WO2015032132A1 - 石英电子表高精度守时方法 - Google Patents

石英电子表高精度守时方法 Download PDF

Info

Publication number
WO2015032132A1
WO2015032132A1 PCT/CN2013/087700 CN2013087700W WO2015032132A1 WO 2015032132 A1 WO2015032132 A1 WO 2015032132A1 CN 2013087700 W CN2013087700 W CN 2013087700W WO 2015032132 A1 WO2015032132 A1 WO 2015032132A1
Authority
WO
WIPO (PCT)
Prior art keywords
quartz crystal
time difference
oscillation frequency
quartz
difference compensation
Prior art date
Application number
PCT/CN2013/087700
Other languages
English (en)
French (fr)
Inventor
沈卓
魏银松
李斌
Original Assignee
成都天奥电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都天奥电子股份有限公司 filed Critical 成都天奥电子股份有限公司
Priority to CN201380048462.4A priority Critical patent/CN104937504B/zh
Priority to JP2016504457A priority patent/JP6282723B2/ja
Publication of WO2015032132A1 publication Critical patent/WO2015032132A1/zh
Priority to HK16100606.8A priority patent/HK1212788A1/zh

Links

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04GELECTRONIC TIME-PIECES
    • G04G3/00Producing timing pulses
    • G04G3/04Temperature-compensating arrangements

Definitions

  • the present invention relates to a quartz electronic watch technology or, in particular, to a high precision punctual method for a quartz electronic watch.
  • the daily error of a quartz electronic watch is less than 0.5 second, which is one-tenth of that of a mechanical watch, which is mainly attributed to the high and stable oscillation frequency of the quartz crystal oscillator in the quartz electronic watch.
  • the circuit portion of the quartz electronic watch includes a travel time circuit and a quartz crystal oscillator (ie, a punctual circuit).
  • the travel time circuit is usually realized by a CMOS series digital integrated circuit, and the volume is small; the quartz crystal oscillator performs punctual oscillation according to a certain oscillation frequency, and the frequency is divided by frequency (a ⁇ is a 1 Hz pulse signal) to send to the travel circuit.
  • the pulse, travel circuit is continuously clocked from the set standard time under the trigger of the travel pulse.
  • the oscillation frequency of the quartz crystal changes with the change of the ambient temperature. Therefore, in a non-constant temperature environment, the oscillation frequency of the quartz crystal also changes. Causing punctuality errors and accumulating The clock time difference causes a large error between the travel time of the quartz electronic watch and the standard time.
  • a high precision punctuality method for a quartz electronic watch comprising the steps of: presetting a correspondence relationship between an oscillation frequency of a quartz crystal and an ambient temperature, and further setting a time difference compensation period; At the end of the compensation period, the ambient temperature is collected, and the average of the ambient temperature and the ambient temperature tested at the end of the previous test period is taken as the average temperature value of the current time difference compensation period.
  • the accuracy of the actual oscillation frequency of the quartz crystal oscillator in the corresponding time difference compensation period is obtained;
  • the actual oscillation frequency accuracy and the time value of the time difference compensation period and obtain the punctual error caused by the frequency error of the quartz crystal oscillator during the time difference compensation period;
  • the travel time of the quartz electronic timepiece is compensated according to the punctuality error, the travel time pulse deviation of the travel time circuit output is corrected, and the high precision travel time of the quartz electronic watch is maintained.
  • the time difference compensation period is the time interval for error compensation of the punctual circuit. The short time interval can improve the compensation accuracy, but it will increase the power consumption of the watch.
  • the invention also provides a quartz electronic watch comprising: a controller, a temperature sensor, a quartz crystal oscillator and a travel circuit.
  • the quartz crystal oscillator is used for punctual oscillation, generates a travel pulse of 1 Hz frequency, and performs travel time compensation on the travel time circuit under the control of the controller;
  • the controller is configured to preset a correspondence relationship between the oscillation frequency accuracy of the quartz crystal and the ambient temperature, and further set a time difference compensation period; the temperature sensor, under the control of the controller, collects the environment at the end of the set time difference compensation period The controller is further configured to use the average temperature of the ambient temperature collected by the temperature sensor and the ambient temperature tested at the end of the previous test period as the current time difference.
  • the average temperature value of the compensation period according to the correspondence between the accuracy of the quartz crystal oscillation frequency and the ambient temperature and the average temperature value, the actual oscillation frequency accuracy of the quartz crystal oscillator in the corresponding time difference compensation period is obtained; According to the actual oscillation frequency accuracy of the quartz crystal oscillator, the time value of the time difference compensation period is obtained, and the punctual error in the time difference compensation period corresponding to the actual oscillation frequency accuracy of the quartz crystal oscillator is obtained; The time error compensates for the travel time of the quartz electronic timekeeping circuit, and maintains the accuracy of the travel pulse.
  • the high-precision punctuality method for the quartz electronic watch of the above embodiment of the present invention is pre-set with the correspondence relationship between the oscillation frequency accuracy of the quartz crystal and the ambient temperature; the time difference compensation period is also set, and the ambient temperature is collected at the end of the time difference compensation period, and is calculated.
  • the average temperature value in the time difference compensation period and the actual oscillation frequency accuracy of the corresponding quartz crystal oscillator, and the quartz crystal of the quartz electronic watch can be obtained according to the actual oscillation frequency accuracy of the quartz crystal oscillator and the time value of the time difference compensation period.
  • the punctuality error of the oscillator in the corresponding time difference compensation period, and the travel time error of the quartz electronic timepiece according to the punctuality error.
  • FIG. 1 is a flow chart showing a high precision punctuality method for a quartz electronic watch according to an embodiment of the present invention
  • Step S11 Presetting the correspondence between the accuracy of the quartz crystal oscillation frequency and the ambient temperature through the controller, Set the time difference compensation period in advance.
  • Step S11 Presetting the correspondence between the accuracy of the quartz crystal oscillation frequency and the ambient temperature through the controller, Set the time difference compensation period in advance.
  • the characteristic curve of the oscillation frequency of quartz crystal and the ambient temperature is obtained.
  • the corresponding relationship between the oscillation frequency accuracy of quartz crystal and the ambient temperature is obtained by curve fitting.
  • the time difference compensation period is the time interval for error compensation of the punctual circuit.
  • the short time interval can improve the compensation accuracy, but it will increase the power consumption of the watch.
  • the long time interval is not conducive to improve the compensation accuracy. Therefore, it is necessary to set a reasonable time difference compensation period.
  • Step S12 The ambient temperature is collected by the temperature sensor at the end of the time difference compensation period, and the controller calculates the average value of the ambient temperature and the ambient temperature tested at the end of the previous time difference compensation period as the average of the current time difference compensation period. Temperature value. For the initial compensation, an initial temperature value can be set as the ambient temperature tested at the end of the previous time difference compensation period.
  • Step S13 Acquire the actual oscillation frequency accuracy of the quartz crystal oscillator in the corresponding time difference compensation period according to the correspondence relationship between the quartz crystal oscillation frequency accuracy and the ambient temperature and the average temperature value calculated in step S12.
  • Step S14 Obtain the punctual error of the quartz crystal oscillator according to the actual oscillation frequency accuracy of the quartz crystal oscillator and the time value of the time difference compensation period.
  • the punctuality error can be obtained by multiplying the actual oscillation frequency accuracy by the time difference compensation period.
  • Step S15 Compensating the travel circuit of the quartz electronic watch according to the punctuality error, and maintaining the accuracy of the travel pulse.
  • a correspondence relationship between the oscillation frequency accuracy of the quartz crystal and the ambient temperature is preset in the controller, wherein the accuracy of the oscillation frequency of the quartz crystal refers to the actual value of the quartz crystal oscillator at a certain temperature value.
  • the deviation of the oscillation frequency from the set standard oscillation frequency; the time difference compensation period is also set, and at the end of each time difference compensation period, the ambient temperature is collected, and the average temperature value in the corresponding time difference compensation period is calculated, thereby obtaining the average
  • the actual oscillation frequency accuracy of the quartz crystal oscillator corresponding to the temperature value can obtain the punctual error of the quartz electronic watch in the corresponding time difference compensation period according to the actual oscillation frequency accuracy of the quartz crystal oscillator, and the quartz according to the punctual error
  • the travel time circuit of the electronic watch is compensated to keep accurate travel time.
  • the influence of the ambient temperature on the quartz crystal oscillator can be compensated in each time difference compensation period, and the travel circuit of the quartz electronic watch can be compensated, and the oscillation frequency of the quartz crystal due to the ambient temperature is overcome in the related art.
  • the influence of the influence of the travel time of the quartz electronic watch and the standard time is large, so the high-precision punctual method of the quartz electronic watch of the present invention can reduce the error of the travel time and the standard time of the quartz electronic watch.
  • the quartz electronic watch in the related art causes the error between the time and the standard time of the quartz electronic watch due to the accumulation of travel time errors, affecting the travel time precision of the quartz electronic watch, and generally has a few minutes error per month; Accuracy requirements continue to improve, the travel time error of a few minutes per month can not meet the time accuracy requirements of some high-end quartz electronic watches.
  • the high-precision punctuality method of the quartz electronic watch in the embodiment of the invention can reduce the travel time error of the quartz electronic watch from a few minutes per month to a few seconds per month, thereby greatly improving the travel time accuracy of the quartz electronic watch.
  • the correspondence between the oscillation frequency accuracy of the quartz crystal and the ambient temperature can be further corrected.
  • the time difference compensation period is continuously set; the plurality of consecutive time difference compensation periods are combined into a calibration period; and the corresponding relationship between the set quartz crystal oscillation frequency accuracy and the ambient temperature is corrected in the calibration period.
  • the correcting relationship between the set quartz crystal oscillation frequency accuracy and the ambient temperature is corrected during the calibration period, including: setting a calibration correction point in the calibration period, and calculating a calibration period in which the calibration correction point is located And obtaining an average of all ambient temperatures before the calibration ⁇ punctuality to obtain a second temperature average; obtaining a standard time value of the calibration ⁇ punctual point corresponding to the second temperature mean, and obtaining the standard
  • the time value is compared with the display time value of the calibration correction point to obtain a punctual error; and the accuracy error of the quartz crystal oscillation frequency is obtained according to the display time value of the calibration correction point corresponding to the punctuality error and the punctual error.
  • a quartz electronic watch using the above-mentioned quartz electronic watch high-precision punctual method is further provided.
  • the quartz electronic watch includes: a controller 21, a temperature sensor 22, a quartz crystal oscillator 24, and a travel circuit 23.
  • the controller 21 is configured to preset a correspondence relationship between the oscillation frequency accuracy of the quartz crystal and the ambient temperature, and further set a time difference compensation period; the temperature sensor 22 is configured to collect the ambient temperature at the end of the time difference compensation period; the controller 21 further It is used to calculate the average value of the ambient temperature collected by the temperature sensor 22 and the ambient temperature tested at the end of the previous time difference compensation period as the average temperature value of the current time difference compensation period; according to the quartz crystal oscillation frequency accuracy and the ambient temperature Corresponding relationship and the calculated average temperature value, obtaining the actual oscillation frequency accuracy of the quartz crystal oscillator in the corresponding time difference compensation period; according to the actual oscillation frequency accuracy of the quartz crystal oscillator and the time value of the time difference compensation period, Obtaining a punctual error caused by the actual oscillation frequency accuracy of the quartz crystal oscillator; and performing travel time compensation on the travel time of the travel circuit 23 of
  • the S1C17701 microcontroller has a split-rate of 0.03125.
  • C the working power is 3 ⁇ 4fu is ⁇ static power;
  • the temperature sensor 22 is the AD7301 temperature sensor, and the AD7301 temperature sensor is connected to the controller 21 through the SPI data bus.
  • the oscillation frequency of the quartz crystal oscillator 24 is 32.768 kHz.
  • the quartz electronic watch of the embodiment of the invention further includes a liquid crystal display connected to the controller 21 for displaying the travel time of the quartz electronic watch.
  • the quartz electronic watch of the embodiment of the invention further includes a button, and the button is connected to the controller 21, and the travel time of the quartz electronic watch can be manually set by the button.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electric Clocks (AREA)
  • Oscillators With Electromechanical Resonators (AREA)

Abstract

一种石英电子表高精度守时方法,包括:S11:预置石英晶体振荡频率准确度与环境温度的对应关系,预置时差补偿周期;S12:在时差补偿周期结束时,采集环境温度并计算环境温度与上一时差补偿周期结束时测试的环境温度的平均值作为当前时差补偿周期平均温度值;S13:根据石英晶体振荡频率准确度与环境温度的对应关系及步骤S12中计算的平均温度值获取石英晶体振荡器在对应时差补偿周期内的实际振荡频率准确度;S14:根据石英晶体振荡器的实际振荡频率准确度及时差补偿周期的时间值,获取石英晶体振荡器守时误差;S15:根据守时误差对石英电子表的走时电路进行走时补偿。使走时时间与标准时间之间产生小误差。一种采用该方法的石英电子表。

Description

石英电子表高精度守时方法 技术领域 本发明涉及石英电子表技术领 i或, 具体而言, 涉及石英电 子表高精度守时方法。 背景技术 石英电子表每日误差小于 0.5秒,是机械表的几十分之一, 这主要归功于石英电子表中的石英晶体振荡器高而稳定的振荡 频率。 石英晶体振荡器的频率越高, 振荡越稳定, 抗干扰能力 越强, 手表走时就越准确。 相关技术中, 石英电子表的电路部分包括走时电路和石英 晶体振荡器 (即守时电路)。 走时电路通常由一块 CMOS 系列 数字集成电路来实现, 体积很小; 石英晶体振荡器按照一定的 振荡频率进行守时振荡,频率经分频后(一 ^^为 1Hz脉冲信号) 向走时电路发送走时脉冲, 走时电路在走时脉冲的触发下从设 置的标准时间开始连续走钟。 但, 由于石英晶体固有的频率 /温度特性, 石英晶体的振荡 频率是随着环境温度的变 ^it而变 ^it的,因此,在非恒温环境下, 石英晶体的振荡频率也会发生变化, 造成守时误差, 进而积累 走钟时差, 导致石英电子表的走时时间与标准时间之间产生较 大误差。 发明内容 本发明的目的在于提供一种石英电子表高精度守时方法, 以解决现有技术中的上述问题。 在本发明的实施例中提供了一种石英电子表高精度守时方 法, 包括以下步骤: 预先设置石英晶体振荡频率准确度与环境温度的对应关系, 还预先设置时差补偿周期; 在所述时差补偿周期结束时, 采集环境温度, 并将该环境 温度与上一个测试周期结束时测试的环境温度的平均值作为当 前时差补偿周期的平均温度值。 才艮据石英晶体振荡频率准确度与环境温度的对应关系及所 述平均温度值, 获取石英晶体振荡器在对应的时差补偿周期内 的实际振荡频率准确度; 才艮据所述石英晶体振荡器的实际振荡频率准确度以及时差 补偿周期的时间值, 获取在该时差补偿周期内石英晶体振荡器 因频率误差而引起的守时误差; 以及 根据所述守时误差对石英电子表的走时电路的走时进行补 偿, 修正走时电路输出的走时脉冲偏差, 保持石英电子表的高 精度走时。 其中, 时差补偿周期就是对守时电路进行误差补偿的时间 间隔, 时间间隔短可提高补偿精度, 但会增加手表的功耗; 时 间间隔长则不利于提高补偿精度。 因此, 需要设置合理的时差 补偿周期。 本发明还提供了一种石英电子表, 包括: 控制器、 温度传 感器、 石英晶体振荡器及走时电路。 所述石英晶体振荡器用于守时振荡, 产生 1Hz频率的走时 脉冲, 并在控制器的控制下对走时电路进行走时补偿;
所述控制器用于预先设置石英晶体振荡频率准确度与环境 温度的对应关系, 还预先设置时差补偿周期; 所述温度传感器, 在控制器的控制下, 在设定的时差补偿 周期结束时采集环境温度; 所述控制器, 还用于将所述温度传感器采集的环境温度与 上一个测试周期结束时测试的环境温度的平均值作为当前时差 补偿周期的平均温度值; 才艮据石英晶体振荡频率准确度与环境 温度的对应关系及所述平均温度值, 获取石英晶体振荡器在对 应的时差补偿周期内的实际振荡频率准确度; 4艮据所述石英晶 体振荡器的实际振荡频率准确度及时差补偿周期的时间值, 获 取与该石英晶体振荡器的实际振荡频率准确度所对应的时差补 偿周期内的守时误差; 根据所述守时误差对石英电子表的走时 电路进行走时补偿, 保持走时脉冲的准确性。 本发明上述实施例的石英电子表高精度守时方法, 预先设 置有石英晶体振荡频率准确度与环境温度的对应关系; 还设置 有时差补偿周期, 在时差补偿周期结束时采集环境温度, 并计 算时差补偿周期内的平均温度值及对应的石英晶体振荡器的实 际振荡频率准确度, 4艮据石英晶体振荡器的实际振荡频率准确 度和时差补偿周期的时间值能够获取石英电子表的石英晶体振 荡器在对应的时差补偿周期内的守时误差, 4艮据守时误差对石 英电子表的走时电路进行走时 卜偿。 本发明实施例中可以在每 个时差补偿周期内 4艮据环境温度对石英晶体振荡器的影响, 对 石英电子表进行走时补偿, 克服了相关技术中因为环境温度对 石英晶体振荡频率的影响导致石英电子表的走时时间与标准时 间具有较大误差的技术问题, 因此, 本发明实施例的石英电子 表及其走时方法能够减小石英电子表的走时时间与标准时间的 误差。 附图说明 图 1示出了本发明实施例石英电子表高精度守时方法的流 程图; 图 2示出了本发明实施例石英电子表的结构示意图。 具体实施方式 下面通过具体的实施例并结合附图对本发明做进一步的详 细描述。 本发明实施例中提供一种石英电子表高精度守时方法, 如 图 1所示, 主要处理步骤包括: 步骤 S11 : 通过控制器预先设置石英晶体振荡频率准确度 与环境温度的对应关系, 还预先设置时差补偿周期。 通过温度 实验, 得到石英晶体振荡频率与环境温度的特性曲线, 经曲线 拟合得到石英晶体振荡频率准确度与环境温度的对应关系。 时 差补偿周期就是对守时电路进行误差补偿的时间间隔, 时间间 隔短可提高补偿精度, 但会增加手表的功耗; 时间间隔长则不 利于提高补偿精度。 因此, 需要设置合理的时差补偿周期。 步骤 S12: 在所述时差补偿周期结束时由温度传感器采集 环境温度, 并由控制器计算该环境温度与上一个时差补偿周期 结束时测试的环境温度的平均值作为当前时差补偿周期的平均 温度值。 对于初次补偿, 可设定一温度初始值作为上一个时差 补偿周期结束时测试的环境温度。 步骤 S13 : 才艮据石英晶体振荡频率准确度与环境温度的对 应关系及步骤 S12中计算的平均温度值, 获取石英晶体振荡器 在对应的时差补偿周期内的实际振荡频率准确度。
步骤 S 14: 才艮据石英晶体振荡器的实际振荡频率准确度以 及时差补偿周期的时间值,获取该石英晶体振荡器的守时误差。 实际振荡频率准确度乘以时差补偿周期即可得到该守时误差。 步骤 S15 : 根据所述守时误差对石英电子表的走时电路进 行补偿, 保持走时脉冲的准确性。 在本发明的实施例中, 在控制器中预先设置有石英晶体振 荡频率准确度与环境温度的对应关系, 其中石英晶体振荡频率 准确度是指在某个温度值下, 石英晶体振荡器的实际振荡频率 与设定的标准振荡频率的偏差值; 还设置有时差补偿周期, 在 每个时差补偿周期结束时, 采集环境温度, 并计算相应的时差 补偿周期内的平均温度值, 从而获取该平均温度值所对应的石 英晶体振荡器的实际振荡频率准确度, 根据石英晶体振荡器的 实际振荡频率准确度能够获取石英电子表在对应的时差补偿周 期内的守时误差, 根据守时误差对石英电子表的走时电路进行 补偿, 保持精确走时。 在本发明的实施例中, 可以在每个时差补偿周期内根据环 境温度对石英晶体振荡器的影响, 对石英电子表的走时电路进 行补偿, 克服了相关技术中因为环境温度对石英晶体振荡频率 的影响导致石英电子表的走时时间与标准时间具有较大误差的 技术问题, 因此本发明的石英电子表高精度守时方法能够减小 石英电子表的走时时间与标准时间的误差。 相关技术中的石英电子表因为走时误差的积累, 造成石英 电子表走时时间与标准时间之间的误差, 影响石英电子表的走 时精度, 一般每个月误差几分钟; 随着人们对手表的时间精度 要求的不断提高, 每个月几分钟的走时误差已经不能满足一些 高档石英电子表对时间精度的要求。 本发明实施例的石英电子表高精度守时方法能够使石英电 子表的走时误差由每个月几分钟降低到每个月几秒钟, 大大提 高石英电子表的走时精度。 为进一步提高石英电子的走时精度, 在本发明实施例的方 法中, 可以进一步对石英晶体振荡频率准确度与环境温度的对 应关系进行爹正。 具体地, 所述时差补偿周期连续设置; 连续的多个时差补 偿周期组合成校准周期; 在所述校准周期内对设置的石英晶体 振荡频率准确度与环境温度的对应关系进行爹正。 其中, 在所述校准周期内对设置的石英晶体振荡频率准确 度与环境温度的对应关系进行修正, 包括: 所述校准周期内设置有校准修正点, 计算所述校准修正点 所在的校准周期内的、 且采集时间均在所述校准爹正点之前的 所有环境温度的平均值, 得到第二温度均值; 获取所述第二温度均值所对应的校准爹正点的标准时间值, 将所获取的标准时间值与该校准修正点的显示时间值比较, 得 到守时误差; 才艮据所述守时误差及该守时误差所对应的校准修正点的显 示时间值, 获取石英晶体振荡频率准确度误差; 才艮据相互对应的所述第二温度均值及所述石英晶体振荡频 率准确度误差, 对设置的石英晶体振荡频率准确度与环境温度 的对应关系进行爹正。 本发明实施例中还提供一种采用以上石英电子表高精度守 时方法的石英电子表, 该石英电子表包括: 控制器 21、 温度传 感器 22、 石英晶体振荡器 24及走时电路 23。 石英晶体振荡器 24, 用于产生走时脉冲; 走时电路 23 , 利用所述走时脉冲进行走时; 控制器 21 , 用于预先设置石英晶体振荡频率准确度与环境 温度的对应关系, 还预先设置时差补偿周期; 温度传感器 22, 用于在所述时差补偿周期结束时采集环境 温度; 控制器 21还用于计算所述温度传感器 22采集的环境温度 与上一个时差补偿周期结束时测试的环境温度的平均值作为当 前时差补偿周期的平均温度值; 才艮据石英晶体振荡频率准确度 与环境温度的对应关系及所计算的平均温度值, 获取石英晶体 振荡器在对应的时差补偿周期内的实际振荡频率准确度; 根据 所述石英晶体振荡器的实际振荡频率准确度以及时差补偿周期 的时间值, 获取该石英晶体振荡器的实际振荡频率准确度所引 起的守时误差; 根据所述守时误差对石英电子表的走时电路 23 的走时进行走时补偿。 具体地, 控制器 21 为单片机, 优选地, 所述单片机为 S1C17701单片机。
S1C17701单片机的分 辛率为 0.03125。C, 工作电 ¾fu为 ΙμΑ 静态电巟; 温度传感器 22为 AD7301温度传感器, AD7301温度传感 器通过 SPI数据总线与控制器 21连接。 具体地, 石英晶体振荡器 24的振荡频率为 32.768kHz。 进一步地,本发明实施例的石英电子表还包括液晶显示器, 所述液晶显示器与控制器 21连接,用于显示石英电子表的走时 时间。 进一步地, 本发明实施例的石英电子表还包括按键, 所述 按键与控制器 21连接,通过按键能够手动设置石英电子表的走 时时间。 以上所述仅为本发明的优选实施例而已, 并不用于限制本 发明, 对于本领域的技术人员来说, 本发明可以有各种更改和 变化。 凡在本发明的精神和原则之内, 所作的任何修改、 等同 替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权利要求
1. 一种石英电子表高 4青度守时方法, 包括以下步骤:
S 11 : 预先设置石英晶体振荡频率准确度与环境温度 的对应关系, 还预先设置时差补偿周期;
S12: 在所述时差补偿周期结束时, 采集环境温度, 并计算所述环境温度与上一个时差补偿周期结束时测试 的环境温度的平均值作为当前时差补偿周期的平均温度 值;
S13 : 才艮据石英晶体振荡频率准确度与环境温度的对 应关系以及所述步骤 S 12中计算的平均温度值,获取石英 晶体振荡器在对应的时差补偿周期内的实际振荡频率准 确度;
S14: 4艮据所述石英晶体振荡器的实际振荡频率准确 度以及所述时差补偿周期的时间值,获取所述石英晶体振 荡器的守时误差; 以及
S15 : 根据所述守时误差对石英电子表的走时电路进 行走时补偿。
2. 根据权利要求 1所述的方法, 其中, 在所述步骤 S 11 中, 通过温度实 3 ,得到石英晶体振荡频率与环境温度的特性 曲线,经曲线拟合得到石英晶体振荡频率准确度与环境温 度的对应关系。
3. 根据权利要求 1所述的方法, 其中, 在所述步骤 S12中, 对于初次补偿,设定一温度初始值作为上一个时差补偿周 期结束时 ¾ 'J试的环境温度。
4. 根据权利要求 1所述的方法, 其中, 在所述步骤 S14中, 所述守时误差通过所述实际振荡频率准确度与所述时差 补偿周期的乘积获得。
5. 根据权利要求 1所述的方法, 其中, 所述时差补偿周期连 续设置;
连续的多个时差补偿周期组合成校准周期; 在所述校准周期内对设置的石英晶体振荡频率准确 度与环境温度的对应关系进行爹正。
6. 根据权利要求 5所述的方法, 其中, 在所述校准周期内对 设置的石英晶体振荡频率准确度与环境温度的对应关系 进行爹正的步骤, 包括:
所述校准周期内设置有校准修正点,计算所述校准修 正点所在的校准周期内的、且采集时间均在所述校准爹正 点之前的所有环境温度的平均值, 得到第二温度均值; 获取所述第二温度均值所对应的校准爹正点的标准 时间值,将所获取的标准时间值与该校准修正点的显示时 间值比较, 得到守时误差; 根据所述守时误差及所述守时误差所对应的校准修 正点的显示时间值, 获取石英晶体振荡频率准确度误差; 以及
才艮据相互对应的所述第二温度均值及所述石英晶体 振荡频率准确度误差,对设置的石英晶体振荡频率准确度 与环境温度的对应关系进行爹正。
7. 一种石英电子表, 包括: 控制器、 温度传感器、 石英晶体 振荡器及走时电路, 其中: 所述石英晶体振荡器用于产生走时脉冲,并在所述控 制器的控制下对所述走时电路进行走时补偿;
所述控制器用于预先设置石英晶体振荡频率准确度 与环境温度的对应关系, 还预先设置时差补偿周期; 所述温度传感器,用于在控制器的控制下在所述时差 补偿周期结束时采集环境温度; 并且 所述控制器,还用于将所述温度传感器采集的环境温 度与上一个测试周期结束时测试的环境温度的平均值作 为当前时差补偿周期的平均温度值; 4艮据石英晶体振荡频 率准确度与环境温度的对应关系及所述平均温度值,获取 石英晶体振荡器在对应的时差补偿周期内的实际振荡频 率准确度; 4艮据所述石英晶体振荡器的实际振荡频率准确 度以及时差补偿周期的时间值,获取与该石英晶体振荡器 的实际振荡频率准确度所对应的时差补偿周期内的守时 误差;根据所述守时误差对石英电子表的走时电路的走时 进行补偿。 根据权利要求 7所述的石英电子表, 其中, 所述控制器为 单片机。 根据权利要求 8所述的石英电子表, 其中, 所述单片机为 S1C17701单片机。
10. 根据权利要求 7所述的石英电子表, 其中, 所述温度传感 器为 AD7301温度传感器。
PCT/CN2013/087700 2013-09-04 2013-11-22 石英电子表高精度守时方法 WO2015032132A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380048462.4A CN104937504B (zh) 2013-09-04 2013-11-22 石英电子表高精度守时方法
JP2016504457A JP6282723B2 (ja) 2013-09-04 2013-11-22 クオーツ電子時計の高精度計時方法
HK16100606.8A HK1212788A1 (zh) 2013-09-04 2016-01-20 石英電子錶高精度守時方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310398296.2A CN103454904B (zh) 2013-09-04 2013-09-04 提高石英电子表守时精度的方法及石英电子表
CN201310398296.2 2013-09-04

Publications (1)

Publication Number Publication Date
WO2015032132A1 true WO2015032132A1 (zh) 2015-03-12

Family

ID=49737404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/087700 WO2015032132A1 (zh) 2013-09-04 2013-11-22 石英电子表高精度守时方法

Country Status (4)

Country Link
JP (1) JP6282723B2 (zh)
CN (2) CN103454904B (zh)
HK (1) HK1212788A1 (zh)
WO (1) WO2015032132A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116776094A (zh) * 2023-08-22 2023-09-19 山东盈动智能科技有限公司 一种晶振温度测试数据智能分析存储系统

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104536283A (zh) * 2014-12-17 2015-04-22 深圳市航盛电子股份有限公司 一种车载温度补偿时钟的电路及方法
CN108227471B (zh) * 2016-12-21 2019-11-12 展讯通信(上海)有限公司 Gps共享时钟的校准方法及装置
CN107329399B (zh) * 2017-07-14 2020-08-25 成都天奥电子股份有限公司 一种卫星授时时钟系统低功耗控制方法及时钟系统
CN110456628B (zh) * 2019-09-12 2020-12-08 珠海格力电器股份有限公司 自动校准显示屏时间的方法、装置、显示屏和用电设备
CN115134460B (zh) * 2021-03-29 2024-07-23 北京小米移动软件有限公司 一种移动终端温度控制方法、装置、终端及存储介质
CN114200815B (zh) * 2021-11-15 2023-03-24 秦佳电气有限公司 一种提高普通定时器计时精度的方法及系统
CN116886080B (zh) * 2023-09-08 2023-12-29 宝捷时计电子(深圳)有限公司 一种计时装置用控制装置及其控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04315989A (ja) * 1991-04-16 1992-11-06 Citizen Watch Co Ltd 温度補償付電子時計
JP2002168979A (ja) * 2000-11-30 2002-06-14 Canon Inc 時刻モジュールおよび時刻モジュールの時刻補正方法
CN201607626U (zh) * 2010-01-19 2010-10-13 深圳市星芯趋势科技有限责任公司 高稳定度实时时钟电路
CN102520608A (zh) * 2011-12-19 2012-06-27 深圳市航盛电子股份有限公司 自动校正汽车车载时钟的方法及装置
CN102591197A (zh) * 2012-02-20 2012-07-18 惠州市德赛西威汽车电子有限公司 一种时钟温度误差补偿方法及其系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01109289A (ja) * 1987-10-21 1989-04-26 Seiko Epson Corp スイープ運針時計
JP2842029B2 (ja) * 1992-03-25 1998-12-24 富士通株式会社 計時手段の誤差補正装置
JPH06342088A (ja) * 1993-04-07 1994-12-13 Seiko Epson Corp 計時方式、半導体装置、計時装置
JP4661312B2 (ja) * 2005-04-01 2011-03-30 セイコーエプソン株式会社 電波修正時計、その制御方法、その制御プログラム、記録媒体
JP2007010401A (ja) * 2005-06-29 2007-01-18 Seiko Epson Corp 電波時計モジュール及びそれを具備する電波時計
US7586377B2 (en) * 2005-08-12 2009-09-08 Continental Automotive Systems Us, Inc. Real time clock
JP2007078405A (ja) * 2005-09-12 2007-03-29 Kojima Press Co Ltd ソフトウェア時計の計時プログラム
JP2008064678A (ja) * 2006-09-08 2008-03-21 Ricoh Co Ltd リアルタイムクロック制御装置、リアルタイムクロック制御方法およびリアルタイムクロック制御プログラム
JP2012047705A (ja) * 2010-08-30 2012-03-08 Nec Computertechno Ltd 時刻補正装置、及び制御方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04315989A (ja) * 1991-04-16 1992-11-06 Citizen Watch Co Ltd 温度補償付電子時計
JP2002168979A (ja) * 2000-11-30 2002-06-14 Canon Inc 時刻モジュールおよび時刻モジュールの時刻補正方法
CN201607626U (zh) * 2010-01-19 2010-10-13 深圳市星芯趋势科技有限责任公司 高稳定度实时时钟电路
CN102520608A (zh) * 2011-12-19 2012-06-27 深圳市航盛电子股份有限公司 自动校正汽车车载时钟的方法及装置
CN102591197A (zh) * 2012-02-20 2012-07-18 惠州市德赛西威汽车电子有限公司 一种时钟温度误差补偿方法及其系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116776094A (zh) * 2023-08-22 2023-09-19 山东盈动智能科技有限公司 一种晶振温度测试数据智能分析存储系统
CN116776094B (zh) * 2023-08-22 2023-10-31 山东盈动智能科技有限公司 一种晶振温度测试数据智能分析存储系统

Also Published As

Publication number Publication date
HK1212788A1 (zh) 2016-06-17
CN104937504A (zh) 2015-09-23
CN103454904A (zh) 2013-12-18
JP6282723B2 (ja) 2018-02-21
CN103454904B (zh) 2016-04-06
CN104937504B (zh) 2017-12-26
JP2016512896A (ja) 2016-05-09

Similar Documents

Publication Publication Date Title
WO2015032132A1 (zh) 石英电子表高精度守时方法
WO2019010826A1 (zh) 一种卫星授时时钟系统低功耗控制方法及时钟系统
EP2369438B1 (en) Calibration method of a real time clock signal
CN103176400B (zh) 智能电表时钟校准方法
CN102176112B (zh) Mcu内置rtc实现时钟精确计时的方法
GB2428799A (en) Compensating the drift of a local clock in a data acquisition apparatus
JP2007078405A (ja) ソフトウェア時計の計時プログラム
CN202256438U (zh) 智能电能表硬件rtc误差补偿系统
CN107765760B (zh) 仪表睡眠模式下rtc模块时钟源动态校准方法及其系统
JP2009222486A (ja) 時刻装置および可搬型電子機器
CN102591197A (zh) 一种时钟温度误差补偿方法及其系统
CN103092068B (zh) 一种校时方法及其系统
CN106569544A (zh) 实时时钟芯片及其时钟校准方法、装置
CN102163040B (zh) 具有温度补偿功能的内置硬件时钟模块
CN101995816B (zh) 一种钟表自动校准方法和钟表自动校准装置
CN103034116A (zh) 一种提高石英计时器时间计时准确度的方法
CN112737507B (zh) 一种基于温度传感器实现rtc高精度的方法
CN106444966B (zh) 一种实时时钟rtc调整装置及方法
TWI594091B (zh) Time correction method and system thereof
CN110928172B (zh) 一种卫星手表晶振精度检测方法和守时方法及卫星手表
CN103257570A (zh) 一种电子钟及电子钟速度校正方法
CN104316047A (zh) 一种利用gps自主提高敏感器数据时标精度的方法
JP2017020852A (ja) 組込装置
CN111897202A (zh) 烟感探测器mcu的rtc校准电路及校准方法
JP2003270369A (ja) リアルタイムクロックの時刻補正方法及び時刻補正装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13892916

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016504457

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13892916

Country of ref document: EP

Kind code of ref document: A1