WO2015035577A1 - Méthode d'analyse quantitative pour capacité de charge de puissance active de réseau électrique en fonction de cartographie d'énergie potentielle élastique - Google Patents

Méthode d'analyse quantitative pour capacité de charge de puissance active de réseau électrique en fonction de cartographie d'énergie potentielle élastique Download PDF

Info

Publication number
WO2015035577A1
WO2015035577A1 PCT/CN2013/083331 CN2013083331W WO2015035577A1 WO 2015035577 A1 WO2015035577 A1 WO 2015035577A1 CN 2013083331 W CN2013083331 W CN 2013083331W WO 2015035577 A1 WO2015035577 A1 WO 2015035577A1
Authority
WO
WIPO (PCT)
Prior art keywords
potential energy
elastic
grid
branch
mapping
Prior art date
Application number
PCT/CN2013/083331
Other languages
English (en)
Chinese (zh)
Inventor
竺炜
Original Assignee
Zhu Wei
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhu Wei filed Critical Zhu Wei
Priority to PCT/CN2013/083331 priority Critical patent/WO2015035577A1/fr
Publication of WO2015035577A1 publication Critical patent/WO2015035577A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/04Circuit arrangements for ac mains or ac distribution networks for connecting networks of the same frequency but supplied from different sources
    • H02J3/06Controlling transfer of power between connected networks; Controlling sharing of load between connected networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/20Information technology specific aspects, e.g. CAD, simulation, modelling, system security

Definitions

  • active power The most basic function of the power grid is active power (hereinafter referred to as active power) transmission. Therefore, active load capacity (or active power transmission capability) is the main indicator of grid safety analysis, which depends on grid structure, branch load capacity, power supply and load. The size and distribution of many other factors. At present, the qualitative analysis of the N-l (or even N-2) branch load limiting check is generally used in practical work. The quantitative analysis method and index of the active load carrying capacity of the power grid are still the difficulties in the safety analysis of the power grid.
  • the quantitative analysis index of the active load capacity of the power grid based on the mapped elastic potential energy analyzes the mapping elastic potential energy of the power grid branch through the state map of the power grid branch and the elastic network branch, and uses the potential energy
  • the idea of superposition is obtained, and the method for obtaining the elastic potential energy of the grid mapping is obtained.
  • the analysis finds that the elastic potential energy of the map can characterize the overall active load margin of the grid and the balance of the active load of the branch: Under a certain total active load, the larger the value, the overall active load of the grid The smaller the degree, the more uneven the active load of the branch; the smaller the value, the opposite. Therefore, it can be used as a quantitative analysis indicator of the active carrying capacity of the power grid.
  • the invention enriches the theoretical basis of grid security analysis and can be widely applied to grid planning, operation mode analysis, online scheduling and the like.
  • FIG. 1 Grid-elastic network topology mapping, (1) grid, (2) mapping elastic network Specification
  • Figure 2 Equivalent Mapping Elastic Branch
  • Figure 3 Vertical Equivalent Mapping Elastic Network
  • Figure 4 New England 10-machine 39-node system
  • Figure 5 New England 10-machine 39-node system mapping elastic network structure
  • Figure 6 New England 10-machine 39-node system cut-off Mapping elastic network structure after line 21-22Fig.7
  • Figure 9 Mapping elastic network structure of four load distribution schemes, ( 1) Outgoing load distribution plan one, (2) Outgoing load distribution plan II, (3) Out line load distribution plan III, (4) Out line load distribution plan four specific implementation
  • the elastic potential energy is the work done by the external force, ie
  • mapping elastic potential energy is
  • mapping elastic potential energy of the line is
  • the grid is mapped to a vertically stressed elastic network, and the relationship between nodes and branches is kept unchanged, as shown in Figure 1.
  • mapping elastic network be composed of strips, regardless of whether its branch is a linear elastic branch, its total potential energy satisfies the superposition characteristics, ie
  • E L ⁇ ⁇ E Ll (15) where E L ⁇ and E Li are the mapped elastic potentials of the grid and the z- th branch, respectively.
  • the length of the branch is the height difference between the nodes at both ends, and the height of the node corresponds to the phase of the voltage of the grid node. If all the branches are linear elastic branches, according to equations (11) and (14), the potential energy of the linear elastic mesh is obtained.
  • . , ⁇ is the injected active and phase of the power bus node in the grid. .6 ; is the active load and phase of the load node.
  • the metric can be used to measure the balance of the power grid branch from an internal perspective.
  • the equalization of the active load of the power grid refers to the line with a large mapping elasticity coefficient, which should carry a large active power. Since the grid is mapped into a longitudinally-loaded elastic network, the associated nodes on the power supply side and the load side and the paths between them can be combined and equivalent, and simplified into the structure shown in FIG.
  • E E L ⁇ -A( ⁇ P Ll -P L ⁇ ) (23) where A is a constant. I ⁇ is the extreme value
  • the formula (26) and the formula (21) are equivalent to each other. I.e. satisfies the formula (21), E extremum.
  • mapping elastic potential energy can characterize the balance of active load of the power grid branch.
  • the mapping elastic potential energy the better the balance of the active load of the power grid branch.
  • the New England 10-machine 39-node system is shown in Figure 4.
  • the power flow calculation is performed, wherein the bus bar 31 is a balanced node, the reference voltage is 345 kV, the reference capacity is 100 MVA, and the mapping elastic network structure is as shown in FIG. 5.
  • the method 1 is a strict theoretical method, the error of the method 2 is only 0.37%. It can be seen that when the phase difference between the two ends of the grid branch is small (in this example, the phase difference between the ends of all the branches of the grid does not exceed 10° at the maximum), the linear branch map is used and the active loss of the grid is ignored, and the mapped elastic potential energy of the grid The error is small.
  • the New England 10-machine 39-node system is still used as an example. Calculated by Method 2 of Table 1, the mapped elastic potential energy of the power grid is 4.536327, and the equivalent branch phase difference is 0.147520.
  • N-l is sequentially made to the grid branch, and the first six lines are taken according to the change of potential energy from large to small, as shown in Table 2.
  • Table 2 shows that after cutting off any grid branch, the phase difference of the equivalent branch of the grid increases, indicating that the overall active load margin becomes smaller and the bearing capacity becomes weaker.
  • the mapping elastic potential energy and equivalent branch phase are mapped. The difference between the growth and the order of the difference indicates that the greater the potential elasticity of the mapping, the smaller the overall active load margin of the grid.
  • the mapping elastic potential energy increases the most, and the overall active load margin of the power grid is the smallest.
  • the parameters of the 7-node system shown in Figure 8 are shown in Tables 3 and 4.
  • the output load is shown in Table 5.
  • the reference voltage is 500kV and the reference capacity is 100WM.
  • the node height in Figure 9 corresponds to the grid node phase, and the branch map elasticity coefficient (standard value) and active power flow (marked value) are marked next to the corresponding branch.
  • the benchmark value is 100, 3 ⁇ 4 as shown in Table 6.
  • Table 6 shows that from Scheme 1 to Scheme 4, the mapping elastic potentials of the outgoing line and the grid are increasing.
  • the mapping elastic coefficient ratio that is, when the active load distribution is the most balanced, the mapping elastic potential energy of the power grid is the smallest; in the scheme 4, when the active power load ratio of the outgoing line is opposite to the mapping elastic coefficient ratio, the active power is When the load distribution is the most uneven, the mapping elasticity potential is the largest.
  • the active carrying capacity of the power grid depends on many factors such as the power grid structure, the bearing capacity of the branch, the size and distribution of the power supply and the load, etc. It is difficult to quantitatively analyze.
  • the factors that determine the carrying capacity of the elastic network are similar to those of the power grid.
  • the elastic potential energy with clear physical concept can be applied to analyze the bearing characteristics of the elastic network. After the grid is mapped into a longitudinally-loaded elastic network, the relationship between the state quantities is consistent because the state quantities in the grid and the elastic network are equal, so the load-bearing characteristics of the elastic network are the active load-bearing characteristics of the grid.
  • the mapped elastic potential energy can quantitatively measure the active load margin of the power grid; from the internal perspective, the balance of the active load of the power grid branch can be measured; and when the mapped elastic potential energy changes, the overall load margin and internal bearer are both Description
  • mapping elastic potential energy can be used as a quantitative analysis index of the active carrying capacity of the grid.
  • Theoretical analysis and simulation analysis show that under certain total active load, the greater the mapping elastic potential energy, the weaker the active carrying capacity of the power grid.
  • the invention enriches the theoretical basis of grid security analysis and can be widely applied to grid planning, operation mode analysis, online scheduling and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

L'invention concerne une méthode d'analyse quantitative pour la capacité de charge de puissance active d'un réseau électrique en fonction d'une cartographie d'énergie potentielle élastique. En fonction d'une cartographie de modèle de réseau à mécanique élastique du réseau électrique, la cartographie de l'énergie potentielle élastique d'une branche de réseau électrique est obtenue grâce à une cartographie des états de branche. La cartographie de l'énergie potentielle élastique du réseau électrique est obtenue en utilisant une superposition d'énergie potentielle. L'analyse découvre et les simulations vérifient que la cartographie d'énergie potentielle élastique peut être utilisée comme indice d'analyse quantitative de la capacité de charge de puissance active du réseau électrique. La méthode enrichit la base théorique de l'analyse de sécurité de réseau électrique, et peut être appliquée de façon générale à la planification de réseau électrique, l'analyse de modes de fonctionnement, la répartition en ligne et à des applications similaires.
PCT/CN2013/083331 2013-09-11 2013-09-11 Méthode d'analyse quantitative pour capacité de charge de puissance active de réseau électrique en fonction de cartographie d'énergie potentielle élastique WO2015035577A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/083331 WO2015035577A1 (fr) 2013-09-11 2013-09-11 Méthode d'analyse quantitative pour capacité de charge de puissance active de réseau électrique en fonction de cartographie d'énergie potentielle élastique

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/083331 WO2015035577A1 (fr) 2013-09-11 2013-09-11 Méthode d'analyse quantitative pour capacité de charge de puissance active de réseau électrique en fonction de cartographie d'énergie potentielle élastique

Publications (1)

Publication Number Publication Date
WO2015035577A1 true WO2015035577A1 (fr) 2015-03-19

Family

ID=52664932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/083331 WO2015035577A1 (fr) 2013-09-11 2013-09-11 Méthode d'analyse quantitative pour capacité de charge de puissance active de réseau électrique en fonction de cartographie d'énergie potentielle élastique

Country Status (1)

Country Link
WO (1) WO2015035577A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108964125A (zh) * 2018-07-19 2018-12-07 长沙理工大学 提高主网功角安全鲁棒性的大型风电接入点选择方法
CN111262282A (zh) * 2020-03-17 2020-06-09 中国科学院电工研究所 一种考虑收益的分布式能源和用户交直流系统管控方法
CN111293698A (zh) * 2020-03-17 2020-06-16 中国科学院电工研究所 一种考虑运行裕度的分布式能源和用户交直流系统管控方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102227084A (zh) * 2011-06-24 2011-10-26 竺炜 电网-弹性力学网络拓扑映射方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102227084A (zh) * 2011-06-24 2011-10-26 竺炜 电网-弹性力学网络拓扑映射方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ZHU, WEI ET AL.: "Analysis of Synchronous Machine Dynamic Model for Power -angle Stability Control", PROCEEDINGS OF THE CSEE, vol. 29, no. 13, 5 May 2009 (2009-05-05), pages 54 - 58 *
ZHU, WEI ET AL.: "Generators Static Power Angle Stability Analysis Based on Elasticity Space Mapping", PROCEEDINGS OF THE CSEE, vol. 30, no. 19, 5 July 2010 (2010-07-05), pages 44 - 50 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108964125A (zh) * 2018-07-19 2018-12-07 长沙理工大学 提高主网功角安全鲁棒性的大型风电接入点选择方法
CN111262282A (zh) * 2020-03-17 2020-06-09 中国科学院电工研究所 一种考虑收益的分布式能源和用户交直流系统管控方法
CN111293698A (zh) * 2020-03-17 2020-06-16 中国科学院电工研究所 一种考虑运行裕度的分布式能源和用户交直流系统管控方法
CN111293698B (zh) * 2020-03-17 2021-09-28 中国科学院电工研究所 一种考虑运行裕度的分布式能源和用户交直流系统管控方法

Similar Documents

Publication Publication Date Title
Haileselassie et al. Impact of DC line voltage drops on power flow of MTDC using droop control
CN108233400A (zh) 一种计及直流控制方式的多馈入交互作用因子计算方法
CN104375035B (zh) 一种节能设备能效测试方法
CN105138739B (zh) 一种计及死区效应的电力系统最低频率快速计算方法
CN107359612B (zh) 一种电能质量对配电网能耗影响的综合评估方法
CN104410080B (zh) 含动态无功补偿的多直流馈入电网电压支撑能力评价方法
Li et al. Power flow analysis for DC voltage droop controlled DC microgrids
CN107453897A (zh) 一种节点重要性评价方法、装置、电子设备及存储介质
WO2015035577A1 (fr) Méthode d'analyse quantitative pour capacité de charge de puissance active de réseau électrique en fonction de cartographie d'énergie potentielle élastique
CN104201671A (zh) 一种含风电的三相不平衡配电网的静态电压稳定性评估方法
Kettner et al. A generalized index for static voltage stability of unbalanced polyphase power systems including Thévenin equivalents and polynomial models
CN109670696A (zh) 一种基于运行大数据的线路重过载预测方法
CN103474993B (zh) 基于映射弹性势能的电网有功承载能力定量分析指标
CN113241756A (zh) 一种用于确定电力系统综合负荷构成的方法及系统
CN103022945B (zh) 一种输电线路耐张塔跳线安装方法
CN105811394B (zh) 一种用于电力系统潮流近似计算的电压估算方法
Gebrekiros et al. Assessment of PTDF based power system aggregation schemes
CN103123715A (zh) 220千伏变电站用电行业构成比例在线实时统计方法
CN103729537A (zh) 一种感知配电网实时态势的扩展锥方法
CN104979828A (zh) 一种分布式电源接入配电网后的电网改造分析方法和装置
CN103795056B (zh) 基于映射弹性势能的电网关键支路识别方法
Sun et al. Accuracy analysis of static voltage stability indices based on power flow model
CN103078319B (zh) 电网的实时计划平衡能力评价方法及系统
Kepka Load modelling for power system analysis
CN105427182A (zh) 一种台区低电压成因分析方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13893456

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13893456

Country of ref document: EP

Kind code of ref document: A1