WO2015032855A1 - Dispositif acoustique numerique a puissance sonore augmentee - Google Patents

Dispositif acoustique numerique a puissance sonore augmentee Download PDF

Info

Publication number
WO2015032855A1
WO2015032855A1 PCT/EP2014/068833 EP2014068833W WO2015032855A1 WO 2015032855 A1 WO2015032855 A1 WO 2015032855A1 EP 2014068833 W EP2014068833 W EP 2014068833W WO 2015032855 A1 WO2015032855 A1 WO 2015032855A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
support
acoustic device
actuator
stop
Prior art date
Application number
PCT/EP2014/068833
Other languages
English (en)
Inventor
Fabrice Casset
Remy Dejaeger
Stéphane Fanget
David Henry
Quentin LECLERE
Original Assignee
Commissariat à l'énergie atomique et aux énergies alternatives
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat à l'énergie atomique et aux énergies alternatives filed Critical Commissariat à l'énergie atomique et aux énergies alternatives
Priority to CN201480049130.2A priority Critical patent/CN105519134A/zh
Priority to US14/915,749 priority patent/US9900700B2/en
Priority to EP14766933.7A priority patent/EP3042509B1/fr
Publication of WO2015032855A1 publication Critical patent/WO2015032855A1/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/26Damping by means acting directly on free portion of diaphragm or cone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R31/00Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/005Details of transducers, loudspeakers or microphones using digitally weighted transducing elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/003Mems transducers or their use
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2307/00Details of diaphragms or cones for electromechanical transducers, their suspension or their manufacture covered by H04R7/00 or H04R31/003, not provided for in any of its subgroups
    • H04R2307/201Damping aspects of the outer suspension of loudspeaker diaphragms by addition of additional damping means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2307/00Details of diaphragms or cones for electromechanical transducers, their suspension or their manufacture covered by H04R7/00 or H04R31/003, not provided for in any of its subgroups
    • H04R2307/207Shape aspects of the outer suspension of loudspeaker diaphragms

Definitions

  • the present invention relates to a digital acoustic device with increased sound power, for example a digital speaker or an acoustic photo imaging system.
  • the speakers are present in a large number of devices such as mobile phones, flat screens ... and their miniaturization is sought.
  • MEMS technologies can provide ultrafine speakers.
  • MEMS technology is particularly suitable for digital loudspeakers, where the large diaphragm of the analogue loudspeaker is replaced by several unitary membranes or more generally by several ultrafine acoustic transducers, called speaklets, of small sizes, making it possible to reconstitute the his.
  • each speaklet is operated individually according to the sound to be reconstructed, in a high position, or in a low position.
  • the digital speakers nevertheless offer a low noise level.
  • a digital acoustic device comprising at least one suspended membrane, at least one actuator associated with the membrane to move it upwards or downwards, and means interrupting the displacement of the membrane following the activation of the actuator associated with the membrane.
  • the interruption means are dimensioned so that the displacement of the membrane is interrupted when it has a non-zero speed.
  • the speed at which the upward or downward movement due to the use of the associated actuator is stopped is the maximum or substantially maximum speed that the membrane can have.
  • the displacement of the membrane is deliberately interrupted, preferably when it has a high or even maximum speed to obtain a sudden deceleration of the membrane and thus generate an acoustic pressure high.
  • These stop elements are sized to interrupt the movement of the membrane before it reaches the end of its course.
  • the means for stopping the membrane during its displacement are carried by a substrate facing the membrane they form one or more elements projecting from the substrate in the direction of the membrane and are sized to come into contact with the membrane when it has a non-zero speed, preferably a high speed and more preferably a maximum speed.
  • the distance between the free end of the stop element (s) and the membrane at rest is between 50% and 75% of the theoretical maximum stroke of the membrane.
  • the means for stopping the membrane during its displacement are carried by the membrane they form one or more projecting elements and are dimensioned to come into contact with the substrate facing the membrane when it has a non-zero speed, preferably a high speed and more preferably a maximum speed.
  • a non-zero speed preferably a high speed and more preferably a maximum speed.
  • the distance between the free end of the stop element (s) and the support when the membrane is at rest is between 50% and 75% of the theoretical maximum stroke of the membrane.
  • the digital acoustic device may be a digital speaker or an acoustic photo imaging system.
  • the subject of the present invention is therefore a digital acoustic device comprising at least one membrane suspended facing a support and at least one actuator associated with said membrane, said associated actuator being intended to move said membrane away from and / or towards said support, said device also comprising stop means for interrupting the displacement of said membrane following the activation of said actuator when the membrane has a non-zero speed, the stop means being dimensioned so as to interrupt the movement of the membrane when the displacement of the membrane is greater than or equal to 50% of the theoretical maximum stroke of the membrane and less than or equal to 75% of the theoretical maximum stroke of the membrane.
  • the stop means are dimensioned so as to interrupt the displacement of the membrane when the displacement of the membrane is between 50% and 60% of the theoretical maximum stroke of the membrane.
  • the stop means are dimensioned so as to interrupt the displacement of the membrane when it moves to its maximum speed or at a speed close to its maximum speed, ie at a speed greater than or equal to 75% of its maximum speed.
  • the stop means may comprise at least one stop element projecting from the support in the direction of the membrane and / or protruding from the membrane towards the support, and having a free end separated by a non-zero distance respectively from the membrane and / or support in the rest state.
  • the stop element may be located opposite a central zone of the membrane or may be fixed in a central zone of the membrane.
  • the distance separating the free end of the stop element and the membrane or the free end of the stop element and the support is between 50% and 75% of the theoretical maximum stroke of the membrane.
  • the digital acoustic device comprises a plurality of stop elements.
  • the stop elements are distributed over an area corresponding to a surface representing between 10% and 50% of the surface of the membrane.
  • the digital acoustic device comprises a gaseous fluid between the membrane and the support, the device comprising at least one passage in the support for the flow of the gaseous fluid so as to reduce the viscous damping.
  • the passage can be formed between two stop elements.
  • the stop element (s) have a cross-section, circular, square, ellipsoidal or trapezoidal column shape.
  • the stop element (s) can be in one piece with the support and / or the membrane. According to an additional characteristic, the stop element or elements are formed of one or more layers of materials added to the substrate and / or the membrane.
  • the actuator may be carried by the membrane and is opposite the free end of the stop element, said device comprising a protective layer deposited on the actuator so as to protect it from contact with the free end. of the stop element.
  • At least one actuator may be formed by a piezoelectric actuator.
  • the digital acoustic device may comprise a first actuator in contact with the membrane intended to exert a force on the membrane in a first direction, a second actuator in contact with the membrane intended to exert a force on the membrane in a second direction opposite to the first .
  • the first and second actuators may comprise a ferroelectric piezoelectric material, each of the first and second actuators being intended to deform the membrane in an opposite direction.
  • the first actuator borders the outer periphery of the membrane and the second actuator is located substantially in a central zone of the membrane.
  • the digital acoustic device may comprise a second support facing the membrane opposite the first support, said second support having stop means for interrupting the movement of said membrane following activation of said second actuator.
  • the digital acoustic device comprises a plurality of membranes and actuators associated with each of the membranes.
  • the present invention also relates to a method for producing a digital acoustic device according to the invention
  • the stop element can advantageously be realized simultaneously with at least one electrical connection of the actuator, between the support and the actuator,
  • an electrical line prior to the production of the stop element and the electrical connection, an electrical line can be made, the electrical connection being formed on said electrical line, so that the height of the connection assembly electrical line is greater than that of the stop element.
  • a recess can be made in an area of the support where the stop element is formed so that the height of the support and connection assembly electrical power is greater than that of the support assembly and stop element.
  • the stop element is for example made in said substrate and / or the membrane by etching.
  • the assembly between the support and the membrane is not thermocompression and / or bonding, for example by molecular bonding ...
  • Steps a) and b) are advantageously carried out by microelectronic techniques.
  • FIG. 1A is a view from above of an example of a membrane provided with an actuator for a digital loudspeaker of the invention
  • FIGS. 1B and 1C are side views of the membrane of FIG. 1A in two different states
  • FIG. 2 is a side view of an exemplary embodiment of a loudspeaker according to the invention.
  • FIG. 3 is a side view of another embodiment of a loudspeaker according to the invention.
  • FIG. 4 is a graphical representation of the acceleration of the membrane as a function of time t for a system of the state of the art and a loudspeaker according to the invention
  • FIGS. 5A to 5R are diagrammatic representations of steps for producing a membrane and actuators for a loudspeaker according to an example of a production method
  • FIGS. 6A to 6D are diagrammatic representations of steps for producing a support provided with stop means according to the invention according to an exemplary embodiment method
  • FIG. 7 is a schematic representation of a variant of the method of FIGS. 6A to 6D.
  • FIGS. 8A to 8C are diagrammatic representations of steps for producing a support provided with stop means according to the invention according to another exemplary embodiment method
  • FIG. 9 is a schematic representation of a loudspeaker comprising stop means facing each of the faces of the membrane.
  • the invention will be described by considering a digital speaker but will be understood that the invention relates to also on an acoustic photo imaging system, and more generally on a digital acoustic device.
  • a digital speaker has a plurality of acoustic transducers or speaklets individually controlled.
  • the sound to be reproduced is reconstructed by the principle of the additivity of the elemental sounds of the speaklets in the air.
  • FIGS. 1A to 1C and 2 a particularly advantageous example of a piezoelectric actuated elementary loudspeaker can be seen.
  • FIGS. 1A to 1C only the diaphragm is shown with the actuators.
  • FIG. 2 it is possible to see the digital loudspeaker comprising a diaphragm 2 in the form of a disk suspended on a support 4, a ring-shaped piezoelectric material element 6 situated on an upper face of the membrane 2 and on the outer edge of the membrane 2.
  • the outer periphery of the ring 6 is on the support 4 and the inner periphery is on the membrane 2.
  • the ring is connected to a voltage or current source 8 as is schematized in FIGS. 1C and 1B so that it forms a first actuator adapted to set the membrane 2 in motion.
  • a voltage or current source 8 as is schematized in FIGS. 1C and 1B so that it forms a first actuator adapted to set the membrane 2 in motion.
  • an electrode is provided on the upper face and the lower face of the ring 6 to ensure its connection to the voltage source 8.
  • the membrane device also comprises a second element of piezoelectric material 10 in disk form in the example shown, and located in a central portion of the upper face of the membrane 2.
  • the disk 10 is also connected to a voltage or current source 12 as is schematized in FIGS. 1C and 1B so that it forms a second actuator able to set the membrane 2 in motion.
  • An electrode is provided on each side of the ring to ensure its connection to the voltage source 8.
  • the membrane may have a square or rectangular shape, in this case the actuator may have a shape similar to that of the membrane but with a different surface.
  • the second actuator has no part of its surface anchored on the support part.
  • the first and second actuators may be made of the same piezoelectric materials or with different piezoelectric materials.
  • the actuators are made from ferroelectric piezoelectric materials such as PZT.
  • the movements of the membrane obtained with these actuators are those shown in Figures 1B and 1C.
  • the application of a voltage on the first actuator 6 causes a displacement of the membrane 2 upwards, it then has a convex shape relative to the support 4.
  • the application of a voltage on the second actuator 10 causes a displacement of the membrane 2 downwards which then has a concave shape with respect to the support 4.
  • the actuators are made from piezoelectric materials such as AIN, ZnO, etc.
  • a positive voltage causes the piezoelectric material to expand while a negative voltage will induce its contraction.
  • the amplitude of the displacement of the membrane is proportional to the voltage applied across the actuators.
  • the implementation of two actuators has the advantage of being able to move the membrane upwards and downwards, which makes it easier to achieve a speaker with a fine reproduction of the sound.
  • the digital acoustic device according to the invention may comprise other types of actuator that piezoelectric actuators, it may be electrostatic actuators, magnetic, thermal ... which are well known to the man of the job.
  • projecting elements are provided on a substrate facing the membrane and towards the membrane so as to form stop elements displacement of the membrane as it moves at a non-zero speed.
  • the height of the stop elements 14 is chosen so that their free end 14.1 comes into contact with the substrate while the membrane has a non-zero speed.
  • the distance between the membrane at rest and the free end 14.1 of the stop elements is designated h.
  • the height of the stop elements is such that the free end of the stop elements comes into contact with the membrane while the membrane has its maximum or substantially maximum speed.
  • the projecting elements may be located below the membrane in the representation of FIG. 2.
  • the distance h is between 50% and 75% of the theoretical maximum stroke of the membrane.
  • the height of the stop elements is a function of the deformation of the membrane.
  • stop elements having all the same height
  • the stop elements located closer to the center of the membrane will enter contact with the membrane first.
  • the membrane due to the inertia generated by its movement will continue to deform for a short time, and stops further periphery will come into contact in turn.
  • the stop elements are located facing a central zone of the membrane having the largest deformed it is also the area with the highest speed.
  • the central portion has for example half the diameter of the membrane.
  • the stop elements are distributed over a portion of the surface of the membrane so as not to risk damaging or breaking the membrane.
  • the distance between the free end of at least one stop element 14 and the membrane at rest is then less than the theoretical maximum stroke of the membrane, so as to ensure contact between the free end 14.1 of the stopping element and the membrane before it has zero velocity.
  • a single stop element 14 up to several tens or even hundreds of stop elements can be provided.
  • the stop element or elements are distributed over an area having a surface corresponding to between 10% and 50% of the surface of the membrane.
  • the stop elements may have any shape, for example have a cylindrical shape with circular section, ellipsoidal, a form of pavement right ...
  • the section of the stop elements is determined according to the number of stop elements, and / or the surface of the membrane and / or the rigidity of the membrane.
  • the section of the stop elements may for example be between a few tens of ⁇ m 2 a few mm 2 .
  • the distance between the stop elements is also chosen according to the surface of the membrane and / or the rigidity of the membrane. For example, the more flexible the membrane, the more the stop elements will be close to each other to limit or even avoid parasitic deformations of the membrane. This distance is preferably between a few tens of ⁇ and a few mm, this distance also making it possible to reduce the gaseous damping that can be induced by the presence of these stop elements.
  • At least one passage 16 is provided in the substrate facing the membrane in the substrate in order to limit the appearance of viscous damping when the membrane approaches the stop elements, this passage allowing the air or other gaseous fluid to flow and not to dampen the movement of the membrane.
  • passages 16 are made between the stop elements.
  • a protective layer is formed at least on the central actuator 10 so that the contact between the stop elements and the actuator does not damage it.
  • the stop members are arranged with respect to the actuator or actuators so as not to contact the actuator.
  • the stop elements are arranged between the actuators 10 and 6. Considering a membrane having a small surface, the arrangement of the stop elements only on a ring is sufficient to stop the membrane and not induce too much deformation of the center of it.
  • the distance between the rest position of the membrane and the free end 14.1 of the stop element is determined as a function of the dimension of the membrane and of these materials forming it, in particular the mechanical properties thereof, defined in particular by the Young's module, the density and Poisson's ratio, these parameters setting the maximum stroke of the membrane.
  • the displacement of the membrane is calculated. This can be calculated by finite element software such as ANSYS, COVENTOR ... or analytically as in the following equation giving the dynamic displacement of the membrane:
  • V designates the applied voltage.
  • This distance is chosen sufficient to allow the membrane to reach a high speed, preferably its maximum speed.
  • the contact between the membrane and the free end of the stop member takes place before the membrane decelerates.
  • a distance will preferably be chosen between the membrane at rest and the free end of the stop element between 50% to 75% of the maximum stroke of the membrane, preferably between 50% and 60%.
  • the deflection of the membrane will be of the order of 3 ⁇ . If h is chosen so as to be at 50% of the maximum stroke, then h will be 1.5 ⁇ .
  • the characteristics of the stop elements carried by the substrate, such as the section, the spacing ... described for the stop elements 14 also apply to the stop elements 14 '.
  • FIG. 4 shows, as a function of time, the variation of the acceleration a of a diaphragm of a loudspeaker according to the invention (curve designated I) and the variation of the acceleration of a membrane of a loudspeaker of the state of the art without stop element (curve designated II).
  • the sound pressure caused by a speakiet and thus the capacity of the digital loudspeaker to reconstruct an audible sound of the desired sound level depends on the speed (acceleration a) of the membrane of the speakiet and its ability not to cause parasite , ie its ability not to present parasitic oscillations.
  • a silicon substrate 100 shown in Figure 5A having for example a thickness of 725 microns and a diameter of 200mm in diameter.
  • the substrate is subjected to thermal oxidation so as to form an oxide layer 102 on all the substrate surfaces with a thickness of 2 ⁇ m, for example.
  • the element thus obtained is shown in FIG. 5B.
  • an oxide hard mask 104 is made on the rear face of the substrate.
  • This mask has for example a thickness of 7 microns.
  • the mask is made by inverting the substrate; depending on the chosen deposition composition; it is possible to remove the mask only on this face. It may be for example a deposition type PVD (Physical Vapor Deposition in English terminology). The element thus obtained is shown in FIG. 5C.
  • a lithography is then carried out on the rear face so as to reach the silicon.
  • the element thus obtained is shown in FIG. 5D.
  • the hard mask is etched, for example by reactive ion etching (RIE), so as to reach the rear face of the substrate 100.
  • RIE reactive ion etching
  • the oxide layer is removed on the front face, for example by deoxidation or chemical etching.
  • the element thus obtained is shown in FIG. 5F.
  • an oxide layer 106 is formed on the front face.
  • a densification annealing takes place for example at a temperature of the order of 800 ° C.
  • the element thus obtained is shown in FIG. 5G.
  • a layer 108 is formed on the front face intended to form the membrane 2, and a layer 110 on the rear face.
  • these layers are for example polysilicon, SiC or SiO 2 .
  • the thickness of the layers 108, 110 is for example between a few hundred nm to several ⁇ m, or even several tens of ⁇ m.
  • the layers 108, 110 are for example made by chemical vapor deposition (or CVD for Chemical Vapor Deposition in English terminology) or by epitaxial growth. Preferably, the stresses of the layers 108, 110 are controlled.
  • the layers 108, 110 can be formed in several times. For example, for a thickness of 4 microns, two layers of 1.5 microns thick and 1 layer of 1 micron thick are made successively.
  • a layer 112 is formed on the layer 108, for example SiO 2 or SiN, having for example a thickness between a few hundred nm and several ⁇ m.
  • the layer 112 is formed for example by thermal oxidation or by CVD deposition.
  • a densification annealing takes place for example at a temperature of the order of 800 ° C.
  • the first and second actuators are made.
  • a layer 114 is firstly made for forming the lower electrodes of the actuators, for example in Pt, Mo.
  • layer 114 is made for example by deposition on the layer 112.
  • the layer 114 has for example a thickness between a few tens of nm to a few hundred nm. The element thus obtained is shown in FIG. 5J.
  • a layer of piezoelectric material 116 is then formed on the layer 114, for example PZT, AlN, ZnO, LNO whose thickness is for example between a few hundred nm to a few ⁇ .
  • the upper electrode is then produced by forming a layer 118 on the piezoelectric material 116, for example in Ru or Au for example having a thickness of between a few tens of nm and a few hundred nm.
  • the element thus obtained is shown in FIG. 5K.
  • the layer 118 is etched so as to delimit the annular actuator 8 and the disc-shaped actuator 10.
  • the remaining layer portions 118 are etched again so that they are recessed with respect to the layer portions 116.
  • the layer 114 is then etched, as well as the oxide layer 112. The element thus obtained is shown in FIG. 5M.
  • a staircase profile is produced. This is obtained because all the layers are deposited and etched from the top layer, using different photolithography masks, the second mask being wider than the first, etc. This allows to leave safety margins to avoid layer overlap, which may appear due to the uncertainty of the positioning of the masks. This avoids any short electrical circuit between the electrodes.
  • the element thus obtained is shown in FIG. 5N.
  • contact pickup pads 120 are formed.
  • a layer 122 of dielectric material, for example SiO 2 is formed on the edges of the stacks formed by the lower, upper and piezoelectric electrodes, this layer being etched so as to partially disengage the lower and upper electrodes. The element thus obtained is shown in FIG.
  • a layer of AISi or TiAu is formed and is etched, thus forming contact pads at the regions where the electrodes have been released.
  • the element thus obtained is shown in FIG. 5P.
  • a protective layer 124 is formed on the actuators, for example an oxide layer, in order to protect the actuators from contact with the stop elements.
  • the thickness of this layer may be between a few hundred nm to a few ⁇ , for example 500 nm.
  • the layer 124 is etched to access the contacts.
  • the actuators are protected, for example by the deposition of a dry film 126.
  • the rear face is etched in order to release the membrane 2.
  • the membrane is released by deep etching of the substrate through the backside until it reaches the membrane.
  • the stop elements are made on a substrate type "interposer", ie having electrical connections and / or electronic circuits (control, sensors ... ).
  • the stop elements are made simultaneously with the connections Electrical 18, also referred to as microbumps or copper pillar.
  • the stop elements therefore have a structure similar to that of the electrical connections.
  • the electrical connections are intended to route the signal of the speaklets to pads at the periphery of the substrate 200 or to the electronics if it is made on the substrate 20.
  • a single stop element is formed, but it will be understood that several stop elements can be formed simultaneously.
  • lines are made to bring the signal of the speaklet to contact pads (not shown) at the periphery of the substrate 200, it is for example copper lines.
  • a layer of, for example, TiCu 2 O 2 is then formed on one side.
  • Resin zones are then defined by means of a resin for the formation of thick copper layers.
  • the copper layers 204 are then formed for example by growth. Then the resin is removed and the TiCu layer is etched.
  • the element thus obtained is shown in FIG. 6B.
  • the copper lines are present only in line with the contact pads connected to the electrodes.
  • the area of the substrate 200 at least vertically above the central zone of the membrane, does not yet comprise any layer.
  • a layer of TiCu 206 is again deposited at the places where it is desired to make the electrical connections and the abutments, then Cu growth zones are defined and the copper portions 208 are grown.
  • the microbumps are produced on the two copper lines and in the region of the substrate 200 in line with the central zone of the membrane.
  • SnAg 210 layers are then formed on the three portions of copper 208 and SnAg 210.
  • the resin is removed and the TiCu layer is etched.
  • the portions 208 and 210 have a reduced section relative to that of the portions 204.
  • passages 16 may be made in the substrate between the electrical connections and the stop element 14 for example by etching; these passages being intended to reduce the viscous damping as has been described above.
  • the membrane 2 and the actuators 6, 10 shown in Figure 5R and the substrate provided with the electrical connections and the stop element 14 of Figure 6C are assembled.
  • the electrical connections 18 are aligned with the contact pads, then brought into contact with the contact pads.
  • the assembly is done for example by thermocompression.
  • the speaker is shown in Figure 6D. In practice, the dry film is removed after assembling the two substrates.
  • the height of the stop element is identical to that of the electrical connections, on the other hand the stop element being made directly on the substrate 200, are free end 14.1 does not come into contact with the membrane resting.
  • the distance between the free end 14.1 and the membrane designated h is thus determined in this embodiment by the thickness of the portions of the connection lines.
  • h is the distance between the free end 14.1 and the actuator6. In the case of a loudspeaker comprising another type of actuator, it would not necessarily be taken into account in the calculation of the distance h.
  • the distance h between the free end 14.1 of the stop element and the membrane is chosen to be less than the theoretical maximum stroke of the membrane, preferably h is between 50% of the theoretical maximum stroke and 75 % of the theoretical maximum stroke of the membrane.
  • the Maximum deformation of the membrane is determined from the dimensions of the membrane.
  • the method of producing the stop elements and the connection or connections is similar to that described above.
  • FIG. 7 shows an alternative embodiment of the stop elements, in the case where the control electronics is produced on the substrate 200.
  • the copper tracks are not required to fix the height. h stop elements but only to route the signal to pads or to the electronics. Electrical connections can be made directly to the substrate by depositing a Ti / Cu layer and thick copper growth. The distance h between the free end 14.1 of the stop element and the membrane is then obtained by making a recess 20 in the electronic substrate 200 at the future location of the element or the stop elements prior to the making the electrical connections and the stop element. This recess has a depth h. This recess is an example made partially etching the electronic substrate 200.
  • the stop element at the same height as the microbumps but, because of the presence of the depth recess h, the free end 14.1 of the substrate is at a distance h from the membrane at rest.
  • the substrate is of the "packaging" type, i.e. the function of the substrate is to cover the membrane in order to encapsulate it.
  • a substrate 300 for example made of silicon (FIG. 8A). Then, a layer 302 is formed which is sealed with the membrane, for example gold or oxide.
  • the sealing layer is then etched to leave this layer only on the periphery of the substrate.
  • the substrate is then structured, for example by partial etching, to produce the stop element 14.
  • the depth the etching is chosen so as to obtain the desired distance h between the free end 14.1 of the stop element and the membrane
  • the depth of the etching takes into account the thickness induced by the assembly, for example by gold-gold bonding or molecular bonding, this involves taking into account the thickness of the sealing layer.
  • the stop element is in one piece with the substrate type "packaging".
  • This element is then sealed with the membrane of FIG. 5Q, for example by gold-gold bonding, by molecular assembly (FIG. 8C).
  • the loudspeaker of FIG. 9 is for example made as has been described with reference to FIGS. 8A and 8B, but this is not limiting.
  • the support substrate of the membrane is then thinned so as to make its thickness less than the maximum stroke of the membrane. It can be envisaged to completely remove the support substrate.
  • the substrate 300 is then assembled facing the face of the membrane opposite to that carrying the actuators.
  • the stop elements 14 on either side of the membrane 2 have the same height but one could predict that they have different heights, for example depending on the level of thinning of the substrate membrane support.
  • stop elements would be carried by the membrane
  • their production would for example be obtained by deposition of material after the step shown in Figure 5P or that shown in Figure 5Q.
  • the stop elements would be made by retaining a portion of the original substrate 100. The substrate would then be thinned to the thickness of the desired stop elements, then the membrane would be released by etching the substrate, it would then be possible to leave the stop elements.
  • the digital acoustic device according to the invention offers increased sound power with a relatively simple structure.
  • the production method is not very complex compared to the production of digital acoustic devices of the state of the art, in particular in the case of microbumps realization.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Manufacturing & Machinery (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)
  • Micromachines (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)

Abstract

Dispositif acoustique numérique comportant au moins une membrane suspendue (2) en regard d'un support (4) et au moins un actionneur (6, 10) associé à ladite membrane, ledit actionneur (6, 10) associé étant destiné à déplacer ladite membrane (2) en éloignement et/ou en rapprochement dudit support (4), ledit dispositif comportant également des moyens d'arrêt (14) destinés à interrompre le déplacement de ladite membrane (2) suite à l'activation dudit actionneur lorsque la membrane a une vitesse non nulle, les moyens d'arrêt (14) étant dimensionnés de sorte à interrompre le déplacement de la membrane (2) lorsque le déplacement de la membrane est supérieur ou égale à 50% de la course maximale théorique de la membrane et inférieur ou égale à 95% de la course maximale théorique de la membrane.

Description

DISPOSITIF ACOUSTIQUE NUMERIQUE A PUISSANCE SONORE AUGMENTEE
DESCRIPTION DOMAINE TECHNIQUE ET ART ANTÉRIEUR
La présente invention se rapporte à un dispositif acoustique digital à puissance sonore augmentée, par exemple un haut-parleur digital ou un système d'imagerie photo acoustique.
Les haut-parleurs sont présents dans un grand nombre d'appareils tels que les téléphones portables, les écrans plats... et leur miniaturisation est recherchée. Les technologies MEMS peuvent permettre d'obtenir des haut-parleurs ultrafins.
La technologie MEMS est particulièrement adaptée pour réaliser des haut-parleurs digitaux, pour lesquels la grande membrane du haut- parleur analogique est remplacée par plusieurs membranes unitaires ou plus généralement par plusieurs transducteurs acoustiques ultrafins, désignés speaklets, de petites tailles, permettant de reconstituer le son.
Dans le cas du haut-parleur digital, chaque speaklet est actionné individuellement selon le son à reconstruire, dans une position haute, ou dans une position basse.
Les haut-parleurs digitaux offrent néanmoins un faible niveau sonore.
Des solutions ont été proposées pour augmenter la pression acoustique d'un microphone. Par exemple le document US 2011/0075867 décrit un microphone comportant une membrane munie en son centre d'une masse ayant pour effet de réduire la fréquence de résonance de la membrane et ainsi d'augmenter la pression acoustique. Le document US 2011/0051985 décrit un microphone digital comportant une membrane munie d'un piston fixé sur la membrane. EXPOSÉ DE L'INVENTION
C'est par conséquent un but de la présente invention d'offrir un dispositif acoustique digital, par exemple un haut-parleur offrant une puissance acoustique augmentée.
Le but précédemment énoncé est atteint par un dispositif acoustique digital comportant au moins une membrane suspendue, au moins un actionneur associé à la membrane pour la déplacer vers le haut ou vers le bas, et des moyens interrompant le déplacement de la membrane suite à l'activation de l'actionneur associé à la membrane. Les moyens d'interruption sont dimensionnés de sorte que le déplacement de la membrane est interrompu lorsqu'elle présente une vitesse non nulle.
De manière préférée, la vitesse à laquelle le déplacement vers le haut ou vers le bas, du fait de l'utilisation de l'actionneur associé est stoppé est la vitesse maximale ou sensiblement maximale que peut avoir la membrane. Plus la décélération de la membrane est grande plus la pression acoustique générée par le déplacement de la membrane sera grande.
En d'autres termes, dans le dispositif acoustique digital selon l'invention le déplacement de la membrane est interrompu volontairement, de préférence lorsqu'elle présente une vitesse élevée, voire maximale pour obtenir une décélération brutale de la membrane et ainsi générer une pression acoustique élevée. Ces éléments d'arrêt sont donc dimensionnés pour interrompre le déplacement de la membrane avant qu'elle n'atteigne la fin de sa course.
Avantageusement, les moyens pour stopper la membrane au cours de son déplacement sont portés par un substrat en regard de la membrane ils forment un ou des éléments en saillie du substrat en direction de la membrane et sont dimensionnés pour entrer en contact avec la membrane lorsqu'elle présente une vitesse non nulle, de préférence une vitesse élevée et de manière encore préférée une vitesse maximale. De préférence, la distance entre l'extrémité libre du ou des éléments d'arrêt et la membrane au repos est comprise entre 50 % et 75 % de la course maximale théorique de la membrane.
En variante, les moyens pour stopper la membrane au cours de son déplacement sont portés par la membrane ils forment un ou des éléments en saillie et sont dimensionnés pour entrer en contact avec substrat en regard de la membrane lorsqu'elle présente une vitesse non nulle, de préférence une vitesse élevée et de manière encore préférée une vitesse maximale. De préférence, la distance entre l'extrémité libre du ou des éléments d'arrêt et le support lorsque la membrane est au repos est comprise entre 50 % et 75 % de la course maximale théorique de la membrane.
Le dispositif acoustique digital peut être un haut-parleur digital ou un système d'imagerie photo acoustique.
La présente invention a alors pour objet un dispositif acoustique digital comportant au moins une membrane suspendue en regard d'un support et au moins un actionneur associé à ladite membrane, ledit actionneur associé étant destiné à déplacer ladite membrane en éloignement et/ou en rapprochement dudit support, ledit dispositif comportant également des moyens d'arrêt destinés à interrompre le déplacement de ladite membrane suite à l'activation dudit actionneur lorsque la membrane a une vitesse non nulle, les moyens d'arrêt étant dimensionnés de sorte à interrompre le déplacement de la membrane lorsque le déplacement de la membrane est supérieur ou égal à 50 % de la course maximale théorique de la membrane et inférieur ou égal à 75 % de la course maximale théorique de la membrane.
De manière préférée, les moyens d'arrêt sont dimensionnés de sorte à interrompre le déplacement de la membrane lorsque le déplacement de la membrane est compris entre 50 % et 60 % de la course maximale théorique de la membrane.
Avantageusement, les moyens d'arrêt sont dimensionnés de sorte à interrompre le déplacement de la membrane lorsqu'elle se déplace à sa vitesse maximale ou à une vitesse proche de sa vitesse maximale, i.e. à une vitesse supérieure ou égale à 75 % de sa vitesse maximale.
Les moyens d'arrêt peuvent comporter au moins un élément d'arrêt en saillie du support en direction de la membrane et/ou en saillie de la membrane en direction du support, et présentant une extrémité libre séparée d'un distance non nulle respectivement de la membrane et/ou du support à l'état repos.
L'élément d'arrêt peut être situé en regard d'une zone centrale de la membrane ou peut être fixé dans une zone centrale de la membrane.
Avantageusement, la distance séparant l'extrémité libre de l'élément d'arrêt et la membrane ou l'extrémité libre de l'élément d'arrêt et le support est compris entre 50 % et 75 % de la course maximale théorique de la membrane.
De manière avantageuse, le dispositif acoustique digital comporte une pluralité d'éléments d'arrêt.
De préférence, les éléments d'arrêt sont répartis sur une zone correspondant à une surface représentant entre 10 % et 50 % de la surface de la membrane.
Dans un exemple de réalisation, le dispositif acoustique digital comporte un fluide gazeux entre la membrane et le support, le dispositif comprenant au moins un passage dans le support pour l'écoulement du fluide gazeux de sorte à réduire l'amortissement visqueux. Le passage peut être formé entre deux éléments d'arrêt.
Par exemple le ou les éléments d'arrêt ont une forme de colonne à section, circulaire, carrée, ellipsoïdale ou trapézoïdale.
Le ou les éléments d'arrêt peuvent être d'un seul tenant avec le support et/ou la membrane. Selon une caractéristique additionnelle, le ou les éléments d'arrêt sont formés d'une ou plusieurs couches de matériaux rapportés sur le substrat et/ou la membrane.
L'actionneur peut être porté par la membrane et est en regard de l'extrémité libre de l'élément d'arrêt, ledit dispositif comportant une couche de protection déposée sur l'actionneur de sorte à le protéger du contact avec l'extrémité libre de l'élément d'arrêt.
Au moins un actionneur peut être formé par un actionneur piézoélectrique.
Le dispositif acoustique digital peut comporter un premier actionneur en contact avec la membrane destiné à exercer un effort sur la membrane selon un premier sens, un deuxième actionneur en contact avec la membrane destiné à exercer un effort sur la membrane selon un deuxième sens opposé au premier.
Les premier et deuxième actionneurs peuvent comporter un matériau piézoélectrique ferroélectrique, chacun des premier et deuxième actionneurs étant destinés à déformer la membrane dans un sens opposé.
Dans un exemple de réalisation, le premier actionneur borde la périphérie extérieure de la membrane et le deuxième actionneur est situé sensiblement dans une zone centrale de la membrane.
Le dispositif acoustique digital peut comporter un deuxième support en regard de la membrane à l'opposé du premier support, ledit deuxième support comportant des moyens d'arrêt destinés à interrompre le déplacement de ladite membrane suite à l'activation dudit deuxième actionneur.
De manière préférée, le dispositif acoustique digital comporte une pluralité de membranes et d'actionneurs associés à chacune des membranes.
La présente invention a également pour objet un procédé de réalisation d'un dispositif acoustique digital selon l'invention,
a) réalisation de la membrane et de l'actionneur, b) réalisation des moyens d'arrêt sur le support et/ou sur la membrane,
c) assemblage de la membrane et de l'actionneur avec le support de sorte que les moyens d'arrêt soient en regard respectivement de la membrane et/ou du support, à une distance donnée lorsque la membrane est au repos.
L'élément d'arrêt peut avantageusement être réalisé simultanément à au moins une connexion électrique de l'actionneur, entre le support et l'actionneur,
Dans un exemple de réalisation, préalablement à la réalisation de l'élément d'arrêt et de la connexion électrique, une ligne électrique peut être réalisée, la connexion électrique étant formée sur ladite ligne électrique, de sorte que la hauteur de l'ensemble connexion ligne électrique est supérieure à celle de l'élément d'arrêt.
Dans un autre exemple de réalisation, préalablement à la réalisation de l'élément d'arrêt, un évidement peut être réalisé dans une zone du support où est formé l'élément d'arrêt de sorte que la hauteur de l'ensemble support et connexion électrique est supérieure à celle de l'ensemble support et élément d'arrêt.
L'élément d'arrêt est par exemple réalisé dans ledit substrat et/ou la membrane par gravure.
Par exemple l'assemblage entre le support et la membrane se fait pas thermocompression et/ou collage, par exemple par collage moléculaire...
Les étapes a) et b) sont réalisées avantageusement par des techniques microélectroniques.
BRÈVE DESCRIPTION DES DESSINS
La présente invention sera mieux comprise à l'aide de la description qui va suivre et des dessins en annexes sur lesquels : - la figure 1A est une vue de dessus d'un exemple d'une membrane munie d'actionneur pour un haut-parleur digital de l'invention,
- les figures 1B et 1C sont des vues de côté de la membrane de la figure 1A dans deux états différents,
- la figure 2 est une vue de côté d'un exemple de réalisation d'haut-parleur selon l'invention,
- la figure 3 est une vue de côté d'un autre exemple de réalisation d'un haut-parleur selon l'invention,
- la figure 4 est une représentation graphique de l'accélération de la membrane en fonction du temps t pour un système de l'état de la technique et un haut-parleur selon l'invention,
- les figures 5A à 5R sont des représentations schématiques d'étapes de réalisation d'une membrane et des actionneurs d'un haut parleur selon un exemple de procédé de réalisation,
- les figures 6A à 6D sont des représentations schématiques d'étapes de réalisation d'un support muni de moyens d'arrêt selon l'invention selon un exemple de procédé de réalisation,
- la figure 7 est une représentation schématique d'une variante du procédé des figures 6A à 6D,
- les figures 8A à 8C sont des représentations schématiques d'étapes de réalisation d'un support muni de moyens d'arrêt selon l'invention selon un autre exemple de procédé de réalisation,
- la figure 9 est une représentation schématique d'un haut- parleur comportant des moyens d'arrêt en regard de chacune des faces de la membrane.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS
Dans la description qui suivre, l'invention sera décrite en considérant un haut-parleur digital mais sera compris que l'invention porte également sur un système d'imagerie photo acoustique, et plus généralement sur un dispositif acoustique digital.
Un haut-parleur digital comporte une pluralité de transducteurs acoustiques ou speaklets commandés individuellement. Le son à reproduire est reconstruit par le principe de l'additivité des sons élémentaires des speaklets dans l'air. Dans la description qui va suivre, nous considérerons un haut-parleur élémentaire comportant un speaklet.
Sur les figures 1A à 1C et 2, on peut voir un exemple particulièrement avantageux de haut-parleur élémentaire à actionnement piézoélectrique. Sur les figures 1A à 1C, seule la membrane est représentée avec les actionneurs. Sur la figure 2, on peut voir le haut-parleur digital comportant une membrane 2 sous forme de disque suspendu sur un support 4, un élément en matériau piézoélectrique 6 en forme d'anneau situé sur une face supérieure de la membrane 2 et sur le bord extérieur de la membrane 2.
La périphérie extérieure de l'anneau 6 est sur le support 4 et la périphérie intérieure est sur la membrane 2. L'anneau est connecté à une source de tension ou de courant 8 comme cela est schématisé sur les figures 1C et 1B de sorte qu'il forme un premier actionneur apte à mettre en mouvement la membrane 2. Pour cela, une électrode est prévue sur la face supérieure et la face inférieure de l'anneau 6 pour assurer sa connexion à la source de tension 8.
Dans l'exemple représenté et de manière avantageuse, le dispositif à membrane comporte également un deuxième élément en matériau piézoélectrique 10 sous forme de disque dans l'exemple représenté, et situé dans une partie centrale de la face supérieure de la membrane 2. Le disque 10 est également connecté à une source de tension ou de courant 12 comme cela est schématisé sur les figures 1C et 1B de sorte qu'il forme un deuxième actionneur apte à mettre en mouvement la membrane 2. Une électrode est prévue sur chaque face de l'anneau pour assurer sa connexion à la source de tension 8. Dans une autre variante, la membrane peut présenter une forme carrée ou rectangulaire, dans ce cas l'actionneur peut avoir une forme similaire à celle de la membrane mais avec une surface différente.
Il est à noter que le deuxième actionneur ne présente aucune partie de sa surface ancrée sur la partie support.
Les premier et deuxième actionneurs peuvent être réalisés avec les mêmes matériaux piézoélectriques ou avec des matériaux piézoélectriques différents.
Dans un exemple de réalisation, les actionneurs sont réalisés à partir de matériaux piézoélectriques ferroélectriques tels que le PZT. Les déplacements de la membrane obtenus grâce à ces actionneurs sont ceux représentés sur les figures 1B et 1C.
En effet, quelle que soit le signe de la tension appliquée, si celle-ci est supérieure en valeur absolue au champ coercitif du matériau piézoélectrique ferroélectrique, alors celui-ci se dilate dans l'épaisseur et se contracte radialement. Par conséquent, les déplacements vers le haut ou vers le bas de la membrane sont provoqués par la forme et la position de l'actionneur sur la membrane et non par le signe de la tension de commande.
Dans l'exemple représenté, l'application d'une tension sur le premier actionneur 6 provoque un déplacement de la membrane 2 vers le haut, elle présente alors une forme convexe par rapport au support 4. L'application d'une tension sur le deuxième actionneur 10 provoque un déplacement de la membrane 2 vers le bas qui présente alors une forme concave par rapport au support 4.
Dans un autre exemple de réalisation, les actionneurs sont réalisés à partir de matériaux piézoélectriques comme par exemple AIN, ZnO... Une tension positive provoque la dilatation du matériau piézoélectrique alors qu'une tension négative va induire sa contraction. Ainsi les déplacements vers le haut et le bas peuvent être obtenus en utilisant un seul actionneur. L'amplitude du déplacement de la membrane est proportionnelle à la tension appliquée aux bornes des actionneurs.
La mise en œuvre de deux actionneurs présente l'avantage de pouvoir déplacer la membrane vers le haut et vers le bas, ce qui permet de réaliser plus facilement un haut-parleur offrant une reproduction fine du son.
Mais un haut-parleur comportant un seul actionneur ne sort pas du cadre de la présente invention. Par ailleurs, le dispositif acoustique digital selon l'invention peut comporter d'autres types d'actionneur que des actionneurs piézoélectriques, il peut s'agir d'actionneurs électrostatiques, magnétiques, thermiques... qui sont bien connus de l'homme du métier.
Selon un exemple de réalisation de l'invention, et comme cela est plus particulièrement visible sur la figure 2, des éléments en saillie sont prévus sur un substrat en regard de la membrane et en direction du la membrane sorte à former de éléments d'arrêt du déplacement de la membrane alors qu'elle se déplace à une vitesse non nulle. La hauteur des éléments d'arrêt 14 est choisie de sorte que leur extrémité libre 14.1 entre en contact avec le substrat alors que la membrane a une vitesse non nulle. La distance entre la membrane au repos et l'extrémité libre 14.1 des éléments d'arrêt est désignée h. De manière préférée, la hauteur des éléments d'arrêt est telle que l'extrémité libre des éléments d'arrêt entre en contact avec la membrane alors que la membrane a sa vitesse maximale ou sensiblement maximale. En variante, les éléments en saillie peuvent être situés en dessous de la membrane dans la représentation de la figure 2.
De manière avantageuse la distance h est comprise entre 50 % et 75 % de la course maximale théorique de la membrane.
Préférentiellement la hauteur des éléments d'arrêt est fonction de la déformée de la membrane.
Dans le cas d'éléments d'arrêt ayant tous la même hauteur, les éléments d'arrêt situés au plus près du centre de la membrane vont entrer en contact avec la membrane en regard en premier. La membrane, du fait de l'inertie engendrée par son mouvement va continuer à se déformer pendant un court instant, et les butées plus en périphérie vont venir en contact à leur tour.
De préférence, les éléments d'arrêt sont situés en regard d'une zone centrale de la membrane présentant la plus grande déformée c'est également la zone présentant la vitesse la plus élevée. La partie centrale présente par exemple la moiti du diamètre de la membrane. Les éléments d'arrêt sont répartis sur une partie de la surface de la membrane afin de ne pas risquer d'endommager, voire casser la membrane.
La distance entre l'extrémité libre d'au moins un élément d'arrêt 14 et la membrane au repos est alors inférieure à la course maximale théorique lèche de la membrane, de sorte à assurer un contact entre l'extrémité libre 14.1 de l'élément d'arrêt et la membrane avant qu'elle n'ait une vitesse nulle.
La mise des éléments d'arrêt en regard de cette zone permet de provoquer une décélération importante et donc la génération d'une pression acoustique élevée.
Un seul élément d'arrêt 14 jusqu'à plusieurs dizaines voire plusieurs centaines d'éléments d'arrêt peuvent être prévus.
De préférence le ou les éléments d'arrêt sont répartis sur une zone ayant une surface correspondant à entre 10 % et 50 % de la surface de la membrane.
Les éléments d'arrêt peuvent présenter toute forme, par exemple présenter un forme cylindrique à section circulaire, ellipsoïdale, une forme de pavé droit...
La section des éléments d'arrêt est déterminée en fonction du nombre d'éléments d'arrêt, et/ou de la surface de la membrane et/ou de la rigidité de la membrane. La section des éléments d'arrêt peut par exemple être comprise entre quelques dizaines de μm2 quelques mm2. La distance entre les éléments d'arrêt est également choisie en fonction de la surface de la membrane et/ou de la rigidité de la membrane. Par exemple, plus la membrane sera souple, plus les éléments d'arrêt seront proches les uns des autres pour limiter, voire éviter les déformations parasites de la membrane. Cette distance est de préférence comprise entre quelques dizaines de μιη et quelques mm, cette distance permettant en outre de réduire l'amortissement gazeux qui peut être induit par la présence de ces éléments d'arrêt.
De manière avantageuse, au moins un passage 16 est prévu dans le substrat en regard de la membrane dans le substrat afin de limiter l'apparition d'un amortissement visqueux lorsque la membrane se rapproche des éléments d'arrêt, ce passage permettant à l'air ou à tout autre fluide gazeux de s'écouler et de ne pas ou peu amortir le déplacement de la membrane. Dans l'exemple représenté, des passages 16 sont réalisés entre les éléments d'arrêt.
Avantageusement, une couche de protection est formée au moins sur l'actionneur central 10 de sorte que le contact entre les éléments d'arrêt et l'actionneur ne l'endommage pas.
Dans d'autres réalisation d'actionneur, de préférence les éléments d'arrêt sont disposés par rapport à l'actionneur ou aux actionneurs de sorte à ne pas entrer en contact avec l'actionneur. Par exemple dans la configuration des actionneurs 6 et 10 de la figure 1, les éléments d'arrêt sont disposés entre les actionneurs 10 et 6. En considérant une membrane présentant une petite surface, la disposition des éléments d'arrêt uniquement sur une couronne est suffisante pour arrêter la membrane et ne pas induire une trop grande déformation du centre de celle-ci.
La distance entre la position repos de la membrane et l'extrémité libre 14.1 de l'élément d'arrêt est déterminée en fonction de la dimension de la membrane et de ces matériaux le formant, en particulier des propriétés mécaniques de ceux-ci, définies notamment par le module d'Young, la densité et le coefficient de Poisson, ces paramètres fixant la course maximale de la membrane.
Pour déterminer la course maximale de la membrane, on calcule le déplacement de la membrane. Celui-ci peut être calculé par des logiciels de calculs par éléments finis tels que les logiciels ANSYS, COVENTOR... ou analytiquement comme dans l'équation suivante donnant le déplacement dynamique de la membrane :
Figure imgf000015_0001
est le coefficient piézoélectrique qui relie le champ
Figure imgf000015_0002
électrique appliqué hors plan (direction 3) et la contrainte dans le plan (direction 1), V désigne la tension appliquée. sont respectivement les
Figure imgf000015_0003
déformations relatives dans le plan (direction 1 et 2) obtenues en réponse à une contrainte appliquée selon la direction 1. L'exposant D signifie « à charge constante ». b est le rayon de la couche piézoélectrique. Cette équation est par exemple explicitée dans le document Li, « Theoretical modeling of a circular piezoelectric actuator for micro Systems », ICINA 2010. On détermine ensuite la distance entre la membrane au repos et l'extrémité libre 14.1 de l'élément d'arrêt 14.
Cette distance est choisie suffisante pour permettre à la membrane d'atteindre une vitesse importante, de manière préférée sa vitesse maximale. De préférence, le contact entre la membrane et l'extrémité libre de l'élément d'arrêt a lieu avant que la membrane ne décélère. On choisira de préférence une distance entre la membrane au repos et l'extrémité libre de l'élément d'arrêt comprise entre 50 % à 75 % de la course maximale de la membrane, préférentiellement entre 50 % et 60 %.
A titre d'exemple, pour une membrane de rayon 500 μιη par exemple, la déflexion de la membrane sera de l'ordre de 3 μιη. Si on choisit h de sorte à être à 50 % de la course maximale, h sera donc de 1,5 μιη.
Sur la figure 3, on peut voir un autre exemple de réalisation, dans lequel les éléments d'arrêt sont portés par la membrane. Dans ce cas, on fixe la distance h' entre les extrémités libres 14.1' des éléments d'arrêt 14' et le substrat lorsque la membrane est au repos comprise entre 50 % et 75 % de préférence de la course maximale théorique de la membrane.
Les caractéristiques des éléments d'arrêt portés par le substrat, telles que la section, l'espacement... décrites pour les éléments d'arrêt 14 s'appliquent également aux éléments d'arrêt 14'.
Sur la figure 4, on peut voir représentée, en fonction du temps, la variation de l'accélération a d'une membrane d'un haut-parleur selon l'invention (courbe désignée I) et la variation de l'accélération d'une membrane d'un haut-parleur de l'état de la technique sans élément d'arrêt (courbe désignée II).
Les aires des 2 courbes sont identiques, mais le pic désigné p dû à la décélération de la membrane est plus brutal que celui du pic de la courbe II et son amplitude est supérieure à celle du pic de la courbe II à l'accélération. A désigne le contact entre le ou les éléments d'arrêt et la membrane dans la réalisation de la figure 2.
Or la pression acoustique provoquée par un speakiet et ainsi la capacité du haut-parleur digital à reconstituer un son audible du niveau sonore souhaité, dépend de la vitesse (accélération a) de la membrane du speakiet et de sa capacité à ne pas provoquer de parasite, i.e. sa capacité à ne pas présenter d'oscillations parasites.
La pression acoustique en fonction de l'accélération s'écrit :
Figure imgf000017_0001
Avec
p0 : masse volumique de l'air
a : rayon de l'élément mobile
S : surface de l'élément mobile
r : distance d'écoute
V : vitesse de l'élément mobile
Acc : accélération de l'élément mobile Si a augmente, la pression acoustique va augmenter. L'équation ci-dessus s'applique également avec la décélération. Selon la présente invention, on augmente la décélération. En augmentant celle-ci, on augmente également la pression acoustique.
Nous allons maintenant décrire un exemple particulièrement avantageux d'un procédé de réalisation d'un haut-parleur selon l'invention.
Les étapes sont représentées schématiquement sur les figures
5A à 5R.
Par exemple, on utilise un substrat en silicium 100 représenté sur la figure 5A, ayant par exemple une épaisseur de 725 μm et un diamètre de 200mm de diamètre.
Lors d'une première étape, on effectue une oxydation thermique du substrat de sorte à former une couche d'oxyde 102 sur toutes les surfaces du substrat d'une épaisseur de 2 μm par exemple. L'élément ainsi obtenu est représenté sur la figure 5B.
Ensuite, on réalise un masque dur d'oxyde 104 sur la face arrière du substrat. Ce masque a par exemple une épaisseur de 7 μm. le masque est réalisé en retournant le substrat; en fonction de la composition de dépôt choisie; il est possible de ne déposer le masque que sur cette face. Il peut s'agir par exemple d'un dépôt de type PVD (Physical Vapor Déposition en terminologie anglo-saxonne). L'élément ainsi obtenu est représenté sur la figure 5C.
On effectue ensuite une lithographie en face arrière de sorte à atteindre le silicium. L'élément ainsi obtenu est représenté sur la figure 5D.
Lors d'une étape suivante, on grave, par exemple par gravure ionique réactive (RIE : Reactive-Ion Etching en terminologie anglo-saxonne), le masque dur en face arrière de sorte à atteindre la face arrière du substrat 100. L'élément ainsi obtenu est représenté sur la figure 5E.
Lors d'une étape suivante, on retire la couche d'oxyde sur la face avant, par exemple par désoxydation ou gravure chimique. L'élément ainsi obtenu est représenté sur la figure 5F. Lors d'une étape suivante, on forme une couche d'oxyde 106 en face avant. Avantageusement, un recuit de densification a lieu par exemple à une température de l'ordre de 800°C. L'élément ainsi obtenu est représenté sur la figure 5G.
Lors d'une étape suivante, on forme une couche 108 en face avant destinée à former la membrane 2, et une couche 110 en face arrière. De préférence, ces couches sont par exemple en polysilicium, en SiC ou en SiO2. L'épaisseur des couches 108, 110 est par exemple comprise entre quelques centaines de nm à plusieurs μm, voire plusieurs dizaines de μm.
Les couches 108, 110 sont par exemple réalisées par dépôt chimique en phase vapeur (ou CVD pour Chemical Vapor Déposition en terminologie anglo-saxonne) ou par croissance épitaxiale. De préférence, les contraintes des couches 108, 110 sont maîtrisées.
Les couches 108, 110 peuvent être formées en plusieurs fois. Par exemple, pour une épaisseur de 4 μm, deux couches de 1,5 μm d'épaisseur et 1 couche de 1 μm d'épaisseur sont réalisées successivement.
Avantageusement une étape de recuit a ensuite lieu. L'élément ainsi obtenu est représenté sur la figure 5H.
Lors d'une étape suivante, une couche 112 est formée sur la couche 108, par exemple en SiO2 ou en SiN, ayant par exemple une épaisseur comprise entre quelques centaines de nm et plusieurs μm. La couche 112 est formée par exemple par oxydation thermique ou par dépôt CVD. Avantageusement, un recuit de densification a lieu par exemple à une température de l'ordre de 800°C.
L'élément ainsi obtenu est représenté sur la figure 51.
Lors d'une étape suivante, on réalise les premier et deuxième actionneurs.
Pour cela on réalise tout d'abord une couche 114 destinée à former les électrodes inférieures des actionneurs, par exemple en Pt, Mo. La couche 114 est réalisée par exemple par dépôt sur la couche 112. La couche 114 a par exemple une épaisseur comprise entre quelques dizaines de nm à quelques centaines de nm. L'élément ainsi obtenu est représenté sur la figure 5J.
Une couche de matériau piézoélectrique 116 est ensuite formée sur la couche 114, par exemple en PZT, AIN, ZnO, LNO dont l'épaisseur est par exemple comprise entre quelques centaines de nm à quelques μιη.
On réalise ensuite l'électrode supérieure par formation d'une couche 118 sur le matériau piézoélectrique 116, par exemple en Ru ou en Au par exemple d'épaisseur comprise entre quelques dizaines de nm à quelques centaines de nm. L'élément ainsi obtenu est représenté sur la figure 5K.
Ont lieu ensuite des étapes de gravure.
Tout d'abord, la couche 118 est gravée de sorte à délimiter l'actionneur annulaire 8 et l'actionneur en forme de disque 10.
Ensuite, la couche 116 en matériau piézoélectrique est gravée. L'élément ainsi obtenu est représenté sur la figure 5L.
Ensuite, on grave à nouveau les portions de couche 118 restantes de sorte à ce qu'elles soient en retrait par rapport aux portions de couche 116.
La couche 114 est ensuite gravée, ainsi que la couche d'oxyde 112. L'élément ainsi obtenu est représenté sur la figure 5M.
De préférence, on réalise un profil en escalier. Celui-ci est obtenu car toutes les couches sont déposées puis gravées, à partir de la couche supérieure, en utilisant des masques de photolithographie différents, le deuxième masque étant plus large que le premier, etc. Cela permet de laisser des marges de sécurité pour éviter le recouvrement de couches, qui pourrait apparaître du fait de l'incertitude de positionnement des masques. On évite ainsi tout court circuit électrique entre les électrodes. L'élément ainsi obtenu est représenté sur la figure 5N. Lors des étapes suivantes, on réalise des plots de reprise de contact 120. Préalablement on forme une couche 122 de matériau diélectrique, par exemple en SiO2 sur les bords des empilements formés des électrodes inférieure, supérieure et du matériau piézoélectrique, cette couche étant gravée de sorte à dégager partiellement les électrodes inférieure et supérieure. L'élément ainsi obtenu est représenté sur la figure 50.
Ensuite, une couche par exemple en AISi ou en TiAu est formée et est gravée, formant ainsi des plots de contact au niveau des zones où les électrodes ont été dégagées. L'élément ainsi obtenu est représenté sur la figure 5P.
Avantageusement, lors d'une étape suivante on forme une couche de protection 124 sur les actionneurs, par exemple une couche d'oxyde, afin de protéger les actionneurs du contact avec les éléments d'arrêt. L'épaisseur de cette couche peut être comprise entre quelques centaines de nm à quelques μιη, par exemple 500nm.
Lors d'une étape suivante la couche 124 est gravée, pour accéder aux reprises de contact.
L'élément ainsi obtenu est représenté sur la figure 5Q.
De préférence, lors d'une étape suivante, on protège les actionneurs, par exemple par le dépôt d'un film sec 126. Ensuite, on grave la face arrière afin de libérer la membrane 2.
On libère la membrane par gravure profonde du substrat par la face arrière jusqu'à atteindre la membrane.
L'élément ainsi obtenu est représenté sur la figure 5R.
La réalisation des éléments d'arrêt va maintenant être décrite, dans cet exemple, ceux-ci sont réalisés sur un substrat de type "interposer", i.e. comportant des connexions électriques et/ou des circuits électroniques (de commande, des capteurs...). Dans l'exemple représenté et de manière très avantageuse, les éléments d'arrêt sont réalisés simultanément aux connexions électriques 18, également désignées microbumps ou copper pillar. Ainsi le procédé de réalisation est plus rapide. Les éléments d'arrêt ont donc une structure similaire à celle des connexions électriques. Les connexions électriques sont destinées à router le signal des speaklets jusqu'à des plots en périphérie du substrat 200 ou jusqu'à l'électronique si elle est réalisée sur le substrat 20. Dans l'exemple décrit, un seul élément d'arrêt est formé, mais il sera compris que plusieurs éléments d'arrêt peuvent être formés simultanément.
Pour cela, on part par exemple d'un substrat en silicium 200
(figure 6A).
Lors d'une première étape, on réalise des lignes destinées à amener le signal du speaklet jusqu'à des plots de contact (non représentés) en périphérie du substrat 200, il s'agit par exemple de lignes de cuivre. On forme alors sur une des faces, une couche par exemple de TiCu 202. Puis on délimite au moyen d'une résine des zones destinées à la formation de couches de cuivre épais. Les couches de cuivre 204 sont ensuite formées par exemple par croissance. Ensuite la résine est retirée et la couche de TiCu est gravée.
L'élément ainsi obtenu est représenté sur la figure 6B. Les lignes de cuivre ne sont présentes qu'à l'aplomb des plots de contact connectées aux électrodes. La zone du substrat 200 au moins à l'aplomb de la zone centrale de la membrane, ne comporte encore aucune couche.
Lors d'une étape suivante, à nouveau on dépose une couche de TiCu 206 aux endroits où l'on souhaite réaliser les connexions électriques et les butées, puis on délimite des zones de croissance du Cu et on fait croître les portions de cuivre 208. Lors de cette étape on réalise les microbumps sur les deux lignes de cuivre et dans la zone du substrat 200 à l'aplomb de la zone centrale de la membrane.
On forme ensuite des couches de SnAg 210 sur les trois portions de cuivre 208 et de SnAg 210. La résine est retirée et la couche de TiCu est gravée. Les portions 208 et 210 présentent une section réduite par rapport à celle des portions 204.
De manière avantageuse, lors d'une étape suivante, des passages 16 peuvent être réalisés dans le substrat entre les connexions électriques et l'élément d'arrêt 14 par exemple par gravure; ces passages étant destinés à réduire l'amortissement visqueux comme cela a été décrit ci-dessus.
L'élément ainsi obtenu est représenté sur la figure 6C.
Ensuite la membrane 2 et les actionneurs 6, 10 représentés sur la figure 5R et le substrat muni des connexions électriques et de l'élément d'arrêt 14 de la figure 6C sont assemblés. Les connexions électriques 18 sont alignées avec les plots de contact, puis mises en contact avec les plots de contact. L'assemblage se fait par exemple par thermocompression. Le haut-parleur est représenté sur la figure 6D. En pratique, le film sec est enlevé après l'assemblage des deux substrats.
Dans cet exemple, la hauteur de l'élément d'arrêt est identique à celle des connexions électriques, en revanche l'élément d'arrêt étant réalisé directement sur le substrat 200, sont extrémité libre 14.1 n'entre pas en contact avec la membrane au repos. La distance entre l'extrémité libre 14.1 et la membrane désignée h est donc déterminée dans cet exemple de réalisation par l'épaisseur des portions des lignes de connexion. Pour déterminer h, on considère la membrane portant les actionneurs. Sur la figure 6D, h est la distance entre l'extrémité libre 14.1 et l'actioneur6. Dans le cas d'un haut-parleur comportant un autre type d'actionneur, celui-ci n'entrerait pas nécessairement en compte dans le calcul de la distance h.
La distance h entre l'extrémité libre 14.1 de l'élément d'arrêt et la membrane est choisie de sorte à être inférieure à la course maximale théorique de la membrane, de préférence h est comprise entre 50 % de la course maximale théorique et 75 % de la course maximale théorique de la membrane. La déformation maximale de la membrane est déterminée à partir des dimensions de la membrane.
Dans un exemple de réalisation dans lequel un seul actionneur est utilisé, le procédé de réalisation des éléments d'arrêt et de la ou des connexions est similaire à celui décrit ci-dessus.
Sur la figure 7, on peut voir une variante de réalisation des éléments d'arrêt, dans le cas où l'électronique de pilotage est réalisée sur le substrat 200. Dans ce cas, les pistes de cuivre ne sont pas requises pour fixer la hauteur h des éléments d'arrêt mais uniquement pour router le signal jusqu'à des plots ou jusqu'à l'électronique. Les connexions électriques peuvent être réalisées directement sur le substrat par le dépôt d'une couche de Ti/Cu et d'une croissance de cuivre épais. La distance h entre l'extrémité libre 14.1 de l'élément d'arrêt et la membrane est alors obtenue en réalisant un évidement 20 dans le substrat électronique 200 au niveau du futur emplacement de l'élément ou des éléments d'arrêt préalablement à la réalisation des connexions électriques et de l'élément d'arrêt. Cet évidement a une profondeur h. Cet évidement est exemple réalisée pare gravure partielle du substrat électronique 200. L'élément d'arrêt à la même hauteur que les microbumps mais, du fait de la présence de l'évidement de profondeur h, l'extrémité libre 14.1 du substrat se trouve à une distance h de la membrane au repos.
Sur les figures 8A à 8C, on peut voir un autre exemple de réalisation des éléments d'arrêt. Dans ce cas, le substrat est du type "packaging", i.e. le substrat a pour fonction de recouvrir la membrane afin de l'encapsuler.
On part d'un substrat 300 par exemple en silicium (figure 8A). Ensuite, on forme un couche 302destinée au scellement avec la membrane, il s'agit par exemple d'or ou d'oxyde.
La couche de scellement est ensuite gravée pour ne laisser cette couche que sur la périphérie du substrat. Le substrat est ensuite structuré, par exemple par gravure partielle, afin de réaliser l'élément d'arrêt 14. La profondeur de la gravure est choisie de sorte à obtenir la distance h souhaitée entre l'extrémité" libre 14.1 de l'élément d'arrêt et la membrane. La profondeur de la gravure tient compte de l'épaisseur induite par l'assemblage, par exemple par collage or-or ou collage moléculaire. Il s'agit de prendre en compte l'épaisseur de la couche de scellement.
L'élément ainsi obtenu est représenté sur la figure 8B. L'élément d'arrêt est d'un seul tenant avec le substrat de type "packaging".
Cet élément est ensuite scellé avec la membrane de la figure 5Q., par exemple par collage or-or, par assemblage moléculaire (figure 8C).
II est à noter que l'on pourrait réaliser sur le substrat de type
"packaging" l'élément d'arrêt par apport de matière comme dans l'exemple de la figure 7. Et inversement, il pourrait être envisagé dans le cas d'un substrat interposé de réaliser un ou des éléments d'arrêt d'un seul tenant avec le substrat interposer.
Sur la figure 9, on peut voir une variante de réalisation dans lequel le haut-parleur comporte des éléments d'arrêt de la membrane en regard de ses deux faces. Cette réalisation est particulièrement adaptée au speakiet des figures 1A à 1C qui comporte deux actionneurs aptes à déplacer la membrane vers le haut et vers le bas dans la représentation de la figure 8C. Comme cela a été indiqué ci-dessus, un actionnement de la membrane dans les deux sens permet de reproduire plus finement le son.
Le haut-parleur de la figure 9 est par exemple réalisé comme cela a été décrit en relation avec les figures 8A et 8B, mais ceci n'est pas limitatif.
Ensuite, on réalise un deuxième substrat tel que celui de la figure 8B.
Le substrat support de la membrane est ensuite aminci de sorte à rendre son épaisseur inférieure à la course maximale de la membrane. On peut envisager de supprimer entièrement le substrat support. On assemble ensuite le substrat 300 en regard de la face de la membrane opposée à celle portant les actionneurs.
Dans l'exemple représenté, les éléments d'arrêt 14 de part et d'autre de la membrane 2 ont la même hauteur mais on pourrait prévoir que ceux-ci aient des hauteurs différentes, par exemple en fonction du niveau d'amincissement du substrat support de la membrane.
En outre, on pourrait prévoir d'assembler sur le sous-ensemble de la figure 6C et d'assembler un substrat de la figure 8B.
Dans le mode de réalisation où les éléments d'arrêt seraient portés par la membrane, leur réalisation serait par exemple obtenue par dépôt de matière après l'étape représentée sur la figure 5P ou celle représentée sur la figure 5Q. Par exemple; on réaliserait les éléments d'arrêt en conservant une partie du substrat d'origine 100. Le substrat serait ensuite aminci à l'épaisseur des éléments d'arrêt voulue, puis la membrane serait libérée par gravure du substrat, on pourrait alors prévoir laisser les éléments d'arrêt.
Le dispositif acoustique digital selon l'invention offre une puissance sonore augmentée avec une structure relativement simple. En outre le procédé de réalisation est peu complexifié par rapport à la réalisation de dispositifs acoustiques digitaux de l'état de la technique, en particulier dans le cas de réalisation de microbumps.
Il est particulièrement adapté à la réalisation de haut-parleurs digitaux comportant une pluralité de speaklets.

Claims

REVENDICATIONS
1. Dispositif acoustique digital comportant au moins une membrane suspendue (2) en regard d'un support (4) et au moins un actionneur (6, 10) associé à ladite membrane, ledit actionneur (6, 10) associé étant destiné à déplacer ladite membrane (2) en éloignement et/ou en rapprochement dudit support (4), ledit dispositif comportant également des moyens d'arrêt (14) destinés à interrompre le déplacement de ladite membrane (2) suite à l'activation dudit actionneur (6, 10) lorsque la membrane a une vitesse non nulle, les moyens d'arrêt (14) étant dimensionnés de sorte à interrompre le déplacement de la membrane (2) lorsque le déplacement de la membrane est supérieur ou égal à 50 % de la course maximale théorique de la membrane et inférieur ou égal à 75 % de la course maximale théorique de la membrane.
2. Dispositif acoustique digital selon la revendication 1, dans lequel les moyens d'arrêt sont dimensionnés de sorte à interrompre le déplacement de la membrane lorsque le déplacement de la membrane est compris entre 50 % et 60 % de la course maximale théorique de la membrane.
3. Dispositif acoustique digital selon la revendication 1 ou 2, dans lequel les moyens d'arrêt sont dimensionnés de sorte à interrompre le déplacement de la membrane lorsqu'elle se déplace à sa vitesse maximale ou à une vitesse proche de sa vitesse maximale.
4. Dispositif acoustique digital selon l'une des revendications
1 à 3, dans lequel les moyens d'arrêt comportent au moins un élément d'arrêt (14) en saillie du support (4) en direction de la membrane (2) et/ou en saillie de la membrane (2) en direction du support (4), et présentant une extrémité libre (14.1) séparée d'un distance non nulle respectivement de la membrane (2) et/ou du support à l'état repos.
5. Dispositif acoustique digital selon la revendication 4, dans lequel l'élément d'arrêt est situé en regard d'une zone centrale de la membrane ou est fixé dans une zone centrale de la membrane.
6. Dispositif acoustique digital selon la revendication 4 ou 5, dans lequel la distance séparant l'extrémité libre (14.1) de l'élément d'arrêt (14) et la membrane (2) ou l'extrémité libre (14.1') de l'élément d'arrêt (14') et le support (4) est compris entre 50 % et 75 % de la course maximale théorique de la membrane.
7. Dispositif acoustique digital selon l'une des revendications 1 à 6, dans lequel les moyens d'arrêt comportent une pluralité d'éléments d'arrêt (14, 14') en saillie du support (4) en direction de la membrane (2) et/ou en saillie de la membrane (2) en direction du support (4), et présentant une extrémité libre (14.1) séparée d'un distance non nulle respectivement de la membrane (2) et/ou du support à l'état repos.
8. Dispositif acoustique digital selon la revendication 7, dans lequel les éléments d'arrêt (14, 14') sont répartis sur une zone correspondant à une surface représentant entre 10 % et 50 % de la surface de la membrane.
9. Dispositif acoustique digital selon l'une des revendications 4 à 8, dans lequel le ou les éléments d'arrêt (14, 14') ont une forme de colonne à section, circulaire, carrée, ellipsoïdale ou trapézoïdale.
10. Dispositif acoustique digital selon l'une des revendications 4 à 9, dans lequel le ou les éléments d'arrêt (14) sont d'un seul tenant avec le support et/ou la membrane.
11. Dispositif acoustique digital selon l'une des revendications
4 à 10, dans lequel le ou les éléments d'arrêt (14) sont formés d'une ou plusieurs couches de matériaux rapportés sur un substrat et/ou la membrane.
12. Dispositif acoustique digital selon l'une des revendications 4 à 11, dans lequel l'actionneur (6, 10) est porté par la membrane (2) et est en regard de l'extrémité libre (14.1) de l'élément d'arrêt (14), ledit dispositif comportant un couche de protection déposée sur l'actionneur (6, 10) de sorte à le protéger du contact avec l'extrémité libre (14.1) de l'élément d'arrêt (14).
13. Dispositif acoustique digital selon l'une des revendications
1 à 12, comportant un fluide gazeux entre la membrane et le support, le dispositif comprenant au moins un passage (16) dans le support (4) pour l'écoulement du fluide gazeux de sorte à réduire l'amortissement visqueux.
14. Dispositif acoustique digital selon la revendication 13 en combinaison avec la revendication 7 ou 8, ledit passage (16) étant formé entre deux éléments d'arrêt (14, 14')
15. Dispositif acoustique digital selon l'une des revendications l à 14, dans lequel au moins un actionneur (6, 10) est formé par un actionneur piézoélectrique.
16. Dispositif acoustique digital selon l'une des revendications 1 à 15, comportant un premier actionneur (6, 6') en contact avec la membrane (2) destiné à exercer un effort sur la membrane (2) selon un premier sens, un deuxième actionneur (10, 10') en contact avec la membrane (2) destiné à exercer un effort sur la membrane (2) selon un deuxième sens opposé au premier sens.
17. Dispositif acoustique digital selon la revendication 16, dans lequel les premier et deuxième actionneurs comportent un matériau piézoélectrique ferroélectrique, chacun des premier (6) et deuxième (10) actionneurs étant destinés à déformer la membrane (2) dans un sens opposé.
18. Dispositif acoustique digital selon la revendication 16 ou
17, dans lequel le premier actionneur (6) borde la périphérie extérieure de la membrane (2) et le deuxième actionneur (10) est situé sensiblement dans une zone centrale de la membrane (2).
19. Dispositif acoustique digital selon l'une des revendications
16 à 18, comportant un deuxième support en regard de la membrane à l'opposé du premier support, ledit deuxième support comportant des moyens d'arrêt destinés à interrompre le déplacement de ladite membrane suite à l'activation dudit deuxième actionneur.
20. Dispositif acoustique digital selon l'une des revendications 1 à 19, comportant une pluralité de membranes et d'actionneurs associés à chacune des membranes.
21. Dispositif acoustique digital selon l'une des revendications
1 à 20, formant un haut-parleur digital.
22. Procédé de réalisation d'un dispositif acoustique digital selon l'une des revendications 1 à 21, comportant les étapes : a) réalisation de la membrane et de l'actionneur,
b) réalisation des moyens d'arrêt sur le support et/ou sur la membrane,
c) assemblage de la membrane et de l'actionneur avec le support de sorte que les moyens d'arrêt soient en regard respectivement de la membrane et/ou du support, à une distance (h) donnée lorsque la membrane est au repos.
23. Procédé de réalisation selon la revendication 22, dans lequel l'élément d'arrêt est réalisé simultanément à au moins une connexion électrique de l'actionneur, entre le support et l'actionneur.
24. Procédé de réalisation selon la revendication 23, dans lequel, préalablement à la réalisation de l'élément d'arrêt et de la connexion électrique, une ligne électrique est réalisée, la connexion électrique étant formée sur ladite ligne électrique, de sorte que la hauteur de l'ensemble connexion ligne électrique est supérieure à celle de l'élément d'arrêt.
25. Procédé de réalisation selon la revendication 23, dans lequel préalablement à la réalisation de l'élément d'arrêt, un évidement est réalisé dans une zone du support où est formé l'élément d'arrêt de sorte que la hauteur de l'ensemble support et connexion électrique soit supérieure à celle de l'ensemble support et élément d'arrêt.
26. Procédé de réalisation selon la revendication 24 ou 25, dans lequel l'élément d'arrêt est réalisé dans un substrat et/ou la membrane par gravure.
27. Procédé de réalisation selon l'une des revendications 22 à
26, dans lequel l'assemblage entre le support et la membrane se fait pas thermocompression et/ou collage, par exemple par collage moléculaire...
28. Procédé de réalisation selon l'une des revendications 22 à
27, dans lequel les étapes a) et b) sont réalisées par des techniques microélectroniques.
PCT/EP2014/068833 2013-09-04 2014-09-04 Dispositif acoustique numerique a puissance sonore augmentee WO2015032855A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480049130.2A CN105519134A (zh) 2013-09-04 2014-09-04 具有增强的声功率的数字声学装置
US14/915,749 US9900700B2 (en) 2013-09-04 2014-09-04 Digital acoustic device with increased sound power
EP14766933.7A EP3042509B1 (fr) 2013-09-04 2014-09-04 Dispositif acoustique numerique a puissance sonore augmentee

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1358462A FR3010272B1 (fr) 2013-09-04 2013-09-04 Dispositif acoustique digital a puissance sonore augmentee
FR1358462 2013-09-04

Publications (1)

Publication Number Publication Date
WO2015032855A1 true WO2015032855A1 (fr) 2015-03-12

Family

ID=50231246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/068833 WO2015032855A1 (fr) 2013-09-04 2014-09-04 Dispositif acoustique numerique a puissance sonore augmentee

Country Status (5)

Country Link
US (1) US9900700B2 (fr)
EP (1) EP3042509B1 (fr)
CN (1) CN105519134A (fr)
FR (1) FR3010272B1 (fr)
WO (1) WO2015032855A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10021473B2 (en) * 2015-05-20 2018-07-10 Dai-Ichi Seiko Co., Ltd. Digital speaker, speaker system, and earphones
JP2018199289A (ja) * 2017-05-29 2018-12-20 セイコーエプソン株式会社 圧電デバイス、液体吐出ヘッド、液体吐出装置
CN110603818B (zh) * 2018-12-29 2020-12-22 共达电声股份有限公司 Mems声音传感器、mems麦克风及电子设备
JP7522541B2 (ja) * 2019-07-12 2024-07-25 日清紡マイクロデバイス株式会社 圧電素子
FR3131291A1 (fr) * 2021-12-24 2023-06-30 Commissariat à l'Energie Atomique et aux Energies Alternatives Procédé de fonctionnalisation d’une membrane d’un capteur électromécanique résonant

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2481039A1 (fr) * 1980-04-17 1981-10-23 Sony Corp Haut-parleur pour casques a ecouteurs
US20110075867A1 (en) * 2009-09-25 2011-03-31 Samsung Electronics Co., Ltd. Piezoelectric micro speaker including weight attached to vibrating membrane and method of manufacturing the same
US20120148071A1 (en) * 2010-12-10 2012-06-14 Alfons Dehe Micromechanical Digital Loudspeaker
US20130089224A1 (en) * 2011-10-11 2013-04-11 Infineon Technologies Ag Electrostatic loudspeaker with membrane performing out-of-plane displacement

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4297537A (en) * 1979-07-16 1981-10-27 Babb Burton A Dynamic loudspeaker
JP2575831B2 (ja) * 1988-07-25 1997-01-29 スター精密 株式会社 発音体
US5347587A (en) * 1991-11-20 1994-09-13 Sharp Kabushiki Kaisha Speaker driving device
AU2923397A (en) 1996-04-18 1997-11-07 California Institute Of Technology Thin film electret microphone
US7141915B2 (en) * 2003-07-22 2006-11-28 Ngk Insulators, Ltd. Actuator device
KR101343143B1 (ko) 2006-05-22 2013-12-19 오디오 픽셀즈 리미티드 압력파 생성 액추에이터 장치 및 액추에이션 방법
US20080037814A1 (en) * 2006-08-09 2008-02-14 Jeng-Jye Shau Precision audio speakers
KR101411416B1 (ko) 2007-12-14 2014-06-26 삼성전자주식회사 마이크로 스피커 제조방법 및 이 방법에 의해 제조된마이크로 스피커
WO2010131540A1 (fr) * 2009-05-11 2010-11-18 日本電気株式会社 Actionneur piézoélectrique et composants audio
KR101561663B1 (ko) 2009-08-31 2015-10-21 삼성전자주식회사 피스톤 다이어프램을 가진 압전형 마이크로 스피커 및 그 제조 방법
KR101561660B1 (ko) 2009-09-16 2015-10-21 삼성전자주식회사 환형 고리 형상의 진동막을 가진 압전형 마이크로 스피커 및 그 제조 방법
FR2953983B1 (fr) 2009-12-15 2012-01-13 Areva T & D Sas Procede de commande d'un appareil d'interruption de courant dans un reseau electrique haute tension
JP2011125923A (ja) 2009-12-21 2011-06-30 Honda Motor Co Ltd 軸受けの設置構造体及び設置方法
DK2545715T3 (da) 2010-03-11 2014-09-01 Audio Pixels Ltd Elektrostatiske parallelle pladeaktuatorer, hvis bevægelige elementer alene drives ved elektrostatisk kraft, og nyttige fremgangsmåder i forbindelse dermed
US9014412B2 (en) * 2010-07-09 2015-04-21 Aperion Audio, Inc. Loudspeaker that is axially stabilized out of the diaphragm suspension plane
EP2597892A4 (fr) * 2010-07-23 2017-11-15 Nec Corporation Dispositif de vibration
FR2982907B1 (fr) 2011-11-23 2013-12-27 Snecma Systeme mecanique pour turbomachine, turbomachine et procede de fixation d'un systeme mecanique dans une turbomachine
FR2990320B1 (fr) 2012-05-07 2014-06-06 Commissariat Energie Atomique Haut-parleur digital a performance amelioree
FR3000354B1 (fr) 2012-12-20 2015-01-30 Commissariat Energie Atomique Dispositif a membrane a deplacement controle
FR3006764B1 (fr) 2013-06-10 2017-02-10 Snecma Surveillance du clapet de coupure d'alimentation en carburant d'un moteur

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2481039A1 (fr) * 1980-04-17 1981-10-23 Sony Corp Haut-parleur pour casques a ecouteurs
US20110075867A1 (en) * 2009-09-25 2011-03-31 Samsung Electronics Co., Ltd. Piezoelectric micro speaker including weight attached to vibrating membrane and method of manufacturing the same
US20120148071A1 (en) * 2010-12-10 2012-06-14 Alfons Dehe Micromechanical Digital Loudspeaker
US20130089224A1 (en) * 2011-10-11 2013-04-11 Infineon Technologies Ag Electrostatic loudspeaker with membrane performing out-of-plane displacement

Also Published As

Publication number Publication date
FR3010272A1 (fr) 2015-03-06
CN105519134A (zh) 2016-04-20
EP3042509A1 (fr) 2016-07-13
US20160205478A1 (en) 2016-07-14
FR3010272B1 (fr) 2017-01-13
US9900700B2 (en) 2018-02-20
EP3042509B1 (fr) 2018-08-01

Similar Documents

Publication Publication Date Title
EP2747452B1 (fr) Dispositif à membrane à déplacement contrôlé
EP3042509B1 (fr) Dispositif acoustique numerique a puissance sonore augmentee
EP2663091B1 (fr) Haut-parleur digital a performance ameliorée
EP2431770B1 (fr) Dispositif à membrane déformable par actionnement à temps de réponse réduit
EP2526705B1 (fr) Structure de haut-parleur électrodynamique à technologie mems
EP1519213B1 (fr) Micro-miroir oscillant à actionnement bimorphe
FR3005045A1 (fr) Structure microelectromecanique et/ou nanoelectromecanique a facteur de qualite ajustable
FR2952628A1 (fr) Procede de fabrication d'au moins une micropompe a membrane deformable et micropompe a membrane deformable
EP3975584B1 (fr) Procédé de fabrication d'un transducteur electroacoustique
EP3257808B1 (fr) Dispositif microelectromecanique et/ou nanoelectromecanique a deplacement hors-plan comportant des moyens capacitifs a variation de surface
EP3065415B1 (fr) Dispositif a membranes actionnables et haut-parleur digital comportant au moins un tel dispositif
FR3033889A1 (fr) Capteur de pression dynamique mems et/ou nems a performances ameliorees et microphone comportant un tel capteur
WO2021032927A1 (fr) Procédé de scellement de cavités par des membranes
EP3217181B1 (fr) Accelerometre lineaire amorti
EP3975588B1 (fr) Procédé de fabrication d'un transducteur électroacoustique
FR2982414A1 (fr) Procede ameliore de realisation d'un dispositif a cavite formee entre un element suspendu reposant sur des plots isolants semi-enterres dans un substrat et ce substrat
EP3728108B1 (fr) Mise en oeuvre d'une structure de découplage pour l'assemblage d'un composant avec un boitier
EP4075526A1 (fr) Dispositif à transduction piézorésistive
EP3375753A1 (fr) Micro-dispositif a plusieurs elements mobiles disposes au sein de plusieurs cavites imbriquees
EP3925930B1 (fr) Procédé de fabrication d'un dispositif microélectronique comprenant une membrane suspendue au-dessus d'une cavité
EP4098608A1 (fr) Microsystème électromécanique
EP4047954A1 (fr) Haut-parleur mems et procédé de fabrication d'un tel haut-parleur
EP4263419A1 (fr) Microsystème électromécanique
FR3118019A1 (fr) Microsystème électromécanique
FR3143256A1 (fr) Elément actif piézoélectrique pour système électromécanique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14766933

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14915749

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014766933

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014766933

Country of ref document: EP