WO2015033455A1 - Adsorbent-regenerating device - Google Patents

Adsorbent-regenerating device Download PDF

Info

Publication number
WO2015033455A1
WO2015033455A1 PCT/JP2013/074177 JP2013074177W WO2015033455A1 WO 2015033455 A1 WO2015033455 A1 WO 2015033455A1 JP 2013074177 W JP2013074177 W JP 2013074177W WO 2015033455 A1 WO2015033455 A1 WO 2015033455A1
Authority
WO
WIPO (PCT)
Prior art keywords
adsorbent
substance
liquefied
regeneration apparatus
adsorbate
Prior art date
Application number
PCT/JP2013/074177
Other languages
French (fr)
Japanese (ja)
Inventor
佐野 理志
禎夫 関谷
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2015535249A priority Critical patent/JP6232435B2/en
Priority to PCT/JP2013/074177 priority patent/WO2015033455A1/en
Publication of WO2015033455A1 publication Critical patent/WO2015033455A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3416Regenerating or reactivating of sorbents or filter aids comprising free carbon, e.g. activated carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/345Regenerating or reactivating using a particular desorbing compound or mixture
    • B01J20/3475Regenerating or reactivating using a particular desorbing compound or mixture in the liquid phase
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters

Definitions

  • the present invention relates to an apparatus for desorbing adsorbate from a used adsorbent and regenerating the adsorbent.
  • Patent Document 1 and [Patent Document 2] exist as background arts in this technical field.
  • Patent Document 1 discloses an apparatus for washing activated carbon used for water treatment with an organic solvent, and then desorbing the organic solvent and moisture from the activated carbon by heating steam.
  • Patent Document 2 describes a device that regenerates a used adsorbent using a liquid organic solvent at room temperature and normal pressure, and increases the purity of the organic solvent used for washing by distillation and reuses it again. It is disclosed.
  • Patent Document 1 in order to remove a large amount of organic solvent adhering during the regeneration of the adsorbent from the adsorbent, the adsorbent is separated by vaporizing water or the organic solvent using superheated steam. Therefore, enormous energy for producing superheated steam is indispensable, which increases the cost of adsorbent regeneration.
  • the organic solvent used during regeneration of the adsorbent remains attached to the adsorbent, and when the regenerated adsorbent is used for water treatment, the organic solvent may be mixed with the treated water.
  • the organic solvent used for regeneration is separated from the adsorbate by distillation to increase its purity.
  • energy is consumed for heating and vaporizing moisture a huge amount of energy is indispensable. In this case, part of the heating energy of the organic solvent can be covered by the heat of condensation of the organic solvent by heat exchange, but a large heat exchanger is required because of the enormous amount of energy transferred.
  • the present invention provides an adsorbent regenerator that is as small as possible, can reduce the energy input during regeneration of the adsorbent, and can further reduce the amount of cleaning organic solvent remaining in the adsorbent during regeneration.
  • the present invention provides an adsorbent regenerator that removes adsorbate from a used adsorbent used in water treatment and regenerates it.
  • the adsorbate is desorbed by bringing the adsorbent and the liquefied substance A into contact with each other to form the liquefied substance A.
  • a treatment tank for elution an evaporator for separating the adsorbate by vaporizing the liquefied substance A in contact with the adsorbent, a condenser for liquefying the vaporized substance A, and sending the liquefied substance A And a pump.
  • the present invention provides an adsorbent regenerator that removes adsorbate from a used adsorbent used in water treatment and regenerates it.
  • the adsorbate is desorbed by bringing the adsorbent and the liquefied substance A into contact with each other to form the liquefied substance A.
  • the present invention provides an adsorbent regeneration apparatus, In order to transfer heat between the material A on the upstream side and the material A on the downstream side of the compressor, a heat exchanger is installed.
  • the present invention provides an adsorbent regeneration apparatus,
  • the high temperature side of the evaporator and the low temperature side of the condenser are connected by a refrigeration cycle using a refrigerant.
  • the present invention provides an adsorbent regeneration apparatus, Compressed air is injected from the lower part inside the treatment tank.
  • the present invention provides an adsorbent regeneration apparatus,
  • the adsorbent is controlled to float and become a fluidized bed by the flow of the substance A in the treatment tank.
  • the present invention provides an adsorbent regeneration apparatus, A heater is installed in the lower part of the treatment tank, and the substance A under saturated vapor pressure is boiled.
  • the present invention provides an adsorbent regeneration apparatus,
  • the heater is installed such that a vertical sectional area is larger than a horizontal sectional area.
  • the present invention provides an adsorbent regeneration apparatus,
  • the adsorbent is put in a net-like container or bag so that the position of the adsorbent particles is not moved by the fluid force of the substance A.
  • the present invention provides an adsorbent regeneration apparatus,
  • the substance A is dimethyl ether.
  • the present invention provides an adsorbent regeneration apparatus,
  • the adsorbent is activated carbon or a derivative thereof.
  • the gaseous organic substance is used at room temperature and normal pressure under the saturated vapor pressure, so that the adsorbent can be regenerated with a small input energy. Since it can be easily removed by vaporization under reduced pressure, it is possible to reduce the outflow of cleaning liquid to the treated water when using a regenerated adsorbent.
  • FIG. 1 shows an embodiment of the device of the present invention.
  • the valves 11, 12, and 15 are closed, and the valves 13 and 14 are opened.
  • impurities are adsorbed by the adsorbent, and purified water containing no impurities is obtained from the outlet of the treatment tank. If operation is continued in this state, adsorption saturation is reached and impurities leak out. Therefore, operation is temporarily stopped before the impurities leak and the adsorbent regeneration mode is entered. Water is removed from the treatment tank during the transition, but water and impurities remain attached to the adsorbent.
  • the valves 11 and 12 are opened and the valves 13 and 14 are closed.
  • substance A which is a gas at normal temperature and pressure
  • the substance A is held at a saturated vapor pressure in the circulation path of the regeneration mode, and a part thereof exists in a liquefied state.
  • the figure also shows changes in temperature and pressure. Although this shows a different value depending on the substance A used, it is an example described for explaining the flow of energy.
  • the liquefied substance A is extracted from the lower part of the condenser 9 and sent to the treatment tank 2 through the valve 11 by the pump 1.
  • the adsorbent is immersed in the liquefied substance A that has been fed.
  • the impurities adsorbed on the adsorbent are desorbed due to their high affinity with the liquefied substance A, and are dissolved in the liquefied substance A together with water.
  • the liquefied substance A in which water and impurities are dissolved is sent to the evaporator 8 through the valve 12.
  • the energy of the latent heat for vaporizing the liquefied substance A is supplied, and only the liquefied substance A having the lowest boiling point is vaporized, and impurities and water remain.
  • the vaporized substance A is sent to the condenser 9, and the substance A is liquefied by being cooled.
  • the liquefied substance A obtained here is sent again to the treatment tank 2 and used again for desorption of impurities from the adsorbent.
  • the pump 1 is used to circulate the substance A, but the function can be replaced by a compressor.
  • the compressor circulates gas, when used in the present embodiment, it may be installed downstream of the evaporator 8 and upstream of the condenser 9.
  • FIG. 2 shows another embodiment of the present invention, in which the energy efficiency of the embodiment of FIG. 1 is further enhanced.
  • the operation in the normal sewage treatment mode is the same as that of the embodiment of FIG. 1, and the circulation method of the substance A in the adsorbent regeneration mode is different, except as specifically mentioned.
  • the liquefied substance A discharged from the treatment tank 2 is decompressed by the expansion valve 6, and the pressure and temperature are reduced. Thereafter, the liquefied substance A is vaporized by being guided to the low temperature side of the heat exchanger D7 and exchanged with the high temperature and high pressure substance A flowing on the high temperature side, so that impurities and water are separated. Next, the vaporized substance A is compressed by the compressor 5 to a high temperature and high pressure, led to the high temperature side of the heat exchanger D7, and liquefied by being cooled. The liquefied substance A is cooled by outside air or cooling water in the heat exchanger C34 and sent to the treatment tank 2. The heat exchanger C34 is installed for cooling because the heat generated by the operation of the compressor 5 enters the circulation cycle of the substance A and causes the temperature of the entire circulation system to rise.
  • the energy required for circulation occupies most of the heat and is supplied from the outside. Since the energy to be used is very small, the adsorbent can be regenerated very efficiently.
  • FIG. 3 shows another embodiment of the present invention, in which the energy efficiency of the embodiment of FIG. 1 is further enhanced.
  • the operation in the normal sewage treatment mode is the same as that of the embodiment of FIG. 1, and the circulation method of the substance A in the adsorbent regeneration mode is different, except as specifically mentioned.
  • the liquefied substance A discharged from the treatment tank 2 is guided to the low temperature side of the heat exchanger A3, and given the energy of latent heat, the liquefied substance A is vaporized and impurities and water are separated. Next, the vaporized substance A is liquefied by being led to the high temperature side of the heat exchanger B4 and cooled. The liquefied substance A is sent to the treatment tank 2 by the pump 1. On the other hand, the substance B flowing on the high temperature side of the heat exchanger A3 and the low temperature side of the heat exchanger B4 forms a refrigeration cycle. The substance B, which has been compressed by the compressor 5 and becomes high temperature and high pressure, is led to the high temperature side of the heat exchanger A3 and cooled to be liquefied.
  • the liquefied substance A is cooled by the heat exchanger 34 installed in order to prevent the temperature of the circulation system of the refrigeration cycle from being increased, and the pressure is reduced by the expansion valve 6 to become a low temperature and a low pressure. Subsequently, when it is led to the low temperature side of the heat exchanger B4 and heated, it is vaporized and led to the compressor 5.
  • the refrigeration cycle of the substance B by using the refrigeration cycle of the substance B, only the latent heat of vaporization of the substance A is transferred as the latent heat of condensation of the substance A. Only the power and the power of the compressor 5 are used. Since the temperature difference required for the state change of the substance B may be small, the power of the compressor 5 is very small. Further, the power of the pump 1 is very small because it is only the friction loss of the circulation system. Therefore, the overall energy consumption of the device is the majority of the energy required for circulation, and only a small amount of energy is supplied from the outside, so that the adsorbent can be regenerated very efficiently.
  • substance B since substance B only needs to form a refrigeration cycle in a completely closed system, an efficient refrigerant such as chlorofluorocarbon may be used.
  • an efficient refrigerant such as chlorofluorocarbon
  • various impurities dissolve in the substance A.
  • the performance of the pump is almost unaffected by dissolved impurities, so that the application range can be expanded compared with circulation by a compressor.
  • FIG. 4 is an embodiment showing the internal structure of the treatment tank 2 in the regeneration mode among the embodiments shown in FIGS. 1 to 3.
  • the inside of the treatment tank 2 is filled with an adsorbent and a liquefied substance A.
  • the circulation flow rate including vaporization and liquefaction is reduced to reduce the regeneration cost.
  • the substance A passes through the gap between the filled adsorbents 50 and flows out while desorbing impurities, but the path through which the substance A flows through the gap between the adsorbents 50 is biased, and the portion where the desorption speed is low May occur.
  • the flow rate in the processing tank 2 is increased by circulating locally through the pump 21, a uniform flow is supplied through the mesh plate 45, and the adsorbent 50 is used as a fluidized bed, thereby improving the contact efficiency with the substance A. As a result, it is possible to improve the playback speed.
  • FIG. 5 is an embodiment showing the internal structure of the treatment tank 2 in the regeneration mode among the embodiments shown in FIGS. 1 to 3.
  • the adsorbent 50 is filled in the mesh container 40 so that it cannot move inside.
  • the processing tank 2 is filled with the liquefied substance A, and compressed air is supplied from the lower part of the processing tank 2 through the pipe 41. Since the supplied compressed air becomes bubbles 51 and randomly flows through the gaps of the adsorbent 50, the fresh liquefied substance A is easily supplied, and the regeneration speed can be improved.
  • the position of the adsorbent 50 is fixed by the mesh container 40, it is possible to prevent wear due to movement of the adsorbents 50.
  • FIG. 6 is an embodiment showing the internal structure of the treatment tank 2 in the regeneration mode among the embodiments shown in FIGS. 1 to 3.
  • the adsorbent 50 is filled in the mesh container 40 so that it cannot move inside, and the treatment tank 2 is filled with the liquefied substance A.
  • a heater 42 is installed in the lower part inside the processing tank 2 so that the substance A can be heated. Since the substance A is maintained at the saturated vapor pressure, all the energy given by the heater 42 is used as latent heat of vaporization. As soon as the substance A is heated by the heater 42, the substance A is vaporized and bubbles 52 of the substance A are generated.
  • the bubbles 52 randomly flow through the gaps of the adsorbent 50, the fresh liquefied substance A is easily supplied, and the regeneration speed can be improved. Moreover, since the position of the adsorbent 50 is fixed by the mesh container 40, it is possible to prevent wear due to movement of the adsorbents 50.
  • the heater 42 is installed so that the vertical cross-sectional area is larger than the vertical cross-sectional area of the heater 42, the vaporized substance A can be further heated, and the generated bubbles disappear. Can be delayed.
  • the adsorbent is preferably activated carbon or a derivative thereof. Since activated carbon is hydrophobic, it can efficiently adsorb organic substances in water.
  • the substance A is preferably dimethyl ether (DME) or a mixture thereof. Since DME has a boiling point of about ⁇ 24 ° C. and a saturated vapor pressure at 24 ° C. of about 0.58 MPa, it takes a gaseous state at room temperature and normal pressure. Gaseous DME liquefies when cooled or pressurized, but liquefied DME has the property of dissolving water in addition to oil.
  • FIG. 7 shows an example in which sewage containing dissolved organic matter was purified with activated carbon, and the sewage was treated again with used activated carbon regenerated with DME.
  • simulated sewage was prepared using an acetic acid aqueous solution having a dissolved organic substance as acetic acid and a concentration of 0.99% as a stock solution.
  • the removal rate was 79%.
  • the removal rate with regenerated activated carbon was 63%, and the regeneration efficiency in this example was about 80%, and the activated carbon was regenerated with high efficiency. I confirmed that I can do it.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Materials Engineering (AREA)
  • Water Treatment By Sorption (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

The present invention addresses the problem of providing a device for regenerating adsorbent in which organic substances have been used, the device being capable of reducing the input energy for regenerating the adsorbent and also capable of reducing the amount of organic solvent used for cleaning that remains in the adsorbent when regenerated. To solve said problem, the present invention is characterized in that: the device for regenerating used adsorbents, which have been used for water treatment, by removing adsorbates therefrom uses a liquefied substance (A), which is in a liquid state as a result of maintaining the gaseous substance (A) at a saturated vapor pressure at normal temperature and normal pressure; the adsorbate is desorbed and eluted in the liquefied substance (A) by bringing the adsorbent and the liquefied substance (A) into contact in a treatment tank; the liquefied substance (A), which has been in contact with the adsorbent, is gasified in a vaporizer to separate the adsorbate; the gasified substance (A) is compressed in a compressor; and the compressed substance (A) is liquefied in a condenser.

Description

吸着剤再生装置Adsorbent regenerator
 本発明は、使用済み吸着剤から吸着質を脱着し,吸着剤を再生する装置に関するものである。
The present invention relates to an apparatus for desorbing adsorbate from a used adsorbent and regenerating the adsorbent.
 本技術分野の背景技術として、〔特許文献1〕、〔特許文献2〕がある。 [Patent Document 1] and [Patent Document 2] exist as background arts in this technical field.
 〔特許文献1〕には、水処理に使用した活性炭を有機溶剤で洗浄し,次いで加熱スチームにより活性炭から有機溶剤と水分を脱着する装置が開示されている。 [Patent Document 1] discloses an apparatus for washing activated carbon used for water treatment with an organic solvent, and then desorbing the organic solvent and moisture from the activated carbon by heating steam.
 〔特許文献2〕には,常温常圧で液体の有機溶媒を用いて使用済み吸着剤を再生し,洗浄に使用した有機溶媒は,蒸留することで純度を上げ,再び再生に利用する装置が開示されている。
[Patent Document 2] describes a device that regenerates a used adsorbent using a liquid organic solvent at room temperature and normal pressure, and increases the purity of the organic solvent used for washing by distillation and reuses it again. It is disclosed.
特開平07―313874号公報JP 07-313874 A 特開昭63―077541号公報JP-A 63-077751
 水処理に使用した活性炭などの使用済み吸着剤を再生する方法として,液体の有機溶媒をもちいて洗浄することにより吸着質を吸着剤から脱着させる方法がある。 As a method of regenerating used adsorbent such as activated carbon used for water treatment, there is a method of desorbing adsorbate from the adsorbent by washing using a liquid organic solvent.
 〔特許文献1〕では,吸着剤の再生時に付着する多量の有機溶媒を吸着剤から除去するために,過熱スチームをもちいて水や有機溶媒を気化させることで分離している。したがって,過熱スチームを製造するための膨大なエネルギーが不可欠となり,吸着剤の再生コストを増大させる原因となっている。 In [Patent Document 1], in order to remove a large amount of organic solvent adhering during the regeneration of the adsorbent from the adsorbent, the adsorbent is separated by vaporizing water or the organic solvent using superheated steam. Therefore, enormous energy for producing superheated steam is indispensable, which increases the cost of adsorbent regeneration.
 〔特許文献2〕では,吸着剤の再生時に利用する有機溶媒が吸着剤に付着したままとなり,再生した吸着剤を水処理に使用した場合,有機溶媒が処理水に混合する恐れがある。また,再生に利用する有機溶媒は,蒸留することで吸着質と分離されて純度が上げられているが,有機溶媒を気化させるためには,顕熱分と潜熱分のエネルギーを投入する必要があり,さらには水分の加熱,気化にもエネルギーが消費されるので,膨大なエネルギーが不可欠な構成となっている。またこの場合,熱交換により有機溶媒の加熱エネルギーの一部を有機溶媒の凝縮熱で賄うことができるが,授受するエネルギーが膨大なため大型の熱交換器が必要となってしまう。 In [Patent Document 2], the organic solvent used during regeneration of the adsorbent remains attached to the adsorbent, and when the regenerated adsorbent is used for water treatment, the organic solvent may be mixed with the treated water. In addition, the organic solvent used for regeneration is separated from the adsorbate by distillation to increase its purity. However, in order to vaporize the organic solvent, it is necessary to input sensible heat and latent heat energy. In addition, since energy is consumed for heating and vaporizing moisture, a huge amount of energy is indispensable. In this case, part of the heating energy of the organic solvent can be covered by the heat of condensation of the organic solvent by heat exchange, but a large heat exchanger is required because of the enormous amount of energy transferred.
 そこで本発明は、なるべく小型で,かつ吸着剤の再生時に投入するエネルギーを低減でき,さらには再生時に吸着剤に残存する洗浄用の有機溶媒量を低減できる吸着剤再生装置を提供する。
Therefore, the present invention provides an adsorbent regenerator that is as small as possible, can reduce the energy input during regeneration of the adsorbent, and can further reduce the amount of cleaning organic solvent remaining in the adsorbent during regeneration.
 前述の課題を達成するために、本発明は水処理で使用した使用済み吸着剤から吸着質を除去して再生する吸着剤再生装置において,
常温常圧で気体の物質Aを飽和蒸気圧下に保持することで液体状態となった液化物質Aを用い,前記吸着剤と前記液化物質Aを接触させることで吸着質を脱着し液化物質Aに溶出させる処理槽と,前記吸着剤に接触した前記液化物質Aを気化させることで吸着質を分離する蒸発器と,気化した前記物質Aを液化させる凝縮器と,液化した前記物質Aを送液するポンプと,を備えることを特徴とするものである。
In order to achieve the above-mentioned problems, the present invention provides an adsorbent regenerator that removes adsorbate from a used adsorbent used in water treatment and regenerates it.
By using the liquefied substance A in a liquid state by holding the gaseous substance A at normal temperature and normal pressure under saturated vapor pressure, the adsorbate is desorbed by bringing the adsorbent and the liquefied substance A into contact with each other to form the liquefied substance A. A treatment tank for elution, an evaporator for separating the adsorbate by vaporizing the liquefied substance A in contact with the adsorbent, a condenser for liquefying the vaporized substance A, and sending the liquefied substance A And a pump.
 また、前述の課題を達成するために、本発明は水処理で使用した使用済み吸着剤から吸着質を除去して再生する吸着剤再生装置において,
常温常圧で気体の物質Aを飽和蒸気圧下に保持することで液体状態となった液化物質Aを用い,前記吸着剤と前記液化物質Aを接触させることで吸着質を脱着し液化物質Aに溶出させる処理槽と,前記吸着剤に接触した前記液化物質Aを気化させることで吸着質を分離する蒸発器と,気化した前記物質Aを圧縮する圧縮機と,圧縮した前記物質Aを液化させる凝縮器と,を備えることを特徴とするものである。
In order to achieve the above-mentioned problem, the present invention provides an adsorbent regenerator that removes adsorbate from a used adsorbent used in water treatment and regenerates it.
By using the liquefied substance A in a liquid state by holding the gaseous substance A at normal temperature and normal pressure under saturated vapor pressure, the adsorbate is desorbed by bringing the adsorbent and the liquefied substance A into contact with each other to form the liquefied substance A. A treatment tank for elution, an evaporator for separating the adsorbate by vaporizing the liquefied substance A in contact with the adsorbent, a compressor for compressing the vaporized substance A, and the compressed substance A is liquefied. And a condenser.
 更に、本発明は吸着剤再生装置において、
前記圧縮機の上流側の物質Aと下流側の物質Aとで熱を授受するため熱交換器を設置したことを特徴とするものである。
Furthermore, the present invention provides an adsorbent regeneration apparatus,
In order to transfer heat between the material A on the upstream side and the material A on the downstream side of the compressor, a heat exchanger is installed.
 更に、本発明は吸着剤再生装置において、
前記蒸発器の高温側と前記凝縮器の低温側とを,冷媒を用いた冷凍サイクルで接続したことを特徴とするものである。
Furthermore, the present invention provides an adsorbent regeneration apparatus,
The high temperature side of the evaporator and the low temperature side of the condenser are connected by a refrigeration cycle using a refrigerant.
 更に、本発明は吸着剤再生装置において、
前記処理槽内部の下部から圧縮空気が注入されることを特徴とするものである。
Furthermore, the present invention provides an adsorbent regeneration apparatus,
Compressed air is injected from the lower part inside the treatment tank.
 更に、本発明は吸着剤再生装置において、
前記処理槽内の物質Aの流れにより吸着剤が浮遊し流動床となるように制御されたことを特徴とするものである。
Furthermore, the present invention provides an adsorbent regeneration apparatus,
The adsorbent is controlled to float and become a fluidized bed by the flow of the substance A in the treatment tank.
 更に、本発明は吸着剤再生装置において、
前記処理槽内の下部にヒーターを設置し,飽和蒸気圧下の物質Aを沸騰させることを特徴とするものである。
Furthermore, the present invention provides an adsorbent regeneration apparatus,
A heater is installed in the lower part of the treatment tank, and the substance A under saturated vapor pressure is boiled.
 更に、本発明は吸着剤再生装置において、
前記ヒーターを,水平方向の断面積よりも垂直方向の断面積が大きくなるように設置したことを特徴とするものである。
Furthermore, the present invention provides an adsorbent regeneration apparatus,
The heater is installed such that a vertical sectional area is larger than a horizontal sectional area.
 更に、本発明は吸着剤再生装置において、
前記物質Aの流体力により前記吸着剤の粒子の位置が移動しないように,前記吸着剤を網状の容器もしくは袋に入れたことを特徴とするものである。
Furthermore, the present invention provides an adsorbent regeneration apparatus,
The adsorbent is put in a net-like container or bag so that the position of the adsorbent particles is not moved by the fluid force of the substance A.
 更に、本発明は吸着剤再生装置において、
前記物質Aがジメチルエーテルであることを特徴とするものである。
Furthermore, the present invention provides an adsorbent regeneration apparatus,
The substance A is dimethyl ether.
 更に、本発明は吸着剤再生装置において、
前記吸着剤が活性炭もしくはその派生物であることを特徴とするものである。
Furthermore, the present invention provides an adsorbent regeneration apparatus,
The adsorbent is activated carbon or a derivative thereof.
 本発明によれば、吸着剤を再生する装置において常温常圧で気体の有機物を飽和蒸気圧下で用いるために,少ない投入エネルギーで吸着剤を再生可能になり,また,再生時に付着した洗浄液は,減圧による気化で容易に除去できるので,再生吸着剤の使用時に処理水への洗浄液の流出の低減を実現できる。
According to the present invention, in the apparatus for regenerating the adsorbent, the gaseous organic substance is used at room temperature and normal pressure under the saturated vapor pressure, so that the adsorbent can be regenerated with a small input energy. Since it can be easily removed by vaporization under reduced pressure, it is possible to reduce the outflow of cleaning liquid to the treated water when using a regenerated adsorbent.
本発明の吸着剤再生装置の構成図の一例である。It is an example of the block diagram of the adsorbent reproduction | regeneration apparatus of this invention. 本発明の吸着剤再生装置の構成図の他の例である。It is another example of the block diagram of the adsorbent reproduction | regeneration apparatus of this invention. 本発明の吸着剤再生装置の構成図のさらに他の例である。It is another example of the block diagram of the adsorbent reproduction | regeneration apparatus of this invention. 本発明の吸着剤再生装置を構成する処理槽の内部構造の一例である。It is an example of the internal structure of the processing tank which comprises the adsorbent reproduction | regeneration apparatus of this invention. 本発明の吸着剤再生装置を構成する処理槽の内部構造の他の例である。It is another example of the internal structure of the processing tank which comprises the adsorbent reproduction | regeneration apparatus of this invention. 本発明の吸着剤再生装置を構成する処理槽の内部構造のさらに他の例である。It is further another example of the internal structure of the processing tank which comprises the adsorbent reproduction | regeneration apparatus of this invention. 本発明の吸着剤再生装置を用いた活性炭の再生データである。It is the reproduction | regeneration data of activated carbon using the adsorption agent reproduction | regeneration apparatus of this invention.
 以下、本発明の実施形態について以下図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は,本発明装置の実施例を示す。
まず,通常の汚水処理モードでは,バルブ11,12,15が閉められ,バルブ13,14は開かれた状態で運用する。汚水は処理槽2に充填された吸着剤と接触とすることで,不純物が吸着剤に吸着され,処理槽の出口からは不純物を含まない浄化水が得られる。この状態で運用を続けると,吸着飽和に達し不純物が漏出してしまうため,不純物が漏出する前に一時的に運用を停止し,吸着剤の再生モードに移行する。移行時には処理槽から水が除去されるが,吸着剤には水と不純物が付着したままとなっている。
FIG. 1 shows an embodiment of the device of the present invention.
First, in the normal sewage treatment mode, the valves 11, 12, and 15 are closed, and the valves 13 and 14 are opened. By bringing the sewage into contact with the adsorbent filled in the treatment tank 2, impurities are adsorbed by the adsorbent, and purified water containing no impurities is obtained from the outlet of the treatment tank. If operation is continued in this state, adsorption saturation is reached and impurities leak out. Therefore, operation is temporarily stopped before the impurities leak and the adsorbent regeneration mode is entered. Water is removed from the treatment tank during the transition, but water and impurities remain attached to the adsorbent.
 吸着剤の再生モードでは,バルブ11,12が開かれ,バルブ13,14は閉じられた状態で運用する。吸着剤の再生には,常温常圧では気体である物質Aを使用する。物質Aは再生モードの流通経路内において飽和蒸気圧で保持され,一部は液化した状態で存在している。また,図中に温度と圧力の変化を記載している。これは使用する物質Aによって異なる値を示すものであるが,エネルギーの流れを説明するために記載した一例である。 In the adsorbent regeneration mode, the valves 11 and 12 are opened and the valves 13 and 14 are closed. For regeneration of the adsorbent, substance A, which is a gas at normal temperature and pressure, is used. The substance A is held at a saturated vapor pressure in the circulation path of the regeneration mode, and a part thereof exists in a liquefied state. The figure also shows changes in temperature and pressure. Although this shows a different value depending on the substance A used, it is an example described for explaining the flow of energy.
 まず,液化物質Aは凝縮器9の下部から抜き出され,ポンプ1によってバルブ11を通り処理槽2に送液される。処理槽2では送り込まれた液化物質Aに吸着剤が浸される。このとき,吸着剤に吸着されていた不純物は,液化物質Aと親和性が高いために脱着され,水と共に液化物質Aに溶け出す。次いで,水と不純物を溶存した液化物質Aはバルブ12を通して蒸発器8に送液される。蒸発器8では,液化物質Aが気化するための潜熱分のエネルギーが供給され,沸点が最も低い液化物質Aだけが気化し,不純物と水は残存する事になる。気化した物質Aは凝縮器9に送られ,冷却される事で物質Aは液化する。ここで得られた液化物質Aは再度処理槽2に送液され,再度吸着剤からの不純物の脱着に使用される。 First, the liquefied substance A is extracted from the lower part of the condenser 9 and sent to the treatment tank 2 through the valve 11 by the pump 1. In the treatment tank 2, the adsorbent is immersed in the liquefied substance A that has been fed. At this time, the impurities adsorbed on the adsorbent are desorbed due to their high affinity with the liquefied substance A, and are dissolved in the liquefied substance A together with water. Next, the liquefied substance A in which water and impurities are dissolved is sent to the evaporator 8 through the valve 12. In the evaporator 8, the energy of the latent heat for vaporizing the liquefied substance A is supplied, and only the liquefied substance A having the lowest boiling point is vaporized, and impurities and water remain. The vaporized substance A is sent to the condenser 9, and the substance A is liquefied by being cooled. The liquefied substance A obtained here is sent again to the treatment tank 2 and used again for desorption of impurities from the adsorbent.
 上記の物質Aの状態変化のサイクルを必要に応じて複数回繰り返すことで,吸着剤に付着した不純物の大半は脱着する。脱着が完了した時点で,バルブ12を閉め,ポンプ1の逆回転もしくは別途準備した引き抜きポンプにより処理槽2から液化物質Aを引き抜いた後,バルブ15を開いて処理槽2を減圧もしくは大気開放することで,吸着剤に付着している液化物質Aは気化するので,吸着能力を回復した新品に近い再生吸着剤が得られる。 大半 By repeating the cycle of state change of substance A multiple times as necessary, most of the impurities attached to the adsorbent are desorbed. When the desorption is completed, the valve 12 is closed and the liquefied substance A is drawn out from the processing tank 2 by reverse rotation of the pump 1 or a separately prepared drawing pump, and then the valve 15 is opened to reduce the pressure in the processing tank 2 or open it to the atmosphere. Thus, since the liquefied substance A adhering to the adsorbent is vaporized, a regenerated adsorbent close to a new article whose adsorption capacity has been recovered can be obtained.
 本実施例では,物質Aの循環にポンプ1を使用しているが,圧縮機でもその機能を代替できる。ただし,圧縮機は気体を循環させる物であるため,本実施例において使用する場合は,蒸発器8の下流かつ凝縮器9の上流に設置すれば良い。 In this embodiment, the pump 1 is used to circulate the substance A, but the function can be replaced by a compressor. However, since the compressor circulates gas, when used in the present embodiment, it may be installed downstream of the evaporator 8 and upstream of the condenser 9.
 図2は,本発明の他の実施例であり,図1の実施例のエネルギー効率をさらに高めたものである。通常の汚水処理モードにおける動作は,図1の実施例と同等であり,特に言及する以外は、吸着剤の再生モードにおける物質Aの循環方法が異なる。 FIG. 2 shows another embodiment of the present invention, in which the energy efficiency of the embodiment of FIG. 1 is further enhanced. The operation in the normal sewage treatment mode is the same as that of the embodiment of FIG. 1, and the circulation method of the substance A in the adsorbent regeneration mode is different, except as specifically mentioned.
 吸着剤の再生モードでは,処理槽2から排出された液化物質Aは膨張弁6で減圧され,圧力と温度が低下する。この後熱交換器D7の低温側に導かれ,高温側を流れる高温高圧の物質Aと熱交換を行うことで液化物質Aは気化されて,不純物と水が分離される。次いで気化した物質Aは圧縮機5により圧縮されて高温高圧になり,熱交換器D7の高温側に導かれ,冷却される事により液化する。液化物質Aは熱交換器C34で外気もしくは冷却水等によって冷却され,処理槽2に送られる。熱交換器C34は,圧縮機5の運転による発熱分が物質Aの循環サイクルに進入し,循環系全体の温度上昇をもたらすので,冷却用として設置する。 In the adsorbent regeneration mode, the liquefied substance A discharged from the treatment tank 2 is decompressed by the expansion valve 6, and the pressure and temperature are reduced. Thereafter, the liquefied substance A is vaporized by being guided to the low temperature side of the heat exchanger D7 and exchanged with the high temperature and high pressure substance A flowing on the high temperature side, so that impurities and water are separated. Next, the vaporized substance A is compressed by the compressor 5 to a high temperature and high pressure, led to the high temperature side of the heat exchanger D7, and liquefied by being cooled. The liquefied substance A is cooled by outside air or cooling water in the heat exchanger C34 and sent to the treatment tank 2. The heat exchanger C34 is installed for cooling because the heat generated by the operation of the compressor 5 enters the circulation cycle of the substance A and causes the temperature of the entire circulation system to rise.
 上述のように,本実施例では熱交換器D7においてほぼ同一の物質がほぼ同一の流量で蒸発潜熱と凝縮潜熱の授受を行うので,循環に必要なエネルギーが大半を占めることとなり,外部から供給するエネルギーは僅かであるため,非常に効率良く吸着剤の再生が実現できる。 As described above, in the present embodiment, since almost the same substance exchanges latent heat of vaporization and latent heat of condensation in the heat exchanger D7 at almost the same flow rate, the energy required for circulation occupies most of the heat and is supplied from the outside. Since the energy to be used is very small, the adsorbent can be regenerated very efficiently.
 図3は,本発明の他の実施例であり,図1の実施例のエネルギー効率をさらに高めたものである。通常の汚水処理モードにおける動作は,図1の実施例と同等であり,特に言及する以外は、吸着剤の再生モードにおける物質Aの循環方法が異なる。 FIG. 3 shows another embodiment of the present invention, in which the energy efficiency of the embodiment of FIG. 1 is further enhanced. The operation in the normal sewage treatment mode is the same as that of the embodiment of FIG. 1, and the circulation method of the substance A in the adsorbent regeneration mode is different, except as specifically mentioned.
 処理槽2から排出された液化物質Aは熱交換器A3の低温側に導かれ,潜熱分のエネルギーを与えられて液化物質Aが気化され,不純物と水が分離される。次いで気化した物質Aは熱交換器B4の高温側に導かれて冷却される事により液化する。液化した物質Aはポンプ1により処理槽2に送液される。一方,熱交換器A3の高温側と熱交換器B4の低温側を流れる物質Bは冷凍サイクルを形成している。圧縮機5で圧縮されて高温高圧になった物質Bは熱交換器A3の高温側に導かれ冷却されて液化する。液化した物質Aは冷凍サイクルの循環系の温度上昇を防ぐために設置された熱交換器34で冷却され,膨張弁6で減圧されてさらに低温低圧となる。ついで熱交換器B4の低温側に導かれて加熱されると気化して圧縮器5に導かれる。 The liquefied substance A discharged from the treatment tank 2 is guided to the low temperature side of the heat exchanger A3, and given the energy of latent heat, the liquefied substance A is vaporized and impurities and water are separated. Next, the vaporized substance A is liquefied by being led to the high temperature side of the heat exchanger B4 and cooled. The liquefied substance A is sent to the treatment tank 2 by the pump 1. On the other hand, the substance B flowing on the high temperature side of the heat exchanger A3 and the low temperature side of the heat exchanger B4 forms a refrigeration cycle. The substance B, which has been compressed by the compressor 5 and becomes high temperature and high pressure, is led to the high temperature side of the heat exchanger A3 and cooled to be liquefied. The liquefied substance A is cooled by the heat exchanger 34 installed in order to prevent the temperature of the circulation system of the refrigeration cycle from being increased, and the pressure is reduced by the expansion valve 6 to become a low temperature and a low pressure. Subsequently, when it is led to the low temperature side of the heat exchanger B4 and heated, it is vaporized and led to the compressor 5.
 上述のように,本実施例では物質Bの冷凍サイクルを用いることで,物質Aの蒸発潜熱を物質Aの凝縮潜熱として移動させているだけであり,実質的に必要な投入エネルギーはポンプ1の動力と圧縮器5の動力だけである。物質Bの状態変化で必要な温度差は小さくて良いため,圧縮器5の動力は非常に小さい。また,ポンプ1の動力は循環系の摩擦損失だけであるので非常に小さい。したがって,装置の消費エネルギーを全体的に見ると,循環に必要なエネルギーが大半を占めており,外部から供給するエネルギーは僅かであるため,非常に効率良く吸着剤の再生が実現できる。 As described above, in this embodiment, by using the refrigeration cycle of the substance B, only the latent heat of vaporization of the substance A is transferred as the latent heat of condensation of the substance A. Only the power and the power of the compressor 5 are used. Since the temperature difference required for the state change of the substance B may be small, the power of the compressor 5 is very small. Further, the power of the pump 1 is very small because it is only the friction loss of the circulation system. Therefore, the overall energy consumption of the device is the majority of the energy required for circulation, and only a small amount of energy is supplied from the outside, so that the adsorbent can be regenerated very efficiently.
 また,物質Bは完全に閉じた系で冷凍サイクルを構成すれば良いので,フロン等の効率の良い冷媒を用いれば良い。一方,物質Aの循環系では,物質Aには様々な不純物が溶け込む。しかし,循環にポンプを用いるのであれば,ポンプの性能は溶存する不純物の影響をほとんど受けないので,圧縮器による循環よりも適用範囲を広げることが実現できる。 In addition, since substance B only needs to form a refrigeration cycle in a completely closed system, an efficient refrigerant such as chlorofluorocarbon may be used. On the other hand, in the circulation system of the substance A, various impurities dissolve in the substance A. However, if a pump is used for circulation, the performance of the pump is almost unaffected by dissolved impurities, so that the application range can be expanded compared with circulation by a compressor.
 図4は,図1から図3に示した実施例のうち,再生モードにおける処理槽2の内部構造を示した実施例である。 FIG. 4 is an embodiment showing the internal structure of the treatment tank 2 in the regeneration mode among the embodiments shown in FIGS. 1 to 3.
 処理槽2の内部は吸着剤と液化物質Aが充填されているが,吸着剤50からの不純物の脱着速度が遅いので,再生コストを抑えるためには気化,液化を含めた循環流量を少なくする必要がある。この場合,物質Aは充填された吸着剤50の隙間を通り,不純物を脱着しながら流出していくが,物質Aが吸着剤50の隙間を流れる経路が偏ってしまい,脱着速度が遅い部分が発生する場合がある。従って,ポンプ21により局所的に循環させることで処理槽2内の流速をあげ,網板45を通して均一な流れを供給し,吸着剤50を流動床とすることで,物質Aとの接触効率をあげて,再生速度を向上することが実現できる。 The inside of the treatment tank 2 is filled with an adsorbent and a liquefied substance A. However, since the desorption speed of impurities from the adsorbent 50 is slow, the circulation flow rate including vaporization and liquefaction is reduced to reduce the regeneration cost. There is a need. In this case, the substance A passes through the gap between the filled adsorbents 50 and flows out while desorbing impurities, but the path through which the substance A flows through the gap between the adsorbents 50 is biased, and the portion where the desorption speed is low May occur. Therefore, the flow rate in the processing tank 2 is increased by circulating locally through the pump 21, a uniform flow is supplied through the mesh plate 45, and the adsorbent 50 is used as a fluidized bed, thereby improving the contact efficiency with the substance A. As a result, it is possible to improve the playback speed.
 図5は,図1から図3に示した実施例のうち,再生モードにおける処理槽2の内部構造を示した実施例である。吸着剤50は網状容器40に内部で移動できないように充填されている。この状態で,処理槽2は液化物質Aで満たされており,処理槽2の下部から配管41を通して圧縮空気が供給される。供給された圧縮空気は気泡51となって吸着剤50の隙間をランダムに流れるため,新鮮な液化物質Aが供給され易くなり,再生速度を向上することができる。また,網状容器40によって吸着剤50の位置が固定されているため,吸着剤50同士の移動による摩耗を防ぐことが実現できる。 FIG. 5 is an embodiment showing the internal structure of the treatment tank 2 in the regeneration mode among the embodiments shown in FIGS. 1 to 3. The adsorbent 50 is filled in the mesh container 40 so that it cannot move inside. In this state, the processing tank 2 is filled with the liquefied substance A, and compressed air is supplied from the lower part of the processing tank 2 through the pipe 41. Since the supplied compressed air becomes bubbles 51 and randomly flows through the gaps of the adsorbent 50, the fresh liquefied substance A is easily supplied, and the regeneration speed can be improved. Moreover, since the position of the adsorbent 50 is fixed by the mesh container 40, it is possible to prevent wear due to movement of the adsorbents 50.
 図6は,図1から図3に示した実施例のうち,再生モードにおける処理槽2の内部構造を示した実施例である。吸着剤50は網状容器40に内部で移動できないように充填され,処理槽2は液化物質Aで満たされている。処理槽2内部の下部にはヒーター42が設置され,物質Aを加熱できるようになっている。物質Aは飽和蒸気圧に保持されているので,ヒーター42により与えられたエネルギーは全て蒸発潜熱として利用される。ヒーター42によって物質Aが加熱されると直ちに気化して物質Aの気泡52が発生する。この気泡52は,吸着剤50の隙間をランダムに流れるため,新鮮な液化物質Aが供給され易くなり,再生速度を向上することができる。また,網状容器40によって吸着剤50の位置が固定されているため,吸着剤50同士の移動による摩耗を防ぐことが実現できる。 FIG. 6 is an embodiment showing the internal structure of the treatment tank 2 in the regeneration mode among the embodiments shown in FIGS. 1 to 3. The adsorbent 50 is filled in the mesh container 40 so that it cannot move inside, and the treatment tank 2 is filled with the liquefied substance A. A heater 42 is installed in the lower part inside the processing tank 2 so that the substance A can be heated. Since the substance A is maintained at the saturated vapor pressure, all the energy given by the heater 42 is used as latent heat of vaporization. As soon as the substance A is heated by the heater 42, the substance A is vaporized and bubbles 52 of the substance A are generated. Since the bubbles 52 randomly flow through the gaps of the adsorbent 50, the fresh liquefied substance A is easily supplied, and the regeneration speed can be improved. Moreover, since the position of the adsorbent 50 is fixed by the mesh container 40, it is possible to prevent wear due to movement of the adsorbents 50.
 また,ヒーター42を縦方向,つまり,ヒーター42の水平方向の断面積よりも垂直方向の断面積が大きくなるように設置すると,気化した物質Aをさらに加熱することができ,発生した気泡の消滅を遅らせることが実現できる。
Further, if the heater 42 is installed so that the vertical cross-sectional area is larger than the vertical cross-sectional area of the heater 42, the vaporized substance A can be further heated, and the generated bubbles disappear. Can be delayed.
 本発明の対象とする汚水の不純物が,溶存有機物である場合には,吸着剤は活性炭もしくはその派生物であることが好ましい。活性炭は疎水性であるため,水中の有機物を効率良く吸着することができる。さらにこの場合,物質Aはジメチルエーテル(DME)もしくは,その混合物であることが好ましい。DMEは沸点が約-24℃であり,また24℃における飽和蒸気圧は約0.58MPaであるため,常温常圧で気体の状態をとる。気体のDMEは冷却もしくは加圧すると液化するが,液化DMEは油以外に水も溶かす性質を持つ。したがって,液化DMEを活性炭の洗浄に用いると,活性炭表面で水分に覆われた不純物が存在する場合でも,液化DMEが水を溶かした後に不純物を脱着することが可能となり,活性炭の再生効率を高くすることが実現できる。 When the impurity of sewage targeted by the present invention is dissolved organic matter, the adsorbent is preferably activated carbon or a derivative thereof. Since activated carbon is hydrophobic, it can efficiently adsorb organic substances in water. In this case, the substance A is preferably dimethyl ether (DME) or a mixture thereof. Since DME has a boiling point of about −24 ° C. and a saturated vapor pressure at 24 ° C. of about 0.58 MPa, it takes a gaseous state at room temperature and normal pressure. Gaseous DME liquefies when cooled or pressurized, but liquefied DME has the property of dissolving water in addition to oil. Therefore, when liquefied DME is used for cleaning activated carbon, it is possible to desorb the impurities after the liquefied DME dissolves water, even if there are impurities covered with moisture on the activated carbon surface, thereby increasing the regeneration efficiency of activated carbon. Can be realized.
 図7に,溶存有機物を含んだ汚水を活性炭で浄化し,DMEで再生した使用済み活性炭で再度汚水を処理した実施例を示す。本実施例では,溶存有機物が酢酸であり,濃度が0.99%である酢酸水溶液を原液とする模擬汚水を準備した。原液を新品の活性炭で浄化したところ除去率が79%であった。これに対し,使用済み活性炭をDMEで再生し再度原液の浄化に用いたところ,再生活性炭による除去率は63%であり,本実施例における再生効率は約80%となり,高効率で活性炭を再生できることを確認した。
FIG. 7 shows an example in which sewage containing dissolved organic matter was purified with activated carbon, and the sewage was treated again with used activated carbon regenerated with DME. In this example, simulated sewage was prepared using an acetic acid aqueous solution having a dissolved organic substance as acetic acid and a concentration of 0.99% as a stock solution. When the stock solution was purified with new activated carbon, the removal rate was 79%. On the other hand, when the used activated carbon was regenerated with DME and used again for purification of the stock solution, the removal rate with regenerated activated carbon was 63%, and the regeneration efficiency in this example was about 80%, and the activated carbon was regenerated with high efficiency. I confirmed that I can do it.
1  ポンプ
2  処理槽
3  熱交換器A
4  熱交換器B
5  圧縮機
6  膨張弁
7  熱交換器D
8  蒸発器
9  凝縮器
34 熱交換器C
40 網状容器
42 ヒーター
45 網板
50 吸着剤
51 気泡
52 物質Aの気泡
1 Pump 2 Treatment tank 3 Heat exchanger A
4 Heat exchanger B
5 Compressor 6 Expansion valve 7 Heat exchanger D
8 Evaporator 9 Condenser 34 Heat Exchanger C
40 Net-like container 42 Heater 45 Mesh plate 50 Adsorbent 51 Bubble 52 Substance A bubble

Claims (11)

  1. 水処理で使用した使用済み吸着剤から吸着質を除去して再生する吸着剤再生装置において,
    常温常圧で気体の物質Aを飽和蒸気圧下に保持することで液体状態となった液化物質Aを用い,
    前記吸着剤と前記液化物質Aを接触させることで吸着質を脱着し液化物質Aに溶出させる処理槽と,
    前記吸着剤に接触した前記液化物質Aを気化させることで吸着質を分離する蒸発器と,
    気化した前記物質Aを液化させる凝縮器と,
    液化した前記物質Aを送液するポンプと,
    を備えることを特徴とする吸着剤再生装置。
    In an adsorbent regenerator that removes adsorbate from a used adsorbent used in water treatment and regenerates it,
    Using liquefied substance A that became liquid by holding gaseous substance A at normal temperature and pressure under saturated vapor pressure,
    A treatment tank for desorbing adsorbate by bringing the adsorbent into contact with the liquefied substance A and eluting the liquefied substance A;
    An evaporator that separates the adsorbate by vaporizing the liquefied substance A in contact with the adsorbent;
    A condenser for liquefying the vaporized substance A;
    A pump for feeding the liquefied substance A;
    An adsorbent regeneration apparatus comprising:
  2. 水処理で使用した使用済み吸着剤から吸着質を除去して再生する吸着剤再生装置において,
    常温常圧で気体の物質Aを飽和蒸気圧下に保持することで液体状態となった液化物質Aを用い,
    前記吸着剤と前記液化物質Aを接触させることで吸着質を脱着し液化物質Aに溶出させる処理槽と,
    前記吸着剤に接触した前記液化物質Aを気化させることで吸着質を分離する蒸発器と,
    気化した前記物質Aを圧縮する圧縮機と,
    圧縮した前記物質Aを液化させる凝縮器と,
    を備えることを特徴とする吸着剤再生装置。
    In an adsorbent regenerator that removes adsorbate from a used adsorbent used in water treatment and regenerates it,
    Using liquefied substance A that became liquid by holding gaseous substance A at normal temperature and pressure under saturated vapor pressure,
    A treatment tank for desorbing adsorbate by bringing the adsorbent into contact with the liquefied substance A and eluting the liquefied substance A;
    An evaporator that separates the adsorbate by vaporizing the liquefied substance A in contact with the adsorbent;
    A compressor for compressing the vaporized substance A;
    A condenser for liquefying the compressed substance A;
    An adsorbent regeneration apparatus comprising:
  3. 請求項2の吸着剤再生装置において、
    前記圧縮機の上流側の物質Aと下流側の物質Aとで熱を授受するため熱交換器を設置したことを特徴とする吸着剤再生装置。
    The adsorbent regeneration apparatus according to claim 2,
    An adsorbent regenerator comprising a heat exchanger for transferring heat between the substance A on the upstream side and the substance A on the downstream side of the compressor.
  4. 請求項1、又は請求項2の吸着剤再生装置において、
    前記蒸発器の高温側と前記凝縮器の低温側とを,冷媒を用いた冷凍サイクルで接続したことを特徴とする吸着剤再生装置。
    In the adsorbent regeneration apparatus according to claim 1 or 2,
    An adsorbent regenerator, wherein a high temperature side of the evaporator and a low temperature side of the condenser are connected by a refrigeration cycle using a refrigerant.
  5. 請求項1、又は請求項2の吸着剤再生装置において、前記処理槽内部の下部から圧縮空気が注入されることを特徴とする吸着剤再生装置。
    The adsorbent regeneration apparatus according to claim 1 or 2, wherein compressed air is injected from a lower part inside the processing tank.
  6. 請求項1、又は請求項2の吸着剤再生装置において、
    前記処理槽内の物質Aの流れにより吸着剤が浮遊し流動床となるように制御されたことを特徴とする吸着剤再生装置。
    In the adsorbent regeneration apparatus according to claim 1 or 2,
    The adsorbent regenerator is controlled so that the adsorbent floats and becomes a fluidized bed by the flow of the substance A in the treatment tank.
  7. 請求項1、又は請求項2の吸着剤再生装置において、
    前記処理槽内の下部にヒーターを設置し,飽和蒸気圧下の物質Aを沸騰させることを特徴とする吸着剤再生装置。
    In the adsorbent regeneration apparatus according to claim 1 or 2,
    An adsorbent regenerator, wherein a heater is installed in the lower part of the treatment tank to boil the substance A under saturated vapor pressure.
  8. 請求項7の吸着剤再生装置において、
    前記ヒーターを,水平方向の断面積よりも垂直方向の断面積が大きくなるように設置したことを特徴とする吸着剤再生装置。
    The adsorbent regeneration apparatus according to claim 7, wherein
    An adsorbent regeneration apparatus, wherein the heater is installed such that a vertical sectional area is larger than a horizontal sectional area.
  9. 請求項5、又は請求項7の吸着剤再生装置において、
    前記物質Aの流体力により前記吸着剤の粒子の位置が移動しないように,前記吸着剤を網状の容器もしくは袋に入れたことを特徴とする吸着剤再生装置。
    In the adsorbent regeneration device according to claim 5 or 7,
    An adsorbent recycling apparatus, wherein the adsorbent is placed in a net-like container or bag so that the position of the adsorbent particles is not moved by the fluid force of the substance A.
  10. 請求項1、又は請求項2の吸着剤再生装置において、
    前記物質Aがジメチルエーテルであることを特徴とする吸着剤再生装置。
    In the adsorbent regeneration apparatus according to claim 1 or 2,
    The adsorbent regeneration apparatus, wherein the substance A is dimethyl ether.
  11. 請求項1、又は請求項2の吸着剤再生装置において、
    前記吸着剤が活性炭もしくはその派生物であることを特徴とする吸着剤再生装置。
    In the adsorbent regeneration apparatus according to claim 1 or 2,
    An adsorbent regeneration apparatus, wherein the adsorbent is activated carbon or a derivative thereof.
PCT/JP2013/074177 2013-09-09 2013-09-09 Adsorbent-regenerating device WO2015033455A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015535249A JP6232435B2 (en) 2013-09-09 2013-09-09 Adsorbent regenerator
PCT/JP2013/074177 WO2015033455A1 (en) 2013-09-09 2013-09-09 Adsorbent-regenerating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/074177 WO2015033455A1 (en) 2013-09-09 2013-09-09 Adsorbent-regenerating device

Publications (1)

Publication Number Publication Date
WO2015033455A1 true WO2015033455A1 (en) 2015-03-12

Family

ID=52627960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/074177 WO2015033455A1 (en) 2013-09-09 2013-09-09 Adsorbent-regenerating device

Country Status (2)

Country Link
JP (1) JP6232435B2 (en)
WO (1) WO2015033455A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016064380A (en) * 2014-09-26 2016-04-28 株式会社日立製作所 Solid-liquid separation device
WO2016117100A1 (en) * 2015-01-23 2016-07-28 株式会社日立製作所 Liquid solid separating device
WO2016121012A1 (en) * 2015-01-28 2016-08-04 株式会社日立製作所 Liquid solid separating device
JP2017121631A (en) * 2017-04-17 2017-07-13 株式会社日立製作所 Absorbent regenerator
WO2019230104A1 (en) * 2018-05-31 2019-12-05 株式会社日立製作所 Extraction device and method for manufacturing extraction part
CN112090420A (en) * 2020-09-07 2020-12-18 福泉环保城发展有限公司 Active carbon desorption recovery method
WO2022118382A1 (en) * 2020-12-02 2022-06-09 株式会社日立製作所 Drainage treatment system and drainage treatment method
US11364452B2 (en) 2017-11-13 2022-06-21 Hitachi, Ltd. Extraction device and method for same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5163383A (en) * 1974-11-07 1976-06-01 Asahi Chemical Ind Kyuchakuzaino saiseihoho
JPS52126678A (en) * 1976-04-15 1977-10-24 Little Inc A Method and apparatus for separating adsorptive from adsorbent
JPS5667507A (en) * 1979-11-08 1981-06-06 Nissan Motor Co Ltd Activated carbon adsorption type water treating apparatus
JPS5966313A (en) * 1982-10-01 1984-04-14 オツト−・シツク・コマンデイツトゲゼルシヤフト Method and apparatus for separating toxic substance dissolv-ed in washing liquid
JPS6411604A (en) * 1987-07-03 1989-01-17 Yutaka Takeuchi Solvent-treating apparatus
JPH05253401A (en) * 1992-03-12 1993-10-05 Hitachi Ltd Boiling vessel
JP2006314963A (en) * 2005-05-16 2006-11-24 Hatsumei Kobo:Kk Water purifier
JP2007117814A (en) * 2005-10-25 2007-05-17 National Institute Of Advanced Industrial & Technology Method for activating adsorbent by liquefied dimethyl ether
WO2008111483A1 (en) * 2007-03-09 2008-09-18 Central Research Institute Of Electric Power Industry Hydrous matter treating system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5163383A (en) * 1974-11-07 1976-06-01 Asahi Chemical Ind Kyuchakuzaino saiseihoho
JPS52126678A (en) * 1976-04-15 1977-10-24 Little Inc A Method and apparatus for separating adsorptive from adsorbent
JPS5667507A (en) * 1979-11-08 1981-06-06 Nissan Motor Co Ltd Activated carbon adsorption type water treating apparatus
JPS5966313A (en) * 1982-10-01 1984-04-14 オツト−・シツク・コマンデイツトゲゼルシヤフト Method and apparatus for separating toxic substance dissolv-ed in washing liquid
JPS6411604A (en) * 1987-07-03 1989-01-17 Yutaka Takeuchi Solvent-treating apparatus
JPH05253401A (en) * 1992-03-12 1993-10-05 Hitachi Ltd Boiling vessel
JP2006314963A (en) * 2005-05-16 2006-11-24 Hatsumei Kobo:Kk Water purifier
JP2007117814A (en) * 2005-10-25 2007-05-17 National Institute Of Advanced Industrial & Technology Method for activating adsorbent by liquefied dimethyl ether
WO2008111483A1 (en) * 2007-03-09 2008-09-18 Central Research Institute Of Electric Power Industry Hydrous matter treating system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016064380A (en) * 2014-09-26 2016-04-28 株式会社日立製作所 Solid-liquid separation device
US10646794B2 (en) 2015-01-23 2020-05-12 Hitachi, Ltd. Solid-liquid separation device
WO2016117100A1 (en) * 2015-01-23 2016-07-28 株式会社日立製作所 Liquid solid separating device
WO2016121012A1 (en) * 2015-01-28 2016-08-04 株式会社日立製作所 Liquid solid separating device
US10245527B2 (en) 2015-01-28 2019-04-02 Hitachi Ltd. Solid-liquid separation device
JP2017121631A (en) * 2017-04-17 2017-07-13 株式会社日立製作所 Absorbent regenerator
US11364452B2 (en) 2017-11-13 2022-06-21 Hitachi, Ltd. Extraction device and method for same
JP2019209220A (en) * 2018-05-31 2019-12-12 株式会社日立製作所 Extractor and extraction unit manufacturing method
WO2019230104A1 (en) * 2018-05-31 2019-12-05 株式会社日立製作所 Extraction device and method for manufacturing extraction part
JP7174539B2 (en) 2018-05-31 2022-11-17 株式会社日立製作所 extractor
US11612832B2 (en) 2018-05-31 2023-03-28 Hitachi, Ltd. Extracting apparatus, and extracting-unit manufacturing method
CN112090420A (en) * 2020-09-07 2020-12-18 福泉环保城发展有限公司 Active carbon desorption recovery method
WO2022118382A1 (en) * 2020-12-02 2022-06-09 株式会社日立製作所 Drainage treatment system and drainage treatment method
JP7399320B2 (en) 2020-12-02 2023-12-15 株式会社日立製作所 Wastewater treatment system and method

Also Published As

Publication number Publication date
JP6232435B2 (en) 2017-11-15
JPWO2015033455A1 (en) 2017-03-02

Similar Documents

Publication Publication Date Title
JP6232435B2 (en) Adsorbent regenerator
CN106166399A (en) A kind of device for recovering oil and gas and method
CN102151414B (en) Device for recovering oil gas by using condensing adsorptive process and device for switching absorption and desorption
CN105214439A (en) Oil-gas recovery processing device and method
JP6568114B2 (en) Solid-liquid separator
CN107261754A (en) VOCs waste gas recovery processing method and processing devices
CN107344058B (en) Energy-saving hydrogen chloride gas deep purification process
JP2008093571A (en) Device for treating and recovering gaseous hydrocarbon and its method
JP2013128905A (en) System for treating gas containing organic solvent
CN110124437A (en) A kind of purification of methylene chloride and recovery method and system
US20220001328A1 (en) Energy-saving air dryer, and method for producing dry air using the same
JP2014117638A (en) Organic solvent containing gas treatment system
CN205598887U (en) Multicomponent VOCs adsorbs condensation recovery device
JP5319476B2 (en) Separation and recovery system
CN205032054U (en) Oil -gas recovery processing device
JP2017121631A (en) Absorbent regenerator
CN204952335U (en) Vapor recovery system integrated system
CA2897553C (en) Solid-liquid separator
CN1539544A (en) Adsorption technique
JP2000084303A (en) Organic solvent recovery device
TWI471166B (en) Recovery device and method for gas - like hydrocarbon
JPS5836625B2 (en) Regeneration method of inorganic adsorbent
JP2005069536A (en) Waste heat recovery type adsorption type freezer
CN215692957U (en) Waste gas treatment device based on refrigeration and heating system
CN220371051U (en) Desorption device of VOCs adsorbent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13893002

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015535249

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13893002

Country of ref document: EP

Kind code of ref document: A1