的信号覆盖; 指示所述收发器基于时分的方式通过任意相邻两个窄波束, 分别向所述 任意相邻两个窄波束各自的覆盖区域内的用户设备 UE发送业务数据信息。
结合第三方面, 在第三方面的第一种可能的实现方式中, 所述处理器具 体用于:
指示所述收发器在同一个时间段内, 在所述至少两个窄波束中调用互不 相邻的至少一个窄波束; 基于调用的窄波束向所述调用的窄波束覆盖范围内 的 UE发送业务数据信息。
结合第三方面的第一种可能的实现方式, 在第三方面的第二种可能的实 现方式中, 其特征在于, 所述处理器具体用于:
将所述至少两个窄波束划分为多个分组, 其中, 任意一个分组中包含的 若干窄波束均互不相邻; 确定每一个分组的调用顺序; 指示所述收发器在所 述同一个时间段内, 按照确定的调用顺序调用一个分组, 并基于调用的窄波 束向所述调用的窄波束覆盖范围内的 UE发送业务数据信息。
结合第三方面, 在第三方面的第三种可能的实现方式中, 所述处理器, 具体用于:
指示所述收发器调用当前业务优先级最高的 UE所处的第一窄波束;在第 一时间通过调用的所述第一窄波束向所述第一窄波束覆盖范围内的 UE发送 业务数据信息, 与所述第一窄波束相邻的第二窄波束在所述第一时间不发送 业务数据信息。
结合第三方面, 在第三方面的第四种可能的实现方式中,, 所述处理器, 具体用于: 在 UE位于单个窄波束的覆盖范围内时,指示所述收发器在第二时间调用 所述单个窄波束向所述 UE发送业务数据信息 ,与所述单个窄波束相邻的窄波 束在所述第二时间不发送业务数据信息; 或者
在 UE位于相邻两个窄波束的交叠覆盖区域时,将该相邻两个窄波束作为 一个整体窄波束, 指示所述收发器在第二时间调用所述整体窄波束向所述 UE 发送业务数据信息, 与所述整体窄波束相邻的窄波束在所述第二时间不发送 业务数据信息。
结合第三方面或第三方面的上述任意一种可能的实现方式, 在第三方面 的第五种可能的实现方式中, 所述处理器还用于:
釆用宽波束完成所述小区的信号覆盖; 指示所述收发器通过所述宽波束 向所述小区中的 UE发送公共信道信息。
本发明实施例基于时分的方式通过任意相邻两个窄波束, 分别向该任意 相邻两个窄波束各自覆盖区域内的 UE发送业务数据信息,从而实现了时分波 束切换机制, 这样, 不仅避免了相邻波束之间的信号干扰, 提升了空口资源 的复用率, 还减少了同一时间使用的射频通道, 从而减少了系统设备所需要 的射频通道装置的数量, 降低了设备的成本。 附图说明
图 1 为扇区分裂技术将同一基站下的三个传统物理小区分裂成六个物理 小区;
图 2为多扇区共小区组网技术通过 STSR将同一基站下的三个传统物理小 区分别劈裂, 得到 6个虚拟扇区;
图 3为本发明实施例设计的一种信息发送方法流程图;
图 4A为本发明实施例一中的波束示意图;
图 4B为本发明实施例二中的波束示意图;
图 5为本发明实施例提供的一种信息发送装置示意图;
图 6为本发明实施例提供的一种基站示意图; 图 7为本发明实施例三中的基站结构示意图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于 本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
下面结合说明书附图对本发明实施例作进一步详细描述。
参阅图 2所示,多扇区共小区组网技术通过 STSR将同一基站下的三个传 统物理小区 (Cell 0、 Cell 1和 Cell 2 )分别劈裂, 得到 6个虚拟扇区, 其中, 由同一物理小区劈裂而得的两个扇区共同组成一个虚拟小区。 例如, 将传统 物理小区 Cell O劈裂成两个扇区, 并将这两个扇区合并成虚拟小区 Cell 0'。
在传统的物理小区中, 基站在该物理小区的整个范围内发送公共信道信 息和业务数据, 在同一个物理小区内的信号共用相同的扰码。 参阅图 2所示, Cell l中的每一根天线都向接入该物理小区的用户设备发送 SCI (扰码信息) 和业务数据 1。
在 STSR技术中,同一个虚拟小区内的两个扇区各自对应的天线发射相同 的公共信道信息, 基站针对每一个扇区分别进行独立的资源调度。 针对与基 站建立了无线连接的终端, 基站会确定该终端所在的扇区, 只通过该终端所 在的扇区发射业务信道信息和用户数据。 参阅图 2所示, Cell l'中 UE 1所在 的扇区对应的天线, 向 UE 1发送 SC1和业务数据 1 , UE2所在的扇区对应的 天线, 向 UE 2发送 SC1和业务数据 2。
基站分别针对每一个扇区维护一套空口资源池。 如果基站对每一个扇区 的空口资源进行独立调度, 这样, 不同的扇区就可以重复利用相同的空口资 源。 在宽带码分多址(Wideband Code Division Multiple Access, WCDMA )系 统中, 空口资源是指码道资源和功率资源,在长期演进( Long Term Evolution , LTE ) 系统中, 空口资源是指资源块(Resource Block, RB )。 然而, 在 UE位 虚拟小区中两个相邻的扇区交叠区的情况下, 一旦这两个相邻的扇区使用相 同的空口资源, 就会出现严重的干扰, 因此, 相邻的扇区不能够调度相同的 空口资源, 空口资源的复用率较低, 限制了系统容量的提升。
为了解决在实际测量中发现的上述问题, 本发明实施例设计了一种信息 发送方法, 参阅图 3所示, 包括如下步骤。
步骤 301 : 针对一个小区, 釆用至少两个窄波束共同完成该小区的信号覆 盖。
步骤 302: 基于时分的方式通过任意相邻两个窄波束, 分别向该任意相邻 两个窄波束各自的覆盖区域内的 UE发送业务数据信息。
较佳地, 本发明实施例还可以釆用宽波束完成上述小区的信号覆盖, 并 通过该宽波束向该小区中的 UE发送公共信道信息。
这样, 本发明实施例通过宽波束完成整个小区的信号覆盖, 以及公共信 道信息的承载, 通过至少两个窄波束共同完成整个小区的信号覆盖, 以及业 务数据信息的承载, 实现不同信道承载波束分离,从而能够在不影响 UE的移 动性的等 KPI情况下, 最大限度地提高业务信道承载的灵活性, 减少信道切 换。
在同一基站下, 宽波束由宽波束天线发射, 宽波束天线使用固定的射频 通道完成整个小区的信号覆盖, 而窄波束由窄波束天线发射, 窄波束天线是 指方向性增益高、 旁瓣小的天线, 其输入阻抗在一个较窄的波段内保持不变 或变 较小。
每一个窄波束的覆盖区域就是一个扇区, 相邻窄波束的覆盖区域会有重 叠区, 该小区内的所有窄波束天线发射的窄波束将该小区覆盖。 基站可以通 过宽波束维持 UE的接入。 在 CDMA系统中公共信道信息包括: 公共导频信 道信息、 公共控制信道信息等。
在宏微组网中, 宽波束可以指宏站发出的波束, 窄波束可以是微站发出 的波束。在这种场景下,微站承载 UE的数据业务信道和辅助导频信道,其中, 辅助导频信道用于信道估计和测量, 宏站则承载小区级别的公共信道, 从而 减少信道切换。
本发明实施例中, 基站可以通过宽波束承载公共信道信息, 通过窄波束 承载业务数据信息, 实现不同信道承载波束分离, 能够在不影响 UE移动性等
KPI的情况下, 最大限度地提高业务信道承载的灵活性, 减少信道切换。
较佳地, 上述步骤 302可以通过下述方式中的任意一种实现:
方式一: 在同一个时间段内, 在上述至少两个窄波束中调用互不相邻的 至少一个窄波束;基于调用的窄波束向调用的窄波束覆盖范围内的 UE发送业 务数据信息。
在方式一中, 可以但不限于通过下述过程实现, 在同一个时间段内, 在 将上述至少两个窄波束划分为多个分组, 其中, 任意一个分组中包含的 若干窄波束均互不相邻;
确定每一个分组的调用顺序;
在上述同一个时间段内, 按照确定的调用顺序调用一个分组。
调用当前业务优先级最高的 UE所处的第一窄波束;
在第一时间通过调用的上述第一窄波束向上述第一窄波束覆盖范围内的 UE发送业务数据信息; 与上述第一窄波束相邻的窄波束不发送业务数据信 息。
方式二: 在第一时间调用当前业务优先级最高的 UE所处的第一窄波束; 通过调用的上述第一窄波束向上述第一窄波束覆盖范围内的 UE发送业务数 据信息; 与上述第一窄波束相邻的窄波束在第一时间不发送业务数据信息。
这样, 既能够保证优先级高的业务的优先处理, 又能够避免相邻波束之 间的信号干扰。
方式三: 在 UE位于单个窄波束的覆盖范围内时,在第二时间调用上述单 个窄波束向上述 UE发送业务数据信息,与上述单个窄波束相邻的窄波束在第 二时间不发送业务数据信息; 或者, 在 UE位于相邻两个窄波束的交叠覆盖区域时,将该相邻两个窄波束作为 一个整体窄波束,在第二时间通过调用上述整体窄波束向上述 UE发送业务数 据信息, 与上述整体窄波束相邻的窄波束在上述第二时间不发送业务数据信 息。 在将两个相邻的窄波束作为一个整体窄波束时, 这两个窄波束将发射同 样的信号, 发出相同的信息。
上述第一时间 (或第二时间)可以表示某个时间段或某个时间点, 例如, 确定 UE位置之后的某一时间段或某一周期的开始时间。
下面结合图 4 说明本发明的优选实施例一。
假设图 4A中,小区 A的基站具有 "八窄波束-四射频通道",并且 l-la、 l-2a、 l-3a、 l-4a、 l-lb、 l-2b、 1 -3b和 l-4b分别为由 8个窄波束天线分别发射的 8个窄 波束。图 4A中,将所有窄波束包括在内的虚线为由宽波束天线发射的宽波束 1。
小区 A的基站通过宽波束 1向 UE发送公共信道信息。 小区 A的基站将轮询 周期分为两个发射周期, 在第一发射周期调度 4个窄波束(l-la、 l-2a、 l-3a 和 l-4a ) ,分别通过其中的每一个窄波束与该窄波束覆盖范围内的 UE进行业务 传输; 在第二发射周期调度 4个窄波束( l-lb、 l-2b、 l-3b和 l-4b ), 分别通过 其中的每一个窄波束与该窄波束覆盖范围内的 UE进行业务传输。
这样, 小区 A的基站通过宽波束承载公共信道信息, 通过窄波束承载业务 数据信息, 实现不同信道承载波束分离, 而且通过时分的方式对相邻的两个 窄波束进行调用, 令 4个射频通道按照一定的顺序轮询发射窄波束, 不仅保证 了在一个完整的轮询周期内, 每一个窄波束都具有相同时长的发射时间, 也 避免了相邻窄波束的干扰, 提升了相邻窄波束之间的空口资源复用率。 其它 具有 4窄波束或者更多窄波束的小区中波束的调度方式与上述过程类似。
下面结合图 4 B说明本发明的优选实施例二。
假设图 4B中的小区 A的基站也具有 "八窄波束-四射频通道", 并且 1-1至 1-8分别为由 8个窄波束天线分别发射的 8个窄波束。 图 4B中, 将所有窄波束包 括在内的虚线为宽波束天线发射的宽波束 1。
基站将一个轮询周期分为两个发射周期, 为满足同一发射周期内发射信 息的窄波束至少间隔一个波束的条件, 将窄波束 1-3、 1-1、 1-5和 1-7分为一个 分组, 将窄波束 1-2、 1-4、 1-6和 1-8分为一个分组。
假设基站确定调度优先级最高的 UE为 UE A, 并且, UE A在窄波束 1-3中。 由于基站确定调度优先级最高的 UE在窄波束 1-3中, 所以, 基站在第一发射周 期调度第一分组中的窄波束 1-3、 1-1、 1-5和 1-7, 在第二发射周期调度第二分 组中的窄波束 1-2、 1-4、 1-6和 1-8。
基站在第一发射周期将其中一个射频通道切换到窄波束 1-3上, 根据系统 的空口资源使用情况, 确定使用窄波束 1-3的空口资源调度 UE A后, 如果窄波 束 1-3的空口资源还有剩余, 则为窄波束 1-3的覆盖范围内的其它 UE分配空口 资源。 此时, 可以依照窄波束 1-3的覆盖范围内的 UE的调度优先级, 为相应的 UE分配空口资源。
在 WCDMA系统中, 空口资源可以指码道资源, 在 LTE系统中空口资源可 以指资源块(Resource Block, RB )。
这样, 基站可以根据调度优先级高的 UE所在的位置确定需要发射数据的 窄波束, 然后将射频通道切换到相应的窄波束, 通过该窄波束向 UE发射业务 数据信息, 完成业务数据的传输。
通过上述实施例可以看出, 通过时分波束切换机制能够实现在同一时间 段内, 使用不相邻的窄波束向 UE发送业务数据信息, 并且只需要 n/2个射频通 道就能够通过 n个窄波束完成小区的信号覆盖, 因此, 能够避免相邻窄波束之 间的干扰, 提升小区中空口资源的复用率, 提升小区的系统容量, 同时还能 够减少射频拉远单元(Radio Remote Unit, RRU )等硬件的数量, 降低设备的 成本, 其中, n为大于 1的正整数。
基于同一设计思路, 本发明实施例还设计了一种信息发送装置, 参阅图 5 所示, 该装置包括:
控制模块 501 , 用于针对一个小区, 釆用至少两个窄波束共同完成上述小 区的信号覆盖;
发送模块 502, 用于基于时分的方式通过任意相邻两个窄波束, 分别向上 述任意相邻两个窄波束各自的覆盖区域内的用户设备 UE发送业务数据信息。 实际应用中, 上述发送模块可以具有如下功能中的一种或多种。
情况一, 发送模块 502具体包括第一子模块和第二子模块, 具有如下功 能:
第一子模块, 用于在同一个时间段内, 在上述至少两个窄波束中调用互 不相邻的至少一个窄波束;
第二子模块, 用于基于调用的窄波束向上述调用的窄波束覆盖范围内的 UE发送业务数据信息。
较优地, 上述第一子模块, 具体用于将上述至少两个窄波束划分为多个 分组, 其中, 任意一个分组中包含的若干窄波束均互不相邻; 确定每一个分 组的调用顺序; 在上述同一个时间段内, 按照确定的调用顺序调用一个分组。
情况二, 上述发送模块 502具有如下功能:
调用当前业务优先级最高的 UE所处的第一窄波束;在第一时间通过调用 的上述第一窄波束向上述第一窄波束覆盖范围内的 UE发送业务数据信息,与 上述第一窄波束相邻的第二窄波束在上述第一时间不发送业务数据信息。
情况三, 上述发送模块 502具有如下功能:
在 UE位于单个窄波束的覆盖范围内时,在第二时间调用上述单个窄波束 向上述 UE发送业务数据信息 ,与上述单个窄波束相邻的窄波束在上述第二时 间不发送业务数据信息; 或者
在 UE位于相邻两个窄波束的交叠覆盖区域时,将该相邻两个窄波束作为 一个整体窄波束,在第二时间通过调用上述整体窄波束向上述 UE发送业务数 据信息, 与上述整体窄波束相邻的窄波束在上述第二时间不发送业务数据信 息。
较优地, 上述信息发送装置中的控制模块 501 ,还用于釆用宽波束完成上 述小区的信号覆盖;
上述发送模块 502,还用于通过上述宽波束向上述小区中的 UE发送公共 信道信息。 本发明实施例中的信息发送装置可以是接入网设备, 例如基站。
基于同一设计思路, 本发明的实施例还提供一种基站, 参照图 6 所示包 括: 收发器 601、 处理器 602、 存储器 603和总线 604, 该收发器 601、 处理 器 602和存储器 603通过总线 604连接并完成相互间的通信, 其中:
该总线 604可以是工业标准体系结构( Industry Standard Architecture , ISA ) 总线、 外部设备互连(Peripheral Component, PCI )总线或扩展工业标准体系 结构(Extended Industry Standard Architecture, EISA )总线等。 该总线 604可 以分为地址总线、 数据总线、 控制总线等。 为便于表示, 图 6 中仅用一条线 表示, 但并不表示仅有一根总线或一种类型的总线。
存储器 603 用于存储程序代码, 该程序代码包括操作指令。 存储器 603 可能包括高速随机存储器(random access memory, RAM ), 也可能包括非易 失' )·生存 4诸器( non- volatile memory ) , 例如磁盘存储器。
处理器 602可能是一个中央处理器(Central Processing Unit, CPU ), 或者 是特定集成电路(Application Specific Integrated Circuit, ASIC ), 或者是被配 置成实施本发明实施例的一个或多个集成电路。
处理器 602, 用于调用上述存储器 603中的程序代码, 执行以下操作: 针对一个小区, 釆用至少两个窄波束共同完成上述小区的信号覆盖; 指示上述收发器 601基于时分的方式通过任意相邻两个窄波束, 分别向 上述任意相邻两个窄波束各自的覆盖区域内的用户设备 UE发送业务数据信 息。
较佳地, 上述处理器 602具体用于:
指示上述收发器 601 在同一个时间段内, 在上述至少两个窄波束中调用 互不相邻的至少一个窄波束; 基于调用的窄波束向上述调用的窄波束覆盖范 围内的 UE发送业务数据信息。
上述处理器 602调用上述存储器 603 中的程序代码执行的操作, 可以包 括如下几种操作中的一种或多种:
操作一: 将上述至少两个窄波束划分为多个分组, 其中, 任意一个分组 中包含的若干窄波束均互不相邻; 确定每一个分组的调用顺序; 指示上述收 发器 601 在上述同一个时间段内, 按照确定的调用顺序调用一个分组, 并基 于调用的窄波束向上述调用的窄波束覆盖范围内的 UE发送业务数据信息。
操作二:指示上述收发器 601调用当前业务优先级最高的 UE所处的第一 窄波束; 在第一时间通过调用的上述第一窄波束向上述第一窄波束覆盖范围 内的 UE发送业务数据信息,与上述第一窄波束相邻的第二窄波束在上述第一 时间不发送业务数据信息。
操作三: 在 UE位于单个窄波束的覆盖范围内时, 指示上述收发器 601 在第二时间调用上述单个窄波束向上述 UE发送业务数据信息,与上述单个窄 波束相邻的窄波束在上述第二时间不发送业务数据信息; 或者
在 UE位于相邻两个窄波束的交叠覆盖区域时,将该相邻两个窄波束作为 一个整体窄波束, 指示上述收发器 601 在第二时间调用上述整体窄波束向上 述 UE发送业务数据信息,与上述整体窄波束相邻的窄波束在上述第二时间不 发送业务数据信息。
较佳地, 上述处理器 602还用于:
釆用宽波束完成上述小区的信号覆盖; 指示上述收发器 601 通过上述宽 波束向上述小区中的 UE发送公共信道信息。
本发明实施例中的处理器 602可以是基站中的一个基带处理单元。
收发器 601可以包括天线(例如, 宽波束天线或 /和窄波束天线)、 波束控 制单元和射频通道。
下面结合图 7说明本发明的实施例三。 图 7是本发明实施例中的基站结 构的示意图, 该基站的收发器包括天线 701、 波束控制单元 702和射频通道 703 , 该基站的处理器则包括了基站处理单元 704。
图 7中的宽波束 1覆盖整个小区, 窄波束 1~N ( N > 2 )联合覆盖整个宽 波束 1的覆盖区域。
天线 0是宽波束天线, 通过射频通道 0完成整个小区的覆盖。 天线 0可 以承载不适合通过时分方式发射的公共信道信息, 例如, WCDMA 系统主公 共导频信道信息、 公共控制信道信息等。
由于窄波束是以时分的方式发射的, 因此, n N, 例如, 在 N=6时, n可以等于 3 , 这样就能够达到节省射频通道的目的。
例如, 在前半周期, 通过窄波束天线 1和窄波束天线 4发射窄波束, 此 时, 将射频通道 1切换至窄波束天线 1处, 发射窄波束 1 ; 将射频通道 2切 换至窄波束天线 4处, 发射窄波束 4。 在后半周期, 通过窄波束天线 2和窄 波束天线 6发射窄波束, 此时, 将射频通道 1切换至窄波束天线 2处, 发射 窄波束 2; 将射频通道 6切换至窄波束天线 6处, 发射窄波束 6。
实际应用中, 射频通道的数量(即 n的取值)可以根据小区目标容量调 整。 射频通道 0固定与天线 0对应。 射频通道 1至射频通道 n可以才艮据需求 分别切换到不同的窄波束, 由于窄波束覆盖角度小, 天线增益较高, 因此, 与承载宽波束的射频通道相比, 可以使用功率相对较低的射频通道承载窄波 束, 以降低硬件成本。
波束控制单元 702为射频开关阵列, 由基带处理单元 704控制。 基带处 理单元 704周期性地判断 UE在小区中的位置,确定 UE和窄波束天线的对应 关系。 当基站需要向某个 UE发射信号时, 波束控制单元 602选择一个射频通 道, 并将该射频通道接入的天线切换成与该 UE对应的窄波束天线。
假设基带处理单元 704周期性地判断小区中 UE的位置, 当确定 UE1在 单个窄波束(窄波束 1 )的覆盖区域时, 将射频通道 1切换到窄波束天线 1上 发射窄波束 1 ; 当确定 UE在两个窄波束(窄波束 2和窄波束 3 ) 的交叠区域 内时, 基带处理单元可以但不限于釆用下述方式发射业务数据信息:
例如, 将射频通道 1切换窄波束天线 1和窄波束天线 2处, 使用两个窄 波束天线共同发射窄波束(该业务数据信息承载在窄波束中), 此时, 射频通 道需要提升功率 (例如, 将发射功率提升 3dB )。
同一个发射周期内, 可以根据小区容量尽量减少并行工作的射频通道的 数量, 从而降低干扰, 并且能够减少功耗。
本发明实施例中, 窄波束对应的射频通道(即射频通道 l~n )可以在同一 个发射周期内使用相同的空口资源, 其中, 在 WCDMA系统中, 空口资源可 以是码资源, LTE系统中空口资源可以是 RB资源。
本发明实施例基于时分的方式通过任意相邻两个窄波束, 分别向该任意 相邻两个窄波束各自覆盖区域内的 UE发送业务数据信息,从而实现了时分波 束切换机制, 这样, 不仅避免了相邻波束之间的信号干扰, 提升了空口资源 的复用率, 还减少了同一时间使用的射频射频通道, 从而减少了系统设备所 需要的射频通道装置的数量, 降低了设备的成本。
本发明是参照根据本发明实施例的方法、 设备(系统)、 和计算机程序产 品的流程图和 /或方框图来描述的。 应理解可由计算机程序指令实现流程图 和 /或方框图中的每一流程和 /或方框、 以及流程图和 /或方框图中的流程 和 /或方框的结合。 可提供这些计算机程序指令到通用计算机、 专用计算机、 嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器, 使得通 过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流 程图一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功能的 装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设 备以特定方式工作的计算机可读存储器中, 使得存储在该计算机可读存储器 中的指令产生包括指令装置的制造品, 该指令装置实现在流程图一个流程或 多个流程和 /或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上, 使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的 处理, 从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图 一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功能的步 骤。
尽管已描述了本发明的优选实施例, 但本领域内的技术人员一旦得知了 基本创造性概念, 则可对这些实施例做出另外的变更和修改。 所以, 所附权 利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。 脱离本发明实施例的精神和范围。 这样, 倘若本发明实施例的这些修改和变 型属于本发明权利要求及其等同技术的范围之内, 则本发明也意图包含这些 改动和变型在内。

Claims

权 利 要 求
1、 一种信息发送方法, 其特征在于, 包括:
针对一个小区, 釆用至少两个窄波束共同完成所述小区的信号覆盖; 基于时分的方式通过任意相邻两个窄波束, 分别向所述任意相邻两个窄 波束各自的覆盖区域内的用户设备 UE发送业务数据信息。
2、 如权利要求 1所述的方法, 其特征在于, 基于时分的方式通过任意相 邻两个窄波束,分别向所述任意相邻两个窄波束各自的覆盖区域内的 UE发送 业务数据信息, 具体包括: 窄波束;
基于调用的窄波束向所述调用的窄波束覆盖范围内的 UE发送业务数据 信息。
3、 如权利要求 2所述的方法, 其特征在于, 在同一个时间段内, 在所述 至少两个窄波束中调用互不相邻的至少一个窄波束, 包括:
将所述至少两个窄波束划分为多个分组, 其中, 任意一个分组中包含的 若干窄波束均互不相邻;
确定每一个分组的调用顺序;
在所述同一个时间段内, 按照确定的调用顺序调用一个分组。
4、 如权利要求 1所述的方法, 其特征在于, 基于时分的方式通过任意相 邻两个窄波束, 分别向所述任意相邻两个窄波束各自的覆盖区域内的用户设 备 UE发送业务数据信息, 包括:
调用当前业务优先级最高的 UE所处的第一窄波束;
在第一时间通过调用的所述第一窄波束向所述第一窄波束覆盖范围内的 UE发送业务数据信息, 与所述第一窄波束相邻的第二窄波束在所述第一时间 不发送业务数据信息。
5、 如权利要求 1所述的方法, 其特征在于, 基于时分的方式通过任意相 邻两个窄波束, 分别向所述任意相邻两个窄波束各自的覆盖区域内的用户设 备 UE发送业务数据信息, 包括:
在 UE位于单个窄波束的覆盖范围内时,在第二时间调用所述单个窄波束 向所述 UE发送业务数据信息,与所述单个窄波束相邻的窄波束在所述第二时 间不发送业务数据信息; 或者
在 UE位于相邻两个窄波束的交叠覆盖区域时,将该相邻两个窄波束作为 一个整体窄波束,在第二时间通过调用所述整体窄波束向所述 UE发送业务数 据信息, 与所述整体窄波束相邻的窄波束在所述第二时间不发送业务数据信 息。
6、 如权利要求 1-5中任一项所述的方法, 其特征在于, 还包括: 釆用宽波束完成所述小区的信号覆盖, 并通过所述宽波束向所述小区中 的 UE发送公共信道信息。
7、 一种信息发送装置, 其特征在于, 包括:
控制模块, 用于针对一个小区, 釆用至少两个窄波束共同完成所述小区 的信号覆盖;
发送模块, 用于基于时分的方式通过任意相邻两个窄波束, 分别向所述 任意相邻两个窄波束各自的覆盖区域内的用户设备 UE发送业务数据信息。
8、 如权利要求 7所述的装置, 其特征在于, 所述发送模块具体包括: 第一子模块, 用于在同一个时间段内, 在所述至少两个窄波束中调用互 不相邻的至少一个窄波束;
第二子模块, 用于基于调用的窄波束向所述调用的窄波束覆盖范围内的 UE发送业务数据信息。
9、 如权利要求 8所述的装置, 其特征在于, 所述第一子模块, 具体用于 将所述至少两个窄波束划分为多个分组, 其中, 任意一个分组中包含的若干 窄波束均互不相邻; 确定每一个分组的调用顺序; 在所述同一个时间段内, 按照确定的调用顺序调用一个分组。
10、 如权利要求 7所述的装置, 其特征在于, 所述发送模块, 具体用于: 调用当前业务优先级最高的 UE所处的第一窄波束;在第一时间通过调用 的所述第一窄波束向所述第一窄波束覆盖范围内的 UE发送业务数据信息,与 所述第一窄波束相邻的第二窄波束在所述第一时间不发送业务数据信息。
11、 如权利要求 7所述的装置, 其特征在于, 所述发送模块, 具体用于: 在 UE位于单个窄波束的覆盖范围内时,在第一时间调用所述单个窄波束 向所述 UE发送业务数据信息,与所述单个窄波束相邻的窄波束在所述第一时 间不发送业务数据信息; 或者
在 UE位于相邻两个窄波束的交叠覆盖区域时,将该相邻两个窄波束作为 一个整体窄波束,在第一时间通过调用所述整体窄波束向所述 UE发送业务数 据信息, 与所述整体窄波束相邻的窄波束在所述第一时间不发送业务数据信 息。
12、 如权利要求 7-11中任一项所述的装置, 其特征在于, 所述控制模块, 还用于釆用宽波束完成所述小区的信号覆盖;
所述发送模块,还用于通过所述宽波束向所述小区中的 UE发送公共信道 信息。
13、 一种基站, 其特征在于, 包括收发器、 处理器和存储器, 所述存储 器用于存储程序代码, 其中:
所述处理器, 用于调用所述存储器中的程序代码, 执行以下操作: 针对一个小区, 釆用至少两个窄波束共同完成所述小区的信号覆盖; 指示所述收发器基于时分的方式通过任意相邻两个窄波束, 分别向所述 任意相邻两个窄波束各自的覆盖区域内的用户设备 UE发送业务数据信息。
14、 如权利要求 13所述的设备, 其特征在于, 所述处理器具体用于: 指示所述收发器在同一个时间段内, 在所述至少两个窄波束中调用互不 相邻的至少一个窄波束; 基于调用的窄波束向所述调用的窄波束覆盖范围内 的 UE发送业务数据信息。
15、 如权利要求 14所述的设备, 其特征在于, 所述处理器具体用于: 将所述至少两个窄波束划分为多个分组, 其中, 任意一个分组中包含的 若干窄波束均互不相邻; 确定每一个分组的调用顺序; 指示所述收发器在所 述同一个时间段内, 按照确定的调用顺序调用一个分组, 并基于调用的窄波 束向所述调用的窄波束覆盖范围内的 UE发送业务数据信息。
16、 如权利要求 13所述的设备, 其特征在于, 所述处理器, 具体用于: 指示所述收发器调用当前业务优先级最高的 UE所处的第一窄波束;在第 一时间通过调用的所述第一窄波束向所述第一窄波束覆盖范围内的 UE发送 业务数据信息, 与所述第一窄波束相邻的第二窄波束在所述第一时间不发送 业务数据信息。
17、 如权利要求 13所述的设备, 其特征在于, 所述处理器, 具体用于: 在 UE位于单个窄波束的覆盖范围内时,指示所述收发器在第二时间调用 所述单个窄波束向所述 UE发送业务数据信息 ,与所述单个窄波束相邻的窄波 束在所述第二时间不发送业务数据信息; 或者
在 UE位于相邻两个窄波束的交叠覆盖区域时,将该相邻两个窄波束作为 一个整体窄波束, 指示所述收发器在第二时间调用所述整体窄波束向所述 UE 发送业务数据信息, 与所述整体窄波束相邻的窄波束在所述第二时间不发送 业务数据信息。
18、 如权利要求 13-17中任一项所述的设备, 其特征在于, 所述处理器还 用于:
釆用宽波束完成所述小区的信号覆盖; 指示所述收发器通过所述宽波束 向所述小区中的 UE发送公共信道信息。
PCT/CN2013/083398 2013-09-12 2013-09-12 一种信息发送方法、装置及基站 WO2015035586A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380001985.3A CN104718775B (zh) 2013-09-12 2013-09-12 一种信息发送方法、装置及基站
PCT/CN2013/083398 WO2015035586A1 (zh) 2013-09-12 2013-09-12 一种信息发送方法、装置及基站

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/083398 WO2015035586A1 (zh) 2013-09-12 2013-09-12 一种信息发送方法、装置及基站

Publications (1)

Publication Number Publication Date
WO2015035586A1 true WO2015035586A1 (zh) 2015-03-19

Family

ID=52664938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/083398 WO2015035586A1 (zh) 2013-09-12 2013-09-12 一种信息发送方法、装置及基站

Country Status (2)

Country Link
CN (1) CN104718775B (zh)
WO (1) WO2015035586A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113225111A (zh) * 2020-01-21 2021-08-06 上海华为技术有限公司 一种波束形成的方法及相关设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107295668B (zh) * 2016-04-05 2022-06-21 中兴通讯股份有限公司 数据的传输方法及装置
CN111385039B (zh) * 2018-12-30 2022-04-22 上海华为技术有限公司 一种小区广播波束参数的调整方法及装置
CN112243241B (zh) * 2019-07-17 2022-08-19 中国电信股份有限公司 波束管理方法、装置和计算机可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1852048A (zh) * 2005-12-31 2006-10-25 华为技术有限公司 多天线系统中的公共信号发射方法及装置
CN101088303A (zh) * 2004-10-22 2007-12-12 西门子公司 通信方法及设备
CN101635591A (zh) * 2008-07-21 2010-01-27 中兴通讯股份有限公司 公共开销信道成形方法及装置
CN101714886A (zh) * 2008-09-25 2010-05-26 以色列奥维通有限公司 用于分配无线传输资源的方法及系统
CN102612832A (zh) * 2009-12-09 2012-07-25 翔跃通信公司 利用协调天线阵列增强基站性能的系统和方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009530900A (ja) * 2006-03-13 2009-08-27 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 適応アンテナ向けのハンドオーバの改善
WO2014056197A1 (zh) * 2012-10-12 2014-04-17 华为技术有限公司 提高物理扇区用户容量的方法、装置和基站

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101088303A (zh) * 2004-10-22 2007-12-12 西门子公司 通信方法及设备
CN1852048A (zh) * 2005-12-31 2006-10-25 华为技术有限公司 多天线系统中的公共信号发射方法及装置
CN101635591A (zh) * 2008-07-21 2010-01-27 中兴通讯股份有限公司 公共开销信道成形方法及装置
CN101714886A (zh) * 2008-09-25 2010-05-26 以色列奥维通有限公司 用于分配无线传输资源的方法及系统
CN102612832A (zh) * 2009-12-09 2012-07-25 翔跃通信公司 利用协调天线阵列增强基站性能的系统和方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113225111A (zh) * 2020-01-21 2021-08-06 上海华为技术有限公司 一种波束形成的方法及相关设备

Also Published As

Publication number Publication date
CN104718775B (zh) 2018-06-26
CN104718775A (zh) 2015-06-17

Similar Documents

Publication Publication Date Title
CN108391315B (zh) 一种信息传输方法及设备
JP6813593B2 (ja) データ伝送のための方法、端末と基地局
US10045280B2 (en) Apparatus, system and method of discovery over a directional wireless communication band
KR20110017016A (ko) 무선 네트워크에서의 연관 및 재연관을 위한 배열들
US11133856B2 (en) Beamforming training method and apparatus
US10917303B2 (en) Data transmission method and device
WO2017071587A1 (zh) 通信方法和装置
CN115396075B (zh) 信息传输方法及网络设备
CN109121207B (zh) 一种通信方法及设备
JP7263464B2 (ja) 無線通信方法及び装置
US11856560B2 (en) System information transmission method, and related device and system
CN108365927A (zh) 传输方法、网络设备和终端设备
WO2015035586A1 (zh) 一种信息发送方法、装置及基站
CN111316570A (zh) 并行调度器架构
CN109922489B (zh) 一种ap聚合方法、装置和介质
WO2022151281A1 (zh) 无线通信的方法、终端设备和网络设备
WO2019168451A1 (en) Method and node(s) for providing synchronization signals of a wireless communication network
JP6509758B2 (ja) 指向性切替アンテナを用いた無線基地局およびアンテナ指向性切替方法
TWI685223B (zh) 數據傳輸的方法和裝置
WO2020147086A1 (zh) 一种信号传输方法、相关设备及系统
WO2010022556A1 (zh) 一种下行信号的分扇区处理方法及基站
KR102039064B1 (ko) 다중레벨 셀 구성을 통한 shf/ehf 대역 무선 전송 장치 및 방법
WO2022198521A1 (zh) 传输物理下行控制信道的方法及设备
WO2022095837A1 (zh) 一种天线切换方法以及相关设备
WO2023201622A1 (en) Update of transmission configuration indicator and bandwidth part switching for multiple component carriers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13893352

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13893352

Country of ref document: EP

Kind code of ref document: A1