WO2015032316A1 - 球床高温气冷堆反应性控制方法及套叠式控制棒 - Google Patents

球床高温气冷堆反应性控制方法及套叠式控制棒 Download PDF

Info

Publication number
WO2015032316A1
WO2015032316A1 PCT/CN2014/085811 CN2014085811W WO2015032316A1 WO 2015032316 A1 WO2015032316 A1 WO 2015032316A1 CN 2014085811 W CN2014085811 W CN 2014085811W WO 2015032316 A1 WO2015032316 A1 WO 2015032316A1
Authority
WO
WIPO (PCT)
Prior art keywords
rod
control rod
assembly
end plate
section
Prior art date
Application number
PCT/CN2014/085811
Other languages
English (en)
French (fr)
Inventor
张作义
刁兴中
张征明
孙立斌
闫贺
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Priority to CA2923036A priority Critical patent/CA2923036C/en
Priority to US14/916,504 priority patent/US10229759B2/en
Priority to JP2016539410A priority patent/JP6232499B2/ja
Priority to PL14841862T priority patent/PL3043352T3/pl
Priority to EP14841862.7A priority patent/EP3043352B1/en
Publication of WO2015032316A1 publication Critical patent/WO2015032316A1/zh

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C7/00Control of nuclear reaction
    • G21C7/06Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section
    • G21C7/08Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section by displacement of solid control elements, e.g. control rods
    • G21C7/10Construction of control elements
    • G21C7/107Control elements adapted for pebble-bed reactors
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C7/00Control of nuclear reaction
    • G21C7/06Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section
    • G21C7/08Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section by displacement of solid control elements, e.g. control rods
    • G21C7/10Construction of control elements
    • G21C7/11Deformable control elements, e.g. flexible, telescopic, articulated
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C7/00Control of nuclear reaction
    • G21C7/06Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section
    • G21C7/08Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section by displacement of solid control elements, e.g. control rods
    • G21C7/12Means for moving control elements to desired position
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C7/00Control of nuclear reaction
    • G21C7/06Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section
    • G21C7/08Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section by displacement of solid control elements, e.g. control rods
    • G21C7/12Means for moving control elements to desired position
    • G21C7/14Mechanical drive arrangements
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C7/00Control of nuclear reaction
    • G21C7/06Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section
    • G21C7/08Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section by displacement of solid control elements, e.g. control rods
    • G21C7/20Disposition of shock-absorbing devices ; Braking arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the invention relates to a reactive control and control rod design of a modular spherical bed high temperature gas cooled reactor nuclear power plant, in particular to a ball bed high temperature gas cooled reactor reactive control method and a nested control rod. Background technique
  • the high-temperature gas-cooled reactor of the ball bed originated from the AVR experimental reactor in Germany.
  • Germany built and operated a high-temperature gas-cooled reactor with a power of 300MW in the 1970s, the high-speed development period of the world nuclear power.
  • Demonstration power plant THTR-300.
  • the public and regulatory agencies of various countries have paid more and more attention to the safety of nuclear power plants.
  • the commercial plants for high-temperature gas-cooled reactors have also developed from the original to the large-scale. Transformed to develop modular high temperature gas cooled reactors with passive inherent safety.
  • ⁇ High temperature gas cooled reactor (THTR300) has two sets of control rod systems due to the high power of single stack. One set is 36 adjustment rods arranged on the side reflection layer for adjusting rapid reaction changes and accident conditions. The thermal shutdown; another set of 42 control rods, inserted into the core ball bed, used for long-term cold shutdown and ensure a certain cold shutdown depth.
  • the operating experience of the ⁇ high temperature gas cooled reactor shows that the control rod inserted into the core ball bed overcomes the resistance of the stacked spherical fuel element and requires a large driving force, causing damage to the fuel element. Therefore, only the side reflector control rods were retained in the design of the later modular ball bed high temperature gas cooled reactor HTR-MODUL.
  • the HTR-MODUL single stack heat power is 200MW, the core diameter is 3 meters, and the core height is 9.4 meters.
  • the reactive control and shutdown system includes a control rod system and an absorption ball shutdown system.
  • the control rod system has a total of six control rods arranged in the side reflection layer, and each control rod has a driving mechanism for moving up and down.
  • the length of the absorber of each control rod is 4800mm, the total length is 5280mm, which is divided into 10 sections.
  • the outer diameter of the control rod is 105mm, the diameter of the control rod is 130mm, the material of the control rod is X8CrNiMoNb 1616, the total weight is 104kg, and the maximum design temperature is about 900°. C.
  • the main functions of the HTR-MODUL control rod system are: Reactor power conditioning and thermal shutdown.
  • the structure type of the control rod is a multi-section single rod structure; since the control rod needs to all propose the active area when the reactor is running at full power, it is limited by the height of the reactor pressure vessel, and the control rod absorber is The length is approximately half the height of the core active zone.
  • HTR-MODUL's other reactive control and shutdown system is the absorption ball shutdown system, which has 18 columns of absorption balls, also located in the reactor side reflection layer, and the absorption ball falls by gravity.
  • the side reflector layer is returned to the tank by the pneumatic conveying means from the side reflector hole.
  • the main functions of the system are: 1 in the reactor start-up and low-power operation, with the control rod system for reactive control; 2 separate cold shutdown, and ensure a certain cold shutdown depth.
  • the above HTR-MODUL reactivity control has the following problems: 1
  • the absorption ball shut-down system has many functional requirements, the system design is complicated, and the operation reliability is high. 2
  • the reactor operator needs not only to operate the control rod system. It is also necessary to uniformly absorb the absorption balls from the respective absorption ball holes by means of pneumatic conveying, and the amount of the absorption balls to be conveyed each time is precisely and controllable, which brings great operational difficulty to the reactor operator and is prone to accidents.
  • the HTR-PM reactive control and shutdown system is designed with the following technological innovations: Two sets of independent systems, the control rod and the absorption ball, are retained to adjust the functions of the two systems; the control rod system is divided into safety The rod group, the adjustment rod group and the compensation rod group, the safety rod group all propose the reactor active area during the reactor startup and power operation, and the value is sufficient to ensure the shutdown in any reactor condition, and the adjustment rod group performs reactor power regulation, Flat core power distribution, compensating for core reactivity changes during normal operation, compensation rod group to compensate for reactor reactivity after long-term operation; safety rod group and regulating rod group as actuators of reactor protection system, assuming reaction In the case of failure of one of the most valuable control rods, thermal shutdown can be achieved quickly; during reactor start-up and low-power operation, the adjustment rod group cooperates with the compensation rod group for reactive control.
  • the technical problem to be solved by the present invention is: under the condition that the structural design parameters of the high-temperature gas-cooled reactor pressure vessel and the internal components of the modular ball-type ball bed are basically unchanged, the cold-stopping can be realized only by using the control rod system, and A problem of guaranteeing a certain depth of shutdown.
  • a ball bed high temperature gas cooled stacking control rod comprising a vertical and coaxial inner rod, an outer rod and a guiding simple assembly, wherein the outer rod and the guiding simple assembly are hollow cylindrical bodies, and the inner rod The top end is movable up and down inside the outer rod, and the other end is moved up and down inside the control rod passage located below the guide assembly and coaxially disposed with the guide assembly; the outer rod top can be in the guide The assembly moves up and down, and the other end moves up and down inside the control rod channel.
  • the inner rod is a multi-section structure, comprising a coupling head assembly, an anti-punching head assembly and a plurality of inner joint rods connected in series by a spherical joint, the one end of the coupling head assembly being connected with the inner section rod of the first section, and One end is connected to the chain of the control rod drive mechanism; one end of the anti-punch assembly is connected to the inner section of the end section.
  • the coupling head assembly comprises a coupling head, a flat pin, a locking bead ring, a buffering platen, a cylindrical spring, a bearing platen, a ceramic ball, a bearing bottom plate and a spherical hinge;
  • the coupling head passes through the flat pin and the control rod driving mechanism
  • the chain links are connected, the locking wire ring is used for surrounding the flat pin;
  • the buffer plate is placed on the cylindrical spring to form a buffer structure, the buffer structure is externally disposed on the side wall of the coupling head, and the spherical hinge is screwed with the bearing platen, and
  • the upper end plate of the inner joint rod is spherically matched, and the ceramic ball, the bearing pressure plate and the bearing bottom plate together constitute a thrust bearing structure, and the thrust bearing structure is jacketed in the joint head.
  • the inner knot bar comprises an outer sleeve, upper and lower end plates respectively located at opposite ends of the outer sleeve, and a B 4 C core block welded between the upper end plate and the lower end plate and located in the outer sleeve a gap is left between the B 4 C core block and the outer sleeve and the upper end plate; a compression spring is disposed between the B 4 C core block and the upper end plate.
  • the anti-punching head assembly comprises a buffering platen, a disc spring and a punching head provided with a protruding portion on the side wall, and the disc spring is disposed between the protruding portion and the buffering platen.
  • the top of the outer rod is provided with a top inner receiving port and a top outer shoulder;
  • the outer rod is a multi-section structure, including a sliding sleeve type shock absorber, a hanging assembly and a plurality of outer joint rods, and the hanging component is connected Sections
  • the outer joint rod, the sliding sleeve shock absorber is connected with the first end outer joint rod.
  • the outer joint bar comprises an inner sleeve, an outer sleeve, an upper end plate, a lower end plate, a compression spring and a B 4 C core block, wherein the B 4 C core block is mounted on the inner sleeve, the outer sleeve and the upper end plate and There is a gap between the inner and outer sleeves and the upper end plate in the annular space between the lower end plates, and a compression spring is arranged between the B 4 C core block and the upper end plate, and the outer sleeve is provided with a vent hole.
  • each of the hanging components has the same number of lifting ring structures
  • each lifting ring structure comprises: 2 spherical hanging pieces, 2 cylindrical pins, 1 long lifting ring and 2 retaining rings, upper end plate and lower end plate
  • the inner groove is loaded into the spherical hanging piece; the spherical hanging piece and the long hanging ring are connected by the cylindrical pin, and the cylindrical pin is fixed by the retaining ring, and a gap is left between the spherical hanging piece, the cylindrical pin and the long hanging ring.
  • the upper section and the middle section are fixedly mounted on the upper support plate of the metal member in the stack, and the upper section is located above the support plate, and a gap is left between the reactor and the pressure vessel cover, and the middle section is located on the support plate.
  • the bottom is inserted into the lower section, the lower section is fixed to the upper support plate and the metal member positioning plate of the stack, and the top carbon brick and the top reflective layer graphite brick are inserted to a certain depth according to the design length.
  • the lower end is welded with a positioning ring.
  • the invention also provides a method for controlling the reactivity of a high-temperature gas-cooled reactor of a pebble bed:
  • a method for controlling the reactivity of a high-temperature gas-cooled reactor of a pebble bed comprising: a rod insertion process and a lifting rod process; in the upper half of the control rod stroke during the insertion of the rod, the outer rod and the inner rod are in the driving mechanism Dragging and moving together, when the top end of the outer rod is lowered to the upper edge of the active area of the reactor, the outer shoulder of the outer rod is overlapped on the positioning ring at the bottom end of the guiding assembly, at this time The rod no longer moves downward under the support of the guiding element positioning ring, that is, the stroke limit is reached;
  • the inner rod can be continuously inserted along the outer rod inner sleeve under the driving mechanism, and separated from the outer rod until the lower stroke limit, at which time the outer rod and the inner rod cover the entire core activity During the lifting process, in the lower half of the control rod stroke, only the inner rod moves upwards under the driving mechanism, and the outer rod is gradually inserted until the inner rod and the outer rod are inside. Closing the mouth, the inner rod completely overlapping the outer rod;
  • the length of the existing modular ball bed high temperature gas cooled reactor control rod is only about half of the height of the core active zone, without changing the height of the pressure vessel and other existing modular ball beds.
  • the unfolded length of the nested control rod of the present invention can cover the height of the entire core active zone, and maximize the reactivity value of the control rod system.
  • the sleeve type control rod provided by the embodiment of the invention is provided with a plurality of spring dampers, which can effectively reduce various types of impact loads and improve the operational reliability of the control rod.
  • the telescopic control rod provided by the embodiment of the invention is a detachable structure, which is beneficial to processing, packaging, transportation and on-site installation of a nuclear power plant.
  • FIG. 1 is a schematic diagram of the operation of the nested control rod in the upper limit of the stroke of the embodiment of the present invention
  • FIG. 2 is a schematic diagram of the operation of the nested control rod of the embodiment of the present invention at the lower limit of the stroke
  • FIG. 3 is a multi-section of the embodiment of the present invention
  • FIG. 4 is a schematic structural view of a coupling head assembly in a multi-section inner rod connecting structure according to an embodiment of the present invention
  • FIG. 5 is a schematic structural view of a spherical joint joint assembly in a multi-section inner rod connecting structure according to an embodiment of the present invention
  • FIG. 6 is an embodiment of the present invention.
  • FIG. 7 is a schematic structural view of an anti-punching head assembly in a multi-section inner rod connecting structure according to an embodiment of the present invention
  • FIG. 8 is a multi-section outer rod structure according to an embodiment of the present invention;
  • FIG. 9 is a schematic structural view of a sliding sleeve type shock absorber assembly in a multi-section outer rod connecting structure according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural view of a suspension assembly in a multi-section outer rod connection structure according to an embodiment of the present invention
  • FIG. 11 is a schematic structural view of a single outer joint rod assembly in a multi-section outer rod connection structure according to an embodiment of the present invention
  • Schematic diagram of the structure of the guide assembly In the figure, 1 : inner rod; 2 ⁇ outer rod; 3: guide simple assembly; 4: ring chain; 5, core active area; 6, control rod graphite channel; 11: joint head assembly; 12: spherical joint 13: inner rod; 14: anti-punch assembly; 21: sliding sleeve shock absorber; 22: hanging assembly; 23: outer joint rod; 31: upper guide assembly; 32 ⁇ middle section of guide assembly; 33: lower section of guide assembly; 34: positioning ring; 35: upper support plate; 36: pressure plate; 37: inner member positioning plate; 38: top carbon brick; 51: active area upper edge; 52: active area Lower edge; 53: Pressure vessel head; 61: Cylindrical shell shock absorber
  • FIG. 1 and FIG. 2 it is an operation schematic diagram of a telescopic control rod according to an embodiment of the present invention.
  • the sleeve control rod includes: an inner rod 1, an outer rod 2, and a guide assembly 3.
  • the inner rod 1 is connected to the chain 4 of the control rod drive mechanism through the joint assembly, and is moved up and down in the guide assembly 3 and the control rod graphite passage 6 by the drive mechanism, and the lower limit of movement is limited by the maximum length of the chain 4, Up to the lower edge 52 of the active zone of the reactor, the upper limit of the movement is limited by the height of the reactor pressure vessel, above the upper edge 51 of the active zone of the reactor, and can be actively maintained above the active zone by the drive mechanism, and the drive mechanism is cut off during an accident shutdown.
  • the power supply, the inner rod 1 falls into the active area side reflection layer by its own gravity, and satisfies the design principle of "fail-safe".
  • the top of the outer rod 2 has an inner receiving opening 25 and an outer shoulder 24, and the inner rod 1 is inserted from the bottom of the outer rod 2, and the outer rod 2 can be overlapped on the inner rod 1 by means of the inner receiving opening 25.
  • the outer rod 2 and the inner rod 1 are moved together under the drag of the driving mechanism.
  • the outer shoulder of the outer rod 2 24 is lapped on the positioning ring 34 at the bottom end of the guide assembly 3, at which time the outer rod 2 is guided Under the support of the positioning ring 34 of the simple assembly 3, the downward movement is no longer moved, that is, the lower limit of the stroke is reached; the inner rod 1 is driven down by the driving mechanism to continue to be inserted along the inner sleeve of the outer rod 2, and separated from the outer rod 2 until At the lower limit of the stroke, the outer rod 2 and the inner rod 1 will cover the entire core active zone 5, greatly increasing the reactivity value of the control rod.
  • the telescopic control rod of the present invention gradually increases its deployment length during the insertion process until the entire core active zone 5, and conversely, its deployment length gradually decreases during the lifting process, and finally only the heap The core active zone 5 is half the height.
  • the guiding simple assembly 3 and the control rod graphite channel 6 together constitute an operating passage of the outer rod 2 and the inner rod 1, and guide the operation of the outer rod 2 and the inner rod 1, while preventing the outer rod 2 and the inner rod 1 and the pile under earthquake conditions. Impact of other components inside; the lowermost end of the guide assembly 3 is welded with a positioning ring 34, which limits the maximum insertion stroke of the outer rod 2.
  • the ten-section structure is taken as an example.
  • the structure of the multi-section inner rod 1 is as shown in FIG. 3, including: the joint assembly 11, the nine spherical joints 12, and 10 Inner joint rod 13 and anti-punch assembly 14.
  • the coupling head assembly 11 is as shown in FIG. 4, and comprises a flat pin 110, a locking bead ring 111, a coupling head 112, a buffering plate 113, a cylindrical spring 114, a bearing platen 115, a ceramic ball 116, a bearing bottom plate 117 and a spherical hinge 118. composition.
  • the coupling head 112 is connected to the chain 4 of the control rod driving mechanism through the flat pin 110, and the locking wire ring 111 is used to prevent the flat pin 110 from falling off; when the inner rod 1 is lifted upward from the bottom of the control rod graphite channel 6, the moving inner rod 1 will collide with the stationary outer rod 2, the buffer platen 113 and the cylindrical spring 114 can buffer the collision; the ceramic ball 116, the bearing platen 115 and the bearing bottom plate 117 together form a thrust bearing structure, the main function is to avoid the inner rod 1
  • the uneven distribution of weight may cause the drive mechanism chain 4 to be twisted, which affects the operation of the drive mechanism; the spherical hinge 118 is screwed and spot welded to the bearing platen 115, and is spherically matched with the inner end plate upper end plate 130 to ensure the joint assembly 11 and the inner joint.
  • each of the inner rods 13 is composed of an outer sleeve 133, an upper end plate 130, a lower end plate 131, a pressing spring 132 and a B 4 C core block. 134 composition.
  • B 4 C-core block 134 is a neutron absorber, It is welded and packaged in the outer sleeve 133; a gap is left between the B 4 C-core block 134 and the outer sleeve 133 and the upper end plate 130 to compensate for the radiation swelling of the B 4 C core block 134; to prevent the B 4 C core block
  • the 134 is tilted, and a pressing spring 132 is disposed at the top thereof; the B 4 C-cylinder block 134 is generated by the neutron irradiation to generate helium gas, and the inner section rod vent hole 135 is favorable for the discharge of the helium gas;
  • the total length of the B 4 C-core block 134 installed in the rod 13 is about half the height of the core active zone 5;
  • each of the spherical joints 12 includes: an upper spherical joint 120, a lower spherical hinge 121, a flat pin 122, and a locking traveler 123.
  • the spherical hinge joint 12 not only ensures a reliable connection of the adjacent inner joint bars 13, but also ensures a flexible rotation between each other.
  • the process hole 124 and the process groove 125 are provided on the spherical hinge to facilitate assembly and disassembly of the inner node 13;
  • the anti-punching head assembly 14 is integrally welded to the innermost end bar 13 of the bottom end as shown in Fig. 7, and includes: a buffering platen 140, a disc spring 141, and an anti-punching head 142.
  • a cylindrical shell type shock absorber 61 is disposed at the bottom of the control rod graphite channel 6, as shown in FIG. 1 to relieve the impact of the inner rod 1 fracture on the graphite member in the stack under extreme accident conditions.
  • the buffer platen 140 and the disc spring 141 are used to relieve the impact of the outer rod 2 on the inner rod 1 in the event of an extreme accident, and also ensure that the outer rod 2 does not escape from the control rod driving mechanism, and the outer rod 2 is facilitated. Take out and replace.
  • the ten-section structure is taken as an example.
  • the detailed structure of the outer rod 2 is as shown in FIG. 8, and includes: a sliding sleeve type shock absorber 21, nine hanging components 22 and 10 Root knot bar 23.
  • the sliding sleeve type damper 21 is as shown in FIG. 9, and includes: an inner receiving port 210, an outer shoulder 211, a pre-tightening plate 212, and a disc spring 213.
  • the inner receiving port 210 is integrated with the upper end plate 230 of the outer joint bar 23, and is welded to the inner and outer sleeves 233 of the outer joint bar 23; the pre-tightening plate 212 is screwed to the inner closing port 210, and a certain preload is applied to the disc spring 213.
  • the outer shoulder 211 and the outer sleeve 232 of the outer joint rod 23 have a certain gap.
  • the outer shoulder 211 is The positioning ring 34 at the lower end of the control rod guide tube collides and slides upward, and the disc spring 213 is deformed under pressure to thereby provide a shock absorbing effect. In the case where the disc spring 213 is most deformed, the outer joint rod 23 is still not separated from the outer shoulder. 211 ;
  • each outer joint rod 23 is as shown in FIG. 11, and each outer joint rod 23 is composed of an inner sleeve 233, an outer sleeve 232, an upper end plate 230, a lower end plate 231, a pressing spring 235, and a B 4 C-core block 234.
  • B 4 C core block 234 The sample is welded and enclosed in the annular space between the inner and outer sleeves and the end plate, and a gap is left between the inner and outer sleeves and the upper end plate to compensate for the radiation swelling of the B 4 C core block 234; to prevent the B 4 C core
  • the turbulence of the block 234 is provided with a compression spring 235 between the top thereof and the upper end plate 230.
  • the outer sleeve 232 is provided with an outer rod exhaust hole 236, so that the B 4 C-core 234 can be discharged due to the neutron irradiation, and the outer joint rod 23 composed of the inner and outer sleeves and the upper and lower end plates can be avoided.
  • the cladding is subjected to internal pressure or external pressure; the B 4 C pellet 234 is a sintered body having a density of 2.0 g/cm 3 , which is lower than its theoretical density, and the B 4 C pellet 234 having a too high density is susceptible to neutron irradiation.
  • the total length of the absorbent body contained in the 10 outer joint rods 23 is about half of the height of the core active area 5; wherein, the hanging assembly 22 is as shown in Fig.
  • each hanging assembly has 6 identical lifting ring structures.
  • Each ring structure comprises: 2 spherical pendants 220, 2 cylindrical pins 222, 1 long lifting ring 221 and 2 retaining rings 223.
  • the inner side of the upper and lower end plates of the outer joint bar 23 are slotted, and the spherical hanging member 220 can be laterally loaded; the spherical hanging member 220 and the long lifting ring 221 are connected by the cylindrical pin 222, and the cylindrical pin 222 is fixed by the retaining ring 223.
  • the spherical pendant 220 is swingable relative to the outer joint end plate, and a gap is left between the spherical hanging member 220, the cylindrical pin 222 and the long lifting ring 221 to allow the outer joint rods 23 to rotate or misalign with each other.
  • the retaining ring 223, the long lifting ring 221 and the cylindrical pin 222 of the hanging assembly 22 can be disassembled, so that the outer wrap 2 does not need to be packaged and transported in one piece, and is packaged and transported in the form of a single outer wand 23, which reduces the difficulty. Increased reliability, and also the installation of nuclear power plant field control rods.
  • the guide assembly 3 is as shown in FIG. 12, which is divided into upper, middle and lower sections, each of which has a short length, which is convenient for processing and manufacturing; and the upper section 31 and the middle section 32 are fixedly mounted on the internal components of the metal members in the stack.
  • the upper section 31 is located above the support plate, and a large gap is left between the reactor and the pressure vessel head 53 to compensate for the difference in thermal expansion between the metal member in the stack and the pressure vessel.
  • the middle section 32 is located below the support plate and is worn.
  • the bottom portion is inserted into the lower portion 33 of the guide, and the lower portion 33 of the guide is fixed to the inner member of the stack of metal members 37, and the top carbon brick 38 and the top reflective layer graphite brick are inserted, and the lower end is welded with Positioning ring 34.
  • the inner rod 1 and the outer rod 2 of the nested control rod are all designed in a multi-section hanging structure, because the control rod graphite channel 6 is a graphite piled structure with a height of more than 20 meters, which cannot be completely guaranteed during the installation process.
  • the straightness in addition, may also be deformed by neutron irradiation during the operation of the reactor.
  • the multi-section suspension structure can effectively prevent the outer rod 2 from being blocked in the control rod graphite channel 6 or the inner rod 1 in the outer rod 2 or Stuck.
  • the metal structural materials of the control rod of the present invention all adopt high temperature resistant nickel-base alloy with high temperature durability; To prevent the mutual engagement and adhesion of the metal contact surface materials in high temperature environment, the metal contact surface materials have different grades and all are solidified to maintain the flexibility of the spherical joints and the hanging components, and thus have good industrial applicability.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

一种能单独实现冷停堆的反应堆侧反射层套叠式控制棒。该控制棒包括竖直且同轴设置的内棒(1)、外棒(2)以及导向筒组件(3),外棒(2)以及导向筒组件(3)为中空柱状体,内棒(1)的顶端可在外棒(2)内部上下移动,另一端随之在与位于导向筒组件(3)下方且与导向筒组件(3)同轴设置的控制棒通道(6)内部上下移动;外棒(2)顶端可在导向筒组件(3)内上下移动,另一端随之在控制棒通道(6)内部上下移动。本控制棒在不改变压力容器高度及其他现有模块式球床高温冷气堆总体设计参数的前提下,能最大限度地增加控制棒的有效长度、提高控制棒系统的反应性价值,同时简化了模块式球床高温冷气堆的启动及运行控制操作,为高温堆电站的安全经济运行奠定了技术基础。

Description

说明书 球床高温气冷堆反应性控制方法及套叠式控制棒 技术领域
本发明涉及模块式球床高温气冷堆核电站反应性控制及控制棒设计, 特 别涉及一种球床高温气冷堆反应性控制方法及套叠式控制棒。 背景技术
球床高温气冷堆起源于德国的 AVR实验堆,在 AVR堆实验成功的基础上, 德国于 20世纪 70年代, 即世界核电的高速发展期, 建造运行了电功率达 300MW的钍高温气冷堆示范电厂(THTR-300 )。 随着美国三哩岛和苏联切尔 诺贝利核电厂事故的发生, 各国公众和监管机构对核电厂的安全日益重视, 为此高温气冷堆商用电站也从原来的向大型化方向发展, 转变为开发具有非 能动固有安全性的模块式高温气冷堆。 我国已开工建设的华能山东石岛湾核 电厂高温气冷堆核电站示范工程 (HTR-PM ) 即为典型的模块式球床高温气 冷堆。
钍高温气冷堆(THTR300 )由于单堆功率较高, 设置了两套控制棒系统, 一套为布置于侧反射层的 36根调节棒, 用于调节快速的反应性变化及事故工 况下的热停堆; 另外一套有 42根控制棒, 插入堆芯球床, 用于长期冷停堆并 保证一定的冷停堆深度。 钍高温气冷堆的运行经验表明: 插入堆芯球床的控 制棒克服堆积的球形燃料元件的阻力需要巨大的驱动力, 造成燃料元件的损 坏。 因此在后来的模块式球床高温气冷堆 HTR-MODUL的设计中只保留了侧 反射层控制棒。
HTR-MODUL单堆热功率 200MW, 堆芯直径 3米, 堆芯平均高度 9.4米。 其反应性控制和停堆系统包括控制棒系统和吸收球停堆系统, 控制棒系统共 有 6根控制棒, 布置在侧反射层, 每根控制棒对应有一套驱动机构供其上下移 动。 每根控制棒的吸收体长度为 4800mm, 总长 5280mm, 共分 10节, 控制棒 外径 105mm,控制棒孔道直径 130mm,控制棒包壳材料为 X8CrNiMoNb 1616, 总重 104kg, 最高设计温度约 900°C。 HTR-MODUL控制棒系统的主要功能为: 反应堆功率调节和热停堆。
由上述控制棒的设计参数可见: 控制棒的结构型式为多节单棒结构; 由 于在反应堆满功率运行时, 控制棒需要全部提出活性区, 受反应堆压力容器 高度的限制, 控制棒吸收体的长度约为堆芯活性区高度的一半。
除控制棒系统外, HTR-MODUL的另外一套反应性控制和停堆系统为吸 收球停堆系统, 该系统有 18列吸收小球, 同样位于反应堆侧反射层, 吸收小 球依靠重力落入侧反射层孔道, 依靠气力输送方式从侧反射层孔道返回贮球 罐。 该系统的主要功能是: ①在反应堆启动及低功率运行时, 与控制棒系统 配合进行反应性控制; ②单独实现冷停堆, 并保证一定的冷停堆深度。
上述 HTR-MODUL的反应性控制存在以下问题: ①吸收球停堆系统功能 要求多, 系统设计复杂, 运行可靠性要求高; ②反应堆启动及低功率运行时, 反应堆操纵人员不仅需要操作控制棒系统, 还需要均匀从各个吸收球孔道依 靠气力输送方式吹起吸收小球, 且每次输送的吸收球的量要精确可控, 这给 反应堆操纵人员带来较大的操作难度, 易于发生事故。
为此 HTR-PM反应性控制和停堆系统的设计采用了以下技术创新: 仍保 留控制棒和吸收球这两套相互独立的系统, 对两套系统的功能进行调整; 控 制棒系统分为安全棒组、 调节棒组及补偿棒组, 安全棒组在反应堆启动及功 率运行时全部提出反应堆活性区, 其价值足以保证在任何反应堆工况下的停 堆, 调节棒组进行反应堆功率调节, 展平堆芯功率分布, 补偿正常运行时的 堆芯反应性变化, 补偿棒组用以补偿反应堆长期运行后的反应性变化; 安全 棒组和调节棒组作为反应堆保护系统的执行机构, 在假设反应性价值最大的 一根控制棒失效的情况下, 能够快速实现热停堆; 在反应堆启动及低功率运 行时, 调节棒组与补偿棒组配合进行反应性控制。 所有控制棒全部投入能够 单独实现冷停堆, 并保证一定的冷停堆深度。 吸收球停堆系统作为备用停堆 系统, 不参与反应堆的启动及所有功率水平运行, 在需要时可手动投入; 控 制棒系统与吸收球停堆系统共同投入, 可以实现长期冷停堆或检修停堆。 发明内容
(一) 要解决的技术问题 本发明要解决的技术问题是: 在保持目前模块式球床高温气冷堆压力容 器、 堆内构件等结构设计参数基本不变的条件下, 仅利用控制棒系统就能实 现冷停堆, 并保证一定的停堆深度的问题。
(二)技术方案
本发明采用如下技术方案:
一种球床高温气冷堆套叠式控制棒, 包括竖直且同轴设置的内棒、 外棒 以及导向简组件, 所述外棒以及导向简组件为中空柱状体, 所述内棒的顶端 可在所述外棒内部上下移动, 另一端随之在位于所述导向简组件下方且与导 向简组件同轴设置的控制棒通道内部上下移动; 所述外棒顶端可在所述导向 简组件内上下移动, 另一端随之在所述控制棒通道内部上下移动。
优选的, 所述内棒为多节结构, 包括联接头组件、 防冲头组件以及通过 球面铰关节串联的多个内节棒, 所述联接头组件一端与首段的内节棒连接, 另一端与控制棒驱动机构的环链相连; 所述防冲头组件一端与末段的内节棒 连接。
优选的, 所述联接头组件包括联接头、 扁销、 锁紧钢丝圈、 缓冲压板、 圆柱弹簧、 轴承压板、 陶瓷滚珠、 轴承底板及球面铰; 所述联接头通过扁销 与控制棒驱动机构的环链相连, 锁紧钢丝圈用于环绕紧固扁销; 缓冲压板置 于圆柱弹簧上组成缓冲结构, 该缓冲结构位外置于联接头的侧壁, 球面铰与 轴承压板螺紋连接, 与内节棒上端板球面配合, 陶瓷滚珠、 轴承压板及轴承 底板共同构成推力轴承结构, 该推力轴承结构外套于联接头内。
优选的, 所述内节棒包括外套管、 分别位于所述外套管两端的上端板和 下端板以及焊接封装在所述上端板和下端板之间且位于所述外套管内的 B4C 芯块; 所述 B4C芯块与外套管及上端板之间均留有间隙; 所述 B4C芯块与上端板 之间设置有压紧弹簧。
优选的, 所述防冲头组件包括缓冲压板、 碟簧以及侧壁上设置有突出部 的防冲头, 所述碟簧设置在所述突出部与缓冲压板之间。
优选的, 所述外棒顶部设置有顶部内收口以及顶部外轴肩; 所述外棒为 多节结构, 包括滑套式减震器、 吊挂组件及多根外节棒, 吊挂组件连接各节 外节棒, 滑套式减震器与首端外节棒相连接。
优选的, 所述外节棒包括内套管、 外套管、 上端板、 下端板、 压紧弹簧 以及 B4C芯块, 其中 B4C芯块安装在内套管、 外套管以及上端板和下端板之间的 环形空间内, 并且与内外套管及上端板之间留有空隙, B4C芯块与上端板之间 设置有压紧弹簧, 外套管上开有排气孔。
优选的, 每个所述吊挂组件共有相同个数的吊环结构, 每个吊环结构包 含: 2个球面挂件、 2个圆柱销、 1个长吊环及 2个挡圈, 上端板以及下端板的 内侧槽装入球面挂件; 球面挂件与长吊环通过圆柱销连接, 并由挡圈固定圆 柱销, 球面挂件、 圆柱销及长吊环之间均留有间隙。
包括上段、 中段以及下段, 所述上段和中段一起固定安装于堆内金属构 件的上支承板上, 上段位于支承板上方, 与反应堆压力容器封头之间留有间 隙, 所述中段位于支承板下方, 穿过数层堆芯压板, 底部插入下段, 所述下 段固定于所述上支承板以及堆内金属构件定位板上, 并可按设计长度插入顶 碳砖和顶反射层石墨砖一定深度, 其下端焊接有定位环。
本发明还提供一种球床高温气冷堆反应性控制方法:
一种球床高温气冷堆反应性控制方法, 包括: 插棒过程以及提棒过程; 插棒过程中, 在控制棒行程的上半段, 所述外棒与所述内棒在驱动机构 的拖动下一起移动, 当所述外棒的顶端下降至反应堆活性区的上沿时, 所述 外棒的外轴肩搭接在所述导向简组件底端的定位环上, 此时所述外棒在所述 导向简组件定位环的支承下不再向下移动, 即达到行程下限;
所述内棒在驱动机构带动下沿所述外棒内套管可继续下插, 并与所述外 棒分离, 直至行程下限, 此时所述外棒和所述内棒覆盖整个堆芯活性区; 提棒过程中, 在控制棒行程的下半段, 仅有所述内棒在驱动机构拖动下 向上移动, 逐渐插入所述外棒, 直至所述内棒与所述外棒的内收口接触, 所 述内棒与所述外棒完全重叠;
进一步提棒, 所述内棒与所述外棒一起向上移动, 逐渐进入所述导向简 组件, 待所述内棒与所述外棒全部位于反应堆活性区上沿之上时, 达到提棒 极限。 (三)有益效果
本发明实施例所提供的球床高温气冷堆套叠式控制棒具有如下有益效 果:
( 1 )、 为模块式球床高温气冷堆仅利用控制棒系统进行反应性控制和停 堆创造了技术条件; 简化了模块式球床高温气冷堆的启动及运行控制操作; 减少了吸收球停堆系统的功能要求, 降低其设计复杂性。
( 2 )、 受压力容器高度等限制, 现有模块式球床高温气冷堆控制棒长度 仅为堆芯活性区高度的约一半, 在不改变压力容器高度及其他现有模块式球 床高温气冷堆总体设计参数的前提下, 本发明套叠式控制棒的展开长度能覆 盖整个堆芯活性区高度, 最大限度地提高控制棒系统的反应性价值。
( 3 )、 本发明实施例所提供的套叠式控制棒多处设置弹簧减震器, 可有 效降低各类冲击载荷, 提高了控制棒的运行可靠性。
( 4 )、 本发明实施例所提供的套叠式控制棒为可拆卸结构, 有利于加工 制造、 包装运输及核电站现场安装。
附图说明
图 1是本发明实施例的套叠式控制棒位于行程上限运行原理图; 图 2是本发明实施例的套叠式控制棒位于行程下限运行原理图; 图 3是本发明实施例的多节内棒连接结构示意图;
图 4是本发明实施例的多节内棒连接结构中联接头组件结构示意图; 图 5是本发明实施例的多节内棒连接结构中球面铰关节组件结构示意图; 图 6是本发明实施例的多节内棒连接结构中单独内棒组件结构示意图; 图 7是本发明实施例的多节内棒连接结构中防冲头组件结构示意图; 图 8是本发明实施例的多节外棒结构示意图;
图 9是本发明实施例的多节外棒连接结构中滑套式减震器组件结构示意 图;
图 10是本发明实施例的多节外棒连接结构中悬吊组件结构示意图; 图 11本发明实施例的多节外棒连接结构中单独外节棒组件结构示意图; 图 12本发明实施例的导向简组件结构示意图; 图中, 1 : 内棒; 2·· 外棒; 3: 导向简组件; 4: 环链; 5、 堆芯活性区; 6、 控制棒石墨通道; 11 : 联接头组件; 12: 球面铰关节; 13: 内节棒; 14: 防冲头组件; 21 : 滑套式减震器; 22: 吊挂组件; 23: 外节棒; 31 : 导向简 组件上段; 32·· 导向简组件中段; 33: 导向简组件下段; 34: 定位环; 35: 堆内构件上支承板; 36: 压板; 37: 堆内构件定位板; 38: 顶碳砖; 51 : 活 性区上沿; 52: 活性区下沿; 53: 压力容器封头; 61 : 圆柱壳式减震器; 110: 扁销; 111 : 锁紧钢丝圈; 112: 联接头; 113: 缓冲压板; 114: 圆柱弹簧; 115: 轴承压板; 116: 陶瓷滚珠; 117: 轴承底板; 118: 球面铰; 120: 上球 面铰; 121 : 下球面铰; 122: 扁销; 123: 锁紧钢丝圈; 124: 工艺孔; 125: 工艺槽; 130: 上端板; 131 : 下端板; 132: 压紧弹簧; 133: 外套管; 134: B4C芯块; 135: 内节棒排气孔; 140: 缓冲压板; 141 : 碟簧; 142: 防冲头; 210: 内收口; 211 : 外轴肩; 212: 预紧压板; 213: 碟簧; 220: 球面挂件; 221 : 长吊环; 222: 圆柱销; 223: 挡圈; 230: 上端板; 231 : 下端板; 232: 外套管; 233: 内套管; 234: B4C芯块; 235: 压紧弹簧; 236: 外节棒排气孔。 具体实施方式
下面结合附图和实施例, 对本发明的具体实施方式做进一步描述。 以下实施 例仅用于说明本发明, 但不用来限制本发明的范围。
如图 1和图 2所示, 为本发明实施例的套叠式控制棒的运行原理图, 该套 叠式控制棒包括: 内棒 1、 外棒 2及导向简组件 3。 内棒 1通过联接头组件与控 制棒驱动机构的环链 4相连, 在驱动机构拖动下在导向简组件 3和控制棒石墨 通道 6内上下移动, 其移动下限受环链 4最大长度限制, 达反应堆活性区下沿 52, 其移动上限受反应堆压力容器高度限制, 在反应堆活性区上沿 51之上, 并可以由驱动机构以能动方式保持在活性区上方, 事故停堆时, 切断驱动机 构电源,内棒 1靠自身重力落入活性区侧反射层,满足"故障安全"的设计原则。
外棒 2顶部带有内收口 25和外轴肩 24, 内棒 1从外棒 2底部插入, 利用内收 口 25, 外棒 2可以搭接在内棒 1上。 在控制棒行程的上半段, 外棒 2与内棒 1在 驱动机构的拖动下一起移动, 当整个外棒 2全部位于反应堆活性区上沿 51之下 时, 外棒 2的外轴肩 24搭接在导向简组件 3底端的定位环 34上, 此时外棒 2在导 向简组件 3的定位环 34支承下不再向下移动, 即达到行程下限; 内棒 1在驱动 机构带动下沿外棒 2的内套管可继续下插, 并与外棒 2分离, 直至行程下限, 此时外棒 2和内棒 1将覆盖整个堆芯活性区 5,极大限度地提高了控制棒的反应 性价值。 反之, 在提棒过程中, 在控制棒行程的下半段, 仅有内棒 1在驱动机 构拖动下向上移动, 逐渐插入外棒 2, 直至内棒 1与外棒 2的内收口 25接触, 内 棒 1与外棒 2完全重叠, 进一步提棒, 内棒 1与外棒 2—起向上移动, 逐渐进入 导向简组件 3, 待内棒 1与外棒 2全部位于反应堆活性区上沿 51之上时, 达到提 棒极限, 此时反应堆可以满功率运行。 综上所述, 本发明套叠式控制棒在插 棒过程中其展开长度逐渐增加, 直至整个堆芯活性区 5, 反之, 在提棒过程中 其展开长度逐渐减小, 最终仅约为堆芯活性区 5高度的一半。
导向简组件 3与控制棒石墨通道 6共同构成外棒 2和内棒 1的运行通道, 对 外棒 2和内棒 1的运行起导向作用, 同时防止地震条件下外棒 2和内棒 1与堆内 其他构件的撞击; 导向简组件 3最下端焊接有定位环 34, 对外棒 2的最大下插 行程加以限制。
其中, 为清楚地说明多节结构, 这里以 10节结构为例进行说明, 多节内 棒 1的结构型式如图 3所示, 包括: 联接头组件 11、 9个球面铰关节 12、 10根内 节棒 13及防冲头组件 14。
其中,联接头组件 11如图 4所示, 由扁销 110、锁紧钢丝圈 111、联接头 112、 缓冲压板 113、 圆柱弹簧 114、 轴承压板 115、 陶瓷滚珠 116、 轴承底板 117及球 面铰 118组成。 联接头 112通过扁销 110与控制棒驱动机构的环链 4相连, 锁紧 钢丝圈 111用以防止扁销 110脱落; 当内棒 1从控制棒石墨通道 6底部向上提升 时, 运动的内棒 1会与静止的外棒 2发生碰撞, 缓冲压板 113与圆柱弹簧 114可 对该碰撞加以缓冲; 陶瓷滚珠 116、 轴承压板 115及轴承底板 117共同构成一推 力轴承结构, 主要作用是避免内棒 1因重量分布不均可能造成驱动机构环链 4 扭曲, 影响驱动机构运行; 球面铰 118与轴承压板 115螺紋连接并点焊, 与内 节棒上端板 130球面配合, 保证联接头组件 11与内节棒 13之间相互灵活转动; 其中, 内节棒 13如图 6所示, 每根内节棒 13均由外套管 133、 上端板 130、 下端板 131、 压紧弹簧 132以及 B4C芯块 134组成。 B4C芯块 134为中子吸收体, 被焊接封装于外套管 133内; B4C芯块 134与外套管 133及上端板 130之间均留有 间隙, 以补偿 B4C芯块 134的辐照肿胀; 为防止 B4C芯块 134的窜动, 在其顶部 设置有压紧弹簧 132; B4C芯块 134受中子辐照会产生氦气,其中间的内节棒排 气孔 135利于氦气的排出; 10根内节棒 13所装 B4C芯块 134的总长度约为堆芯活 性区 5高度的一半;
其中, 球面铰关节 12如图 5所示, 每个球面铰关节 12包括: 上球面铰 120、 下球面铰 121、 扁销 122及锁紧钢丝圈 123。 球面铰关节 12既保证相邻内节棒 13 的可靠连接, 又能保证相互之间的灵活转动。 球面铰上设置工艺孔 124和工艺 槽 125便于内节棒 13的组装与拆卸;
其中, 防冲头组件 14如图 7所示, 与最底端的内节棒 13焊接成为一体, 包 括: 缓冲压板 140、 碟簧 141及防冲头 142。 与防冲头 142相对应, 在控制棒石 墨通道 6底部设置一圆柱壳式减震器 61, 如图 1所示, 用以缓解极端事故情况 下内棒 1断裂对堆内石墨构件的冲击, 保证石墨构件的结构完整性; 缓冲压板 140及碟簧 141是缓解极端事故情况下外棒 2断裂对内棒 1的冲击, 同时也保证 外棒 2不会脱离控制棒驱动机构, 便于外棒 2的取出及更换。
其中, 为清楚地说明多节结构, 这里以 10节结构为例进行说明, 外棒 2 的详细结构如图 8所示, 包括: 滑套式减震器 21、 9个吊挂组件 22及 10根外节 棒 23。
其中, 滑套式减震器 21如图 9所示, 包含有: 内收口 210、 外轴肩 211、 预 紧压板 212和碟簧 213。 内收口 210与外节棒 23的上端板 230合为一体, 与外节 棒 23的内外套管 233焊接; 预紧压板 212与内收口 210采用螺紋连接, 并对碟簧 213施加一定的预紧力; 外轴肩 211与外节棒 23的外套管 232间留有一定的间 隙, 当外棒 2在驱动机构带动下下插或驱动机构断电而外棒 2下落时, 外轴肩 211与控制棒导向管下端的定位环 34碰撞并向上滑动, 碟簧 213受压变形, 从 而起到减震作用, 在碟簧 213产生最大变形的情况下, 仍保证外节棒 23不脱离 外轴肩 211 ;
其中, 外节棒 23如图 11所示, 每根外节棒 23均由内套管 233、 外套管 232、 上端板 230、 下端板 231、 压紧弹簧 235以及 B4C芯块 234组成。 B4C芯块 234同 样被焊接封装在内外套管及端板之间的环形空间内, 与内外套管及上端板之 间留有空隙,以补偿 B4C芯块 234的辐照肿胀; 为防止 B4C芯块 234的窜动, 在其 顶部与上端板 230之间设置有压紧弹簧 235。 外套管 232上开有外节棒排气孔 236, 可以使 B4C芯块 234因受中子辐照而产生的氦气排出,避免由内外套管和 上下端板构成的外节棒 23包壳承受内压或外压; B4C芯块 234为烧结体, 其密 度要求为 2.0g/cm3, 较其理论密度低, 密度太高的 B4C芯块 234容易受中子辐 照而皲裂; 10根外节棒 23内装吸收体的总长度约为堆芯活性区 5高度的一半; 其中, 吊挂组件 22如图 10所示, 每个吊挂组件共有 6个相同的吊环结构, 每个吊环结构包含: 2个球面挂件 220、 2个圆柱销 222、 1个长吊环 221及 2个挡 圈 223。 外节棒 23上下端板的内侧开槽, 可以侧向装入球面挂件 220; 球面挂 件 220与长吊环 221通过圆柱销 222连接, 并由挡圈 223固定圆柱销 222。 球面挂 件 220可以相对外节棒端板摆动, 球面挂件 220、 圆柱销 222及长吊环 221之间 均留有间隙, 允许外节棒 23之间相互转动或错位。 吊挂组件 22的挡圈 223、 长 吊环 221以及圆柱销 222均可拆卸, 因此无需对外棒 2进行整体式的包装运输, 以单个外节棒 23的形式进行包装和运输, 既降低了难度又增加了可靠性, 另 外对核电站现场控制棒的安装也有好处。
其中, 导向简组件 3如图 12所示, 分上中下三段, 每段长度较短, 便于加 工制造和安装; 上段 31和中段 32—起固定安装于堆内金属构件的堆内构件上 支承板 35上, 上段 31位于支承板上方, 与反应堆压力容器封头 53之间留有较 大间隙, 以补偿堆内金属构件与压力容器之间的热膨胀差, 中段 32位于支承 板下方, 穿过数层堆芯压板 36, 底部插入导向简下段 33, 导向简下段 33固定 于堆内金属构件堆内构件定位板 37上, 并插入顶碳砖 38和顶反射层石墨砖, 其下端焊接有定位环 34。
套叠式控制棒的内棒 1和外棒 2全部设计成多节吊挂的结构型式, 原因是 控制棒石墨通道 6为石墨堆砌结构, 高度达二十多米, 在安装过程中不能完全 保证其直线度, 另外在反应堆运行过程中也可能因中子辐照而变形, 多节吊 挂结构可有效预防外棒 2在控制棒石墨通道 6中或内棒 1在外棒 2中的运行受阻 或卡死。 另外外棒 2和控制棒石墨通道 6之间、 内棒 1和外棒 2之间均留有足够 大的间隙, 以利于外棒 2和内棒 1的移动。
反应堆正常运行工况下控制棒的环境温度达到 560°C:, 事故工况下接近 1000°C , 因此本发明控制棒的金属结构材料全部采用高温持久能力较好的耐 高温镍基合金; 为防止高温环境下金属接触面材料的相互咬合粘连, 金属接 触面材料的牌号各异, 且全部进行固体润滑处理, 以保持球面铰关节和吊挂 组件的灵活性, 进而具有良好的工业实用性。
以上实施方式仅用于说明本发明, 而并非对本发明的限制, 有关技术领 域的普通技术人员, 在不脱离本发明的精神和范围的情况下, 还可以做出各 种变化和变型, 因此所有等同的技术方案也属于本发明的保护范畴。

Claims

权利要求书
1、 一种球床高温气冷堆套叠式控制棒, 其特征在于, 包括竖直且同轴设 置的内棒(1)、 外棒(2) 以及导向简组件(3), 所述外棒(2) 以及导向简 组件为中空柱状体, 所述内棒的顶端可在所述外棒(2) 内部上下移动, 另一 端随之在位于所述导向简组件 (3) 下方且与导向简组件 (3) 同轴设置的控 制棒通道内部上下移动; 所述外棒(2) 顶端可在所述导向简组件 (3) 内上 下移动, 另一端随之在所述控制棒通道内部上下移动。
2、 根据权利要求 1所述的一种球床高温气冷堆套叠式控制棒, 其特征在 于, 所述内棒(1 ) 为多节结构, 包括联接头组件 (11)、 防冲头组件 (14) 以及通过球面铰关节 (12) 串联的多个内节棒(13), 所述联接头组件(11 ) 一端与首段的内节棒(13)连接, 另一端与控制棒驱动机构的环链相连; 所 述防冲头组件(14) 一端与末段的内节棒(13)连接。
3、 根据权利要求 2所述的一种球床高温气冷堆套叠式控制棒, 其特征在 于, 所述联接头组件 (11 )包括联接头 (112)、 扁销 (110)、 锁紧钢丝圈、 缓冲压板、 圆柱弹簧、 轴承压板、 陶瓷滚珠、 轴承底板及球面铰; 所述联接 头(112)通过扁销(110)与控制棒驱动机构的环链相连, 锁紧钢丝圈(111 ) 用于环绕紧固扁销 (110); 缓冲压板(113) 置于圆柱弹簧 (114) 上组成缓 冲结构, 该缓冲结构位外置于联接头 (112) 的侧壁, 球面铰(118) 与轴承 压板(115)螺紋连接, 与内节棒上端板(130)球面配合, 陶瓷滚珠(116)、 轴承压板(115)及轴承底板(117) 共同构成推力轴承结构, 该推力轴承结 构外套于联接头 (112) 内。
4、 根据权利要求 3所述的一种球床高温气冷堆套叠式控制棒, 其特征在 于, 所述内节棒(13)包括外套管 (133)、 分别位于所述外套管两端的上端 板 ( 130 )和下端板 ( 131 )以及焊接封装在所述上端板 ( 130 )和下端板 ( 131 ) 之间且位于所述外套管 (133) 内的 B4C芯块(134); 所述 B4C芯块( 134 ) 与 外套管 (133)及上端板(130)之间均留有间隙; 所述 B4C芯块(134) 与上 端板(130)之间设置有压紧弹簧 (132)。 5、 根据权利要求 4所述的一种球床高温气冷堆套叠式控制棒, 其特征在 于, 所述防冲头组件(14)包括缓冲压板(140)、 碟簧(141 ) 以及侧壁上设 置有突出部的防冲头(142), 所述碟簧(141 )设置在所述突出部与缓冲压板
( 140) 之间。
6、 根据权利要求 1-5任意一项所述的一种球床高温气冷堆套叠式控制棒, 其特征在于, 所述外棒(2)顶部设置有顶部内收口以及顶部外轴肩; 所述外 棒(2) 为多节结构, 包括滑套式减震器(21)、 吊挂组件(22)及多根外节 棒(23), 吊挂组件(22)连接各节外节棒(23), 滑套式减震器(21 ) 与首 段外节棒(23)相连接。
7、 根据权利要求 6所述的一种球床高温气冷堆套叠式控制棒, 其特征在 于, 所述外节棒(23)包括内套管 (233 )、 外套管 (232)、 上端板(230)、 下端板(231)、 压紧弹簧 (235 ) 以及 B4C芯块(234), 其中 B4C芯块(234) 安装在内套管 (233 )、 外套管 (232) 以及上端板(230)和下端板(231 )之 间的环形空间内, 并且与内外套管及上端板之间留有空隙, B4C芯块(234) 与上端板(230)之间设置有压紧弹簧(235 ), 外套管 (232)上开有排气孔。
8、 根据权利要求 7所述的一种球床高温气冷堆套叠式控制棒, 其特征在 于, 每个所述吊挂组件共有相同个数的吊环结构, 每个吊环结构包含: 2个球 面挂件 (220)、 2个圆柱销 (222)、 1个长吊环 (221 )及 2个挡圈 (223 ), 上 端板 ( 230 )以及下端板( 231 )的内侧槽装入球面挂件 ( 220 ); 球面挂件 ( 220 ) 与长吊环( 221 )通过圆柱销( 222 )连接, 并由挡圈( 223 )固定圆柱销( 222 ), 球面挂件 (220)、 圆柱销 (222)及长吊环 (221 )之间均留有间隙。
9、 根据权利要求 1-5或 7-8任意一项所述的一种球床高温气冷堆套叠式控 制棒, 其特征在于, 所述导向简组件(3)固定安装于堆内金属构件的上支承 板上, 包括上段、 中段以及下段, 所述上段和中段一起固定安装于堆内金属 构件的上支承板上, 上段位于上支承板上方, 与反应堆压力容器封头之间留 有间隙, 所述中段位于支承板下方, 穿过数层堆芯压板, 底部插入下段, 所 述下段固定于所述上支承板以及堆内金属构件定位板上, 并可按设计长度插 入顶碳砖和顶反射层石墨砖一定深度, 其下端焊接有定位环 (34)。 10、 一种控制权利要求 1-9任意一项所述球床高温气冷堆反应性控制方 法, 包括: 插棒过程以及提棒过程; 其特征在于:
插棒过程中, 在控制棒行程的上半段, 所述外棒与所述内棒在驱动机构 的拖动下一起移动, 当所述外棒的顶端下降至反应堆活性区的上沿时, 所述 外棒的外轴肩搭接在所述导向简组件底端的定位环上, 此时所述外棒在所述 导向简组件定位环的支承下不再向下移动, 即达到行程下限;
所述内棒在驱动机构带动下沿所述外棒内套管可继续下插, 并与所述外 棒分离, 直至行程下限, 此时所述外棒和所述内棒覆盖整个堆芯活性区; 提棒过程中, 在控制棒行程的下半段, 仅有所述内棒在驱动机构拖动下 向上移动, 逐渐插入所述外棒, 直至所述内棒与所述外棒的内收口接触, 所 述内棒与所述外棒完全重叠;
进一步提棒, 所述内棒与所述外棒一起向上移动, 逐渐进入所述导向简 组件, 待所述内棒与所述外棒全部位于反应堆活性区上沿之上时, 达到提棒 极限。
PCT/CN2014/085811 2013-09-03 2014-09-03 球床高温气冷堆反应性控制方法及套叠式控制棒 WO2015032316A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA2923036A CA2923036C (en) 2013-09-03 2014-09-03 Reactivity control method and telescoped control rod for pebble-bed high-temperature gas-cooled reactor
US14/916,504 US10229759B2 (en) 2013-09-03 2014-09-03 Reactivity control method and telescoped control rod for pebble-bed high-temperature gas-cooled reactor
JP2016539410A JP6232499B2 (ja) 2013-09-03 2014-09-03 ペブルベッド高温ガス冷却炉の反応性制御方法及びテレスコープ型制御棒
PL14841862T PL3043352T3 (pl) 2013-09-03 2014-09-03 Sposób kontroli reaktywności chłodzonego gazem wysokotemperaturowego reaktora ze złożem usypanym i teleskopowy pręt kontrolny
EP14841862.7A EP3043352B1 (en) 2013-09-03 2014-09-03 Method for controlling reactivity of gas-cooled pebble-bed high-temperature reactor, and telescopic control rod

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310395436.0A CN103456374B (zh) 2013-09-03 2013-09-03 球床高温气冷堆反应性控制方法及套叠式控制棒
CN201310395436.0 2013-09-03

Publications (1)

Publication Number Publication Date
WO2015032316A1 true WO2015032316A1 (zh) 2015-03-12

Family

ID=49738645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/085811 WO2015032316A1 (zh) 2013-09-03 2014-09-03 球床高温气冷堆反应性控制方法及套叠式控制棒

Country Status (9)

Country Link
US (1) US10229759B2 (zh)
EP (1) EP3043352B1 (zh)
JP (1) JP6232499B2 (zh)
CN (1) CN103456374B (zh)
CA (1) CA2923036C (zh)
HU (1) HUE039787T2 (zh)
PL (1) PL3043352T3 (zh)
SA (1) SA516370662B1 (zh)
WO (1) WO2015032316A1 (zh)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103456374B (zh) * 2013-09-03 2015-09-30 清华大学 球床高温气冷堆反应性控制方法及套叠式控制棒
CN105957561A (zh) * 2016-07-05 2016-09-21 上海核工程研究设计院 一种控制棒机构
CN108837323B (zh) * 2018-06-28 2024-04-26 苏州国科盈睿医疗科技有限公司 一种光学治疗仪
CN109859869B (zh) * 2019-03-11 2022-03-25 中国核动力研究设计院 一种适用于单根燃料元件瞬态试验的辐照装置
CN111048220B (zh) * 2019-12-31 2022-04-08 中国科学院合肥物质科学研究院 一种盘式快速停堆系统
CN111341467B (zh) * 2020-03-17 2021-10-22 中国核动力研究设计院 一种适用于球形燃料和高温冷却剂的金属堆内构件
CN111816332B (zh) * 2020-07-01 2023-02-17 中国核电工程有限公司 一种控制棒及高温气冷堆
CN112366008A (zh) * 2020-07-08 2021-02-12 石磊 一种用于移动式装置动力设备的核反应堆
CN112002445B (zh) * 2020-07-31 2022-09-09 清华大学 内置式控制棒驱动线导向结构及控制棒水压驱动系统
CN111968761B (zh) * 2020-07-31 2022-09-16 清华大学 驱动机构支撑结构以及控制棒驱动线
CN112037939B (zh) * 2020-08-27 2024-01-26 清华大学 内置式控制棒驱动线安装方法
CN112037940B (zh) * 2020-08-27 2024-02-06 清华大学 内置式控制棒驱动线有限空间安装方法
CN112397207B (zh) * 2020-11-20 2023-01-31 西安热工研究院有限公司 一种用于吸收球停堆系统功能验证的测试装置
KR102509956B1 (ko) * 2021-03-26 2023-03-15 한국수력원자력 주식회사 원자로의 제어봉 비정상 낙하 방지구조
CN113270211B (zh) * 2021-03-29 2023-12-22 中国核电工程有限公司 一种卧式反应堆用多节式控制鼓
CN113241201B (zh) * 2021-04-29 2022-03-04 西南科技大学 一种具有非均匀反射层的非均匀控制棒
CN113871035B (zh) * 2021-09-17 2024-05-28 中国核电工程有限公司 一种控制棒及高温气冷堆
CN113871034B (zh) * 2021-09-17 2023-09-22 中国核电工程有限公司 一种控制棒及气冷式微堆
CN113838585B (zh) * 2021-09-22 2023-11-10 中国原子能科学研究院 一种控制棒驱动机构、对接分离装置及操作方法
CN114220566B (zh) * 2021-10-29 2022-11-15 华能核能技术研究院有限公司 一种核电站反应堆压力容器内部窄缝的封堵方法
CN114388151A (zh) * 2021-12-16 2022-04-22 华能核能技术研究院有限公司 一种球床反应堆结构
CN114530264B (zh) * 2022-01-04 2024-02-20 中国原子能科学研究院 一种空间堆
CN114999692B (zh) * 2022-06-16 2024-05-28 中国核动力研究设计院 一种高温气冷堆氦气气氛保持装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0229030A1 (en) * 1986-01-07 1987-07-15 Westinghouse Electric Corporation Nuclear reactor control rod with anually uniform changeable worth
JPH01288795A (ja) * 1988-05-17 1989-11-21 Japan Atom Energy Res Inst ガス冷却型原子炉用制御棒
CN1174382A (zh) * 1996-08-08 1998-02-25 东芝株式会社 核反应堆用控制棒
JP2000171581A (ja) * 1998-09-29 2000-06-23 Mitsubishi Heavy Ind Ltd 原子炉用制御棒及び制御棒クラスタ
WO2000039808A1 (en) * 1998-12-23 2000-07-06 Westinghouse Atom Ab Control rod
CN103456374A (zh) * 2013-09-03 2013-12-18 清华大学 球床高温气冷堆反应性控制方法及套叠式控制棒

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3365368A (en) * 1964-07-10 1968-01-23 Atomic Energy Authority Uk Telescopically arranged nuclear reactor control elements
BE742649A (zh) * 1968-12-07 1970-05-14
US3932215A (en) * 1970-11-28 1976-01-13 Interatom Internationale Atomreaktorbau Gmbh Vertical control rod for rapid and safe shut-off of nuclear reactors
SE365333B (zh) * 1972-06-22 1974-03-18 Asea Atom Ab
JPS54138995A (en) * 1978-04-19 1979-10-27 Fuji Electric Co Ltd Control rod for reactor
DE2856246C2 (de) * 1978-12-27 1985-06-13 Kernforschungsanlage Jülich GmbH, 5170 Jülich Absorberstab für einen Kugelhaufenreaktor
JPS5629194A (en) * 1979-08-20 1981-03-23 Tokyo Shibaura Electric Co Nuclear reactor control device
DE3009390A1 (de) * 1980-03-12 1981-09-17 GHT Gesellschaft für Hochtemperaturreaktor-Technik mbH, 5060 Bergisch Gladbach Hochtemperaturreaktor
US4481164A (en) * 1982-03-17 1984-11-06 The United States Of America As Represented By The United States Department Of Energy Reactivity control assembly for nuclear reactor
US4820478A (en) * 1986-01-07 1989-04-11 Westinghouse Electric Corp. Nuclear reactor control rod with uniformly changeable axial worth
JPS62172292A (ja) * 1986-01-27 1987-07-29 三菱重工業株式会社 ガス冷却型原子炉の制御装置
JPH0222595A (ja) * 1988-07-11 1990-01-25 Japan Atom Energy Res Inst 高温ガス炉用制御棒
US5075072A (en) * 1989-10-11 1991-12-24 General Atomic High temperature control rod assembly
JP2856457B2 (ja) * 1989-10-12 1999-02-10 日本原子力研究所 高温ガス炉
US5098647A (en) * 1990-07-16 1992-03-24 Westinghouse Electric Corp. Guide tube insert assembly for use in a nuclear reactor
DE4023874A1 (de) * 1990-07-27 1992-02-06 Hochtemperatur Reaktorbau Gmbh Absorberstab, der in eine schuettung kugelfoermiger brennelemente einfahrbar ist
FR2696577B1 (fr) * 1992-10-05 1994-12-02 Framatome Sa Equipements internes de réacteur nucléaire à guides de grappe de commande.
WO2007030224A2 (en) * 2005-07-27 2007-03-15 Battelle Memorial Institute A proliferation-resistant nuclear reactor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0229030A1 (en) * 1986-01-07 1987-07-15 Westinghouse Electric Corporation Nuclear reactor control rod with anually uniform changeable worth
JPH01288795A (ja) * 1988-05-17 1989-11-21 Japan Atom Energy Res Inst ガス冷却型原子炉用制御棒
CN1174382A (zh) * 1996-08-08 1998-02-25 东芝株式会社 核反应堆用控制棒
JP2000171581A (ja) * 1998-09-29 2000-06-23 Mitsubishi Heavy Ind Ltd 原子炉用制御棒及び制御棒クラスタ
WO2000039808A1 (en) * 1998-12-23 2000-07-06 Westinghouse Atom Ab Control rod
CN103456374A (zh) * 2013-09-03 2013-12-18 清华大学 球床高温气冷堆反应性控制方法及套叠式控制棒

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3043352A4 *

Also Published As

Publication number Publication date
EP3043352A4 (en) 2017-04-12
CA2923036C (en) 2018-06-05
CN103456374B (zh) 2015-09-30
EP3043352B1 (en) 2018-06-27
US20160196884A1 (en) 2016-07-07
SA516370662B1 (ar) 2018-10-01
JP2016529521A (ja) 2016-09-23
CN103456374A (zh) 2013-12-18
EP3043352A1 (en) 2016-07-13
CA2923036A1 (en) 2015-03-12
PL3043352T3 (pl) 2018-12-31
HUE039787T2 (hu) 2019-02-28
US10229759B2 (en) 2019-03-12
JP6232499B2 (ja) 2017-11-15

Similar Documents

Publication Publication Date Title
WO2015032316A1 (zh) 球床高温气冷堆反应性控制方法及套叠式控制棒
RU2506656C2 (ru) Смешанно-оксидная тепловыделяющая сборка
JP2022552597A (ja) 制御ドラムを有する原子炉システムのための自動停止コントローラ
WO2014015740A1 (zh) 球形燃料反应堆
CN102201269B (zh) 球床高温气冷堆乏燃料装料装置
KR101749787B1 (ko) 핵연료 조립체 홀드 다운 스프링
CN102208221B (zh) 一种核电站乏燃料贮罐罐塞爪具
EP2793232B1 (en) Nuclear reactor upper structure with an earthquake-resistant reinforcement assembly
CN103998366B (zh) 核反应堆上部构造物的吊起钩环
KR20190098252A (ko) 원격 연결 해제 메커니즘을 가진 제어봉 드라이브 메커니즘(crdm)
KR101085734B1 (ko) 일체형 원자로 상부 구조물의 인양 장치
CN103050154A (zh) 一种压水堆控制棒驱动机构板状抗震环
CN103236275B (zh) 一种控制颗粒下落开关状态的装置
BR112016004756B1 (pt) Método de controle de reatividade e haste de controle telescopado para reator de alta temperatura resfriado a gás de leito de seixos
CN103474100B (zh) 采用机械控制棒作为第二套停堆系统的堆芯
KR101147938B1 (ko) 멀티플 스터드 텐셔너의 인양장비
CN109920563B (zh) 一种适用于耐高温驱动机构的桁架式一体化堆顶结构
KR101032824B1 (ko) 일체형 원자로 상부구조물의 링 플레이트
CN102431882B (zh) 机械式乏燃料贮罐吊具
US20060062344A1 (en) Control rod absorber stack support
CN102412001A (zh) 一种核电站乏燃料贮存竖井屏蔽井盖抓具
CN107182280B (zh) 一种免维修的抓具
CN117292855A (zh) 一种基于吸收球的球床式高温气冷堆紧急停堆装置
KR101085742B1 (ko) 일체형 원자로 상부 구조물의 인양 장치
JPS58124989A (ja) 原子炉停止装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14841862

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2923036

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2016539410

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14916504

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016004756

Country of ref document: BR

REEP Request for entry into the european phase

Ref document number: 2014841862

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014841862

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: IDP00201602202

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 112016004756

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160303